当前位置: 仪器信息网 > 行业主题 > >

红外衰减全反射法

仪器信息网红外衰减全反射法专题为您提供2024年最新红外衰减全反射法价格报价、厂家品牌的相关信息, 包括红外衰减全反射法参数、型号等,不管是国产,还是进口品牌的红外衰减全反射法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外衰减全反射法相关的耗材配件、试剂标物,还有红外衰减全反射法相关的最新资讯、资料,以及红外衰减全反射法相关的解决方案。

红外衰减全反射法相关的资讯

  • 便携式红外衰减全反射光谱仪用于食品分析测试
    合适的食品质量检测方法十分重要,科学家利用众多方法来测试不同的污染物。最近一种红外衰减全反射(IR-ATR)仪器在食品检测领域流行起来,它可以在几乎不需要样品制备的情况下获取倏逝场吸收,同时促进对任何聚集状态中的分析物的无损分析。食品安全控制概念 | 图片来源:© Alexander Raths - stock.adobe.com最近发表在《应用光谱学》杂志上的一项研究介绍了一种便携式的红外衰减全反射(IR-ATR)食品分析设备,可用于分析食品行业中有重要意义的物质。该系统的核心是了解脂质中脂肪酸(FAs)的组成;由于正常的脂质成分是表征鱼类等食品的质量的特征指标,但易受环境因素如水质、捕捞季节和温度的影响,因此跟踪脂肪酸是理解脂质的真实特征以及它们如何影响食物质量的关键。该系统还使用了霉菌毒素和有机溶剂作为代表进行了测试。霉菌毒素是与真菌污染相关的有害次生代谢物,它们的存在可能对人体和家畜的健康产生有害影响,因此检测它们对于食品安全至关重要。至于有机溶剂,食品行业主要将其用于从食品基质中提取成分,但由于传统方法性能优越,导致绿色提取方法不太受欢迎。这两种物质对于食品加工都是必不可少的,这也解释了为什么除了脂肪酸之外,IR-ATR 系统还主要针对它们进行测试。用傅立叶变换红外光谱仪(FT-IR)对便携式IR-ATR设备与传统实验室IR-ATR设备进行了对比测试,以展示前者系统的潜在优势。使用了三种类型的模型系统,每种系统内都含有不同的样品:溶解在水中的N,N-二甲基甲酰胺((CH3)2NCH)(DMF)、溶解于乙醇中的硬脂酸(C17H35CO2H)以及溶解于甲醇中的DON(C15H20O6)。这些分析物作为典型的化合物类别,在中红外(MIR)光谱图中具有特征波段。通过两种系统的比较证实了的两者的多个因素,包括霉菌毒素的检测、FAs的分析以及有机溶剂的定量。值得注意的是,便携型系统的分析性能与标准型系统分析能力一致。然而,在该系统投入大规模使用之前仍需要进一步的工作要做。科学家在研究中指出:“未来研究旨在分析更复杂的系统,包括真正的鱼类样品和各种含有真菌污染物/霉菌毒素的谷类作物提取物,并采用先进的数据分析方法来开发无需标记的快速筛查方法。”
  • 可能你不知道,红外光谱法才是中药快速检测的不二之选
    中药检测的方法有很多,比如气相色谱法、髙效液相色谱法、薄层色谱法、紫外-可见分光光度法、红外分光光度法等等。通过这些光谱和色谱的鉴别方法,我们可以对中药材和饮片的理化性能进行科学分析,定性定量。由于全民保健意识的提高,我国中药质量检测越来越被重视。高效,快速、精准、低廉就成为选择中药检测方法的重要参考因素。红外光谱法就是符合以上四点的中药常用检测方法之一。通常绝大部分的有机化合物、或者无机化合物的红外光谱都具有一定的指纹特征,所以就不需要再进行衍生等成分标记处理,尤其是表征一些有机小分子、有机大分子、无机化合物等中药产品,红外光谱几乎都能直接进行表征其中的绝大部分成分,而且红外光谱法适用各种固体、液体、气体形态的中药药品,对于及时发现不合格样品,减少检测周期时间,大批量检测,效率提高,成本降低等各种需求都能满足。检测原理按照《中华人民共和国药典》通则中的相关规定:除部分光学异构体及长链烷烃同系物外,几乎没有两个化合物具有相同的红外光谱,据此可以对化合物进行定性和结构分析。中药药品的各种化合物成分的红外信号也是叠加的,如果化合物种类或数量不相同,那么红外光谱肯定就会存在一定差异,所以我们就可以以此为依据进行定性分析。此外,化合物对红外辐射的吸收程度与其浓度的关系符合朗伯-比尔定律,这也是红外光谱法得以应用的重要依据之一。检测仪器红外光谱仪是中药红外光谱法检测的主要使用仪器设备。这里我们可以使用傅里叶变换红外光谱仪或色散型红外光谱仪,色散型红外光谱仪也就是红外分光光度计。通常这些设备性能符合《中药典》的规定即可。当然,我们在实际检测时,也会根据测试样品的需要,有针对性的选择附属装置,比如压片装置、衰减全反射测定装置等。当然有些附属装置还会配备透射、反射、光纤探头等装置。不过中药检测一般使用压片法和衰减全发射法进行红外测定。取样方法通常我们对一般药材和饮片进行红外光谱法取样时,要求每份试样的重量都不能少于100g;如果是均匀的粉末状药材或者饮片,则要求试样最少不能少于25g;液体药品则要求试样每份不得少于25 mL。当然,事无绝对,如果属于贵重试样,只要能保证试样具有代表性,则可以适当减少取样量。对于成分不均匀的固体试样要求进行粉碎处理,粒度要求能够通过100目筛。浓度较低的液体试可以进行浓缩处理或干燥处理后进行测试。测试方法前面我们也说了中药的红外光谱法,主要分为压片法和衰减全反射法。压片法主要适用于检测干燥的固体试样,或者是不会溶解稀释剂的液体试样。衰减全反射法则是永夜检测不同形态、不同含水量的固体试样或液体试样,这些试样一般不需要进行稀释处理,可以直接进行测试。定性定量分析中药定性分析、中药定量分析是红外光谱法的关键所在。通常中药定性分析一般分为成分定性分析和类别定性分析两种。成分定性分析主要进行化合物结构解析、化合物定性检测;类别定性分析一般为对中药真伪鉴别,产品鉴别、登记鉴别,类别定性分析也分单类别分析、多类别分析。定量分析就是对中药成分的含量或浓度进行测定。以上便是使用红外光谱法来进行中药检测的相关知识。我们在实际检测时,由于空气中的水蒸气和二氧化碳能够吸收特定频率的红外光,所以当测试背景光谱与试样光谱的环境氛围差异较大时,光谱仪就可能吸收水蒸气或二氧化碳的信号,从而影响结果的准确度。所以我们在检测时,一定要排除水蒸气或二氧化碳的干扰,通过及时更新背景光谱,对测试设备进行真空处理,保持环境的温度、湿度,避免相关人员干扰,采取数学方法对相关信号进行扣除等操作,尽量消除空气中水蒸气或二氧化碳的信号干扰影响。
  • 车用尿素是什么,您知道吗?
    岛津傅立叶变换红外光谱应对尿素溶液一致性确认 何为车用尿素?我们最熟识的尿素是农业上使用的肥料,但你知道吗?其实医药、食品、化妆品中都使用尿素。近年来,柴油车上也用上了尿素(水溶液),但是不同于工农业尿素,车用尿素由32.5%高纯尿素和67.5%的去离子水组成,学名是“柴油机尾气处理液”,它不是用在气缸里面“烧”的,而是在排气管里面“烧”的,作用是处理汽车尾气中氮氧化物。 汽车尾气处理技术柴油车主要排放一氧化碳、碳氢化合物、氮氧化物和颗粒污染物等,控制的重点是氮氧化物(nox)和颗粒污染物(pm)。目前gb17691-2018《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(以下称国六)已经正式实施,继燃气汽车之后,城市重型柴油车将于2020年7月1日进入国六a排放阶段。与国五排放标准相比,国六排放标准中氮氧化物和颗粒物排放限值分别加严了77%和67%,并新增了粒子数量(pn)的限值要求。 为了达到国六排放标准,通常需要多种尾气后处理技术共同作用,其中选择性催化还原(scr)技术是当前普遍使用的尾气处理技术之一,该技术用来降低发动机尾气中的nox,其原理是在含有nox的尾气中喷入尿素水溶液,使其中的nox还原成无污染的氮气和水,从而大大减少废气的排放量。 岛津irspirit-t红外光谱仪对尿素水溶液aus32进行一致性确认尿素水溶液是scr技术中必须要用到的消耗品,如果使用劣质产品,废气中氮氧化物无法完全转换为氮气和水,会出现排放超标的现象;长期使用劣质尿素将对车辆的后处理系统造成致命性的损伤,需要花费大量的人力财力来弥补,目前国内外大部分标准均采用红外光谱法对其进行定性测试。 使用岛津irspirit-t型傅立叶变换红外光谱仪测定了市售尿素水溶液红外光谱(衰减全反射法),测试谱图特征峰与参考谱图一致,表明该产品符合gb 29518-2013《柴油发动机氮氧化物还原剂 尿素水溶液(aus32) 》一致性确认的技术要求。 图1 参考谱图(衰减全反射法) 图2 市售车用尿素溶液红外光谱图(衰减全反射法) irspirit-t具备同类产品最佳的信噪比性能和最高的分辨率水平,尺寸小巧,还兼具标准样品室,良好的扩展性可以满足各种不同测试需求,一体式设计单次反射atr装置(qatr-s)只需要一滴液体,即可以快速简单测得试样红外光谱图,而且便于清洁,非常适合尿素水溶液一致性确认。 撰写人:段伟亚、马超
  • 亚微米光学光热红外技术O-PTIR——古生物化石研究利器
    红外光谱技术研究古生物化石的现状我国是古生物化石大国,但古生物化石保护形势十分严峻。许多重要化石产地均没有得到有效保护,遭到了不同程度的破坏。因此,对化石产地监测和保护工作刻不容缓,而监测工作则是保护工作的基础和支撑。红外光谱技术是一种常用的地物探测技术,它利用特定波段范围的红外光对地物进行探测,其光谱特征可间接判定物体物理或化学特性的变化。化石的主要矿物成分是磷灰石、方解石及少量的石英,但由于碳酸盐容易受到流体的侵蚀,造成化石的自然风化现象较为严重,其光谱的产生主要是由于组成物质内部离子与基团的晶体场效应和基团振动的结果。而风化产生的表面覆被层的矿物质,其质地与新鲜岩石的矿物或是相似或是不同,虽然这类表面层的厚度仅有几微米到几毫米,但它们对整个表面的红外光谱起到决定作用。因此,通过测量化石的光谱特征,识别地物属性是获取岩矿类型、矿物特征及成矿背景等信息的重要手段。传统的傅里叶红外光谱(FTIR, Fourier Transform Infrared),尤其是衰减全反射法(ATR, attenuated total reflection),在使用透射模式测量厚样品时会产生强烈的吸收峰值,包括均匀的固体样品,多层固体的表层或固体的涂层,不规则形坚硬固体甚至一些液体分析也能使用坚硬的ATR晶体材料(比如金刚石)进行分析。但使用ATR对古生物化石样品进行成份分析,仍面对一系列的挑战:1. 传统的FTIR和ATR 方法空间分辨率有限,约为5-20 μm 2. 尽管FTIR可使用制备好的超薄化石切片而ATR可以直接使用固体样品,其表面的崎岖不平会造成严重的散射相差,无法得到有用的分子振动信息;3. ATR晶体需要与样品直接接触,会引起交叉污染或应力造成分子取向的变化 光学光热红外技术基于光学-光热红外技术(O-PTIR)的亚微米分辨率红外拉曼同步测量系统mIRage,使用宽可调谐的脉冲红外激光源激发样品,在样品中产生调制光热效应。通过光热效应提取并计算红外吸收, 通过检测反射探头光束强度的变化作为红外波数调谐的函数,从而提供红外吸收光谱。这种短波长脉冲探测光束(通常是532 nm)决定了红外测试空间分辨率,而不是传统FTIR/QCL显微镜中依赖的红外波长。由于其特的系统架构,短波长探测光束同样也能作为一个拉曼激光源,当集成拉曼光谱仪,mIRage系统可以提供同一地点,同一时间,同一空间分辨率的亚微米红外+拉曼显微镜的检测结果。 基于O-PTIR技术的mIRage相对于常规红外技术(FTIR和ATR),在生物化石分析上具有显著的优势:1. 和拉曼光谱一致的亚微米空间分辨率,比传统FTIR/QCL显微镜提高30倍,达到500 nm;2. 非接触式测量,非破坏性,反射(远场)模式测量,无须复杂的样品制备;3. 高质量光谱(测试可兼容粒子形状/尺寸和表面粗糙度),没有色散/散射伪影问题;4. 可直接在商业数据库中匹配搜索5. 可实现红外和拉曼光谱成像同步测量具体案例:国内某知名研究所,使用亚微米分辨率红外拉曼同步测量系统mIRage对获取的phillipsite(钙十字沸石)矿石样品进行了分析。整个矿石被直接放在mIRage显微镜样品台上进行观察,使用的红外激光器为QCL(quantum cascade laser, 800-1850 cm-1), 观察模式为反射模式,波谱分辨率约为1-2 cm-1. 结果证实,高分辨率mIRage可对5 -20 µm大小的高散射十字花石矿物中的有机-无机包体区域进行分析,提供常规FTIR无法实现的化学细节。红外光谱清晰地显示了其内部存在化学可微的夹杂物,样品中含有嵌入的phillipsite内含物。由于矿石散射面太多,传统傅立叶变换会产生色散伪影,而O-PTIR谱图则不会出现。根据获得的红外光谱与数据库进行比对分析,其主要组成成份为乳酸钙。
  • 辐射诱导衰减|扩大聚变和裂变应用中的光学仪器开发
    研究:暴露于中子和伽马辐射的熔融石英和蓝宝石的光学吸收以及同时热退火。图片来源:RHJPhtotos 通过同时和辐照后热退火研究了集成二氧化硅和蓝宝石的辐射诱导衰减 (RIA)。研究人员发现同时辐照热退火和辐照后热退火在二氧化硅和蓝宝石的光学行为方面存在重大差异。 该研究在选择和放置用于开发光学仪器应用(例如聚变或裂变反应堆)的光学材料方面具有广阔的潜力。它还帮助研究人员了解辐射对此类光学材料的影响。 熔融石英和蓝宝石等光学材料中的辐射引起的衰减通过减少核反应堆仪器检查停机的频率,可以显着提高核反应堆的辐射安全和经济性能,从而可以在线监测关键反应堆部件。 激光诱导击穿光谱 (LIBS) 可以通过在反应堆运行时对反应堆冷却剂的化学成分进行光谱研究来识别核反应堆部件的退化。 在适当的操作设置下了解光纤和透镜等光学材料的辐射效应至关重要,因为基于 LIBS 的仪器需要通过这些光学材料传输等离子体发射和高能激光脉冲。 二氧化硅和蓝宝石等普通光学材料具有光学特性,包括衰减和折射率,当暴露于核反应堆中的离子辐射效应时,这些特性会发生变化。 已经对集成二氧化硅和蓝宝石在受到中子和伽马射线照射然后进行热退火时的辐射诱导衰减 (RIA) 和辐射效应进行了多项研究。然而,由于辐照、检查和热退火之间的时间相当长,没有关于光学材料在同时高温和辐射效应下的原位行为的数据。 当前研究中的研究人员使用高羟基含量的 Heraeus Spectrosil 2000 集成二氧化硅 (S2000)、低羟基含量的 Heraeus Infrasil 302 集成二氧化硅 (I302) 和光学类蓝宝石进行了 220 nm 至 1100 nm 的 RIA 测量。这些光学材料在高达 800 C 的后辐照和同时辐照热退火下暴露于中子和伽马辐照下,以观察它们的辐射效应。 二氧化硅和蓝宝石光学吸收的实验装置第一个测量吸收的实验装置包括一个覆盖 220-1100 nm 光谱范围的 Ocean Insight HR4000 光谱仪和一个 Ocean Insight 卤素/氘光源。 第二个实验装置包括一个安装在60 Co 池干管上方的退火炉,用于光学材料的同步和后热退火。 目前的研究在俄亥俄州立大学核反应堆实验室的核反应堆和60 Co 辐照池中进行了辐照。在包含60 个Co 伽马源的圆柱形夹具的帮助下,一个 I302 样品在宾夕法尼亚州立大学辐射科学与工程中心暴露于 10Mrad 的辐照下。 使用具有二氧化硅-氧化铝绝缘的特制碳化硅线圈炉对样品进行干燥和空气中的退火。 这些熔炉被建造成适合60 Co 池和核反应堆干管内,以同时对样品进行热退火和辐照。 在辐照后退火实验中,在每次辐照剂量后将样品加热到指定的温度。 相反,在同时退火的情况下,样品在辐照过程中被连续加热到指定的温度,直到达到列出的剂量。 光学仪器在裂变和聚变应用中的发展潜力该研究展示了同时辐照和热退火的后果以及对光学渐变蓝宝石、I302 和 S2000 的辐射效应。 该团队观察到这些光学材料在同时和辐照后热退火条件下的行为的关键区别。 在 S2000 的情况下,对 n 剂量 1 和 2 进行辐照后 600 C 的热退火将材料恢复到未辐照的形式。在 800 C 时,具有相同剂量的同时辐照热退火样品保留了紫外线范围内的辐射诱导衰减。 在 n-Dose 1 和 n-Dose 2 的同时辐照热退火下,I302 还显示出 220 nm 至 900 nm 之间的平衡辐射诱导衰减光谱,这与 I302 主要恢复的辐照后热退火情况相反退火至 800 C 后变为未辐照状态。 与等效剂量辐照后热退火情况相比,在加热到 800 C 后样品几乎退火到其未辐照状态,蓝宝石在 n-Dose 1 和 2 的同时辐照热退火中显示出可能的平衡辐射诱导衰减范围退火条件。对于该光谱,在 260 nm 处获得了残余吸收峰,而在 300 nm 处获得了增加的吸收峰。 当前研究的最初目标是在高放射性和热环境中支持基于 LIBS 的仪器,以承受显着的辐射效应。 比较作为样品的光学材料的吸收光谱表明,S2000 是实现基于 LIBS 的仪器的最理想材料,最高退火温度为 800 C,中子注量为 1.7 x 10 17 n。厘米-2。 在 532 nm 和 1064 nm 的相关 LIBS 波长下,S2000 仅显示边缘辐射引起的衰减。在同时辐照热退火下,I3O2 产生了高达 900 nm 的相当大的辐射诱导衰减,这可能会限制 532 nm 的 LIBS 激光器。 与报道的 S2000 中没有明显的辐射诱导衰减相比,蓝宝石在 532 nm 或 1064 nm 处没有表现出同时辐照热退火的辐射诱导衰减。UV 范围内的残余辐射引起的衰减峰可能会干扰 LIBS 等离子体光谱。 参考BW Morgan、MP Van Zile、CM Petrie、P. Sabharwall、M. Burger、I. Jovanovic,暴露于中子和伽马辐射下的熔融石英和蓝宝石的光学吸收以及同时热退火。2022.核材料杂志。
  • 中国药典《橡胶密封件表面硅油量测定法》二次公示
    橡胶密封件通常需要使用硅油以增加润滑性,使其在贮存及运输过程中减少因摩擦产生的微粒,便于胶塞的分装与压塞。但过多的硅油可能会影响药品质量和安全,因此对其进行控制是非常有必要的。现行国家药包材标准中仅有预灌封注射器用橡胶活塞产品设置有硅油量检测项目,其余橡胶密封件产品标准均未设置,应填补此空白。本标准起草过程中参考《国家药包材标准》中硅油量测定方法以及ISO国际标准、《美国药典》和《欧洲药典》。重点说明的问题 1.规定了检测橡胶密封件表面硅油量所用仪器,包括傅里叶变换红外光谱仪,明确仪器需配备液体池附件。 2. 确定了供试品的制备方法。为保证使用仪器可准确测量,对样品的数量、 溶剂比例及整个提取过程做了相应规定要求。对于测试含量超过标准曲线上限的样品应进行稀释后进样。3. 测试方法的选用。考虑到企业自身仪器配置的不同,收载了透射法和衰减全反射法两种测试方法,满足不同需求。4. 设置了两种结果表示方式。考虑到企业不同需求,分别采用两种结果表示方式评价橡胶密封件表面硅油量。5. 本标准为方法标准,限度规定见相关通则项下。附件:4222 橡胶密封件表面硅油量测定法草案公示稿(第二次).pdf
  • 光热红外显微技术首次应用于刑侦领域指纹中易爆炸物的检测
    在全球恐怖主义不断威胁下的今天,有效的易爆炸物检测已经成为众多重要区域需要进行的关键程序之一,包括机场,边境检查站,以及高安全建筑的入口等。指纹作为人类留下痕迹的一种“照片”——手指的摩擦脊皮肤的图案,自19世纪以来已经成为犯罪现场鉴定当事人身份的一种常规手段。另外,许多被人接触过的东西都会残留在指纹的自然分泌物和污染物的复杂混合物中,如每天服用的药片,咖啡,或刑侦领域常见的毒品和易爆炸物等。传统的可视化指纹检测手段,如扑粉,茚三酮熏蒸,真空金属沉积等,尽管可以重建指纹图案,但其同时可能对一些指纹脊状突起中含有的化学物质造成破坏。近年来,许多技术被用于指纹中痕量外源物质的分析鉴定,如解吸电喷雾电离质谱(DESI-MS),液相色谱-质谱(LC-MS),但通常需要额外的溶剂喷雾处理,且空间分辨率不足(~150 μm),或者分析过程会对指纹造成破坏。傅里叶变换红外(FTIR)光谱显微镜,可以探测样品中分子间化学键的固有分子振动,并提供丰富的化学信息, 已成为一种快速、无需标记、无损的样品表征方法,被广泛应用于包括刑侦在内的众多领域。FTIR透射模式测试通常选用红外光透明的材料,而反射模式则选用硅片,聚酯薄膜或铝覆盖的玻璃基底,但两者在指纹分析上多局限于收集在选定波数下指纹中组分物质的二维分布信息。另外对于那些沉积在既不透明也不反射红外的基底上的样品,衰减全反射法(Attenuated total reflectance,ATR)似乎成为的选择,但ATR通常不是法医鉴定的一种理想方法,因为ATR要求被分析的样品和ATR晶体紧密接触,往往会导致样品变形甚至后破坏剩余的证据。 图1. 光热红外光谱显微技术用于检测指纹中的易爆炸物基于以上考虑,新加坡国立大学同步辐射光源线站的科学家们和新加坡刑事调查局刑侦部门共同合作开发出了一种新的红外检测手段(图1),即使用基于新型光热红外(Optical- Photothermal InfraRed,O-PTIR)技术的非接触亚微米分辨红外拉曼同步测量系统mIRage来分析指纹中含有的痕量易爆炸物微粒,该技术带来了一系列的优势,如亚微米的红外光谱和成像分辨率,易操作的远场、非接触显微镜工作模式和明显高于FTIR光谱显微镜的灵敏度。在实验过程中,四种代表性易爆材料,包括PETN(季戊四醇四硝酸酯)、RDX(黑索今炸药)、C-4 (塑料炸药,黑索今炸药和塑化剂,粘结剂的混合物)和TNT(2,4,6-三硝基苯),可直接被分散在指纹内(“直接”指纹)或沉积在基底物质上 (间接”指纹)进行检测,无需任何复杂的样品制备过程。而传统红外样品制备时通常会使用KBr,混合后在一定压力下进行薄片的压制。从光学显微照片2a中可以看出,薄片中KBr颗粒与RDX的混合是不均匀的,肉眼无法准确识别出目标物质RDX。为了定位混在KBr颗粒之间的易爆物,作者采集了单一波长1269 cm-1下的O-PTIR图像, 对应于RDX分子的C-N拉伸振动的显著红外吸收线(红色),清晰显示了RDX分子在混合物中的分布情况。另外,类似于FTIR光谱技术,光热红外技术可以提供样品红外吸收带相对于波数[cm-1]的谱图函数信息。如图2c所示, 作者采集了C-4, RDX,PETN和TNT四种物质的O-PTIR图像和FTIR光谱,通过对比可知所有分析的光谱都包含易爆物自身的特征红外吸收峰,可以视为他们的“签名”。值得注意的是,尽管基于O-PTIR的非接触亚微米分辨红外拉曼同步测量系统mIRage使用非接触(远场),反射模式,其光谱质量仍然非常接近于透射测量模式下的FTIR吸收光谱,且红外吸收带强度和浓度之间遵照比尔定律成线性关系。图2. (a) Cassegrain显微物镜记录的混有RDX的KBr薄片的10倍放大光学图像,(b) O-PTIR激光反射(绿色)和在1269 cm-1波长下采集的单波数O-PTIR图像(红色)叠加后的照片, (c) 含有四种高爆炸物的参照物的FTIR(黑色)和O-PTIR(红色)谱图对比,(C-4, RDX, PETN 和 TNT)。单波数图像,又称为离散频率图像,已被广泛用于高倍率下样品感兴趣区域的定位。图3a展示了作者收集到的被PETN污染的指纹光学图像,该指纹沉积在桌面上,是通过使用粉末(Hi-Fi Silk Gray)显影, 胶带(Spex C-lifts)分离后获取到的。在该例子中,单波数的图像为1000×200点组成的矩阵(500×300 μm2),每一个单点都对应于该位置O-PTIR振幅的值(即与特定波数下(1003 cm-1和1473 cm-1,该点处材料的红外吸收和数量成正比),换句话说,这些图像是所选波数下红外吸收强度的二维分布(吸收)图。图3. (a) 被易爆物PETN污染的指纹的光学照片,(b)指纹中五个不同位置收集的O-PTIR光谱与PETN的标准参考红外谱图的对比;(c, d)在同样的500 * 300平方英寸的面积下采集的单波数下O-PTIR图像,每像素约1毫秒,(c) 1003 cm-1和 (d) 1473 cm –1。综上所述,作者认为O-PTIR技术是一种分析具有挑战性样品的理想手段,如隐藏的指纹,提供隐藏在大量外源物质中的微小(亚微米)粒子的化学信息(如易爆物)且不需要复杂的样品制备过程。这些信息可以通过单波数红外成像和亚微米空间分辨率的红外光谱获得,后者使用目前的FTIR光谱显微镜是无法做到的(分辨率受限于红外波长,约10-20 μm)。另外,该分析手段非常简单快捷,无破坏性,且不需要基于接触的方法(例如ATR光谱技术),使得样品的完整性被完全的保持。特别指出的是,该技术的非破坏性非常重要,尤其是在法医领域,因为它可以允许同时使用其他技术对相同样本进行互补和比对分析,并作为法律证据。此外,随着技术的发展,O-PTIR现在可以与拉曼显微镜相结合,以提供真正的亚微米同步的红外拉曼测试,使得在一个仪器上通过一次测量即可进行互补和验证分析。 技术支持:Quantum Design中国结合红外光谱的应用和科技的需求,专注先进红外光谱技术的引进, 近期QD中国引进了美国PSC公司的非接触亚微米分辨红外&拉曼同步测量系统mIRage(图4)。它是全球科技创新R&D100大奖的获奖者,基于O-PTIR技术,克服了传统红外光谱仪空间分辨率受限于红外光波长的问题,将分辨率从原来的10-20微米提升到了0.5微米,并且可以实现同时、同样品区域、相同分辨率的红外光谱和拉曼光谱测试,测量过程更简单、便捷。目前该样机安装于Quantum Design中国北京实验室,更多的应用仍在不断开发和探索中,我们期待与您早日合作,共同进步!图4. Quantum Design中国北京mIRage样机实验室及仪器工程师合影 参考文献:[1] Agnieszka Banas et. al, Detection of High-Explosive Materials within Fingerprints by Means of Optical-Photothermal Infrared Spectromicroscopy. Anal. Chem. 2020, 92, 14, 9649–9657.产品信息:非接触式亚微米分辨红外拉曼同步测量系统:https://www.instrument.com.cn/netshow/SH100980/C363244.htm
  • 近红外NIR在线监测饮料中的二氧化碳-德国Centec
    近红外对CO2测量是一次技术上的革新,新一代的传感器是基于衰减全反射(ATR)技术。 当光线经过一个蓝宝石水晶玻璃,近红外(NIR)光在表面多次反射。晶体表面直接接触碳酸液体,由于液体中的CO2分子吸收特定波长的光,根据CO2浓度,每次反射后强度都衰减。 该传感器具有极高的精度和提供的&ldquo 真实&rdquo 的二氧化碳含量,精确定量的红外吸收溶解的二氧化碳。测量结果不受啤酒中的任何其他气体的影响,比如氮气。 由于没有移动部件,该仪器几乎是免维护。 这个高度创新的设备,将首次在2013年慕尼黑国际饮料技术展展览期间面市! 技术参数如下:
  • 国标计划溶液聚合丁苯橡胶微观结构测定红外ATR法拟立项
    p   日前,国家标准委发布201项拟立项推荐性国家标准项目征求意见的通知,其中国家标准计划《溶液聚合丁苯橡胶(SSBR)微观结构的测定 第2部分:红外光谱ATR 法》由TC35(全国橡胶与橡胶制品标准化技术委员会)归口上报,TC35SC6(全国橡胶与橡胶制品标准化技术委员会合成橡胶分会)执行,主管部门为中国石油和化学工业联合会。主要起草单位 中国石油天然气股份有限公司石油化工研究院 、中国石油天然气股份有限公司独山子石化研究院 、国家合成橡胶质量监督检验中心 、怡维怡橡胶研究院有限公司 。项目周期24个月。 /p p   SSBR的微观结构含量直接影响着抗湿滑性,滚动阻力、冲击强度、软化温度和硫化特性等重要性能,因此SSBR微观结构含量的控制在SSBR工艺技术研究、新产品开发、产品质量控制等工作中具有重要意义。目前,测定SSBR微观结构含量的方法有核磁共振法与红外光谱法。 /p p   核磁共振法需要配备核磁共振仪,因该仪器价格昂贵,维护、运行成本很高,不是通用型仪器,运用不广泛,很少用于常规检测,多用于标准物质定值。 /p p   红外光谱法是测定SSBR微观结构含量的通用方法。测定SSBR微观结构的红外光谱法包括红外光谱溶液涂膜方法和红外光谱ATR方法。GB/T 28728—2012规定了采用核磁法和红外光谱溶液涂膜法,对SSBR中微观结构含量进行定量测定的分析方法。但红外光谱溶液涂膜法需要将样品溶解再涂膜,溶解过程需要5个小时以上。且涂膜法直接读取吸光度,没有采取通常的扣除基线法,因此,基线对测定结果的影响很大。而且溶解的完全性和膜片的光滑、平整性都会影响基线,从而对测定结果产生较大的影响,测定结果的重复性不是很好。同时,该方法需要将样品溶解,对环境和实验人员健康有一定的不良影响。 /p p   ATR(衰减全反射)技术通过样品表面反射的光信号获得样品表层有机成分的结构信息。该技术由于无需溶解样品,也不需要制备样品盐片及设置透射池,并无损样品表面,完成1次测定只需要1分钟,且不消耗任何原材料和备品备件,方便、环保、快速,因此被广泛用于物质成分的定性和定量分析。 /p p   目前国内尚没有测定SSBR微观结构含量的红外光谱ATR法的相关标准,为了与国际标准接轨,扩大国际交流,同时也为SSBR的科研、生产、外贸提供一个统一、方便快捷、环保的微观结构测定方法,因此制定该标准十分必要。 /p p   本标准规定了采用红外光谱衰减全反射(ATR)法,对溶液聚合丁苯橡胶(SSBR)中丁二烯单体的微观结构和苯乙烯单体的含量进行定量测定的分析方法。 适用于溶液聚合丁苯橡胶,不适用于乳液聚合丁苯橡胶。 /p p   主要技术内容如下: 1)获得ATR谱图的步骤。 2)丁二烯微观结构和苯乙烯含量的测定:每个微观结构组分相应吸光度的测定 微观结构的计算( 每一个吸收谱峰的基线校正、吸光度的比值、二阶项、苯乙烯和微观结构的质量百分含量通过回归方程得到、微观结构的质量百分含量) 3)精密度。 4) 微观结构回归方程的获得。 5)核磁法测定微观结构。 /p p br/ /p
  • 虹科新品 | 全新升级更高性能可编程射频测试设备上线!——数字衰减器
    新品发布全新升级的射频测试设备你拥有了吗,在延续其小巧的身型、可编程、USB供电控制等经典特色的同时,虹科最新发布的便携式射频测试设备具有更高的带宽、更优秀的性能、更棒的测试体验,包括数字衰减器、信号发生器、射频开关、混频器、射频功率计和功率放大器等,满足您的个性化需求与不同应用场景。虹科便携式可编程数字衰减器具有高达40GHz频率范围和120dB的衰减控制范围,可直接从附带的图形用户界面(GUI)为固定衰减、扫描衰减斜率进行轻松编程,对于希望开发自己界面的用户,虹科提供LabVIEW驱动程序、Windows API DLL文件、Linux驱动程序、Python示例等,满足不同的应用需求。数字衰减器虹科HK- LDA-802-32200-8000MHz高分辨率数字衰减器,32通道,衰减范围为120dB,步长0.1dB虹科HK-LDA-802-32数字衰减器是一个机架式、32通道、高动态范围、双向、50欧姆的步进衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-802-16200-8000MHz高分辨率数字衰减器,16通道,衰减范围为120dB,步长为0.1dB虹科HK-LDA-802-16数字衰减器是以机架方式进行安装,具有16通道高动态范围、双向、50Ω的步进式衰减器。它提供120dB的衰减控制范围,频率范围为200-8000MHz,步长为 0.1dB,同时提供USB和以太网接口。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 单次或重复的可编程衰减斜率● 可通过GUI或SDK对衰减曲线进行编程● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-608V-4200-8000MHz高分辨率数字衰减器,4通道,衰减范围为60 dB,步长为0.1dB虹科HK-LDA-608V-4数字衰减器是一款高精度、双向的50欧姆步进式衰减器,具有4个独立控制的衰减通道,提供200-8000MHz的校准衰减,典型精度应用● WiFi,WiFi 6E,3G,4G,5G,LTE,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-4030.1-40GHz高分辨率数字衰减器,单通道,衰减范围为31.5 dB,步长为0.5 dB,USB/以太网控制虹科HK-LDA-403数字衰减器是一个双向的、50欧姆的步进衰减器,提供从0.1到40GHz的衰减控制,步长为0.5dB,同时提供USB和以太网接口。通过连接衰减器的扩展总线,可以从一台PC控制多个HK-LDA-403设备。特点● 可靠且可重复的固态数字衰减器● 免费的GUI、Windows Linux和MAC SDK,以及LabVIEW驱动程序● 可编程的衰减斜率和衰减曲线● 可直接从电脑或自带电源的集线器上操作多个设备● 易于携带的USB供电设备应用● WiFi,WiFi6E,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-LDA-203B1-20GHz USB可编程数字衰减器,单通道,衰减范围为63 dB,步长为0.5dB,USB/以太网控制虹科HK-LDA-203B数字衰减器是双向、50Ω步进衰减器,在1-20 GHz频率范围内提供63 dB的衰减控制,步长为0.5 dB,提供USB和以太网接口,易于携带。特点● 可靠和可重复的固态数字衰减● 免费的GUI, Windows和Linux SDK, LabVIEW驱动程序● USB和以太网控制● 可设置静态IP或DHCP● 密码保护的web GUI应用● WiFi,WiFi 6E,3G,4G,5G,LTE,DVB,微波无线电衰减模拟器● 工程/生产测试● 自动测试设备(ATE)★虹科HK-VMA-Q8X8SE衰减矩阵8x8衰减矩阵,频率范围为500–6000MHz,衰减范围为90dB,步长0.1dB,集成式服务器虹科HK-VMA-Q8X8SE衰减矩阵是一个机架式8输入8输出的无阻塞测试仪器,集成了Windows服务器,可独立操作,提供90dB的衰减控制范围,频率范围为500-6000MHz,在所有64种路径组合上步长为0.1dB,可以很容易地对固定衰减、扫频衰减斜率和衰减曲线进行编程。虹科HK-VMA-Q8X8SE采用交流供电,通过机箱后面的一个以太网端口进行控制,射频输入信号通过后面板进入,在前面板获得输出信号。特点● 可靠和可重复的固态数字衰减● 包括Windows和Linux SDK● 可编程的衰减曲线● 以太网控制● 集成服务器应用● WiFi,WiFi 6● LTE,5G,6G● MIMO、多点无线电衰减模拟器● 半导体测试和鉴定● 自动测试设备(ATE)★虹科HK-DAT306K30GHz宽频数字微波步进衰减器虹科HK-DAT306K是一款独立的宽带数字微波衰减器,额定频率为1-30GHz,衰减量从0到60dB不等,最小步长为0.50dB,插入损耗通常低于10dB。虹科HK-DAT306K是一个三重控制设备,衰减设置可以通过用户界面、USB端口串行命令或以太网接口来改变。特点● 最大输入功率:+28.0dBm● 40GHz精密2.92mm K型连接器● USB供电和控制(虚拟COM串口-115.2Kbps)● 音频反馈、LED和OLED显示● 用于PC的简单控制软件● 标准以太网连接● 提供6GHz、12GHz、22GHz等不同型号应用● 电子战● 自动测试环境● 一般射频实验室使用● 控制系统● 卫星通信● 生产验证● 教育/大学实验室● 航空航天/国防研究● 无线基础设施● 雷达系统● 无线基础设施
  • 真空衰减法无损密封检测仪的原理
    真空衰减法无损密封检测仪的原理在现代包装工业中,密封完整性是确保产品质量和安全性的关键因素之一。真空衰减法无损密封检测仪作为一种先进的检测技术,以其高效、精确和无损的特点,广泛应用于制药、食品、化妆品等行业的密封性测试。本文将深入探讨真空衰减法的原理、技术优势以及在不同领域的应用情况。真空衰减法的原理真空衰减法无损密封检测仪的核心原理在于利用压力差来检测包装容器的密封性。其操作流程如下:测试腔体准备:将待测容器置于专门的测试腔体中。真空抽吸:对测试腔体进行抽真空处理,形成容器内外的压差。气体泄漏:由于压差作用,容器内部的气体通过潜在的漏孔泄漏到测试腔体内。压力监测:主机压力传感器实时监测测试腔体的压力变化。数据比较:将监测到的压力变化值与预设的参考值进行比较,以判断容器的密封性是否达标。技术优势无损检测:与传统的破坏性测试方法相比,真空衰减法能够在不破坏产品的情况下完成密封性检测。高精度:采用高精度的CCIT测试技术,能够检测到微小的泄漏孔径和泄漏流量。符合标准:满足ASTM测试方法和FDA标准,确保检测结果的权威性和准确性。适用范围广:适用于多种包装容器,包括西林瓶、安瓿瓶、输液瓶等,覆盖大容量和小容量注射液以及冻干产品的密封完整性验证。应用领域制药行业:在制药领域,真空衰减法无损密封检测仪被用于确保药品包装的密封性,防止微生物污染和药物变质。第三方检测机构:作为独立的检测机构,使用该技术为客户提供客观、准确的密封性测试服务。药检机构:药检机构利用该技术进行药品质量监管,保障公众用药安全。结论真空衰减法无损密封检测仪以其高效、精确、无损的特点,为包装密封性检测提供了一种理想的解决方案。本文旨在提供一个关于真空衰减法无损密封检测仪的全面介绍,包括其工作原理、技术优势以及在不同行业中的广泛应用。希望能够帮助读者更好地理解这一技术,并认识到其在现代工业中的重要性。
  • 新品上市--5μm真空衰减仪!!!
    产品介绍真空衰减仪依据《ASTM F2338-2013 包装泄漏的标准检测方法-真空衰减法》 标准研发。专业适用于各种空的/预充式 注射器、水针及粉针瓶(玻璃/塑料)、灌装压盖瓶、奶粉罐、其他硬质包装容器、电器元件等试样的无损正、负压的微泄漏测试。本产品采用先 进的设计和严谨、科学的计算方法保证了其快速测试和高准确度及高稳定性。亦可满足用户的非标准(软件或测试夹具)定制。执行标准:《ASTM F2338-13 包装泄漏的标准检测方法-真空衰减法》 《USP1207美国药典标准 》 《药品GMP指南——无菌药品》11.1密封完整性测试 《中国药典》2020年版四部 微生物检查法 《化学药品注射剂包装系统密封性研究技术指南(试行)》 《YYT 0681.18-2020 无菌医疗器械包装试验方法第18部分:用真空衰减法无损检验包装泄漏》 山东普创工业科技有限公司,专业研发生产包装检测设备,更多定制设备,等您来洽谈!
  • 安捷伦红外与拉曼光谱芬太尼快速检测方案
    芬太尼是一种强效的类阿片止痛剂,是医学中使用最广泛的合成阿片类药物。其适用于各种疼痛、外科手术后和手术过程中的阵痛;也可与麻醉剂合用,作为麻醉辅助用药。芬太尼作为近年来兴起的新精神活性物质(NPS),在其基础上衍生出大量的变种,因此被称为“实验室毒品”,是继传统毒品、合成毒品后全球流行的第三代毒品。2019 年 4 月 1 日,公安部、国家卫生健康委、国家药监局联合发布公告,宣布从2019 年 5 月 1 日起将芬太尼类物质列入《非药用类麻醉药品和精神药品管制品种增补目录》。由于芬太尼及其变体药物的效力比海洛因强 10-1000 倍,致死量相当于数粒砂糖大小。类似的,部分 NPS 的活性剂量为数微克。世界范围内已经出现数起公务人员意外暴露于芬太尼或精神类药物下,引起严重医学后果的案例。这意味着在没有始终或不能穿戴全套个人防护装备的情况下发生接触,存在着发生危险性意外暴露的风险,因此要求样品识别定性的方法是快速、简单以及操作方便的。安捷伦为芬太尼及其衍生物的快速定性识别提供了两种解决方案,分别为 Cary4500 FTIR 红外光谱解决方案,以及 Resolve 拉曼光谱解决方案。方案一:Cary4500 FTIR 芬太尼及其衍生物定性测试解决方案图为:安捷伦Cary4500 FTIR 光谱仪红外光谱作为一种对未知物快速识别定性的手段,被许多检测机构选用。与传统红外需要苛刻的温湿度存储条件不同,安捷伦 Cary4500 FTIR 光谱仪采用硒化锌主机设计,其防水设计可以防止环境湿度对主机造成的影响;且自带电池,可带到任何户外和检测现场使用。仪器标配衰减全反射(ATR)探头,无论是液体、固体还是粉末类样品,无需样品制备,直接取少量置于钻石晶体上测试即可。Cary4500 FTIR 光谱仪的产品特点:仪器采用立体干涉仪设计,抗冲击,抗振动全密闭光学防水设计系统标配钻石晶体衰减全反射附件可连续使用时间4小时以上标配电池系统,也可外接电源操作温度:-10℃-50℃湿度:95% 以下安捷伦傅里叶变换红外光谱系统还配置了内含 142 种标准芬太尼类化合物的红外谱库,在对疑似芬太尼类物质进行检测时,仅需调用带有谱库的方法采集谱图,短短几十秒即可确认未知物是否为芬太尼类物质。该谱库严格按照《非药用类麻醉药品和精神药品管制品种增补目录》设计,能够满足公安、邮政、海关及相关司法部门的检测需求。且仪器体积小巧,在用户有特殊需求时,可作为移动测量设备置于测量现场;如在实验室内使用时,为保护测量人员的安全,也可将其置于通风橱或手套箱内使用。图为:调用谱库对测试的阿芬太尼样品进行定性分析结果方案二:Resolve 手持式拉曼芬太尼及其衍生物隔包装检测解决方案图为:安捷伦Resolve手持拉曼光谱仪手持式拉曼光谱仪可以作为与傅里叶变化红外光谱仪搭配使用的另一款仪器,用于芬太尼类样品的隔包装定性识别检测。安捷伦 Resolve 手持式拉曼光谱仪采用专利的空间位移拉曼光谱(SORS)技术,能够快速无损检定密封在单个或多个包装内的危险物质、爆炸物和麻醉剂等。与传统拉曼光谱仪仅能穿透透明包装不同,Resolve 手持拉曼可穿透有色和不透明的塑料、玻璃、纸盒、卡套、包装盒以及编织袋等。该系统采用 830 nm 激光光源,可减少荧光干扰,同时配置了不断更新的新型精神药物(NPS)的标准谱库,是一款检测和检定管制类药物的强大工具。可检测的物质包括:芬太尼、卡芬太尼及衍生物新型精神药物安非他命可卡因海洛因管制前体图为:检测密封在典型国际邮递包裹中的芬太尼变体药物Resolve 手持式拉曼光谱仪因其穿透包装无损检测样品的特性,非常适用于帮助执法人员及海关人员进行疑似样品筛查,在尽可能保护测试人员的前提下,获得准确的测试效果。综上所述,安捷伦分子光谱产品线的傅里叶变换红外光谱仪及拉曼光谱仪均可为用户进行芬太尼类化合物的定性分析提供快速检测方案。在未开包装时,可选择 Resolve 手持式拉曼光谱仪进行初步筛查,后通过取样的方式利用 Cary4500 FTIR 进行进一步的判定。关注安捷伦微信公众号,获取更多市场资讯
  • 如何精确测定LED灯反射板的反射率?
    前言LED灯具有长寿命、安全可靠、节能环保等优点,在家用照明设备、显示屏、公共设施场所以及景观装饰等方面应用广泛,如汽车上的照明设备、景区内各种图案的装饰灯。LED灯通常由光源、外壳组成,光源装有反射板可以有效利用光源的能量,因此反射板的反射率会直接决定LED灯的光利用效率。而评价反射板的反射率,常用的检测仪器是紫外分光光度计。检测实例我们选取了生活中常见的一种LED灯,拆开发现反射板的四周是弧形表面,为获得准确的反射率,要对中间的平整表面进行测定,如图中红色圆圈标注的位置。但这个位置的直经只有5mm,如此小的测量位点,要使仪器光源的光斑中心完全照射到测定位置非常困难。图1 LED灯的反射板为了解决这类微小样品的测定难题,日立特别研发了微小样品全反射/漫反射测量系统定制附件,确保光源的光斑中心完全照射到测定位置。而且日立UH4150紫外-可见-近红外分光光度计的样品仓空间足够大,可以轻松安装这个附件。 测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝 对值,得到的反射板的全反射光谱如图所示。图2 LED灯反射板的反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。 想获取更多信息,请拨打电话:400-630-5821。
  • 恒创立达发布MATRIX-50 傅里叶红外光谱仪新品
    仪器简介MATRIX 50型傅立叶变换红外光谱仪产品是天津恒创立达科技发展有限公司的结合机械、电子、AI等技术研制出来的先进仪器。该产品采用众多创新技术使得仪器的光源能量传输效率、干涉仪的稳定性、接收器的灵敏度都达到业内的优质水平。可以满足教学、工业及研究等各种级别的应用。实验原理利用干涉仪干涉调频的工作原理,把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的光谱图。卓越的光学系统设计 干涉仪采用DSP控制电磁驱动Michelson干涉仪,具有连续动态调整功能,自动优化系统能量,无需人工调整; SuperTect数字技术的电子系统。全数字化,输出数字信号。24 位、500KHz 的 A/D 转换,高速 USB接口,达到光谱数据实时采集,保证了数据的真实性和可靠性; 仪器内置工业级温湿度模块,显示屏直接数字化显示温湿度,并具有湿度报警装置,而且腔体整体密封,保证整个腔体密封干燥,提高了防潮效果,大大提高各部件的使用寿命; 专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。 可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 高频率稳定性He-Ne激光器和低功耗长寿命二极管激光器可选设计; 带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命。 动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差; 采用非正交设计的Michelson改良型干涉仪,大大提高了能量利用率; 分束器,探测器,窗片等核心部件均为进口且镀有特殊的防雾化涂层,具有超高的透过率,同时还能降低湿气对溴化钾的腐蚀,也可选择KRS-5、ZnSe等可靠的防潮材料; 光学镜面设计:光学反射镜采用整体SPDT切削工艺,保证镜面高反射效率及光学系统一致性。 扩展功能强大,可连接透射附件、衰减全反射附件(ATR附件)、漫反射附件、平面反射附件、外反射附件、红外显微镜等;功能强大智能操作软件设计 1. 带有操作指引的智能人机交互设计,界面直观简洁,简单易学;2. 丰富的谱图库,强大的自建库功能及高质量的谱图检索;3. 实时显示数据采集,可以连续显示数据采集过程和谱图预览模式;4. 操作软件包括基线校正,数据转换,多组分定量、曲线分峰拟合,H20/CO2自动补偿,吸光度透过率转换、 KK转换,标峰,四则运算,Y轴归一化功能,QC比较, 基础解析等功能;支持 CSV,SPA,DPT,TXT等等十几种格式;支持波数cm-1和波长um任意切换。 应用行业珠宝鉴定食品药品及其包装材料的测试塑料、橡胶、尼龙、树脂等高分子材料的鉴定沥青溯源及SBS含量测定脂肪酸甲酯含量测定矿物绝缘油、润滑油结构簇组成的测定车用汽油中典型非常规添加物的识别与测定硅晶体中碳氧含量的测量纺织纤维鉴别水晶Q值测定建筑玻璃参数测定… … 规格参数1. 光谱范围:7800~350 cm-12. 分辨率:优于0.8cm-1 3. 波数精度:≤0.01cm-14. 信噪比:40000:1 (P-P值,4cm-1,一分钟扫描)5. 分束器:KBr基片镀锗(进口)6. 光源:高能量、高效率、长寿命陶瓷光源(进口)7. 干涉仪:30度入射角Michelson干涉仪8. 接收器:带有防潮膜的高灵敏度DLATGS接收器(进口)9. 支持系统:Windows 系统创新点:1.专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。 2.动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差. 3.可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 MATRIX-50 傅里叶红外光谱仪
  • 恒创立达发布MATRIX-50 傅里叶红外光谱仪新品
    仪器简介MATRIX 50型傅立叶变换红外光谱仪产品是天津恒创立达科技发展有限公司的结合机械、电子、AI等技术研制出来的先进仪器。该产品采用众多创新技术使得仪器的光源能量传输效率、干涉仪的稳定性、接收器的灵敏度都达到业内的优质水平。可以满足教学、工业及研究等各种级别的应用。实验原理利用干涉仪干涉调频的工作原理,把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样品,接收器接收到带有样品信息的干涉光,再由计算机软件经傅立叶变换即可获得样品的光谱图。卓越的光学系统设计 干涉仪采用DSP控制电磁驱动Michelson干涉仪,具有连续动态调整功能,自动优化系统能量,无需人工调整; SuperTect数字技术的电子系统。全数字化,输出数字信号。24 位、500KHz 的 A/D 转换,高速 USB接口,达到光谱数据实时采集,保证了数据的真实性和可靠性; 仪器内置工业级温湿度模块,显示屏直接数字化显示温湿度,并具有湿度报警装置,而且腔体整体密封,保证整个腔体密封干燥,提高了防潮效果,大大提高各部件的使用寿命; 专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。 可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 高频率稳定性He-Ne激光器和低功耗长寿命二极管激光器可选设计; 带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命。 动态准直技术:激光采用四象限探测准直技术,可以消除干涉仪动镜运动过程中产生的机械偏差,可以消除环境变换(重力、温度变化等)造成的光学误差; 采用非正交设计的Michelson改良型干涉仪,大大提高了能量利用率; 分束器,探测器,窗片等核心部件均为进口且镀有特殊的防雾化涂层,具有超高的透过率,同时还能降低湿气对溴化钾的腐蚀,也可选择KRS-5、ZnSe等可靠的防潮材料; 光学镜面设计:光学反射镜采用整体SPDT切削工艺,保证镜面高反射效率及光学系统一致性。 扩展功能强大,可连接透射附件、衰减全反射附件(ATR附件)、漫反射附件、平面反射附件、外反射附件、红外显微镜等;功能强大智能操作软件设计 1. 带有操作指引的智能人机交互设计,界面直观简洁,简单易学;2. 丰富的谱图库,强大的自建库功能及高质量的谱图检索;3. 实时显示数据采集,可以连续显示数据采集过程和谱图预览模式;4. 操作软件包括基线校正,数据转换,多组分定量、曲线分峰拟合,H20/CO2自动补偿,吸光度透过率转换、 KK转换,标峰,四则运算,Y轴归一化功能,QC比较, 基础解析等功能;支持 CSV,SPA,DPT,TXT等等十几种格式;支持波数cm-1和波长um任意切换。 应用行业珠宝鉴定食品药品及其包装材料的测试塑料、橡胶、尼龙、树脂等高分子材料的鉴定沥青溯源及SBS含量测定脂肪酸甲酯含量测定矿物绝缘油、润滑油结构簇组成的测定车用汽油中典型非常规添加物的识别与测定硅晶体中碳氧含量的测量纺织纤维鉴别水晶Q值测定建筑玻璃参数测定… … 规格参数1. 光谱范围:7800~350 cm-12. 分辨率:优于0.8cm-1 3. 波数精度:≤0.01cm-14. 信噪比:40000:1 (P-P值,4cm-1,一分钟扫描)5. 分束器:KBr基片镀锗(进口)6. 光源:高能量、高效率、长寿命陶瓷光源(进口)7. 干涉仪:30度入射角Michelson干涉仪8. 接收器:带有防潮膜的高灵敏度DLATGS接收器(进口)9. 支持系统:Windows 系统创新点:1.可重复使用的304不锈钢盒装干燥剂,无需开盖即可更换干燥剂。 2.带电子稳压的24W碳化硅棒红外光源,采用数字供电技术,为光源提供稳定可靠的供电支持,并保证光源具有超长的使用寿命. 3.多种分束器可选:KBr、ZnSe,CaF2等可靠的防潮材料等 MATRIX-50 傅里叶红外光谱仪
  • 拓展红外分析新境界,全新的Spectrum 3™ FT-IR光谱仪
    拓展红外分析新境界,全新的Spectrum 3™ FT-IR光谱仪在近红外、中红外、远红外三个红外光谱范围内,都能达到非凡的分析性能,具有无与伦比的性能和取样灵活性。Spectrum 3 FT-IR全球首个提供全集成的热重—红外(TG-IR)联用解决方案的FTIR光谱仪平台。快速扫描能力,扫描速度可达100次/秒,为新材料开展高级研发,提供了新一代研究手段。通过云连接共享IR数据,加快新产品的开发速度,可以随时随地,使用任意设备进行协作。现在,所有Spectrum 3 FT-IR应用资料,我们为您准备好啦!互动宣传册Spectrum 3 FT-IR互动宣传册应用案例使用 Spectrum 3红外光谱仪对原料药进行分析在快速扫描FT-IR光谱仪上使用停流系统对快速化学反应进行监测采用FT-IR光谱仪,在远红外光谱区域中的衰减全反射(ATR)测量氰基丙烯酸酯固化的时间分辨FT-IR分析Spectrum 3红外光谱仪的多波段红外应用案例使用我们提供的全套材料表征产品,重新装备您的实验室!了解更多应用资料和产品信息,扫描下方二维码,下载珀金埃尔默Spectrum 3相关资料。
  • 教你如何测定微小样品的透过率、反射率
    随着机器的小型化趋势,光学部件也在不断微小化,如摄像镜头中的透镜、传感器部件、光盘中的拾音器组件等。因此微小样品的准确测量十分必要。要准确获得这些微小样品的测定,需要缩小入射光束,以使光斑照射到样品上。日立开发了各种微小样品测量附件,为光电领域提高解决方案。1. 微小样品的透过率测量使用日立UH4150选配微小样品透过率测定附件和全积分球,利用φ1 mm 掩光膜即可测定透镜的透射率。图1 小尺寸透镜的外观 图2 两种透镜的透过光谱 微小样品透过率测定附件由聚光透镜、参比光束光阑以及微小样品支架构成,可准确测定微小样品和任意微小零配件的透射率。微小样品支架可搭载最大直径为φ20mm的样品,标配φ3mm的掩光膜,用户也可选配φ1mm的掩光膜等。图3 微小样品透过率测定附件 2. 微小样品镜面反射率的测定手机镜头和车载摄像头中图像传感器的红外截止滤光片尺寸微小,使用UH4150选配微小样品5度绝对反射附件即可测定滤光片的反射率。图4 红外滤光片的镜面反射光谱 可以看到滤光片在可见区的反射率低,在近红外区的反射率较高。微小5 °镜面绝对反射附件由反射附件、聚光透镜、参比光束光阑以及微小样品支架构成。与5 °镜面反射附件(标准)相比,样品位置的光束较小,支持微小样品反射光谱的测定。图5 微小样品反射率测定附件3. 微小样品的全反射率测定使用日立UH4150 搭配微小样品全反射/漫反射测量附件,测量了LED灯反射板的全反射率。图6 LED灯的反射板测定时使用铝制平面镜作为标准参考,利用铝制平面镜的绝 对反射率将LED灯反射板的反射率的相对值转换为绝对值,得到全反射光谱如图所示。图7 LED 灯反射板的全反射光谱测定结果表明该反射板的反射率高达90%,可以有效利用LED灯光源的光通量,提高照明效率。综上案例,使用具有大型样品室的日立紫外可见近红外分光光度计UH4150,容易构建不同样品的光学测量系统,可搭配多种附件,实现低噪音测定微小样品。拨打 4006305821,获取更多信息
  • 真空衰减法密封仪与色水法密封试验仪哪个检测效率比较高
    一、引言在评估包装密封性的过程中,真空衰减法密封仪和色水法密封试验仪是两种常用的检测方法。它们各自具有独特的检测原理和应用场景,但在检测效率方面存在差异。本文将对这两种仪器的检测效率进行比较,以便更好地了解它们在实际应用中的表现。二、真空衰减法密封仪的检测效率检测原理:真空衰减法密封仪基于真空传感技术,通过测量包装内部与外部之间的压力差来评估包装的密封性能。测试过程中,真空传感器会实时检测压力变化,并与预设的标准值进行比较,从而判断包装是否存在泄漏现象。检测速度:真空衰减法密封仪的检测速度较快,因为其在测试过程中可以自动化地进行数据记录和分析。根据参考文章2中的信息,第三代真空衰减技术灵敏度最大可达0.5μm(0.002ccm漏率),基于物理的基本原理进行泄漏检测,实现了最大限度地采用非破坏方式检测。这意味着在较短的时间内,真空衰减法密封仪可以完成大量的测试任务。应用优势:真空衰减法密封仪不仅检测速度快,而且具有高度自动化和智能化的特点。它能够减少人工干预,提高测试效率。此外,该测试仪还具有广泛的适用性,可适用于不同类型的药品包装,如玻璃瓶、塑料瓶、铝塑包装等。三、色水法密封试验仪的检测效率检测原理:色水法密封试验仪通过观察包装内液体渗出情况来判断密封性能。测试过程中,需要将待测包装充满色水,并观察是否有色水渗出。这种方法需要人工观察和判断,因此可能存在一定的主观性和误差。检测速度:与真空衰减法密封仪相比,色水法密封试验仪的检测速度较慢。首先,需要准备足够的色水并填充到待测包装中;其次,在测试过程中需要人工观察是否有色水渗出,这可能会耗费大量的时间和人力。应用局限性:色水法密封试验仪虽然适用于某些特定的包装类型,如塑料袋、瓶子等,但其应用范围相对有限。此外,由于需要人工观察和判断,该方法可能不适用于需要大量测试的情况。四、总结综上所述,真空衰减法密封仪在检测效率方面相较于色水法密封试验仪具有明显优势。其快速、准确、自动化的特点使得它能够在较短时间内完成大量的测试任务,并且具有广泛的适用性。因此,在需要高效、准确地评估包装密封性的场合中,真空衰减法密封仪是更为理想的选择。
  • 《中国药典》粒度和粒度分布测定法增订动态光散射法、光阻法
    目前《中国药典》0982 粒度和粒度分布测定法仅收载了激光光散射法测定样品中的粒度分布,尚未收载动态光散射法和光阻法。各国药典均已收载动态光散射法和光阻法,且在《中国药典》丙泊酚乳状注射液、脂肪乳注射液(C14~24)等品种标准中已有应用。为此,《中国药典》增订上述两种方法,将进一步满足相关品种质量控制的需要。2023年12月12日,国家药典委员会将拟修订的《中国药典》0982粒度和粒度分布测定法第三法动态光散射法、第四法光阻法公示征求社会各界意见(详见附件),公示期自发布之日起三个月。第三法(光散射法)新增动态光散射法、新增第四法光阻法;第三法用于测定原料药、辅料和药物制剂粉末或颗粒的粒度分布,第四法用于测定乳状液体或混悬液的微米级粒子数量、粒度分布及体积占比。国家药典委员会截图本次标准草案的公示意味着动态光散射粒度仪(俗称纳米粒度仪)与光阻法颗粒计数器将被写进《中国药典》。动态光散射法当溶液或悬浮液中颗粒做布朗运动并被单色激光照射时,颗粒散射光强度的波动与颗粒的扩散系数有关。依据斯托克斯-爱因斯坦方程,通过分析检测到的散射光强度波动可以计算出颗粒的平均流体动力学粒径和粒度分布。平均流体动力学粒径反映粒度分布中值的流体动力学直径。平均粒径直接测定,既可以不计算粒度分布,也可以从光强加权分布、体积加权分布或数量加权分布,以及拟合(转换)的密度函数中计算得到。动态光散射的原始信号为光强加权光散射信号,得到光强加权调和平均粒径。很多仪器可通过对光强加权光散射信号的分析计算得到体积加权或数量加权的粒径结果。 在动态光散射的数据分析中,假设颗粒是均匀和球形的。本法测量范围为 1~1000nm。光阻法单色光束照射到颗粒后会由于光阻而产生光消减现象。应用基于光阻或光消减原理的单粒子光学传感技术进行测定。应用单粒子光学传感技术时,当单个粒子通过狭窄的光感区域阻挡了一部分入射光线,引起光强度瞬间降低,此信号的衰减幅度理论上与粒子横截面(假设横截面积小于传感区域的宽度),即粒子直径的平方成比例。用系列不同粒径的标准粒子与光消减信号之间建立校正曲线,当样品中颗粒通过光感区产生信号消减,可根据已建立的校正曲线计算出颗粒的粒度大小和加权体积。本法测量范围一般为 0.5~400μm,使用具有单粒子光学传感技术的仪器时,需知道重合限和最佳流速。重合限为传感器允许的最大微粒浓度(个/mL)。 上述两种方法的内容包括对仪器的一般要求和测定法,详见附件。附件 0982 粒度和粒度分布测定法第三法动态光散射法、第四法光阻法草案公示稿(第一次).pdf
  • 英国 B+S 全新推出 In-tek IR 红外实时在线检测系统
    英国 B+S 全新推出In-tek IR 红外实时在线检测系统 在过去近100年的历史中,英国Bellingham+Stanley (B+S) 公司为众多*的食品、饮料和化工产品制造商提供*的实验室折光仪。为顺应自动化生产线的需要,2010年全新推出 in-tek IR 红外实时在线监测系统,采用ATR(衰减全反射)技术,无移动件设计,主管路(或罐体)在线安装,远程监测等。 in-tek IR 系列红外在线单参数传感器,分别用于在生产流水线上定点测量白利糖度(° Brix)、二氧化碳浓度(CO2)、乙醇浓度(ABW) 、有机酸浓度(%TA)。 包括: in-tek IR Brix、in-tek TA、in-tek CO2、in-tek Alcohol in-tek IR 系列红外在线多参数系统,则可以通过单个传感器单元检测多个参数,对产品整体质量和收益率进行控制,特别适用于需要对生产终点实时评估的工业化生产线。 包括: in-tek Drink 系统 &mdash &mdash 先进的饮料在线检测系统,可同时监测3个参数:° Brix、CO2 及 可滴定酸(TA)含量。 in-tek Brew 系统 &mdash &mdash 先进的酿酒或工业酒精生产在线检测系统,可同时监测3个参数:酒精(Alcohol)、 ° Plato (残留糖)、CO2含量。 英国Bellingham+Stanley (B+S) 公司是全球最早专业从事折光仪和旋光仪生产的制造商,在近百年的历史中,始终如一地专注于折光仪和旋光仪产品的研发和制造,以精良的质量、*的标准服务于食品饮料、制糖、制药、香料/化妆品、化工行业,质量控制实验室,研发部门,检验机构,深得用户信赖。 从普通的光学仪器到高端的数显机型,B+S公司都可以为全球用户提供完整的解决方案:用于工业质控、科研的全系列数字台式折光仪 / 旋光仪、用于科研的阿贝折光仪和新型光学旋光仪、用于现场检测的手持式折光仪,以及实时在线过程控制设备。所有产品均符合BS EN ISO 9001:2000、UKAS、CE认证、ICUMSA等标准和规范。 德祥作为英国B+S产品在中国地区的独家代理商,全面负责产品的销售、技术及应用支持等工作,同B+S一道,将一如既往地共同致力于为广大用户提供最*的解决方案! 了解更多折光仪和旋光仪的产品详情,欢迎联系我们: Tel: 021-52510159 * 832 冯小姐 E-mail: ronnie_feng@tegent.com.cn www.tegent.com.cn
  • 【全面洞察,深度剖析】岛津X射线CT系统与红外显微镜联合,赋能ADAS汽车部件无损检测
    X射线CT系统能够对样品的内部结构进行无损三维观察,所以它可用于检验产品的内部质量,在本案例中能够评估粘合剂中的孔隙并对内置部件进行测量。使用红外显微镜可以对树脂材料和零部件的粘合剂等有机物进行定性分析。引言ADAS(高级驾驶辅助系统)是用于支持安全驾驶的系统,通过监测汽车周围的环境,转换成可视化信息和警报来预防事故的发生,提高驾驶安全性,保证驾驶员能够安全舒适地进行驾驶。ADAS系统在监测车辆周围环境时,会使用到宽视场相机、毫米波雷达、超声波传感器和其他器件,但由于这些器件耗电量大导致发热,因此需要高效的散热和冷却机制。而且由于这些传感器遍布车身外部,所以气密性十分重要。在汽车轻量化的要求下,部分传感器壳体需要使用树脂材料,需要保证其不会因内部电子器件所产生热量而变形,所以评估这些树脂材料本身及其添加剂的耐热性和低翘曲度尤为重要。本案例中使用微焦点X射线CT系统(图1)和红外显微镜(图2)对ADAS的毫米波雷达进行测试。X射线CT系统用于器件内部结构的无损观察,并分析粘合胶粘剂中的孔隙和宽视场相机的安装角度,同时使用红外显微镜对毫米波雷达中使用的树脂材料进行定性分析。图1:微焦点X射线CT系统inspeXio SMX-225CT FPD HR Plus图2:红外显微镜系统(IRTracer-100 + AIMsight)毫米波雷达的观测与测量使用X射线CT系统360&ring 扫描样件,采集X射线透视数据,并通过计算机重建出三维数据。图3显示了毫米波雷达天线部分的断面图像,分辨率约为0.050mm,可以进行长度测量,例如,测量天线间的距离。图3:天线部分断面图(MPR)图4的三维图像显示毫米波雷达内密封的电路板及外壳的粘合部分。这里,软件分析胶粘剂的孔隙体积,并以颜色区分不同尺寸。因此X射线CT系统可以对热冲击等耐久试验前、后的密封材料进行评估。图4:毫米波雷达VR图和局部放大图使用红外显微镜对树脂部分进行定性分析。对毫米波雷达中使用的树脂部分进行取样,用金刚石池将样品压扁平后进行测量。表1显示了测量条件,图5显示了获得的红外谱图和检索结果。表1:测量条件图5:毫米波雷达中树脂部件的实测谱图及检索结果谱图检索的结果表明,树脂部分的红外谱图与聚对苯二甲酸丁二醇酯(PBT)的参考谱图高度匹配。PBT是一种热塑性树脂,属于聚酯的一种。其优点是成型过程中收缩率低、机械强度高、耐热性高。将PBT用于毫米波雷达外壳,是因为它能有效传输77 GHz和24 GHz的无线电波,这是毫米波雷达常用的频率。由于在部分样本中可以看到透明纤维,因此也对透明纤维进行了测量。图6显示了获得的红外谱图和检索结果。图6:毫米波雷达树脂中玻璃纤维的实测谱图及搜索结果谱图检索的结果表明,这些透明纤维与玻璃的红外谱图一致。众所周知,在PBT中添加玻璃纤维是为了提高树脂的刚度。如本次实验所示,红外显微镜系统可以评估树脂材料的种类和添加剂。车载相机的观察与测量使用X射线CT系统得到车载相机的断面图像和VR图像,结果如图7所示。图7(a)中橙色虚线所示区域为胶粘剂,与螺钉(图7(b)共同固定相机,可知车载相机被牢固地固定在壳体上。图7(c)和(d)显示出图7(a)中车载相机的安装角度。相机镜头的轴与壳体底部的夹角为18&ring ,并与外壳侧面的参考轴成90&ring 夹角。因此,X射线CT可以在无损状态下确认产品在开发和生产过程中的品质。图7:车载相机部分的CT图像使用红外显微镜测量车载摄像头的树脂部分。将外壳直接放置在显微镜载物台上,使用衰减全反射(ATR)法进行了测量。通过分析所得的红外光谱图,我们发现树脂部分与环氧树脂的标准光谱(图8)有着高度的一致性。环氧树脂是一种具有卓越的机械强度、耐热性、耐水性的热固性树脂。图8:车载摄像头中树脂部分的实测谱图结论通过X射线CT系统对毫米波雷达和车载摄像头的内部结构进行观察,可以清晰地看到毫米波雷达的结构状态并测量尺寸,还可确认部件的密封部分是否存在孔隙,并检查相机镜头的安装角度是否正确。通过红外显微镜对毫米波雷达和车载摄像头的树脂部分进行了定性分析,发现两种器件使用了不同类型的树脂。这些信息对于产品开发阶段的设计研究、耐久性评估、制造过程中的质量控制,以及与其他公司产品进行基准测试都是非常有价值的。本文内容非商业广告,仅供专业人士参考。
  • 2020红外/近红外光谱新品盘点:以应用驱动产品创新
    国外某研究机构的最新市场研究显示, 2020年全球红外光谱市场预计10亿美元,2025年将达13亿美元,复合年增长率为4.1%。作为一类比较成熟的仪器分析方法,红外光谱已经得到了广泛的应用,特别是在制药、生物研究以及食品和饮料的终端用户中应用非常广泛。而同时,这些相关行业严格的法规,以及对质量水平越来越高的追求都推动了红外光谱市场的增长。  虽然2020年COVID-19的爆发和蔓延影响了很多行业发展,也使很多工厂停工或者关闭,但同时也导致了药品和其他医疗设备产量的增加,这在一定程度上也增加了红外光谱在医疗保健和制药终端行业的需求,进而导致市场对红外光谱产品和解决方案的需求增长。  基于市场的需求,各大仪器厂家也在不断的推出新的产品。据统计,申报仪器信息网2020年度“科学仪器优秀新品评选”活动的红外/近红外光谱类仪器共计11台,其中红外光谱仪9台,近红外光谱仪2台。值得一提的是,不管是小型化、云数据管理、专用化及在线仪器等,以上新品特别注重从用户的角度考虑问题,从应用的角度着手进行产品的开发和设计。以下将根据2020年度申报新品的情况进行简单的概述:  近年来,小型化一直是仪器设计和制造的一个重要发展趋势,仪器小型化不仅能满足空间有限的分析测试现场使用需求,而且便于集成拓展,非常适合手持式/便携式仪器开发。  在本年度申报的仪器新品中,滨松光子学商贸(中国)有限公司推出了FTIR光谱仪引擎 C15511-01。基于精心重构光学干涉仪的设计思路,并采用独特的MOEMS技术,滨松光子成功开发出了一款高性能的微型化FTIR引擎。迈克尔逊光谱干涉仪和控制电路内置其中,仅手掌大小,却实现了在1.1-2.5μm区域超高的灵敏度,具有远超同类产品的高信噪比表现(10000:1),以及高光谱重现性。据悉,该产品可内置于便携式FTIR仪器中,实现整机小型化的同时,也可保证高性能的实现。  此外,荧飒光学仪器(上海)有限公司也推出了两款便携式的仪器新品:便携式傅里叶红外气体分析仪+Mobile10-G、便携式傅里叶变换红外光谱仪 Mobile10。其中,前者集成小体积长光程的9.8米气体池及内置抽气泵、电池,现场开机即可工作;后者不仅集成平板及电池,现场开机即可工作,而且具有与台式红外光谱仪一样的性能。  对于科学仪器而言,软件是一个绕不开的话题,随着应用需求的提升,用户不仅关注仪器硬件的改进,对软件及数据的云端管理也提出了新的需求。  软件在云平台和云服务方面的创新,是现代仪器发展的一个重要方向。珀金埃尔默企业管理(上海)有限公司推出的Spectrum 3™ 傅立叶变换红外光谱仪不仅提供全集成的热重-红外(TG-IR)联用(EGA4000)解决方案的FT-IR平台,涵盖近、中、远红外三个波长范围,软件自动切换光源、分束器、检测器等部件。而且,特别值得一提的是,该仪器首次将云办公软件“NetPlus”引入红外光谱检测领域,数据实现云端连接。基于Web的应用程序,允许从任何设备查看、上传/下载和管理云端数据,提供更加准确的结果、整合的工作流和团队成员间跨实验室/设备实时协作。  对于中药材的分析而言,数据分析是重点也是难点。北京鉴知技术有限公司(原同方威视拉曼)推出的IT2000中药分析仪,针对中药材质量控制,通过丰富的数据库和识别算法,一键分析实现中药饮片的真伪鉴别、品种识别、产地溯源和品质分析,光谱采集、分析、测试报告等同步自动完成。  应用拓展一直是近红外人努力的方向和目标,而找准应用环境对近红外仪器而言至关重要。很多业内人士指出,专用化和在线仪器的发展存在着较强的生命力和巨大的潜在应用市场。  瑞士万通中国有限公司推出了DS2500 L近红外光谱液体分析仪,在上一代产品的基础上,该仪器由分体式改为了一体机的形式,使得仪器本身防护等级达到了IP65。另外,其智能附件设计,为分析液体样品设计了不同光程的附件,每个附件上都带有芯片,附件插入仪器后可以被读取;荧飒光学仪器(上海)有限公司推出了为工业在线用户设计的8通道在线检测近红外光谱仪--傅里叶变换在线近红外光谱仪MASTER10-Pro,其采用完全国内自主的傅里叶变换技术,自主国产的干涉仪,立体角镜,永久准直,抗震性强。  除了红外透射、红外反射、衰减全反射(ATR)、漫反射等大家熟悉的测量方式,在本次申报的新品中,荧飒光学仪器(上海)有限公司还推出了傅里叶变换红外发射光谱仪和傅里叶变换光致发光光谱仪。红外发射光谱虽然应用范围不如红外吸收光谱广,但在一些特定研究领域有其独特的优势。荧飒光学仪器(上海)有限公司推出的傅里叶变换红外发射光谱仪 FOLI 10-RE是独立式、专用型红外发射光谱仪,其光路设计紧凑,可以明显降低辐射损失,提高辐射通量;作为一种有效的无损光谱检测手段,光致发光光谱广泛应用于半导体的带隙检测、杂质缺陷分析等。荧飒光学仪器(上海)有限公司推出的傅里叶变换光致发光光谱仪 FTPL-10具有弱信号探测能力强、测量速度快和用户操作使用简单等优势。在仪器性能方面,该仪器的光谱分辨率达到0.8nm以上,测量速度达到每秒1张谱图,信噪比超过500:1。  此外,荧飒光学还推出了旋转透射红外液体分析仪+FOLI10-RT,该仪器最多可同时配置4个不同光程的光学窗,非常适合液体的定量测量;天津恒创立达科技发展有限公司推出了MATRIX-50 傅里叶红外光谱仪,该产品采用专利的高能量红外光源,内置独特设计的反射镜,光源能量利用率远高于传统设计,可为傅立叶变换红外光谱仪的ATR及显微红外应用提供足够的能量。
  • 国家药典委无菌药品包装密封性检查--真空衰减法
    国家药典委无菌药品包装密封性检查--真空衰减法真空衰减法是一种广泛用于药品包装系统密封性检测的方法。2024年,国家药典委公布了“9628无菌药品包装系统密封性指导原则”,其中详细描述了密封性测试术语、测试方法和验证等。真空衰减法因其应用范围广泛和市场接受度高而被推荐为首选试验方法。三泉中石作为9628中真空衰减法和压力衰减法标准的制定单位之一,对标准的制定过程及需要关注的条款都有深刻了解,在这里分享给大家:仪器装置真空衰减泄漏检测仪器通常包括真空衰减测试系统、与测试系统相连的测试腔、流量计或不同孔径的标准漏孔/标准泄漏件。其实在国外的相关标准中只规定了气体流量计,并没有标准漏孔的描述。之所以在这里加上,是因为了解到市场上有采用标准漏孔的设备。但是如果采用标准漏孔,应该安装不同孔径,用以验证不同泄漏。而不能只安装一个标准漏孔采用乘以不同系数型式来模拟不同泄漏量的孔径。这两者并不等同。目前市场上广泛采用的Leak-S微泄漏密封性测试仪均采用气体流量计配置,以适应不同样品的测试需求。微泄漏密封性测试仪介绍在这一条件背景下,三泉中石研发的微泄漏密封性测试仪是一种灵敏度高的检测设备,符合ASTM测试方法、USP1207、9628等标准试验要求。该仪器采用真空衰减法测试原理,实现了完全无损的检测技术。它适用于西林瓶、安瓿瓶、输液瓶、预充针、滴眼剂瓶等多种药品包装的密封完整性验证,被制药厂家、第三方检测机构、药检机构等广泛使用。测试原理微泄漏密封性测试仪的测试原理基于ASTM F2338真空衰减法密封测试标准要求,利用真空传感技术进行操作。测试过程中,将主机连接到一个特别设计的测试腔,该测试腔用于容纳待测物。仪器对测试腔进行抽真空,形成包装物内外的压力差。在压力作用下,包装物内的气体通过潜在的漏孔扩散至测试腔内。通过真空传感器技术,检测时间和压力的变化关系,与建立的数学模型进行比较,从而准确判断试样是否存在泄漏。测试方法在进行密封性测试时,需要控制并记录试验环境,避免在较高湿度下完成检测,因为检测环境中的水分可能在较高的真空度下挥发进而影响检测结果。这条表述很清晰,湿度对测试结果的影响还是很大的,主要原因是在真空状态下水分挥发,造成压力上升,从而真空衰减值也随之变化。试验样品:此外,含标签和/或粘胶的样品在测试前应去除标签,以保持瓶身清洁无遮挡,确保测试的准确性。虽然测试样品前要去掉标签会有很大工作量,但是三泉中石提醒这个标签是必须要去掉的。专家主要考虑的是标签覆盖位置阻挡部分泄漏点的检出,而在后期使用中又存在微生物侵入的风险。方法验证为了确保测试方法的有效性,需要进行方法验证,包括专属性、准确度、精密度、检测限、线性和耐用性等方面的评估。通过这些验证步骤,可以确保微泄漏密封性测试仪在不同条件下均能准确区分阴性对照样品和阳性对照样品。其中,专属性这一项9628中描述“内含药品的阳性对照样品,确保所有样品可以 100%识别”。三泉中石认为内容物对真空衰减法的影响还是比较大的。例如有的内容物为混悬液或者大分子类的产品,真空衰减法较难检测到泄漏,当然也不是绝对的,不管是哪种内容物都要经过方法的开发和验证的过程,得出的数据才能证明结论。因此这一项增加在药物干扰情况下方法的检出能力,还是很有必要的。结论真空衰减法作为一种成熟的药品包装密封性检测方法,结合微泄漏密封性测试仪的高精度CCIT测试技术,能够检测到微小孔径的泄漏,为药品包装的密封完整性提供了强有力的保障。
  • 傅立叶变换红外光谱仪与水的碰撞 – 切勿模仿哦
    布鲁克真空型研究级红外光谱仪是如何应对水中的红外实验的?您会如何理解“水中的红外光谱”?也许,您可能会想到用于水-固或水-气界面的衰减全反射或者反射红外法,或者用于像短光程液体池中蛋白质水溶液研究的透射红外法,这种实验装置在生物学相关应用中非常典型,如蛋白质结构分析,或生物分子折叠、结合和催化的动力学研究。位于欧洲中心地带捷克韦斯特克卓越中心的生物技术研究所(Institute of Biotechnology, IBT),是捷克科学院和查尔斯大学联合项目生物技术与生物医学中心(Biotechnology and Biomedicine Center of the Czech Academy of Sciences and Charles University, BIOCEV)的一部分,正致力于这方面的研究。 由Gustavo?Fuertes博士领导的“生物过程动力学”作为其研究项目之一,旨在了解光诱导的光敏蛋白从飞秒到小时时间尺度上的结构、动力学和功能变化。水中稳定状态及时间分辨红外光谱法是实现这一目标的关键技术。该课题组采用布鲁克VERTEX?70v真空型研究级光谱仪来获取低至纳秒时间尺度的数据,这样的时间分辨率是傅立叶变换红外光谱技术能达到的最高时间分辨率,只能通过步进扫描测量模式来实现。 由于布鲁克真空系列光谱仪具有全真空光学平台,可以提供超高稳定性及精度,这也是达到步进扫描最佳性能的必要前提。众所周知,水是许多生物大分子的理想溶剂,但也是很强的红外吸收剂。 因此,在水溶液中想获得足够强的信号进行红外光谱分析是一项非常棘手的任务。 通常需要高性能的傅立叶变换红外光谱仪、熟练的样品制备和智能的测量装置。BIOCEV分子结构中心(Centre of Molecular Structure, CMS)的生物物理实验设施,包含五种涵盖生物分子应用的FTIR采样附件;此套装置尤其对于溶液或水化膜中光触发的生物学现象研究非常有用。不幸的是,BIOCEV的一个光谱学实验室不小心被水淹了,许多灵敏的仪器和设备受到了严重的影响。 但是我们很自豪地报告,布鲁克真空型光谱仪在这次不幸的“水中实验”后安然无恙,只是更换了控制电脑和一块数据采集卡,而整个光学台内部的所有光学元件在真空下都得到了很好的保护。 这个意外的“实验”证明了布鲁克真空型光谱仪的独特品质。不管怎样,不希望这样的不幸再次发生,因为不是每一台红外光谱仪都能幸免遇难、安然无恙。
  • 9628公示稿 无菌药品包装密封性检查-真空衰减法
    9628公示稿 无菌药品包装密封性检查-真空衰减法真空衰减法,作为药品包装系统密封性验证领域的一项广泛应用技术,于2024年迎来了国家药典委颁布的“9628无菌药品包装系统密封性指导原则”的详细阐述,该原则深入解析了密封性测试的专业术语、具体方法及验证流程等。在众多检测方法中,真空衰减法凭借其广泛的适用性和市场的高度认可,被明确推荐为首选检测手段。作为参与制定9628标准中真空衰减法与压力衰减法标准的制定单位之一,三泉中石在此深入剖析该标准的核心要点及实践中的注意事项。仪器装置概览真空衰减泄漏检测仪器的核心组件包括真空衰减测试系统、配套测试腔体、流量计,以及(可选)不同孔径的标准漏孔或泄漏件。值得注意的是,国际标准多聚焦于气体流量计,并没有标准漏孔的描述。之所以在这里加上,是因为了解到市场上有采用标准漏孔的设备。若选用标准漏孔,应该配备安装不同孔径,用以验证不同泄漏。而不能只安装一个标准漏孔采用乘以不同系数型式来模拟不同泄漏量的孔径。这两者并不等同。当前,市场上备受欢迎的三泉中石Leak-S系列微泄漏密封性测试仪,即采用了气体流量计配置,灵活应对各类药品包装的检测需求。微泄漏密封性测试仪亮点这款高灵敏度的仪器遵循ASTM、USP1207及9628等标准试验要求,依托真空衰减原理,实现了对药品包装(如西林瓶、安瓿瓶、输液瓶等)密封完整性的无损检测。其卓越的灵敏度和广泛的适用性,赢得了制药企业、第三方检测实验室及药品监管机构的广泛信赖。测试原理深析三泉中石的微泄漏密封性测试仪Leak-S在测试时,仪器将待测包装置于特制测试腔内,该测试腔用于容纳待测物。并抽取腔内空气以建立内外压差。在此压差驱动下,包装内可能存在的气体将通过微小漏孔逸出至测试腔,仪器则通过监测这一过程中检测时间和压力的变化关系,并与预设数学模型比对,从而精确判断包装的密封状态,是否存在泄漏。测试方法精要执行测试时,需严格控制并记录环境条件,特别是避免高湿度环境,以免水分蒸发影响真空度,进而干扰检测结果。此外,对于附有标签或粘胶的样品,测试前务必去除,以确保测试区域的完全暴露,避免标签遮挡潜在泄漏点,同时预防微生物入侵风险。虽然测试样品前要去掉标签会有很大工作量,但是三泉中石提醒这个标签是必须要去掉的。专家主要考虑的是标签覆盖位置阻挡部分泄漏点的检出,而在后期使用中又存在微生物侵入的风险。方法验证的全面性为确保测试方法的有效性和可靠性,需要进行包括专属性、准确度、精密度、检测限、线性关系及耐用性在内的全面验证。特别是专属性验证,9628标准强调了对内含药品的阳性对照样品的完全识别能力,三泉中石指出,不同内容物(如混悬液、大分子产品)可能对真空衰减法的灵敏度构成挑战,因此需针对具体药物特性进行方法开发与验证,以确保检测结果的准确无误。综上所述,微泄漏密封性测试仪的先进CCIT测试技术,为药品包装密封完整性检测提供了强大支持,能够精准捕捉微小泄漏,为药品安全保驾护航。作为专业从事包装检测仪器的行业制造商-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 红外光谱的测量极限在哪里?
    [导读] Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。近年来,在多领域大发展及各类新技术不断进步的形势下,传统的红外光谱技术已经从单纯的红外光谱仪、显微镜与红外光谱联用,发展到了红外成像系统,并在信噪比、空间分辨率、时间分辨率、测量模式等方面呈现了新的发展活力。同时,在新技术的助力下,红外光谱在应用方面也得到了很大的拓展。   Quantum Design公司一直致力于引进先进的红外光谱技术,其中neaspec纳米傅里叶红外光谱仪、微秒时间分辨超灵敏红外光谱仪在探寻红外光谱测量限上展现了特的魅力,先后获得科学仪器“新品奖”。业界评价:Quantum Design在产品的选择上颇具眼光! 为了多方位展现我国在红外光谱领域的新成果,仪器信息网特别策划制作《稳中求新红外光谱技术及应用进展》网络专题,特别邀请Quantum Design中国表面光谱销售总监韩铁柱博士为大家介绍红外光谱仪的新技术及应用情况,并探寻红外光谱的测量限。   红外光谱技术发展需求:高敏感度、高空间和高时间分辨率 仪器信息网:从仪器发展及应用的角度分析,您认为目前红外光谱仪器及技术走到了哪一个阶段?韩铁柱博士:人类对红外光的认识已经超过两个世纪,1800年,英国科学家W.?Herschel在研究温度计对紫色到红色光照射变化时,就已经意识到红色末端区域外仍然存在着看不到的辐射区域。九十年后,瑞典科学家Angstrem利用CO和CO2次证明了不同分子具有不同的红外谱图,并在此基础上进一步建立了现代分子光谱学。在此之后的一个多世纪里,人类科学家已经可以利用红外光手段,对大量的分子振动和转动信息进行谱学分析和鉴别。上世纪50年代,双光束红外光谱仪的问世,意味着红外检测已无需由经过专门训练的光谱学家进行操作,也能轻易获取数据。该设备的商业化及畅销普及标志着红外谱学门槛的大降低,在科学研究、社会实践及工业控制等领域将迎来飞跃式发展。现代红外光谱议主要指由上世纪80年代发展建立的以傅立叶变换为基础的仪器。该类仪器不用棱镜或者光栅分光,而是用干涉仪得到干涉图,采用傅立叶变换将以时间为变量的干涉图变换为以频率为变量的光谱图。与更早期的双光束红外仪器相比,傅立叶红外光谱仪具有快速、高信噪比等特点,并且随之催生了许多新技术,诸如步进扫描、时间分辨和红外成像等,从而拓宽了红外的应用领域,使得红外技术的发展产生了质的飞跃。然而,随着科学技术的不断发展和应用领域的进一步细分,特别近年来纳米材料、拓扑材料、二维材料等新材料的兴起,传统傅立叶红外光谱仪光源亮度弱、光斑范围大、迈克尔逊干涉仪平动速度慢等缺陷开始显现,逐渐不能满足红外光谱科学研究中高敏感度、高空间和高时间分辨率的需要。仪器信息网:目前红外光谱的测量限发展到了什么程度?可以给大家带来什么样的体验?韩铁柱博士:目前,传统红外光谱的空间分辨测量限在几微米到几十微米,时间分辨测量限在几十毫秒的量,这主要是由于光源本身及步径位移机制限制。20世纪60年代开始,随着台红宝石激光器的问世,科学领域得益于激光技术的广泛应用,对光谱研究的空间分辨和时间分辨也得以大幅提高。由于激光器的高线性特点,非接触式的红外光谱技术空间分辨率可达500nm,如果进一步搭配近场探针突破衍射限,空间分辨可进一步提升至10nm。利用QCL激光的双光梳设计,目前激光base的红外光谱可以完全抛弃步径位移,将时间分辨提高到us,如果将超快激光引入pump-probe体系,时间分辨可以达到fs别。仪器信息网:相对于其它的分析仪器,红外光谱的应用市场活力如何?哪些应用领域会有大的发展空间?为什么?韩铁柱博士:相对于其他分析仪器,红外光谱分析技术具有使用成本低、操作和维护简单、灵敏度和分辨率较高、特征性强等优点,能提供包含化合物官能团、类别、立体结构、取代基种类和数目等多种信息。近年来计算机技术的迅猛发展带来了分析仪器数字化和化学计量学科的同步发展,加之红外光谱技术有特点,使得其应用范围进一步拓宽。红外光谱既可以用于定性分析,也可以用于定量分析,还可以对未知物进行剖析,广泛应用于化工、制药、农业和食品、半导体、宝石鉴定、质检、地矿和环境等领域,是科学研究的有力技术手段,也是常规应用分析和生产不可缺少的分析技术。譬如在中医药领域,作为一个复杂的混合体系,中药的鉴别和质量控制,以及有效成分的确定和质量分析,一直是个难题,红外光谱技术的特点使得其作为指纹分析手段并结合化学计量学方法,成为中药研究不可或缺的工具 在农业和食品领域,近年来得益于焦平面阵列检测器、可调谐滤光器、化学计量学方法和计算术的提升,红外光谱和成像技术有机结合发展成为一种多信息融合检测技术。除了进行农产品和食品的品质分析外,红外光谱的应用还扩展到了污染物检测、产品分类和来源鉴别、土壤的物理和化学变化、以及食品加工过程中组成变化的监控和动力学行为等。Quantum Design红外产品着眼红外光谱测量限仪器信息网:请介绍贵公司在红外光谱产品的定位及发展历史?有哪些具优势(里程碑式)的技术(技术,有技术)? 韩铁柱博士:我们公司一直贴合新研究前沿和热点课题,结合红外光谱的应用与现代科学研究的需要,专注新、先进红外光谱技术和产品的引进,先后引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外光谱仪、美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,2019年又引进了瑞士IRsweep公司的IRis-F1微秒时间分辨超灵敏红外光谱仪。这三款主推产品从空间分辨率、非接触测量、时间分辨等维度,大推动了红外光谱测量限。 nano-FTIR纳米傅里叶红外光谱技术是由德国neaspec公司基于其创的散射型近场光学技术发展出来的、具有10纳米超高空间分辨的新型傅里叶红外技术,使得纳米尺度下的化学鉴定和成像成为可能。这一技术综合了原子力显微镜的高空间分辨率和傅里叶红外光谱的高化学敏感度,实现对几乎所有材料的化学分辨和成分分析。它不受被检测样品厚度制约,可广泛适用于有机物、无机物、半导体材料、二维范德华材料的纳米分辨红外光谱分析,并同时提供纳米空间分辨的红外吸收谱和反射谱。 全新一代mIRage非接触式亚微米分辨触红外拉曼同步测量系统,是美国PSC公司基于的光学光热红外技术(O-PTIR),将光学显微与微区红外结合,一举突破了传统傅里叶红外光谱(FT-IR)及衰减全反射红外光谱(ATR-IR)的分辨局限,实现了500nm的空间分辨率 它具备非接触式/反射模式测量,对样品表面无严格要求,可直接对厚样品进行测试 可搭配液体模式和与拉曼联用,直接观察液体生物样品,并对样品进行同时同地同分辨率下的红外拉曼同步光谱和成像分析,无荧光风险。 瑞士IRsweep公司推出的IRis-F1微秒时间分辨超灵敏红外光谱仪,荣获了由仪器信息网主办2019年度科学仪器“新品奖”,它是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1μs时间分辨的红外光谱快速测量。它测量数据信噪比高,易于微量及痕量光谱分析,兼容常用红外光谱仪插件,方便易用、可靠性高。仪器信息网:贵公司红外光谱仪应用具优势的领域?主推的解决方案?韩铁柱博士:我们公司近几年在红外光谱领域销售保持持续地稳定增长,针对不同的应用领域和具体的技术需求,我们推出了对应的解决方案。1、nano-FTIR是我们针对傅里叶红外光谱空间分辨率在10nm量,所推出的成熟技术方案,它利用AFM探针突破红外光斑的限制,并利用激光光源的高亮度和稳定性可进超高空间分辨下的物质微纳组分研究和表征。并后期结合飞秒激光器,可实现fs的红外光谱测量表征。美国NASA于2014年从太空带回了直径约为10um的彗星碎片。由于传统红外分辨率受制于光斑大小,该样品内部成分无法进一步检测。利用上述内容提到的纳米傅里叶红外技术10nm空间分辨率,科学家可以很好的对彗星碎片内主要5种矿物进行有效分析,并能就其组分的空间分布进行具体的表征。进一步地,在10nm超高空间分辨率的基础上,nano-FTIR还可以与50fs的时间分辨超快激光技术进行结合,同时达到红外设备的“超高空间分辨”和“超高时间分辨”。该工作在2014年由Eisele等人在实验室实现,作者利用pump激光和我们的纳米傅立叶红外光谱进行同步,在InAs纳米线上由-5ps到1050fs分别延迟激发样品,得到了纳米线上载流子形成和衰减的全过程红外光谱图。2、当红外光谱空间分辨率要求在亚微米量,且传统傅里叶变换红外光谱和ATR技术应用受限或者样品制备困难情况下,mIRage非接触式亚微米分辨触红外拉曼同步测量系统无疑是一个好的选择。它的高空间分辨率、非接触式的测量方法以及可与拉曼联用的特点,可以快速获取材料的二维红外光谱和组成分布信息。越来越多的塑料产品的使用引发了人们对于其在环境中累积所引发的环境和生态污染问题的担忧,迫使科学家尽快找到可替代性的新型材料。而生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),在适当条件下可发生生物降解,成为近研究的热点话题。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组使用mIRage系统对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究了这两种材料结合的方式和内在扩散机制,为未来研究生物微塑料的演变和降解过程提供数据和理论上的支持。3、为描述生物医学、化学动力学等许多变化过程中的红外光谱情况,我们推出了IRis-F1微秒时间分辨超灵敏红外光谱仪解决方案。斯坦福大学的Nicolas H.Pinkowski研究团队利用IRis-F1实现了高能气相反应中的微秒分辨单次测量。他们在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应,以4μs时间分辨测量速率,解析了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。来自IRis-F1的量子联激光的双梳状光谱仪(DCS)测试数据表明:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。未来:通用型和专用型红外光谱协同发展 仪器信息网:目前国内外红外光谱仪的技术及市场发展态势有什么不同?您如何看待未来中国市场的需求及发展潜力? 韩铁柱博士:当前市场上红外光谱仪可以大致分为通用型和专用型两大类,体现了红外光谱仪的发展与工业化需求以及科学研究需求是密切相连的。进口通用型红外光谱仪市场主要以傅立叶变换红外光谱仪(FTIR)为主,制造厂家主要来自于欧美等国,而色散型红外光谱仪比较少见 近些年来国产的FTIR厂家逐渐崭露头角,尽管技术和主流公司相比还有一定差距,但差距正在不断缩小。其新型干涉光路的搭建,有效降低了振动和导轨偏移引发的干涉变形,结合众多新型红外附件的开发,目前国内红外光谱议产品正在走出国门,远销欧美和东南亚 专业的研究型红外光谱仪主要在一些科研机构使用,存在一定的定制化,它可以与红外显微镜、热分析、气相色谱等外联附件联合使用,实现多种分析手段的同步进行和数据交叉对比。作为普适性的一种分析手段,红外光谱仪在国内有较大的潜在市场,未来红外光谱仪技术,无论是智能化程度、产品联用、应用领域专业化还是小型化上都存在很强的发展潜力。另外,红外光谱与成像相结合的多信息融合检测技术,也是当前红外技术的主要发展方向。未来随着应用领域的不断扩展,制造技术的不断变革以及计算机技术的发展,更多成本更低的研究型和专用型红外成像光谱仪预计将会陆续出现,被更多的应用于过程分析和高通量分析中,如制药,农业,食品,高分子和催化材料等领域,成为传统红外光谱技术的一种有力互补技术。仪器信息网:针对当前的市场格局,贵公司在红外光谱产品方面有什么样的布局?重点拓展的新领域有哪些? 韩铁柱博士:针对当前的市场格局,我们公司继续结合科研用户的技术需求,引进一系列红外产品引入中国市场,比如基于AFM探针技术的超高纳米空间分辨率的近场光学显微系统、散场式光学显微镜、纳米傅里叶红外光谱仪等 同时,我们也将开展通用型红外光谱仪的布局,引入适合普通科研用途和工业应用的光谱仪,拓展其应用领域范围,解决一系列应用中的实际问题,具体体现在:1)针对传统傅里叶变换和衰减全反射红外光谱限制的亚微米分辨光学光热红外显微技术,提高其空间分辨率;2)简化样品制备过程,避免样品污染和接触引发的红外赝相;3)拓展红外样品的适用范围,包括一些常规红外无法检测的厚样品,透明样品,液体样品等;4)努力发展与其他技术的联用,实现多种技术的交叉互补使用,全面了解样品表面的化学信息,如红外和拉曼光谱技术联用,对有机无机样品的各种分子振动进行全面的分析和相互验证。通过以上布局,我们一方面注重拓展高新技术领域的红外光谱应用,如纳米红外光谱和成像,超快/时间分辨红外光谱等,用于纳米材料的高分辨表征和化学过程的监测 另一方面拓展实际应用领域的红外技术应用,包括制药、化工、半导体、农业和食品、地质和环境、法医鉴定等,解决科研和生产过程中遇到的一系列实际问题,推动红外光谱技术的应用。后记:习近平总书记非常重视科技创新能力,他在重要讲话中指出“自主创新是我们攀登科技高峰的必由之路”,“当今科技革命和产业变革方兴未艾,我们要增强使命感,把创新作为大政策,奋起直追、迎头赶上”。Quantum Design中国也以此为己任,在公司的建设和发展过程中,致力于为中国科研工作者的成功提供专业支持和服务。韩铁柱博士介绍说,“我们深深理解国内科学家和学者们从不缺乏创新性的科研想法和构想,如何借助先进仪器帮助科学家将这些想法付诸于实践,是Quantum Design中国一直在思考的问题。”据悉, Quantum Design中国建立了超过300万美元的样机实验室,为国内科学家尝试自己的想法提供了舞台和施展的空间。就红外光谱分析仪器而言,Quantum Design中国样机实验室引进了德国neaspec公司的nano-FTIR 10纳米超高空间分辨的新型傅里叶红外仪,以及美国PSC公司的mIRage非接触式亚微米分辨触红外拉曼同步测量系统,并向国内科学家开放。截至2020年6月,Quantum Design中国样机实验室测量的数据已经协助科学家在Nature正刊、Nature子刊、ASC等著名国际期刊上发表多篇创新性的科研成果,得到了广大科学家的认可和赞誉。
  • 赛默飞世尔科技傅立叶红外光谱有效表征生物质燃料计划中藻类生物分子
    麦迪逊,威斯康星州(2010年4月19日)——全球科学服务领域的领导者赛默飞世尔科技今天宣布,该公司开发的傅立叶红外(FT-IR)采样技术为生物体系(如藻类植物中油脂)的化学成分分析提供了经济有效的解决方案。藻类是成功实施生物质燃料计划所需大量生物质的潜在来源。   业内领先的Thermo Scientific 开发的用于药物高效筛选的自动采样的红外技术,也可有效用于藻类分析。该解决方案简单方便,通过将仪器、附件和软件相结合,显著增加了自动分析的生物样品数。根据分析目的和样品制备方法的不同,有衰减全反射(ATR)、透射、漫反射和显微红外光谱四种配置供不同行业选择。   作为不可再生燃料的替代燃料,藻类和其它水生物是转化为生物质燃料所需大量生物质的潜在来源。研究人员认为,实施生物质燃料计划,必须提高藻类的油脂产量。因此,急需一种能有效分析藻类化学成分的有效技术。FT-IR已广泛用于菌体、单细胞和组织等生物样品化学组成的分析。最近,有文献提及该技术还用于藻类生物质样品中蛋白质、糖类和油脂含量的分析。然而,为了增加可检测的样品数量并获得良好的重复性,样品制备是该分析技术的关键步骤。赛默飞世尔公司提供了全系列的FT-IR采样技术,并基于这些技术开发了一种快速筛选方法,用于测量生物质燃料领域中微生物样品的油脂含量。  Thermo Scientific红外采样技术可表征藻类化学组成。Thermo Scientific Nicolet iS10 FT-IR光谱仪,结合Smart iTR金刚石附件或Smart OMNI-透射附件,可得到干燥的藻类样品光谱。Thermo Scientific Nicolet 6700 FT-IR系统,配备自动多孔板阅读器和Thermo Scientific OMNIC Array Automation阵列自动化软件,以简单经济的方式获得多个样品的反射光谱。最后,利用Thermo Scientific Nicolet 6700和配置X,Y二维自动平台的Continuum™ 显微红外光谱仪,可获得可靠的显微红外透射数据。   关于Thermo Fisher Scientific(赛默飞世尔科技)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约3万5千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com(英文) 或www.thermo.com.cn(中文)。
  • 石墨烯缺陷工程的重要一员——表面等离子体激元反射
    石墨烯是近年来受到广泛关注的二维材料,具有特的物理化学性质,在信号传感、物质检测、和能源电池领域都有着广阔的应用前景。2016年9月,南开大学许京军、蔡卫老师研究团队在国际期刊 2D Materials上公开发表题为“Tailorable re?ection of surface plasmons in defect engineered graphene”的全文文章,通过探讨缺陷改变石墨烯光、电、热性质的可能性,提出了对石墨烯纳米尺度下的等离子激元性质进行操控的思路,为未来纳米光电设备的实现开辟新篇。(a) NeaSNOM测量原理示意图 (b)NeaSNOM的AFM成像显示了石墨烯缺陷处的形貌结构 (c)NeaSNOM的纳米显微光学成像展示了该区域的表面等离子波传播图样许京军、蔡卫老师研究团队先设计了离子束对石墨烯缺陷边界的操控可行性,并通过AFM等常规测量手段对这一设想进行了重复验证,检验其可行性。该研究团队对石墨烯表面等离子波在缺陷边界的传播进行了深入研究,通过NeaSNOM提供的可靠等离子激元成像手段,他们近场等离子激元成像图中观测到了靠近边界的明显干涉条纹。通过典型的石墨烯楔形结构,边界处的等离子激元的有效散射波通过操控的缺陷得到了大的增强。在缺陷边界处的等离子激元反射次得到清晰观测,证实了这些缺陷在表面等离子波传播中散射中心的作用。不同程度缺陷石墨烯中等离子激元传播和反射的研究在入射激光波长为10.653um下,不同程度缺陷石墨烯中等离子激元传播和反射的研究。其中,等离子激元干涉峰值被定义为M,在边界处衰减比例为0.28,实验结果与理论数值得到了很好的拟合。该研究团队证明了通过引入离子束在石墨烯缺陷边界处改变等离子激元的反射的结论,他们认为缺陷可以作为有效的等离子激元传播散射中心,通过缺陷程度的控制可以实现对等离子激元的操控,这一研究结果有效开创了控制表面等离子波的新篇章。参考文献:Luo W, Cai W, Wu W, et al. Tailorable reflection of surface plasmons in defect engineered graphene[J]. 2D Materials, 2016, 3(4): 045001.本文涉及的研究过程及实验结果均以原著作为准。相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪Nano-FTIR:http://www.instrument.com.cn/netshow/C194218.htm
  • 岛津红外拉曼光谱耦合技术——开启微塑料检测的多维度视角
    根据欧盟《饮用水中微塑料检测指令》(EU)2024/1441新规,分子振动光谱技术(红外光谱、拉曼光谱)被用于鉴别微塑料的聚合物种类,要求红外或拉曼光谱设备至少能够有效测定20 μm尺寸的微小样品。岛津推出的AIRsight红外拉曼显微镜,采用先进的红外拉曼光谱耦合技术,以其创新性设计、高度自动化操作和简洁的工作流程,实现了对微塑料的宽尺寸范围、原位及多光谱检测,为微塑料的精准检测提供了多维度的分析视角。本文将详细介绍AIRsight红外拉曼显微镜如何有效支持微塑料的检测工作,确保饮用水安全,促进环境保护和人类健康。1微塑料的高度异质性实际环境基质中的微塑料具有高度异质性,来源多样,成分复杂,理化特性各异,尺寸分布广泛。它们形状多样,可能包含多种聚合物和有机无机添加剂。在自然环境中,塑料会在光、热和生物作用下老化降解,影响其物理化学特性。这种多样性增加了微塑料检测、识别和定量的复杂性。2微塑料的分子振动光谱分析:红外与拉曼光谱的对比评估基于颗粒的分子振动光谱法(红外光谱法和拉曼光谱法)可无损快速地识别微塑料的形态和化学信息,是目前广泛用于微塑料鉴定的非破坏性化学技术。红外吸收光谱和拉曼散射光谱基于不同的原理,适合的样品有所不同,在环境基质中微塑料的识别和定量分析方面各有优势和局限性,这些与粒径、波数范围、选择定则等有关。因此,在分析和解释光谱数据时,需要综合考虑两种方法之间的重要差异,以确保选择适合的分析技术。表1:红外和拉曼分析技术的特点和获得的信息3 AIRsight红外拉曼一体显微镜,助力宽尺寸范围、原位、多光谱的微塑料检测显微红外(μ-FTIR)和显微拉曼(μ-Raman)分析耦合的多光谱方法检测微塑料,可以克服单光谱方法的粒径限制、荧光干扰、波数范围限制、选择定则决定的响应弱等问题,提升定性分析的准确度,更能应对实际环境基质中复杂样品的测试。岛津AIRsight红外拉曼一体显微镜,能够在不移动样品的情况下,使用同一显微镜,同一个软件,对样品的同一位置(微小区域)快速获得互补的红外和拉曼的多维度光谱信息,摆脱繁琐的样品转移、标记、定位工作,助力宽尺寸范围、原位、多光谱的微塑料检测。岛津AIRsight红外拉曼显微镜,除了红外拉曼合二为一之外,还有很多自动化、全功能的技术加持。它延续了岛津之前红外显微镜的全自动物镜转台的功能,可以同时安装多个物镜,如红外物镜、拉曼物镜,岛津特色的大视野相机镜头等。在显微红外模式下,可覆盖中红外全波段,透射、反射、ATR三项全能。在显微拉曼模式下,有多个激光波长可以自动切换。★ 同一位置的多光谱检测通过将红外光谱和拉曼光谱两种技术集成到一台设备中,实现了无缝切换的工作流,让需要通过多种光谱技术进行异物分析的用户摆脱繁琐的样品转移、标记、定位工作,工作效率大幅提升。从而成功推出了一种新概念的高通用性分析装置,能够满足异物分析、微塑料分析以及其它微小样品分析/样品微区分析等需求。表2:AIRsight红外拉曼显微镜的典型功能★ 透射反射ATR三项全能在显微红外模式下,AIRsight提供了三种检测模式来进行微塑料分析:透射、反射和衰减全反射(ATR),每种模式均有其独特的优势和适用场景。在进行材料分析时,应根据样品的物理特性(厚度、脆性等)、化学组成以及分析目的(定性或定量、样品表面或内部特性分析等)来选择合适的显微红外模式。在特定情况下,可能需要综合运用多种模式,以获得更为全面的分析结果。表3:显微红外的测量模式★ FTIR光谱范围宽、适用性强某些波段受限的红外光谱技术(如基于QCL红外激光器的红外成像技术),由于其固有的可用波段范围窄的限制,可能无法捕捉到某些关键的特征吸收峰信息(包括特征峰的位置、形状和强度),导致微塑料光谱图的误判,从而影响成分鉴定的准确性。相比之下,傅里叶变换红外光谱(FTIR)具有光谱范围宽、适用性强的优点,能够覆盖指纹区、静默区、C-H伸缩振动在内的高波数波段,特别适合实际微塑料样品的定性分析。岛津的AIRsight红外拉曼显微镜集成了傅里叶变换显微红外(μ-FTIR)和显微拉曼(μ-Raman)技术,不仅能提供指纹区的关键信息,还能够捕捉到C-H伸缩振动等高波数区域的信号。此外,该显微镜结合了傅里叶变换显微红外和显微拉曼的优势,能够更全面地覆盖低波数区域,从而为有机物、无机物(例如塑料中的无机添加剂)以及有机无机混合物的分析提供了强有力的支持。表4:常见部分聚合物的红外谱带位置上表信息参考《GB/T 40146-2021化妆品中塑料微珠的测定》和《T/LNEMA 002-2023城市河道中微塑料的测定 傅里叶变换微红外光谱法》。4岛津特色AIRsight红外拉曼一体机的特色应用案例★ 宽尺寸范围微塑料的识别红外拉曼*目标区域太小,无法用红外显微镜有效测定*✔ 可以在无需移动样品的情况下,结合显微红外和显微拉曼,实现更宽尺寸范围样品检测。✔ 塑料老化谱库提升了微塑料分析(光热老化塑料定性分析)的定性准确度。★ 宽波段的测试范围红外拉曼✔ AIRsight显微红外部分采用FTIR的设计方式,除了标配的液氮制冷高灵敏检测器之外,还可以同时安装一个无需液氮的DLATGS检测器,来实现完全覆盖4000 ~ 400 cm-1整个中红外区间。✔ AIRsight结合了傅里叶变换显微红外和显微拉曼的优势,能够更全面地覆盖低波数区域,助力有机物、无机物(例如塑料中的无机添加剂)以及有机无机混合物的分析。★ 显微红外的测试模式(透射/反射/ATR)选择红外✔ 如样品较厚,在进行显微透射测试前,需用金刚石压池将粒子压薄,可提高检测的准确性;或选择其它模式进行测试。✔ 显微ATR可以测量和分析黑色或深色塑料。★ 紫外降解塑料评价中拉曼激发波长的选择拉曼*选择合适的激光波长,以避免荧光干扰*✔ AIRsight红外拉曼显微镜标配532 nm和785 nm两个激光器,可以选择最适合样品的激光器。✔ 785 nm 激光能够有效分析受荧光干扰的样品。✔ 可设定光漂白时间以降低荧光干扰。自1875年成立以来,岛津秉承“以科学技术向社会做贡献”的理念,致力于实现“为了人类和地球的健康”的愿景。我们期待与您携手利用先进的分析技术共同守护水质安全,共创绿色未来!本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制