当前位置: 仪器信息网 > 行业主题 > >

红外液态样品分析

仪器信息网红外液态样品分析专题为您提供2024年最新红外液态样品分析价格报价、厂家品牌的相关信息, 包括红外液态样品分析参数、型号等,不管是国产,还是进口品牌的红外液态样品分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外液态样品分析相关的耗材配件、试剂标物,还有红外液态样品分析相关的最新资讯、资料,以及红外液态样品分析相关的解决方案。

红外液态样品分析相关的资讯

  • 液态金属还原氧化石墨烯在生物传感中的应用
    Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing布鲁克纳米表面仪器部 李勇君 博士自室温和近室温液态金属(LMs)出现以来,此类材料因其软流体性质、高电子和热导率特性而受到研究者们越来越多的关注。其中,镓及其共晶合金因其低毒性和低蒸汽压等特性成为了LMs家族的典型代表之一,其可用于驱动表面化学反应,设计纳米结构等应用。到目前为止,众多研究者已经在 LMs 表面探索了多种反应,以生成基于层状材料和纳米粒子等不同涂层,但其表面在暴露于氧的情况下易形成天然氧化层而快速钝化,形成损害LMs导电性的绝缘表面,从而限制了在电化学和电子系统中的应用。因此,在LMs表面建立导电层,以实现高导电界面是对于需要电子、电荷转移这类应用的一种有前景和十分重要的策略。2021年11月,澳大利亚新南威尔士大学和中国香港大学的研究人员通过共晶镓(Ga)-铟(In)液态金属(EGaIn)与氧化石墨烯(GO)的界面相互作用成功实现了衬底上、单独GO的还原(rGO),合成了基于rGO与LM的核-壳复合材料(LM-rGO)。进一步,研究者通过布鲁克公司的原子力显微镜(AFM)、 峰值力扫描电化学显微镜(PF-SECM)、纳米红外光谱(nanoIR)、X射线能谱(EDS)等技术系统、详细地表征和讨论了LM对GO的还原能力,LM-rGO界面的相互作用,LM的界面传递,以及LM-rGO的电化学性能等,证实了LM−rGO是一种有效的功能材料和电极改性剂。最后,研究者基于LM-rGO开发出来的纸基电极实现了抗生物干扰的多巴胺选择性传感,展示了该低成本技术的商业应用前景。该项研究工作最终以“Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing”为题发表在2021年11月的《ACS NANO》杂志上。原文导读:研究背景:在过去十年中,自室温和近室温液态金属(LMs)出现以来,其在治疗学、微流体学、材料合成和催化等多个研究学科中得到了广泛的应用。作为LM家族的代表,镓及其共晶合金因其低毒性和低蒸汽压而倍受关注。具体而言,Ga基LMs的可调表面特性以及柔软、动态的界面使其成为合成多种材料的理想反应介质。基于Ga的LMs的另一个独特特性与Ga的不同氧化状态有关,这使得能够在电解或电流调节中调整氧化还原介导的合成路线。在界面上,LMs通常用于两种设想的合成路线:①作为柔软的超光滑模板,然后从表面剥离目标材料,②作为反应点和稳定载体,用于生成颗粒。将所有这些优点结合在一起,基于Ga的LMs可被视为有效的功能载体,为功能化合物的保留和生成提供了多功能界面。还原氧化石墨烯 (rGO) 是常用、流行的平面材料之一,其具有高导电性和跨平面的机械强度等特点。尽管研究者们已经提出了许多用于rGO 生产的方法,但开发一种高度可控的在室温下可行,并且对试剂的需求最少的还原方法仍然具有很大的前景。凭借其超反应性界面,可提供两种自由电子和离子,LMs 可能可以提供这样的反应介质,使 GO 薄膜和各种厚度的GO膜能够在室温下实现还原。一方面,LMs的动态可再生界面可用作重复使用的还原GO试剂,从而在无需任何外部输入(特别是施加电压)的情况下将成本和废物产生降至最低。 另一方面,LMs 的非极化表面可以轻松地从其表面捕获产生的 rGO,无需额外的化学步骤及可形成LM-rGO核-壳复合结构。在本研究中,研究者探索了共晶镓-铟 (EGaIn)和 GO 薄片之间的界面相互作用,考虑了不同的方法:包括利用 LMs 块体作为反应模板来还原GO 和利用LMs微颗粒作为的小型反应位点来合成复合材料。对于这两种情况,研究者都对 LMs表面的 rGO 进行了广泛的表征,以全面了解还原 rGO的特征和组成。 最后,研究者将合成的LM-rGO 微颗粒复合物用于标准电化学电池和电化学纸基分析装置 (ePAD) 中的传导表面改性修饰剂,用于在存在其他生物干扰的情况下对多巴胺 (DA) 进行选择性生物传感和检测。结果及讨论:为了研究LM对GO的界面影响,研究者考虑了不同的实验条件,包括使用LM块体作为软介质来还原不同厚度的GO膜、单独的膜,以及利用LM微液滴作为还原剂核心来生成LM-rGO核−壳复合结构。1. 衬底上GO膜的LM还原研究图1 a, 显示了衬底(Si/SiO2)上GO放入LM中还原的方法。通AFM表征还原前后的GO单层膜发现:LM处理后,单层膜膜厚从1.2 nm减小到了0.6 nm,膜厚的减小可归因于GO还原后变形的sp3碳结构和各种含氧官能团的去除。另外,通过对另外两个GO和rGO样品的AFM图像进行厚度统计分析,研究者进一步证实了暴露于LM后GO单层的厚度减少(图2,原文补充信息Figure S2)。在石墨结构的拉曼光谱中,D带(ID)和G带(IG)的强度之比被认为是石墨烯层内缺陷的指标,拉曼光谱显示LM还原前后的ID/IG从0.89变化到1.2,同时结合ID/IG拉曼成像(图1. d、e)可以进一步确认LM相对均匀地还原了GO单层。在这种方法中,LM大部分在设计的原电池中既是导体又是电解液。换句话说,导体本身可以提供一个充满离子和反应性金属位置的环境,而不是使用外部介质来移动负责电偶反应的电荷载体。LMs的柔软性还提供了液体块体和目标基板之间的有效界面接触,使所需的金属物种易于在表面上接触。图1. (a)基于衬底的GO的LM还原方法示意图 AFM图像:(b)暴露于LM前的GO样品和(c)LM反应后获得的rGO样品 (d)衬底上的GO和(e)浸入LM后获得rGO的拉曼光谱测量,D带和G带的表面拉曼成像及相应的ID/IG成像。图2. Si/SiO2衬底上不同样品的AFM成像和厚度分析:(a-b)LM还原前的GO样品和(c-d)LM还原后的rGO样品。2. 单独GO膜的LM还原研究为了进一步探索开发的基于LM的工艺能力,研究者探索了其独立薄膜GO的LM还原潜力。图3 a,显示了制备独立GO膜的LM还原方法。拉曼光谱证实了还原的有效性(图3c)。为了研究暴露于EGaIn前后表面官能团的分布,转移的厚rGO样品(~1.6 μm, 原文Figure S3-nanoIR表征的测量膜厚度)被进一步通过纳米红外光谱(nanoIR)进行了表征。如图3d所示,纳米红外成像是一种基于AFM的高空间分辨率化学成像和光谱研究技术,其中脉冲红外激光用于产生光热诱导共振和热膨胀。光吸收引起的膨胀激发了AFM悬臂梁的共振振荡,悬臂振荡的振幅正比于相应波长的红外光谱吸收。该技术被用于在高空间分辨率下评估GO和rGO样品中表面官能团的分布。从GO的纳米红外光谱(图3f)中可以看出,羰基峰1730 cm−1(C=O)具有很高的纳米红外振幅, 纳米红外成像也显示了GO表面上相对均匀的羰基分布。另外,GO样品的纳米红外光谱在1615 cm−1处也显示出明显的峰值,对应于GO中的C=C。同样,纳米红外光谱成像也显示了C=C分布的均匀性。GO和rGO之间的主要区别在于:rGO样品纳米红外光谱中羰基峰的消失(图3e),证实了厚GO样品的成功还原。纳米红外光谱中剩余的C=C振动(1593 cm−1),源自石墨烯环,在rGO纳米红外成像中也显示出高振幅和适当的分布(图2e)。最后,表征研究结果证实基于LM还原工艺也可以用于生成独立的rGO膜。图3.(a)单独GO的LM还原方法示意图 (b)单独GO膜的照片;(c)在暴露于LM之前和之后的GO薄膜拉曼光谱 (d)纳米红外光谱原理示意图 (e)浸入LM后获得rGO的纳米红外光谱、AFM表面形貌、偏转信号和C=C分布纳米红外成像 (f)浸入LM前GO的纳米红外光谱、AFM表面形貌、偏转信号和C=O、C=C分布纳米红外成像。3. LM-rGO复合材料的制备及表征为了探究GO还原过程的适用性,并在实际功能应用中了解LM微颗粒的还原能力,研究者进一步研究了在酸性GO悬浮液中通过超声波处理制备的LM-rGO复合材料。其合成过程的示意图如图4a所示。研究者通过透射电镜(TEM)证实并研究了LM-rGO核-壳结构,如图4b所示,球形LM颗粒被稳定的石墨片壳包裹,这表明粒子和LM颗粒表面的有效相互作用。另外,研究者也通过X射线能谱(EDS)完成了Ga, In,C,O元素的分析,EDS结果进一步证实了LM颗粒表面存在碳层和rGO片层的全覆盖。图4. (a) LM-rGO复合材料合成过程示意图 (b)LM-rGO核−壳结构的TEM图像 (c) SAED分析和HR-TEM图像 (d) LM-rGO不同放大倍数和角度下的SEM图 (e) LM-rGO表面的镓、铟、碳和氧元素的EDS成像。另外,为了收集更多关于合成复合材料元素组成的信息,研究者通过X射线光电子能谱(XPS)也对GO和LM-rGO复合材料进行了详细的研究。研究者也通过传统宏观傅里叶红外光谱(FT-IR)对LM-rGO表面官能团进行了研究,表明GO含氧官能团被广泛去除。4. LM-rGO复合材料的电化学行为由于LM-rGO复合材料具有高表面积、高活性界面和导电性等特点,可将合成的材料作为电活性改性修饰剂。因此,研究者在玻璃碳电极(GCE)和丝网印刷纸电极(PEs)上进行了大量的电化学性能评价,以探索LM基改性剂与纸张技术的相容性,以及开发低成本生物传感器的可能性。在这两种情况下,研究者采用电化学行为已知的亚铁氰化钾作氧化还原探针,并从电化学阻抗谱(EIS)响应、电活性表面积的变化等方面评估了改性剂对电化学性能的影响,并利用循环伏安法、微分脉冲伏安法、方波伏安法等多种电化学技术进行了表征。结果显示:LM-rGO改性修饰后的电极优于GCE和PE裸电极,证实了改性剂LM-rGO的优良电化学特性。另一方面,研究者也通过峰值力扫描电化学显微镜(PF-SECM)在纳米尺度对LM- rGO复合材料与电解溶液的界面电导率进行了评估,并研究了其表面的局部电化学活性。在PF-SECM方法中,利用AFM探针的纳米尖端和利用样品表面与针尖之间发生的可逆氧化还原反应,可以研究电荷转移的动力学。AFM探针纳米尖端可以实现表面高空间分辨率的电化学成像。PF-SECM操作示意图如图5a (原文Figure S9),PF-SECM工作在布鲁克专利的峰值力轻敲(PFT)模式下,该模式下纳米探针在一定振幅和频率下振荡,以收集样品的形貌和导电性等信息。PF-SECM模式使用“interleave mode”,在每个振荡实例中,探针被提升到样品上方250 nm的距离。当探针从样品表面提升时记录探针尖端电流,而该探针在样品表面一定距离的电流,可用来表征样品表面电化学活性。本研究中,六胺钌氧化还原反应被用于PF-SECM成像。图5b显示了LM-rGO复合材料的形貌。图5c显示了与样品表面接触时的针尖电流,该电流既反映了样品在电解溶液中的界面局部电导率,又反映了样品表面的电化学活性。纯电化学活性数据(图5d)为AFM探针从样品表面250 nm提升高度处的探针测量电流,这证实了电荷转移可能发生在整个表面。LM-rGO微颗粒边界具有较大电化学活性,并与附近颗粒的壳相互连接。边界处电流的轻微增加是由于这些边界代表样品中的低洼区域(如山谷形状),具有高有效表面积,可再生还原剂六胺钌。PF-SECM测量结果显示LM-rGO在纳米尺度具有良好的整体电化学活性,电流可达1.7 nA。图5. PF-SECM原理和LM-rGO粒子PF-SECM分析结果:(a)PF-SECM工作原理示意图(RE、CE和WE分别对应于参比电极、对电极和工作电极);(b) LM-rGO微粒的AFM图像;当针尖位于样品表面(c)(此处的电流代表界面电导率和电化学活性)和距离样品表面250 nm高度(d)(代表样品和电解质之间界面的电化学活性)时,针尖电流成像。5. 多巴胺的选择性传感在完成了前述的详细研究后,在抗坏血酸(AA)和尿酸(UA)存在的情况下,研究者采用了多巴胺(DA,重要的神经调节剂之一)进行了LM-rGO修饰电极用于DA检测的适用性和选择性评估。LM-rGO修饰,rGO修饰 (ErGO)和裸GCE电极的电化学EIS光谱被用来显示LM- rGO复合物中每个组件的作用。如图6a所示,ErGO显示表面DA反应的Rct值仍然较高(50.7Ω)。然而,在LM-rGO中, Rct值为20.3 Ω。这一观察结果证实了LM在系统电化学性能中的作用,与ErGO相比,LM产生的混合物对电荷转移的阻力更小。为了探索LM-rGO的作用,研究者将修饰剂、裸电极和修饰电极暴露于含有DA、AA和UA混合物的溶液中,然后记录了电化学信号(DPV和CV)。图6b、c、h显示了从裸电极, LM-rGO 修饰GCE和 PE的信号。结果可以看出:对于裸电极,DA、AA和UA的氧化还原峰显示出重叠和接近。然而,在修饰后,在不同的电位窗口中可观察到每种化合物相应的分离峰,因而证实在存在其他干扰化合物的情况下,直接测定DA成为可能。另外研究者也通过FT-IR测量了DA、AA和UA与LM-rGO的特定相互作用(图5f)。LM-rGO的FT-IR光谱显示,LM-rGO在低波数区(低于900 cm-1)尤其是在667 cm-1(代表Ga−OH基团) 表现出剧烈变化。LM-rGO表面的Ga−OH还原仅在存在AA中观察到,这为选择性峰移机制提供了证据。UA向高电位的选择性转移来源于LM-rGO表面剩余负电荷基团和带负电荷的UA分子之间的电荷排斥作用。因此,这种表面相互作用因为AA和UA的峰移,从而增强了DA的选择性。为了获得最大的传感响应,研究者对修饰材料的用量进行了优化。在最佳修饰膜厚度下,研究者获取了LM-rGO修饰GCE和PE的DA定量测定校准曲线。根据图6d,i中提供的结果,该传感器可定量测量100 nM至1500μM(GCE)和400 nM至750μM(PE)范围内的DA浓度水平,GCE和PE的灵敏度分别为30和100 nM。与GCE相比,尽管PE具有更高的电活性表面积,但观察到的动态范围更窄,灵敏度更低,这是由于PEs中已知的耗尽效应和有限的扩散。在不同浓度水平的DA和其他干扰化合物(包括AA、UA和葡萄糖(GLU),高浓度1.0 mM)共存的情况下,研究者也对界面选择性也进行了评估。图6e结果显示,DA的原始信号不会受到其他干扰物的影响,目标分析物DA的测量具有良好的选择性。最后,研究者在人血清样本中进一步研究了该传感器用于DA生物传感的适用性和选择性,结果证明:研究者设计的传感器在如此复杂的生物基质中的具有良好的准确度和精确度。图6.(a)裸GCE(i),LM-rGO修饰的GCE(ii)和ErGO修饰GCE(iii)的EIS光谱(DA用作电化学探针);LM-rGO对GCE表面进行修饰前后,含有AA、DA和UA的混合物的CV(b)和DPV(c)信号;(d) LM-rGO修饰GCE的校准曲线,DA浓度从0到1500μM不等;(e)LM-rGO修饰GCE上进行的DA选择性试验,AA和UA浓度为1 mM;(f)LM-rGO,LM-rGO暴露于AA、UA和DA的FT-IR光谱;(g)ePAD的结构图像和 LM-rGO修饰前后PE表面的显微图像;(h)LM−rGO进行表面修饰前后,含有DA、UA和AA混合物的DPV测量信号;(i)LM-rGO修饰PE的校准曲线,DA浓度从0到750μM不等;分别使用Ag/AgCl和碳准参比电极测量从GCE和PE获得的电化学信号。 研究结论:在本研究中,研究者探索了室温LMs和GO薄片之间的界面相互作用。证明了LM和GO之间存在很强的电偶相互作用,这可以用于生成rGO单层膜和rGO厚膜。研究者对所制备的rGO样品进行了AFM,nanoIR, EDS和PF-SECM等详细表征,实验结果确认通过LM能均匀有效地还原GO薄片。研究者所提出的基于LM的rGO生产方法,有望实现rGO独立膜和衬底支撑单层膜的简易合成。此外,这种界面作用也被用于合成LM-rGO核−壳复合结构。研究者对LM-rGO修饰电极进行的电化学表征显示在AA和UA存在下LM-rGO修饰电极对DA具有良好的选择性,可用于生物传感。总之,本研究显示了LMs对GO薄片室温的还原能力,以及展示了构建功能性应用的可能性。类似利用LMs的界面特性的工艺,可以在未来的研究和工业应用中具有大量潜在应用前景。Bruker公司的AFM,nanoIR,PF-SECM,EDS等纳米技术手段因其高空间分辨率的形貌,纳米光谱和化学成像,纳米电化学,纳米元素分析的能力,将为各类复合材料纳米结构的界面研究提供新的多样化表征手段和研究方法。原文链接:Mahroo Baharfar, Mohannad Mayyas, Mohammad Rahbar, Francois-Marie Allioux, Jianbo Tang, Yifang Wang, Zhenbang Cao, Franco Centurion, Rouhollah Jalili, Guozhen Liu, and Kourosh Kalantar-Zadeh,Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing,ACS Nano,(2021)15 (12), 19661-19671https://pubs.acs.org/doi/10.1021/acsnano.1c06973?ref=PDF
  • “液态活检”行业深度分析报告:国内市场200亿
    p    strong 报告摘要 /strong /p p    strong 液体活检临床意义大,市场空间广阔 /strong /p p   检测血液中的CTC和ctDNA对患者肿瘤进行 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 诊断与监测 /span /a 的方法称为液体活检。该技术能够解决临床取样的难点,满足对患者高频监测的需求,并具有相比于穿刺活检成本低的优点。因此研发进展迅速。未来有望应用在肿瘤早期筛查、肿瘤患者动态监测、以及个性化用药指导等领域,市场前景广阔。 /p p    strong 液体活检海外进展迅速 /strong /p p   液体活检CTC技术相对成熟。一代CTC技术在2004年获得FDA批准用于临床,是行业的金标准。为了解决一代CTC技术灵敏度不高且无法对肿瘤细胞进行基因测序分析等缺点,二代CTC及ctDNA技术在海外蓬勃发展。目前二代液体活检技术还有有待成熟且没有统一的标准,我们认为获得CLIA Lab认证的公司有望凭借先发优势快速成长。 /p p    strong 液体活检市场潜力大 /strong /p p   JP摩根和高盛预测液体活检在全球及美国的市场潜力将分别达到230亿美元和140亿美元,该市场需要5-15年才能完全成熟。我们认为液体活检针对存量肿瘤患者检测将早于肿瘤早筛落地。为此,在同时考虑我国肿瘤发病率、液体活检适应症、未来市场渗透率、未来检测单价、以及患者年平均检测次数等因素后,我们预测液体活检5-10年内在我国市场潜力约为200亿元。 /p p    strong 具有技术及先发优势的企业值得关注,推荐丽珠集团与益善生物 /strong /p p   液体活检符合临床技术发展趋势,市场潜力大,是一片有待开发的蓝海。技术相对成熟的公司有望凭借先发优势与国内大型二三级医院和肿瘤医院建立合作关系并获取患者数据,从而走向强者恒强。在此,我们看好参股CYNVENIO获得海外最新液体活检技术的丽珠集团(000513)以及国内拥有液态活检自主知识产权的领先企业益善生物(430620)。 /p p    strong 催化剂及风险提示 /strong /p p   催化剂为液体活检技术逐渐成熟,被海内外监管机构认可或者医保覆盖 风险在于研发进展不达预期。 /p p    strong 液体活检介绍及临床意义 /strong /p p   肿瘤患者血液中存在少量循环肿瘤细胞以及由坏死癌细胞释放的少量循环肿瘤DNA。通过检测血液中的CTC和ctDNA对患者肿瘤进行诊断与监测的方法被称为液体活检。在临床实践中,获得肿瘤患者组织样本只有手术活检和穿刺活检两种。相比于传统的活检方法,液体活检具有副作用小、操作简单、能重复取样等有点。美国著名的肿瘤中心纪念斯隆-凯特林癌症中心(Memorial Sloan Kettering Cancer Center)主任医师兼首席医疗官约瑟?巴塞戈(Jose Baselga)称:“这(液体活检)可能永久改变活检方式,包括对治疗方案的响应、抗药性的出现,将来甚至还能用于早期诊断。”MIT Technology Review杂志将”液体活检“列为2015年度十大突破技术。美国《临床癌症进展(Clinical Cancer Advance)》报告中也认为液体活检技术在今后十年有望得到广泛应用。我们提示投资者关注该领域的进展,未来市场空间广阔。 /p p style=" text-align: center " img width=" 600" height=" 438" title=" 1.png" style=" width: 600px height: 438px " src=" http://img1.17img.cn/17img/images/201601/noimg/1a8ee130-a034-4d55-986e-1805715876c6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 循环肿瘤细胞与循环肿瘤DNA /strong /p p   循环肿瘤细胞(circulating tumor cells, CTCs)是指自发或因诊疗操作由实体瘤或转移灶释放进入外周血循环的肿瘤细胞, 是恶性肿瘤患者出现术后复发和远处转移的重要原因,也是导致肿瘤患者死亡的重要因素。通过监测CTC类型和数量变化可以实时评估肿瘤动态与治疗效果,有望实现个体化精准用药。 /p p   循环肿瘤DNA(ctDNA,Circulating Tumor DNA)是人体血液系统中带有的来自肿瘤基因组的DNA片段。主要来源为坏死的肿瘤细胞、凋亡的肿瘤细胞、循环肿瘤细胞、肿瘤细胞分泌的外排体。这些肿瘤DNA往往含有肿瘤基因组所特有的基因突变,因此也可以被用对患者肿瘤动态及治疗效果的评估,有助于医生制订精准医疗方案。 /p p style=" text-align: center " img width=" 600" height=" 426" title=" 2.png" style=" width: 600px height: 426px " src=" http://img1.17img.cn/17img/images/201601/noimg/29c39d39-743a-4431-8989-61aee2f478ca.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center "    img width=" 600" height=" 438" title=" 3.png" style=" width: 600px height: 438px " src=" http://img1.17img.cn/17img/images/201601/noimg/88a73d5c-805a-4fec-87f4-11a6ec06cc82.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p strong   液体活检技术迅速崛起 /strong /p p   基础科研领域,CTC及ctDNA技术日益受到重视。临床研究领域,CTC与ctDNA也是一大热点。目前全球与CTC和ctDNA相关的临床实验已经分别达到747和162例。综合以上数据,液体活检技术正在迅速崛起。 /p p style=" text-align: center " img width=" 600" height=" 451" title=" 4.png" style=" width: 600px height: 451px " src=" http://img1.17img.cn/17img/images/201601/noimg/52d459af-7059-421e-9ca9-b95faf723bfe.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 441" title=" 5.png" style=" width: 600px height: 441px " src=" http://img1.17img.cn/17img/images/201601/noimg/53410dd4-c3f1-4252-9b75-ac12e7f13e8e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 465" title=" 6.png" style=" width: 600px height: 465px " src=" http://img1.17img.cn/17img/images/201601/noimg/c696162b-e463-4d58-a8ba-364ab5d52b49.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 469" title=" 7.png" style=" width: 600px height: 469px " src=" http://img1.17img.cn/17img/images/201601/noimg/f82e8b7e-f834-4b47-a141-f6207b185333.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 液体活检的临床意义 /strong /p p    strong 液体活检可以解决临床取样的难点 /strong /p p   对肿瘤组织取样并进行基因分析是精准治疗的基础。临床上获取患者肿瘤组织样本只有手术活检及穿刺活检两种方法。转移期肿瘤患者体内可能有多个肿瘤病灶,具体到从哪个病灶获取肿瘤组织样本是一大问题。 /p p style=" text-align: center " img width=" 600" height=" 357" title=" 8.png" style=" width: 600px height: 357px " src=" http://img1.17img.cn/17img/images/201601/noimg/e6e282f0-60f8-4198-b470-a28f70c12588.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   临床研究表明,患者体内肿瘤细胞呈现很强的异质性,即肿瘤患者体内存在多种肿瘤细胞,不同肿瘤细胞的基因型不同,往往需要采用不同的治疗方案。在临床诊断上,获取患者体内肿瘤细胞的综合信息是精准医疗的基础。以上图为例,假设肾癌患者体内有3个肿瘤病灶(1为原发位点,2、3为肺转移位点),不同位点之间的肿瘤细胞基因型是不同的。无论穿刺活检获得哪个病灶的肿瘤组织,所得到的信息都是片面的。但是每个病灶的肿瘤细胞或者肿瘤DNA都可能进入血液循环,通过液体活检收集CTC或者ctDNA能够获得患者体内肿瘤基因或者蛋白表达的全面信息,能够更加精准的指导个性化用药。 /p p    strong 液体活检可以实现对患者的早期诊断及高频监测 /strong /p p   肿瘤细胞在药物作用下会自我进化从而产生抗药性。肿瘤细胞的基因变化是导致抗药性的根本原因,临床上需要对患者体内肿瘤基因变化进行高频监测才能做到及时准确用药。手术和穿刺活检一年内最多只能做2-3次,尤其是重症患者往往还不能进行手术或者穿刺。因此现有的临床采样技术不能满足高频检测的需求。但CTC和ctDNA通过简单的静脉抽血即可获得患者体内肿瘤细胞及DNA的信息,可以有效的满足高频监测的需求。 /p p style=" text-align: center " img width=" 600" height=" 209" title=" 9.png" style=" width: 600px height: 209px " src=" http://img1.17img.cn/17img/images/201601/noimg/f5f8462b-da51-455b-9bd3-bb139ada9d56.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   上图表示的是非小细胞肺癌(NSCLC)的诊疗流程。在标准诊疗流程中,医生会在手术及药物治疗前通过穿刺活检对患者肿瘤诊断与分型,在药物治疗之间依靠CT、MRI等影像学检测来判断患者是否应答。但是穿刺活检在检测频次上有较大的局限性,影像学检测判断药物有效性有较强的滞后性。液体活检有望改变未来的诊疗流程,通过不断的高频监测随时发现患者体内肿瘤的变化,提高医生用药的精准度。 /p p    strong 液体活检可以减低医疗成本 /strong /p p   根据美国Medicare对肺癌穿刺活检开支分析,普通穿刺的开支为$8,869。约20%的穿刺活检会导致并发症,穿刺活检与并发症治疗的开支将达到$37,745。对医疗保险来说,平均每次穿刺活检的成本为$14,634。但一代CTC技术Medicare报销额度为$369。二代CTC与ctDNA技术开支约在$800-1000。由于是抽血检测,一般不会产生并发症。从成本的角度,医疗保险有较大的动力推动液体活检的CTC与ctDNA技术对穿刺活检技术的替代。 /p p style=" text-align: center " img width=" 600" height=" 361" title=" 10.png" style=" width: 600px height: 361px " src=" http://img1.17img.cn/17img/images/201601/noimg/15e527cf-f646-4825-9af7-a7238e11ce7b.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 液态活检海外的发展现状 /strong /p p   液态活检包含了CTC与ctDNA技术,其中CTC相对于ctDNA研究更深入,临床产品更成熟。 /p p    strong CTC技术的发展历程及现状 /strong /p p   在1896年,澳大利亚学者Ashworth在一例转移性肿瘤患者血液中首次观察到从实体肿瘤中脱离并进入血液循环的肿瘤细胞,并率先提出了CTCs的概念。不过长时间以来CTCs的检测并未在肿瘤病人的防治中发挥应有的作用,主要原因就是检测技术未取得突破性进展。从上世纪末以来CTCs检测技术得到了不断的改进,随之带来的是CTCs检测在临床的应用。 /p p    strong 第一代CTC技术:CellSearch的发展历程 /strong /p p   第一代CTC技术采用的是磁珠捕获法。能够捕获CTC的磁珠早在1983被Immunicon公司发明。其后Immunicon不断完善该技术并发展出了特定CTC染色技术。公司在1993-2003年完成一系列的临床实验后,其CTC检测系统Cellsearch于2004年获得美国FDA批准用于转移性结直肠癌、乳腺癌和前列腺癌临床检测。强生(Johnson& amp Johnson)下属子公司Veridex在2008年收购了Immunicon的CTC业务,并将其发展至今。CellSearch系统是美国FDA批准的唯一临床用的CTC检测系统。该系统于2012年获得我国CFDA进口器械注册,从而成为国内唯一用于临床的CTC检测系统。由于其在临床使用的唯一性,Cellsearch系统是目前CTC检测的金标准。 /p p style=" text-align: center " img width=" 600" height=" 414" title=" 11.png" style=" width: 600px height: 414px " src=" http://img1.17img.cn/17img/images/201601/noimg/f0e334b5-016f-4321-98e5-b8d2adc0d359.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong CellSearch系统简介及基本性能 /strong /p p   Cellsearch系统是由特制具有细胞保存功能的真空采血管(Proprietary CellSave Preservative Tubes)、CTC检测试剂盒(CELLSEARCH& amp #174 Circulating Tumor Cell Kit)、自动样品处理系统(Automated CELLTRACKS& amp #174 AUTOPREP& amp #174 System)、数据读取分析系统(CELLTRACKS ANALYZER II& amp #174 System)组成。其中样品处理系统与CTC检测试剂盒必须联用,属于封闭系统。 /p p style=" text-align: center " img width=" 600" height=" 390" title=" 12.png" style=" width: 600px height: 390px " src=" http://img1.17img.cn/17img/images/201601/noimg/22fb193d-870d-4700-98cf-c36f7d52d47c.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   在临床检测中,标准操作是抽取患者7.5mL血液,通过Cellsearch系统检测其中含有的CTC数量。临床数据表明,正常人和良性疾病患者CTC含量极少,而转移期患者根据其病情严重程度不同在血液中分布含有不同数量的CTC。通过检测CTC的数量能够帮助医院判断患者的病情严重程度,并为此制订合适的治疗方案。 /p p style=" text-align: center " img width=" 600" height=" 492" title=" 13.png" style=" width: 600px height: 492px " src=" http://img1.17img.cn/17img/images/201601/noimg/07de92bb-0527-4a34-8b6f-608148515b16.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong CTC临床应用 /strong /p p   CTC是一个良好的肿瘤预后标志物。肿瘤预后标志物是指能够帮助医生揭示患者未来复发风险或者死亡风险的检测指标。以FDA批准的CellSearch检测转移性乳腺癌患者为例,临床实验数据表明7.5mL血中CTC数量大于等于5(阳性)的患者其5年生存率大幅低于CTC数量小于5(阴性)的患者。医生一般对阳性患者采用更加激进的治疗方案。 /p p style=" text-align: center " img width=" 600" height=" 484" title=" 14.png" style=" width: 600px height: 484px " src=" http://img1.17img.cn/17img/images/201601/noimg/a2bc9c32-8df5-4ac9-86cd-99b799816146.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 492" title=" 15.png" style=" width: 600px height: 492px " src=" http://img1.17img.cn/17img/images/201601/noimg/0a64db88-cd3d-439b-9710-dd3dc7d1b78b.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   此外,CTC还是一个良好的药物敏感性标志物。若CTC阳性患者经过药物治疗后转为阴性,则证明该药物对患者有效,不然医生则考虑采用其他的治疗方案。反之,若CTC阴性患者在治疗过程转为阳性,则证明患者肿瘤已经产生了抗药性,医生需要及时的更换药物,以达到精准医疗的目的。 /p p   虽然CellSearch系统在临床上有广泛的应用,并且被美国国家医保Medicare所认可。但该系统只是属于第一代的CTC技术,其缺点在于:1. 检测的灵敏度不够高。部分癌症转移期患者,由于其血液中CTC含量过低,或者其CTC本身发生变化而不能被CellSearch系统所捕获,因此该检测存在假阴性率较高的问题。2. 无法对CTC深入分析。CellSearch系统只能对捕获并标志CTC的数量,而不能对CTC进行包括基因测序、蛋白表达、药物敏感性检测等更细致的分析。针对以上缺点,新一代的液体活检技术在美国不断的发展。 /p p    strong 第二代CTC检测技术前沿 /strong /p p   为了提高CTC检测的灵敏度和发展对捕获CTC细胞进行后续分析的能力,在研的二代CTC检测采用了多种技术路线。由于这个领域尚处于新兴阶段,新的技术和新的公司层出不穷,下表进行了简要的概括。 /p p style=" text-align: center " img width=" 600" height=" 293" title=" 16.png" style=" width: 600px height: 293px " src=" http://img1.17img.cn/17img/images/201601/noimg/90468056-d391-4a9b-ba75-2eabcab3fefe.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 400" title=" 17.png" style=" width: 600px height: 400px " src=" http://img1.17img.cn/17img/images/201601/noimg/c152ea97-b93f-4bb1-8d28-9de4bf7660f1.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   与一代技术不同的是,二代CTC无论从技术还是市场方面均处于早期阶段。技术方面尚没有统一的标准,许多公司采用不同的技术路线实现对CTC的捕获。目前还很难判断哪一种技术路线将成为行业标准。我们认为获得CLIA Laboratory认证的公司技术相对成熟。CLIA认证使得公司能够更早切入临床诊断市场对教育医生并积累患者数据,这类公司有望凭借先发优势快速成长。 /p p    strong ctDNA技术的发展历程及现状 /strong /p p   1948年首次在人体血液中发现存在ctDNA。癌症患者的ctDNA则发现于1977年。1994年发现肿瘤患者的ctDNA与其体内肿瘤细胞基因突变类似。直到2000年以后,分子生物学与基因测序技术的发展使得ctDNA的突变检测技术不断成熟,相关研究也越来越多。 /p p style=" text-align: center " img width=" 600" height=" 333" title=" 18.png" style=" width: 600px height: 333px " src=" http://img1.17img.cn/17img/images/201601/noimg/f520e791-5d2a-4dc8-a084-0aa5bd17e496.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   ctDNA相比于CTC是一项更加早期的技术,暂时还没有FDA认证的成熟产品。大部分研究还处于科研领域。 /p p style=" text-align: center " img width=" 600" height=" 313" title=" 19.png" style=" width: 600px height: 313px " src=" http://img1.17img.cn/17img/images/201601/noimg/7ca364e2-6d0c-4769-b38d-546a5948abd6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   从当前研究角度将,ctDNA在临床应用潜力非常广泛,主要涉及到肿瘤早期筛查、肿瘤动态监测、耐药基因突变检测、评估肿瘤异质性及复发风险等作用。从已有的临床实验来看,ctDNA的检测平台一般为二代基因测序与数字化PCR,适应症集中在非小细胞肺癌、乳腺癌、结直肠癌、皮肤癌等常见肿瘤。 /p p   若比较CTC与ctDNA技术,我们认为他们都属于“液体活检”的范畴,其共同点为灵敏度高、可高频次监测肿瘤发生发展及耐药突变、成本低、适用于大多数肿瘤等。不同点为CTC检测的是肿瘤细胞,而ctDNA检测是肿瘤DNA的片段。细胞能提供比DNA片段更多的信息,例如肿瘤相关蛋白的表达量、染色体变异水平,肿瘤基因突变等,而ctDNA只能提供肿瘤基因变异的信息。CTC与ctDNA的发生机理可能不同,CTC为转移的肿瘤细胞,其基因型可能与肿瘤转移组织更类似。ctDNA同时来自于原发肿瘤细胞与转移肿瘤细胞的衰亡,其基因型可能介于两者之间。从临床角度,同时检测CTC和ctDNA所得到的信息可能是互补的。从技术角度,CTC从患者血样的Buffycoat中提取,ctDNA从血浆中提取,同时检测CTC与ctDNA技术上不存在难度。两种液态活检技术共存可能是未来的发展方向。 /p p style=" text-align: center " img width=" 600" height=" 255" title=" 20.png" style=" width: 600px height: 255px " src=" http://img1.17img.cn/17img/images/201601/noimg/b87b454c-7813-47ad-80d8-262f1196b2a6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 液体活检市场容量分析 /strong /p p strong   海外市场规模预测 /strong /p p   海外对液体活检的市场前景较为看好。J.P摩根将液体活检分为早期筛查、诊断分型、药物伴随检测、患者病情检测4个细分领域,全球市场潜力预计为230亿美元。高盛也将液体活检应用分为4个领域,预计其在美国的市场潜力达到140亿美元。从时点上,我们与海外机构一致,认为该技术还处于早期阶段。技术成熟到最终实现其市场潜力还需要5-15年时间。其中针对存量患者的肿瘤诊断分型、药物伴随检测以及病情监测相对成熟,技术有望在5-10年内大规模推广 针对健康人群的肿瘤早期筛查技术还有待完善,该市场可能在10-15年后成熟。 /p p style=" text-align: center " img width=" 600" height=" 451" title=" 21.png" style=" width: 600px height: 451px " src=" http://img1.17img.cn/17img/images/201601/noimg/2b19b87b-c03e-4c1a-a299-47be8abc3542.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 458" title=" 22.png" style=" width: 600px height: 458px " src=" http://img1.17img.cn/17img/images/201601/noimg/49a57a2b-785f-4dc1-b2a4-1a50e24c4937.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p    strong 国内市场规模预测 /strong /p p   我们综合考虑以下几个因素来估算液体活检在国内的市场容量: /p p   1.由于针对存量患者的液体活检技术相对成熟,我们暂时只考虑该技术对存量肿瘤患者的应用。根据国家癌症中心发布的数据,我国5年内诊断为癌症且仍存活的病例数约为749万。 /p p   2.液体活检临床实验的适应症广泛,如前所述乳腺癌、结直肠癌、肺癌、胃癌、食管癌等常见肿瘤均可用液体活检技术进行诊断与监测。在我国存量肿瘤患者中,适合使用液体活检技术的肿瘤病人至少为542万人,占比达到72%。我们保守预计液体活检的目标患者人数为500万人。 /p p style=" text-align: center " img width=" 600" height=" 313" title=" 23.png" style=" width: 600px height: 313px " src=" http://img1.17img.cn/17img/images/201601/noimg/46adf200-6f88-4641-b052-591dc90ae69c.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   3.由于我国地域广阔,区域间的医疗水平差异很大。而且医保经费紧张,短期内是不太可能覆盖这种新的检测技术。因此,我们保守预计该技术在未来5-10年的市场渗透率为50%。 /p p   4.目前一代CTC系统CellSearch在医院终端每个CTC检测价格为4000-5000元。随着未来越来越多二代CTC与ctDNA技术的介入,检测的终端价格有望降为2000元。 /p p   5.CTC与ctDNA不仅仅是诊断与预后检测,同时也能对肿瘤变化及耐药突变进行动态监测。我们假设每个患者一年平均进行4次检测。 /p p   综上,我们预计我国液态活检的市场容量为500万(目标患者)*50%(渗透率)*2000(终端价格)*4(年检测次数)= 200 亿元。 /p p    strong 液体活检市场的催化剂及潜在风险 /strong /p p strong   监管机构与医保的认可是股价的催化剂 /strong /p p   液体活检技术在海外迅速发展。一方面,直接参与的新兴小公司众多。显示出创业者及背后的风险资本对该领域的看好。其中技术领先的公司如Cynvenio、Biocept、Adaptive Biotechnologies等已经获得了美国FDA第三方诊断实验室的认可,显示出监管机构对液体活检技术临床价值的认可。另一方面,基因测序龙头公司如Illumina、Life Tech、Foundation Medicine等纷纷通过战略合作或者自主研发等方式进入液态活检技术领域。海外公司的市场行为显示液态活检将是较为明确的技术发展趋势。掌握了高效CTC及ctDNA技术的公司将在市场竞争中占据优势。 /p p style=" text-align: center " img width=" 600" height=" 455" title=" 24.png" style=" width: 600px height: 455px " src=" http://img1.17img.cn/17img/images/201601/noimg/029384da-902d-4d47-a7b1-79f052403ab3.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 189" title=" 25.png" style=" width: 600px height: 189px " src=" http://img1.17img.cn/17img/images/201601/noimg/448a2281-6f1b-4195-94bb-71a2dac6158f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " img width=" 600" height=" 229" title=" 26.png" style=" width: 600px height: 229px " src=" http://img1.17img.cn/17img/images/201601/noimg/349ddaae-9707-407b-9b02-ab3d93ed5b5d.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   众多VC资本与产业资本进入液体活检将促使技术与市场的成熟。过程中重要的里程碑是监管机构的认可和医保的覆盖。这将快速提升液体活检的市场渗透率及投资者的关注程度,从而成为股价上行的催化剂。 /p p    strong 风险来自于研发进度不达预期 /strong /p p   从风险角度,液态活检短期内还是一个技术推动的领域。技术进展或者研发不达预期是主要的市场风险。但考虑液态活检是未来肿瘤样本捕获的技术发展方向,该领域的长期风险是可控的。 /p
  • 微流芯片将液态物质分析时间缩至几秒
    近日,在最新一期《芯片实验室》杂志的封面上,刊登了化学方面一项新的世界纪录:德国莱比锡大学分析化学研究所的科学家运用微流芯片技术,使液态化学物质分离与质谱检测得以同时进行,从而将整个分析过程缩短到几秒钟。   莱比锡大学分析化学研究所德特勒夫贝尔德教授领导的工作团队完成了这项研究,他们专门研究微缩成芯片大小的化学分析系统,用微电子在较短的时间内完成复杂的过程。贝尔代教授说:“当化学过程发生在这样的微管中,而不是在大试管和烧杯中时,不仅可以减少化学品的用量,还可以将这一过程的时间从几十分钟或几个小时缩短到几秒钟。”   这项新的世界纪录仅在一个小玻璃芯片上就得以实现,其上有着非常细的、人头发丝大小的沟槽。分析芯片里有微量的液体(微流),莱比锡的研究人员将一个纳米喷针与之集成在一起。这个极细的纳米喷针尖端只有人头发直径的十分之一,是该研究最吸引人的地方之一,这项成果成功将芯片技术和质谱分析直接耦合在一起。   通过高速电泳分离与快速质谱结合,研究人员首次成功使物质在一秒钟内彼此分离,然后几乎同时就进行质谱分析鉴定。这个集成了纳米喷针的微流玻璃芯片以100赫兹的工作频率采集数据。   研究人员表示,这项技术对于制药业特别有吸引力,因为该行业需要在最短的时间内对物质库中大量潜在药物进行高通量筛选测试。而用质谱法来进行化学物质的鉴定早已在该领域得到广泛应用。(
  • 液相色谱法测定液态油脂中四种合成抗氧化剂 ——样品预处理专用方法包
    食品合成抗氧化剂的检测方法主要是反相高效液相色谱法和气相色谱法,相关的样品预处理技术成为了合成抗氧化剂检测的关键。油脂的主要成分——甘油三酯对C18高效液相色谱柱有极强的吸附堵塞作用,同时对气相色谱的进样口也有一定的污染和堵塞,所以如何高效、可靠和方便地从油脂样品中将各种油溶性的合成抗氧化剂分离提取,并尽可能的降低共萃取的油脂成分,就成为其检测成败的关键因素。月旭科技自主研发的食品中合成抗氧化剂样品预处理专用方法包,不仅操作简便,且能得到很好地回收率。今天主要介绍一下适用于液相色谱检测液态油脂的方法包AL-1。‍AL-1方法包技术优势操作简便:主要操作类似于QuEChERS,无需多次液液萃取等繁琐操作;成本低:无需昂贵的仪器和耗材,仅需多管涡旋振荡器和离心机;效率高:单次操作仅需25-30min,且可同时对多个样品进行预处理;安全环保:每个样品所需有机溶剂不到15mL;回收率好:回收率在80-100%;稳定性好:一般PG、TBHQ、BHA和BHT各自回收率的重复性RSD<5%;净化效果好:能去除99.5%以上的油脂,可有效防止污染和堵塞液相色谱柱。操作步骤产品组成‍油脂溶解液‍提取吸附管抗氧化剂提取液净化吸附管注意事项● 仅用于液相色谱检测;● 仅限于液态油脂(常温)的检测;● 若油脂试样的含水量较高(≥0.2%),须先脱水;● 若油脂试样中有不溶性固体杂质,须先除杂;● 不适用于乳化体系油脂试样;● 抗氧化剂提取液不可进行任何的浓缩操作;● 10℃-25℃的避光、干燥、通风环境中,按照有机试剂的要求密闭储存,并防止受潮;● 产品在密封时,保质期9个月;● 使用完毕后,废液需统一收集、合规处置。
  • 133万!长安大学激光液态水同位素分析仪采购项目
    项目编号:CZB2022086H , SCZC2022-ZB-1518/001项目名称:长安大学激光液态水同位素分析仪采购项目预算金额:133.0000000 万元(人民币)采购需求:激光液态水同位素分析仪采购,具体要求详见招标文件。合同履行期限:自合同签订后60个日历日内完成交货、安装、调试。本项目( 不接受 )联合体投标。
  • 珀金埃尔默推出新型FT-IR平台, 用于检测酒类、乳品和液态食品的质量和安全
    用于酒类检测的LQA300 TM FT-IR(傅里叶变换红外光谱)和用于液态乳品检测的LactoScope 300TM FT-IR系统,配备云技术软件和简化版工作流程,可在45秒内给出结果;产品包装材料采用100%可回收原料,助力可持续发展。珀金埃尔默日前推出新型FT-IR(傅里叶变换红外光谱)液态食品检测平台,包括仪器、软件和简化版工作流程。作为平台的一部分, 针对葡萄酒检测的LQA300系统采用了珀金埃尔默领先的FT-IR光谱技术,可在酿酒工艺的各个环节(从葡萄收获到成品装瓶)快速测定关键的品质参数,包括酒精、糖、酸度、pH和密度等。同时,LQA300系统还可自主增加新液体样品检测功能,可用于其他类型的液态食品样品,包括但不限于白酒、啤酒、烈酒、食用油、软饮等。LactoScope 300系统是珀金埃尔默FT-IR乳品检测产品系列的新成员,可检测乳品中的多个参数,例如牛奶、奶油和乳清中的脂肪、蛋白质和乳糖水平。此外,还可检测生乳和加工乳中的掺杂物,包括尿素、硫酸铵、麦芽糊精、蔗糖和水。分步式的前处理工作流程以及直观的触摸屏和软件界面,可大幅简化用户操作:只需将液态样品放入仪器,按动一个按钮,仪器的12英寸触摸屏在45秒内就会显示结果;仪器每小时可检测60个样品。这种简单的操作方法,即便是新手用户也可以快速掌握,充满自信地开展重要的分析任务。作为珀金埃尔默践行可持续发展的一部分,仪器的包装材料均为100%可回收材料。珀金埃尔默副总裁兼食品业务总经理Greg Sears表示:“乳品、酒和其他液态食品是全世界餐桌上的主要食品。获取这些重要检测数据的方法应该简便易行,以保障食品的安全和质量。LQA300和LactoScope 300 FT-IR系统所提供的分析检测解决方案兼具直观强大的功能性和经济性,可使客户做出明智的实时决策,采取措施提高质量、减少浪费,同时满足监管要求和消费者需求。”新型FT-IR平台是珀金埃尔默公司丰富的食品分析产品组合的一部分,可用于对包括乳品、饮料、谷物、海鲜、肉类、农产品、食用油、香料和大麻等产品的检测流程。关于珀金埃尔默珀金埃尔默是全球领先的端到端解决方案提供商,帮助科学家、研究人员和临床医生更好地开展疾病诊断、发现新的个性化药物、监测食品的安全与质量,并推进卓越的环境及应用分析。85年来,珀金埃尔默秉承为打造更健康的世界而持续创新的使命,不断推动科学技术的进步。在全球,我们拥有超过16,000名专业人员,与商业、政府、学术及医疗健康领域的客户保持密切合作,为之提供涵盖试剂、检测方法、仪器、自动化、信息化技术和战略服务的全面解决方案,助力客户加快工作流程,并带给其切实可行的洞见以作出更好的决策。珀金埃尔默也在通过极具活力的ESG和可持续发展项目,积极践行企业公民责任。2021年,珀金埃尔默年营收约50亿美元,服务于190个国家和地区,为标准普尔500指数的一员。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 德国新成立液态金属研究联盟
    由赫姆霍茨德累斯顿研究中心牵头的液态金属研究联盟近日在德国成立。液态金属可用于很多工业领域,比如钢与轻金属铸造,并因可用于新型液态金属电池储能、零排放氢生产、或是制造太阳能电池而被纳入未来技术的行列。这些新用途皆与其属性有关,即能大容量储能或是高效导热。其导热系数是水的50-100倍,并可在很大的温度范围内保持液态。液态金属由此适宜用来为高能量工艺程序降温,也可提高能源和资源的利用率,因为温度越高,热力过程的效率也会随之提高。该联盟的两个子项目也因此致力于液态金属在太阳能发电厂的应用。 近年来,液态金属技术的操作安全性有显著提高,这要归功于可完整监控流量的新型测量方法。对新测量方法作进一步开发也是该联盟的工作目标。另一个任务在于继续提高液态金属技术的能源与资源利用效率,包括在金属铸造、贵重金属与渣熔体分离或是在太阳能硅的生产过程中。 参与者该联盟的有多个赫姆霍茨研究中心、德国卡尔斯鲁尔理工学院及多所国内外大学。联盟拥有2000万欧元经费,用于研究液态金属技术的广泛应用。赫姆霍茨德累斯顿研究中心的领队认为,德国在这个技术领域里的研究处于地位。 以上信息由HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱、高低温交变湿热试验箱、盐雾腐蚀试验箱、药品稳定性试验箱、两三厢冷热冲击试验箱、精密曲线编程旋转烘箱、远红外线干燥箱、防爆干燥箱、精密烘箱、真空测漏箱、人工气候箱、光照培养箱、生物安全柜、干培两用箱、超净工作台、真空脱泡箱等。
  • 科学岛团队在多功能液态金属水凝胶方面取得新进展
    近期,中科院合肥物质院固体所高分子与复合材料研究部田兴友和张献研究员团队联合郑州大学杨艳宇副教授等,利用镓铟合金( EGaIn)引发聚合,并作为柔性填料,构建了一种可用于人机交互和红外伪装的超拉伸、自愈合的 LM/PVA/P(AAm-co-SMA)双网络水凝胶。相关结果发表在 Materials Horizons 上。   水凝胶是一种具有三维网络结构的软材料,通过引入离子、导电聚合物和导电填料,可获得导电水凝胶。但是,由于导电聚合物共轭结构的固有刚性、导电填料与水凝胶基体的不相容性,以及盐析效应,目前大多数导电水凝胶的机械性能较差,如韧性低、抗拉强度低、自恢复和自愈合性能不理想,大大限制了水凝胶的应用领域。   镓铟合金(EGaIn)作为一种熔点接近或低于室温的液态金属(LM),可以通过超声波分散制备成EGaIn微球,用作纳米填料。与其他刚性纳米填料不同,它们可以适应聚合物基体的变形,从而有效地增韧聚合物。此外,EGaIn中的镓(Ga)可以引发乙烯基单体发生自由基聚合。Ga3+能够与羧基、羟基进行配位,形成动态牺牲键,用于耗散能量。因此,镓基液态金属具有改善聚合物基体机械性能的潜力。   鉴于此,研究人员利用镓铟合金( EGaIn)引发聚合,同时作为柔性填料,构建了一种超拉伸和自愈合的 LM/PVA/P(AAm-co-SMA)双网络水凝胶。刚性的 PVA微晶网络和韧性的 P(AAm-co-SMA)疏水网络的协同作用,以及聚合物网络之间的离子配位和氢键(多重物理交联),赋予了 LM水凝胶优异的超拉伸性( 2000%)、韧性( 3.00 MJ/ m3)、抗缺口性和自愈性(室温 24 h愈合效率大于 99%)。 LM水凝胶表现出敏感的应变感应行为,可用于人机互动以实现运动识别和健康监测。另外由于 EGaIn具有良好的光热效应和低红外发射率, LM水凝胶在红外伪装方面显示出巨大的应用潜力。   合肥物质院张献研究员和郑州大学杨艳宇副教授为文章的共同通讯作者,硕士生李宵飞为论文第一作者。该研究工作得到国家自然科学基金、合肥物质院院长基金的支持。图 1. 液态金属水凝胶的机械性能表征。图 2. (a) 压力传感器的原理图; (b, c) 在压力传感器上写 "CAS " 和 "USTC " 时的电阻变化; (d) 人机交互系统的示意图; (e) 戴着人机交互手套的志愿者打开他的手指, LED 屏幕显示数字 "5" ; (f) LM 水凝胶制备的人机交互手套根据志愿者手指的弯曲情况显示数字。
  • 市场销售新生产的主要品种液态奶均符合三聚氰胺临时管理限量值规定(第十一批液态奶)
    国家质检总局对全国市场供应的液态奶进行了第十一次三聚氰胺抽样检测。样品从北京、上海、天津、重庆、哈尔滨、长春、沈阳、大连、太原、济南、青岛、南京、杭州、福州、南昌、合肥、武汉、郑州、长沙、广州、深圳、西安、佛山等23个城市抽取。抽检到57个品牌550批次的酸乳、巴氏杀菌乳、灭菌乳等液态奶,均符合液态奶三聚氰胺临时管理限量值规定。 截至目前,质检总局从34个城市市场上抽取了9月14日以后生产的132个品牌5253批次液态奶样品,均符合液态奶三聚氰胺临时管理限量值规定。详细名单可登陆质检总局网站查阅。 各大商场、超市要张贴检查合格企业及产品名单,设置放心乳品柜台,保障市场充足供应优质安全乳品。 第十一批液态奶.xls
  • 液态金属靶光源—安东帕SAXSpoint进入欧洲生物医学技术中心
    这期谈到生物医学,利用安东帕小角X射线散射仪(SAXS)或原子力显微镜 (AFM) 可获得复合结构表征,也可用于药物释放控制体系的聚合物薄膜结构和形貌特性等。近期,捷克查尔斯大学生物科学与生物医学科学中心近期购买了一台安东帕的SAXSpoint 2.0小角/广角X射线散射仪,配备液态金属靶,Eiger 1M探测器及自动进样器;同时,安东帕根据BIOCEV需求研发原位SAXS-UV/VIS测试模块,可实现原位测试小角和紫外/可见光光谱,仪器已安装并通过验收。BIOCEV是捷克六所科研院所的联合项目,该项目的目标是建立一个欧洲生物医学和生物技术卓越中心,SAXSpoint 2.0将在核心的项目上使用。From Website:http://www.biocev.eu液态金属靶光源具有独有的液态金属射流,以镓合金的液态束为阳极材料产生高亮度光束,具有高稳定性,是目前通量最高的实验室光源。此外,针对生物医学领域安东帕研发的自动进样器可实现192位样品自动测试,该自动进样器可实现4°C控温,可用于测试生物大分子等液体样品。在生物技术、生物工程和生物医学工程中,精密度和可追溯性最为重要。安东帕高端分析设备可用来进行材料特性分析、样品制备、合成等应用。
  • 新品上市 | 液态发酵食醋中对羟基苯甲酸酯类色谱检测预处理方法包
    对羟基苯甲酸酯类作为食品防腐剂被广泛应用在各类食品中,其中对羟基苯甲酸甲酯(MP)、对羟基苯甲酸乙酯(EP)、对羟基苯甲酸丙酯(PP)和对羟基苯甲酸丁酯(BP)一直是国家食品安全检测抽查的重点项目,并且MP和EP在酱油和醋中的zui大添加限量(以对羟基苯甲酸计)均为250mg/kg。月旭科技之前已推出了酿造酱油和固态发酵食醋中对羟基苯甲酸酯色谱检测预处理方法包,此次针对液态发酵食醋,新研发推出了液态发酵食醋(如白醋、米醋等液态发酵工艺的食醋)中对羟基苯甲酸酯类色谱检测样品预处理方法包,其操作步骤相较前两种食品的方法包更为简单,但净化效果依旧很好,可实现从食醋样品中同时提取、分离、净化这4种对羟基苯甲酸酯类(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),以用于气相色谱和液相色谱技术对这些防腐剂的检测。样品稀释液:将食醋样品溶解稀释以备上样;净化专用SPE柱:吸附食醋中的杂质;SPE淋洗液:将被SPE柱吸附的杂质淋洗出来;SPE洗脱液:将被SPE柱吸附的目标物洗脱下来;洗脱净化管:进一步吸附残留杂质并除水;萃取液:将洗脱收集液中的目标物萃取出来。1)食醋样品称量:准确称取5g食醋样品;2)稀释溶解:使用“样品稀释液”,稀释溶解食醋样品;3)净化:使用“净化专用SPE柱”,用“SPE淋洗液”和“SPE洗脱液”进行SPE操作,洗脱液收集在“洗脱净化管”内,然后氮吹浓缩;4)萃取:使用“萃取液”,类似于QuEChERS的操作,上清液收集后旋蒸蒸干;5)残留样品用溶剂复溶,过滤后上色谱检测。1) 气相色谱柱分析柱:WM-5色谱柱,柱长30m,内径0.32mm,膜厚0.25μm,月旭科技(货号:03902-32001);2)进样口:温度260℃,分流比1:10,进样量1μL;3)升温程序:4)检测器:氢火焰离子化检测器(FID),温度:280℃;5)载气:氮气,纯度≥99.999%,流速2.0mL/min;6)检测色谱图:1) 液相色谱柱分析柱:Ultimate® XB-C18色谱柱,4.6mm×250mm,5μm,月旭科技(货号:00201-31043);保护柱:Ultimate® XB-C18,4.6mm×10mm,5μm,月旭科技(货号:00808-04001)(配不锈钢保护柱柱套,月旭科技,货号:00808-01101);2)流动相:A相:含1%乙酸的40%乙腈水溶液;B相:含1%乙酸的乙腈;3)梯度洗脱程序:4) 流速:1.0mL/min;5) 检测波长:260nm;6) 柱温:35℃;7) 进样体积:1~20μL(视目标物浓度而定)。8) 检测色谱图:
  • Excillum发布液态金属靶X射线源新品
    液态金属靶X射线源产品简介 Excillum公司位于瑞典首都斯德哥尔摩,是一家致力于研发、生产超高亮度微焦斑X射线光源的公司。经过十余年的研发与改进,Excillum掌握了先进的液态金属射流(MetalJet) X射线光源技术,这项新技术能够带来10倍于普通固体阳极X射线光源所发射的X射线通量(在相同焦斑面积上)。正因为液态金属射流能够承受更高功率电子束的轰击,因而可以得到更高的X射线通量,传统微焦斑X射线发生器中的固体金属阳极正在被液态金属射流所取代! 主要应用 成像 散射/衍射光谱学/荧光特性 产品特点 • 极微聚焦源• 可选的快门• 卓越的焦斑品质• 可选的双端口模式• 最低的和可预见的维护成本• 用户可调的焦斑尺寸和长宽比• LaB6长寿命阴极• 非常稳定的X射线发射和光斑位置• 友好的图形用户界面• 低的总消耗功率• 集成防辐射屏• 可调的出射角• 无需额外冷却水• 可以使用电脑进行远程操作主要参数靶材1镓或铟贵金属合金最小焦斑尺寸~ 5 μm靶类型液体射流发射稳定性3功率20-250 W最小焦物距418 mm最大电流4.3 mA光束角513°/30°技术介绍 1、 液态金属射流(MetalJet) X射线光源比常规固体金属阳极光源能得到更高的X射线通量 常规固体金属阳极液态金属阳极 2、功率负载能力 功率负载能力所有电子轰击型X射线发生器的X射线强度都受限于阳极材料的热量承载能力。在传统固体阳极技术中,为了避免阳极损坏,其表面的工作温度必须远低于靶材的熔点,因此靶材的各种物理性质,如熔点、导热系数等极大地限制了电子束功率的范围。液态金属阳极则大为不同,因为那些防止靶材熔化的措施都不须要了,这得益于靶材本身已处于熔化的状态以及其不断自再生的特点。完好如初的液态靶材以接近100m/s的速度在腔体内循环。由于阳极不断地自再生,电子束对靶材的损坏将微乎其微。极高的亮度某种程度上,微焦斑X射线发生器的功率承载能力大致与焦斑的直径而不是面积成比例。因此,光源的亮度反比于焦斑的直径。 通过将极高的功率承载能力以及极小的电子束焦斑相结合,液态金属射流光源能够在微米级的焦斑上实现空前的高亮度。 3、液态金属的X射线光谱 为了得到不同的X射线发射谱线,我们使用了不同的金属合金。对于第一代的MetalJet光源,其特点在于靶材在室温附近就已经熔化。但为了得到多样的特征谱线以代替现有的常规固体阳极,在将来我们还将开发更多种类的合金材料,即使它们的熔点会更高。镓(Ga)合金 目前可选的有富含镓(Ga)的合金。其Kα发射谱线能量为9.2keV, 对应波长约为1.35埃米, 类似于铜靶的Kα波长。铟(In)合金 同样可选的还有富含铟(In)的合金。其Kα发射谱线能量为24.2keV,对应波长约为0.51埃米,类似于银靶的Kα波长。 4、焦斑质量和尺寸 焦斑质量 归功于先进的电磁聚焦、光路校正技术以及高亮度LaB6阴极,高质量的电子束焦斑得以实现,将其与连续再生的光滑液态靶材表面相结合,整个光源便能产生超高质量的X射线焦斑。可调的尺寸 焦斑的尺寸与高宽比均可被自由调整5、光源的稳定性 光源有着相当高的空间稳定性。图为附加在光源上的针孔相机所拍摄的焦点位置分布图,如其所示焦斑在24小时内距中心的标准偏差在0.1μm以下。部分应用案例 1、 散射/衍射▆ 小角度X射线散射(SAXS)—金属材料和胶体 斯洛伐克科学院和斯洛伐克理工大学纳米诊断中心的研究人员在一种应变仪上进行原位测试,由SAXS监控,其中液态金属射流的高亮度允许进行非常快的数据收集,具有10秒的时间分辨率。 ▆ 小角度X射线散射(SAXS)—生物学 研究人员利用配备了SAXS的MetalJet仪器,研究了Bcl- xL蛋白。蛋白质在使用温和的洗涤剂处理后研究了由螺旋α6-α8两单体之间的三维区域交换产生的二聚体的形成。 2、X射线光谱学/荧光学▆ 基于液态金属射流源(MetalJet)的HAXPES-Lab(a) 用于晶体管和二极管制造的单氧化物结构 (b-f) 用HAXPES-Lab仪器测量核心层。3、X射线成像▆ 相位对比成像 一个简单的例子,说明通过物体的相移如何扰动波前。波前不能直接测量,但在这里转换成一段距离的强度变化。对比度来自吸收和相位。相移带来的边缘增强在所有轮廓上都很明显。 国内部分用户单位首都师范大学、复旦大学、中科院上海有机化学研究所、南京大学、西北大学、华南理工大学、中科院福建物质结构研究所、香港大学、中山大学,上海科技大学...... 创新点:1、采用先进的先进的液态金属射流(MetalJet) X射线光源技术; 2、在相同焦斑面积上,可产生10倍于普通固体阳极X射线光源所发射的X射线通量; 3、可以更容易地测量和研究非常弱的衍射效应,如固有的不公度,漫散射样品,准晶体和高压样品等。 液态金属靶X射线源
  • 集成电路CT精准成像的“源头”:Excillum高亮度液态靶X射线源
    X射线穿透物体时会被物体吸收,其吸收能力取决于材料类型与物体厚度。CT(Computed Tomography),即电子计算机断层扫描,利用的X线束与灵敏度高的探测器一同围绕被测物的某一部位进行连续的断面扫描并结合计算机实现三维重构,得到三维成像图形。传统上我们接触比较多的是医疗CT,它是基于人体不同组织对X线的吸收与透过率不同,拍下人体被检查部位的断面或立体的图像,发现体内某些部位的细小病变。除医疗方面的应用,CT也在无损检测和逆向工程中发挥重大的作用。工业CT技术对气孔、夹杂、针孔、缩孔、分层等各种常见缺陷具有很高的探测灵敏度,并能地测定这些缺陷的尺寸,给出其在零件中的部位。与其他常规无损检测技术相比,工业CT技术具有成像尺寸精度高、不受工件材料种类和几何形状限制以及可生成材料缺陷的三维图像等优势。随着CT的发展,该技术也被用于电子业和半导体工业。半导体领域内传统的成像往往借助于破坏性的切片成像,而CT可以在样品任何方向上进行非破坏性成像,不受周围细节特征的遮挡,可直接获得目标特征的空间位置、形状及尺寸信息,在电子元器件的工艺、失效分析等方面有着巨大的应用前景。 2019年美国国防微电子部门(DMEA)的Michael Sutherland等人使用瑞典Excillum公司的液态金属靶X射线源MetalJet D2+,定制了一款用于集成电路检测的CT系统,该系统对90 nm制程的集成电路进行了扫描成像[1],图1为90 nm铜制程的某个断面层析成像,可以非常清楚的观察到内部结构。图1 90 nm铜制程的某个断面层析成像 与标准铜(Kα 8.04 keV)旋转阳固态金属靶源相比,MetalJet D2+以镓(Kα 9.2 keV)为X射线源,在观测Cu和Si时,对比度约为标准铜靶的9倍。如图2所示,镓靶在Kα 9.2 keV时明显能比铜Kα 8.04 KeV获得更大的吸收衬度,并且液态靶光源亮度比标准铜光源高出约10倍。基于上述优势,液态靶光源可获得更高的成像质量,成为集成电路铜互连结构成像的理想光源。 图2 利用镓(Kα 9.2 keV)在铜吸收边上方成像,对铜成分具有良好的对比度 Michael Sutherland等人还对该成像系统的X射线微焦斑大小和探测计数等进行了探讨。在液态靶X射线源MetalJet D2+中,焦斑大小可以在5-20 μm之间连续可调,其电子束的大允许功率与光斑尺寸呈线性对应关系,即20 μm光斑尺寸在250 W下运行,10 μm光斑尺寸在125W下运行。此外,其亮度随电子束焦斑功率密度的提高而增加。例如,与20 μm光斑相比,光源在10 μm光斑下的亮度大约是前者的两倍。通常,X射线显微镜中探测器计数与光源的亮度有直接关系,作者预期在光斑大小为5 μm时系统具有高的计数。为了验证这一假设,他们以1 μm为步长在5-20 μm之间的每个光斑大小进行了系统配置。对于每一个光斑尺寸,他们对聚光器进行校准,找到佳光斑位置,终确定了系统的佳光斑尺寸实际上为~12 μm(图3),而且使12 μm附近的计数比5 μm和20 μm光斑尺寸增加了30%。通过上述的研究表明X射线光学显微镜计数大时并不一定是在微焦斑小的时候,而是在计数和焦斑大小之间存在着佳对应关系。由此可见,连续可调的X射线焦斑大小有利于系统对X射线计数优化,提升系统的成像质量。 图3 优化光斑大小,使x射线计数大化。蓝色的线是图像中心计数的中位数,橙色的线是整个图像计数的中位数 为什么液态靶X射线源可以比标准光源高出约十倍的亮度呢?图4 Excillum液态金属靶X射线源示意图 在传统固体阳技术中,为了避免阳被损坏,其表面的工作温度必须远低于靶材的熔点,因此靶材的各种物理性质,如熔点、导热系数等大地限制了电子束功率的范围。而液态金属阳则不同,由于靶材本身已处于熔化的状态,不受熔点的限制。同时,完好如初的液态靶材以接近100 m/s的速度在腔体内循环,阳不断地自再生,电子束对靶材的损坏将微乎其微,使得液态靶与其他固态靶相比,功率密度得到大幅度的提升(如图5所示)。因此液态靶光源能够带来10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上),实现更快(测试时间短)、更高(高的亮度)、更强(信号强度)的测试体验。图5 液态靶与其他固态靶功率密度对比 综上所述,相比于传统的破坏性检测,通过X射线进行CT成像可以进行非破坏性的多维成像检测,有着非常大的优势,瑞典Excillum的液态靶X射线源的高亮度以及镓靶更适合于铜和硅的对比度检测,是集成电路成像检测的理想光源。 Quantum Design中国于2020年正式成为Excillum液态靶X射线源代理,更多关于Excillum液态靶X射线源的信息请致电/邮件详询。 参考资料:[1] Michael Sutherland, Software Automation and Optimization of an X-ray Microscope Custom Designed for Integrated Circuit Inspection. Microsc. Microanal. 24 (Suppl 2), 2018
  • 液态金属驱动机器人研究取得进展
    p   中国科学技术大学精密机械与精密仪器系副教授张世武研究团队、澳大利亚伍伦贡大学教授李卫华研究团队和苏州大学机器人与微系统中心副教授李相鹏研究团队组成的联合研究组,设计了基于镓基室温液态金属的新型机器人驱动器,首次实现了液态金属驱动的功能性轮式移动机器人。近日,该成果以A Wheeled Robot Driven by a Liquid‐Metal Droplet 为题,发表在《先进材料》杂志上(Adv. Mater. 2018, 201805039)。 /p p   电影《终结者》中的液态金属机器人“T1000”开启了液态金属在机器人领域应用的梦想之门。镓基室温液态金属具独特的表面性质及理化特性,可以通过电场、磁场以及浓度梯度场等多种能量场或者表面改性等方式,实现变形、移动、分离以及融合等多种形态学变化,在MEMS、微流体、生物医学以及机器人等领域展示出巨大的应用前景,引起国际上的广泛关注。然而,液态金属在机器人领域应用研究目前仅局限于以液态金属液滴为机器人本体,尚无基于液态金属的功能性机器人的研究报道。 /p p   液态金属镓基室温液态金属拥有巨大的表面张力,可以在极低的电场功耗下,展示出高效的运动能力。联合研究组巧妙地将高效液态金属驱动和变重心机构相结合,开发出结构简单紧凑、驱动性能好的新型液态金属机器人。研究人员设计了一种具有超疏水表面的极轻半封闭轮式结构,将液态金属液滴限制在狭长的轮体内部 通过巧妙设计的随动微型电极支架施加外部电场驱动轮体内液态金属运动,进而持续改变轮式机器人的重心,驱动轮式机器人滚动。同时,研究人员对所提出的新型液态金属机器人做了动力学建模与分析,并通过实验探索了电解液浓度、施加电压、液态金属体积、轮体结构等参数对机器人运动性能的影响,获得驱动运动的最佳参数匹配。进一步,通过集成电池系统,研究人员成功设计了新型液态金属自驱动轮式移动机器人。这一创新研究有望启发一种新型驱动方式,弥补传统的机器人驱动方式(电机、液压及气动等)结构复杂、体积大以及驱动能效低等不足,促进未来微小机器人及特种机器人系统的发展。 /p p   该论文第一作者为中国科大精密机械与精密仪器系硕士生伍健。中国科大张世武、澳大利亚伍伦贡大学博士唐诗杨、苏州大学李相鹏为共同通讯作者。该课题得到国家自然科学基金项目资助。 /p p   近年来,由中国科大、澳大利亚伍伦贡大学和苏州大学组成的联合研究组开始研究液态金属的驱动特性及其在机器人上的应用,取得了系列进展。联合研究团队设计了以液态金属液滴作为柔性轮承载及驱动的微型小车,集成电源、控制电路、传感器以及液态金属驱动机构于一体,实现了2D平面内的自主运动,该小车无任何机械传动,具有运动平滑柔顺、无噪声、低振动、成本低廉、易于制造等特点,有望在自动生产线以及实验室自动化中大展身手。该成果近日发表在IEEE Transactions on Industrial Informatics上。此外,联合研究团队首次发现了液态金属在外磁场作用下的非常规运动现象,并揭示了其内在机理。该研究实现了通过外部磁场对不经过任何改性的纯液态金属的运动控制,丰富了液态金属的驱动方法,有利于推动液态金属驱动装置的大规模应用。该成果也于近日发表在Soft Matter上。 /p p   文章链接: a title=" A Wheeled Robot Driven by a Liquid-Metal Droplet" href=" https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201805039" target=" _self" A Wheeled Robot Driven by a Liquid-Metal Droplet /a /p p   & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp a title=" A Controllable Untethered Vehicle Driven by Electrically Actuated Liquid Metal Droplets" href=" https://ieeexplore.ieee.org/document/8466896" target=" _self" A Controllable Untethered Vehicle Driven by Electrically Actuated Liquid Metal Droplets /a p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp a title=" Unconventional locomotion of liquid metal droplets driven by magnetic fields" href=" https://pubs.rsc.org/en/content/articlelanding/2018/sm/c8sm01281d#!divAbstract" target=" _self" Unconventional locomotion of liquid metal droplets driven by magnetic fields /a p style=" text-align: center " img title=" 995d7c22-ede2-4791-a8a1-b809e19b4a8e.jpg" alt=" 995d7c22-ede2-4791-a8a1-b809e19b4a8e.jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/9f9752e1-c64d-4c52-aa80-4eb7d605117c.jpg" / /p p & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp   液态金属驱动机器人研究取得进展 /p p /p p /p /p /p
  • 全国多中心肿瘤液态活检项目启动
    2月28日,由中国癌症基金会主办,北京科迅生物技术有限公司承办的“中国癌症基金会科迅专项基金成立大会暨全国多中心肿瘤液态活检项目启动会”在北京万达索菲特大饭店顺利举行。大会汇集了中国癌症基金会多位领导,全国各中心肿瘤方面的专家学者,以及科迅生物该项目的主要参与成员,共百余人。  本次大会分为科迅专项基金成立大会和全国多中心肿瘤液态活检项目启动会两部分。科迅专项基金成立大会首先举行,会上中国癌症基金会理事长赵平致辞、谈到癌症诊疗领域的诸多现状,认为肿瘤的医治格外需要科研的支持,而基金会致力将临床科研与社会支持结合,为中国肿瘤防控事业的不断提升提供帮助。  中国癌症基金会秘书长赵全年宣读关于成立中国癌症基金会科迅专项基金的决定,赵平理事长代表中国癌症基金会,与科迅生物董事长马劲枫共同签署了关于成立中国癌症基金会科迅专项基金的协议书。    签约仪式过后,由赵全年院长宣布科迅专项基金专家委员会委员名单,由赵平理事长为委员会成员颁发了聘书。科迅CEO周晔博士作为专家委员会委员,代表科迅生物发表了讲话,向与会专家学者介绍了科迅生物的科技研发水平,以及投身肿瘤诊疗领域,服务临床、服务患者的决心。  会议交流议题围绕科迅专项基金资助的第一个研究项目“全国多中心肿瘤液态活检项目”进行。本研究项目Ⅰ期选择不少于15家医疗机构作为合作单位,由北京科迅生物技术有限公司作为检测方,计划在1年内完成不少于1000例实体瘤患者(主要针对乳腺癌、结直肠癌、肝癌三个患者群体)的血液和肿瘤组织的基因检测,指导临床进行个性化治疗,并根据血液中循环肿瘤DNA的变异情况对肿瘤负荷、治疗效果和复发风险进行评估。  科迅生物研发总监刘倩博士向与会专家介绍了本次多中心研究所涉及的ctDNA液态活检技术,并首次对外发布由科迅生物独立研发的应用于ctDNA检测的ESRiT(Error-suppressed Randam-index Technology),该技术集高效稳定适用性广泛的ctDNA提取技术,先进的微量样本建库和目标区域捕获方案,对低频突变充分检测的高深度NGS测序平台,以及可矫正实验流程中可能引入的随机错误保证灵敏度与特异性的独特接头设计和信息分析方法于一身,拥有相关知识产权证书8项。为ctDNA检测技术的临床转化提供了可靠的技术支持。  科迅研发总监刘倩博士介绍ESRiT技术随后本次研究的主研究中心中国医科院肿瘤医院蔡建强院长(项目PI)团队的焦宇辰研究员介绍了项目内容及实施方案。方案公布后的讨论环节中,各研究中心专家分享各自经验与观点,讨论气氛非常热烈,为项目启动后的顺利开展提供了坚实的保障。  大会特邀美国希望之城(City of Hope)国家医疗中心癌症生物部教授,科迅首席科学顾问Jeremy Jones就液态活检在美国肿瘤精准医疗中的应用分享了他的看法,他认为现有的肿瘤诊断或检测灵敏度仍然有待提高,这仍是一个大有可为的广阔领域。  科迅首席科学顾问Jeremy Jones进行专题报告中国医学科学院肿瘤医院马飞主任介绍了ctDNA在肿瘤诊疗中的应用,他特别提到此前国内外ctDNA研究报道的样本数量均较少,此次的多中心液态活检研究项目针对中国人群,超大规模的研究非常有意义。  大会的最后,医科院肿瘤医院GCP中心李树婷主任结合本研究项目,介绍了多中心试验研究的质量控制,她强调,本研究对治疗是非干预性的,只是治疗方案的参考,所有方案都是NCCN指导范围内的,实验结果对正常的临床治疗没有影响 而这个实验也是干预性的,因为我们会将根据检测结果,选择合理的治疗方案,使入组的患者能够真正受益于本项目。  据了解,科迅生物作为国内基因行业的一支新锐,拥有领先的基因检测技术体系,特别是在肿瘤精准医疗方面居于前列,与美国希望之城癌症中心等国际顶级机构建立了长期战略合作伙伴关系,是目前少有的同时拥有CTCs与ctDNA两项顶尖技术并具备规模化临床服务能力的专业单位。  此次科迅专项基金对液态活检项目的支持,就是希望能够在肿瘤液态活检的基础上,以新理念、新方法、新手段全面推动我国精准医疗发展,打牢基础、突破瓶颈、整合资源、打通流程、升级服务、孵化产业,使国家规划布局尽快落地、尽快展开、尽快见效。此外,希望基金项目成功在精准医疗临床科研价值方面取得显著进展,特别是通过基因检测数据建立中国人群肿瘤的基因突变数据库,以为今后中国人群的肿瘤个性化治疗和复发检测提供更加明确的临床基因检测数据支持,并据以研发出适合中国人的个体化精准治疗方案。
  • 关于举办“红外光谱分析技术”培训通知
    红外光谱学作为四大光谱学之一,红外光谱分析技术(IR spectroscopy)是利用分子振动跃迁来研究和识别固体、液体或气体形式的化学物质或官能团的分析技术,对样品进行定性和定量分析,广泛地应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域,以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代化学、药物和材料分析最常用和不可缺少的工具。为适应广大分析技术工作者的需求,进一步提高技术工作者的应用和研究水平,推动红外光谱分析应用的进一步发展,上海交通大学分析测试中心特举办“ATC 009 红外分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。现将有关事项通知如下:1、 培训目标:熟悉红外光谱的基本理论与原理;了解傅里叶变换红外光谱仪原理及应用;掌握红外光谱制样的基本技能;熟悉红外光谱附件ATR、积分球和变温附件使用;了解国家标准中红外光谱分析方法通则和傅里叶变换红外光谱仪检定的操作规程。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。2、 时间地点: 培训时间:2023年11月1日-11月3日 上海 (时间安排:授课2天,考核1天)3、 课程大纲:课程内容11月1日上午红外光谱基本原理、红外光谱仪仪器结构和功能11月1日下午国家标准红外光谱分析方法通则的应用、红外光谱仪检定的操作规程11月2日全天红外光谱仪和附件基本操作,红外制样操作11月3日全天考核4、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉ATC 009 红外分析技术大纲要求,具有NTC教师资格,长期从事红外光谱分析技术研究的专家。5、 授课方式:(1) 讲座课程;(2) 仪器操作6、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。7、 颁发证书:本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培 训委员会(NTC)网站上查询(https://www.cstmedu.com/)。 8、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。 (二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。 (三) 报名截止时间是10月25日16:00前。 (四) 如报名人数不足6人取消本次培训。9、 联系方式联系人:吴霞(报名相关事宜)、朱邦尙(技术咨询)电话: 021-34208499-6102(吴霞)、021-34208499-6321(朱邦尙)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • Science:火星冰川下液态水的雷达证据
    p style=" text-align: justify " & nbsp & nbsp 据国外媒体报道,火星极地冰盖底部存在液态水的假说于30多年前首次提出,之后的争论一直没有决定性的结果。无线电回声探测(radio echo sounding,RES)是很适合用来解决这一争论的技术,因为低频率雷达被广泛用于探测陆地极地冰盖底部的液态水,效果也很成功。冰与水之间,或冰与水饱和沉积物之间的界面,能够产生明亮的雷达发射。火星快车号(Mars Express)探测器上的火星亚表面和电离层探测高新雷达(Mars Advanced Radar for Subsurface and Ionosphere Sounding,MARSIS)正是用于进行RES实验的设备。MARSIS已经在火星亚表面进行了超过12年的调查,搜寻液态水的证据。有报道显示,在靠近南极层状沉积(South Polar Layered Deposits,SPLD),即火星南极冰盖最厚部分的区域具有强烈的基底回波。这些特征被解释为,由于雷达信号通过非常冷的纯水冰层传播,因而衰减可以忽略不计。在南极层状沉积的其他区域因此也探测到反常的明亮反射。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/fe5efc18-11dc-4cf6-9b1b-26bf19a199e2.jpg" title=" sinaa.png" / & nbsp MARSIS采集的雷达数据 /p p style=" text-align: justify " & nbsp & nbsp 在地球上,对极地冰盖上收集的雷达数据的解释通常基于定性(基岩形态)和定量(反射雷达的峰值功率)分析的结合。MARSIS的设计,尤其是其非常大的足迹范围(约3到5千米),无法提供很高的空间分辨率,极大限制了它通过基底地形识别冰下是否存在水体的能力。因此,对极地沉积底部液态水的精确探测要求定量估算基底物质的相对介电常数(以下称为介电常数),该数值决定了雷达回波的强度。 /p p style=" text-align: justify " & nbsp & nbsp 在2012年5月29日至2015年12月27日间,MARSIS调查了火星南极高原一处宽200千米的区域,中心位于193° E, 81° S,与之前一项研究的区域基本对应。无论是从火星轨道激光测高仪(Mars Orbiter Laser Altimeter,MOLA)的地形数据,还是在现有的轨道图像中,这片区域都没有展现出任何异常的特征。这里地形平坦,由水冰和含量10%到20%的尘埃组成,并且季节性地覆盖一层厚度不超过1米的干冰。火星勘测轨道飞行器(Mars Reconnaissance Orbiter)上的浅地层雷达对该区域进行了更高频率的雷达观测,揭示了SPLD中几乎没有任何内部分层,并且未检测到任何基底回波,与北极层状沉积和SPLD其他区域的观测结果形成鲜明对比。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/bf3e2987-e9bc-448a-954b-b5b3fef73243.jpg" title=" sinab.png" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 基底地形和反射回波功率 /p p style=" text-align: justify " & nbsp & nbsp 通过发射以3和4MHz或4和5MHz为中心的紧密间隔无线电脉冲,利用机载未处理数据模式获得了总共29个雷达剖面图。观测是在探测器位于火星夜面时进行的,以最大限度地减少信号的电离层散射。图2A显示了在该区域收集的一张MARSIS雷达图,图中尖锐的表面反射之后,是由SPLD内层间界面产生的若干次反射。这些回波中最后一个代表了富含冰的SPLD与底层物质(以下称为基底物质)之间的反射。在大多数调查区域,基底反射微弱且分散,但在某些位置,基底反射却非常锐利,并且具有比周围区域和表面更大的强度(明亮的反射)(图2B)。在多个轨道的观测重叠的情况下,以相同频率采集的表面和亚表面回波功率具有一致的数值。 /p p style=" text-align: justify " 表面和基底回波之间的双向脉冲传播时间可用于估计亚表面反射体的深度,并绘制基底地形图。假设SPLD内的平均信号速度为170m/μs,接近在水冰中的传播速度,那基底反射体的深度就大约是表面以下1.5千米。MARSIS大范围的足迹和基底回波在明亮反射体外部扩散的属性阻止了基底地形的细节重建,但是可以识别出一条从西向东的区域斜坡(图3A)。明亮反射体集中的亚表面区域在地形上是平,而且被较高的地面包围,除了在其东侧存在一个凹陷。 /p p style=" text-align: justify " & nbsp & nbsp 介电常数可以提供对基底物质组成的约束,原则上可以从SPLD底部反射信号的功率中获取。遗憾的是,我们并不知道MARSIS天线的辐射功率,因为它无法在地面上校准(这得归咎于仪器的大尺寸),因此反射回波的强度只能根据相对量来衡量。通常是将亚表面的回波强度归一化为表面值,也就是计算基底和表面回波功率的比率。这种方法的优点还在于补偿信号的电离层衰减。按照这种方法,我们将亚表面回波功率归一化为沿各个轨道计算的地面功率的中值;我们发现,在给定频率下,所有归一化剖面产生了一致的基底回波功率值(图S3)。图3B显示了归一化后基底回波功率的区域图;在所有交叉轨道上,明亮反射体都位于193° E, 81° S附近,勾画出了一个定义明确、宽20千米的亚表面异常。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/bc0feb22-cc22-4162-8613-2c33e2b82141.jpg" title=" sinac.png" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 介电常数模拟和获取结果 br/ /p p style=" text-align: justify " & nbsp & nbsp 为了计算基底的介电常数,我们还需要有关SPLD介电特性——取决于沉积物的组成和温度——的信息。由于水冰和尘埃的确切比例未知,又由于表面和SPLD底部之间的热梯度受到很大限制,因此我们探索了这些参数的可能取值范围,并计算了相应的介电常数范围。我们做出了以下通用假设:1)SPLD由水冰和尘埃(含量从2%到20%不等)混合组成;2)SPLD内部的温度剖面是线性的,从表面的固定温度(160K)开始,上升到SPLD底部的可变温度(170K到270K)。通过考虑平面波与一个三层结构的正常撞击来计算各种电磁场景,三层结构分别是:具有自由空间介电常数的半无限层;代表SPLD的均匀层;以及代表SPLD下方物质,具有可变介电常数值的另一个半无限层。该计算输出的是一个包含一系列曲线的包络,这些曲线将归一化的基底回波功率与基底物质的介电常数联系起来(图4A)。这一包络通过对每个允许的介电常数值与归一化基底回波功率值的概率分布值进行加权,从而确定基底介电常数(包括明亮区域的内外)的分布(图4B)。该过程产生了两个基底介电常数的独特分布,估计位于明亮反射区域的内部和外部(图4C和图S4),其在3、4和5MHz的中值分别是30 ± 3、33 ± 1和22 ± 1,以及9.9 ± 0.5、7.5± 0.1和6.7 ± 0.1。明亮区域外部的基底介电常数在4到15之间,是典型的干燥陆地火山岩。这也与SPLD基底物质之前的预估值(7.5到8.5),以及火星中纬度表面致密干燥火成岩的雷达表面回波功率值一致。与此相反的是,此前在火星上并没有观察到像明亮区域内这么高的介电常数值。在地球上,大于15的介电常数值很少与干燥物质联系在一起。 /p p style=" text-align: justify " & nbsp & nbsp 采集于南极和格陵兰的RES数据显示,大于15的介电常数值可以用来指示极地沉积下方存在液态水。基于地球和火星在物理现象上的明显类比,我们可以推断,从SPLD下方明亮区域中获得的高介电常数值(部分)是水饱和物质和/或液态水层造成的。 /p p style=" text-align: justify " & nbsp & nbsp 我们分析了SPLD下方明亮区域的其他可能解释。例如位于SPLD顶部或底部的干冰层,或者整个SPLD中水冰的极低温度,与表面反射相比,这些都可能增强基底回波功率。我们否定了这些解释,有的因为需要非常具体且不大可能的物理条件,有的则是因为它们不足以导致强烈的基底反射(图S5和S6)。尽管SPLD底部的压力和温度与液态二氧化碳的存在可以相容,但它的相对介电常数(约为1.6)要比液态水(约为80)低很多,因此不能产生明亮的反射。 /p p style=" text-align: justify " & nbsp & nbsp 此前有研究利用凤凰号着陆器的湿化学实验室(Wet Chemistry Lab)发现,火星北部平原土壤中含有大量的镁、钙和高氯酸盐,支持了极地沉积底部液态水的存在。高氯酸盐可以通过不同的物理和/或化学机制形成,并且已经在火星的不同区域被发现。因此,可以合理地假设它们也存在于SPLD的底部。由于极地沉积底部的温度估计约为205K,又由于高氯酸盐能强烈抑制水的冰点(镁和钙的高氯酸盐能使水的冰点分别降至204K和198K),因此我们认为,在极地沉积底部有可能存在一层高氯酸盐水。这层盐水可以和基底土壤混合,形成污泥,或者位于基底物质上方,形成局部盐水池。 /p p style=" text-align: justify " & nbsp & nbsp 此前在火星冰川下方的雷达探测中,液态水证据的缺乏已经被用来支持这样的假说,即火星极地冰盖对基底融化而言太薄了,一些作者声称液态水可能位于比以往认为的更深的位置。MARSIS的数据显示,在相对较浅的深度(约1.5千米),液态水也可能稳定地存在于SPLD下方,从而约束了火星水圈的模型。SPLD的原始数据覆盖范围十分有限(只占南极高原面积的几个百分点),加上融水区域的面积需要足够大(直径数千米,厚度几十厘米)才能被MARSIS探测到,从而限制了识别小型液态水体及其之间是否存在液态连接的可能性。因此,没有理由认定火星亚表面水体的存在只局限于某一区域。 /p p br/ /p
  • 理化所在仿生液态金属机电一体化器件研究方面取得进展
    感知机械刺激并将其转化为生物电信号以完成信息感知、传递和计算,是自然界动物生存和进化的基本生理机制,在此基础上,还可以演化出各种各样的用以应对复杂多变环境的智能行为,如信息处理、学习、判断、反馈等。在哺乳动物体内,机械刺激感知的离子通道蛋白在不同组织器官的机械感觉和转导中发挥着重要作用。通过离子通道、细胞膜受体和细胞内信号通路,将机械刺激转化为生物信号,并被细胞识别感知。   模拟上述的生物智能行为是面向人工智能领域的功能集成系统的重要发展目标,也是未来柔性机电系统设计的重要方向。然而,目前的柔性机电智能系统的设计基本上是依赖于分布式功能单元的集成,系统的功能性集成是通过组装不同单一功能器件来实现的,不同单元之间的连接和协调不匹配问题十分突出。因此,如何在有限的系统空间内高度集成供能、传感、信号转化和信号处理等多种功能已经成为了人工智能系统开发所面临的重大挑战。   近日,中国科学院理化技术研究所刘静、饶伟团队从生物压电离子通道蛋白功能机制中获得灵感,设计了一种面向柔性人工智能领域的仿生液态金属机电一体化器件(LMMD)。在生物体内,机械刺激将引起压电离子通道蛋白的开关,从而触发细胞膜内外产生离子梯度;类似地,基于液态金属的机电耦合效应,机械刺激将引起液态金属液柱的双模态切换,从而触发电极间产生电荷梯度,形成自供能的输出状态切换行为(图1)。LMMD的机电性能遵循生物神经系统的响应机制,符合全或无定律,输出信号的信噪比可达40 dB(图2)。   基于LMMD的输出状态切换行为特性,可以构建出不同的信号运算功能,其中包括信号逻辑运算、三进制线性运算(加、减法运算)(图3),以及信号模拟运算(信号放大和信号滤波)(图4)。另外,研究进一步证实了LMMD在智能识别、信息编码、通信和控制等方面的潜在应用价值(图5和图6)。这项工作将为推动新一代柔性人工智能系统的发展开辟新思路。相关成果以 Biomimetic Liquid Metal Mechatronic Devices为题发表在《先进功能材料》(Advanced Functional Materials)上。   在柔性电子领域,团队近期还针对液态金属微纳电路制造的普适性难题开展了流体动力学分析,从仿生学角度提出了差动毛细效应诱导的自组装方法。相关成果以Bio-Inspired Differential Capillary Migration of Aqueous Liquid Metal Ink for Rapid Fabrication of High-Precision Monolayer and Multilayer Circuits为题发表在《先进功能材料》(Advanced Functional Materials)上。图1 LMMD的仿生设计。a. i)压电蛋白的压敏行为。ii) LMMDs的仿生的状态切换行为。b. LMMDs的集成功能及其在柔性人工智能系统中的应用。图2 LMMD的机电特性。a. LMMD的响应过程。i) LMMD的管道式拓扑结构。ii) 激活阶段;iii) 恢复阶段。b.液态金属液柱与电极间距的影响。c.溶液浓度的影响。d. 溶液种类的影响。e. 器件串联的输出响应。f. 输出信号的时序控制,包括信号超前、信号同步、信号滞后。g. LMMD的各组成部分的柔性评估。图3 LMMD的逻辑运算功能。a. 构建的逻辑门的结构原理图。b. 逻辑门的真值表和输出电位信号。c. 三进制加、减运算器的结构原理图。d. 加法运算的输出电位信号。e. 减法运算的输出电位信号。图4 LMMD的模拟运算功能。a. 第一种器件结构示意图。b. 第二种器件结构示意图。c. 信号放大。d. 信号滤波。e. 对于第一种器件结构,输入占空比与输出占空比的关系。f. 对于第二种器件结构,输入占空比与输出占空比的关系。g. 对于第一种器件结构,波长与输出占空比的关系。h. 对于第二种器件结构,波长与输出占空比的关系。图5 LMMD的机电交互功能。a. 算法分析辅助的信息识别功能的原理示意图。b. 基于不同的按压习惯的输出信号。c. 输出信号特征的对比五星图。d. 信息通信和加密过程示意图。e. 在手动输入模式下,利用输出电位信号表示位置信息“TIPC”。f. 在自动输入模式下,利用输出电位信号表示情感信息“LOVE”。g. 在自动输入模式下,利用输出电位信号表示遇险求救信号“SOS”。图6 LMMD的机电控制功能。a. i) 蜘蛛对脚的阵列控制。ii) LMMD的阵列控制原理示意图。b. 四个碳纤维致动器同步控制。c. 四个碳纤维致动器的批量控制。d) 四个碳纤维致动器顺序控制。
  • 物理所吴凡团队:硫化物固态电解质与有机液态电极固-液界面兼容性新突破
    【工作介绍】锂金属由于其最高的能量密度而被认为是最理想的锂电池负极材料,但传统的锂金属-液体电解液电池系统存在着低库仑效率、SEI重复破裂生成和锂枝晶生长等问题。由锂金属、芳香烃和醚类溶剂组成的室温液态锂金属可从根本上抑制锂枝晶形核生长,从而解决以上问题,并且比高温熔融的碱金属或碱金属合金更容易控制、更稳定、更安全。然而,室温液态锂金属与硫化物固态电解质界面不兼容,会发生剧烈的化学反应。基于此,中科院物理所吴凡团队在解决硫化物固态电解质与有机液体电极之间长期存在的固-液界面相容性难题上取得了突破。开发出了包括PEO和β-Li3PS4/S在内的多种兼容性强的界面保护层,实现了大于1000h的长时间稳定循环。这种稳定硫化物固态电解质和有机液态锂负极之间的固-液界面的技术方法,成功地解决了界面副反应的关键问题,使这种电池构造在长周期运行中安全稳定。这为进一步提高锂电池的循环寿命和安全性开辟了新的路径。该成果以“Stable Interface Between Sulfide Solid Electrolyte and-Room-Temperature Liquid Lithium Anode”为题发表在ACS Nano上,通讯作者为中国科学院物理研究所吴凡研究员,共同第一作者为彭健博士,伍登旭硕士和姜智文硕士。【背景介绍】在锂离子电池中,固-液界面的化学和电化学不稳定性对电池特性有重要影响,如充放电效率、能量效率、能量密度、功率密度、循环性、使用寿命、安全性和自放电。不稳定的固体电解质界面(SEI)和暴露的表面会消耗锂源,降低循环性能/放电效率,增加内阻,产生气体,并降低安全性。解决固-液界面的化学/电化学不稳定问题是电池有效运行的关键。因此,对界面问题的研究是锂离子电池基础研究的核心。为了稳定电极-电解质界面,研究人员通常对电极/电解质材料或电极/电解质表面进行改性,或在电解质中添加添加剂以形成更稳定的SEI层,以获得良好效果。硫化物固体电解质(SE)表现出与液体电解质相当/超过液体电解质的高离子传导性和理想的机械硬度。然而,硫化物SE和有机液体电极(LE)之间的固-液界面问题一直是一个难以克服的挑战,研究结果非常有限。如果这个界面问题能够得到很好的解决,硫化物SE的应用范围可以从全固态电池(ASSB)系统进一步扩大到半固态电池(SSSB)系统。例如,在锂硫(Li-S)电池系统中,硫化物SE被用来形成固-液混合电解质,可以有效防止锂-硫电池中的穿梭效应,进一步提高循环性能。此外,在这项工作和以前的相关工作中,硫化物SE被应用于液体金属锂(Li-BP-DME)电池。在这种新的电池配置中,带有PEO保护层的硫化物SE和Li-BP-DME溶液可以保持稳定和兼容的界面,从而提高循环稳定性。然而,深入的降解机制仍然是缺失的,没有得到理解。为了清楚准确地了解硫化物SE(Li7P3S11(LPS))-有机LEs(液态金属Li-BP-DME)电池的固-液界面的形成和演变机制,本工作利用各种先进的表征技术对界面进行了研究,如X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)、能量色散谱(EDS)、X射线光电子能谱(XPS)、飞行时间二次离子质谱(TOF-SIMS)等。此外,基于对界面的深入研究,有效地设计和控制了有机LE/硫化物SE界面。因此,在有机LE和硫化物SE之间的固-液界面相容性这一长期难题上取得了突破性进展。获得了多种化学/电化学稳定、高锂电导率、电子绝缘的与有机LEs(液态金属锂-BP-DME)和硫化物SEs(LPS)兼容的界面保护层,包括PEO-LiTFSI和β-Li3PS4/S界面层。对液态金属锂(Li-BP-DME)与保护层反应形成的SEI层进行了深入表征。此外,在使用两种界面保护层的硫化物SE(LPS)/界面保护层/有机LE(Li-BP-DME)对称电池中获得了长周期性能。在使用PEO-LiTFSI聚合物界面保护层的对称电池中,在循环1000小时后,阻抗和极化电压值仍然很小。同样,带有β-Li3PS4/S界面保护层的对称电池也可以稳定地循环1100h,而且阻抗很小。这些结果证明了两个界面保护层的有效性,它们可以长期稳定硫化物SE(LPS)和有机LE(Li-BP-DME)之间的固-液界面。这种稳定固-液界面的技术方法成功地解决了硫化物SE(LPS)-有机LE(Li-BP-DME)电池体系中界面副反应的关键问题。因此,"液态金属锂(Li-BP-DME)"可以提供优异的性能,如高安全性、优异的树枝状物抑制能力、低氧化还原电位0.2V-0.3V vs Li/Li+,以及室温下12mS cm-1的高电导率,并且电池系统可以长期安全循环。该技术方法为解决硫化物SE和有机LE的固-液界面相容性问题提供了宝贵的方法,对进一步提高锂电池的循环寿命和安全性具有重要的现实意义。 【核心内容】为了研究裸露的硫化物SE(Li7P3S11)和液体金属锂BP-DME之间的SEI,我们组装了Li1.5BP3DME10/LPS/Li1.5BP3DME10对称电池(图1a-1c)。有机LE与硫化物SE接触,形成固-液界面,如图1c所示。图1a显示了对称电池的电压曲线,显示了逐渐增加的过电位(从0.123V到2.45V)和不稳定的循环,在30℃下电流密度为0.127mA cm-2,持续200小时。对称电池的阻抗持续增加表明在界面上发生了副反应,硫化物SE(LPS)和有机LE(Li-BP-DME)之间的化学/电化学稳定性很差。这也可以从循环前后的LPS的XRD数据中得到证实(图1d)。循环后,LPS片材表面的特征峰几乎完全消失,表明LPS表面几乎完全反应或分解了。循环后裸露的硫化物SE的横截面和平视形态由SEM进行了表征。由于硫化物SE的面积比有机LE的面积大,LPS有两个区域。一个是暴露于Li-BP-DME的反应区,另一个是未暴露于Li-BP-DME的非反应区,如图1e所示。图1f-g显示了循环后的LPS片的SEM图像,它显示了LPS片的反应区和非反应区的细节。结果显示,许多界面侧面反应的产物堆积在反应区,而未反应区是光滑、平坦和密集的。图1g的EDS映射图见图1h。比较反应区和未反应区的C、O、P和S元素含量,未反应区的P和S元素含量明显高于反应区,而反应区的C和O元素含量则高于未反应区。这些结果表明,界面副反应导致了硫化物SE的分解,大量的有机物质在反应区积累。图1i-1j分别显示了非反应区、轻度反应区、轻度严重反应区和严重反应区的细节。与图1i中的非反应区相比,在从非反应区向反应区过渡的过程中,界面侧的反应程度逐渐加强。轻度反应区的反应物的形态特征是光滑的球形小颗粒堆积,而轻度反应区的反应物是小绒球状颗粒,有不连续的薄层和裂缝。那些在严重反应区的颗粒的特点是更多的颗粒堆积在一起,形成一个更厚的界面层,它是崎岖不平的,有许多孔隙。图1m-1p是LPS片界面的SEM和EDS图谱。图1n中严重反应区的横截面形态显示,反应后的LPS片变得松散,具有多层结构。这表明在LPS界面和内部发生了化学反应,产生了更多的反应产物。反应产物很大,导致固体电解质层之间出现断裂和撕裂。由于反应产物的离子传导能力比原来的LPS SE弱,而且整个电解质片的离子传导通道不均匀,对称电池的极化不断增加。图1o清楚地显示了一个蓬松的、较厚的SEI层,厚度约为1.5μm。图1o的EDS映射图显示在图1p。可以看出,SEI层中C和O元素的含量高于LPS片,而LPS片中P和S元素的含量则高于SEI层。这些结果表明,SEI层的成分中含有大量的有机物和部分无机物,导致其具有蓬松而非致密的特点,离子传导率低。 图2显示了Li7P3S11的XPS分析以及它们与液体金属锂的反应。P 2p光谱可分为131.4 eV和133.1 eV的两个峰,分别对应于P2S74-和PS43-物种。随着反应的加剧,P2S74-的峰面积比从散装Li7P3S11的61%下降到严重反应区的48%。这一现象的原因是在Li7P3S11的DME溶解产物中,P2S7相比PS4相更易溶解。P2S7相的逐渐溶解导致Li7P3S11电解液表面不断形成孔和裂缝,这与SEM的结果很一致。在块状Li7P3S11中,S 2p信号可由三种不同的硫物种描述,在161.3、162.0和163.4 eV处发现峰值,它们分别对应于P-S-Li、P=S和P-S-P硫物种。峰区产生的P-S-Li、P=S和P-S-P硫磺物种的比例约为7:3:1,与Li7P3S11结构模型的理论值非常吻合。在Li7P3S11的轻度和重度反应区,属于P2S7相的P-S-P的峰面积比下降,这也证实了P2S7相的溶解。此外,在严重反应区,159.9 eV的新峰被赋予Li2S,这源于Li7P3S11 SE与液体金属锂的反应。至于C 1s光谱,Li7P3S11中284.8和286.7 eV的信号分别对应于-(CH2)-键和-O-CH2-键,这归因于样品杂质(脂肪族、不定形碳)。以284.8 eV为中心的碳峰被用作参考峰。在轻度反应区,在288.6 eV处出现了另一个C 1s信号,它源于DME分解的-O=C-O-。在严重反应区,也检测到了来自碳酸盐物种(如Li2CO3和ROCO2Li)的-OCO2-(在289.6 eV)。Li7P3S11中的O 1s光谱由两个主要贡献描述。位于531.2和532.9 eV的峰值分别属于Li-O-(Li2O)和C-O-C。Li2O是另一种常见的相位杂质。在轻度反应区,发现来自酯类(-COOR)的C=O键(在532.4 eV)。在严重反应区,C=O(-COOR和-OCO2-)的峰面积比明显增加,这与上述C 1s光谱的分析一致。在Li 1s光谱中,55.4 eV的峰可以归属于Li-O(Li2O,LiOH,Li2CO3)或Li-S(Li-S-P,Li2S),这些材料的BEs非常接近,因此这里用一个宽峰来近似地拟合Li 1s光谱。为了进一步研究SEI,通过TOF-SIMS技术对循环后的LPS裸片进行了测量。补充图1显示了LPS表面的SEI带负电和正电的片段的质谱,其中包含了关于SEI带电片段的信息。质谱包含了大量的正负离子碎片,包括无机离子碎片离子碎片。无机物包括LiC(C-)、LiH(Li2H+)、Li2O(Li3O+)、多硫化锂LiSx(S-、S2-、S3-、Li2S+、Li3S+)、Li3P(P-)、Li3PO4(P-、PO2-、Li2PO2+)、Li2SO3或LiSxOy(SO-、S2O-、SO2、 Li2SO+,Li3SO+),LiOH(LiO2H2-),LiSH(SH-,Li2SH+),Li2CO3(Li3CO3+),一些硫化物的分解产物(PS-,PS2-,PS3-,PSO-,PS2O-),以及由一些杂质元素产生的LiF,LiCl。有机化合物包括烷氧基碳酸盐ROCO2Li(O-)、烷氧基亚硫酸盐ROSO2Li(SO-、S2O-、SO2-、Li2SO+、Li3SO+)、乙炔化合物(CH-、C2H-)、烷基化合物(CH3+)、非芳香族化合物硫醇RSH(SH-)、甲酸锂HCOOLi(CHO2-)、乙酰基锂HCCOLi(C2HO-)和其他有机化合物。C6H5+苯环离子的存在表明联苯的分解。虽然不同反应区(轻度反应区和重度反应区)的SEI形态特征不同(图1j-1l所示),但不同区域的离子碎片基本相同,而只有个别离子种类不同。例如,Li2S+(m/z=46)、Li2SO+(m/z=62)、Li3SO+(m/z=69)和Li2PO2+(m/z=77)无机离子碎片没有出现在严重反应区,而CH3OLi2+(m/z=45)、CH3O2+(m/z=47)和 C6H5+(m/z=77)有机离子碎片没有出现在温和反应区。这表明严重反应区的SEI层比轻微反应区的SEI层含有更多的有机产物,这样,严重反应区的SEI层的形态是由大量的有机物堆积形成的笨重而松散的结构。为了研究这些反应产物物种的空间分布,测量了负离子和正离子模式的映射图像,如图3a,图3b所示。从图3a中可以看出,C-、O-、CH-、C2H-、S-和SH-有机二次离子表现出相对较高的强度,而其他无机二次离子表现出相对较低的强度。这意味着SEI层的表面,即靠近有机LE的一侧,主要由有机物组成,而无机物的比例较少。图3b显示Li+二次离子的强度相对较高,说明在SEI形成过程中,锂源被部分消耗,SEI表层的有机产物含有大量的锂元素。根据LPS片在负离子和正离子模式下循环后的深度曲线(图3c-3f),无机离子片段(Sx-(S-,S2-,S3-),SxOy-(SO-,SO2-,S2O-),PSxOy-(PS-,PS2-,PS3-,PSO-),P-,PO2-,SH-、 LiO2H2-, LiS-, Li+, Li2+, Li2H+, Li2SH+, Li2OH+, Li3O+, Li3CO3+, LiSxOy+ (Li2S+, Li3S+, Li2SO+, Li3SO+), Li2PO2+) 随着分析深度的增加而增加、 而有机离子碎片(C-, O-, CH-, C2H-, CH2O-, CHO2-, CH3+, CH3O2-, C6H5+, CH3OLi2+)的强度随着深度的增加而降低,表明SEI是双层结构,外层和内层分别由有机和无机相组成。这与主流的SEI层模型和镶嵌模型中的双层模型是一致的(即SEI层由两层物质组成,靠近液态电解质的松散有机物和靠近金属锂的致密无机物)。从深度剖面曲线也可以确认SEI的厚度,大于166nm(10nm min-1 SiO2标准,1000s),比传统液态电解质金属锂电池的厚度(10~20nm)。从二次离子的三维分布(图3g),可以观察到二次离子随深度变化的趋势。二次离子的三维分布与图3c-3f中二次离子随深度变化的趋势一致。值得指出的是,硫化物SE (Li7P3S11)的分解产物(PS-, PS2-, PS3-, PSO-, PS2O-)的含量随深度增加,说明大量的硫化物SE (Li7P3S11)被分解,分解产物在硫化物SE附近的表面聚集。总之,裸露的硫化物SE和有机液体金属锂-BP-DME之间的界面层是一个松散的界面层,其中有机和无机产物是随机堆积的。松散的界面层没有形成一个薄而密的连续无机界面层来阻挡有机Li-BP-DME,而是让液态金属锂不断地通过这个界面层与硫化物SE发生反应,从而消耗了电池中的锂源,降低了电池的循环性能,导致电池的内阻增加,最终失效。 根据上述特征分析,由硫化物SE和有机LE Li-BP-DME反应形成的SEI不能稳定地兼容。因此,有必要设计出化学/电化学稳定、高锂导电性和电子绝缘性并与有机LE Li-BP-DME和硫化物SE兼容的人工SEI层。此文选择了四种可能适用于硫化物SE和液体有机阳极的界面层材料,包括LIPON、富含LiF的界面层、PEO-LiTFSI聚合物和β-Li3PS4/S(图4a-4d)。LIPON界面层的厚度为200纳米,通过磁控溅射在硫化物SE片上,如图4e所示。图4f显示了在固定电流为0.127 mA cm-2时,由Li7P3S11、Li-BP-DME和LIPON界面层组装的对称电池的电压曲线。对称电池显示出低的初始过电位(0.08V),但在循环200小时后电压迅速上升到0.68V。低的初始过电位表明在循环前有一个小的界面阻抗和良好的界面接触,但迅速增加的电压表明LIPON和Li-BP-DME之间有严重的反应。因此,LIPON界面层并没有起到稳定界面的作用。由LIPON和Li-BP-DME之间的反应产生的SEI不具有化学/电化学稳定性和高离子传导性,这样的LIPON界面层就不适合做界面保护。富含LiF的界面层是在Li7P3S11片材的表面原位形成的,实验过程见图4b。从界面层的照片(图4g)可以看出,界面层的厚度均匀性较差,界面层中出现了材料聚集的现象,部分区域出现了可观察到的白色材料聚集。带有富含LiF的界面层的Li7P3S11和Li-BP-DME溶液在0.127 mA cm-2的固定电流下被组装成一个对称电池。电压曲线如图4h所示,这与带有LIPON界面层的对称电池相似。稳定性差的循环200h后,极化电压从0.135V逐渐增加到1.3V,表明界面阻抗逐渐增加。这种界面层不能发挥兼容作用,因此不适合硫化物SE和液体电解质电池系统。PEO-LiTFSI聚合物具有良好的化学/电化学稳定性,可以作为硫化物SE和金属锂之间的界面层,起到良好的界面保护作用。因此,尝试将PEO-LiTFSI聚合物引入硫化物SE和液态金属负极体系中,具体制备过程见图4c。图4i所示为制备好的带有PEO界面层的Li7P3S11薄片,它被组装成一个对称电池。电压曲线如图4j所示。该对称电池在电流密度为0.127 mA cm-2的情况下稳定循环200h,极化电压0.115V几乎没有变化,表明PEO-LiTFSI聚合物和Li-BP-DME之间反应形成的SEI与硫化物SE Li7P3S11兼容。这种SEI具有良好的化学/电化学稳定性,在室温下具有高的Li+导电性,以及理想的电子绝缘性能。另一个有效的界面层是β-Li3PS4/S。该界面层的制备过程如图4d所示,它也是在原地生成的。图4k显示了制备好的带有β-Li3PS4/S的Li7P3S11片,它被用来组装对称电池。对称电池的电压曲线如图4l所示,显示了对称电池在电流密度为0.127 mA cm-2的情况下200h的稳定循环,以及几乎不变的0.075V的极化电压。因此,β-Li3PS4/S界面层适用于硫化物SE和液体电解质电池系统。总之,通过实验筛选,从四种可能的兼容界面层材料中选出了两种具有实际效果的界面层材料(即PEO-LiTFSI聚合物和β-Li3PS4/S)。为了获得具有最佳化学/电化学稳定性和Li+电导率的PEO-LiTFSI和β-Li3PS4/S界面保护层,对两种界面层的制备参数进行了详细研究。PEO界面层有两个关键参数,一个是界面层的厚度,另一个是界面层中锂盐LiTFSI的浓度。首先探讨了PEO界面层的最佳厚度,如图5a所示。探讨了两种LiTFSI浓度(EO/Li+=24和EO/Li+=8)的PEO界面层的不同厚度。通过在Li7P3S11片材上浸泡不同数量的PEO溶液来控制界面层的厚度,PEO溶液的浸泡量为20μL、30μL、40μL和50μL。具有不同厚度参数的界面层的Li7P3S11片被组装成对称的电池。结果表明,在两种锂盐浓度下,不同量的PEO溶液(或不同厚度)的PEO界面层,对称电池在稳定循环200h后,在0.127mA cm-2的电流密度和0.15V左右的小极化电压下表现出良好的循环性能。接下来,我们探讨了不同浓度的锂盐LiTFSI的界面层在相同厚度下的有效性(图5b)。在固定的PEO溶液体积(40μL)下,研究了不同锂盐浓度EO/Li+=120、62.5、30、24、12和8的界面层并组装成对称电池。结果表明,在电流密度为0.127 mA cm-2、极化电压为0.15V左右的小电流下,具有不同锂盐LiTFSI浓度的界面层的对称电池也显示出良好的循环稳定性(200小时)。对PEO界面层的两个最佳参数的探索实验表明,PEO-LiTFSI系统的界面层在实验探索的广泛参数范围内具有良好的有效性。依次探讨了β-Li3PS4/S界面层的最佳厚度参数(图5c)。β-Li3PS4/S界面层的厚度是通过控制硫化物SE Li7P3S11片在β-Li3PS4/S前驱体溶液中的提拉次数来调节的。提拉次数分别为2、4、6、8、10、20和40。可以看出,随着拉动时间增加到10,对称电池的稳定性明显提高,但提拉次数为20和40时,对称电池就失效了。提拉次数少于10次的对称电池失败是因为β-Li3PS4/S界面层的厚度很薄,与Li-BP-DME发生了反应。提拉次数为20次和40次的对称电池的失败原因是β-Li3PS4/S界面层太厚,在原位加热过程中出现裂纹现象(图6i-m)。因此,Li-BP-DME溶液渗透并与硫化物SE Li7P3S11反应,导致对称电池失效。因此,当提拉次数为10时,β-Li3PS4/S界面层的厚度参数是最佳的。极化电压0.08V几乎没有变化,界面阻抗也没有增加,说明这个参数的β-Li3PS4/S界面层是最有效的。经过一系列的表征分析,得到了裸Li7P3S11以及PEO-LiTFSI和-Li3PS4/S界面保护层的SEI信息,如图9a-9c所示。裸硫化物SE Li7P3S11的SEI结构(图9a)由两层组成。靠近有机LE Li-BP-DME的一侧是一个松散多孔的有机层,它是由Li-BP-DME的联苯和二甲醚分解形成的。这种可被液态金属锂渗透的SEI层包括一个相对密集的无机内层和一个富含有机物的外层。在Li7P3S11的一侧是一个无机松散层,其中分布着少量的有机物。因此,Li-BP-DME溶液可以穿透这层非致密的SEI,继续与硫化物SE反应,导致这个电池系统的失败。还得到了一个清晰的PEO-LiTFSI界面保护层的SEI结构(图9b)。这个SEI层由PEO框架组成,它与Li-BP-DME的化学性质稳定,其中存在大量的无机Li+导电成分(LiF, Li2CO3, Li2NO3, Li3P, Li2S, LiH, LiCx, Li2O, Li3PO4, Li2SO3, LiSH, LiOH)。这些无机成分相互合作,以提高Li+的导电性和阳极一侧的电子绝缘性。再加上少量的乙腈小分子和甲氟烷(CH2OF-)的作用,SEI层在室温下可以有效地传导Li+。图9c显示了β-Li3PS4/S界面保护层的SEI结构,它由两层组成,靠近Li-BP-DME的一层是溶解的β-Li3PS4/S。另一层是靠近硫化物SE Li7P3S11的密集的β-Li3PS4/S层。同时,一些无机锂导体Li2CO3、Li3PO4、LiF、Li2O、Li3P、LiSx、LiOH(Li2OH+)和LiSH相互配合,提高了Li+的导电性和阳极一侧的电子绝缘性。在明确了PEO-LiTFSI和β- Li3PS4/S界面层的机制后,组装了具有两个界面层的对称电池,以测试硫化物SE Li7P3S11对Li1.5BP3DME10阳极的界面稳定性。图10显示了Li-BP-DME//β-Li3PS4/S//Li7P3S11//β-Li3PS4/S//Li-BP-DME电池和Li-BP-DME//PEO//Li7P3S11//PEO//Li-BP-DME电池在固定电流为0.127 mA cm-2和面积容量为0.254 mAh cm-2的电压曲线。两种电池都表现出低的初始过电位(PEO和β-Li3PS4/S约为0.11V)。带有PEO界面层的电池可以稳定地循环约1000小时(电压上升到0.8V),而带有β-Li3PS4/S界面层的电池可以稳定地循环约1100小时(电压上升到0.2V)。与Li-BP-DME/裸露的LPS/Li-BP-DME对称电池相比,这些带有PEO和β-Li3PS4/S保护层的电池显示出更好的循环稳定性(~1000小时和~1100小时)。
  • 亚太最大液态食品盛会将与analytica China同期举行
    备受业界瞩目的2016慕尼黑上海分析生化展(analytica China)暨第八届中国国际分析、生化技术、诊断和实验室技术博览会的举办时间与地点近日正式公布。下届展会将于2016年10月10 - 12日在上海新国际博览中心召开。与此同时, 慕尼黑国际博览集团和中国联合装备集团在北京联合宣布,由双方共同主办的中国国际酒、饮料制造技术及设备展览会(China Brew and China Beverage简称CBB)将于2016年从北京移师上海,并于10月11-14日在上海与analytica China同期举办,两展合计规模将达14万平米。  China Brew and China Beverage是亚太区最大的酒、饮料、乳品等液态食品行业盛会,涵盖液态食品的原辅料、酿造、杀菌、吹瓶、灌装,包装等各个环节。2014年的展会面积超过80,000平米,吸引了超过710家国内外参展企业以及52,063名行业买家。而食品行业同样是analytica China重点覆盖的应用领域。据大会统计,2014年有超过10%的观众来自食品相关行业。两个展会的携手举办将不仅使得双方实现观众共享,同时也将大大增强各自在食品行业的影响力,从而为各自参展企业以及观众带来更大的价值。  “上海是辐射全国以及亚太泛食品行业的最佳地点,相信通过与合作伙伴中国联合装备集团的通力合作,我们将进一步提升各自在行业中的影响力。我们也将大大加强在食品行业的宣传以及客户邀请力度。非常期待在2016年为参展企业以及食品行业的用户献上一场 “十全十美”的超级盛宴!”慕尼黑展览(上海)有限公司项目组总监路王斌先生表示。  analytica China与CBB都是两年一届的展会,CBB更是首次在上海举行,为了不错过这场盛会,已有不少企业积极咨询2016年的参展事宜。奥地利安东帕(中国)有限公司已确认同时参展analytica China 2016和CBB 2016,其市场部经理张加明先生表示:“这两个展会对安东帕来说都非常重要。CBB是啤酒、饮料行业最重要的展会,我们肯定是要参加的 analytica China是仪器行业最重要的展会,并且是安东帕的归属行业,我们肯定也是不能错过的。目前我们已经开始考虑如何在这2个展会上的进行宣传定位,包括展台如何设计、人员如何分配等。可以预见的是,CBB和analytica China同期举办对安东帕肯定是大有帮助的,我们将展出更多、更全面的产品,而不止是一条产品线,这对我们公司的整体宣传非常有帮助。”  “双展”联盟,共襄盛举  analytica China是世界分析、实验室技术和生化技术领域的顶级盛会analytica在华子展,专门面向飞速发展的中国市场。自2002年首次成功举办以来,analytica China已经成为中国乃至亚洲最大的分析、实验室技术和生化技术领域的专业博览会。同时,展会同期举办的analytica China国际研讨会也是业内人士关注的焦点,其聚焦整个行业的发展,是科学技术和行业技术相互传递的理想平台。今年9月底胜利闭幕的analytica China 2014云集了695家国内外参展企业,展示面积达30,000平米,接待了来自62个国家和地区的18,775名专业观众。展会同期举办的analytica China国际研讨会聚焦多个行业热点话题,吸引了2,360名来自不同行业领域的专业用户前来参会。  CBB是亚太地区最大的液态食品领域最新技术和装备成果的品牌展会。自1995年以来,已在北京成功举办了十届展会。CBB 2014的展示面积达到创纪录的80,000平方米,共有来自25个国家和地区的708家企业参展,为期四天的展会共接待了52,063名专业观众前来参观及采购。展会同期举办了31场展商技术交流会,内容涉及啤酒、饮料制造前沿技术及方案,更有啤酒饮料行业原辅料添加剂、液态食品工业清洁专题演讲!
  • 市场销售新生产的主要品种液态奶均符合三聚氰胺临时管理限量值规定(第十批)
    国家质检总局对全国市场供应的液态奶进行了第十次三聚氰胺抽样检测。样品从北京、上海、天津、重庆、哈尔滨、长春、沈阳、大连、太原、晋中、济南、青岛、南京、杭州、福州、南昌、合肥、武汉、郑州、长沙、广州、深圳、西安等23个城市抽取。抽检到60个品牌490批次的酸乳、巴氏杀菌乳、灭菌乳等液态奶,均符合液态奶三聚氰胺临时管理限量值规定。 截至目前,质检总局从34个城市市场上抽取了9月14日以后生产的131个品牌4703批次液态奶样品,均符合液态奶三聚氰胺临时管理限量值规定(详细名单附后)。 各大商场、超市要张贴检查合格企业及产品名单,设置放心乳品柜台,保障市场充足供应优质安全乳品。 9月14日以后生产符合三聚氰胺临时管理限量值规定液态奶汇总表.doc
  • 液态金属催化剂或撼动百年化工工艺
    据科技日报(记者张梦然)报道,液态金属可能是人们期待已久的“绿色化工”的解决方案。科学家们测试的一项新技术,有望取代自20世纪初成为主流的能源密集型化学工程工艺。9日发表在《自然纳米技术》上的一项创新研究,摆脱了由固体材料制成的旧式能源密集型催化剂。催化剂是一种在不参与反应的情况下使化学反应更快、更容易发生的物质。固体催化剂,通常是固体金属或固体金属化合物,通常用于化学工业中制造塑料、化肥、燃料和原料。然而,使用固体工艺的化学生产是能源密集型的,需要高达1000℃的高温。 新工艺改为使用液态金属,在这种情况下溶解锡和镍,这赋予它们独特的流动性,使它们能够迁移到液态金属的表面并与输入分子,例如菜籽油发生反应,这导致菜籽油分子旋转、破碎和重新组装成更小的有机链,包括对许多行业至关重要的高能燃料丙烯。液态金属中的原子比固体中的原子排列更加随机,并且具有更大的运动自由度。这使得它们很容易接触并参与化学反应。在新研究中,研究人员将高熔点镍和锡溶解在熔点仅为30℃的镓基液态金属中。通过将镍溶解在液态镓中,研究人员在非常低的温度下获得了液态镍,并将之充当“超级催化剂”。相比之下,固体镍的熔点为1455℃。液态镓中的锡金属也会受到相同的影响,但程度较轻。金属以原子水平分散在液态金属溶剂中,单原子具有最高的催化表面积,这就为化学工业提供了显著的优势。这一方法还可用于其他化学反应。研究人员表示,其为化学工业降低能耗和绿色化学反应提供了可能性。 在化学反应中,催化剂往往扮演着“四两拨千斤”的角色。对化学工业而言,它更是对生产流程是否绿色、节能、高效起着举足轻重的作用。因此,催化剂是科学研究的重要领域,相关科研成果层出不穷。上述研究便是其中一个典型案例。
  • 肿瘤“液态活检”可能是基因测序市场的下一个爆发点
    肿瘤基因“液态活检”:癌症精准医疗的“瞄准镜”  无创产检是基因测序的第一个杀手级应用,它以对胎儿唐氏综合征(又称“胎儿21-三体综合征”或先天愚型)的筛查闻名。数据显示,近三年来我国共有20万孕妇接受产前基因检测。2015年1月16日,国家卫计委发布了第一批无创基因检测108家试点医疗机构的名单,业内人士分析,中国无创产检将创造出100亿左右的市场。那么,基因测序市场的下一个爆发点在哪里呢?我国已宣布启动精准医疗计划,基因检测被视为精确打击肿瘤的重要手段,那么肿瘤基因的液态活检技术,必将成为下一个巨大市场机会。在今年2月8日白宫官网发布的相关细节中,肿瘤治疗计划的四大举措之一就是:美国将使用“液态活检”血浆开发新方法来评估治疗反应以及抵抗可能的耐药性。那么,“液态活检”是什么技术?为何它受到如此重视?  肿瘤基因的液态活检,即是在人体的循环血液中检测ctDNA (死亡肿瘤细胞上脱落释放的小片段肿瘤基因)的技术。它通过体外无创抽血即可对全身的肿瘤信息进行检测,非常适合于癌症的早期诊断和精准医疗。传统的肿瘤检测方式存在许多局限:例如组织活检,需要手术从肿瘤上取样切片,这给患者带来很大痛苦,也不能频繁进行。它只能对单一器官进行检测,局限性也非常大,不适合在常规体检时使用。而液态活检使医生能频繁监测肿瘤的发展,只需通过抽血,就能快速确定一项治疗方案是否适合患者。如果治疗方案无效,可以立即放弃,避免患者遭受副作用之苦,也可以让医生尽早尝试替代方案。  精准医疗是指以个人基因组信息为基础,为病人量身设计出最佳治疗方案,以期达到治疗效果最大化和副作用最小化的一门定制医疗模式。精准医疗要做到个性、高效及预防的关键在于筛查和诊断,因此基因测序等检测诊断技术的发展是关键。如奥巴马所说:“我们将我们的遗传密码与癌症进行‘配型’,并成为切实可行的标准,我们决定药物的剂量,将如同测量我们的体温一样方便——这就是精准医疗给我们带来的希望。”免疫治疗、靶向治疗等等,都是当今医学界更精准治疗癌症的方式,它们为人类攻克癌症提供全新的炮弹,但所有炮弹在精确命中目标前都需要一个瞄准镜分析个人肿瘤基因变异情况,否则就无法精确选择药物。“液态活检”就是癌症“精准医疗”的瞄准镜和雷达。这就是奥巴马的“精准医疗”计划如此重视它的原因。  “精准医疗”:中国肿瘤市场的庞大需求  癌症是全球人口致死率最高的疾病。得益于DNA测序和癌症基因组图谱项目的突破,人们对引发癌症的分子变化的理解更加深入,对致癌基因组信息的新理解已影响到了药物和抗体设计过程中。国际医药巨头和风险投资者早已瞄准了这一炙手可热的领域。根据Illumina 公司数据,全球NGS(二代基因测序)的应用市场规模预计为200 亿美元,药品研发和临床应用是增速最快的领域,增速超过15%,肿瘤诊断和个性化用药是最有应用前景的领域,市场规模120亿美元。  同样,这在我国也是一个需求巨大的市场。统计数据表明:中国每年新发生各种肿瘤病例约350万例 以平均寿命80岁为例,中国人一生罹患肿瘤的风险高达22% 80%的肿瘤都是50岁以后发生的。这几组数据说明,肿瘤疾病在我国是一种高发病,且中老年人是肿瘤疾病的高发人群。这不得不引起每一个人的重视。癌症给许多患者带来痛苦,其治疗过程也往往有毒、对身体有损害,它让许多家庭因病致贫,难熬的治疗过程也加重了患者与家属的恐惧感,这都让癌症不仅仅是一个医学问题,也成为严重的社会问题。  但是,目前国内大部分基因测序公司的检测技术在应用性方面还不够完备,相关的基因检测产品和服务都非常有限。肿瘤体检早期筛查和指导肿瘤病患精确用药(尤其是靶向药)是当前市场最迫切的两大需求,但现有的产品和服务都不能很好的满足这两大需求,这是一个存在巨大需求并且尚未得到满足的市场。
  • 2010年液态奶消费者满意度测评结果公布
    8月17日,中国质量协会、全国用户委员会公布2010年液态奶消费者满意度测评结果,测评结果显示,不断曝出的质量问题已严重影响了国内消费者对液态奶的消费信心,液态奶行业的消费者满意度只有72.49分,低于去年的76.2分。不仅三大奶业巨头均未进入前十名,去年还排名第二位的圣元品牌今年掉到了第13位,北京三元品牌名列第9位。   本次液态奶调查在全国范围内共选取了27个品牌。区域性品牌得益、辉山、长富3个品牌位列消费者满意度前三位。调查区域包括北京、上海等22个大中城市。记者发现,这3个品牌均是地方液态奶品牌,一些消费者基本没有听说过。而在大多数消费者熟悉的大品牌中,完达山排名最靠前,也只排到第6位 三元排名第9 达能排倒数第4。三大奶业巨头排名也均不理想:光明第15位,伊利第17位,蒙牛第19位。   特别值得一提的是,去年,在2009年的液态奶消费者满意度调查中,圣元品牌位居消费者满意度排名第二位,消费者满意度分数为84分。今年的排名中,圣元位居第13名,满意度分数为73.77分,直降10.23分。外界揣测,圣元品牌排名直降,也许是受到了前一段媒体爆出的“激素”事件影响。此事也说明,食品质量无小事。   和2009年满意度调查相比,本次调查把区域品牌与全国品牌放在了一起进行综合排名,这样做是否公平合理?中国质量协会用户满意度测评中心相关负责人表示,本次调查,区域性品牌的样本数为80个,调查的3家全国性品牌样本数为200个左右,在撰写行业报告时他们对此进行了区分,但因涉及的全国性品牌较少,只有3家全国性品牌,所以综合排名时就没有再单独列出。这位负责人说:“如果从市场竞争角度看,这个排名应该区分,但这次调查主旨是围绕消费者的满意度,也就是个人喜好。实际上,消费者对全国性品牌的认可度不一定比地方品牌高,这是现实情况。满意度不高还是说明企业的产品不是那么受欢迎。”   本次测评结果显示,从行业角度看,消费者对品牌质量和形象的感知程度对测评的满意度影响较大,而感知价值对满意度的影响较弱,表明消费者对液态奶的质量和品牌最为看重,而对价格的敏感度不高。消费者对滥用增稠剂、香料、防腐剂等添加剂,纯度低,标志、保质期、产地、厂址等标志不清晰,生产日期更改,价格波动太快,袋装奶包装袋不够卫生、易破损、塑料有味、掉色等问题表示不满意。   调查显示,目前,消费者对液态奶消费信心较低,只有68.27分。主要表现以下3个方面的问题:   第一,消费者对液态奶的消费信心较低,只有68.27分。提高食品安全水平,提振消费信心,扩大市场的有效需求,应成为政府和行业高度关注的问题。   第二,由于三聚氰胺事件的影响,消费者对液态奶生产中使用添加剂持完全否定态度的占35.3%,持一般否定态度的占22.1%,持肯定态度的占36%,另有6.6%的被访者表。   第三,消费者对不同杀菌方法的认知有极大误区。调查显示,采用高温灭菌法生产的液态奶似乎更被消费者所认可,达36.0%的被访者表示高温灭菌法更好,相比之下,仅有28.3%的被访者认为巴氏灭菌法更好,另外分别有26.6%和9.0%的被访者回答两种方法“说不好”或“差不多、没区别”。事实上,高温灭菌在杀灭细菌的同时,也部分的破坏了乳质,降低了营养价值,而巴氏杀菌既杀掉了对人体有害的菌群,也保留了对人体有益的菌类,特别是较完全的保留了乳类的营养成分。对此,有必要加以大力宣传,让消费者做到明明白白消费。   中国质量协会相关负责人表示,此次调查表明,在下一个阶段工作中,提高食品安全水平、提振消费信心、扩大市场的有效需求,应成为政府和行业高度关注的问题。
  • 助力刑侦能力考核,且看岛津红外油漆样品分析方案
    油漆是刑侦案件当中的常用物证,现场遗留漆片,涉案物品上油漆类附着物的检验,能够为案件侦破提供方向和思路。近期公安系统刑侦考核,漆片类分析吸引众多关注。岛津红外系列产品,轻松应对油漆物证鉴定需求。一 典型应用红外显微光谱法分析车辆碰撞现场微量油漆物证汽车车身油漆由底漆层、中涂层、面漆层、清漆层等组成,不同厂家和车型对应不同的车身油漆。所以汽车油漆隐含着汽车车型的重要信息,利用红外显微光谱法对车辆碰撞现场采集的微量油漆碎片与肇事嫌疑车辆油漆样本进行红外光谱比对分析,为交通肇事事故分析提供了强有力的技术依据。样品处理:使用挥发性溶剂对采集到的样本表面进行除杂处理(灰尘、污染物),挥干后对样本进行切片取样,最后使用金刚石池透射法分析。车辆取样样本进行对比分析,结果表明:1#嫌疑车辆取样样本与事故现场发现油漆碎片在1300 cm-1~1600 cm-1 区间差异性比较明显;而2#嫌疑车辆取样样本与事故现场发现油漆碎片结果一致,所以其作为肇事车辆可能性更大。对2#嫌疑车辆样本光谱图进行检索,得到其成分结果为邻苯二甲酸二辛酯(DIO_PHTA)。二 其他典型应用速览油漆碎片的测试(显微金刚石池)图7:木材上的油漆碎片,用金刚石压平,尺寸:约 70x30μm图8:不同位置的油漆差谱图9:对差谱进行光谱检索,结果为甲苯胺红L三 关联仪器AIRsight 红外拉曼显微镜◆ 同一个显微镜,同一个软件,实现红外和拉曼两种光谱技术从样品观察、定位标记、多模式测定到数据分析的全工作流。◆ 能够在不移动样品的情况下,对同一样品的微小区域分别获得互补的红外和拉曼光谱信息,以实现多光谱维度的表征。IRXross通用型红外光谱仪◆ 适用多种应用的高性能◆ 内置新一代分析智能◆ 完全符合日益严格的法规要求本文内容非商业广告,仅供专业人士参考。
  • 复原乳相关检测标准缺失 两三成液态奶没有标示
    卫生部重申《乳品安全国家标准》,但业界指出复原乳相关检测标准缺失   新国标难治复原乳“用而不标”   7月13日下午,卫生部召开新闻发布会介绍乳品安全国家标准有关情况,再次重申我国已批准公布的66项乳品安全国家标准(以下简称“新国标”)与国际标准的要求完全一致。其中卫生部官方网站挂出的《乳品安全国家标准问答》再次重申,巴氏杀菌乳不允许使用复原乳,而其他使用了复原乳的液体乳需要在标签上明确标识。不过日前有业内人士透露,由于复原乳相关检测标准缺失,近一两年政府抽检乳品并没有涉及该指标。目前市面上可能仍有两到三成的液态乳使用了复原乳但是又没有明确标示出来。   政策-卫生部明确“用了复原乳要标示”   记者在《乳品安全国家标准问答》的第七点“液体乳安全标准有何特点”看到,液体乳标准明确了复原乳的使用,并要求在标签中予以标识。其第十七点则明确:按照乳品安全国家标准的规定,巴氏杀菌乳不允许使用复原乳。为了保护消费者知情权,其他使用了复原乳的液体乳,需要在标签上明确标识。   其实,国家监管部门重申规范复原乳的标示的必要性此次并非首次。2005年《国务院办公厅关于加强液态奶生产经营管理的通知》(国办发明电(2005)24号)以及2007年11月国家质检总局、国家农业部联合发步《关于加强液态奶标识标注管理的通知》以及检总局去年公布的《乳制品生产企业监督检查规定》都重申了该项规定。当初出台这些规定的初衷就是用奶粉加工还原成液态奶出售已经存在多年。   市场-或有两三成液态奶“用而不标”   据一资深的业内人士透露,生产厂家使用复原乳制作鲜奶,一方面是由于奶源稀缺与市场需求大之间有矛盾。另一方面则是利益的驱动。如果用还原奶来做酸牛奶,奶粉细菌总数监控容易,可以一批次地来检,而用鲜牛奶来做,则每天收购的鲜牛奶都要检。此外,以奶粉来还原,奶粉便于储藏,可根据市场的需求来生产,但是鲜牛奶无论市场需求如何必须得天天清理。此外,用奶粉还原,奶价比鲜奶便宜。   而一乳制品生产企业的负责人也告诉记者,目前国产奶粉的价格约在3万元/吨左右,以一吨奶粉可还原8.5吨液态奶来算,每吨复原乳的价格也就3500多元。但是广东目前的鲜奶价格高达4200元/吨。如果用复原乳生产液态奶利润空间巨大。”   7月14日,记者在市面上走访乳制品市场时发现,目前在包装上明确标明使用了复原乳的仅有旺仔牛奶以及娃哈哈的营养快线,而明确标注了复原乳使用含量的仅有旺仔牛奶。而在酸奶方面,光明畅优两款原味酸奶和e+100酸奶的配料表上也有标注复原乳。其他众多酸奶产品的配料表均表示用鲜牛奶制作。这是否说明市面上大部分乳制品、包括液态奶均很少使用复原乳为原料,而且标注得相当规范呢?实际上并非如此,面对记者的这个疑问,上述资深乳业人士向记者透露,目前市面上可能有两三成的液态奶有使用还原乳,但是就没有在包装中如实标示出来的。   而另一名不愿透露姓名的乳业人士也透露,酸奶是比较容易使用复原乳的品类之一,因为酸牛奶用还原奶发酵可以增加产品的凝固度。而受酸奶发酵工艺的影响,企业在酸奶中添加复原乳,即便是加入比例高达50%,一般的消费者也吃不出与用鲜牛奶为原料的酸奶做出来的口感有何区别,而且用复原乳做出来的酸奶香味往往更浓,这或许更受消费者欢迎。   由于受三聚氰胺事件的影响,2008年曾出现过一波杀牛热,促使2009年全国牛的存栏比2008年减少了9%,今年牛奶市场已经恢复,奶源的缺口开始显现。上游奶源满足不了市场的需求,这也是企业用奶粉还原的原因之一。   不过对于目前这种隐瞒标注使用了复原乳的行为,众多乳业人士都认为,国家有规定乳企可以生产用奶粉勾兑的复原乳,但必须在外包装上注明“复原乳”字样。   业界-复原乳统一检测标准有待制定   据了解,针对液态奶中是否有用到复原乳,我国曾经探讨过一套鉴别标准,即根据糠氨酸和乳果糖两种物质在液态乳中的含量判定。不过据透露,目前这种检测手段在实际运用过程中有误差,因为糠铵酸含量的高低不仅仅受是否加入了复原乳的影响,液态奶在加工过程中加热时间过长、过高都有可能影响其数值。   据上述资深乳业人士透露,近一两年政府对企业的抽检并没有检还原奶项目。如果没有检验的标准,新国标此项规定等于形同虚设。   而一乳制品企业的负责人则表示,新标准要求巴氏杀菌乳不允许使用复原乳,其他使用了复原乳的液体乳需要在标签上明确标识,这个规定是对的。但问题是现在缺乏相关实施细则的指引,比如还原奶的检测标准、检测的范围、哪个管理部门负责监督实施、是否应该所有企业一视同仁地抽检此项目等问题都需要有明细的说明。   此前有分析人士指出,其实要检测企业是否有将复原乳用于液态奶中而不标注出来,只要对企业收购鲜奶的数量、使用鲜奶的情况等数据进行备案就能知道企业收购鲜奶数量与最终产品的数量是否匹配。也可通过给企业发放鲜奶标示来监控。台湾地区的做法是行业协会和政府联手给乳制品企业发放鲜奶标示,收购多少鲜奶生产多少鲜奶,发放多少标示。   链接-什么叫复原乳?   复原乳又称“还原乳”或“还原奶”,是指以乳粉为主要原料,添加适量水制成与原乳中水、固体物比例相当的乳液。   按照我国现行标准,以鲜奶和复原乳为原料制成的液态奶其蛋白质和脂肪含量的确是一样的,但这并不等于其营养价值是一样的。一资深乳业人士告诉记者,由液态奶制成奶粉的过程需要经过两三次的提温脱水、而由奶粉制成复原乳还得再消毒、加温,数次的提温必定会造成其维生素以及其他营养成分的流失。
  • 加州大学河滨分校杜可课题组«Langmuir»: 基于3D打印的液态核心光流体
    液态核心(liquid-core)光波导是光流体学的主要系统之一,由液态核心层与固态包层组成。其液态核心可同时实现液态样品之传输与光导功能。近来随着微机电技术的广泛应用,该装置可微型化而便于携带甚至可模块化以适应不同应用进行组装。常见应用于以荧光探测为基础的生物感测器、吸收光谱与生物医学的相关研究。一般来说,材料的折射系数(refractive index)对光导的性能具有关键影响,当液态核心的折射系数高于包层的系数,方有机会实现全反射。而此参数在设计上有两种常见方法:一为直接选用适合的材料以提高核心与包层的数值差异;二则是设计复合式包层。第二种复合式方法更为灵活。因为一般核心层的折射系数受限于受测物质的需求,因此包层的材料选择也比较受限。近来,微纳米结构形成的疏水表面被许多科研机构采用,由于该结构之间有许多微小气泡,整体包层的复合有效折射系数将降低许多,对于装置中液态核心层本身折射系数偏低相对有利。在此基础上,加州大学河滨分校的杜可教授团队针对以微型结构为基底的液态核心光波导进行了研究,并采用近年受到瞩目的面投影微立体光刻技术取代了先前基于黑硅(black silicon)的平板式封装设计。传统上,微机电制作的晶片偏向二维平板式设计,较难实现三维立体的特殊结构,且需要有良好封装。然摩方精密的面投影微立体光刻技术能够克服上述两点限制。该团队提出了几种不同的微结构设计,搭配疏水表面涂层(PTFE),实现了一体成形不需封装且具有微结构的液态核心光波导。该研究探讨了结构的机械强度、光波导截面几何与有效包层范围内的优化对整体设计的影响。报告中也展示了后期应用于病毒检测(CRISPR)的研究。未来有机会辅助CRISPR相关研究甚至实现三维打印的生物体内侦测装置设计。相关成果以“On-Demand Fully Enclosed Superhydrophobic−Optofluidic Devices Enabled by Microstereolithography”为题发表在《Langmuir》期刊上。图1. (a) 微光栅结构、(b) 微针结构、(c) “T 形”结构和 (d) “伞形”结构的 SEM 图像和光学显微照片。 (e)“T 形”光流控装置的横截面。 固体/水/空气界面用黄色虚线标记。 (f,g)在 Teflon AF 涂层之前(f)和 Teflon AF 涂层之后(g)的平面样品的静态水接触角测量。 (h) 显示由两个间隙较大的“T”形结构支撑的液滴的照片。 (i) 在固体/水/空气界面处反射的光束,入射角为 35°。 (j) 装置与平台的实际图像,其中光与液芯共享相同的路径。 液体通过嵌入的微管泵入液芯。 插图中描绘了装置中的流体流动方向。报告中展示了由多种常见微结构组成的不同芯片装置,如图1。其中“T 形”结构在平板上的疏水效果可由图1(h)得知,即便在大间隔的情况下,液滴下方仍然存在空气隔间。实际上整体的光学平台搭置如图2所示,可根据不同激发光需求替换激发光源。 “T 形”结构在不同激发光波长下有最佳的工作效能且有较强的机械强度(相较微针结构与微光栅结构)。团队更进一步针对基于“T 形”结构的芯片进行了截面几何与有效包层范围内的固体材料比例的探讨。结果显示在合理的机械强度下,“T 形”结构的芯片可往低材料厚度、适中结构宽度与圆形截面来进一步优化。 图2. (a) 光学测量装置示意图。不同光流体芯片在不同激发光波長之下的光传输显示于(b) 405、(c) 490、(d) 595 和 (e)1100 nm。 误差线代表每个相应样本的标准偏差。 每个数据点代表三个测量值的平均值。 图3. (a) 固体包层厚度分别为 400 和 600 μm 的無結構光流控芯片的透射测量。 (b) 损失机制在固体/水/空气界面示意图。 (c) 各种“T 形”结构和不同入射角的透射测量。T-1显示出最佳性能。 每个数据点代表三个测量值的平均值。 图4. (a) 通过输入 1.6 nM 量子点的各种光流控平台的未校正荧光发射光谱。 插图为荧光溶液照片。 光从右向左传播。 (b) 集成荧光信号随着量子浓度从 0 增加到 6.3 nM。 每个数据点代表三个测量值的平均值。该设计被进一步应用于荧光测量的CRISPR-病毒检测。在荧光量测中,“T 形”结构的芯片有最佳的量测效能与预测结果一致。而在CRISPR系统中,目标DNA将与CRISPR-Cas12a结合并使单链 DNA 探针变性,致使散布在溶液中的量子点将不与单链 DNA 探针结合。这些量子点可经过分化过程从上清液中取出并放入芯片中测量。该结果显示团队提出之原型设计能够与CRISPR相关检测系统整合,甚或成为生物体内检测相关装置原型开发的参考。图5. (a) 规律间隔成簇短回文重复序列(CRISPR) 与关联蛋白 (Cas) 结合用于简单和灵敏的核酸检测示意图。 (b) DNA 目标为 0.1、1 和 10 nM 的样品的荧光强度。 阴性对照(无目标)标记为 NTC。 每个数据点代表三个测量值的平均值。
  • 专家:用奶粉冲兑液态奶乳企成本并不低
    近日一位乳业专家爆出“国内液态奶60%用奶粉冲兑”的消息,在乳制品市场再次引发轩然大波。   对此,国家食药监总局表示,《食品安全国家标准 巴氏杀菌乳》和《食品安全国家标准 灭菌乳》规定,鲜牛奶和纯牛奶不允许使用奶粉为原料进行冲兑,也不允许使用食品添加剂。用奶粉作原料的液态奶必须在包装上标明“复原乳”,如不标明属于违法,消费者可拨打12331举报。   针对此问题,蒙牛公司公共事务系统负责人接受采访表示,蒙牛产品中的纯牛奶和调制乳全部使用鲜牛奶(生牛乳),部分产品,如乳品饮料,如需使用奶粉,将严格按照国家标准要求,对使用奶粉的产品,在产品标签上标志出奶粉的使用。伊利相关负责人表示没必要对没有根据的说法做出回应。   60%比例夸张,按去年进口量算不到1%   “国内市场上,60%液态奶用奶粉冲兑”的消息,是西部乳业发展协会执行副会长、西南民族大学畜牧系教研室主任魏荣禄接受某媒体采访时说的。   对此,中商流通生产力促进中心乳业高级研究员宋亮表示,乳业行业内确实存在一些用奶粉冲兑非法纯牛奶、也未对外明示标注的现象,但量不会特别大,说60%的液态奶都用奶粉冲兑,有些偏颇和夸张。根据去年的进口量估算,占比不到1%。   宋亮介绍,去年我国进口的奶粉,60%用来生产婴幼儿配方奶粉,近20万吨用来生产乳酸菌饮料、调制乳产品、烘焙食品等,合法复原乳也只是其中一小部分。剩下的几万吨奶粉如果被非法冲兑成液态奶,按照奶粉和牛奶1∶8以及后来规定1∶8.5冲兑的比例,可以生产几十万吨液态奶,而国内全年液态奶的产量在2000多万吨,占比很小。   用奶粉冲兑企业成本也很高   报道称,魏荣禄指出,由于国外奶粉很便宜,每吨存在高达6000元以上的差价,使得大量中小企业以及大企业纷纷采购国外奶粉,包括进口大量低质低价的奶粉冲兑。   对此,宋亮介绍,买进口奶粉专门为冲兑液态奶,其经济效率不会很高,因为用奶粉冲兑,涉及改生产工艺,成本费用也很高。在2009年之前,进口奶粉每吨价格2.2万元到2.5万元,兑换1公斤奶,成本要3元钱,而国内原奶不超过3元,还原奶并不是一个“经济”的举措,而且企业总是用奶粉,会丧失大量奶源,得不偿失。   复原乳营养肯定不如鲜奶   宋亮表示,奶粉冲兑的复原乳在营养上肯定是不如鲜奶的,因为还原奶要经过两次高温处理,先从原奶生产成奶粉,然后又从奶粉还原成奶,经过这些过程,奶中的蛋白质、维生素等营养成分损失较大,而纯鲜牛奶的营养成分基本能保存下来。
  • 饲料及液态奶中蛋白及非蛋白氮检测技术研讨会
    天美(中国)科学仪器有限公司参加 &ldquo 饲料及液态奶中蛋白及非蛋白氮检测技术研讨会&rdquo 2008 年11月20日至21日,&ldquo 饲料及液态奶中蛋白及非蛋白氮检测技术研讨会&rdquo 在西安时代大酒店召开。此次会议是由中国农业科学院饲料研究所主办,由农业部饲料质量监督检验测试中心(西安)协办,共有全国各地的饲料质量监督检验测试中心和大型饲料企业的110多位专家和检验人员参加了此次会议。 会议开幕式由中国农科院饲料研究所秦玉昌副所长主持,国家及陕西省畜牧饲料主管单位多位领导出席。 天美(中国)科学仪器有限公司及日立高新技术公司积极支持并参与了此次盛会,天美公司副总裁夏奕生先生在会议开幕式主席台就坐。 会上,来自全国各地饲料质量监督工作一线的多位技术人员就&ldquo 蛋白及非蛋白氮分析&rdquo 这一话题,做了多场技术交流和专题讲座。日立高新技术公司技师井上阳子女士、我公司色谱产品经理姜振喜先生、产品专家石欲容女士也结合我们的氨基酸分析仪和高效液相色谱仪,分别做了关于氨基酸、三聚氰胺分析的专题报告,题目分别为《饲料中氨基酸分析》、《液相色谱法分析饲料中三聚氰胺&ldquo 假阳性&rdquo 结果判断》、《几种不同的色谱柱分析三聚氰胺的结果比较》,获得了参会代表的一致好评。 同时,我们还邀请国内知名食品分析专家撰写文章,结合我们一些日常工作中的经验与体会,为参加会议的代表编写了一本《饲料及液态奶中蛋白及非蛋白氮分析技术文集汇编》的小册子,使大家感觉获益匪浅。 会议期间,天美公司及日立公司技术人员与广大新老用户共同交流、解决疑难问题,给大家留下了良好印象。大会主办方还邀请参会人员参观了西安饲料所的L-8800氨基酸分析仪。 天美(中国)科学仪器有限公司一向关注食品安全问题,不断地与各方专家合作,研究更好更科学的检测方法,为食品安全事业积极做出自己的贡献。 随着我公司的全自动氨基酸分析仪和高效液相色谱仪的用户数量越来越多,公司在为用户的服务方面也投入了更多的精力,不断努力为用户提供更专业的应用方案和更好的服务。
  • 香港城市大学在液态金属力学超材料领域取得进展
    图1 液态金属基微点阵力学超材料( https://doi.org/10.1002/smll.202070252)1991年上映的科幻电影《终结者2》描绘了一个能够随意变形,可自我修复的液态金属机器人T-1000,展现了液态金属应用的无限可能。电影中液态金属机器人是邪恶的化身,在实际应用中,液态金属却大有裨益,特别是在小尺度一些精密的应用上,如神经纤维修复和微型机器人。然而直接暴露的液态金属不易操作,且容易腐蚀其他金属,应用不当会带来不良后果,有鉴于此,香港城市大学“纳米制造实验室”的科研团队正在尝试在微观尺度上“驾驭”液态金属,使得其为未来精密应用,特别是金属力学超材料带来更多新的可能。目前的金属微点阵力学超材料具有超轻、高比强度等特性,在无人机机翼、小微型电子器械等器件上具有很好的应用前景。但是,目前这类力学超材料的韧性较差,且在服役过程中容易脆断失效。为了提高韧性,香港城市大学机械工程学系陆洋教授领导的研究团队开发了液态金属-聚合物微点阵力学超材料。该材料不仅有良好的韧性,而且充分利用低温度范围下液态金属的特性,实现了类似科幻电影中复杂形态液态金属的自我修复功能。该项研究成果发表在国际知名期刊《Small》(https://doi.org/10.1002/smll.202004190)。该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S140打印出中空的聚合物外框,壁厚100-300 μm。采用真空液体填充技术在聚合物薄壳中注入液态金属镓(Ga),首次制备了液态金属-聚合物核壳结构的微点阵力学超材料。该材料具有以下特点:良好的断裂韧性图2液态金属-高分子点阵力学超材料良好的断裂韧性良好的断裂韧性。相比于实心或空心高分子点阵结构,液态金属-高分子点阵力学超材料避免了受压过程中的脆断失效现象。这是由于Ga的存在,阻碍了裂纹在高分子外壳中的扩展,使得该结构在裂纹出现后依然可以承受载荷。形状记忆效应图3 液态金属-高分子点阵力学超材料良好的形状记忆效应 形状记忆效应。得益于Ga较低的固液转变温度(29.7℃),当Ga为固态时,能够完美的保持变形后形状;Ga融化后,该结构又能完美的恢复至原始形貌,表现出形状记忆效应。当采用合理的拓扑结构,该材料被大幅压缩20%后,依然能够完美的恢复。优异的断裂恢复性 图4 液态金属-高分子力学超材料优异的断裂恢复能力 优异的断裂恢复性。即使部分断裂后的液态金属基微点阵结构超材料依然能够基本恢复原始形状,并且能够保持一定的承载性能(≥50%初始强度)。部分断裂的高分子外壳在Ga融化后恢复至原始状态,驱动整体结构恢复至原始形状。综上所述,被3D打印包裹“驾驭”的液态金属核心表现出良好的韧性、形状记忆效应及优异的断裂恢复能力。这种新型的液态金属基微点阵力学超材料有望在生物医疗器械、微电子器件及微型机器人等应用获得巨大的潜力,甚至实现一些以往在《终结者》或者《变形金刚》等科幻电影里才能看到的前沿应用场景。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制