当前位置: 仪器信息网 > 行业主题 > >

红外影响因素分析

仪器信息网红外影响因素分析专题为您提供2024年最新红外影响因素分析价格报价、厂家品牌的相关信息, 包括红外影响因素分析参数、型号等,不管是国产,还是进口品牌的红外影响因素分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外影响因素分析相关的耗材配件、试剂标物,还有红外影响因素分析相关的最新资讯、资料,以及红外影响因素分析相关的解决方案。

红外影响因素分析相关的资讯

  • 一文了解|影响红外热成像仪探测距离的因素
    约翰逊准则探测距离是一个主观因素和客观因素综合作用的结果,主观因素跟观察者的视觉心理、经验等因素有关。国外在这方面做了大量的研究,约翰逊根据实验把目标的探测问题与等效条纹探测联系起来,研究表明,有可能在不考虑目标本质和图像缺陷的情况下,用目标等效条纹的分辨力来确定红外热像仪成像系统对目标的识别能力,这就是约翰逊准则。目标的等效条纹是一组黑白间隔相等的条纹图案,其总高度为目标的临界尺寸,条纹长度为目标为垂直于临界尺寸方向的横跨目标的尺寸。等效条纹图案的分辨力为目标临界尺寸中所包含的可分辨的条纹数,也就是目标在探测器上成的像占的像素数。目标探测可分为探测(发现)、识别和辨认三个等级。探测,在视场内发现一个目标。这时目标所成的像在临界尺寸方向上必须占到1个像素以上。识别,可将目标分类,即可识别出目标是坦克、卡车或者人等。这是目标所成的像在临界尺寸方向上必须占到4个像素以上。辨认,可区分开目标的型号及其它特征,如分辨出敌我。这是目标所成的像在临界尺寸方向上必须占到8个像素以上。以上都是在临界值,也就是刚好能发现目标,以及目标与背景的对比度为1的条件下所得到的数据,从上面的约翰逊准则可以看出,一套热像仪能看多远,是由目标尺寸、镜头焦距、探测器性能等因素决定的。影响因素1. 镜头焦距决定热像仪的探测距离的最重要的因素就是镜头焦距。镜头焦距直接决定了目标所成的像的大小,也就是在焦平面上占几个像素。通常这是用空间分辨率(IFOV)来表示,它表示每个像素在物空间所张开的角度,也就是系统所能分辨的最小角度,一般由像元尺寸(d)与焦距(f)的比值得出,即IFOV=d/f。每个目标在焦平面所成的像占几个像素,可由目标尺寸、目标与热像仪的距离、空间分辨率(IFOV)计算得出。目标尺寸(D)和目标与热像仪的距离(L)的比值为目标的张角,再与IFOV相除得到像占用像素点的数量,即n=(D/L)/IFOV=(Df)/(Ld)。从中可以看到,焦距越大,目标像所占用的像素点越多,根据约翰逊准则可知,其探测距离更远。但另一方面,焦距越大,视场角越小,同时成本也更高。这里举个例子。热像仪焦平面的像元尺寸为17μm,配100mm焦距镜头,则空间分辨率IFOV为0.17mrad。观察1公里远的大小为2.3m的目标,则目标所张开的角度为2.3mrad,目标所成的像占用2.3/0.17=13.5个像素。根据约翰逊准则可知,达到辨认水平。2. 探测器性能镜头焦距是从理论上决定了热像仪的探测距离,在实际应用中起着重要作用的另一因素是探测器性能。镜头焦距只是决定了所成像的大小,占用像素点的数量,探测器性能则决定图像质量,如模糊程度,信噪比等。探测器性能可从像元尺寸、热灵敏度、信号处理等方面来分析。像元尺寸越小,则空间分辨率(IFOV)越小,从前面的讨论可看出,其探测距离越大。一个典型例子是,FLIR非制冷热像仪的Photon320的像元尺寸是38μm,Photon640的像元尺寸为25μm,如果都配100mm镜头,观察2.3m的目标,按照约翰逊准则,其识别距离分别为1公里、1.5公里。探测器的热灵敏度和信号处理决定了图像的清晰度。如果探测器的热灵敏度和信号处理能力不好的话,则所成的像只是一个模糊的热像,也就无法识别。因此,一些探测器的热灵敏度不高的话,则采取加大镜头口径的方法来提高图像效果,这不但增加了成本,而且也增加了使用上的不方便。美国FLIR的Photon系列,使用的镜头F数一般可降低到1.4~1.7,也就是口径可做得特别小。像现在国内普遍更新换代的12um要比17um的机芯看的距离多1.4倍。3. 大气环境虽然热辐射对大气的穿透能力比可见光强,但大气吸收、散射等对热像仪成像还是有一定的影响,特别是大雾和大雨的天气环境,从而影响到了热像仪的探测距离。像长波在雨雾中的穿透能力很差,中波在雾中的穿透力强,但穿雨同样不行。综上所述,红外热像仪探测距离受到几个方面的影响,它是探测器、镜头、目标、大气环境等客观因素、人的主观因素及软件算法共同影响的结果,所以在不考虑其它因素影响的情况下还是按照下面的公式进行计算。n=(D/L)/IFOV=【目标尺寸(D)*焦距(f)】/【目标与热像仪的距离(L)*像元尺寸(d)】但是不考虑大气环境的影响的话,一般会在探测上增加0.5个像数作为标准,识别加1个像数作为标准,辨认加2个像数作为标准来弥补不同探测器的灵敏度不一致及镜头良率的问题,来增大目标所占像数的数值确保能够得到想要的效果。
  • 实验室误差的种类及影响因素分析
    实验室误差分析就大的方面而论,主要分为软件方面、硬件方面和其它方面。软件方面实验室误差分析主要包括检验人员的主要因素,实际操作、检验方法和检验理论 硬件实验室误差分析主要包括检验设备和环境条件 其它方面实验室误差分析主要指由于科技水平限制而无法预知的那些方面。其中,软件方面实验室误差分析和硬件方面实验室误差分析是实验室误差分析的主要组成部分。因此,搞好实验室误差分析,主要就是搞好软件方面和硬件方面的实验室误差分析。其次,还与检验方法是否合理,所涉及的环境、标准溶液、产品标准与方法标准配套等因素有关。   1、软件方面实验室误差分析   软件方面实验室误差分析是实验室误差分析的关键。它是实践技能、检验方法、检验理论、检验信息过程的综合体。要搞好软件方面的实验室误差分析必须对这个综合体加以分析并予以改进。对综合体分析应从以下两个方面进行:   1.1 人员误差分析   检验人员由于主观因素和实际操作水平的不同必然会实验带来误差。其中主观因素的误差尤其难以控制,因为每个人的生理特点、个性和习惯各不相同,要想预防和消除这些由主观因素带来的误差,就必须要求检验人员有强烈的责任心,对工作认真负责,严格执行实验室检验人员规章制度,力求尽量最大可能摒弃那些可能影响实验的不良因素。实际操作水平的提高不但需要检验人员具备熟练的检验测试技能,而是还要具备丰富的科学理论知识,这就需要我们检验人员不懈的努力实习和长期的工作经验积累。   1.2 检验方法(检验理论)误差   检验方法误差主要指检验理论不十分完备,特别是忽略和简化所引起的误差。通用的实验、检验方法是在长期实践中逐渐形成并不断加以完善的。特别是在实际应用中,本着简单、快速、准确的要求,对检验方法进行合理的压缩和简化,压缩和简化后的检验方法虽然提高了检验速度和检测效率,但潜在地增大了实验误差。如检测碳酸饮料中的有机酸含最,采用倾折法消除饮料中二氧化碳对实验后果的影响。这种方法虽然提高了检验速度,但倾折法对饮料饮料中二氧化碳消除并不十分明显,所以说,倾折法并不是一个理想的压缩和简化的实验方法。因此,在进行实验室误差分析时,我们必须考虑到这一点。同时,要求检验人员必须认真分析检验方法,从试样制备、检验操作直至检验结果的分析与处理进行控制分析,保证检验结果准确可靠。   2、硬件方面实验室误差分析   硬件方面实验室误差分析是实验室误差分析的基础。搞好实验室硬件建设是减少实验误差,提高质检水平的根本。实验室的硬件主要指检测仪器、设备和工作环境。   2.1 检测仪器、设备误差   仪器、设备作为讲师器具,其本身的结构、工艺以及磨损、老化、故障都能引起误差。因此,对检测仪器、设备的保养、维护和使用要严格遵守实验室检测设备的规定,防止因检测仪器、设备人为磨损和不正当操作损坏而引起的器具误差。另外,大多数检测仪器、设备都是按相对测量法设计的,因此,在检验前或检验过程中必须用标准物质定度,以消除检测仪器、设备误差。   2.2 工作环境误差   工作环境主要包括温度、湿度、大气压强、电场、磁场、振动等因素。可以说,在实验室日常工作中,工作环境是经常被考虑到的因素。如我们在实验室检验时经常记录下的当时室内温度和湿度这两个环境参数,其实就是考虑到环境因素对分析实验的影响。环境误差作为实验室一种误差来源,是我们无法彻底消除的克服的,我们只有通过不断地改善实验条件,减少来自环境方面的误差。这就要求我们的各级政府都要重视实验室建设并给予积极的财政支持,保证实验室正常开展工作。   3、标准溶液、产品标准与方法标准的分析   3.1 标准溶液误差   标准溶液是滴定分析的基础,它的准确与否,直接影响到分析结果。1988年,国家颁布了&ldquo 化学试剂,滴定分析用标准溶液制备&rdquo 标准,即GB601&mdash 88,根据此标准制备的标准溶液,准确度很高,其相对误差不大于0.1%,这对于某些要求很高的分析检验,如化学试剂纯度的测定,是十分必要的,而对于食品中某些常量的分析测定,就有些小题大做了。根据食品的特点,各项指标一般要求精确到,4-I或± 0.1。以蛋白质含量为例,标准要求&ge 8.0为合格,按有效数字的概念,绝对误差不超过末位数的半个单位,上述数值的绝对误差为± 0.05,相对误差为± 0.6%,列于这样准确度要求的检验,强调用误差为0.1%的标准溶液来滴定,显然是不合理的。   一个常规分析实验室所其备的仪器、环境条件等,可以确保标准溶液的准确度达到0.2% ,这种准确度的标准溶液,既能满足一般分析工作的需譬,又有比较广泛的适用性。   3.2 产品标准与方法标准配套的误差   标准,具有科学性和严肃性。但在实际工作中,产品标准与方法标准有时会不匹配,主要表现是:分析方法的准确度远远高于结果要求的准确度,或分析过程中各参数的准确度不一致的问题。   例如:某一产品,标准要求的水份含量要小于等于5.0%,也就是说检验结果要求准确到0.1,而方法标准则要求用分析天平来称取样品,虽然分析天平的误差很小(绝对误差为± 0.0002),但与检验结果的准确度要求相比,使用分析天平是完全没有必要的。   我国现行标准中类似上述的问题还很多,这种情况的存在,既没有提高检验数据的准确度,也没有提高工作效率,必须引起我们足够的重视。从以上的分析和论述中,我们不难看出,只要我们切实抓好实验室软件方面和硬件方面及标准溶液、产品标准与方法标准的误差分析,我们就能有效地提高质检水平,从而为人民生命健康、财产安全和国内外贸易提供有力保障。
  • 蛋白质分析仪的检测精度与影响因素
    蛋白质分析仪一种用于定量测定蛋白质含量的仪器,广泛应用于生物医学研究、药物开发和临床诊断等领域。检测精度是衡量蛋白质分析仪性能的重要指标,影响检测精度的因素有很多,本文将详细探讨这些因素及其对检测精度的影响。  一、检测精度的基本概念  检测精度是指仪器在测量过程中,测量值与真实值的一致程度。精度越高,说明测量结果越接近真实值。检测精度通常用相对误差、误差和标准偏差等指标来衡量。  二、影响检测精度的主要因素  1.仪器性能  -蛋白质分析仪的性能直接影响其检测精度。仪器的分辨率、灵敏度、线性范围和稳定性等参数对其精度有重要影响。高质量的仪器通常具有更高的检测精度。  2.操作规范  -操作规范与否对检测精度有很大影响。操作人员需严格按照仪器的操作规程进行操作,确保每一个步骤都符合要求,避免因操作不当引起的误差。  3.样品准备  -样品的准备工作,如样品的采集、处理和储存等,对检测精度也有重要影响。样品的代表性、纯净度和稳定性等因素都会影响较终的检测结果。  4.环境条件  -环境条件,如温度、湿度、气压和振动等,对检测精度有显著影响。仪器在不同的环境条件下可能表现出不同的性能,因此需要在适宜的环境下使用仪器,以确保检测精度。  5.校准与标定  -定期校准与标定是确保仪器检测精度的重要措施。通过校准,可以消除仪器在使用过程中由于漂移、老化等因素引起的误差,确保测量结果的准确性。  6.仪器维护  -仪器的日常维护与保养对检测精度也有重要影响。定期清洁、检查和更换仪器的易损部件,可以延长仪器的使用寿命,保持其良好的工作状态,从而提高检测精度。   三、提高检测精度的方法  1.选择高性能的仪器  -根据具体的检测需求,选择性能优良、精度高的仪器,以确保检测结果的准确性。  2.严格遵循操作规程  -操作人员需经过专业培训,掌握仪器的操作要领,严格按照操作规程进行操作,避免因操作不当引起的误差。  3.规范样品准备  -样品的采集、处理和储存需按照相关标准和规范进行,确保样品的代表性和稳定性,避免因样品问题引起的误差。  4.控制环境条件  -在使用仪器时,尽量选择适宜的环境条件,避免在异常环境下使用仪器,以确保检测精度。  5.定期校准与标定  -定期对仪器进行校准与标定,消除仪器漂移、老化等因素引起的误差,确保仪器的测量精度。  6.加强仪器维护  -定期对仪器进行清洁、检查和维护,确保仪器处于良好的工作状态,延长其使用寿命,提高检测精度。  总之,蛋白质分析仪的检测精度受多种因素的影响,通过科学合理的管理和操作,可以显著提高其检测精度和应用效果。在实际应用中,应根据具体情况,采取有效的措施,确保仪器的较佳性能和应用效果。
  • 灌装系统中蠕动泵对灌装精度的影响因素分析
    灌装系统中蠕动泵对灌装精度的影响因素分析装量的精度控制是灌装机的重要指标之一,在进行灌装机PQ(性能验证)时应确认灌装机的精度,以确认该分装线的运行状态符合《药品生产质量管理规范(2010年修订)》(简称GMP)要求及生产需要,保证装量符合要求。无菌灌装不仅仅要满足严格的卫生要求,而且也要以很高的定量控制精度完成液体灌装,达到规定的灌装准确度。灌装机的精度除了与灌装机自身的规格型号、质量、性能以外,还与外界干扰因素有关。✦ 文章以西林瓶灌装系统为例对灌装精度的影响因素进行分析探讨,灌装过程是伺服电机驱动蠕动泵转子转动,泵出的药液通过软管连接固定针架上的灌装针再经针管流至药瓶中。一般情况下蠕动泵的灌装精度相对稳定,但药液袋中的气泡增多及液位变化、蠕动泵工作管路长时间工作疲劳、药液灌装机的运行速度,机械臂的摆动带来出液管的摆动等不确定因素会导致蠕动泵在运行一段时间后出现灌装量下降的情况。01系统误差(1) 灌装系统设置。由灌装系统控制整个灌装流程,在灌装前要进行配方修正和下载,可以设定目标装量、警戒值和纠正值,同时在配方里还包括泵速度、回吸、灌装针距西林瓶底距离以及脱离距离等参数,这些参数对产品的灌装过程、产品的质量有很重要的意义。在生产过程中要使药液准确灌注到到小瓶中,因此涉及到泵的加速度与减速度,灌装针的运动轨迹。灌装针与小瓶虽然都在运动,但是在水平方向上两者保持相对静止状态,在竖直方向上存在相对运动。泵运动的过程包括加速度阶段—匀速阶段—减速度阶段,在加速度阶段液体的速度也从0开始加速喷出,如果此阶段灌装针针头与瓶底距离比较远,液体收到向下泵给的力加上自身的重力,当药液与瓶底接触时,产生反作用力,会导致药液飞溅,甚至药液可能飞出小瓶、粘在灌装针上。当开始灌装的时候针头开始向上移动,边移动的过程边灌装。如果针头相对瓶底不向上运动,药液会淹没针头,药液粘到针头上导致灌装量不合格。即将灌装结束时泵进行减速度,达到灌装量后,泵停止。速度和精度在很大程度上取决于灌装系统的分析和操作。灌装速度过快情况下软管管路压力过大,导致滴液。(2)在线称重系统设置。在线称重是无菌灌装设备在位过程控制IPC的重要手段之一,有了在线称重的灌装设备,就可实现实时反馈控制,即将称量结果与产品灌装控制联系,即时纠正灌装偏差在线称重控制系统的硬件主要包括IPC称重、无线通讯模块、服务器、高精度秤、电平转换模块等,称重模块应定期确认和校准,其本身性能的好坏将对称量结果起着至关重要的影响[1]。通常蠕动泵的灌装精度较稳定,当超出允许精度范围时,控制器及时对灌装泵的位移曲线进行在线修正,实现对灌装量的在线调整,保证灌装量的精确,减小误差。此时在线称重系统的修正程序设置就是重要因素,如果程序修正参数执行效果良好,经过调整可使蠕动泵的运行行程和转动角度稳定在合理范围内,即可以实现泵的精准灌装。这样才能保证每一批次药品的精准灌装[2]。(3)软管配置。通常蠕动泵的灌装灌装管路选用2.4mm壁厚,因为要尽量保证药液生产速度快,批量的稳定性,减小软管磨损导致的装量衰减。2.4mm壁厚的软管回弹性更好更稳定,但也只能维持尽量长时间灌精度在要求范围之内,并不能避免长时间灌装导致软管磨损,回弹性变差造成的精度飘移,仍然需求定期校验。软管内径合理的选型可减少对蠕动泵的转动角度,转动圈数及回吸等影响。(4)灌装针大小及形状。灌装针内径选择。针的内径与剂量管路的内径匹配,避免针内径过小导致阻力增大,流量较小,在软管末端和针管相接的部位出现膨胀,灌装间歇过程中,由于膨胀部分自然复位灰把药液挤出针头造成液体滴漏;同时也要避免过大的针头内径,导致末端药液自然滴落。灌装针形状选择。在实际生产中,经常选择常用的平口针和梅花针,平口针的优势在于其制造简单,并且回吸效果不错,不足之处就是平口针冲击力大,会导致在灌装过程中发生溅液梅花针的优势在于灌装压力小,能够有效防止液体的飞溅,而不足之处在于针口的加工比较困难,如果开口不均匀又会造成液体的滴液挂液现象,导致末端药液自然滴落影响灌装精度。(5)蠕动泵选型。蠕动泵是整个联动线灌装的核心部件,一款合适的蠕动泵对灌装精度有着很大的影响。考虑到生产的产能,隔离器的空间大小,灌装线的二次改造,体积小,速度快,灌装范围广,精度高是蠕动泵的核心竞争力。同时满足这些条件比较困难,目前市面上的直线泵,无泵灌装系统等虽然在精度上可以满足要求,但是也有一些弊端,1、体积比较大,改造困难,在隔离器内不能完美配合联动线;2、速度比较慢,达不到产能要求;3、价格昂贵。根据这些影响因素,叠泵(双泵双电机,可实现同步异步等)和同相位泵完美解决这些难点,成为了目前灌装行业的首选,在生物药、化药、疫苗、诊断试剂等领域应用广泛。叠泵在原来的基础上空间体积减少一半,同相位泵更是在微装量的灌装速度可以达到惊人的70+瓶/min。02随机误差(1)管路长短和软管形变。在西林瓶灌装线中一个完整的灌装管路包括:灌装袋(缓冲罐)、灌装管路、灌装针、蠕动泵等结构组成液体灌装是将液体经过管道,按一定的流速或流量流入西林瓶内的过程。在安装管路系统时针架以及硅胶管长度过长的时候摆臂会带动软管来回摆动导致晃动过大从而影响灌装针的轻微晃动导致滴液。其次和灌装针连接的软管形状变化,随着软管使用次数和时间增加,软管受挤压后周长增加、壁厚变薄、内径变大导致流量增加,从而导致灌装精度偏高[3]。(2)液位及压力变化。储液罐、分液器、灌装泵及针架的安装位置,缓冲瓶的安装位置相对于灌装泵的安装位置高度差过大,灌装泵受到药液的压力太大容易导致灌针滴液。入口压力的变化。如随着灌装入口液面的降低则入口压力降低,流量会下降。由伯肖(Poiseulle)公式可得出:Q=ΔPπd4 /(128μL) (1)式中:Q—容积流量,m3/s;ΔP—压力差,Pa;d—管道内径,m;L—管道长度,m;μ—动力粘性系数,Pas。在生产开始到生产结束的过程中,液体的种类、管路的直径和管路长度无法改变,在灌装过程中储液罐的液位会随之降低,从而入口压力也会降低,流量也会随之下降。平均流速同样下降,从而导致灌装量偏小影响灌装精确度。(3)液体特性。液体的黏度在液体特性中是影响灌装精确度的主要因素。由公式流体黏度v=μρ (2)式中:μ—动力粘性系数,Pas;ρ—液体的密度,kg/m3。公式①+②结合可得Q=ΔPπd4ρ/(128μL)即在生产开始到生产结束的过程中,液体的密度和管路的直径以及管路长度无法改变,液体的黏度会影响动力黏度系数,从而影响管路系统的流量导致流速发生改变导致灌装量的差异进而影响灌装精确度。并且液体黏度也会影响液体的流动性。(4)干预因素1 连接管路。在日常生产中,缓冲瓶、分液器、蠕动泵及针架的安装位置会产生一定影响。储液罐的位置相对于蠕动泵的安装位置高度差过大,蠕动泵受到药液的压力太大容易导致灌针滴液。操作人员在灌装开始前对灌装泵、灌装针以及软管接口进行组装连接时产生松动也会产生气泡或滴漏,并且在对灌装管路排空气的时候,操作人员未能排净管路中的全部空气,管路中出现少量气泡,在灌装过程中也会导致灌装量的差异进而影响灌装精确度。2 运行故障。以西林瓶灌装系统为例:在线称重系统采用机械手将灌装前后两种状态下的药瓶加载到高精度IPC称重各称一次,控制器通过比较判断每支药瓶灌装净重是否超限,灌装重量不符合标准的药瓶,随传输轨道到下一工位时控制器触发剔废口予以剔除[4]。在日常生产的过程中,如果灌装机在进瓶工位、称重工位会出现运转故障,比如进瓶工位和称重皮重工位发生炸瓶故障,西林瓶玻璃碎渣会飞溅到IPC称重工位,操作人员清理不干净不彻底会影响后续称重进而影响灌装精确度。如果在液体灌注后进行毛重称重的时候出现炸瓶故障,液体和玻璃渣都会可能飞溅到IPC称重工位,操作人员清理不彻底会影响后续称重,直接影响灌装精确度。3 压差波动。层流隔离器内部的风压过大或过小也会影响在线称重的称量值[5]。随着中国GMP、中国药典等相关行业法规的升版,对于无菌生产要求的提高,隔离技术在灌装线上变得必不可少。风速设计应该能保证形成稳定连续的单向流,使得敞口的无菌产品得到首过空气(first air)的保护,在生产过程中产生的颗粒能足够被经过高效过滤器过滤的A级条件的单向流带走。在无菌灌装工艺中,通常在线称重系统安装在A级别环境中,在层流风机保护罩内。当风机开启后,风压平衡环境会发生变化,开启风机频率偏大对风压环境破坏冲击,隔离器层流压差波动变得越大,对秤在线称重的数值影响越大,使在线称重重量值偏高,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度受影响。4 静电产生的吸力。静电的大小也会影响在线称重系统的称量值。西林瓶刚经过清洗和高温除热原灭菌工艺,干燥瓶玻璃身如果经过“摩擦”,以及保护罩层流风垂直向下吹扫,容易在表面产生电荷,产生的电荷可为正极或负极,从而带来吸引或排斥的作用,从而可能导致称重显示值大于或小于实际重量。灌装间的湿度和灌装机运行包括在线称重的元器件和模具的旋转都会产生静电现象。当发生静电现象的时候,静电会对经过在线称重模块称量工位时的小瓶产生一个吸力,当产生的静电越大时吸力就会越大,使在线称重模块称量的重量偏离实际重量越多,导致在灌装曲线分析时控制器对灌装泵的位移曲线进行在线修正出现误差,对灌装量的在线调整造成影响从而导致灌装精确度。5 振动的影响。振动对高精度称重的影响是不言而喻的,带有机械运动的设备更难避免自身的震动。尤其是在西林瓶灌装线胶塞锅和压塞工位在在线称重的周围。同时考虑灌装伺服电机本身的刚性不足,导致灌装后期柱塞泵有轻微的晃动会对称重结果产生不利影响,从而对质量控制产生不利影响。为了保证灌装设备称重准确,应当尽可能隔绝或改善可预判的振动源。(5)回吸设置在配方中回吸设置也是影响灌装精度的重要原因,以西林瓶灌装线蠕动泵为例,在正转时会将液体吸入软管,挤压真空,再将其排出,而反转时则是相反的。使得灌装液体时及时回吸,可以实现对锁液回吸效果的调整,避免分装结束时挂滴。根据不同的药品工艺,增加不同的回吸量配方,在不同的情况下调用不同的回吸量和不同的回吸时间配方。回吸量和灌装泵的减速度有着密切关系,回吸量和灌装泵的减速度成正比关系,泵的减速度越小回吸量越小,但是对回吸量设置不能过大或者过小,过大的话会产生少量气泡并且影响下一次灌装,过小的话起不到较好的回吸效果。发生故障后停机的时候对产品的影响,停机的时间如果过于长久,会导致液体干燥,在针头附近形成干燥层,从而影响灌装精度,设置回吸的优点就是避免这种情况发生。03结 论现如今灌装机系统中控制软管长度、层流隔离器风速在0.36~0.54m/s、添加除静电装置等影响灌装精度的可控因素均较有完善控制措施,但是仍需要考虑许多因素,良好的设备应从设计和制造角度尽可能地降低自身和外来因素影响的风险,同时不应忽视正确地操作和稳定的环境条件,也将大大有助于确保系统实现其预期的准确性。现如今液体灌装机行业将持续推进精细化发展,提高灌装机的精度,提高灌装机的稳定性,提高灌装机的可靠性。
  • 大型科学仪器中心对科技创新影响因素分析
    p   大型科学仪器集约化管理与创新能力提升之间存在着多维、动态和复杂的关系,具体表现为大型科学仪器参与创新活动的多模态性、大型科学仪器中心创新服务的多维性和创新能力的多元性。 /p p   从服务创新产出视角看,大型科学仪器中心服务能力包括广度服务和深度服务两个维度。服务广度就是中心为多少单位或人员提供了服务,服务对象越多,频次越高则服务广度越大。为了满足特定科研人员个性化仪器设备利用需求或与科研人员合作开展项目攻关等,需要融入大型仪器设备中心实验操作人员的创新性思维,进行创新性服务。开展深度服务可以理解为满足高质量、高水平的服务需求而投入大量人力和创新型思维的服务。一般而言,深度服务更容易形成高质量、高水平的科技创新产出。 /p p   大型科学仪器中心通过提供广辐射、高质量的服务,最终形成一系列创新产出,且创新产出以科技创新成果、人才培养以及对产业与社会经济的促进等多种形式体现。以大型科学仪器中心的服务为基点,通过对本领域科技创新服务客体的资源凝聚,形成基于服务的合作创新网络,实现以服务促创新的全过程。基于此,科技创新合作网络是基于服务形成的过程变量,囊括了科研院所、高校、企业等不同群体。科技创新合作网络是大型科学仪器中心聚集资源、提高仪器设备利用率的重要载体,通过实现对知识创造能力、知识流动能力、科技创新环境能力三个方面的促进,形成不同形式的科技创新产出,具体包括科技成果、人才培养以及产业促进等。 /p p   大型科学仪器通常从观测、测量、分析等科研需求出发,用于满足特定领域的科学研究(或试验)目的,完成科学研究实验并产生实验数据或结论等。基于机构服务质量与大型科学仪器对创新的贡献属性,根据调研提出“大型科学仪器中心对创新能力影响因素模型”,研究模型中相关变量及其作用关系论述并提出相应假设。 /p p   第一,仪器设备先进性。一般而言,在同一研究领域或针对同一类型的大型科学仪器设备,价值越高代表的先进性程度更高。购置时间近的大型科学仪器往往代表着较先进的科技水平,能够为科技创新活动提供更新的技术手段。 /p p   第二,人力资源能力。“人”是大型科学仪器设备参与创新实践的重要主体,人力资源建设情况特别是仪器设备操作人员水平对创新能力产生重要影响。其中领军人才的学术影响力、资源凝聚力是仪器设备充分利用的关键因素,设备操作人员的操作水平是仪器设备用得好的关键因素。 /p p   第三,服务项目层次。大型科学仪器设备参与创新活动过程中是否需要进行新方法探索、新试验媒介应用以及新设备极限值的突破等,核心在于服务客体的科技创新需求是否明确。一般认为,领域内高端人才在执行高层次科研项目中对仪器设备服务需求较为明确且创新思维强,而研究生为完成学位论文提出的仪器设备利用需求较为常规。 /p p   第四,仪器设备开放环境。大型科学仪器设备使用时长、开放时长越高,仪器设备的利用率越高,或者基于大型科学仪器中心形成的科技创新网络聚集资源的能力越高,对创新产出的支撑越大。 /p p   基于以上研究,提出对策建议如下: /p p   一是加强人力资源建设与储备,提升高水平人才在创新实践中的核心作用。建立基于创新导向的管人用人机制,建立健全完整人员培训制度体系,积极推进开展高层次人才、高级职称人才以及仪器设备技术型人才等复合型人才梯队建设。 /p p   二是重视仪器设备更新与二次开发,充分发挥先进仪器设备在创新硬环境建设中的关键作用。鼓励和引导科研力量投入到大型仪器设备研发,凝练大型科学仪器设备创新型改造升级重大需求和重大任务,激励大型科学仪器设备中心开展仪器设备利用方法创新、介质创新。 /p p   三是优化资源开放共享环境,增强仪器设备支撑科技创新活动的辐射力与影响力。建成跨部门、跨领域、多层次的大型科学仪器设备网络服务体系,通过多样化的创新服务形式,扩大科技创新合作与服务网络,形成院产学研紧密结合的业务合作关系,鼓励大型科学仪器中心从单一服务科研任务向多元化服务、服务“双创”转变。 /p p   四是积极探索与高端创新主体构建稳定创新合作服务网络的适宜机制,提高大型科学仪器中心对高层科研项目的参与度。推动大型科学仪器中心由被动等待服务向主动参与创新转变,创新与高端创新群体的合作方式,建立紧密的科研合作关系。引导大型科学仪器中心提升共享服务能力,利用专享服务通道、专业服务团队等形式激发和吸引高端创新群体的创新服务需求,提高创新服务深度。 /p p style=" text-align: right " span style=" font-family: 楷体, 楷体_GB2312, SimKai "   (此文为摘编版,全文参见2018年《中国科技资源导刊》第6期) /span /p
  • 影响纯水电导率分析仪的电导率测量因素有哪些
    影响纯水电导率分析仪电导率测量的因素主要包括以下几个方面:温度:温度是影响电导率测量最主要的因素之一。纯水的电导率随温度的变化而变化,通常电导率随温度升高而增加。因此,在测量纯水电导率时,需要对温度进行精确控制,并进行相应的温度校正,以确保测量结果的准确性。电极的品质和清洁度:电极的质量和清洁度直接影响到测量的准确性和稳定性。电极应当是高质量的,并经常进行清洁和校准,以避免污染物或氧化物的积聚对测量结果的干扰。电极的响应速度:电极的响应速度影响到测量的实时性和稳定性。快速响应的电极可以更快地达到稳定状态,从而提高测量的准确性。电极的稳定性:电极在长时间使用过程中的稳定性也是影响测量结果的因素之一。良好的电极设计和材料选择可以减少电极的漂移和老化,从而保证测量的长期准确性。环境条件:环境中的电磁干扰、振动或其他外部因素都可能对电导率测量造成影响。因此,在进行测量时,应尽可能在稳定的环境条件下操作,并采取适当的屏蔽措施以减少外部干扰。仪器的精度和校准:仪器本身的精度和校准水平直接决定了测量结果的准确性。定期进行仪器的校准和维护是确保测量结果可靠性的重要步骤。综上所述,纯水电导率分析仪的电导率测量受到温度、电极质量与清洁度、电极响应速度与稳定性、环境条件以及仪器精度与校准等多种因素的影响。正确控制和理解这些影响因素,是确保测量结果准确性和稳定性的关键。
  • 【技术知识】分析影响微量氧分析仪测定结果的4个因素
    微量氧分析仪主要半导体元件用热敏元件和所述金属电阻丝的类型。敏感半导体元件小,热惯性小,大的电阻温度系数,高的灵敏度,一个小的时间滞后。在铂线圈作为传感元件,则内电阻,围绕作为补偿元件的非反应性气体的交界处材料的金属氧化物烧结珠等于铂相同体积的发热线圈。构成该臂作为一个桥式电路,即,一个测量电路这两个部件。金属氧化物半导体气体传感元件吸附法测定的,并发生变化的电导率的速率即,散热元件的状态也改变。在铂线圈的可变电阻的温度变化,则存在在电桥输出电压,从而能够检测气体浓度的不平衡。微量氧分析仪的应用非常广泛,除了通常用于分析氢,氨,二氧化碳,二氧化硫含量和低浓度的可燃气体,也可作为色谱检测分析器,用于分析的其他组件。当我们用微量氧分析仪测量氧含量时数值飘移不定,出现分析结果数据不准确。其主要原因是氧气分析仪使用不当造成,以下仅谈几点影响测定的因素:1.氧气测定仪上的过滤器要洁净。每使用过一段时间就要清洗过滤器或者更换过滤器来确保测得数值不飘移,只有这样才能保证氧气测定仪不被影响,所得数据正确。2.氧气测定仪的环境破坏。在使用氧气测定仪时,环境的好坏也会对传感器进行一定的干扰,适当的清理灰尘和清除污渍,这样对传感器的寿命也会增长使用。3.管道材质的选择。管道材质及表面的湿度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。通常选用不锈钢管和四氟管。4.氧气测定仪的泄漏。氧气测定仪在初次启用前必须严格检漏。氧分析仪只有在严密不漏的条件下才能获得正确的数据结果。任何连接点,焊点,阀门等处的不严密,将会导致空气中的氧反渗进进管道及氧分析仪内部,从而得出含氧量偏高的结果。  相关仪器C1020微量氧分析仪采用了高性能的电化学式气体传感器和微处理机技术,具有数字显示、通迅记录等功能。适用于对氮气、氩气、一氧化碳、氢气等还原性气体中的微量氧气浓度连续监测。
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周二上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月21日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月28日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料8月4日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉8月11日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月18日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月25日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!
  • 臧恒昌解析近红外光谱应用的制约因素
    p   2007年5月的一天,山东大学臧恒昌教授偶遇了近红外光谱,之后的十多年间,他在近红外光谱领域做了很多工作,对近红外光谱的理解也在逐渐深入。 /p p   与很多人的观点不同,臧恒昌对目前近红外光谱的应用态势有自己的看法,他说,“很多报道称近红外光谱技术已经在很多领域或行业得到广泛的应用,但是我了解的情况是近红外光谱的普及程度还很低,仅仅是有些企业采用了或者试用了。可以说,近红外光谱仪在生产过程中的应用还处于初级阶段。” /p p   在采访中,臧恒昌对目前制约近红外光谱应用的因素进行了深入的分析。首先,人才是一个很重要的因素。现在从事近红外光谱研究的人员还不是很多,许多单位想用近红外光谱仪,但是苦于没有或者缺少这样的人才;其次,与一般通用分析方法不同,近红外光谱是一种个性化的分析方法,不同样品、不同应用场景对其模型的建立都有不同的要求,这种个性化的特点,在一定程度上增加了近红外光谱仪的应用难度;再者,相对来说,近红外光谱仪的价格还比较高,尽管需要近红外解决的问题非常多,需求也非常旺盛,可是由于成本的问题很难普及使用。 /p p   此外,在采访中,臧恒昌还介绍了近红外光谱仪未来的发展方向,以及近红外光谱技术在制药领域的应用价值及前景。详细内容请查看如下视频: /p script src=" https://p.bokecc.com/player?vid=A45092B25808EACE9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p br/ /p p br/ /p
  • 解析影响水质检测仪的因素国家标准
    解析影响水质检测仪的因素国家标准 影响因素在使用多参数水质检测仪检测水质过程中,能够影响水质检测的因素主要有来源因素和类别因素。首先是来源因素,在平时的工作中,有时候工作人员会将需要检测的水质样品的来源弄错,这样就会导致无法正确的进行水质结果分析,从而导致无法提供解决问题的方法。其次针对不同的水质样品,应该在多参数水质检测仪上选择不同的参数检测方法。比如地面水质与地下水质所使用的检测方法就大不同。通过对水体的水位、流速和流向的变化及沿岸城市分布、工业布局、污染源及其排污情况、城市给排水情况等可对地面的水质进行初步的采样。但是地下水质的采集就不适用于这种方法,它需要根据水质区域内的城市发展、工业分布情况、土地利用率等情况来进行水样收集。假如没有正确认识到各类水质的差别,就会影响水到质检测的结果的正确性。水资源可利用量是有限的,水资源并不是取之不尽、用之不竭的,因此要重视节约用水和开发利用的关系,节流要抓,开源也要抓。中国已经提出了建设节约型社会的总体要求,《节约用水管理条例》也正在紧张的起草当中,应当以此为契机,积极推广节水技术,积极推进节水意识,大力提高水资源的利用效率,同时严格控制用水总量,实行用水定额控制管理。根据水资源的分布范围和承载能力,正确引导工业产业聚集方式,在节流的同时,加强水资源保护工作,大力改善水环境以及水资源质量,增加可利用水资源总量,在水质问题日益突出,水量相对丰富的地区推行有效的开源措施。将多参数水质检测仪应用到日常加工生产过程中去 国家标准国家标准规定:总大肠菌群(MPN/100mL或CFU/100mL)不得检出;耐热大肠菌群(MPN/100mL或CFU/100mL)不得检出;大肠埃希氏菌(MPN/100mL或CFU/100mL)不得检出;菌落总数(CFU/mL)100。色度不超过15度;浑浊度 NTU 不超过3度;嗅和味 不得有异嗅异味;肉眼可见物不得含有;PH 6.5-8.5;总硬度(以CaCO3计)mg/L 450;铁 mg/L 0.3;锰 mg/L 0.1;铜 mg/L 1.0;锌 mg/L 1.0;挥发酚(以苯酚计)g/L 0.002;阴离子合成洗涤剂 g/L 0.3;硫酸盐 g/L 250;氯化物 g/L 250;溶解性总固体 g/L 1000;氟化物 g/L 1.0;氰化物 g/L 0.05; 氯仿 g/L 60;细菌总数 个/L 100;总大肠菌群 个/L 3;余氯 g/L ≥0.30。 [2]氯化消毒自来水消毒大都采用氯化法,氯气用于自来水消毒具有消毒效果好,费用较低,几乎没有有害物质的优点。但我们经过对理论资料了解、研究,认为氯气用于自来水消毒还是有在一定的弊端。氯化消毒后的自来水能产生致癌物质,有关方面专家也提出了许多改进措施。世界上安全的自来水消毒方法是臭氧消毒,不过这种方法的处理费用太昂贵,而且经过臭氧处理过的水,它的保留时间是有限的,至于能保留多长时间,还没有一个确切的概念。所以只有少数的发达国家才使用这种处理方法
  • 集赞有奖 | 稳定性分析第二期系列讲座 - 产品稳定性的特点分类及影响因素
    大昌华嘉科学仪器部重磅发布第二期稳定性分析系列讲座,本系列课程主要介绍了稳定性分析仪在化妆品领域的应用,并阐述了不同的类型及外界因素对产品稳定性的影响效果。同时,DKSH线下课程注重理论基础和实际操作培训,让用户可以体验高效,精确的稳定性测试技术,欢迎大家报名参加!线上课程:讲师介绍主讲专家介绍——何老师何老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 化妆品企业负责产品研发、质量控制相关负责人◆ 化妆品相关的研究人员、应用工程师识别二维码报名“稳定性分析第二期系列讲座”
  • Zeta电位测试的影响因素
    Zeta电位是反映悬液中颗粒表面带电的重要参数,那么颗粒的悬浮环境必然会对电位产生较大的影响,比如悬液中的pH值、电导率以及小分子组份的浓度等,都会对悬浮颗粒表面产生影响,从而直接影响到体系的Zeta电位和稳定性。为了能够系统的对不同的影响因素考察,我们采用丹东百特的BeNano纳米粒度及Zeta电位分析仪分别对不同体系进行了研究。一、pH值对电位数据的影响将10mg聚丙烯酰胺乳胶球样品分散在10mL纯净水中得到母液,通过添加盐酸和氢氧化钠调节样品pH值,并在不同pH值下检测其Zeta电位,结果如下:图1. 不同pH值下样品的Zeta电位曲线通过曲线可以看到,在pH 2-9范围内,随着pH降低,样品Zeta电位从较高的负值向0趋近。这是由于溶液环境中的[H+]浓度随pH降低逐渐增高,样品表面的负电逐渐被中和,趋向于携带更多的正电荷造成的。二、电导率对电位数据的影响采用Duke的聚苯乙烯乳胶球作为研究对象,通过加入不同浓度的氯化钠水溶液来配置一系列不同电导率的乳液,测试其Zeta电位,结果如下:图2. 不同电导率下样品的Zeta电位曲线从上图中可以看到随着电导率的变大,Zeta电位绝对值呈变小的趋势。这是因为在溶液中离子强度与盐的价态和浓度相关。盐的价态越高,浓度越高,离子强度越高,对于颗粒表面电势屏蔽作用越强,颗粒的Zeta电位相应的越低。三、组成成分浓度变化对电位数据的影响采用一款纳米金刚石粉末作为原料,然后将该粉末分别悬浮在含有不同浓度的乙醇胺的水溶液中,在相同条件下分别测试该金刚石颗粒的Zeta电位,数据如下:通过上表可以看出在加入不同量的乙醇胺的环境中,样品的Zeta电位有明显差别。3个样品的Zeta电位均为负值,说明纳米金刚石在这三个环境中均携带负电荷。分散在水中的1#样品的电导率较低,其Zeta电位在-20 mV以上相对较高,而分散在醇胺溶液中的2#和3#样品电导率高于水,Zeta电位明显降低。说明乙醇胺的存在明显对金刚石表面电荷有抑制作用,浓度越高,其体系也越不稳定。
  • 你知道影响油品密度测定的因素有哪些吗?
    得利特简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。油品密度测定的影响因素解析油品密度测定的影响因素 油品在经过加工处理之后,往往需要对油品的密度进行检测,通过检测将不同油质的油品进行分类加工,然后将其通过合理的处理进行在包装,投入到社会的发展过程中去。但是在油品密度的检测往往会受到外界因素以及其他因素的影响,最终有可能造成对油品质量分析造成误差,使相关的油品不能够得到有效的利用。在进行检测的过程中,油品密度往往会受到温度,挥发性,粘度以及环境的影响。1.温度与油品密度测定的关系环境温度对密度计读数的影响也足以让测定结果产生偏差,一般油品的温度变化系数r值为0.00052-0.00107,因此,在密度测定过程中要注意环境温度变化的影响,防止一些不当的操作。对汽、煤、柴等轻质油品要注意油温与室温的差别,南方与北方的气温变化差别很大,特别是北方的气温,在春、夏、秋季与南方的状况无异。一般油温与室温相差不大,测定汽油、煤油、柴油等轻质油品密度时,大多数在室温条件下测量,试样和分析测试仪器两者温度基本一致,密度计在试样中停留短时间就可平衡,测定过程中温度计的读数很快就会稳定,而冬季则要注意,冬季时油品的温度―般在5~10~C,但实验室的室温会比油品的温度高,原因是实验室有取暖设施,因此,测定时要么将油品放置一段时间,使其温度自然上升,要么将油品在水溶中稍微加热,总之,要使测定时油品温度稳定,尽可能减少环境温度对密度测定的影响。2.挥发性及粘度对油品密度测定的影响要准确测定油品,特别是原油的密度是一项较困难的T作,这是由于原油的性质所决定的。原油是各种经类的混合物,原油的组成不同其性质也就各异。要测定原油的密度,从采样到实验室测定应尽量减少中间环节,防止轻组分的挥发,测定时原油的温度要适当,这一点至关重要。温度过高,测定时间过长,会导致轻组分挥发,使测定结果偏高 温度太低,原油粘度大(成糊状)使密度计不能自由沉浮而达到自然平衡状态,也将使测定结果偏高。3.环境因素对油品密度测定的影响在测定油品密度过程中,气流也会对测定结果产生影响。在测定工作时,气流越大,油品表面蒸发越大,轻组分挥发越严重,从而导致密度测定结果偏高。目前使用密度计法测定油品密度时,基本上都是在实验室内进行,但如果遇到特殊情况,如有货物利益人申请要求在采样现场进行检验,就必须在室外环境进行检验。在实验室条件下,要保证无气流产生是很容易满足的,只要关好门窗,关掉抽风机,避免人员频繁走动就可基本达到条件,但在室外的条件下,就要选择良好的避风点,测定过程要做到快而准,这种环境要求检验人员必须具备熟练的现场操作水平。综上所述,通过对环境因素以及挥发性,粘度、温度等因素的分析,本文对影响油品密度测定过程中的因素以及相应的检测方法进行了详细的论述。在未来的发展过程中,油品质量的好坏将直接影响其产生的效益,所以提高对油品密度测定影响因素的分析,减轻分析过程中以上因素的影响比重,将有效的提升油品密度测定的准确性。
  • 粘度的测量以及影响因素
    您如何准备要测量的样品? 在流变和粘度测量中,样品制备都会影响测量结果。 在低剪切速率下测量样品时尤其如此。 1.重要的是在测量前不要摇动或搅拌样品,因为这会使样品承受无法确定的剪切载荷,除非样品有沉淀或其他分离现象。在这种情况下,将需要使用一致的方法和工具进行搅拌或摇动。 2.您的涂抹方法也应保持一致,例如汤匙或抹刀。 3.移液器或注射器的应用仅适用于油,树脂或溶剂。对于其他物质,这些施加方法将增加剪切载荷,这将减小测量值和偏斜结果。 4.尝试确保没有气泡,因为它们可以模拟非牛顿行为并提供错误的测量结果。 5.您使用的样品量必须与您使用的测量方法相匹配。样品太多或太少都会导致测量误差。 6.按照指导等待时间。制备可能会对样品产生压力,然后需要恢复期。将测量系统放置到位后,可能需要重新生成样品结构,然后才能进行准确的测量。 7.您还必须确保防止样品干燥,因为这会导致测量值过高。 哪些因素会影响粘度测量? 尽管测量流体粘度的过程可能看起来很简单,但是如果这些测量将是准确的,则有一些因素需要考虑。 温度是关键因素。温控浴的功能是在整个过程中保持精确的温度。您应该能够将浴温控制在所需温度(通常为40或100°C)的0.02°C以内。 有温度控制的浴缸系统,使您可以更轻松地完成此操作。 在毛细管粘度计中,U形玻璃的直径必须精确才能精确测量。因此,这些玻璃通常使用低膨胀硼硅酸盐玻璃制造。这有助于最小化误差,并每年重新校准毛细管粘度计。 在两次测量之间使用无残留溶剂彻底冲洗并干燥也很重要。 粘度计的尺寸会有所不同,以测量不同类型的粘度。无论仪器大小如何,他建议粘度计进行测量的最短时间应为200秒。这允许流体在标记点之间通过。
  • 全球近红外市场复合年增长率超9% 三大市场驱动因素全解析
    p   日前,Technavio发布最新的调研报告,全球近红外光谱(NIRS)市场在预测期间(2017年-2019年)将以超过9%的复合年增长率的速度增长。 /p p   该市场研究包括了便携和台式两类产品,其中2016年,台式产品占比超过57%。 /p p   根据Technavio负责实验室设备研究的首席分析师Krishna Venkataramani的说法,“NIRS技术在食品和饮料行业的应用越来越多,NIRS分析需要很少或不需要样品制备,并可以实现样品的快速分析,这对质量评估至关重要。” /p p style=" text-align: center " img width=" 400" height=" 310" title=" Near_Infrared_Spectroscopy_Market.jpg" style=" width: 400px height: 310px " src=" http://img1.17img.cn/17img/images/201706/insimg/f949c2c0-69fd-467b-ae17-49dcbcb76766.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   Technavio分析人士还给出了三大市场驱动因素,这些因素将为全球NIRS市场的增长做出贡献: /p p   strong  NIRS在过程监控中的使用越来越多 /strong /p p   过程监控包括对工业生产过程中的每一步进行评估,例如,在化学和制药行业,对生产过程的良好了解可以保证安全,提供更好的产量,减少损耗的产生。过程监控控制着不同过程阶段,从而提高了药物生产的质量,减少了不合格批次的数量和进入市场所需的时间。因此,对于过程的一致性和重现性,过程监控是一个重要的工具。 /p p   NIRS可以对进程进行实时监控。例如,通过收集完整药片的NIR反射光谱,可以用来确定用于药片的聚合物包衣的数量,这是一个包衣过程监控的简单方法。 /p p strong   食品营养评价的需求在增加 /strong /p p   对动物和人类食物评估的准确性非常重要,生产羊毛、肉、牛奶和鸡蛋的动物需要足够的营养以保证健康。在人体内,营养可以确保身体健康,预防疾病。因此,食品的质量在消费前必须进行检验。非破坏性的NIRS可以精确测量和检验食物的质量。 /p p   NIRS装置通常用于分析动物和人类食用的食物的质量,准确的检测是由负责食品质量的国家和国际机构强制执行的。NIRS通常用于衡量食品和饮料的营养价值。例如,NIRS被用来分析水、蛋白质、油、纤维、矿物质和碳水化合物的主要成分,它也被用于质量分析。 /p p strong   无创诊断技术的兴起 /strong /p p   近年来,NIRS通常被用于疾病诊断和脑组织血流动力学分析。由于是无创的技术,NIRS提供了关于静脉血的重要信息,这对心脏外科和神经外科非常重要。“人体的无创检测,对改善生活质量、减少患者并发症起着重要的作用,无创血糖检测就是其中一种方法。” Krishna说。 /p p   NIRS被认为是最有前景的分析工具,它可以在不造成疼痛的情况下提供结果。它的临床应用包括对胎儿新生儿大脑,以及成人肌肉的监测。最近,它已经被用于对成人和儿童的神经系统的评估。 /p
  • 玻璃化转变温度:定义、影响因素及应用
    玻璃化转变温度是指无定形或部分无定形的非晶态材料在熔点以下温度发生结构变化时所经历的一种状态转变。这种转变会导致材料在某一温度范围内出现明显的热胀缩现象,并伴随着比热容、热导率等物理性质的变化。玻璃化转变温度对于材料的使用性能和使用范围具有重要影响,因此被广泛应用于材料科学和工程领域。上海和晟 HS-DSC-101A 玻璃化转变温度测试仪玻璃化转变温度的定义是指非晶态材料在加热过程中,从玻璃态转变为高弹态的温度。这个转变过程通常伴随着比热容的增大和热导率的降低。玻璃化转变温度的计算方法通常采用动态力学分析法,通过测量材料的储能模量和损耗模量的变化来确定。影响玻璃化转变温度的因素有很多,其中主要包括温度、应力、压力、光照等因素。温度对玻璃化转变温度的影响最为显著,通常情况下,随着温度的升高,玻璃化转变温度会降低。应力也会对玻璃化转变温度产生影响,例如,在应力的作用下,材料的玻璃化转变温度会发生变化。压力对玻璃化转变温度的影响与应力类似。此外,光照等因素也会对某些材料的玻璃化转变温度产生影响。玻璃化转变温度在材料科学和工程领域有着广泛的应用。例如,在汽车制造业中,通过对塑料制品的玻璃化转变温度进行控制,可以实现对材料使用性能和使用范围的有效管理。在建筑材料中,通过对玻璃化转变温度的测量和分析,可以实现对建筑材料的有效监控和管理。总之,玻璃化转变温度是材料科学和工程领域中一个重要的概念。通过对玻璃化转变温度的研究和控制,可以实现对材料性能的有效管理,从而推动材料科学和工程领域的发展。未来,随着材料科学和工程领域的不断发展,玻璃化转变温度的研究和应用将会得到更加深入的拓展和应用。
  • 干货|7大因素影响激光粒度测试结果
    p style=" text-indent: 2em " 编者按:粉体的粒度及粒度分布是衡量产品质量的关键性指标,而目前最火的粒度检测方法之一就是激光粒度仪了。这种粒度检测方法不受温度变化、介质黏度、试样密度及表面状态等诸多因素的影响,具有测试速度快、测量范围广、便捷易操作等特点。放眼市场,激光粒度仪的品牌和型号也可谓五花八门,琳琅满目。但值得称道的激光粒度仪虽然不胜枚举,却仍然会收到诸多因素的影响,造成检测结果的不稳定。太原理工大学矿业工程学院的专家张国强就深度剖析了7大影响激光粒度仪检测结果的因素。 /p p style=" text-indent: 2em " 专家观点: /p p style=" text-indent: 2em " 目前市面上的激光粒度分析仪其基本原理均为米氏散射理论及其近似理论。包括测量纳米级颗粒所使用的动态光散射原理也是借助米氏散射理论而补充完善起来的 。米氏散射理论把待测颗粒等效成各向同性的球形粒子,在入射光照射下根据麦克斯韦电磁方程组,可以求出散射光强角分布的严格数学解。 利用米氏散射理论的基本公式进一步求出此时散射光强分布对应的颗粒粒径。米氏散射理论通过测量待测样品的散射光强分布巧妙地解决了超细颗粒的粒度测量问题,但由于基于米氏理论的激光粒度测量技术本身的复杂性,提前预先设定的边界条件并不能全面地反映实际样品的具体情况。 同时商品化的激光粒度分析仪由于受生产厂家技术实力水平的限制,导致各厂家仪器的内部构造与算法程序等方面均存在差异。 /p p style=" text-indent: 2em " 为探究粉体粒度测试评价用标准样品的特性,为激光粒度分析仪生产厂家提供优化仪器性能的理论依据,为粒度检测用户提供评价激光粒度测试结果可靠性与准确性的依据。下面我将对激光粒度仪测试结果的重要影响因素进行分析: /p p style=" text-indent: 2em " (1)复折射率 /p p style=" text-indent: 2em " 激光散射法粒度测量的对象一般是微米级的粒子,这些粒子的光学常数并不能简单看成 /p p style=" text-indent: 2em " 粒子材料的光学性质,而是指颗粒的复折射率n’,其定义为:n‘=n+ik。其中 n 为通常所说的折射率,虚部k表示光在介质中传播时光强衰减的快慢,即吸收系数,有时也被称作吸收率。 /p p style=" text-indent: 2em " 复折射率的选择合适与否直接影响到粒度检测结果的准确性与可靠性,但是影响待测颗粒复折射率的因素较多,难以确定其准确值,所以到目前为止在激光粒度测量领域中仍旧没有确定复折射率的统一方法 。在实际的粒度检测过程中,一般只是对同种物质使用一个固定的复折射率,这样的测量结果必然会与样品的真实值有较大偏差。 但是如果针对不同粒 /p p style=" text-indent: 2em " 度区间的颗粒都去寻找其复折射率,却又不现实的。 /p p style=" text-indent: 2em " (2)折射率 /p p style=" text-indent: 2em " Mie 散射理论是麦克斯韦电磁方程组的严格解,激光法检测的前提假设是粉体粒子是球形且各向同性的,大多数晶体在不同的方向上有不同的折射率。由于不同厂家的设备中光能探测器的数量、空间分布位置、灵敏度的不同也会导致检测结果的差异。 /p p style=" text-indent: 2em " (3)内置算法 /p p style=" text-indent: 2em " 由于光强分布的差异,不同粒度仪生产厂家所采用的软件内置算法不同,造成系数矩阵的计算结果差异,由此给反演带来不同程度的误差。 /p p style=" text-indent: 2em " (4)内外复折射率 /p p style=" text-indent: 2em " 球形石英粉等颗粒,在高温环境下烧灼成型。由于既要成球,又要熔透转变为非晶型或不定形,其技术难度很高。 所以在生产过程中会有部分无定形态的熔融石英包裹在结晶石英上,以及熔融石英内部含有空心气泡。这种颗粒被称为双层颗粒,颗粒内外复折射率不同,导致激光法测量时可能带来较大误差,据相关文献,最大误差可能超过 50%。 /p p style=" text-indent: 2em " (5)反常异动现象 /p p style=" text-indent: 2em " 有研究者发发现在有些折射率下对于部分粒径区间,随着粒径的变小,散射光强分布主峰会向探测器内侧移动,而正常情况下应向探测器外侧移动,从而影响粒度检测的结果。 这种现象被称为散射光能分布的反常移动现象。 /p p style=" text-indent: 2em " (6)分散状态 /p p style=" text-indent: 2em " 使用激光粒度仪检测过程中,需注意保证待测颗粒处于良好的分散状态。 当前市面上的主流激光粒度仪, 基本上都带有离心循环分散和超声分散两种分散模式,所以对于这种类型仪器的用户,不建议测试前的机外分散, 因为在用烧杯将分散后的溶液导入循环槽的过程中极易在杯底残留部分大颗粒,导致测试结果产生误差。 在仪器中分散样品时,应注意根据物料性质调整超声和离心循环分散的功率,太大容易导致气泡的产生,太小则容易导致分散效果变差和大颗粒沉底。 /p p style=" text-indent: 2em " (7)仪器的保养程度 /p p style=" text-indent: 2em " 激光粒度仪的保养程度,对检测结果有较大影响。激光粒度仪需要定期标定维护。在实际的使用过程中发现,部分样品极易在测试过程中附着在仪器的管路内部,从而混入之后的测试样品中带来测试误差。而仪器自带的清洗功能很难解决这类问题,需要在激光粒度测量中引起足够重视。 /p p style=" text-indent: 2em " 鉴于激光粒度测量过程中的影响因素过多,各种样品不同粒级区间的复折射率难以确定,所以目前来看并没有可靠地依据来证明激光粒度测试的准确性,这也是激光粒度检测急需解决的问题。在对粉体粒度要求较高的领域,可以采用多种粒度检测手段,综合比较检测结果,来得到较为可靠的粉体粒度值。此外研制并推广国家及行业内认可的激光粒度分析标准样品,也是一个解决激光粒度检测差异性的实用方法。 /p
  • 【瑞士步琦】巴爷爷的博客——蛋白质保存:影响冷冻干燥配方的关键因素
    蛋白质保存影响冷冻干燥配方的关键因素冻干应用”用于生物制药的蛋白质和多肽的冷冻干燥是一个复杂的过程,存在许多挑战。在这篇文章中,我们会讨论了影响配方冷冻干燥的关键因素,来确保蛋白质的保存。冷冻干燥配方通常经过精心设计,以保持燥材料的完整性、稳定性和生物活性。这对于药品、生物制药或某些食品等敏感材料尤为重要。生物制药冷冻干燥的原因有很多,它们可能在液态下不稳定或有严格的储存要求。冷冻干燥非常适合不需要进一步加工的产品,因为它们可以在小瓶中干燥并在加工后立即密封以避免污染。生物制药制剂由提供所需效果的活性成分(例如蛋白质或多肽),为了保持其生物活性,需要添加称为赋形剂(成分)的其他物质,从而形成一种非常适合冷冻干燥的组合物。用于生物制药制剂的辅料清单填充剂:甘露醇、蔗糖或乳糖等材料可增加体积并有助于形成稳定的基质。冷冻保护剂:甘油或二甲基亚砜 (DMSO) 等物质,可保护活性成分免受冷冻应激。石松保护剂:它们在干燥阶段保护活性成分,包括蔗糖或海藻糖等糖。稳定剂:有助于保持配方的pH值和离子强度的缓冲液等成分。表面活性剂:这些用于稳定蛋白质和其他敏感分子的聚集。防腐剂:如果产品容易受到微生物生长的影响,则保护产品。溶剂:溶剂的选择至关重要,通常使用水。在特殊情况下,也可以使用有机溶剂。辅料的选择取决于多种因素。就像某些植物需要特定类型的堆肥或土壤一样,生物制药的活性成分需要正确的配方才能茁壮成长。尽可能多地了解要冷冻干燥的材料的性质是很重要的,包括它在不同条件下的稳定性和冷冻干燥产品的预期用途。就像在我的花园里一样,在准备土壤之前,我需要了解我正在种植的植物或种子的类型。辅料的选择取决于多种因素。对于蛋白质而言,它们的长期稳定性与制剂的含水量及其构象结构有关。蛋白质需要水来避免变性,在选择蛋白质溶剂时应小心。此外,应使用海藻糖等保护剂来稳定分子,以帮助其保持其功能活性。问成功冻干的关键化合物特性是什么?答热特性有多种分析方法可用于确定化合物特性,例如差示扫描量热法 (DSC)、傅里叶变换红外光谱法(FTIR)等。为了成功冻干,需要了解目标蛋白质或多肽的热特性。DSC是评估蛋白质和多肽热稳定性的强大技术。它测量与材料相变相关的热流作为温度的函数。量热法可以为实验者提供配方的重要特性,如:玻璃化转变温度,Tg:非晶态材料转变为玻璃(脆性)状态的温度。在冷冻干燥中,在初级干燥过程中将产品保持在Tg以下以保持结构和稳定性至关重要。熔点,Tm:固体物质变成液体的温度。在冷冻干燥中,必须了解Tm,以避免在过程中熔化,以保持产品的完整性。结晶温度,Tc:溶质在冷冻过程中结晶的温度。如果不希望结晶,则必须避免此温度。反应热,ΔH:与化学反应相关的热变化。了解 ΔH 有助于预测和控制相变期间所需或释放的热量,确保冷冻、初级干燥和二级干燥阶段之间的平稳过渡。比热容,Cp:将单位质量物质的温度改变一摄氏度所需的热量。Cp 至关重要,因为它有助于确定需要供应或去除的热量,以实现所需的温度变化,确保高效和有效的干燥。另一种分析技术是冻干显微镜,它有助于确定塌陷温度(用Tc表示)。这是产品结构在干燥阶段开始塌陷的温度。了解 Tc 对于设置适当的货架温度以避免 Tg 和 Tm 至关重要。了解会影响热特性的几个因素缓冲液:这会影响热稳定性。将pH值保持在接近蛋白质等电点的缓冲液可增强稳定性。蛋白质或多肽的浓度:也会影响热稳定性。因此,在代表最终产品的浓度下进行热表征非常重要。扩大工艺规模:由于浓度不同,这可能需要重新评估热特性。辅料:还必须考虑辅料对所列热特性的影响。问如何优化冷冻阶段?答使用乙醇混合物进行快速冷冻是首选冻结速率和最终冻结温度会影响冰晶的形成和大小,进而影响升华速率。产品必须在足够低的温度下冷冻,以确保其完全冷冻。这个冷冻阶段创造了蛋白质将被嵌入的结构。如果这不正确,蛋白质将失去其活性并被锁定在错误的构象中或失去其完整性。对于蛋白质和多肽,最好储存在 -80℃ 下,因此不建议在 -20℃ 下缓慢冷冻。使用乙醇混合物进行快速冷冻是首选,因为它会导致形成更小的冰晶,这有利于维持蛋白质的稳定性。问影响干燥阶段的关键因素是什么?答终点测定在处理蛋白质和多肽时,干燥阶段至关重要。太快或太慢,要么会破坏蛋白质结构,要么最终得到不充分干燥的产品。初级干燥是最长的阶段,我们必须设置适当的腔室压力和货架温度。设置系统压力的最佳方法是使用热电偶或其他温度探头确定产品温度,然后找到该温度下相应的冰蒸气压。终点测定对于确保所有冰都已从产品中升华非常重要,因为残留的水分会影响稳定性和保质期。另外,不要不必要地延长干燥阶段,因为它既不节省成本,也不节能,甚至有可能导致产品损坏。终点测定的方法多种多样,包括温差测试(样品和货架之间)、压差测试和压升测试。BUCHI 冻干机BUCHI 冻干机搭载 Infinite TechnologyTM,具备丰富实验室蒸发经验,精巧灵活高性能,模块化的配置,且可以通过实施自动终点测定来自动确定终点。这种跟踪干燥过程的过程分析技术允许实时调整,从而加快优化过程。自动终点确定为监控过程可重复性提供了必要的工具,确保了批次之间的一致性。终点测定的使用可防止过早过渡到后续干燥阶段,从而确保最佳干燥结果。初级干燥后,由于水分子紧密结合,通常有 5-10% 的残余水分含量;因此需要二次干燥。目标是使结合的水汽化,这通常是在较低的压力和较高的温度下完成的。然而,如果温度过高,可能会导致蛋白质或多肽的降解。二次干燥对于确保稳定性和保质期很重要。虽然蛋白质在干燥过程中会变得不稳定(变性),但只要折叠机制是可逆的,蛋白质就可以完全复叠(复性),并且在复溶后仍显示出药物稳定性。
  • 影响氧气检测仪的测量结果因素
    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体的检测原理。 影响氧气检测仪测定的因素:1.氧气检测仪的污染。 在重新使用氧检测仪时,首先须留意在连接取样管路时是否漏进空气,并且必须认真将漏进的空气吹除干净,尽量不使大量氧气通过传感器以延长传感器寿命。2.氧气检测仪气路系统的简化及洁净。 微量分析要求必须有效排除气路上的各种管件,倒角机阀门,表头等中的死角对样气以致的污染。因此,手动弯管机应尽可能简化气路系统,选用死角小的连接件等。3.管道材质的选择。管道材质及表面粗糙度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。通常选用铜管或不锈钢管。
  • 浅谈影响数码显微镜分辨率的两大因素
    p style=" text-align: justify text-indent: 2em " 数码显微镜是在传统显微镜上增加了数字图像传感器CCD或CMOS的显微镜,与计算机、图像处理、自动化、互联网等技术相结合,可衍生出多种产品和应用,如自动显微镜、数码互动显微镜、数字切片扫描仪等,能给用户带来极大的便利,在教学、医疗、科研等领域得到广泛的应用。 /p p style=" text-align: justify text-indent: 2em " 作为传感器,人眼和数字图像传感器CCD/CMOS主要有两方面的不同:一是数字图像传感器是由很多离散的感光器件组成,用其作为传感器接收显微图像,实际上是一个数字化过程(也称为空间采样)需要满足采样定理即奈奎斯特定理,这样图像才能准确重建;二是数字图像传感器的响应波长与人眼不一样,所以会受光源光谱特性的影响。本文从空间采样率和光源这两方面来分析对数码显微图像分辨率的影响。 br/ /p p style=" text-align: justify text-indent: 2em " strong 空间采样率对数码显微图像分辨率的影响 /strong /p p style=" text-align: justify text-indent: 2em " 奈奎斯特采样定理是指将模拟信号转化为数字信号时,要求采样频率f sub s /sub 要大于模拟信号中最高频率f sub max /sub 的2倍,即f sub s /sub >f sub max /sub 才可以通过采样之后的数字信号准确地重建出模拟信号。对于显微图像的数字化,其最高频率就是由物镜的极限分辨率决定的,采样频率也称为空间采样率,一般实际应用时要求空间采样率为物镜的极限分辨率的2.8倍左右。 /p p style=" text-align: justify text-indent: 2em " 显微镜的极限分辨率r是由物镜的数值孔径NA和波长λ决定的,满足式① span style=" text-align: center " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span img src=" https://img1.17img.cn/17img/images/202004/uepic/afecb7f6-313d-4fe3-a7d7-3a936fe605d8.jpg" title=" 1.png" alt=" 1.png" style=" text-align: center max-width: 100% max-height: 100% " / /p p 因此波长越短,显微镜的极限分辨率越高。 /p p style=" text-align: justify text-indent: 2em " 空间采样率s的计算式②为 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/6bfc528d-423f-46a1-8292-e3823f507b7c.jpg" title=" 2.png" alt=" 2.png" / /p p 式中p为数字图像传感器像素的边长;β1为显微物镜的放大倍率;β2为摄像镜头的放大倍率。 /p p style=" text-align: justify text-indent: 2em " 因此改变摄像镜头的放大倍率,可以改变空间采样率。选用一组不同放大倍率的摄像镜头实现不同的空间采样率,以研究空间采样率对数码图像分辨率的影响。具体实验条件如下: /p p style=" text-align: justify text-indent: 2em " 显微镜:BA310显微镜。 /p p style=" text-align: justify text-indent: 2em " 光源:白光LED和卤素灯(可互换),带有550/20nm的干涉滤色片。 /p p style=" text-align: justify text-indent: 2em " 显微物镜:根据式①,其极限分辨率为0.45μm。 /p p style=" text-align: justify text-indent: 2em " 摄像头:CM3-U3-50S5M黑白摄像头,像素边长为3.45μm。 /p p style=" text-align: justify text-indent: 2em " 观察标本:采用USAF1951鉴别率板(如图1)所示,40× /0.75显微物镜可观察的极限线对数为2048(11-1组)。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 350px height: 350px " src=" https://img1.17img.cn/17img/images/202004/uepic/900c84e7-0400-490e-9b1e-df00bd23a1ba.jpg" title=" 3.png" alt=" 3.png" width=" 350" height=" 350" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图1 USAF1951鉴别率板 /strong /span /p p style=" text-align: justify text-indent: 2em " 摄像镜头倍率:0.35× 、0.5× 、1× 分别对应三种不同的采样率,采集的图像如图2所示,结果如表1所示。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 128px " src=" https://img1.17img.cn/17img/images/202004/uepic/10ab04e3-b4cb-4324-9054-967b80dfda29.jpg" title=" 4.png" alt=" 4.png" width=" 450" height=" 128" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图2 不同摄像镜头下的数码显微图像 /strong /span br/ /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 表1 不同摄像镜头下的数码显微图像分辨率 /strong /span br/ /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/73950d5f-a61d-41aa-a1f6-1430b39f3040.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 由此可见,在没有满足采样定理的情况下即欠采样,数码显微图像分辨率会降低;在过采样的情况下,并不会带来数码显微图像分辨率的提升。 /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 光源对数码显微图像分辨率的影响 /span /strong /p p style=" text-align: justify text-indent: 2em " 式①提及的波长λ是最终被传感器接收的波长,此波长与传感器响应曲线和光源光谱特性有关。作为传感器,人眼的响应波长为400~700nm,即通常说的可见光,如图3所示。而对于数字图像传感器CCD/CMOS,其响应波长更宽,包括人眼不敏感的紫外和近红外部分,其中近红外的波长更长,如图4所示,这会导致显微镜分辨率的下降。因此当光源的光谱包含有人眼不敏感的近红外光谱或者紫外光谱时,在使用数字图像传感器时就会有影响。显微镜中常用的光源有白光LED和卤素灯,其中白光LED的光谱是450~700nm,如图5所示,与人眼的响应曲线比较接近,而卤素灯的光谱为400~2500nm如图6所示,包括了更长波长的红外部分。在分别使用卤素灯和白光LED时,由图像传感器得到的结果是有区别的,如图7所示。 /p p style=" text-align: center text-indent: 0em " & nbsp img style=" max-width: 100% max-height: 100% width: 350px height: 241px " src=" https://img1.17img.cn/17img/images/202004/uepic/63e10ec6-6db0-4cb4-b480-df43cecc4f65.jpg" title=" 6.png" alt=" 6.png" width=" 350" height=" 241" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图3 人眼的响应曲线 /strong /span br/ /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong img style=" max-width: 100% max-height: 100% width: 400px height: 221px " src=" https://img1.17img.cn/17img/images/202004/uepic/4d151923-4162-4ff6-bed0-c4d379380b4b.jpg" title=" 7.png" alt=" 7.png" width=" 400" height=" 221" border=" 0" vspace=" 0" / /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图4 相机的响应曲线 br/ /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong img style=" max-width: 100% max-height: 100% width: 350px height: 278px " src=" https://img1.17img.cn/17img/images/202004/uepic/263ba96b-37c6-4d8e-97a9-d1bf32f59d6c.jpg" title=" 8.png" alt=" 8.png" width=" 350" height=" 278" border=" 0" vspace=" 0" / /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图5 LED光谱曲线& nbsp /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong img style=" max-width: 100% max-height: 100% width: 350px height: 263px " src=" https://img1.17img.cn/17img/images/202004/uepic/90d67a50-f6b4-43da-bac1-93120d97ba89.jpg" title=" 9.png" alt=" 9.png" width=" 350" height=" 263" border=" 0" vspace=" 0" / /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图6 卤素灯光谱曲线 br/ /strong /span /p p style=" text-align: justify text-indent: 2em " 表2为不同光源下的数码显微图像分辨率,可以发现,人眼在不同光源下观察到的极限线对是一样的,都是2048线对,而对于数码显微图像,采用卤素灯时,观察到的分辨率会有所下降。主要原因在于卤素灯有红外光谱,人眼直接观察时会将红外部分滤掉,所以效果与LED相当,而数字图像传感器可以响应卤素灯的红外波长,所以分辨率会下降。解决办法就是数字传感器前放置一个红外滤色片(俗称IR-cut),将卤素灯的红外部分滤除,得到接近于人眼的响应曲线,这样就与目视观察结果一致。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 215px " src=" https://img1.17img.cn/17img/images/202004/uepic/af939b79-1302-4765-828c-3e42b08ace0c.jpg" title=" 11.png" alt=" 11.png" width=" 450" height=" 215" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 图7 卤素灯和LED时的数码显微图像 /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong 表2 不同光源下人眼观察与数码显微图像分辨率的比较 br/ /strong /span /p p style=" text-indent: 0em text-align: center " span style=" font-size: 14px " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c1631144-1358-4af5-b3e3-51da6e4b4c82.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /strong /span /p p style=" text-align: justify text-indent: 2em " 因此在使用数码显微镜时,应严格遵从采样定理,并深入研究数码显微镜各个关键部件,这样才能选择合适的摄像镜头、光源、滤色片等,才能满足采样定理,准确重建出数字图像,达到最佳的观察效果。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(127, 127, 127) " i span style=" font-size: 14px " 本文摘自:陈木旺. 浅析数码显微镜分辨率的影响因素[J]. 光学仪器, 2017, 40(3). /span /i /span /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan& hmpl=ling& hmcu=& hmkw=& hmci=" target=" _self" img src=" https://img1.17img.cn/17img/images/202004/uepic/8e3999fc-35db-4591-8d2d-1da82b8fafb0.jpg" title=" 10.png" alt=" 10.png" style=" text-indent: 2em text-align: center max-width: 100% max-height: 100% " / /a /p p style=" text-align: justify text-indent: 2em " strong 讲座: /strong 《四合一数码显微镜,多种难题一机解决!》 /p p style=" text-align: justify text-indent: 2em " strong 时间: /strong 2020年4月22日 10:00 /p p style=" text-align: justify text-indent: 2em " strong 主讲人: /strong 夏天齐Draven,基恩士公司显微/3D测量系统部门,显微镜技术负责人,负责数码显微镜的技术支持工作。 /p p style=" text-align: justify text-indent: 2em " strong 内容: /strong 很多用户在使用光学/金相/测量显微镜时,经常会遇到景深小、倍率低、需要另外准备光源、不能直接拍摄图片等困难,而一台数码显微镜可以轻松解决以上问题。此次讲座旨在让更多客户了解到数码显微镜能解决的常规问题(讲座中有实机演示);作为技术储备,认识到该产品的一些功能和应用场景等;搭建交流平台,与行业内人士互动等。 /p p style=" text-align: left text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meeting_13067.html?hmsr=zixuan& hmpl=ling& hmcu=& hmkw=& hmci=" target=" _self" strong style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 免费报名参会:点击即可链接到报名官网 /span /strong /a /p
  • 选择汞分析仪时应考虑的因素
    为什么选择适合的汞分析仪很重要?NIC认为汞分析不仅仅是为了满足合规性要求或研究的目的。它可以帮助人类和环境免受汞这种有毒元素的潜在危害。选择错误的汞分析仪可能导致不准确的测量结果或未能检测到汞的结果,从而使人类和环境面临未知的风险。使用正确的汞分析仪,可以帮助做出明智的决定和制定相应的政策,保护人类和环境的健康和安全。如果您不确定选择哪种汞分析技术,请继续阅读以了解在选择汞分析仪时应考虑的事项。1. 敏度和检测技术汞分析要求灵敏度- 分析仪检测低浓度汞的能力,以及检测要求-规定最低检测限的监管标准或研究目标。汞分析的最终目的是实现其特定目标 – 达到监管标准、满足客户要求,或进行相关研究。在实验室进行环境汞分析时,特定的监管方法规定了要使用的分析仪类型,最低检测限因所分析的环境介质而异。相反,出于研究目的,灵敏度和检测要求可能会因研究目标而异。研究人员可能需要更灵敏的检测方法,有时还会使用多种仪器组合来达到研究目的。选择适当的汞分析技术取决于分析的具体目标和目的。通过了解灵敏度和检测限方面的分析要求,您可以选择适当的汞分析仪以获取正确结果。汞分析中有两种常用的检测器:CVAAS和CVAFS。这两种方法都需要先将汞从样品溶液中气化出来,然后再将汞蒸气转移到由空心阴极灯照射的光学检测池。两种检测器的光学器件具有不同的几何构造,其中CVAAS在检测器和阴极灯之间为直接路径,测量吸收信号,而CVAFS的检测器和阴极灯垂直布局,测量发射光。CVAFS比CVAAS更灵敏,因此更适合低浓度汞的检测。与CVAAS不同,它的共振激发提供了更多的选择性激发,这使其不易受到其他化合物的干扰。然而,CVAAS仍然是一种普遍而可靠的方法,特别是因为它具有足够的灵敏度,可以满足大多数的法规遵从性,并且比CVAFS更便宜。CVAAS和CVAFS之间的选择取决于汞分析的具体要求,包括灵敏度、检测限和法规遵从性。例如,需要使用CVAAS来满足EPA 7470方法要求。2. 样品基质的类型在选择汞分析仪时,必须考虑到所分析样品基质的类型。样品基质是指将被引入汞分析仪进行测量的含有分析物(汞)的不同类型的材料或物质。所选分析仪必须在能够不受样品基质影响的情况下准确测量汞。汞分析涉及多种样品基质,从原油、凝析油和石脑油等石油产品到环境空气、农产品、海产品和水源等环境资源。除了样品的类型之外,其他需要考虑的因素包括样品中可能存在的干扰物、预期汞浓度、样品来源(例如,靠近金矿区域),以及将来需要分析的样品类型。基于这些考虑,将样品引入分析仪进行测量的最适当方式将由样品基质的类型决定。这一因素将在下一节中进一步讨论。3. 将样品引入分析仪的最佳方式是什么?(是否需要消解样品?)在选择汞分析仪时,必须考虑将样品引入分析仪的最合适技术。NIC收到的最常见问题之一是:是否需要在测量前对样品进行消解?有两种主要技术用来将样品引入汞分析仪:还原气化/化学还原法和直接热分解法。还原气化/化学还原法技术,如氢化物发生、氯化亚锡还原,通常用于将水样中的离子汞(Hg2+)还原并转化为元素汞蒸气,然后由检测器进行测量。只有在样品经过酸预消解/氧化、从样品中提取到了所有形式的汞时,才能通过该技术检测到样品中的总汞。然而,样品消解是一个耗时且容易出错的过程,还可能造成污染或导致样品中部分汞的损失。直接热分解是一种高效、高性价比的技术,只需最少的劳动力便可将样品中的所有汞引入分析仪。其原理是将样品加热到高温以分解并释放出汞蒸气,然后由检测器进行测量。然而,直接热分解技术并不适用于超痕量级汞的样品,如干净的海水、雨水或雪。例如,直接热分解技术对于超痕量级汞的样品(如干净的海水、雨水或雪)来说不是最佳的技术。在这种情况下,需要使用CVAFS检测器的还原气化技术,因为它允许更大的样品量,从而可以提高其灵敏度和检测限。是否需要对样品进行消解应基于各种因素考虑,例如样品类型、是否存在干扰,以及监管要求或研究目的的需求。阅读NIC网站MA 系列 – 汞分析的最佳伙伴,以上所介绍的两种样品分析方法可在一台仪器上完成。4. 汞分析仪制造商的专业知识选择可靠的汞分析仪制造商是选择正确的汞分析仪的关键之一。是什么使汞分析仪制造商成为可靠的制造商呢?关键因素之一是他们在该领域的经验和专业知识。可靠的制造商对汞分析技术、方法和应用具有广泛的知识。这种经验和技术使他们能够生产高效可靠的汞分析仪,并能够为全球客户提供各种类型的应用。另一个需要考虑的重要因素是他们在行业中的声誉。一家信誉良好的制造商在生产优质产品和为客户提供卓越支持和客户服务方面有着良好的记录。他们还需制定严格的质量控制标准,确保汞分析仪的一致性和可靠性。除了经验和声誉,可靠的制造商还应为代理商和用户提供充分的支持和培训。制造商应拥有一个庞大的正规代理商网络,并且有能力现场为客户提供支持和帮助。凭借40多年的经验,NIC已成为汞分析领域的领导者。NIC的前辈们在日本水俣病悲剧事件的影响和推动下,一直致力于准确、高效和简便的汞分析研究。浏览NIC网站的汞分析仪系列,按照应用和方法找到适合您需求的汞分析仪。
  • PCR原理、PCR扩增影响因素及预防解决方案
    PCR简介聚合酶链反应(polymerase chain reaction,PCR)是利用一段DNA为模板,在DNA聚合酶和核苷酸底物共同参与下,将该段DNA扩增至足够数量,以便进行结构和功能分析的一种反应。PCR扩增原理核酸降解是DNA/RNA分子中的碱基和戊糖间的氮糖苷键,或磷酸二酯键在物理因素、化学因素和生物因素等作用下发生水解,使DNA/RNA链发生断裂。▲ 图一:PCR原理反应示意图▲ 图二:PCR反应过程中温度变化图实时荧光定量PCR原理通过荧光染料或荧光标记的特异性探针,对PCR产物进行标记跟踪,实时监控反应过程,结合相应软件可以对结果进行分析,通过标准曲线对未知模板进行定量分析,计算待测样本的初始模板浓度。▶ 初始DNA浓度越高,荧光达到某一值(阈值)时所需要的循环数越少(Cq值)。▶ Log浓度与循环数成线性关系,根据样品扩增到阈值的循环数与已知起始拷贝数的标准品作出的标准曲线对比就可以计算出该样品的起始拷贝数。影响PCR扩增的因素▶ 模板间的交叉污染。▶ PCR试剂的污染。▶ PCR产物的污染。防止污染的预防操作❶ 永远要设置NTC(No Template Control)对照,一个不含有模板DNA但含有PCR体系中所有其他成分的对照。如果不能在污染的第一时间发现,会导致后续一系列的数据无法使用。❷ 准备PCR体系的移液器要专用,千万不能用吸取过PCR产物的移液器去准备PCR体系。❸ 打开离心管前先离心,开管动作要轻,以防管内液体溅出。❹ 最好在加完其他反应成分再加入模板。❺ 实验结束后及时清理台面。出现污染后的解决办法❶ 更换试剂:更换新的试剂和水,用确保无污染的移液器分装备用。❷ 清洁所有可能的污染源:实验台面,离心机,门把手等。❸ 实验过程更加小心,采用前面提到的各种防止污染的方法。CieloTM实时荧光定量PCR系统Harness of the power of qPCR☑ 数据可靠性:连续1000次实验后,结果高度一致。☑ 应用灵活性:提供多种qPCR应用分析。☑ 流程智能化:中英文用户界面,触控操作,可多机联用。☑ 在线便捷性:主机可独立运行qPCR程序,数据可USB、Wi-Fi等网络传输。
  • 摆锤冲击强度的影响因素(下)
    塑料的冲击强度通常采用摆锤冲击的形式测试,但因多种因素影响,摆锤冲击测试往往很难获得变异系数 <5% 的测试结果。针对测试设备和试样材质等固有性能对冲击强度的影响,可点击链接查看详情:摆锤冲击强度的影响因素(上)。本文将对人员操作对冲击强度的影响进行分享和讨论。在确定测试设备和材料后,摆锤冲击的流程为:试样成型、缺口加工、测试。从裂纹萌生和裂纹扩展角度看,成型工艺、缺口加工、测试细节是决定试样断裂过程吸收能量的关键因素。成型工艺的影响大部分摆锤冲击样条都是通过注塑成型,或模压成型以及挤出成型后裁切得到。成型方式的不同会导致样品在结晶、取向、内应力上产生很大的区别。模压成型的材料几乎是各向同性的,内应力较小;注塑成型一般会在流动方向上取向,也可通过控制注射速度、模温、保压压力等参数,结合模具设计,控制结晶度与内应力;挤出成型的样品在通过模具后往往会采用骤冷的方式,因此取向很明显,但结晶度较差。注塑成型模压成型挤出成型三种成型工艺中,最常用的是注塑成型,但不同的注塑工艺也会对样品微观结构造成很大影响。通常注射温度过高会导致应力松弛,解取向增加,而注射温度过低会影响流动,产生熔接痕;注射速度过低则流动取向降低,过高会导致剪切加强,引起熔体破裂甚至样品烧伤等不适的情况;保压压力过高会产生飞边,过低会导致样品无法充满;保压时间太短,样品会产生变形,保压时间过长,样品内部甚至会产生负压;模温过低,样品冷却过快,内应力过大,模温太高,解取向增大。结晶度越高、球晶尺寸越大,试样越脆,冲击强度越小;取向冻结度高,断裂需要破坏的主价键的比例提高,冲击强度越大;内应力越大,越容易产生裂纹,冲击强度往往越小。在 Instron 的测试经验中曾遇到某种 HDPE,注塑成型试样的冲击强度是模压成型试样的冲击强度相差4倍,主要原因是注塑过程能很好地在流动方向上产生冻结取向,断裂时需要破坏的主价键比例大大增加。模压成型的试样没有取向,也没有控制好冷却过程,样品结晶度更高,断裂时需要破坏的主价键比例降低。缺口制备的影响绝大部分材料都采用缺口冲击测试,高质量的缺口是确保冲击实验结果正确可靠的基础。模塑缺口试样冲击强度往往大于机械加工的缺口试样,并且模塑的缺口试样和缺口尺寸还会受到成型工艺、模具收缩率等因素的影响,因此行业内通常采用机械加工的方式制备缺口。前面提到高结晶度的材料对缺口更加敏感,因此此类材料的缺口制备过程需要更加精细的控制。根据刀片的运动方式,目前主流的缺口加工方式为线切割和旋转切割。缺口的加工,一方面要考虑获得尺寸标准且稳定的缺口,另一方面要减少摩擦生热。稳定的缺口通常需要分多次精细切割,并且需要较低的给进速度。现代线切割方式的机器大都采用刀尖接触试样,并且一些高端机器退刀过程刀片和样品无摩擦,因此发热量大大减少。旋转切割由于较慢的给进速度,摩擦生热往往比线切割更严重,因此更需要很好的降温措施,才能获得更好的缺口。好的缺口与烧焦的缺口大部分材料都可以参考 ISO 2818 提供的参数做相应调整,以获得最佳的缺口制备效果。测试细节的影响在确保设备、样品都满足测试需求后,实际的测试过程还会受测试细节的影响。锤头的选择ISO 标准要求锤头吸收能量在 10%~80% 之间,并且几个锤头都满足需求的情况下,尽量用能量较高锤头。ASTM 标准则要求尽量用能量较小的锤头,并且吸收能量 注塑试样因为存在脱模角,侧面实际上是梯形。简支梁冲击时,试样朝上和朝下摆放,会造成测试结果一定的偏差,在冲击强度较小的样条上尤其明显。Instron 团队曾做过一种样条,两种摆放方式测冲击强度分别为1.3kJ/㎡ 和 1.2kJ/㎡。试样的对中也会明显影响测试结果,摆放试样时更应注意。温度影响温度升高,冲击强度提高,温度降低,冲击强度则降低。在常温测试中,抓取样条的时候要避免手接触试样缺口附近的位置,以免热传导引起升温。Instron 团队曾做过一项测试,将样条放手里握 10s 后测试,发现冲击强度提高了 20%。此外,在低温冲击中,尤其是悬臂梁冲击,样条有一半夹在夹具内,夹具对试样的热传导不可忽视,需要将夹具也降低到测试温度,才能保证数据的准确性。断裂样条动能的影响在冲击强度较小的测试中,就不能忽略试样飞出去的动能,因此 ASTM D256 的方法 C 要求将断裂的试样捡回来再冲击一次,扣除试样动能。而在平时的测试中,也应注意试样的摆放,让飞出去的试样尺寸一致,以确保动能一致。Instron 测试解决方案Instron 的摆锤试验系统拥有如下优势:如下一体化铸造成型的机架、底座,最大限度减少结构性震荡导致的能量损失;经专利设计的一体化成型摆锤,减少能量损失的同时,扁平化设计还能减少风阻造成的能量损失;在线式低温冷却系统,让低温测试数据更加精准;采用无线传输技术的仪器化摆锤,让仪器化冲击远离线缆连接的影响,测试结果更准确;稳定的机架,让设备能满足高达 50J 的摆锤冲击的同时,也让小能量冲击结果更准确。全自动缺口制样机采用线性切割,最大限度减少切割发热量。通过精确的单次切割量控制、准确的切割速度控制、定制刀片冷却系统以及独特的退刀方式,配合双缺口加载器和哑铃形试样的切边等装置,在保证缺口的高度准确情况下让样品制备既节省时间又节省人力,为您的冲击试验保驾护航。*主要参考文献[1]于杰,金志浩,周惠久.聚合物材料冲击缺口敏感性的研究[J].塑料工业,1994(4):4[2]邵景昌,吴云,付俊祺,等. 不同条件对聚碳酸酯缺口冲击强度测试结果的影响[J].工程塑料应用,2019,47(2):105–109.[3]刁鹏杰,金玉顺,李响,等. POM结晶改性技术研究进展[J]. 工程塑料应用,2023,51(3):146&minus 151[4]肖亮,戚天银,柏莲桂,等. 注塑工艺对哑光PC/ABS 冲击性能的影响[J].工程塑料应用,2018,46(5):68–71.[5]尚盈辉.注射成型光学级PC制品的力学行为研究[D].郑州大学,2012.DOI:10.766[6]董跃,胡益林,刘俊龙.浅析简支梁冲击强度的影响因素[J].聚氯乙烯, 2007(6):22-24
  • 酸性矿山废水中微生物分布影响因素
    随着全球工业化的迅速发展, 矿产资源的开发进一步加剧, 由此而产生的酸性矿山废水( AMD) 已经成为许多国家水体污染的主要来源之一。酸性矿山废水若不经处理任意排放就会造成大面积的酸污染和重金属污染, 它能够腐蚀管道、水泵、钢轨等矿井设备和混凝土结构, 还危害人体健康。另外, 酸性水会污染水源, 危害鱼类和其他水生生物 用酸性水灌溉农田, 会使土壤板结, 农作物发黄, 并且随着酸度提高, 废水中某些重金属离子由不溶性化合物转变为可溶性离子状态, 毒性增大。 对于酸性矿山废水的处理主要有这几种方法: 中和法、人工湿地法、硫化物沉淀法和微生物法。其中微生物法就是利用硫酸盐还原菌( SRB) 在厌氧条件下将AMD 中的硫酸盐还原为硫化物, 生成的硫化物再与废水中的重金属发生反应生成难溶解的金属硫化物。由于微生物技术的处理效果较好, 成本也较低, 且无二次污染, 因而受到广泛关注。 国内科学家对中国东南部14个地区的59个AMD样本进行了微生物群落分布的研究。通过对AMD样本中的微生物16SrRNA基因进行454测序,对测序结果进行了物种分布和聚类的分析,最终发现,影响微生物群落的主要因素并不是地域,而是环境的变化,如铁离子、硫酸根离子、有机物含量等等,相关学术论文发表在《自然》子刊ISME(International Society for Microbial Ecology)上。 通过对不同环境的微生物群落分布的研究,加深了人们对极端环境下微生物多样性的了解,为将来利用微生物技术对AMD进行处理和控制具有一定的理论和现实意义。 参考文献:ISME J. 2012 Nov 22. doi: 10.1038/ismej.2012.139. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage.Kuang JL, Huang LN, Chen LX, Hua ZS, Li SJ, Hu M, Li JT, Shu WS.
  • “蛋白样品冻干过程”干货分享!——深度解析相分离现象及影响因素
    冻干可以通过去除样品中的水分,限制分子的流动性,减慢药物成分的物理/化学反应来延长产品的保质期,然而固体状态的配方也不是一直稳定的,由于在干燥过程中,蛋白质暴露在许多应力作用下,在长期的储存过程中,仍然容易发生物理/化学反应。在冻干及储存过程中,我们常常会加入一些稳定剂来保护蛋白免受应力的影响,主要有两种稳定机理来解释:水替代假说和玻璃化假说;但是两种稳定机制都需要将蛋白质分子分散在稳定剂中,使得蛋白质和稳定剂都处于相同的单一无定形相,即不发生相分离。那么相分离是如何发生的?为什么会发生?相分离主要发生在冻干的预冻步骤,在一定程度上取决于冻干的工艺和配方成分。1、相分离的机理 图1:冻干分为三个步骤冻干主要分为三个步骤:预冻,主干燥及次级干燥。(如图1所示)在预冻过程中,溶液被降到一个很低的温度,晶核形成并且生长,样品中的溶质浓度不断浓缩,可以达到初始浓度的约50倍,如果在热力学和动力学上均利于反应发生的条件下,高浓度的溶质可以导致相分离。2、相分离热力学当溶液为成分A 和成分B的混合物,会发生下面的相互作用(如图2所示)。熵和焓之间的竞争决定了相分离的过程。相分离的热力学基于混合物的自由能(弗洛里-哈金斯理论),聚合物由于尺寸大小和连通性,不能充分利用可用体积,大分子量聚合物的熵变化较小,因此,混合物热力学更容易受到较大焓贡献的支配,当ΔGmix 0: 热力学上有利于相分离 (A-A和B-B相互作用优于A-B相互作用)。 图2:溶液A和B发生的相互作用如果相分离是热力学自发以及动力学上利于反应(足够的移动性和时间),蛋白和稳定剂会分离成两个不同的相,富含稳定剂的无定形相以及富含蛋白的无定形相,后者由于缺乏稳定剂的保护,蛋白更易于降解。(如图3所示)图3:蛋白和稳定剂会分离成两个不同的相3、相分离的检测方法无定形-无定形物质的相分离不容易检测,由于检测方法有限,证据不足,目前主要有如下检测方法:检测技术方法局限性调制DSC配方中有多个Tg’表示有多个无定形相通常,富含蛋白的相不能被DSC检测到,因为在Tg’温度下具有较小的ΔCP;要求高浓度的蛋白配方。拉曼成像技术非重叠成分峰的线谱分析范围:2-50微米;不能检出低于检测限的成分波动。固体核磁共振利用弛豫时间来探测2-5 nm, 20-50 nm分子大小物质的混溶性动态实验需要大量的样品。X射线衍射/散射在纳米尺度上探测结构特征对于两个组分,均包含重要的结构层次,无法区分相分离;成本高,动态实验。SEM肉眼观察物质的形态结果会存在模棱两可的现象;需要较大的容易辨认的相。电介质技术依赖于电场中的分子迁移率响应存在不确定性。4、工艺参数对相分离的影响过冷度-----成核温度❖热力学冻结温度和首次成核温度之间的差值为过冷度;(如图4所示)❖较高的成核温度会更易导致相分离;(由于溶质在远高于Tg’温度下进行浓缩) 图4:过冷度冷却速度❖控制达到给定过冷度的速度;❖缓慢的冻结速度会更容易导致相分离;退火❖主要用于填充剂结晶,控制冰晶形态或增加冰晶体的大小,缩短一次干燥时间;❖如果两相热力学更稳定,退火时间和迁移率的增加可能会提供相分离的机会;灌装体积❖较大的灌装体积会对相分离有较大的影响,因为在样品中具有较大的热梯度。案例分享成核温度和冷却速度对相分离的影响对已知的相分离聚合物体系 1:1 PVP29K:DEX10K(100 mg/ml) 进行研究,将冷却台放在拉曼显微镜下进行观察。(如图5所示) 图5:已知相分离聚合物体系在拉曼显微镜下的观察成核温度对相分离的影响 图6:成核温度对相分离的影响与每个单一组分相比,成核温度较高的一组(-5℃)对相分离具有较大的影响;其余的成核温度对相分离影响较小。(如图6所示)冷却速度对相分离的影响 图7:冷却速度对相分离的影响所有的冷却速度均会在一定程度上提高相分离的倾向,但是影响较小。(如图7所示)*结论在没有热历史的情况下,成核温度和冷却速率对相分离的影响较小。成核温度和灌装体积对相分离的影响 图8:成核温度和灌装体积对相分离的影响较大的灌装体积(1ml VS 0.2ml)和较高的成核温度(-5℃ VS -10 ℃)会导致相分离,可能是由于样品内部存在较大的温度梯度。(如图8所示)5、配方成分对相分离的影响在冻干过程中配方成分的兼容性是阻止相分离的关键,如研究表明聚合物体系的不混溶性随着聚合物分子量的增加而增加。对于蛋白而言,相分离的倾向性可能与稳定剂大小,静电相互作用(盐类),稳定剂类型(填充剂、表面活性剂),稳定剂浓度,蛋白质特性(等电点,大小),配方PH值等有关。案例分享——配方组分对相分离的影响❖实验进行了系统的研究,探索蛋白质:糖的比例以及蛋白质(分子量,电荷)和糖(分子量,单糖亚基和长度)的特性如何影响配方在冻干过程中的混溶性。(如图9,10,11所示)❖蛋白质和糖(200mg /mL)的混合物按以下比例(w:w):蛋白质:糖——0:1,1:9,1:4,1:2.3,1:1.5,1:1,1:5:1,2.3:1,4:1,9:1❖多个Tg’的存在表明存在相分离。 图9 图10 图11实验表明● 在所有的蛋白-糖体系均观察到了相分离现象(两个不同的Tg’),尽管不同的比例出现相分离的时间不同;● 不同蛋白-糖混合物Tg’的宽度不同,有可能多个Tg’会重叠在一起,形成一个较宽的Tg’, 导致无法检测到相分离现象;● 其中在牛血清蛋白和海藻糖混合物中,当二者比例为1:1.5和1:1 时,观察到存在相分离现象;(如图12所示) 图12● 对于蛋白-糖体系中,二者比例从1:2.3 到4:1 均观察到存在相分离现象;(如图13所示)图13结论● 对于几乎所有被研究的体系中,当配方中蛋白质和糖的比例为1:1和1.5:1时确定会发生相分离现象,这表明蛋白质和糖的比例和系统的相分离倾向之间可能存在相关性;● 在系统的相分离趋势和以下属性之间似乎没有明显的相关性: # 蛋白质电荷/等电点 # 蛋白质分子量 # 糖的分子量 # 单糖亚基;● 在几乎所有研究的配方中,当蛋白和糖的比例为1:1时会发生相分离;● 本研究结果表明,冻干蛋白配方中应加入过量的稳定剂。6、冻干蛋白配方中相分离的重要性● 相分离取决于具体的操作过程和组分;● 在预冻过程中,温度/时间和浓度是关键因素,会影响系统相分离的趋势;● 蛋白和稳定剂的物理化学特性会影响相分离;● 在冻干过程中保护不足会导致长期储藏过程中不稳定性的增加;● 当缺乏稳定剂时,蛋白在干燥过程中会发生改变(即形成反应型结构),这可能会导致储存过程中潜在的稳定性问题;● 需要了解相分离如何影响冻干制剂的保质期;● 相分离检测是稳定性欠佳的指标;● 未检测到的相分离会影响蛋白质稳定性和整体产品质量;● 需要更好的检测方法!当前的方法可以证明样品存在相分离,但不能证明样品不存在相分离。参考文献[1] Padilla,A.M.et.Al.(2011).”The Study of Phase Separation in a Model Polymer Phase Separating System Using Raman Microscopy and a Low-Temperature Stage: Effect of Cooling Rate and
  • 免疫组化染色结果容易受哪些因素影响
    免疫组化染色结果容易受哪些因素影响众所周知免疫组化技术对于研究肿瘤的发展规律,进行良恶性分类及鉴别诊断具有重要的作用,因此在做此类实验过程中一定要加倍谨慎起来,尤其是免疫组化染色实验,其结果很容易受某些因素影响。那么,免疫组化染色结果容易受哪些因素影响? 专家指出:免疫组化染色的结果,与组织的固定、抗原的修复、抗体的保存及使用三个重要因素相关密切。 1、固定 常用的组织固定液是甲醛,标本必须及时固定,这有利于抗原的保存,防止抗原在组织细胞内弥散、丢失或失去免疫活性,但固定时间最好为!“ 小时,一般不超过”# 小时,因固定时间越长,部分组织细胞免疫组化标记敏感性会明显降低。其原因为甲醛固定过程中会形成醛键或羧甲基,而封闭了部分抗原决定簇;也会使蛋白与蛋 白之间发生交联,也可能会封闭抗原决定簇,使许多抗原如常用的$%、&$‘( 等免疫反应明显减弱,甚至消失,致酶标不能得出正确的结果,因此在染色时为取得良好的染色效果,必须对有些抗原进行预先修复,以进一步暴露抗原。 2、修复抗原 外检组织经过甲醛固定、脱水透明及浸蜡过程,组织中的抗原成分已被破坏或封闭,为了恢复组织的抗原性和提高组织对抗体的敏感性,一般需 修复抗原。有人用蛋白酶消化,或微波处理,或高压锅处理,使封闭的抗原成分暴露出来而显色。我们采用高温高压处理切片,切片在弱酸及高温高压下,使封闭的抗原显示出来,提高了阳性检出率和阳性强度,同时减轻了背景着色,使阳性结果清晰可辨。当然,不同组织、不同抗原其所用的高压时间及选用合适的抗原 修复缓冲液及其最适的。' 等均对结果影响甚大。 3、正确保存及使用抗体 抗体是免疫组织化学最基本的试剂与材料,它可分为第一抗体与第二抗体,因为抗体是蛋白质构成,保存或使用不当,不但会造成浪 费,而试剂变质会出现假阴性结果。对抗体及6、7试剂盒均应放置低温冰箱贮存,用一支取一支,对于一次用不完的抗体可保存在# 8冰箱内,而不要放在冰格室,因为那里的温度在+ 8以下,抗体会很快结冰,再次使用时又要溶解。这样几次冻融,抗体效价会急剧下降而失效。对一些将近失效期或已过失效期,有的适当提高工作浓度, 也可以作出正确的结果,以免丢失造成浪费。
  • 纳氏试剂分光光度比色法检测污水中氨氮时的影响因素有哪些?
    纳氏试剂分光光度比色法测定水中氨氮时,虽然步骤较为简单,但实验条件还是有一定的要求,任何一处细节出现偏差,都会对测量结果产生影响。下面结合我公司的氨氮测定仪 6b-50型(v9),对纳氏试剂分光光度法测定水中氨氮含量时影响测定准确度的因素和解决的办法进行了总结,与大家共同探讨。原理介绍纳氏试剂比色法是一种测定饮用水、地面水和废水中铵的方法。其原理是:以游离的氨或铵离子等形式存在的铵氮与纳氏试剂反应生成黄棕色络合物,该络合物的色度与铵氮的含量成正比,可用目视比色和分光光度法测定。目视比色法测定时,最低检出浓度为0.2mg/l,上限浓度为2 mg/l;分光光度法测定时,最低检出浓度为0.05 mg/l,上限浓度为2 mg/l。本方法已定为国家标准分析方法。 仪器准备 6B-50型(v9)氨氮测定仪 江苏盛奥华环保科技有限公司 影响因素1:实验用水及试剂的质量检验氨氮专用试剂主要包含两种:n1-100样 / n2-100样,我司提供的是固体粉末状试剂,需要用户自行加入100ml蒸馏水配置成液体试剂备用。配置过程中如有少量沉淀,去除即可。配置完成后避光、阴凉处或放置冰箱低温1-2度保存。试剂如果变色浑浊过期使用,实验数据是不准确的。因此试剂配置、存放、使用过程中都需要注意,避免造成不必要的麻烦。 影响因素2:实验环境氨是实验室最常用的易挥发性试剂,而氨氮的分析应在无氨的实验室环境中进行,室内不应含有扬尘、石油类及其它的氮化合物,严禁在使用含氨试剂(如测定总硬度:使用氨缓冲溶液)的实验室中做氨氮项目的分析,所使用的试剂、玻璃器皿等也要单独存放,避免交叉污染,影响试剂空白值、样品测定值。影响因素3:玻璃器皿的洗涤所使用的玻璃器皿应先用(1+9)盐酸浸泡后,再用无氨水冲洗数次才能使用,否则,也会造成空白值偏高或平行性较差的情况。影响因素4:滤纸对空白值的影响氨氮实验需将水样过滤后测定,所用滤纸一般都含有铵盐,可能引起过滤空白值升高,所以需做过滤空白对照实验,以扣除滤纸影响。实验表明,不同滤纸之间铵盐含量差别很大,有些含量较高的滤纸虽经多次用水洗涤,仍达不到实验要求,因此使用前需对每一批次滤纸进行抽检,淋洗时要少量多次,减少滤纸的影响。我们选用经稀hcl浸泡并洗净的0.45um醋酸乙酯纤维滤膜过滤水样,解决了用滤纸过滤产生的高空白值问题。不仅过滤空白值低,而且重复性好,所以推荐使用0.45um醋酸乙酯纤维滤膜过滤。 影响因素5:反应条件的控制(1)反应时间对实验的影响测定氨氮时,反应时间不宜过长。6B-50型氨氮测定仪实验中,取定量的空白和水样,先后加入n1试剂1ml,n2试剂1ml。摇匀常温下静置10分钟即可倒入比色皿,放入仪器中测量读数。因而,测定水中氨氮时,显色时间不宜过长,进而保证达到分析的精密度和准确度。(2) 反应体系的ph值对实验的影响我司化验员经过多年的反复实验,发现水样ph值的变化对测定结果有明显影响,水样呈中性或碱性,得出的测定结果相对偏差符合分析要求,呈酸性的水样无可比性,所以对于水样应特别注意调节反应体系的ph值,最好将溶液显色控制在ph值为11.8~12.4。准确检测水中氨氮的含量,有利于更加有效地指导生产,确保安全、优质供水。 结 论纳氏试剂分光光度法测定氨氮应注意和解决的常见问题: ⑴试剂的正确配制决定着方法精密度和准确度,特别要注意理解实验原理、正确掌握试剂配制的要领。⑵注意主要试剂性状,选购合格的试剂。⑶降低空白实验值可提高实验精密度,对实验用水、试剂空白和过滤滤纸要注意检查。⑷反应条件、时间、体系ph决定反应平衡和反应生成物的稳定性,控制反应在最佳条件下进行,尽可能提高操作准确度,确保分析结果的精密度、准确度、稳定性和可靠性。
  • 影响盐雾试验箱试验数值精准的因素→喷嘴
    盐雾试验箱试验数值的精准是由很多的因素所影响的,一个因素的不正确,就会造成试验数值的不正确。那么数值的精准和箱体整体的制造工艺和设计都是有着密切关系的,但是除了这些外,喷嘴也是会影响数值结果的。那么有以下这些点是需要注意的。 喷雾是直接由喷嘴喷出的,那么不同品质的喷嘴喷出的喷雾也是不一样的,可以说喷嘴的好坏直接影响了试验的成败。所以首先选择一款好的喷嘴是很重要的,一款好的喷嘴在孔径、弯曲角度等就经过了严格的控制。 那么有了一款好的喷嘴,也要正确的使用才能发挥出它的功效。从安装的时候就需要注意了,安装的时候要轻拿轻放,不能用力过大而造成喷嘴的破损。另外就是喷雾的时候压力不要设置的过大,因为这也会造成喷嘴的破损。 喷嘴安装好后,使用的水也是需要注意的。普通的自来水会有杂质,那么这些杂质会给喷嘴造成堵塞。所以自来水是不能使用的,而是要使用蒸馏水或者去离子水。除了水中的杂质外,空气中的水汽和油等也会造成喷嘴的堵塞,所以还需要安装油水分离器来排除压缩空气中的水汽和油等杂质。 所以可见喷嘴对于试验数值的准确度有着重要的影响,那么除了初期的正确使用外,平时定期的维护也是必须的。这样 盐雾试验箱才能发挥出它应有的功效,达到试验的目的。
  • 浅谈影响BOD5测定结果准确性的几个因素
    浅谈影响BOD5测定结果准确性的几个因素 张建新,王宏,谭瑞冰 (通辽市环境保护监测站,内蒙古通辽028000) 摘要:对水样BOD;指标测定过程中,影响测定结果准确性的水样保存-与/g*g、稀释水与接种稀释 水配制等几个主要因素进行了论述. 关键词:BOD;测定;准确性;影响因素 中图分类号:X8 文献标识码:A 文章编号:1673&mdash 260X(2009)05一0072一02 水作为一种资源,根据其用途,不仅有量的要求,还必须有质的要求,人类在生产与生活活动中, 将大量的工业废水、生活污水及其他废弃物排入水体,造成地表水和地下水等水源的污染,引起水质 恶化,从而影响人体健康.所以,人们在水环境方面所面临的问题是必须充分合理地保护、使用和改善 水资源,使其不受或少受污染.水质监测正是以此为目的,以海洋、江、河、湖泊、水库、地下水等水体 和工业废水、生活污水的排放口为对象而进行监督、检测,以检查水的质量是否符合国家规定的有 关质量标准及排放标准要求,为控制水污染、保护水资源提供依据. 1五日生化需氧量概述 水污染主要包括无机物污染、耗氧有机物污染、痕量有害有机物污染.其中,耗氧有机物污染是 大量耗氧有机物排入水域后,分解消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化.人们常 常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量. 生化需氧量是指在规定条件下,微生物分解存在于水中的某些可氧化物质、特别是有机物所进行 的生物化学过程中消耗溶解氧的量.此生物氧化全过程进行的时间很长,如在20。C培养时,完成此过 程需100多天,目前国内外普遍规定于20± l℃培养5天,分别测定样品培养前后的溶解氧,二者之 差即为BOD,,以氧的毫克/升(rag/L)表示. 2 BoD5指标监测结果准确性主要影响因素 2.1水样的保存与运输 各种水质的水样,从采集到分析的过程中,由于物理的、化学的和生物的作用,会发生各种变化, 而影响BOD的测定结果.因此,必须在采样时针对水样的不同情况和待测物的特性实施保护措施,并 力求缩短运输时间,尽快将水样送到实验室进行分析,当待测物的浓度很低时,更要注意水样的保存. 用于分析BOD,指标的水样最好采用玻璃或聚乙烯容器盛装,并在采集时充满容器并密封,防 止由于路途颠簸、水样振荡、与空气接触而加快水样中微生物对某些可氧化物质的分解作用.水样的 运输过程中应最好进行冷藏(2&mdash 5。C暗处进行保存),配备专用隔热容器,放入致冷剂,将样品置于其中 保存,这样也可以抑制微生物的活动,减缓物理作用和化学作用的速度,保证水样采集时的原始状 况.水样采集后,应尽早进行测定,一般应在6h内进行分析,若需要远距离转运,在任何情况下,贮存 时间不应超过24h.在测定条件及其他因素不允许的特殊情况下,可将水样进行冷冻(一20。C,一般不 使用),但最长时间不可超过1个月. 2.2稀释水与接种稀释水 生化需氧量的经典测定方法,是稀释接种法,方法适用于测定BOD,大于或等于2mg/L,最大不 超过6000mg/L的水样,当水样BOD5大于6000mg/L时,会因稀释带来一定的误差.当水样稀 释倍数超过100倍时,应预先在容量瓶中用蒸馏水初步稀释后,再取适量进行最后稀释培养.因此,对 稀释水及接种稀释水的要求就相当严格,也是关系到实验测定成败,影响测定结果准确性的主要因素. 2.2.1稀释水 对某些地面水及大多数工业废水,因含有较多的有机物,需要经稀释水稀释后再培养测定,以降 低其浓度和保证培养过程中有充足的溶解氧. 首先,在5-20L玻璃瓶内根据水样稀释倍数及平行样的要求装入一定量的蒸馏水,控制水温在 20。C左右,然后用无油空气压缩机或薄膜泵,将吸人的空气先后经活性炭吸附管及水洗涤后,导入稀 释水内曝气2&mdash 8h.停止曝气亦可导入适量纯氮,使稀释水中的溶解氧接近于饱和,保证水样稀释后有 足够的溶解氧.然后,瓶口盖以两层经洗涤晾干的纱布,置于20℃培养箱中放置数小时,使水中的溶 解氧含量达到8meJL左右,临用前还应在每升稀释水中加入氟化钙溶液、氯化铁溶液、硫酸镁溶液、磷 酸盐缓冲液各lml,并混合均匀,以保证微生物生长的需要.稀释水的pH值应为7.2,其BOD5应小 于0.2mg/L.这样才能保证经稀释后的水样在5天的培养过程中有足够的溶解氧,并保证微生物分解 水中某些可氧化物质时有足够的养分. 2.2.2接种稀释水 水样的培养过程中,要有一定数量的微生物来分解水样中的有机物,但对于不含或少含微生物的 工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD,时应进行接 种,以引入能分解废水中有机物的微生物,当废水中存在着难于被一般生活污水中的微生物以正常 速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引人水样中进行接种. 实际工作中,两个或三个稀释比的样品,凡消耗溶解氧大于2mg/L,和剩余溶解氧大于l mg/L的 样品,计算结果时,应取其平均值.因此,接种液加入的多少对实验测定结果准确性有着举足轻重的 作用.溶解氧消耗量小于2mg/L,有两种可能,一是稀释倍数过大;另一种可能是微生物菌种不适应, 活性差,或含毒物质浓度过大,这时可能出现在几个稀释比中,稀释倍数大的消耗溶解氧反而较多的 现象.这就要求在实践工作中不断总结工作经验,并根据接种液中菌群数量浓度、菌群的适应性、水 样特征来控制接种液加入量的多少,以便提高测定水样BOD,指标数值的准确性. 2.3其他影响因素 在水样BOD,指标测定过程中还存在着其他一些影响结果准确性的因素.包括实验测定过程中 所涉及的玻璃器皿应彻底洗净,先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水、蒸馏水 洗净,尤其在培养过程中盛装水样的溶解氧瓶应保证洁净;待测水样的pH值应在6.5&mdash 7.5之间,若水 样的酸度或碱度过高,可用高浓度的碱或酸液进行中和,但用量不要超过水样体积的0.5%;从水温较 低的水域或富营养化的湖泊中采集的水样,可遇到含有过饱和的溶解氧,此时应将水样迅速升温至 20cc左右,在不使满瓶的情况下,充分振摇,并时时开塞放气,以赶出过饱和的溶解氧,等等一些其他 影响因素. BOD,属于水体污染物的中一类比较重要的有机污染物指标,其数值的高低直接关系到水体水 质.因此,我们应在今后的工作中对各类水体及污染源进行认真、细致地调查研究,通过可靠、准确、 先进的测定手段和经过培训持证上岗的专业技术人员为保证,注意水质监测过程中各类指标监测结 果的准确性控制,做好实验内及实验室间的质量保证工作,实现监测分析方法的标准化、逐步建立起 完善的环境监测网络,提供出代表性、准确性、精密性、可比性及完整性的监测数据,为科技生产服务、 为企业技术改造、清洁生产服务、为环境保护主管部门监督管理服务. 参考文献: C1]魏复盛,齐文启,等.水和废水监测分析方法.北 京:中国环境科学出版社.2002. [23章亚麟.环境水质监测质量保证手册.北京:化学 工业出版社.1994. [3]黄秀莲.环境分析与监测.北京:高等教育出版 社.1996.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制