当前位置: 仪器信息网 > 行业主题 > >

质谱计分压力测量

仪器信息网质谱计分压力测量专题为您提供2024年最新质谱计分压力测量价格报价、厂家品牌的相关信息, 包括质谱计分压力测量参数、型号等,不管是国产,还是进口品牌的质谱计分压力测量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱计分压力测量相关的耗材配件、试剂标物,还有质谱计分压力测量相关的最新资讯、资料,以及质谱计分压力测量相关的解决方案。

质谱计分压力测量相关的资讯

  • 盘点|压力测量仪器与技术大全
    压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。伴随经济、技术的进步,压力测试在实际的生产工作中发挥着至关重要的左右,为生产活动提供了大量有价值的参考信息,使生产和科研活动的质量和效率都得到了实质性的提升。而压力测量仪表是用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。类别原理仪器种类液柱式根据流体静力学原理,将检测压力转换成液柱高度进行测量U形管压力计、单管压力计、斜管压力汁等弹性式利用各种形式的弹性元件,在被测介质的作用下,使弹性元件受压后产生弹性形变的原理弹簧管压力计、波纹管压力计及膜片式压力计等电测式将压力转换成电信号进行传输及显示电阻式压力计、电容式压力计、压电式压力计和压磁式压力计等负荷式直接按照压力的定义制作。这类压力计误差很小,主要作为基准仪表使用常见的有活塞式压力计、浮球式压力计和钟罩式压力计仪器信息网特盘点各类常见压力检测仪器,以供读者参考。液柱式压力计 液柱式压力计是利用液柱所产生的压力与被测压力平衡,并根据液柱高度来确定被测压力大小的压力计。所用的液体叫封液——水,酒精,水银等. 液柱式压力计结构简单,灵敏度和精确度都高,常用于校正其他类型压力计,应用比较广泛。液柱式压力计按照结构形式可大致分为U形管压力计、单管压力计、斜管压力汁等。U形管压力计是根据流体静力学原理用一定高度的液柱所产生的静压力平衡被测压力的方法来测量正压、差压和负压既真空度的。由于其结构简单、坚固耐用、价格低廉、使用寿命长若无外力破坏几乎可永久使用、读取方便、数据可靠、无需外接电力既无需消耗任何能源。故在工业生产各科研过程中得到非常广泛的应用,广泛用于测量风机和鼓风机的压力、过滤器阻力、风速、炉压、孔压差、气泡水位、液体放大器或液压系统压力等,也可用于燃烧过程中的气比控制和自动阀门控制,以及医疗保健设备中的血压和呼吸压力监测。斜管压力计 在测量微小压差时,由于h值较小,用U形管或单管液柱式压力计测量时的相对误差极大,此时可休用斜管式压力计,斜管式压力计分墙挂式和台式两种。  在许多实验中往往需要同时测量多点的压力,例如压力分布实验。这时就要采用多管式压力计,多管式压力计的工作原理与斜管压力计相同,实际就是多根斜管压力计,由于多管压力计各测压管的内径不可能一样,因此,由毛细现象所造成的各测压管的初读数也不一致,测量前必须读出每根测压管的初读数,并作适当的修正。弹簧管压力计 弹簧管压力计又称波登管压力计。它是一种常见的也是应用最广泛的工程仪表,主要组成部分为一弯成圆弧形的弹簧管,管的横切面为椭圆形,作为测量元件的弹簧管一端固定起来,通过接头与被测介质相连,另一端封闭,为自由端,自由端借连杆与扇形齿轮相连,扇形齿轮又和机心齿轮咬合组成传动放大装置。当被测压的流体引入弹簧管时,弹簧管壁受压力作用而使弹簧管伸张,使自由端移动,其移动距离与压力大小成正比,或者带动指针指示出被测压力数值,适用于对铜合金不起腐蚀作用的气体和液体。波纹管压力计 波纹管压力计的波纹管由金属片折皱成手风琴风箱状,当波纹管轴向受压时,由于伸缩变形产生较大的位移,故一般可在其自由端安装传动机构,带动指针直接读数,从而测量出介质压力。波纹管压力计可广泛应用于石油、化工、矿山、机械、电力及食 品行业,直接测量不结晶体,有腐蚀性的气体、液体的压力。波纹管压力计的特点是低压区灵敏度高,常用于低压测量,但迟滞误差大,压力位移线性度差,精度一般只能达到1.5级,常在其管内安装线性度较好的螺旋弹簧。膜片式压力计 膜片压力计适用于测量无爆炸危险、不结晶、不凝固、有较高粘度,但对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。 膜片压力计耐腐蚀性能取决于膜片材料。不锈钢耐腐膜片压力计的导压系统和外壳等均为不锈钢,具有较强的耐腐蚀性能。主要用于化学、石油、纺织工业对气体、液体微小压力的测量,尤其适用于腐蚀性强、粘稠介质(非凝固非结晶)的微小压力测量。 膜片压力计的工作原理是基于弹性元件(测量系统上的膜片)变形。在被测介质的压力作用下,迫使膜片产生相应的弹性变形——位移,借助连杆组经传动机构的传动并予放大,由固定于齿轮上的指针将被测值在度盘上指示出来。压阻式压力计 压阻式压力计是基于单晶硅的压阻效应而制成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于腔内。当压力发生变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的电压输出信号。 具体来讲,当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍 压阻式压力计是电阻式压力计的一种。采用金属电阻应变片也可制成压力计,测量原理以金属的应变效应为主。电容式压力传感器 电容式压力传感器,是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力计。特点是,输入能量低,高动态响应,自然效应小,环境适应性好。 电容式压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。压电式压力传感器 压电式压力传感器是基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。 这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。压磁式压力传感器 压磁式压力传感器是利用铁磁材料的压磁效应制成的,即利用其将压力的变化转化成导磁体的导磁率变化并输出电信号。压磁式的优点很多,如输出功率大、信号强、结构简单、牢固可靠、抗干扰性能好、过载能力强、便于制造、经济实用,可用在给定参数的自动控制电路中,但测量精度一般,频响较低。 所谓压磁效应就是在外力作用下,铁磁材料内部发生应变,产生应力,使各磁畴之间的界限发生移动,从而使磁畴磁化强度矢量转动,因而铁磁材料的磁化强度也发生相应的变化,这种由于应力使铁磁材料磁化强度变化的现象,称为压磁效应。 若某一铁磁材料上绕有线圈,在外力的作用下,铁磁材料的导磁率发生变化,则会引起线圈的电感和阻抗变化。当铁磁材料上同时绕有激磁绕组和测量绕组时,导磁率的变化将导致绕组间耦合系数的变化,从而使输出电势发生变化。通过相应的测量电路,就可以根据输出的量值来衡量外力的作用。霍尔式压力计 霍尔式压力计是利用霍尔效应制成的压力测量仪器。当被测压力引入后,弹簧管自由端产生位移,从而带动霍尔片移动,改变了施加在霍尔片上的磁感应强度,依据霍尔效应进而转换成霍尔电势的变化,达到了压力一位移一霍尔电势的转换。 霍尔压力计应垂直安装在机械振动尽可能小的场所,且倾斜度小于3°。当介质易结晶或黏度较大时,应加装隔离器。通常情况下,以使用在测量上限值1/2左右为宜,且瞬间超负荷应不大于测量上限的二倍。由于霍尔片对温度变化比较敏感,当使用环境温度偏离仪表规定的使用温度时要考虑温度附加误差,采取恒温措施(或温度补偿措施)。此外还应保证直流稳压电源具有恒流特性,以保证电流的恒定。活塞式压力计 活塞式压力计又称为静重式压力计,是利用流体静力平衡原理及帕斯卡定律工作的的一种高准确度、高复现性和高可信度的标准压力计量仪器。 流体静力平衡是通过作用在活塞系统的力值与传压介质产生的反作用力相平衡实现的。活塞系统由活塞和缸体(活塞筒)组成,二者形成极好的动密封配合。活塞的面积(有效面积)是已知的,当已知的力值作用在活塞一端时,活塞另一端的传压介质会产生与已知力值大小相等方向相反的力与该力相平衡。由此,可以通过作用力值和活塞的有效面积计算得到系统内传压介质的压力。在实际应用中,力值通常由砝码的质量乘以使用地点的重力加速度得到。 活塞式压力计也常简称活塞压力计或压力计,也有称之为压力天平,主要用于计量室、实验室以及生产或科学实验环节作为压力基准器使用,也有将活塞式压力计直接应用于高可靠性监测环节对当地其它仪表的表决监测。浮球式压力计 浮球式压力计是以压缩空气或氮气作为压力源,以精密浮球处于工作状态时的球体下部的压力作用面积为浮球有效面积的一种气动负荷式压力计。 压缩空气或氮气通过流量调节器进入球体的下部,并通过球体和喷嘴之间的缝隙排入大气。在球体下部形成的压力将球体连同砝码向上托起。当排除气体流量等于来自调节器的流量时,系统处于平衡状态。这时,球体将浮起一定高度,球体下部的压力作用面积(即浮球的有效面积)也就一定。由于球体下部的压力通过压力稳定器后作为输出压力,因此输出压力将与砝码负荷成比例。钟罩式压力计 钟罩式压力计的作用原理,是直接从压强定义出发,用一台天平对压力在液封受力器上 的垂直作用力F进行测定。这个受力器是一只几何形状有一定要求的钟罩,根据对钟罩几何 尺寸的精密测量和理论分析,求出其受力有效面积S后,待测压强p可由公示p=F/S求出。 因为钟罩式压力计有独特的结构原理,并具有、足够高的精度,这就可以通过与其他基准压力仪器比对,发现未知的系统误差。同时,钟罩式压力计在测量压强差时,其单端静压强可以根据需要调整,直至单端压强为零,即可以测量绝对压强。另外,该仪器还具有操作简单、受外界干扰小等优点。在高新科技快速发展的现今,静态的压力测量方法已获得了较大的优化,成为了各领域中常用的测量体系,并逐渐朝着动态的压力校准趋势发展。由此,相关技术人员针对压力计量检测方法的进步展开了深入的探究。简而言之,压力计量检测的未来趋势表现在测试精度等级、测试响应速率、测试可靠性与智能化水平这几个方面的提高。比如,在活塞式仪表测试中融进了智能加码与操作部位激光监测方法,如此不仅提升了检测效率,并且提高了测试的精准性,同时为绝压式仪表与活塞式仪表智能测试体系的进步打下了良好的基础。针对数字式仪表及压力变送器和压力传感器等设备的量传任务有了精良的全智能压力控制其能够用作量传标准,利用1台控制器配置若干个压力模块能够操作许多量程范围,随意确定测试点的高精度检测任务,而且能够选用气介质来工作,如此防止了采用液体介质在检测压力时引起的诸多问题,大幅度提升了数字式仪器的测试效率与智能化程度。
  • 蓝菲光学向飞利浦交付2米直径积分球光谱测量系统
    近日,美国蓝菲光学 (Labsphere) 向飞利浦照明位于上海的固态照明全球技术发展中心交付了一套 CSLMS 2米直径积分球光谱测量系统用于检测节能灯、半导体照明灯具和模组。这已经是蓝菲光学交付飞利浦照明的第二套2米直径积分球光谱测量系统。   CSLMS 系统具有极高的精度和稳定性,受到美国能源之星标准的认可并符合最新 CIE 测量标准。在美国能源部认可的7个授权进行能源之星检测的实验室中,有5个实验室采用蓝菲光学的积分球检测设备。此次交付的系统还配有定制的测量支架以及电动开启功能。   通过采用蓝菲光学的积分球检测设备,飞利浦能够在内部质量控制方面保持一致。飞利浦实验室负责人表示,“蓝菲光学能够提供根据我们的具体需求设计最完整的系统,很多定制需求也可以满足,并且本地的团队支持非常到位。并且蓝菲光学的光学漫反射涂料 Spectraflect 的高漫反射特性和最新快速 CCD 光谱仪 CDS2100 系列都是业界领先的。另外,光谱测试软件界面也很友好。”
  • 如何使用积分球进行光测量
    积分球是光测量的主要工具之一。积分球可以同时捕获一个光源发出的所有辐射。制造商和最终用户发认为在进行光测量时,测量灯的几个主要特性尤为重要。分别是流明值,颜色和效率(每瓦特能源输出多少流明)。流明是通过对人眼视觉函数加权光谱辐射通量来确定的。在本文中,我们将简要介绍用于确定光通量的两种基本类型的仪器:光度计和分光辐射度计。 光度计是一种根据光度系统直接测量光的测光仪器。光度计需要使用含有滤光片的探测器,该探测器近似于人眼的相对光谱响应。关联的光谱响应通常称为CIE发光效率函数,Vλ函数,或更常见的称为人眼视觉函数曲线。分光辐射计,如我们的IllumiaPlus2系统,允许您直接测量光源的光谱辐射通量,然后将光谱响应应用于光谱数据并计算出高精度的流明值。从积分球分光辐射计中获取光谱信息的性能优势是:1)更好的流明计算,2)色度坐标的计算,3)显色指数的计算。 分光辐射计是准确确定光源光通量的完美选择。使用分光辐射计时,所有光谱数据都唾手可得。光谱数据易于转换以转化为重要的颜色指数,例如色度,相关色温和显色指数。另一方面,使用带有滤光片探测器的光度计测试时,不可能对CIE发光效率函数进行完美的模拟,并且会导致测量误差。要了解有关使用积分球分光辐射计进行光测量的更多信息,请观看这个视频系列,我们演示了使用我们的IllumiaPlus2光测量系统的程序。Labsphere是光测量和积分球设计的行业领军者之一。我们期待了解更多您所面临的应用程序挑战
  • Phenom 飞纳颗粒统计分析测量系统在中国计量院的应用
    最近实验室买了一批 PS 聚苯乙烯小球做实验模板,形状非常规则,直径也非常均匀,标称直径分别为 1.5 μ m 和 10 μ m 。为了验证其准确性,我们使用复纳科学仪器(上海)有限公司北京实验室的 Phenom 飞纳台式扫描电镜观察并统计。在本试验中,利用 Phenom 飞纳电镜的颗粒统计分析测量系统帮助我们获得了漂亮的统计结果,同时极大简化实验流程,加快了实验进度。下图为北京实验室的 Phenom 飞纳台式扫描电镜,小而精致,左边的显示器用于呈现样品在扫描电镜下的微观形貌,右边的电脑及软件可以做能谱分析,超大视野全景拼图,3D 粗糙度重建,纤维统计分析测量,颗粒统计分析测量,孔径统计分析测量等,每个软件在完成统计后,会输出相应的报告,本文截取颗粒统计分析测量系统的部分报告说明。实验室的 Phenom 飞纳台式扫描电镜在使用颗粒统计分析测量系统之前,先借助扫描电镜观察 PS 聚苯乙烯小球的微观形貌。这个过程类似于搜集样本,借助 Phenom 飞纳电镜的光学导航,自动马达样品台,找样的过程非常简单。光学导航相当于有了地图,从而有了找到最佳位置的方向,自动马达样品台可以在瞬间将视野移动到需要观察位置,只需点击该位置一次。借助 Phenom 飞纳电镜颗粒统计分析测量系统可以一次处理大量数据,该软件最多可以一次读取 400 张扫描电镜图片,完成对所有图片的分析统计,给出统计结果的图表报告。如果一次需要几百张扫描图片作为样本的话,不用担心拍照取照时间过长,结合 Phenom 飞纳电镜超大视野全景拼图,可以自动完成拍照取照的功能,原因是飞纳电镜有光学导航,自动聚焦,和自动马达样品台,这些设计通过计算机的指令控制,可以自动连续扫描指定大小区域,每分钟可采集超过 100 张 1024 x 1024 分辨率的图像,这些图像自动存储在电脑的指定文件夹内,同时,这些图像可以自动拼合为一副全景图像。Phenom 飞纳电镜颗粒统计分析测量系统可以快速读取指定文件夹内的图像,即可以读取由 Phenom 飞纳电镜超大视野全景拼图自动采集的图像。因此可以快速处理样本量大的统计工作,节省人力。以下是本次实验中使用的 PS 聚苯乙烯小球在 Phenom 飞纳台式扫描电镜下的部分图片,低倍下可以观察到小球的排列情况,高倍可以观察小球表面的细节。PS 聚苯乙烯小球放大倍数:1万倍PS 聚苯乙烯小球放大倍数:2万倍样本准备好后,开始用 Phenom 飞纳电镜颗粒统计分析测量系统进行试验,我们最先使用标称直径 1.5 μ m 的 PS 聚苯乙烯小球试验。上图为标称直径 1.5 μ m的 PS 聚苯乙烯小球的识别效果,识别得非常完美,5 秒钟快速给出结果,同时给出关于该小球的众多如长轴,短轴,面积,周长等参数,大大方便了我们去识别买来的 PS 聚苯乙烯小球的质量。下图为其众多参数,可以看到该小球的平均直径为 1.4 μ m,总的来说质量还不错。并且该软件还能给出所有小球直径的直方图,直观方便,如下图所示可知大部分的颗粒直径是接近 1.5 μ m 的。我们又对 3 μ m 和 10 μ m 的 PS 聚苯乙烯小球颗粒做了统计,效果一样完美,如下图所示,给出其平均直径分别为 2.73 μ m 和 9.72 μ m。 Phenom 飞纳台式电镜的颗粒系统帮助我们快速准确地完成对 PS 聚苯乙烯小球直径的统计工作,省去了一个小球一个小球测量的麻烦,希望他们以后做出其他好的软件,大大提高我们做科研的效率!直径 3 μ m 的 PS 聚苯乙烯小球统计结果直径 10 μ m 的 PS 聚苯乙烯小球统计结果
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 雪迪龙公司推出飞行时间质谱新产品 寻求各方合作
    2015年6月,雪迪龙与英国Kore Technology Limited签署投资意向书,雪迪龙持有KORE公司51%的股权;2015年9月7日,KORE公司完成了股权变更的注册登记手续,本次投资事项全部完成。 Kore公司成立于1991年,是国际上最早专业从事飞行时间质谱仪和相关产品研发、生产、销售的科技公司之一,KORE公司主要面向全世界的高校、科研机构等提供定制的高端飞行时间质谱仪;KORE的飞行时间质谱产品可广泛应用于环境监测、溯源、健康安全、材料研发和食品等行业;在大气环境中对气体污染物的检测,尤其在测量VOCs方面,可实现快速多组份数百种微量污染成份的定量定性分析。 目前,雪迪龙全面负责KORE产品在中国市场的生产、销售与售后服务;雪迪龙公司正在对KORE公司进行全面整合,帮助KORE公司扩大生产规模; 同时,推出MS-200便携式飞行时间质谱仪、PTR-TOFMS质子转移反应飞行时间质谱仪二款质谱产品,寻求各方合作,包括飞行时间质谱产品示范使用、合作应用开发、质谱仪器定制业务以及代理合作等。 合作咨询:联系人:市场部 王先生联系电话:15810369526; 010-80730609;010-80735683(传真)E-mail:Market@chsdl.com单位名称:北京雪迪龙科技股份有限公司(股票代码:002658)单位地址:北京市昌平区回龙观国际信息产业基地3街3号(102206)MS-200 便携式飞行时间质谱仪n 概述 MS-200便携式飞行时间质谱仪用于现场快速检测气态样品中的VOC/SVOC,通过双膜进样系统直接取样,而无需对样品进行分离、预浓缩。 仪器采用独有的聚环式飞行时间质谱分析技术,采用经典的EI离子源,能与现今广泛认证于实验室的NIST质谱数据库无缝对接,结合仪器自带的混合物自动分析软件,可对ppb到%的多种气体组分进行快速定性定量分析。 MS-200操作简便,分析相应速度快,具有高灵敏度及稳定性,内置的电池驱动模块,能维持长时间高频操作(6小时),实现了从实验室到现场的快速监测。 n 工作原理1、进样系统:采用双膜进样系统,通过内置真空泵维持仪器内外压力差,将样品从大气中引入质谱仪的真空区2、质谱检测:采用电子轰击(EI)+飞行时间质谱仪,先将样品电离成离子,然后使离子加速,最后检测样品离子3、信号转化与传输:时间数字转换器(TDC)是MS-200用于定时、控制和数据交换的设备,前置放大器处理检测器产生的信号,供TDC使用4、控制与分析:可将数据传输到电脑上,通过GRAMS/AI软件对质谱仪进行控制,并进行数据分析n 应用领域环保-垃圾填埋场的VOCs排放检测/恶臭检测城市空气质量检测-测定污染物在区域内的空间分布室内VOC检测应急检测-快速明确地鉴别未知样品、污染排放溯源检测环境修复区的VOCs/SVOCs-快速低成本的分析检测,可有效监控修复进程工业卫生与职业安全火灾和犯罪现场调查-比如确认引发火灾的元凶泄漏检测-如加油站、化工园区等废水、土壤-顶空气体分析n 产品特点便携机动 体积小,集成度高,无需外接任何气体钢瓶携行箱式设计,重21kg,可通过车载和手提等方式快速进入现场;全套系统完全集成于箱内,开箱即可进行半连续自动分析交直流两用。在极频繁的分析操作下,质谱仪可靠电池驱动维持正常工作3小时以上,保证现场监测的机动性快速检测1、开机预热速度快(3~5min)2、采样管直接进样,无需连接GC系统,大大节省分析时间3、对ppm级到百分比(%)浓度的样品10s内即可分析出结果,对ppb级的样品通过膜浓缩也能在一分钟内完成3、高的时间分辨率,在应急监测等应用中不会漏掉重要信息性能优越1、仪器调制稳定性好,移动时无需重新校准2、测量线性范围广,可分析从ppb到%级气体组分3、内置真空取样装置,无需单独配置预处理,现场操作简便、灵活4、内置充电电池,可维持6个小时高频测试,真正实现从实验室到现场分析双膜进样系统1、常压下采集样品,简单、稳定的运行方式,非常适合现场使用2、PDMS膜为疏水性材质,对空气中的O2 、N2等基质干扰不敏感3、防尘和其他颗粒,离子源不易受污染4、浓缩效率高,不经样品前处理,检测下限可达几个ppb5、响应时间短,记忆效应低6、半透膜使用寿命长,运行成本聚环式飞行时间质谱分析技术1、并行检测:可以检测进入质谱仪中所有化合物的碎片离子,对于对组分的检测,灵敏度高,2、分析快速,混合物自动分析软件可快速识别各种组分3、快速分析:采样分析速度快,在10s内得到合适的质谱统计分析4、采用独有的聚环式设计,提高了样品电离性能,大幅减小了真空室及检测器组件的体积,使仪器更为便携实用5、高性能的分析器,保证了仪器的高灵敏度和质量分辨率内置超真空1、真空系统永久密封:系统清洁、极少需要维护、内置双泵保证系统超真空(10-7mbar)2、无需外接机械泵:坚实可靠(不受震动影响)、无需初级抽气泵、断电后长时间维持真空状态 n 技术参数检测范围:0~1000amu检出限:(苯)质量分辨率:250 FWHM@78 amu动态线性范围:6个数量级(优于10%)温度范围:15° C --35° C(环境温度)湿度范围 非凝聚电池运行时间 n分析:分析可连续使用6.6小时(以每5分钟分析一个光谱为基准) n泵运行时间(只运行泵):4天外形尺寸: n高:213 mm 宽:328 mm 长:531 mm n重量:20kg(16kg不包括电池)PTR-TOFMS 质子转移反应飞行时间质谱n 概述 PTR-TOFMS是通过将质子转移离子源和飞行时间质谱结合在一起,能对痕量挥发性有机物(VOCs)实现在线检测的新兴技术,可在数秒内实现PPTV量级的浓度检测,具有响应速度快、无需前处理、灵敏度高和检出限低等优点。 n 仪器优点实时在线监测,无需样品收集和预处理高灵敏度,检出限低至PPTV量级,可检测痕量污染物响应速度快,可在50~100ms内快速甄别污染物高质量分辨率(FMWH 6000 M/?M), 可准确识别化学组分伴热进样系统及钝化处理,可直接分析SVOC无需载气,少耗材、维护成本低坚固耐用,维护量小,可长时间稳定运行,适于现场和野外工作采用独特设计,减少离子损失,所需样品量少,适合微环境监测分析范围广,可用于大气、水和土壤中VOC/SVOC及部分无机气体的检测可广泛应用于环保、石油化工、食品医药、科学研究等领域n 产品特点软化学电离 质子转移是一种“软”化学电离方法,可使中性气体分子(如大气中低浓度的待分析物)进行电离而不会产生大量的分子碎片。与其它电离技术如电子电离(EI) 相比,它不会使分子变成碎片,生成的质谱图更为简单,易于解析。多种可选离子源1、标配离子源:H3O+2、可选离子源:EI(能量可调),NO+,O2+,Ar+,Kr+,Xe+及负离子3、极大扩展了仪器的使用范围及测量精度4、可用于大部分VOC/SVOC以及部分无机气体的检测在线实时监测1、仪器时间分辨率可达100ms,能在最短时间内迅速甄别污染物,极大提高了仪器的时效性2、实时在线检测,可随时查看样品的化学组成以及反应动态过程3、实时连续检测,可精确掌握污染物浓度并更好地进行过程控制性能优越1、独有的离子浓缩器(含RF Funnel技术),极大减少了反应器中的离子损失,使仪器获得高灵敏度的同时,无需采用更高气流量以增加离子流,保证仪器的高性能,并降低成本。2、更高的质量准确性和质量分辨率,能够区分具有相同“名义“质量的物质,即分离精确质量相当接近的两个谱峰。3、采用特有的质量抑制器,最大效率地延长离子检测器的使用寿命,保证仪器长时间的稳定运行。4、按照客户需求,可对仪器进行重新配置,以增加更多功能,如定制进样系统,增加GC或TD解析器以检测爆炸物等。n 系统组成加热进样管线系统1、提供加热进样管线, 适合现场或野外测量。2、提供加热器电源, 可通过软件远程控制。3、气体压力比大气压大许多或气体流量很高时, 部分待测气体会通过仪器出口被引出4、进样系统最高温度可达 200℃,通过软件或仪器专用的加热器控制面板, 对各种进样管线的加热器及 PTR 反应器加热箱提供必要的加热控制。空心阴极辉光放电离子源和离子源漂移区1、辉光放电离子源提供H3O+初级离子束作为标准配置。2、可使用其它气体作为离子源, 得到其它类型的化学电离。3、仪器配有加热水瓶以及被加热水蒸汽的传输管线, 将水蒸汽引入至辉光放电(GD) 离子源处。4、可改变水瓶的温度, 保持水瓶温度高于室温,消除外部温度变化对水蒸汽压力的影响。5、标准配置中提供离子源切换气体管线,也可向客户提供其它气体离子源(Ar+, NO+, O2+, Xe+, Kr+及负离子) 接口。PTR 反应器1、PTR 反应器位于离子源漂移区后面,配置离子浓缩器、加热箱和控制器。2、待分析物分子与软化学离子(比如 H3O+) 在反应器中发生反应。3、新型离子浓缩器可增加离子离开反应器的通量, 从而增加灵敏度, 降低检测限。4、反应器配有专用的加热箱,维持反应器的温度(可至130℃)。5、专用电子机箱可以控制反应器和与反应器相关的组件:辉光放电离子源(阴极和阳极), 离子浓缩器,反应器出口离子能量, 提取进入转移透镜。飞行时间质谱仪1、TOF质谱仪的质量分辨率超过 6,000 M/?M (FWHM),性能稳定,灵敏度高,扫描速度快、效率高。2、离子检测器由双微通道板检测器组成,前置放大器可提高仪器的检测灵敏度。真空系统1、真空系统有前置抽吸泵、分子涡轮泵、真空阀门和真空腔组成,为分析系统提供稳定的真空环境,保证结果的准确性和分析精度。2、在数据采集期间, 自动测量 PTR 反应器压力,实时查看系统真空变化。高速 TDC (4GHz 时间-数字转化器) 仪器配置的离子计数系统,时间分辨率为0.25ns,具有最小的死时间,数据记录效率高,保证数据的稳定性和重复性。n 技术参数质量范围:1-8,000 m/z质量分辨率:≥ 6000 M/?M (FWHM), 适用于定量分析 最高可达 10,0000 M/?M (FWHM), 适用合于定性分析响应时间:约 50-100ms (反应器里待分析物更新时间)灵敏度:采用 RF Funnel 技术, 苯 150 cps/ppbv检测器与检测下限:采用 B-P Plate 技术, 苯 8pptv@平均1分钟线性范围:5pptv–50ppm脉冲频率:设计为 100 kHz 典型操作频率:20 -30Hz可调流量:可达 1000 sccm (标准立方厘米)初级离子束:可选择H3O+, Ar+, NO+, O2+, Xe+, Kr+(及负离子)质量准确度:1 mamu (内插法),2 mamu (外推法)脉冲频率:设计为 100KHz,通常在 20-30KHz 下操作进样气体流量:典型的气体消耗流量为 60-300 cm3/min (sccm)。必要时可关闭。反应室加热温度:可达130℃进样入口加热器:50-200℃(可调)高速 TDC 4GHz涡旋式无油真空泵电源:220-240V, 约1kW尺寸/重量:61 x 165 x 2000px (宽, 高, 深) / 250kg数据采集系统:在机架上安装台式或笔记本电脑
  • 色彩测量技术积分球结构的几何特性及优势
    色彩测量技术积分球结构的几何特性及优势一、d/8º 积分球测量结构及其特点积分球是一种内部壁面呈现白色的球形设备,以其卓越的反射和散射性能被广泛应用于测量光源的色度和强度。在进行颜色测量时,该设备特设多个孔口以便于操作。主要包括一个测量孔,用于与测试样品紧密结合;对面设置一个观测孔,或称为接收器孔,位于测量孔的直接对面,通常与球体法线成8º 角,主要功能是收集样品反射的光线;另外,与观测孔在球体法线上对称的位置设置有一个镜面反射孔,该孔可根据需要开启或关闭,以控制是否收集镜面反射光。这一几何结构被称为d/8º 积分球测量结构,其独特的设计使其在颜色测量领域中具有重要应用。d/8º 测量结构示意图在操作过程中,光从光源发射,经积分球的内壁进行全面的漫反射,使得这些散射光线能够均匀地从各个角度照射到试样上。这导致试样吸收和反射光线,其中定向于8度的反射光被接收器捕获以进行颜色评估。因此,与0度/45度的测量配置相比,d/8度积分球测量结构的一大特点是使用的是漫射光源,这相当于周围环绕着无数个点光源,而非0度/45度配置下的单一光源。其次,接收器位于8度位置,利用可开闭的对称镜面反射孔,可以选择性地收集包含镜面反射(SPIN)的数据或排除镜面反射(SPEX)的数据。包含镜面反射与排除镜面反射光路示意图根据所述分析,当光线投射到样本上时,会经历吸收、散射以及镜面反射的过程。样本表面的物理特性决定了光线的传播方式:平滑表面导致高光泽和较强的镜面反射,同时散射较少;相反,粗糙表面导致低光泽、较弱的镜面反射和较强的散射。因此,对于具有相同材料但光泽不同的样本,当考虑镜面反射时,测量结果显示一致性(即1+2=2+1),这代表了材料的固有颜色,也就是其真实色。然而,在排除镜面反射的情况下,样本之间的差异变得明显(1≠2),这些数据反映了材料特性与表面物理状态的综合效应,代表了表观色,更贴近于人眼观察到的效果。镜面反射数据的包含与排除之间的主要区别由镜面反射光引起,其强度随样品的光泽度变化而变化。因此,样品的光泽度直接影响了在包含与排除镜面反射条件下数据的差异程度。对不同光泽度的涂层在这两种条件下进行测量,得到的色度数据及其差异情况如表所示。不同光泽的样品包含与排除镜面状态的数据差异涂层的光泽程度对包含镜面反射的数据影响较小,但对排除镜面反射的数据有显著影响。随着样品光泽度的增加,排除镜面反射条件下的明度值会降低,导致与包含镜面反射数据的差异增大。积分球技术已广泛应用于多个行业,尤其是在纺织印染和塑料制品检测中,它成为了首选工具。积分球结构能够适应从低光泽到高光泽的样品(如金银卡片和电镀产品),甚至能够检测具有简单特殊效果的涂料。由于积分球仪器能测量样品的真实色,它通常被选用于电脑配色系统中的分光光度计。积分球作为该结构中最关键的组件之一,其内壁采用高漫反射材料制成,因此成本相对较高。为确保测量数据的精确性,需要进行良好的日常维护,以维持其卓越的漫反射性能。二、产品推荐便携式分光光度仪Ci64便携式分光光度仪Ci64是高精度的色彩测量工具,专为满足各种行业对色彩精确度和一致性要求而设计。该仪器特别适合于纺织印染、塑料制品等行业的色彩检测,无论是对于低光泽还是高光泽样本,如金银卡或电镀产品,Ci64均能提供卓越的性能。它甚至能够精确测量具有特殊效果的涂层,如珠光或金属光泽涂料。Ci64结合了积分球测量技术的优势,包括能够在包含或排除镜面反射的条件下进行测量,从而确保了对样品真实色的准确捕获。这种灵活性使得Ci64在电脑配色系统中尤为重要,因为它可以提供关键的色彩数据以支持精确配色。该仪器的设计考虑了易用性和便携性,使得现场测试变得简单快捷。Ci64的内壁使用高漫反射材料制成,确保了测量过程中光线的均匀分布,从而提高了数据的准确性和重复性。然而,为了维持这种高度的漫反射性能和数据精度,Ci64需要适当的日常维护。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 陈晓嘉教授团队Nature Reviews Physics:极端压力下原位测量热导率
    材料的热导率对于许多实际应用非常重要,例如,了解地球的热平衡和历史、器件的能量转换以及电子设备的热管理。然而,在压力条件下,测量材料的热导率和理解相关的热传输机制,仍然是高压研究中最困难的挑战和复杂的主题。高压实验技术的突破,使得在极端压力-温度条件下原位测量热导率成为可能。这种新技术能力,不仅为理解材料中的热传输机制提供了独特见解,而且为实现材料热性能的可逆调制提供了机会。近日,上海高压科学技术先进研究中心陈晓嘉教授团队,撰文讨论了高压条件下的热表征技术,已经在活塞-气缸单元、多对顶砧单元和金刚石对顶砧单元等诸多设备中得到了发展,并用于表征块状和薄膜材料以及温度相关和压力相关的测量;这些高压热表征技术,已经应用于测定气体、液体和固体(包括热电材料、土壤材料和半导体材料等)的热导率以及建立相关热传输机制;还总结了各种材料的高压热导率结果,并讨论了潜在的热传输机制;此外,还关注了地球内部物质的高压和高温实验模拟应用。相关综述以“Thermal conductivity of materials under pressure”为题发表在《Nature Reviews Physics》期刊上。图1 在环境和高压下材料中的热传输。a | Parameters in Fourier’s law of heat conduction. b| Interfacial thermal conductance between two materials and the in- plane and out- of-plane thermal conductivity. Heterointerface contact normally includes conditions of full contact and limited contact, where some air voids are inevitably introduced during the integration (insets) both normally result in a temperature drop ΔT across the interface due to the mismatch of phonon scattering between the two different materials. c | Thermal transport at high pressures generated within a diamond anvil cell (left) and the schematic evolution of phonon density of states (DOS) and thermal conductivity with respect to pressure (right). In general, the application of pressure compresses the crystal lattice and extends the phonon frequency range, thereby, promoting the heat- carrying ability of electrons and some phonons, bringing about the modification of thermal conductivity under pressure (increasing trend, decreasing trend and anomalous trend). d | Progress in thermal conductivity measurements at high pressures. Data points are representative works the values of pressure and year are taken from REFS. ΔT, temperature difference from the hot to the cold terminals A, cross- sectional area L, length of thermal transport Q, total thermal energy of heat flow through the cross- sectional area.图2 在压力下使用的稳态热表征方法。 a | The Ångström method developed in the multi-anvil cell. b | The thermal grating method applied in a diamond anvil cell (DAC). c | The thermocouple method used in a DAC. T1 and T2, temperatures measured at the hot surface of the heating diamond anvil and at the cold surface of the heat- sinking diamond anvil, respectively T3 and T4, temperatures measured near the culet of the hot anvil and the cold anvil, respectively. d | The Raman-based opto-thermal method used in a DAC111. r is the spot diameter of the excitation laser.图3 在压力下使用的瞬态热表征方法。 a | The transient hot- wire method developed in the piston–cylinder cell. b | The pulsed heating method developed in the multi- anvil cell. c | The pulsed- laser transient heating method applied in a diamond anvil cell. d | The time- domain thermoreflectance method and picosecond transient thermoreflectance method applied in a diamond anvil cell.图4 气体、液体和热电材料在压力下的热导率。 a | Hydrogen, neon, argon and methane gases lines are simulation results. Values are taken from REFS. b | Liquids of H2O, silicone oil, methanol–ethanol mixture and toluene. Values are taken from REFS. c,d | Thermoelectric materials Pb0.99Cr0.01Se, Bi2Te3, PbTe and Sb2Te3 (part c) and PdS and CuInTe2 (part d), all at 300 K. Values are taken from REFS.表1 在压力下,各种气体、液体及固体材料的热导率研究汇总BTE, Boltzmann transport equation Comp., compression DAC, diamond anvil cell DFT, density functional theory MD, molecular dynamics PBTE, Peierls–Boltzmann transport equation TDTR, time- domain thermoreflectance TH, pulsed- laser transient heating TTR, transient thermoreflectance.图5 地球材料在压力下的热导率。a | Earth core materials of iron and iron–silicon alloys up to 120 GPa at 300 K. b | Earth core materials of iron and iron–silicon alloys up to 144 GPa and 3,300 K. The values are taken from REFS. The lines are to guide the eye. c | Earth mantle materials for typical minerals of MgO and (Mg, Fe)O. The values aretaken from REFS. d | Earth materials for typical core–mantle boundary (CMB) minerals of MgSiO3, (Mg, Fe)SiO3 and (Mg, Fe, Al)SiO3 up to 144 GPa and 3,700 K. The values are taken from REFS. PPv, post- perovskite Pv, perovskite.图6 半导体电子材料在压力下的热导率。a | Semiconductor materials of Si and Si0.991Ge0.009 measured using time- domain thermoreflectance near 300 K at pressures up to 45 GPa. b | Wide-bandgap CuCl measured using the transient hot- wire technique within the pressure range 0.5–2.7 GPa and temperature range 100–480 K. c | Normalized thermal conductivity calculated from first principles for binary compound semiconductors of GaAs, SiC, BP and BN with an increasing trend BAs, BeTe and BSb with a decreasing trend and BeSe with a non- monotonic trend. d | Thermal conductivity of the 2D material MoS2. hcp, hexagonal close-packed Prim. hex, primitive hexagonal.原文信息:Zhou, Y., Dong, ZY., Hsieh, WP. et al. Thermal conductivity of materials under pressure. Nat Rev Phys (2022).https://doi.org/10.1038/s42254-022-00423-9
  • 这一地将建设色质谱、坐标测量机、试验机等10个产业聚集区
    近日,山东省人民政府印发关于贯彻落实《计量发展规划(2021-2035年)》的实施意见(以下简称《实施意见》),围绕五个方面提出27条实施措施。《实施意见》提出加强计量技术研究,包括新型量值传递溯源技术研究,重点研究太赫兹功率、光谱测量仪器等量值传递溯源技术,推进量子传感、微纳米、复杂几何量等测量技术和应用。《实施意见》还强调强化计量应用支撑,服务重点领域发展。(一)夯实先进制造业计量根基。加强仪器设备研发,具体包括开展大空间精密测量、高电压、太赫兹、电磁兼容等领域测量方法研究和测量装备研制,提升产业计量基础支撑能力;实施仪器设备质量提升工程,加强高端仪器设备核心器件、核心算法研究,重点在核电仪表、分析仪器、智能传感器等领域进行技术攻关,研发小型在线质谱仪、化学传感器、光学传感器等精密计量器具;建设环境监测仪器、色谱仪、质谱仪、流量仪表、电力仪表、坐标测量仪器、材料试验机等10个左右仪器仪表产业发展聚集区,培育一批仪器仪表“专精特新”小巨人企业,提升仪器设备研发能力和自主可控水平,培育20家具有核心竞争力的品牌企业。(二)服务海洋强省建设。推动建设国家海洋计量科学研究中心,突破海洋水声、海洋重磁、海洋温度等方向的关键测量技术,提高海洋计量基础科学研究能力;培育海洋装备产业计量测试中心,开展海洋专用仪器计量测试技术研究。(三)支撑碳达峰碳中和目标实现。加快建设“高耗能、高排放”行业计量监测体系,开展钢铁、电力、交通运输等重点行业碳排放直接测量方法和在线监测设备量值传递溯源技术研究,规范碳计量器具管理;加强碳排放关键计量测试和精密测量技术研究,开发碳排放测量器具。(四)支撑新能源新材料产业提升。研究氢能、太阳能、风能等新能源专用计量测试技术,加快推进碳纤维、高端铝材、橡胶、石墨烯、生物医用材料等领域材料组成、结构和性能等关键测量测试技术研究,满足新能源新材料行业量值传递溯源需求。(五)提升现代基础设施计量保障能力。建立完善交通、信息、水利等现代化基础设施计量支撑体系;突破极微弱光探测测试技术,研制光通信领域国际领先的超高灵敏度、超高精度计量检测装置。研制明渠流量计量等水资源计量专用设备,建立完善水资源专用全口径、大流量、复杂工况的计量标准。开展新能源汽车电池、充电设施等计量测试技术研究和测试评价,加强智能汽车计量测试方法研究。 全文如下:山东省人民政府关于贯彻落实《计量发展规划(2021-2035年)》的实施意见鲁政发〔2022〕15号各市人民政府,各县(市、区)人民政府,省政府各部门、各直属机构,各大企业,各高等院校:为贯彻落实《计量发展规划(2021-2035年)》,全面加强山东省计量体系和能力建设,更好发挥计量在经济社会高质量发展中的基础性、支撑性作用,结合《山东省国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,现提出以下实施意见。一、总体要求以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届历次全会精神,认真落实习近平总书记对山东工作的重要指示要求,锚定“走在前、开新局”,以推动高质量发展为主线,以国家和省内重大需求为牵引,以改革创新为动力,加快建设国内领先的现代先进测量体系,提升科学计量、产业计量、能源计量、民生计量水平,为新时代社会主义现代化强省建设提供强有力的计量基础支撑和保障。二、发展目标到2025年,全省计量体系和能力建设取得显著成效,计量在服务保障全省经济社会高质量发展、保障高品质生活方面的地位和作用日益突出,现代先进测量体系初步建成,科研创新能力、计量服务保障能力显著提升,计量监管体系更加完善,部分领域达到国内领先水平。——计量科技创新能力明显提升。加强省级计量科学研究机构能力建设,新建10个省级计量专业技术委员会,培育计量科技创新基地、先进测量实验室、计量数据建设应用基地等计量创新平台5个。——计量服务保障能力持续增强。新建产业计量测试中心10个以上,服务先进制造业企业3000家以上,引导发展100家左右具有较强竞争力的计量器具、传感器、仪器仪表生产企业,15家标准物质生产机构,培育20家具有核心竞争力的品牌企业。——计量监督管理体制更加健全。全省新建和升级社会公用计量标准600项以上,研制标准物质1000项以上,制(修)订省级计量技术规范100项,强制检定项目省级及以下建标覆盖率达95%以上,全省社会公用计量标准满足社会95%以上的量值传递溯源需求。——计量基础支撑体系更加完善。推动计量惠民工程实施提质增效,建设20个省级诚信计量示范县(市、区)、50个以上诚信计量示范街(社)区,引导培育诚信计量示范单位5000家以上,加强计量文化和科普工作,建设30个计量文化基地,聘请100名计量文化宣传大使。展望2035年,计量科技创新能力大幅提升,现代先进测量体系全面建成,关键领域计量技术取得重大突破,建成推动我省经济社会高质量发展需要的高水平量值传递溯源体系和完善发达的计量技术服务业,计量服务能力全面提升,计量监管工作全面加强。三、加强计量技术研究,推动创新驱动发展(一)加快关键核心技术攻关。加强计量测试理论、方法与应用技术研究,重点推进计量数字化转型以及计量器具远程、在线、嵌入式校准技术研究。针对极端条件、复杂环境和实时工况的计量需求,研究复杂条件下的量值传递溯源等共性技术。加强分布式系统和传感器网络计量技术研究,突破动态、在线、原位校准技术瓶颈,解决极端量、复杂量、微观量等多参量和综合参量的准确测量难题。(省市场监管局牵头,省科技厅配合)(二)加强产业计量技术研究。瞄准先进制造业发展趋势,组织开展数字化模拟测量、跨尺度测量、复杂系统综合测量、工况环境监测等测量测试技术研究,强化计量对产业基础高级化、产业链现代化的支撑作用。推进物联网、云计算、人工智能等新技术在计量仪器设备中的应用,集中突破集成化、微型化、智能化的新型高精度传感技术,提升传感器稳定性、可靠性和准确度。(省市场监管局牵头,省科技厅、省工业和信息化厅配合)(三)完善计量创新协同机制。整合计量优势资源协同攻关解决计量测试难题,在重点产业领域建设先进测量实验室。面向国内经济主战场、面向省内重大战略计量需求,开展计量科研需求采集、联合攻关,推进计量领域科技创新与应用,培育建设计量科技创新基地。(省市场监管局牵头,省委军民融合办、省科技厅、省工业和信息化厅、省自然资源厅、省生态环境厅、省交通运输厅、省水利厅、省卫生健康委、省气象局、省能源局配合)四、强化计量应用支撑,服务重点领域发展(一)夯实先进制造业计量根基。围绕做强做优做大“十强”现代优势产业,建设一批产业计量测试中心和产业计量测试联盟,为产业发展提供全溯源链、全产业链、全寿命周期并具有前瞻性的计量测试服务。落实工业强基计量支撑计划,重点开展基础零部件特性量及结构成分计量测试技术研究、基础材料关键计量测试技术研究和性能评价、基础工艺过程计量控制研究和应用。开展大空间精密测量、高电压、太赫兹、电磁兼容等领域测量方法研究和测量装备研制,提升产业计量基础支撑能力。依托省一体化大数据平台,建设工业计量基础数据库,强化制造业计量数据管理和应用。实施仪器设备质量提升工程,加强高端仪器设备核心器件、核心算法研究,重点在核电仪表、分析仪器、智能传感器等领域进行技术攻关,研发小型在线质谱仪、化学传感器、光学传感器等精密计量器具。建设环境监测仪器、色谱仪、质谱仪、流量仪表、电力仪表、坐标测量仪器、材料试验机等10个左右仪器仪表产业发展聚集区,培育一批仪器仪表“专精特新”小巨人企业,提升仪器设备研发能力和自主可控水平,培育20家具有核心竞争力的品牌企业。(省市场监管局牵头,省发展改革委、省科技厅、省工业和信息化厅、省大数据局配合)(二)服务大众健康与安全。加快医疗健康、食品安全领域计量测试基础设施建设,重点提升疾病防控设备、医用冷链装备、眼科光学仪器等医疗卫生计量器具量值传递溯源能力。加强用于医疗卫生的强制检定计量器具管理,保障医疗卫生领域量值准确。开展医用计量器具量值传递溯源技术研究,突破临床诊断与精准治疗等关键计量技术,研制检测装备和标准物质,支撑生命科学、生物医药、医养健康等产业创新发展。加强公共安全、自然灾害防控等领域计量技术研究和服务。(省市场监管局牵头,省科技厅、省自然资源厅、省卫生健康委、省应急厅、省药监局配合)(三)强化乡村振兴计量保障。开展“计量服务下乡”活动,推动计量技术服务向农村地区延伸。加强粮食购销等涉农领域强制检定计量器具和定量包装商品的计量管理,持续提升农业农村领域计量保障水平。聚焦农产品生产和流通全链条计量保障需求,开展现代高效农业、农机、化肥、农药等农资生产领域测量测试技术研究,推动农资产品质量提升。强化计量对农田水利、农村物流、乡村医疗等农村基础设施的支撑和保障,培育冷链物流产业计量测试中心。(省市场监管局牵头,省交通运输厅、省水利厅、省农业农村厅、省卫生健康委配合)(四)服务海洋强省建设。推动建设国家海洋计量科学研究中心,突破海洋水声、海洋重磁、海洋温度等方向的关键测量技术,提高海洋计量基础科学研究能力。培育海洋装备产业计量测试中心,开展海洋专用仪器计量测试技术研究,重点研究用于模拟全海深压力、温度及盐度范围的全海深环境模拟舱,解决深海传感器在线溯源难题。健全海洋精细化工、海洋药物与生物制品、海洋环境监测、海洋港口等领域计量保障体系,服务海洋强省战略深入实施。(省市场监管局牵头,省发展改革委、省科技厅、省海洋局配合)(五)支撑碳达峰碳中和目标实现。构建“双碳”计量管理体系、计量技术体系和计量服务体系,为温室气体排放可测量、可报告、可核查提供计量支撑。加快建设“高耗能、高排放”行业计量监测体系,开展钢铁、电力、交通运输等重点行业碳排放直接测量方法和在线监测设备量值传递溯源技术研究,规范碳计量器具管理。加强碳排放关键计量测试和精密测量技术研究,开发碳排放测量器具,探索建立碳排放计量审查制度,在有条件的地方设立碳计量实验室。加强能源资源计量数据应用研究,培育建设碳计量中心,推进能源资源计量服务示范。(省市场监管局牵头,省发展改革委、省工业和信息化厅、省自然资源厅、省生态环境厅、省住房城乡建设厅、省交通运输厅、省能源局配合)(六)筑牢数字赋能计量基础。推动计量技术与量子通讯、云计算、大数据等新一代信息技术融合应用,加快建设高精度时间频率、传感器动态校准等计量标准。加强数字计量设施建设,以量值为核心,提升数字终端产品、智能终端产品计量溯源能力。加强生命健康、装备制造、食品安全、环境监测、节能降碳等领域计量数据应用,争设国家计量数据中心山东分中心,培育计量数据建设应用基地。开展集成电路、微机电系统(MEMS)传感器、北斗导航系统等关键参数计量测试技术研究,加快计量测试平台建设和示范应用,服务整装和零部件企业协同发展。(省市场监管局牵头,省工业和信息化厅、省大数据局配合)(七)支撑新能源新材料产业提升。研究氢能、太阳能、风能等新能源专用计量测试技术,加快推进碳纤维、高端铝材、橡胶、石墨烯、生物医用材料等领域材料组成、结构和性能等关键测量测试技术研究,满足新能源新材料行业量值传递溯源需求。强化计量在清洁能源发电、储能及分布式智能电网建设中的应用。培育建设新能源新材料领域产业计量测试中心,重点研究新能源和可再生能源的开发利用,以及新材料和复合材料关键元素、参数测量及溯源性技术研究,完善全产业链计量支撑体系。(省市场监管局牵头,省发展改革委、省科技厅、省工业和信息化厅、省能源局配合)(八)提升现代基础设施计量保障能力。建立完善交通、信息、水利等现代化基础设施计量支撑体系,培育交通产业计量测试中心,开展智慧公路、智慧港航、智慧机场、轨道交通等领域计量关键技术研发和应用。突破极微弱光探测测试技术,研制光通信领域国际领先的超高灵敏度、超高精度计量检测装置。研制明渠流量计量等水资源计量专用设备,建立完善水资源专用全口径、大流量、复杂工况的计量标准。开展新能源汽车电池、充电设施等计量测试技术研究和测试评价,加强智能汽车计量测试方法研究。(省市场监管局牵头,省交通运输厅、省工业和信息化厅、省水利厅配合)五、加强计量能力建设,夯实高质量发展基础(一)构建新型量值传递溯源体系。统筹规划建设省、市、县三级社会公用计量标准,健全完善部门(行业)计量标准,加快企业计量标准建设,推动时间频率、流量等国家计量标准项目落地山东。满足量值传递扁平化和计量数字化转型需要,逐步建成以省级计量技术机构、计量区域测试中心为核心的满足经济社会发展要求的立体化计量保障体系。实施计量标准能力提升工程,加强超导、高温、低温、流量、大电流等领域计量科学研究,建设一批高精度、高稳定性的计量标准,填补我省量值传递溯源体系空白。(省市场监管局牵头,省政府有关部门配合)(二)加大标准物质研制应用。围绕产业链,紧贴测量链,加快新能源新材料、智慧海洋、生物制药、绿色化工等重点产业标准物质的研制,增强核心材料和关键技术自主可控能力。强化标准物质量值和不确定度水平核查,建设标准物质量值核查验证实验室,提升标准物质全寿命周期监管能力。加强应急用标准物质实物和生产能力储备,增强战略性、公益性标准物质供给。(省市场监管局牵头,省政府有关部门配合)(三)建设与我省现代化水平相适应的计量技术机构体系。坚持各级法定计量技术机构的独立性、法制性和公益性,加强普惠性、基础性计量基础设施建设,满足履行计量器具强制检定等法定职责需要,依法有序推进法定计量技术机构深化改革创新发展。加快法定计量技术机构能力建设,分级别、分区域制定建设标准,推动机构的差异化、专业化发展。加强交通、气象、水文、电力等专业计量技术机构建设,规范专业计量器具的管理和使用。(省市场监管局牵头,省交通运输厅、省水利厅、省气象局、国网山东省电力公司配合)(四)促进企业计量能力提升。引导企业建立完善与科研、生产、经营相适应的计量管理制度和保障体系。指导企业加强计量基础设施建设、计量科技创新和测量数据应用,支持企业开展计量检测设备的智能化升级改造,提升质量控制与智慧管理水平。推行企业计量能力自我声明制度,推广企业计量典型案例。实施中小企业计量伙伴计划,提升产业链相关中小企业计量保证能力。(省市场监管局牵头,省工业和信息化厅配合)按规定落实好企业新购置计量器具相关税收优惠政策。(省税务局牵头)(五)打造新时代计量人才聚集高地。突出“高精尖缺”导向,加大计量人才引进力度,加强基础研究、复合交叉和专业领域计量人才培养。支持计量专业人才申报享受国务院政府特殊津贴、泰山系列人才、科技领军人才和青年拔尖人才。实施计量专业技术人才提升行动,建设一批计量专业技术培训平台和实训基地,提升计量专业技术人才能力,培养一批计量领域技术能手等高技能人才。探索建立首席计量师、首席工程师、首席研究员等聘任制度。建立计量专家人才库,支持技术人员开展计量交流合作。(省市场监管局牵头,省科技厅、省工业和信息化厅、省人力资源社会保障厅配合)(六)推动黄河流域计量协同发展。加强黄河流域计量工作合作,推动建立黄河流域生态保护和高质量发展计量服务协同平台,构建统一协调、运行高效、资源共享、多元共治的计量工作格局。一体推进黄河流域量值传递溯源体系,实现黄河流域计量资源共享互通,加强黄河流域计量科技创新合作,加强区域性计量比对活动,优化区域计量发展合作机制,推动区域量值等效统一。(省市场监管局负责)(七)推动计量工作协同发展。深化质量基础设施协同服务及应用示范创新,强化检验检测、认证认可领域计量溯源技术研究,鼓励技术机构针对产业发展,形成“计量-标准-检验检测-认证认可”整体技术解决方案。大力发展计量校准、计量测试、产业计量等高技术服务新业态,推动计量服务市场健康有序发展。支持社会公用计量标准加入山东省大型科学仪器设备协作共用网。(省市场监管局牵头,省发展改革委、省科技厅配合)六、加强计量监督管理,提升法制监管效能(一)完善计量法规体系。贯彻落实计量法律法规,推动适时修订《山东省计量条例》,规范完善计量监管制度。健全完善地方计量技术规范体系,强化计量技术规范制修订、实施、效果评估和监督全过程管理。加强省级计量技术委员会建设,科学规划计量技术委员会专业体系,建设碳计量、数字计量、人工智能、法制计量、产业计量等10个省级计量技术委员会。完善计量技术规范预研、储备、立项、评审机制,制(修)订100项省级计量技术规范。(省市场监管局负责)(二)创新计量监管模式。建立智慧计量监管平台暨全省计量数字化监管服务平台,积极打造新型智慧计量监管体系,提升计量器具智能化、计量数据系统化水平。鼓励计量技术机构建立智能计量管理系统,打造智慧计量实验室。加强计量监管数字化建设,实现全省计量工作数据集中统一管理、分级使用维护、实时更新共享,提高计量监管工作有效性。完善计量比对工作机制,积极创建国家级计量比对中心。积极建设电动汽车充电设施在线计量监管平台,有效保障充电设施强制检定。(省市场监管局牵头,省能源局配合)(三)强化民生计量监管。广泛推进计量惠民工程,加强对供水、供气、供热、供电等基础民生计量行业的监督管理。加强计量器具强制检定能力建设,完善民生计量保障体系。加强计量风险管控,及时有效处置计量突发事件,防范计量领域系统性安全风险。持续开展集贸市场、加油站、餐饮业、商店、眼镜店和定量包装商品的计量监督检查,维护人民群众合法权益。(省市场监管局牵头,省住房城乡建设厅、省应急厅配合)(四)加强诚信计量体系建设。开展诚信计量示范活动,健全完善诚信计量评价规范,培育诚信计量示范县(市、区)、诚信计量示范街(社)区,在集贸市场、加油站、商场超市、眼镜制配等领域引导培育5000家以上诚信计量示范单位。强化计量数据归集共享,建立市场主体计量信用记录,推进计量信用分级分类监管、“双随机、一公开”监管落实。加大计量科普力度,积极宣传计量相关政策法规,提升群众计量意识,营造良好社会氛围。(省市场监管局负责)(五)严格规范计量行政执法。加强计量执法协作,建立健全查处重大计量违法案件快速反应机制和执法联动机制。规范计量服务行为,严厉打击伪造计量数据、出具虚假计量证书和报告的违法行为。加强计量作弊防控技术和查处技术研究,严厉查处制造、销售和使用带有作弊功能计量器具的违法行为。加大网络平台计量违法案件查处力度。加强计量执法队伍建设,提高计量执法装备水平。对举报计量违法行为的单位和个人,按照国家有关规定予以奖励。(省市场监管局负责)七、保障措施(一)加强组织领导。坚持党对计量工作的全面领导,把党的领导贯穿于计量工作全过程。各级政府要高度重视计量工作,把计量事业发展与国民经济和社会发展规划实施有效衔接,结合经济社会发展实际,明确具体的细则和要求,确定计量发展重点,强化工作责任落实,确保各项任务落到实处。健全完善计量联席会议制度,推动计量资源共享共用和一体化建设,强化统筹协调和联动推进。(省市场监管局牵头,省有关部门配合)(二)加大政策支持力度。各级政府建立有效的计量经费保障机制,加大对计量基础设施、技术研究等支持力度,强化计量监管和基层能力建设,保障各级公益性计量技术机构有效运行。统筹现有各类科技计划,支持计量领域关键核心技术研发与成果转化。按现有政策继续支持国家级产业计量测试中心建设。(省科技厅、省财政厅、省市场监管局按职责分工负责)(三)加快学科和文化建设。结合“世界计量日”宣传活动,加强计量文化、科普宣传,推进计量博物馆、科技展览馆建设和开放。建设一批具有山东特色的计量文化基地,聘请一批计量文化宣传大使,做好计量文化和科普资源收集、整理、保护等工作,将计量基础知识纳入公民基本科学素质培育体系。弘扬新时代计量精神,选树计量先进典型,增强新时代计量工作者的荣誉感和使命感。(省市场监管局牵头,省科技厅、省文化和旅游厅配合)(四)狠抓工作落实。建立落实本实施意见的工作责任制,明确职责分工,加强计量工作评估。市场监管部门会同有关部门加强对国务院《计量发展规划(2021-2035年)》和本实施意见实施情况的跟踪监测,通过第三方评估等形式,2025年年底前对国家规划和本实施意见的贯彻落实情况开展中期评估,在此基础上总结推广典型经验做法,发现实施中存在的问题并研究解决对策,提出下一阶段计量发展的目标和重点任务,重要情况及时报告省政府。 (省市场监管局牵头,省政府有关部门配合)山东省人民政府2022年9月30日(此件公开发布)
  • 波兰开发出利用发光材料测量压力的新方法
    波兰科学院低温与结构研究所的科研人员开发出一种新的发光纳米材料,可以随着局部压力的变化而改变颜色。科研人员用含有发光纳米材料的油漆或清漆覆盖结构元件,然后用合适的光线照射涂料,涂料的颜色会随着给定位置的压力而变化。如,正常工作的结构在照明时会发出红光,而材料损坏的地方可能会变成绿光。该涂料可以用于远程监测机器零件、建筑物或桥梁等结构中的应力分布,并诊断结构中的某些部分是否开始失效。   科研人员表示,新材料对温度变化不敏感,被测物体的温度不会影响测量,因此可以获得更高精度和更为准确的读数。该研究结果已发表在《化学工程杂志》上。
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon® 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • Labsphere(蓝菲光学)向厦门市产品质量监督研究院交付3米直径积分球光测量系统
    2018年8月,美国Labsphere(蓝菲光学)向厦门市产品质量监督研究院成功交付3米积分球光测量系统,3米积分球光测量系统兼容光源的向上、向下或纵向安装,能轻松高效地测量从荧光灯到直径为2米的几乎任何形状的灯具。可以测量板载或带热沉电源的光源的前通量和局部通量。图1 3米积分球光测量系统现场图众所周知,照明技术的进步加快了对更大、更复杂的光测量系统设备的需求,蓝菲光学基于此推出了LMS-3M3米积分球光测量系统,可以测量大型灯具及照明设备完整的光学特性。大球可以对光源更好地积分,从而更可靠地测试光源的总光通量、流明值、色温、显色指数等光度、色度特性,测试数据真实而准确。为什么选择Labsphere(蓝菲光学)3米积分球光测量系统? Labsphere的积分球光测量系统以尽可能减少与定向光源和发散光源相关的空间分布敏感性并易于使用为设计原则,满足行业的测量标准。所有的系统都由Labsphere经验丰富的实验室校准团队在专门的应用程序下进行校正,测量结果可溯源至NIST(美国国家标准局)。Labsphere测量系统完全满足美国能源之星测试规范,在美国7个已经获得能源之星认证的积分球系统测试实验室中,有5家采用Labsphere积分球测试系统。在中国,Labsphere的积分球测试系统已成功协助多家认证机构获得了能源之星认证,在认证行业中有很高的声望和认可度,已经成为能源之星认证机构的理想选择标准设备。该套系统配置了蓝菲光学最新设计的直径3米积分球、极灵敏的CDS 3020 CCD阵列光谱仪、Chroma和Keithley的交、直流电源、Xitron多功能精密交流功率计及强大的IntegraTM光谱测试软件等,具备完整的灯具检测能力,可快速、精确地测量所有光源的光学参数并且符合IESNA LM-79等相关测试标准,所采用的标准光源溯源至NIST。其中,CDS 3020 CCD光谱仪最短积分时间为5 ms,动态范围高达1000000:1,测试数据十分稳定,重复性好,美国科锐(Cree)全球实验室均对CDS 3020 给予了极高的评价。图2 现场交付3米积分球光测量系统图Labsphere在国内子公司上海蓝菲光学仪器有限公司从生产、技术到售后有完整的团队支持,可方便解决客户技术问题。Labsphere生产的3米积分球光谱测量系统具有极高的精度和稳定性,受到美国能源之星标准的认可并符合最新CIE测量标准,完全符合厦门市产品质量监督研究院对高标准检测仪器的需求。通过使用Labsphere的设备,厦门市产品质量监督研究院的检测数据可以与其他能源之星认可实验室保持一致。
  • 拉曼积分球光谱仪在气体检测中的应用
    拉曼光谱技术被称为分子指纹谱,可以对目标分子进行准确的定性分析,因而用途广泛。但是其固有的特点,例如拉曼散射信号弱等,限制了其应用范围,尤其是在气体检测领域的应用。气体分子密度低,透光度高,作为激发光源的激光在气体中可以传输较长距离,而拉曼信号作为散射信号散射向四周立体空间,因此不能通过像吸收光谱那样简单的通过增加光程来实现信号的增强。拉曼光谱应用于气体检测具有以下优点:1、准确定性:可以根据特征光谱对除惰性气体外的所有气体进行准确的定性分析;并且气体分子受周围环境影响小,其分子结构均一性较高,因此其特征光谱单色性好;气体分子结构简单,其特征光谱峰较少,不同分子间特征峰重合较少,有利于混合气体的分析。2、准确定量:气体的透明度具有的优点之一是,气体检测过程中不会受到荧光干扰,优点之二即气体分子被激发出的拉曼信号在被收集过程中与其他气体分子发生相互作用的概率极低,所以拉曼光谱强度与分子数量及拉曼散射截面成正比。而拉曼散射截面是固定量,因此拉曼光谱强度的变化量正比于分子数量的变化量,可以用来准确的计算分子数的相对变化。3、无损测量:拉曼散射过程是分子振动-转动能级的跃迁过程,不会破坏分子结构。4、无接触检测:拉曼散射采用光作为信号载体,可以通过透光窗口等对特殊环境例如高压、高温、剧毒等样品进行测试。在气体检测领域,由于气体的流动性,更需要对特殊气体进行密闭处理来保证气体的稳定性,适合对有毒、腐蚀性等的气体进行检测。5、同位素分子的分析:同位素作为标记物而应用广泛,而对同位素分子进行区分往往需要气相色谱和高分辨质谱联用这种昂贵的技术来实现,而作为分子振动-转动谱的拉曼光谱,其同位素的不同质量在其特征峰的频移上表现明显,可以轻松的区分同位素的种类和相对含量。正因为以上原因,在二十世纪六十年代激光出现并且作为拉曼光谱的光源而广泛应用的时候,科学家尝试将拉曼光谱技术应用于气体检测领域。近共焦腔、逆向多重反射池、能量聚集腔、多通道拉曼增益池、改进型多通道拉曼光谱仪、空心光子晶体光纤等多种提高激光功率使用效率或拉曼散射收集效率的极具光学技巧的设计应运而生,提高了拉曼光谱技术对于气体分子的检测限并且取得了显著的效果。拉曼散射的特点,及用于拉曼光谱分析的光谱仪的特点决定了共焦型拉曼光谱仪的高效率、高空间分辨率和高光谱分辨率。光谱仪需要将入光狭缝开到50微米甚至更小来保证光谱分辨率,设计一套光学系统将较大空间的散射信号收集聚焦到狭缝这样的狭窄空间并不现实,因此将激光聚焦到一个微小空间并且将这一微小空间的散射信号收集后聚集到狭缝,成为一种可行性选择,这样既充分利用了激光的激发功率,又实现了散射信号的高效收集。因此共焦型拉曼光谱仪提高了拉曼信号的强度,扩大了拉曼光谱技术的应用范围。同样的设计也可以应用于气体检测当中,不同于固体的拉曼信号散射向空气中的部分会被收集,散射向固体内部的部分会被固体吸收或者漫反射,因此很难充分收集;气体的均一性及其透光性决定了其散射向四周的信号均不会受到较大干扰,因此使信号的更高效的收集成为可能。共焦激发收集系统正是为了解决气体的拉曼散射信号的高效收集而设计,散射向上下、左右、前后的信号被聚焦镜准直后传输向反射镜,最终传输向左方的光谱分析系统。根据光的可逆性原理,进入系统的激光也会被上下、左右、前后的聚焦镜聚焦到焦点,从而同时提高激发光功率的使用效率。此设计的优点是可以增加更多的聚焦镜和反射镜,最终实现焦点散射向四周立体空间的所有信号传输向同一个方向,从而实现球状散射信号的充分收集。激光在气体中的传输距离可以达到几十千米,因此共焦激发收集系统中的数次反射的光程远小于这个距离,很难实现激发光功率的充分利用。互相平行的光可以被聚焦到一个点,而激光光斑毫米级别的直径远小于聚焦镜的直径,因此如果能实现光的多次来回反射并且互相平行,其效果将等同于多台激光器并排放置。直角反射镜可以将光的前进方向偏转180度并且与原方向互相平行,传输方向相反,两个直角反射镜配合使用可以使激光多次来回反射形成一个平面,在外面再放置两个直角反射镜可以实现激光平面的纵向扩展,最终互相平行,方向相反的激光布满立体空间。因此,四个直角反射镜配合使用可以使1毫米直径的激光在1英寸的光学元件间来回反射百次以上,而这些光因为互相平行,因此都会被聚焦镜聚焦到焦点。将四直角反射镜增光程系统与共焦激发收集系统结合,形成的系统既能充分利用激发光的功率,又能充分收集散射信号,其结构类似一个球体,因此被称为“拉曼积分球”。目前该技术已经能实现常压下ppm量级的气体检测,还可以通过增加激光功率、对气体加压以提高气体密度,增加曝光时间等来进一步提高检测限。拉曼积分球适用于透明度高的样品,例如气体,上图为典型的空气的拉曼光谱图,包括氮气,氧气的振动峰、转动峰和振动峰耦合的转动峰,水分子的振动峰等,对其进行局部放大,能看到氧气同位素拉曼峰,氮气同位素拉曼峰,二氧化碳拉曼峰等。目前气体检测应用广泛,例如与碳循环相关的各种气体,在催化剂作用下,碳会转换成各种有机分子,拉曼积分球可以实现对反应物和产物的1秒钟内万分之一的浓度检测,而最小样品量只需要2毫升,完全实现原位监控的作用。即使碳循环成各种液体,根据液体的挥发性,即使不需要加热升华,类似甘油等难以挥发的液体的挥发物依然可以被检测到。而对于一些固体的碳化合物,例如塑胶跑道,其挥发气体的成分和浓度的检测方法正在进一步研究当中。土壤的有机污染检测是拉曼积分球的另一个重要应用方向,将被污染的土壤放到密闭加热腔中,使其中的有机污染物升华成气体,即可实现对有机污染物的定性、定量分析。汽车发动机的状态会通过其尾气的成分反映出来,燃料挥发物和一氧化碳含量高说明进气不畅通,氧气剩余多则说明燃料喷嘴的效率不够;氮氧化物的含量高说明排烟脱氮不彻底。其他方面的应用包括环境气体检测,化工厂废气排放监控等等,作为一种自主研制、具有自主知识产权的气体检测技术,相比于传统气体检测技术具有实时快速、无损、检测限好、能区分同分异构体和同位素取代分子等优点,实现了我国气体检测技术的弯道超车,而其应用场景正进一步拓展。三年来,该技术正从发明一步步走向完善,虽然没能争取到纵向项目的支撑,但是相关的科学家的持续投入和支持保证了拉曼积分球技术研发的顺利进行,检测限已经从最初的勉强万分之一到达目前百万分之一,并且还有进一步提高的空间。随着我国对技术研究的重视和大力支持,该技术将会在我国气体检测领域占有一席之地并将推向国际市场。后记我国的分析仪器,尤其是高端分析仪器主要依赖进口,随着我国科研水平的快速提升,仪器自主研发能力也得到了很大的提高。特别是,实验室具有丰富仪器使用经验,在外企中从事技术服务的科学家和工程师也越来越多,他们对高端分析仪器有自己的认识和见解。而且,部分科学家和工程师已经开始了自主仪器研制并取得了很好的成果。相信随着国家在仪器研制方面的大力支持,成果评价体制的进一步均衡,国产化仪器的提倡作用和科学家、工程师的共同努力下,不久的将来,我国会产生一大批自主设计,具有自主知识产权,具有明确应用领域的先进的分析仪器。作者简介黄保坤:博士,高级工程师,江苏海洋大学教师,huang_baokun@163.com。曾就职于中科院大连化学物理研究所催化基础国家重点实验室和英国雷尼绍公司,作为技术负责人研制的深海紫外拉曼光谱仪实现下潜作业深度7749米,是目前世界上工作深度最深的拉曼光谱仪。为中科院、中石化、中核、上海市公安局、各大高校研制了拉曼积分球、显微拉曼、台式拉曼、便携式拉曼等多种类型的拉曼光谱仪。
  • 中测院力学所完成对1MN力值基准装置大转角油路压力的测量工作
    国家计量基准战略备份项目是我院“十四五”规划重点项目,目前已进入筹备实施阶段,我院力学研究所力值传感器实验室负责实施中小力值基准相关的技改项目。   中国测试技术研究院(以下简称中测院)建立保存的1MN力值基准装置作为统一国家1MN及以下力值量的主要基准装置,其力值不确定度至今保持着国际领先的地位。5月9日,力值传感器实验室项目主要成员完成了对1MN力值基准装置大转角油路压力的测量,压力值的测量结果为子项目“大转角机械推进系统”伺服电机的选型奠定了基础。中测院是四川省人民政府直属公益二类科研事业单位,是集法定计量技术机构、第三方检测与校准机构、测试技术与标准研究机构三位一体的国家级综合性研究院。除开展计量科学及应用技术研究外,中测院面向全社会企事业单位开展计量检定校准、产品检验检测、工程测试与评价等,为企业保障和提升产品质量以及技术创新提供技术服务;受政府委托承担计量检定、计量比对、产品抽检、型式评价等法制计量工作,为政府履行监督职能,依法科学行政提供技术支撑。
  • NASA将往空间站发射新仪器 以监测地表作物温度变化
    p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/9716cbcd-f5e6-4408-a908-e3a05298aa3b.jpg" title=" New-NASA-instrument-on-ISS-to-track-plant-water-use-on-Earth.jpg" /    /p p   据外媒报道,为了更好地跟踪地球植物的用水情况,NASA正准备在国际空间站安装一种新仪器。该仪器被称为ECOSTRESS,或空间站上的星载热辐射计实验ECO系统,它将测量地球表面植物的温度变化。 /p p   为了避免过热,植物会像人类出汗一样发生蒸腾作用,即通过根系吸收水分并通过植物毛孔释放水分的过程,该过程可以降低植物的温度。 /p p   当水分不足时,植物会闭合毛孔以避免干燥。但是,毛孔对于植物摄取二氧化碳也是必不可少的,用于植物生产细胞燃料的光合作用。如果植物遭受长时间的“水压力”,它最终会饿死或过热,并死亡。 /p p   美国宇航局喷气推进实验室ECOSTRESS首席研究员Simon Hook在一份新闻稿中表示:“当植物受到过度压力而变成棕色时,它往往为时已晚,无法恢复。” “测量植物的温度可以让你看到植物在到达这一点之前受到的压力。”使用ECOSTRESS,科学家和农业机构可以通过观察作物田间温度升高,发现日益严重的水压力迹象 - 干旱的开始。尽早认识到水资源压力可以让农民和其他方面制定解决方案并做出相应的规划。科学家以前曾试验过使用电子叶片传感器来监测植物的水分摄入量。 /p p   美国农业部ECOSTRESS科学小组成员Martha Anderson表示:“ECOSTRESS将使我们能够监测田间水平的作物压力快速变化,从而能够更早,更准确地估算产量将受到怎样的影响。 “即使是在作物生长的关键阶段出现短期水分胁迫,也会显着影响生产力。” /p p   新仪器将在下一次补给任务中运往空间站,计划于6月29日由SpaceX从佛罗里达州卡纳维拉尔角空军基地发射。该仪器将在一天中的不同时间产生小片农田的高分辨率图像。 并将每隔几天对相同的小目标进行成像,监测温度的变化。 /p p   “随着水资源对我们不断增长的人口变得更加重要,我们需要准确地追踪我们的作物需要多少水,”JPOS的首席科学家Josh Fisher说。 “我们需要知道植物何时变得易受干旱影响,我们需要知道生态系统的哪些部分因水分压力而更脆弱。” /p p   当与美国航天局其他地球观测卫星收集的数据(包括与地球水循环,植被变化和降水模式有关的数据)相结合时,ECOSTRESS测量可帮助科学家更好地了解不同气候模式如何影响区域水压力。 /p
  • 赛默飞世尔在全美质谱大会上的新品汇总
    赛默飞世尔科技在2009年全美质谱大会(ASMS)上发布新的质谱系统、软件及工作流程解决方案   费城(2009年6月1日)– 服务科学,世界领先的赛默飞世尔科技今日宣布将在2009年全美质谱大会(ASMS)上推出两款具有突破性的新型质谱仪--Thermo Scientific LTQ Velos和LTQ Orbitrap Velos。LTQ Velos™ 具备创新的双压力阱和先进的离子光学元件特点,使之成为世界上最快捷最灵敏的线性离子阱质谱仪。配备行业领先的Orbitrap™ 质量分析器,结合新型Velos技术与新的高能碰撞解离(HCD)池,LTQ Orbitrap Velos™ 提供超高分辨率和精确质量分析数据。   这些系统将于6月1日至4日会议期间在赛默飞世尔科技第99号展位或在沙龙G-K上在位于费城万豪市区酒店的Thermo Scientific招待套间展出。此外,赛默飞世尔科技还将介绍八款其他的质谱解决方案,以便在广泛的应用领域内提供更好的分析性能并更易于操作使用。   “这些新的质谱仪在分析诸如蛋白质组学和代谢组学领域中所遇到的高度复杂分析物时给我们的用户带来了极大的便利。” 赛默飞世尔科技全球研发副总裁Ian Jardine博士说道:“LTQ Velos卓越的数据品质和灵敏度使它成为分析复杂混合物,例如辨认低级蛋白质及解析代谢产物结构时的理想选择。同样, LTQ Orbitrap Velos的高质量精准度通过最大化减低假阳性误测提高了复杂样品测试中蛋白质鉴定的速度和正确度。”   全美质谱大会(ASMS)上发布的最新技术包括:   Thermo Scientific LTQ Velos -- 独特的双压阱技术,提供两段式独立压力区间,使得离子处理和检测相分离。 因而在分析过程中可选用最佳压力,提高了扫描速度和分辨率。LTQ Velos还可升级到LTQ Orbitrap Velos,从而使实验室的最初投资效益得以扩大,在保证分析灵敏读和速度的同时获得精准的质量分析和超高的分辨率。   Thermo Scientific LTQ Orbitrap Velos –LTQ Orbitrap Velos所带的新型HCD池更为高效, 能有效提高同位素标记肽段的定量检测,诸如需要应用串联质谱标记(TMT)的分析。电子转移解离 (ETD)为高度敏感的PTM分析和从头测序(de novo sequencing)提供补充信息。另外, 系统的超高分辨率通过确定完整蛋白质的分子量以及深度分析同位素使分析结果更为确定。   赛默飞世尔科技也同时推出两款旨在增加蛋白质组学定量分析生产力的新产品。这两款产品分别是用于提高SRM 分析处理通量的智能选择性反应监测技术 (iSRM) 和为建立自动化方法及对基于SRM的目标肽段进行定量分析的Pinpoint软件。   Thermo Scientific Watson LIMS 7.4 – 这款备受欢迎的LIMS软件的最新版本现在包括一套与TSQ 系列质谱仪相连的内置的数据交换系统,可进行直接数据采集、峰值积分和重积分、存贮、归档和原始数据的报告。所有这些操作全都受控于Watson的中央Oracle数据库贮藏库。   Thermo Scientific Mass Frontier 6.0 –-这一功能强大的新型软件包将为MSn质谱谱图的管理,评估和解析提供精密的特性。它可广泛应用于小分子结构鉴定, 应用范围涉及包括药物开发和毒理研究过程中代谢产物的识别和杂质的分析等广阔领域。   Thermo Scientific TSQ Quantum Access MAX三重四极质谱仪和TraceFinder™ 软件 –这是一套完整的有关食品和环境安全检测的解决方案。该方案可简化分析过程,提升生产力,帮助分析实验室满足今天日趋严格的检测需求。这套系统可以进行分子结构的确认及谱库的匹配,可在单次实验中完成数百种化合物的定性和定量分析。   Thermo Scientific Accela 600 泵 – 专为高流速应用设计,在所有操作压力条件下都能以极小的脉动提供精准的流量和梯度。 延迟体积仅90微升,减少了泵平衡和系统循环周期。 Accela™ 600泵具有四元泵功能,流速高达5mL/分钟,最大工作压力高达600大气压。   详细内容请点击查看:   赛默飞世尔科技发布三款用于更简单更快捷的定量蛋白质组分析的新产品.doc   赛默飞世尔科技在ASMS上推出完整的LCMSMS食品安全检测方案.doc   赛默飞世尔科技在2009年全美质谱大会(ASMS)上发布与TSQ 系列LCMS 质谱仪相连的Watson LIMS 7.4 软件.doc   赛默飞世尔科技在ASMS2009上发布新一代离子阱和轨道阱质谱仪:LTQ Velos 和 LTQ Orbitrap Velos .doc   赛默飞世尔科技发布用于质谱仪综合结构解析的Mass Frontier 6.0软件.DOC   想获取关于质谱解决方案的更多信息,请于2009 ASMS全美质谱大会期间参观赛默飞世尔科技展位99或参观位于费城万豪市区酒店沙龙G-K的Thermo Scientific招待套间。   或者想要了解更多关于质谱解决方案的信息 请拨打电话:8008105118或4006505118,或发电子邮件至 sales.china@thermofisher.com或访问我们的网站www.thermo.com/ms   Thermo Scientific是服务科学、世界领先的赛默飞世尔科技的首要品牌。   想要了解关于2009年ASMS会议的全部新产品的新闻,请登陆:www.thermo.com/ASMS   关于赛默飞世尔科技 (Thermo Fisher Scientific)   赛默飞世尔科技有限公司(Thermo Fisher Scientific Inc.)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界变得更健康、更清洁、更安全。公司年度营收达到105亿美元,拥有员工34,000多人,为350,000多家客户提供服务。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、研究院和政府机构以及环境与工业过程控制装备制造商等。该公司借助于 Thermo Scientific 和 Fisher Scientific 这两个主要品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific 能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室工作流程综合解决方案。Fisher Scientific 则提供了一系列用于卫生保健,科学研究,以及安全和教育领域的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请登陆:www.thermofisher.com(英文),www.thermo.com.cn (中文)。
  • 赛默飞世尔科技2009年色谱质谱新品一览
    2009年11月11日,中国北京&mdash &mdash 服务科学、世界领先的赛默飞世尔科技(纽约证交所代码:TMO)一直以其创新精神和专业素质为广大业界同仁所称道。2009年,金融海啸让全球深陷经济萧条的泥潭,裁员、通涨、破产等等众多负面消息不断涌出,挑战着人们的耐受力。当此危机时刻,赛默飞世尔科技力挽狂澜,推出众多优质色谱质谱新品及软件,足证其卓越的科研和经济实力。 TSQ Quantum Access MAX 三重四极杆质谱仪 TSQ Quantum Access MAX基于已有的TSQ Quantum三重四极质谱平台而设计的,质量范围m/z为10-3000。该系统可以做到高选择反应监测分析,可检测离子对数最高可达到3,000,这是离子选择进行高分辨定量分析的先驱者。该系统提高了分析物的选择性,实现更低的检出限和更高的准确度和精确度。目前,只有Thermo Scientific 双曲面四级杆质谱可以进行H-SRM,而在传输中最低的离子损失。H-SRM 的高选择性和QED-MS/MS数据分析系统在低浓度定量和结构确认方面提供了无可比拟的优势。 TSQ Quantum Access MAX具有新的高温电喷雾离子化探头-- HESI-II,使得该系统的检测灵敏度比先前产品提高了2倍。另一新的特征是,仪器高速的正负离子切换功能优于25ms,从而提高了效率,这使一次分析运行中进行多残留扫描分析成为可能。 LTQ Velos双压线性离子阱质谱仪 LTQ Velos 采用最新双压阱设计和大气压离子源(API),是目前世界上最快速、最灵敏的离子阱质谱仪。独特的双压阱技术采用两个独立的加压区域,使得离子处理和检测相互独立。此项设计允许分析中使用最优压力, 减少扫描时间的同时提高分辨率。 LTQ Velos卓越的数据质量和灵敏度使它成为复杂分析物分析,如生物样品中低丰度蛋白质的确认和小分子代谢物结构鉴定的理想之选。 在蛋白组学应用方面,速度和灵敏度方面的提升为复杂多肽混合物的分析提供更大的覆盖范围,并提高了小量样本中蛋白质鉴定的可信度。LTQ Velos的多级碎裂技术提供更为可信的序列分析和翻译后修饰(PTM)鉴定。更高速的扫描速率能将循环时间减少50%之多,并将鉴定的蛋白和肽段数量翻倍。 在代谢组学应用方面,双压阱技术提高了离子碎裂效率,从而提供更快、更可信的结构鉴定。提高的速度和灵敏度与多级质谱能力充分结合,最大限度地提高通量的同时保持了鉴定和定量多个共洗脱化合物所需的卓越的数据质量。 LTQ Velos可以升级为LTQ Orbitrap Velos,使实验室得以扩大其最初的投资,在保持灵敏度和分析速度的同时获得准确的质量和超高的分辨率的能力。 LTQ VelosTM离子阱液质联用系统被Instrument Business Outlook(IBO, 《仪器市场展望》)评为2009年美国质谱大会(ASMS)最佳新产品。该荣誉用来表彰当年美国质谱大会(ASMS)推出的最具创新性的产品。 LTQ Orbitrap Velos轨道阱质谱仪 LTQ Orbitrap Velos 将业界领先的 Orbitrap&trade 质量分析仪, 新高能碰撞解离池,和双压阱技术完美结合,确保提供超高分辨率和精确质谱数据。 LTQ Orbitrap Velos的高质量精确度通过降低假阳性结果从而为复杂样品中的蛋白质鉴定增加了速度和可信度。其超高分辨率能够提供完整蛋白质的分子量测定和等质量物种的深入分析,从而提供确定性的分析结果。对蛋白质组学研究人员来说,这些功能增加了序列覆盖范围和可信度,从而识别更多的蛋白质。 LTQ Orbitrap Velos新的HCD碰撞池更加高效,提高了同位素标记肽段的定量分析功能,诸如需要应用串联质谱标记(TMT)的分析。电子转移解离 (ETD)为高度敏感的翻译后修饰(PTM)分析和从头测序生成互补性信息。 LTQ Orbitrap Velos为代谢组学的研究人员提供高分辨的精确质量数据,确保结构鉴定更可信。 有了这些新功能,Thermo Scientific LTQ Orbitrap技术成为最可信的蛋白和代谢物鉴定、定性和定量的理想平台。 Transcend高效液相色谱系统 Transcend系统采用了Thermo Scientific TurboFlow技术和独特的多通路技术来提高质谱仪的样品通量。 TurboFlow技术是基于色谱原理的创新样品制备方法。这种在线自动过程处理技术结合了扩散、化学和体积排除的原理,在捕获感兴趣分析物的同时,快速消除基质干扰。最小程度的样品制备,高灵敏度的复杂样品分析,是TurboFlow技术的直接结果。Thermo Scientific独特的多通路技术让四个独立的、平行的LC系统共用一个质谱仪,大大提高了样品分析的产率。Aria操作软件能独立控制每一台LC,您可以同时运行四种不同分析。 Thermo Scientific Accela 600 泵 &ndash 专为高流速应用设计,在所有操作压力条件下都能以极小的脉动提供精准的流量和梯度。延迟体积仅90微升,减少了泵平衡和系统循环周期。 Accela&trade 600泵具有四元泵功能,流速高达5mL/分钟,最大工作压力高达600大气压。 软件平台 l 用于提高SRM 分析处理通量的智能选择性反应监测技术 (iSRM) 和为建立自动化方法及对基于SRM的目标肽段进行定量分析的Pinpoint软件。 l TraceFinder 软件---外延的预置方法菜单和报告格式让新用户也可方便地进行一般样品常规污染物的扫描。点击式的软件操作界面简化了目标化合物扫描和定量的操作步骤,并提高了运行速度。 l Thermo Scientific Watson LIMS 7.4 &ndash -包括一套与TSQ 系列质谱仪相连的内置的数据交换系统,可进行直接数据采集、峰值积分和重积分、存贮、归档和原始数据的报告。所有这些操作全都受控于Watson的中央Oracle数据库贮藏库。 l Mass Frontier&trade 6.0 &ndash - 新型软件包将为质谱谱图的管理、评估和解析提供精密的特性。它可广泛应用于小分子结构鉴定, 应用范围涉及包括药物开发和毒理研究过程中代谢产物的识别和杂质的分析等广阔领域。可提供全面的谱图数据和碎裂机理知识管理,通过简化MSn谱图解析而促进结构剖析。 疾风知劲草,岁寒见后凋。经济严冬无法阻止我们积极创新、奋勇前进。赛默飞世尔科技将一如既往的以优质的产品和服务回报广大用户。 关于Thermo Fisher Scientific(赛默飞世尔科技) 赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com 或www.thermo.com.cn
  • Speedy Breedy发布Speedy Breedy 速必得便携式微生物快速检测仪新品
    百可测---将微生物活动数据化,支持运营和管理决策 BACTEST – Turning microbial activity into action.公司介绍百可测诞生于英国剑桥科技园,2001年公司创立了CYTOMAIA技术平台,这是一种新型的呼吸法微生物活性监测技术。基于该技术百可测研发出微生物检测仪、压载水集成检测系统、活性污泥监测系统,并且已经在欧美、亚太和非洲地区成功实现商业化应用。2019年百可测来到中国,在北京设立中国公司,并设立研发实验室,力求为全球客户提供更好的产品和服务。 产品介绍1. 产品技术原理介绍SpeedyBreedy® 速必得是一款新型的便携式微生物快速检测仪,技术原理是通过选择性培养微生物,并利用仪器内置的气压瞬变测量计,精确测量由微生物呼吸状态而产生的细微压力变化,以此判断样本中的微生物污染状况。另外,速必得能够分析数据,并将分析结果采用可视化图表形式呈现在专有软件系统中。速必得的检测协议也是可编程的,并通过计算机加载自定义测试条件的新检测协议。2. 产品图 3. 产品特征、优势、特点 兼顾高效、精确和便携的微生物检测仪广泛的测试范围速必得可以检测需氧菌、厌氧菌和兼性厌氧菌 优点&特性:快捷---经过证实,相比于实验室送检,速必得要快数天极易使用---非专业人士只需经过简单的培训即可使用极为灵敏---速必得可检测出50ml液体中存在的1个菌落形成单位可视化---实现微生物活性近实时的可视化呈现 有多种预填充特异性培养基的培养皿可供选择枚举功能可精确估算检测样本中的CFU数量巴氏杀菌法协议,使培养皿可安全地作为普通废弃物进行处理可离线设计自定义检测协议并加载至速必得主机使用简单便捷的操作: 4. 检测速度5.速必得生物活性检测图:6.速必得丰富的应用场景:规格参数设备规范:测量精度:1CFU/50ml搅拌桨转速控制:0转/分-120转/分压力安全限值:1.8Bar物理规范:主机净重: 2.75kg完整包装毛重:5.4kg (包含主机、电源、8支培养皿、使用手册等)主机尺寸: 高:13.3cm,宽:31cm,直径:11.2cm电源:可使用12V直流或交流电源,兼容全球供电规范*详细产品规范请见《速必得产品规范说明书》 百可测---将微生物活动数据化,支持运营和管理决策BACTEST – Turning microbial activity into action.百可测诞生于英国剑桥,基于具有专利技术的研发平台,开发和销售微生物检测产品,SpeedyBreedy和Bactest是北京百可测科技有限公司的注册商标。 英国总部地址:Unit 2 Oyster Park Greenstead Road Colchester CO1 2SJ United Kingdom+44 0 1206 617423中国总部地址:北京市延庆区妫水北街中关村延庆园5号院1号楼1313/1314室大连代表处地址:大连市中山区友好路155号锦联国际大厦1001室 联系电话:+86 010-60150500购买及合作:曹经理 +86 18114808055网址: www.bactest.co.uk www.bactest.cn电邮: hello@bactest.co.uk创新点:创新型的呼吸法微生物快速检测设备,呼吸法有别于常见微生物检测设备,在生物活性监测方面有独特优势。 并且仪器采用一次性培养皿+选择性培养基的模式,加速菌落培养,检测速度优于多数其它方法检测的仪器。 Speedy Breedy 速必得便携式微生物快速检测仪
  • 测量单分子质量纳米秤问世 或为质谱敞开大门
    一个纳米量级的振动梁能够测量单个分子的质量。 图片来源:Scott Kelber、Michael Roukes、Mehmet Selim Hanay   就像浴室里的一台小磅秤一样,一个物理研究小组如今报告说,他们的一个摇摆的小发明已经能够测量单个分子的质量。新的装置为质谱学敞开了一扇新的大门——这是一种通过测量分子质量从而确定它们是什么的科学。然而,对于这项技术的最终效用依然是众说纷纭。   并未参与此项研究的美国马里兰州盖瑟斯堡国家标准与技术研究所的生物物理学家John Kasianowicz表示:“如何将其运用到广义质谱学中去,时间会告诉我们一切。但我认为这是一项巨大的进步。”   传统质谱学利用一个磁场来弯曲带电分子的路径。它们的路径弯曲的程度揭示了它们的质量。但这项技术对于巨大的生物分子——其质量大约是一个质子的100万倍——并不理想。例如,这些巨大的分子移动得异常缓慢,因此并不会触发位于磁场另一端的传统粒子探测器。因此科学家一直在探索其他的替代方法。10多年来,帕萨迪纳市加利福尼亚理工学院(Caltech)的Michael Roukes及其研究小组尝试了能够切割出物质——例如硅——的微小振动梁。测量约一万亿分之一克的重量,可使振动梁在每秒周期内产生数以百万计的从一侧到另一侧的振动。   原则上,这样一种装置能够测量一个分子的质量。当一个分子黏附在这样一个振动梁上时(这一过程被称为物理吸附),其额外的质量促使振动梁以一种低频产生振动。因此如果想要测量分子的质量,研究人员只须测量频移便可。   然而这里也有一个问题。这种频移同时还取决于分子在振动梁上落脚的位置,因为一个较轻的分子停留在振动梁中间所产生的频移,同一个较重的分子落在振动梁一端所产生的频移是相同的。   如今,Roukes与他的博士后Mehmet Selim Hanay,及其在Caltech和法国原子能委员会的同事终于找到了一种解决办法。关键就在于同时以两个不同的频率摇晃振动梁。研究人员在8月份出版的《自然—纳米技术》上报告了这一研究成果。
  • 沃特世大力支持第三届质谱论坛
    2012年4月19日,第三届质谱论坛在北京师范大学英东学术讲堂成功举办,本届论坛的合办和赞助方为沃特世科技(上海)有限公司,论坛同期举行了北京师范大学与沃特世公司(Waters® )合作实验室揭牌仪式。来自北京周边地区各研究院所、高校、检测机构的共计300余位专家和科研人员参加了此次论坛。 第三届质谱论坛现场   本届论坛由北京师范大学质谱中心主任谢孟峡教授主持,出席的领导和嘉宾有:中国质谱学会理事长李金英研究员、中国分析测试协会汪正范研究员、军 事医学科学院杨松成研究员、清华大学罗国安教授、北京大学刘虎威教授、北京师范大学生命科学学院院长王英典教授、北京师范大学科技处副处长戴杰、北京师范 大学分析测试中心主任李崧教授、北京师范大学质谱中心学术委员会主席何大澄教授、北京师范大学化学学院实验中心主任欧阳津教授、沃特世公司北方区运营经理 薄美萍女士、沃特世公司中国市场发展总监舒放先生。 北京师范大学质谱中心主任 谢孟峡教授 质谱论坛的宗旨是为我国质谱技术在各领域的应用提供一个高层次的交流平台,展现不同学科优秀科学家的最新科研和应用成果,介绍质谱技术的前沿进 展,并将致 力于促进各学科之间、科研和法规部门之间的深入交流。论坛将长期定期举办,每年1-2期,每期将围绕当前质谱技术应用的热点科学问题,邀请杰出的科学家做 学术报告,并提供相互间充分的交流和沟通。本届论坛的主题为&ldquo 质谱技术在组学研究中的应用&rdquo 。 北京师范大学与沃特世科技(上海)有限公司合作实验室揭牌   论坛期间还举行了北京师范大学与沃特世科技(上海)有限公司合作实验室揭牌仪式,中国质谱学会理事长李金英研究员、北京师范大学科技处副处长戴杰、沃特世公司北方区运营经理薄美萍女士、沃特世公司中国市场发展总监舒放先生共同为合作实验室揭牌。如沃特世公司北方区运营经理薄美萍女士在致辞中说到,&ldquo 北京师范大学作为一个百年老校,凭借严谨的治学及其在学术界的成就,一直是分析仪器厂商追求的合作伙伴。沃特世公司非常荣幸能与北京师范大学建立合作关系,希望通过合作能够带动整个分析测试行业的进一步发展。&rdquo 论坛上,清华大学生命科学与医学研究院中药现代化研究中心主任罗国安教授给大家带来的是《中医药系统生物学研究进展》。北京大学化学与分子工程学院的刘虎威教授带来了题为《2D(NP/RP)LC-MS用于脂质组学分析》的报告,阐述了脂质在人体中的作用、质谱在脂质组学分析中的应用、腹膜析&mdash &mdash 在临床中的新应用。军事医学科学院国家生物医学分析中心的杨松成研究员,给大家带来了题为《有机质谱在蛋白质组学中的研究进展》的报告:质谱的发展、有机质谱在蛋白质组学中的应用。 刘虎威教授 杨松成研究员 罗国安教授 来自此次论坛的主要赞助商沃特世科技(上海)有限公司技术专家们,为与会的科学家详细介绍了Waters新推出的UPC2TM&mdash &mdash 超高效合相色谱。UPC2&mdash &mdash 超高相合相色谱深刻的体现了&ldquo 合&rdquo 字的定义。舒放先生为新型合相色谱赋予了中国传统哲学的五大理念,分别为:(1)中合:气液合体。(2)汇聚:技术合璧。(3)应当:天作之合。(4)匹配:组合优势。(5)全满:合效分析。并且带来了题为《质谱技术在中药的最新应用进展》报告。介绍到沃特世公司针对中药解决方案平台包括ACQUITY UPLC® 系统、UPLC® /TOF质谱、UPLC/Xevo TQ-S质谱等。软件包括用于结构解析的MassFragmentTM软件;MetabolynxTM是进行药物代谢物确征和杂质分析的应用软件。并总结了质谱对于中药成分结构解析、化合物筛选、代谢物分析和代谢组学分析,超高液相串联质谱可以提供精确质量数、结构信息和多元统计分析。 ACQUITY UPC2&trade 系统((UltraPerformance Convergence Chromatography&trade )   最后,来自沃特世科技(上海)有限公司技术专家袁洞安博士为大家详细介绍了Waters超高效合相色谱的技术特点及其应用。袁博士首先指出亚二微米填料技术和超临界色谱技术的完美结合,已经超出传统意义的超临界色谱概念,提供了全新的分析思路。   Waters公司最新推出的ACQUITY UPC2系统基于超临界流体色谱(SFC)技术,加上行业领先的亚2微米色谱柱,科学家们能够精确地调节流动相强度、压力和温度获 得所需要的系统分辨率和选择性,对待测物的保留和分离进行有效调控。这非常适合结构类似物、 异构体以及对映体和非对映体的分离、检测和定量&mdash &mdash 而这类分析任务是其它方法不能或很难实现的。 论坛结束后,与会者一同参观了北京师范大学质谱中心。
  • 复旦大学预算500万元购买1套超高分辨质谱测量分析系统
    4月14日,复旦大学公开招标购买1套超高分辨质谱测量分析系统,预算500万元。  项目编号:0705-2140*****811  项目名称:复旦大学超高分辨质谱测量分析系统采购国际招标  采购需求:  1、招标条件  项目概况:超高分辨质谱测量分析系统采购  资金到位或资金来源落实情况:本次招标所需的资金来源已经落实  项目已具备招标条件的说明:已具备招标条件  2、招标内容:  招标项目编号:0705-2140*****811  招标项目名称:超高分辨质谱测量分析系统采购  项目实施地点:中国上海市  招标产品列表(主要设备):序号产品名称数量简要技术规格备注1超高分辨质谱测量分析系统1套仪器分辨率不小于:400,000 FWHM预算金额:人民币500万元 合同履行期限:签订合同后3个月内  合同履行期限:签订合同后3个月内  本项目( 不接受 )联合体投标。  开标时间:2021-05-07 10:30(北京时间)
  • 浅谈比表面积分析方法之气体物理吸附技术
    固体表面积分析测试方法有多种,其中气体吸附法是最成熟和通用的方法。其基本原理是测算出某种气体吸附质分子在固体表面物理吸附形成完整单分子吸附层的吸附量,乘以每个分子覆盖的面积(分子截面积,molecular cross-sectional area),即得到样品的总表面积。吸附剂的总表面积除以其质量称为比表面积(specific surface area,m2/g),它是表面积的常用表示方式。实验测定吸附等温线的原则是,在恒定温度下,将吸附剂置于吸附物气体中,待达到吸附平衡后测定或计算气体的平衡压力和吸附量。基于在恒定低温下测量气体的吸附和脱附曲线,并通过对等温线的进行计算,可获取样品的孔径分布、比表面积、孔隙度和平均孔径等固体材料性质。测定方法分为静态法和动态法。前者有容量法(体积法)、重量法等;后者有重量法、流动色谱法等。在此介绍常用的静态容量法和动态流动色谱法。静态容量法需要测量气体体积的压力变化。将已知的气体量注入到恒定温度下的装有吸附剂的样品管中,当吸附发生时,样品内的压力降低直到平衡状态;平衡压力下气体吸附量为注入到样品内气体的量和平衡压力下样品管内剩余气体量的差值。吸附等温线通常使用进气技术将气体注入到体系内,再应用气体定律等到连续的数据点。需要精确知道死体积(自由空间),可以通过校正样品管体积再减去吸附剂的体积(通过密度计算)得到,也可以通过在一定程度上不在吸附剂上发生吸附的气体(如氦气)来测量。容量法气体吸附装置示意动态流动色谱法为在大气压力下,吸附气体和惰性气体的混合物在样品上连续流动,通过热传导检测器(TCD)监测样品对吸附物的吸收。首先,在环境温度下监测从样品管流过的气体,作为建立基线的参考;接下来,降低样品所处温度以促进吸附,并检测随着由于发生吸附导致的气体混合物热导率的变化,当吸附平衡建立时,出口气原始混合物的比例恢复,TCD信号恢复到基线;然后将样品温度提高到环境温度,这时因为被吸附的气体从样品脱附,并再次改变气体混合物中组分的比例。将任一信号(通常是脱附)与校准信号进行积分,可以得到样品吸附的气体量,混合物中吸附气体的分压除以饱和压力就是吸附发生时的相对压力。流动色谱法系统总之,无论什么方法,所使用的气体都是在固体表面形成物理吸附的气体,例如氮气、氩气、二氧化碳等,常使用的冷浴温度一般为氮气@77K(液氮温度),氩气@77K(液氮温度)/87K(液氩温度),二氧化碳@273.15K(冰水混合物温度)/298.15K(室温)/195K(干冰温度)。参考文献《现代催化研究方法新编》 辛勤 罗孟飞 徐杰 主编,科学出版社2018年本文作者:钟华 博士,毕业于中国科学院大连化学物理研究所。在粉体与颗粒表征仪器行业工作10多年,多年在高校研究所开展不同技术讲座和培训,对颗粒表征仪器有丰富的理论知识和仪器应用、市场实践经验。
  • 解析全国共享质谱仪市场,哪个品牌脱颖而出?
    伴随着我国各行业对分析检测技术需求的大幅提升,以及物理化学、生命科学、光学、机械、电子、计算机等相关技术的快速发展,分析仪器也得到了广泛关注和高速发展。质谱仪器是通过测量带电粒子的质量进而对物质进行定性和定量分析的分析仪器,至今已有超过100年历史,质谱分析技术在近年来广泛地应用在环境检测、地球科学、材料科学、食品安全、临床检验、药物与毒物、生物医学研究等领域,应用层面也包罗万象。近年来,我国科研设施与仪器利用率和共享水平不高的问题日益凸显,部分科研设施与仪器重复建设和购置,存在部门化、单位化、个人化的倾向,闲置浪费现象比较严重,专业化服务能力有待提高,科研设施与仪器对科技创新的服务和支撑作用没有得到充分发挥。为加快推进科研设施与仪器向社会开放,进一步提高科技资源利用效率,2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。近期,仪器信息网对全国科研设施与仪器共享平台进行了梳理统计,其中,对质谱仪的统计分析或可一定程度反映其科研领域的市场情况。(*本文信息来源于重大科研技术设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考。)图1 全国质谱仪共享平台所在地区分布本次统计,共涉及质谱仪器的总数量为5282台,涉及31省(直辖市/自治区)。其中北京市共享质谱仪数量最多,达907台,涉及174所高校、科研院所和政府监管机构等。从仪器所属学科分布可以看出,质谱仪主要用于化学、环境科学技术、生物学、食品科学技术、药学等研究,占比分别为28%、18%、13%、6%以及5%。图2 全国质谱仪共享单位所属学科领域分布那么这些仪器主要分布在哪些单位呢?统计结果表明,共享质谱仪主要分布于科研院所中,占比达41%。图3 全国质谱仪器共享单位分布本次统计的共享质谱仪器的品牌主要涉及安捷伦、赛默飞、Waters、SCIEX、岛津、珀金埃尔默以及布鲁克等,共享平台的质谱仪器90%以上由国际品牌提供。本次统计涉及的国产品牌有禾信仪器、聚光科技、舜宇恒平、普析通用、毅新博创、东西分析、钢研纳克、融智生物、天瑞仪器和金铠仪器等。还有部分科研院所自主研制的质谱仪器,如中科院大连化学物理研究所以及中科院化学研究所。图4 全国共享质谱仪品牌分布目前,全球质谱仪市场主要被几家国际巨头占据,市场的主要参与者为赛默飞、SCIEX、布鲁克、安捷伦、Waters、珀金埃尔默、岛津等公司,大约占据了全球90%的市场份额。国内以质谱为主营业务的上市公司主要有天瑞仪器、聚光科技、禾信仪器、钢研纳克、莱伯泰科等。此外,国内涉及质谱仪器自主研发、生产和销售的非上市公司主要有舜宇恒平、东西分析、普析通用、毅新博创、融智生物、安益谱等。
  • 精准测量,质谱护航大健康——访BCEIA 2021学术报告会质谱学分会负责人刘虎威教授
    第十九届北京分析测试学术报告会暨展览会(BCEIA 2021)将于2021年9月27-29日在北京中国国际展览中心(天竺新馆)召开,本届会议将继续秉承“分析科学 创造未来”的愿景,围绕“生命 生活 生态——面向绿色未来”的主题开展学术报告会、论坛和仪器展览会。  近期,中国分析测试协会联合仪器信息网特别组织了BCEIA 2021系列专访,邀约参与学术报告会组织和筹备的各领域专家,解读会议主题,分享学科发展趋势与仪器创新研究方向等,以飨读者。  作为BCEIA学术报告会质谱学分会负责人,北京大学刘虎威教授自1985年以来连续参加了每一届展会,亲历了BCEIA从初创时期到成长为世界四大分析仪器展会之一的全过程。借此机会,我们特别采访了刘虎威教授,请他围绕BCEIA多年来的发展变化、质谱在新冠病毒疫情肆虐的大背景下取得了哪些研究进展、质谱技术的发展趋势等问题发表了自己的看法。  BCEIA学术报告会质谱学分会召集人 北京大学刘虎威教授  在刘教授看来,近年来中国经济迅猛发展,综合国力不断增强,国外仪器厂商非常重视开拓中国的市场,国产仪器厂商也将BCEIA视为新技术新产品推广的重要平台,BCEIA的品牌知名度和国际影响力吸引了越来越多的仪器厂商参会,展览会规模连创新高,今年展出面积达到53000m2,同比增加了51%。另一方面,BCEIA将学术交流和仪器展示很好地结合在一起,搭建了产、学、研、用合作的平台,国内外分析科学家研究成果的分享不仅促进了相关学科的快速发展,也带来了仪器研制的新思路、新方法的突破。  2021年学术报告会质谱学分会主题定为“精准测量,质谱护航健康”。对此,刘虎威教授认为质谱分析作为20世纪人类所发现的最伟大的技术之一,其应用已经非常广泛,而我国质谱仪器的研发制造与国外相比还有不小的差距,因而在主题设定及报告内容安排方面进行了考虑。而“质谱护航健康“则是考虑到当前临床质谱是一个非常热门的领域,质谱技术在临床分析中扮演的角色越来越重要。由于高通量、高灵敏度的特点,质谱技术在临床检验领域快速发展,其应用主要涉及临床生化检验、临床免疫学检验、临床微生物检验及临床分子生物诊断等多方面,并可对传统方法学进行替代。2020年以来,新冠病毒成为学者竞相研究的热点,质谱技术在检测诊断、疫苗研发生产以及新药筛查等方面都发挥着重要的作用,未来这些领域也将成为质谱技术应用的最大蓝海市场之一。  谈到质谱技术的进展,刘虎威教授表示,离子化技术的发现及进步对质谱技术的发展起到了重要的推动作用。自2004年美国普渡大学Cooks教授提出解吸电喷雾电离(Desorption electrospray ionization,DESI)以来,目前已发展了几十种常压离子化技术。随着离子化技术的快速发展,常压离子化技术结合后端的质谱分析器,迅速应用在诸如食品、药品、材料、物证、环境、卫生等领域的安全检测与品质控制。不仅如此,其在组学分析、新药研发、中药及天然产物分析和生物分子成像等领域的应用也发展迅速。  采访的最后,刘虎威教授表示面对新冠肺炎疫情的冲击,今年的BCEIA的举办注定与往届有很多不同之处,本届展会将采用线上与线下相结合的方式,通过视频直播等手段实现线上与线下互补提升,方便更多观众了解到分析科学最新的研究内容,掌握近年来涌现出的新仪器新技术。  … …   欲了解更多采访内容,欢迎观看以下视频!
  • 李海洋:质谱新方法实现单次呼出气中氢氰酸跟踪测量
    近日,大连化物所仪器分析化学研究室快速分析与检测研究组(102组)李海洋研究员团队基于自主研发的大气压负离子飞行时间质谱仪器,提出了一种检测呼出气中氢氰酸(HCN)的气流辅助光电离质谱方法。该方法显著提升了呼出气中HCN直接测量的灵敏度和时间分辨能力,可实时跟踪志愿者单次呼气中HCN浓度水平,有望为肺纤维化病人早期筛查提供有效手段。  HCN是化工生产和化学战剂中一种常见的有毒有害气体,具有高挥发性、高吸附性。人体呼出气中也含有痕量的HCN。临床发现,肺部囊性纤维化(CF)患者呼出气体中HCN浓度较高,这与患者被铜绿假单胞菌感染有关。因此,发展高灵敏的在线呼出气中HCN测量方法,有望实现CF疾病的快速筛查。由于HCN易溶于水、极易吸附于装置表面,直接测量高湿度呼出气中HCN面临灵敏度和响应速度的挑战。该团队在前期工作(Anal. Chem.,2014;Anal. Chem.,2016;Anal Chim Acta.,2020)的基础上,本工作中提出在质谱电离源内,采用氦气反吹方法,降低高湿度样品气对电离的影响,同时提高离子传输效率,极大增强了HCN检测的灵敏度。团队在采样系统中进一步增加动态吹扫,有效减小了HCN的吸附残留,提升了该方法的时间分辨。该方法将HCN的检测灵敏度相对空气反吹条件提升了150倍,检测限达到0.3ppbv,时间分辨达到0.5s。团队将该技术用于跟踪监测志愿者漱口前后单次呼出气中HCN轮廓变化,可以区分出单次呼出气中HCN显著的“尖峰”和“平台”区间,分别反映了口腔和肺泡释放源的浓度水平,表明了该方法的抗干扰能力和HCN定量的准确性。  上述成果以“Online Detection of HCN in Humid Exhaled Air by Gas Flow Assisted Negative Photoionization Mass Spectrometry”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是大连化物所102组博士研究生文宇轩。该工作得到了大连化物所创新基金等项目的支持。
  • 使用加速器质谱法测量岩石中的放射性核素
    几十年来,科学家们一直在研究这些早期人类祖先和他们失散已久的亲属的化石。现在,由普渡大学地质学家开发的一种年代测定方法将在斯特克方丹洞穴遗址发现的一些化石的年龄提前了100多万年。这将使它们比世界上最著名的南方古猿化石Dinkinesh(也被称为Lucy)还要古老。“人类的摇篮”是联合国教科文组织在南非的世界遗产,包括各种含化石的洞穴沉积物,包括在斯特克方丹洞穴。斯特克方丹因1936年发现了第一个成年南方古猿(一种古人类)而闻名。古人类包括人类和我们的祖先亲属,但不包括其他类人猿。从那时起,成百上千的南方古猿化石在那里被发现,包括著名的普勒斯夫人,以及被称为小脚的几乎完整的骨骼。古人类学家和其他科学家对人类摇篮中的斯特克方丹和其他洞穴遗址进行了数十年的研究,以阐明过去400万年人类和环境的进化。达里尔格兰杰是普渡大学理学院的地球、大气和行星科学教授,他是这些科学家中的一员,在一个国际团队中工作。格兰杰专门研究地质沉积物的年代测定,包括洞穴中的沉积物。作为一名博士生,他设计了一种测定洞穴沉积物年代的方法,现在全世界的研究人员都在使用这种方法。他之前在斯特克方丹的研究表明,“小脚(Little Foot)”化石的年龄约为370万年前,但科学家们仍在争论该遗址其他化石的年龄。在PNAS上发表的一项研究中,格兰杰和一组科学家发现,不仅是“小脚”,而且所有带有南方古猿的洞穴沉积物的年龄都在大约340万至370万年前,而不是科学家之前理论的200 - 250万年前。这个年龄表明这些化石属于南方古猿时代的开端,而不是接近尾声。Dinkinesh来自埃塞俄比亚,至今年龄320万岁,她的物种,非洲南方古猿,可以追溯到约390万年前。斯特克方丹是一个深而复杂的洞穴系统,保存着古人类在该地区居住的悠久历史。了解这里化石的年代可能会很棘手,因为岩石和骨头会滚到地下一个深洞的底部,而且几乎没有办法确定洞穴沉积物的年代。在东非,人们发现了许多古人类化石,东非大裂谷的火山堆积了一层一层的火山灰,这些火山灰可以确定年代。研究人员利用这些层来估计化石的年龄。在南非,尤其是在洞穴里,科学家们没有这种奢侈。他们通常使用骨头周围发现的其他动物化石或洞穴中沉积的方解石流石来估计它们的年龄。但骨头可能在洞穴中移动,年轻的流石可能沉积在古老的沉积物中,这使得这些方法可能不正确。更准确的方法是对发现化石的岩石进行年代测定。嵌入化石的混凝土状基质被称为角砾岩,是格兰杰和他的团队分析的物质。“斯特克方丹拥有世界上最多的南方古猿化石,”格兰杰说。“但是很难在它们身上找到一个好的日期。人们观察了在它们附近发现的动物化石,并比较了洞穴特征(如流石)的年龄,得到了一系列不同的日期。我们的数据所做的就是解决这些争议。这表明这些化石很古老——比我们最初认为的要古老得多。”格兰杰和他的团队使用加速器质谱法测量岩石中的放射性核素,同时还绘制了地质图,并深入了解了洞穴沉积物是如何积累的,从而确定了斯特克方丹含南方古猿沉积物的年龄。格兰杰和普渡大学稀有同位素测量实验室(PRIME实验室)的研究小组研究所谓的宇宙成因核素,以及它们可以揭示的化石、地质特征和岩石的历史。宇宙成因核素是由宇宙射线产生的极其罕见的同位素——高能粒子不断轰炸地球。这些入射的宇宙射线有足够的能量在地表岩石内部引起核反应,在矿物晶体中产生新的放射性同位素。一个例子是铝-26:铝缺少一个中子,在数百万年的时间里慢慢衰变变成镁。由于铝-26是在岩石露出地表时形成的,而不是在岩石深埋洞穴后形成的,所以PRIME实验室的研究人员可以通过测量铝-26和另一种宇宙成因核素铍-10的水平来确定洞穴沉积物(以及其中的化石)的年代。除了根据宇宙成因核素确定斯特克方丹的新年代外,研究团队还仔细绘制了洞穴沉积物的地图,展示了在20世纪30年代和40年代的挖掘过程中,不同年代的动物化石是如何混合在一起的,这导致了几十年来与之前年代的混淆。格兰杰说:“我希望这能让人们相信,这种测定年代的方法给出了可靠的结果。使用这种方法,我们可以更准确地将古人类和他们的亲属放在正确的时期,在非洲和世界其他地方。”化石的年代很重要,因为它影响了科学家对当时生活环境的理解。人类是如何以及在哪里进化的,他们是如何融入生态系统的,以及谁是他们最近的亲戚,这些都是紧迫而复杂的问题。把斯特克方丹的化石放到合适的环境中是解开整个谜题的一步。
  • 质谱直接测量法解析PM2.5来源技术通过论证
    PM2.5的防治问题一直备受关注,要先弄清PM2.5颗粒的来源才能有效进行防治。记者获悉,广州即将启动PM2.5在线源解析工作,该新技术可在线快速获得PM2.5单颗粒的化学物质构成,并及时判断主要污染物来源及其影响程度。据悉,日前,《广州市环境空气PM2.5在线源解析(质谱直接测量法)》项目研究工作方案已通过专家论证。   市环境监测中心站负责人向记者介绍,大气颗粒物的污染物来源解析技术(质谱直接测量法)则是通过化学、物理学、数学等方法定性或定量识别环境受体中大气颗粒物污染的来源。对颗粒物的化学组成进行定性和定量检测,剖析其主要来源及形成机理,掌握主要污染源的排放及其影响程度,为形成区域环境空气污染综合整治提供科学依据。   2012年6月,广州市市长陈建华曾公开透露,广州PM2.5最主要的来源是三类, 一是工业企业的燃煤,去年广州燃煤2894万吨 二是汽车尾气,这两部分在PM2.5的占比为36%~40%,是造成PM2.5浓度超标的主要原因 第三就是餐饮业的油烟,占比高达10%~12%,其他来源包括建筑工地扬尘、马路扬尘以及秸秆焚烧等。   但是,市环保局有关负责人表示,传统污染物的源解析是以手工采样和实验室检测为基础,过程所需时间跨度较长,时效性较差,实时污染源控制目标指导能力较弱,已难以满足预防需求。
  • 美国麦克公司推出新型扩展压力吸附仪
    能源的需求导致矿物燃料的消耗大大增加了大气中的温室气体浓度。排放气体的主要成分是二氧化碳。二氧化碳收集不仅仅对大气中存在二氧化碳的采集和安全存储,也包括排放的二氧化碳。自从京都议定书签署以来,对燃烧气体排放问题已经得到了极大关注。 许多与能源相关的二氧化碳管理办法,包括低碳能源(例如核能,太阳能,风能,地热能,和生物质能)。科学家们也开始寻求提高能源转换效率的方法,这样使用较少的矿物燃料就可满足相同能量输出需要。然而,尽管有希望,目前这些选择对矿物燃料的需求和使用影响相对较小。矿物燃料继续提供世界大部分能源消耗。日益增长的能源需求,选择替代能源的落后,全球经济仍然依赖矿物 燃料且其相对较低的成本和高获得性,意味着矿物燃料的使用将可能持续数十年。因此,目前有很多科研力量致力于寻找有效的方法,降低大气中和工业排放的二氧化碳量。 一些研究人员认为,将二氧化碳收集在地表深处,可成为安全存储二氧化碳的长期解决方案。该方法基本思路为将捕获的二氧化碳压缩成液态灌注到多孔的深地质层,将二氧化碳液体密封在非渗透性的封盖层下。美国天然气多年存储经验,通过灌注二氧化碳,原油采收率的提高 (EOR),煤层气回收率的提高(ECBM),和向盐水地质构造层注入酸性气体为支持了这种想法。 尽管在理论上这些地层在存储人类产生的二氧化碳有潜应用,但据估计,若要有显著减少,每年必须收集超过1 亿公吨二氧化碳。很多影响因素,在决定和全面实施合适存储位置之前,必须仔细研究。例如适当的工程设计和监测,地质力学过程需要仔细考虑。科学家们需要合适的研究表征方法,以帮助确定作为贮存地点的地质资料 自从1962 年以来,美国麦克仪器公司的表面积和孔隙度分析仪,成为潜在的二氧化碳封存地点研究所需要的关键测量分析工具。表面积分析仪和压汞仪被用来作为必要的工具,来表征地质二氧化碳的压力和温度条件下的细粒度沉积岩的密封和流体传输性质空体积测量有助于预测地层的容量。美国麦克仪器公司的AutoPore 压汞仪可用来测量储层岩内部样品的密封能力和孔吼比。 美国麦克仪器公司的ASAP2020 比表面和孔隙度分析仪以及压汞仪的数据结合,可以完善流体传输实验。这些实验有助于揭示样品传输性质和密封效率中的显著变化同样也是测量煤的微孔和介孔分布的理想工具,因此也为ECBM 研究的提供有效信息。 美国麦克仪器公司的ASAP 2050 扩展压力吸附仪 和Particulate Systems 旗下HPVA 高压容量法物理吸附仪是研究高压下二氧化碳存储能力的理想工具。 ASAP 2050 可测量从真空至10 bar 的吸附量。 HPVA 可达到100 or 200bar。ASAP 2050 和 HPVA 可在真实条件下评价材料。 国际政府在科学界的帮助下,必须找到一个方法来消除大气层中由于矿物燃料炭烧产生的过多的二氧化碳。初步数据表明,在地质结构封存二氧化碳是一种有前途的解决办法。存储大量的二氧化碳目标部分依赖于每个地层的物理特性的研究数据。美国麦克仪器公司的创新的技术和材料的表征仪器已经成为二氧化碳存储研究重要测量工具。
  • 《核出口管制清单》已实施 质谱等仪器及部件受管制
    p   根据《中华人民共和国核出口管制条例》,国家原子能机构、中华人民共和国商务部、中华人民共和国外交部、中华人民共和国海关总署联合修订《核出口管制清单》,清单自2018年10月1日起实施。 /p p   说明指出,与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   清单中涵盖了溶剂萃取设备、气体离心机、UF6质谱仪/离子源、同位素电磁分离器、离子源、离子收集器、 高压电源、磁体电源等科学仪器及部件。详情如下: /p p style=" text-align: center " strong 核出口管制清单 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 说 明 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 一、总说明 /strong /span /p p   下述各段适用于《核出口管制清单》: /p p   (一)本清单中所说明的各个物项既包括未使用过的物项,亦包括使用过的物项。 /p p   (二)如果对本清单中任何物项的说明不含限制条件或技术规格,这种说明是指该物项的全部品种。 /p p   (三)当设施的设计、建造或运行过程所依据的物理过程或化学过程与本清单中确定的相同或相似时,该设施应被视为与受管制设施“同种型号”。 /p p   (四)不应由于部件的转让而排除对这类物项的管制。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、技术控制 /strong /span /p p   (一)“技术”转让根据《中华人民共和国核出口管制条例》的规定进行管制。与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)对“技术”转让的管制不适用于“公开”资料或“基础科学研究”资料。 /p p    span style=" color: rgb(255, 0, 0) " strong 三、关于软件的说明 /strong /span /p p   (一)为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)“软件”转让应与“技术”转让采用同样的管制原则。 /p p   span style=" color: rgb(255, 0, 0) " strong  四、定义 /strong /span /p p   1.“公共使用的”是指已经公开使用的“技术”或“软件”,而对其进一步传播可以不加限制(包括受版权限制的“技术”或“软件”)。 /p p   2.“基础科学研究”是指主要为获得关于现象和可观察到的事实的基本原理的新知识而从事的实验性或理论性工作,此类工作主要不是针对某一具体的实际目的或目标。 /p p   3.“技术”是指本清单所列物项的“研发”、“生产”或“使用”所要求的特定资料。这些资料可以采用“技术数据”或“技术援助”的形式。其中,“研发”涉及“生产”前的各个阶段:设计、设计研究、设计分析、设计概念、样机的装配和试验、小规模试生产计划、设计数据、把设计转换成产品的过程、结构设计、总体设计、布置等 “生产”是指建造、生产工程、制造、合成、组装(装配)、检查、试验、质保等各个阶段 “使用”是指运行、安装(包括现场安装)、维护(校核)、修理、大修和翻修等 “技术数据”可以采用蓝图、平面图、图表、模型、公式、工程设计和技术规格、手册与规程等形式,被写入或记录在诸如磁盘、磁带、只读存储器等器件或其他载体 “技术援助”可以采用规程、技能、培训、操作知识和咨询服务等形式,可以包括“技术数据”的转让。 /p p   4.“软件”是指载入于有形媒介中的一个或多个“程序”或“微程序”,其中“程序”是指电子计算机可执行的或可转换成可执行某一过程的指令序列 “微程序”是指保存在一个特殊的存储器里的基本指令序列,通过把其参考指令引入指令寄存器开始执行该基本指令序列。 /p p   5.“其他元素”是指氢、铀和钚以外的所有元素。 /p p    span style=" color: rgb(255, 0, 0) " strong 五、单位 /strong /span /p p   本清单使用国际单位制(SI)。在任何情况下,国际单位制规定的物理量应被认为是正式建议的管制值。本清单相关国际单位通常使用的缩写符号(及其表示量值的前缀)如下(按字母顺序): /p p   A - 安培 /p p   Å - 埃 /p p   ℃ - 摄氏度 /p p   cm - 厘米 /p p   cm2 - 平方厘米 /p p   cm3 - 立方厘米 /p p   ° - 度 /p p   g - 克 /p p   g0 - 重力加速度 (9.80665米/秒2) /p p   GHz - 千兆赫 /p p   GPa - 吉帕 /p p   h - 小时 /p p   H - 亨利 /p p   MPa - 兆帕 /p p   μm - 微米 /p p   N - 牛顿 /p p   nm - 纳米 /p p   Ω - 欧姆 Hz - 赫兹 /p p   J - 焦耳 /p p   K - 开[尔文] /p p   kg - 千克 /p p   kHz - 千赫兹 /p p   kJ - 千焦耳 /p p   kPa - 千帕 /p p   kW - 千瓦 /p p   m - 米 /p p   m2 - 平方米 /p p   m3 - 立方米 /p p   mA - 毫安 /p p   min - 分钟 /p p   mm - 毫米 /p p   Pa - 帕[斯卡] /p p   s - 秒 /p p   ″- 弧秒 /p p   V - 伏 /p p   VA - 伏安 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第一部分 核材料 /span /strong /p p   核材料系指源材料和特种可裂变材料。其中: /p p   1. 源材料系指天然铀、贫化铀和钍,呈金属、合金、化合物或浓缩物形态的上述各种材料。但不包括: /p p   (1)政府确信仅用于非核活动的源材料 /p p   (2)在一个自然年(1月1日至12月31日)内向某一接受国出口: /p p   ①少于500kg的天然铀 /p p   ②少于1000kg的贫化铀 /p p   ③少于1000kg的钍。 /p p   2. 特种可裂变材料系指钚-239、铀-233、含同位素铀-235或铀-233或兼含铀-233和铀-235其同位素总丰度与铀-238的丰度比大于自然界中铀-235与铀-238的丰度比的铀,以及含有上述物质的任何材料,包括核燃料组件。但不包括: /p p   (1)钚-238同位素丰度超过80%的钚 /p p   (2)克量或克量以下用作仪器传感元件的特种可裂变材料 /p p   (3)在一个自然年(1月1日至12月31日)内向某一接受国出口少于50有效克的特种可裂变材料。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第二部分 核设备和反应堆用非核材料 /span /strong /p p span style=" color: rgb(255, 0, 0) " strong   1.核反应堆和为其专门设计或制造的设备和部件 /strong /span /p p    strong 按语 /strong /p p   各种类型的核反应堆,无论其按所用慢化剂(如石墨、重水、轻水、无慢化剂)、核反应堆内中子谱(如热中子、快中子)、所用冷却剂类型(如水、液态金属、熔盐、气体)为特征,或以功能类型(如动力堆、研究堆、试验堆)为特征进行区分。上述所有类型的核反应堆都属于本条款范围并受本条款所有可适用分项管控。本条款的控制范围不包括聚变反应堆。 /p p   strong  1.1 整体核反应堆 /strong /p p   能够保持受控自持链式裂变反应的可运行核反应堆。 /p p    strong 注释 /strong /p p   一个“核反应堆”基本上包括反应堆容器内或直接安装在其上的物项、控制堆芯功率水平的设备和通常含有或直接接触或控制反应堆堆芯一次冷却剂的部件。 /p p    strong 1.2 核反应堆容器 /strong /p p   金属容器,或工厂预制的该装置的主要部件,被专门设计或制造来容纳上述1.1定义的核反应堆的堆芯以及下文1.8定义的相关堆内构件。 /p p    strong 注释 /strong /p p   物项1.2涵盖的核反应堆容器不分压力等级,包括反应堆压力容器和排管容器。物项1.2包括反应堆压力容器顶盖,它是工厂预制的反应堆容器的主要部件。 /p p    strong 1.3 核反应堆燃料装卸机 /strong /p p   专门设计或制造用于在上述1.1定义的核反应堆中插入或取出燃料的操作设备。 /p p    strong 注释 /strong /p p   上述物项能够进行有载操作或利用技术先进的定位或准直装置进行复杂的停堆装料操作,例如通常不可能直接观察或接近燃料的操作。 /p p    strong 1.4 核反应堆控制棒和设备 /strong /p p   专门设计或制造用于控制上述1.1定义的核反应堆裂变过程的棒、支承结构或悬吊结构、棒驱动机或棒导向管。 /p p    strong 1.5 核反应堆压力管 /strong /p p   专门设计或制造用于容纳上述1.1定义的核反应堆的燃料元件和一次冷却剂的压力管。 /p p    strong 注释 /strong /p p   压力管是燃料通道的一部分,按设计在高压下运行,压力有时超过5MPa。 /p p    strong 1.6 核燃料包壳 /strong /p p   专门设计或制造在上述1.1定义的核反应堆中作为燃料包壳使用的数量超过10kg的锆金属和合金的管或管组件。 /p p   注意:锆压力管的管制适用于1.5,锆排管的管制适用于1.8。 /p p    strong 注释 /strong /p p   在核反应堆中使用的锆金属管或锆合金管含铪与锆的重量之比通常低于1:500。 /p p    strong 1.7 一次冷却剂泵或循环泵 /strong /p p   专门设计或制造用于循环上述1.1定义的核反应堆的一次冷却剂的泵或循环泵。 /p p    strong 注释 /strong /p p   专门设计和制造的泵或循环泵包括水冷堆泵、气冷堆循环泵以及液态金属冷却堆用电磁泵和机械泵。这种设备可包括防止一次冷却剂渗漏的精密密封或多种密封的系统、全密封驱动泵,及有惯性质量系统的泵。这一定义包括鉴定为NC-1或相当标准的泵。 /p p    strong 1.8 核反应堆内部构件 /strong /p p   专门设计和制造用于上述1.1定义的核反应堆的“核反应堆内部构件”,包括堆芯支承柱、燃料通道、排管、热屏蔽层、堆芯缓冲层、堆芯栅格板和扩散板。 /p p    strong 注释 /strong /p p   “核反应堆内部构件”是反应堆容器内的主要结构,具有一种或多种功能,例如支承堆芯、保持燃料对准、引导一次冷却剂流向、为反应堆容器提供辐射屏蔽层、导向堆芯内仪表。 /p p    strong 1.9 热交换器 /strong /p p   (a)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂或中间冷却剂回路的热交换器(蒸汽发生器)。 /p p   (b)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂回路的其他热交换器。 /p p    strong 注释 /strong /p p   蒸汽发生器是专门设计或制造用于将反应堆内生成的热量(一回路侧)输送到进水(二回路侧)以产生蒸汽。对有一个中间回路的快堆的情况,除蒸汽发生器外,用于将一回路侧的热量输送到中间冷却回路的热交换器理所当然地属于控制范围以内。在气冷堆中,可利用热交换器向驱动燃气轮机的二次气体回路传热。本条款的控制范围不包括反应堆支持系统如应急冷却系统和衰变热冷却系统的热交换器。 /p p    strong 1.10 中子探测器 /strong /p p   专门设计或制造用于测定上述1.1定义的核反应堆堆芯内中子通量的中子探测器。 /p p    strong 注释 /strong /p p   本条款的范围包括用于测定大量程范围中子通量的堆芯内和堆芯外探测器,典型地从每平方厘米每秒104个中子或更高。堆芯外意指那些上述1.1定义的核反应堆堆芯外,但是位于生物屏蔽层内的仪器。 /p p    strong 1.11 外热屏蔽体 /strong /p p   专门设计或制造供上述1.1定义的核反应堆中用于减少热损失同时也用于安全壳保护的“外热屏蔽体”。 /p p    strong 注释 /strong /p p   “外热屏蔽体”是置于反应堆容器上方的主要结构,用于减少反应堆的热损失和降低安全壳内的温度。 /p p    span style=" color: rgb(255, 0, 0) " strong 2.反应堆用非核材料 /strong /span /p p    strong 2.1 氘和重水 /strong /p p   任一接受方在任何一个自然年(1月1日至12月31日)内收到的供上述1.1定义的核反应堆用的数量超过200kg氘原子的氘、重水(氧化氘)以及氘与氢原子之比超过1∶5000的任何其他氘化物。 /p p   strong  2.2 核级石墨 /strong /p p   数量超过1kg、纯度高于百万分之五硼当量、密度大于1.50g/cm3的石墨。 /p p    strong 注释 /strong /p p   为了出口控制的目的,政府将确定出口符合上述技术指标的石墨是否用于核反应堆。 /p p   硼当量(BE)可以实验测定或以包括硼在内的杂质BEZ之总量计算得出(由于碳不被考虑是一种杂质,因此不包括 /p p   BE碳),其中: /p p   BEZ(ppm)=CF× 元素Z的浓度(ppm为单位) /p p   CF为转化因子:(σZ× AB)除以(σB× AZ) /p p   σB和σZ分别为自然界形成的硼和元素Z的热中子俘获截面(巴为单位),AB和AZ分别为自然界形成的硼和元素Z的原子质量。 /p p    span style=" color: rgb(255, 0, 0) " strong 3. 辐照燃料元件后处理厂以及为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   辐照核燃料经后处理能从强放射性裂变产物以及其他超铀元素中分离钚和铀。有各种技术工艺流程能够实现这种分离。但是,多年来,“普雷克斯”已成为最普遍采用和接受的工艺流程。“普雷克斯”流程包括:将辐照核燃料溶解在硝酸中,然后利用磷酸三丁酯与一种有机稀释剂的混合剂通过溶剂萃取法分离铀、钚和裂变产物。 /p p   各种“普雷克斯”设施具有彼此相似的工艺功能,包括:辐照燃料元件的切割、燃料溶解、溶剂萃取和工艺液流的贮存。还可能有种种设备,用于:使硝酸铀酰热脱硝,把硝酸钚转化成氧化钚或金属钚,以及把裂变产物的废液处理成适合于长期贮存或处置的形式。但是,实现这些功能的设备的类型和结构在各种“普雷克斯”设施之间可能不同,原因有几个,其中包括需要后处理的辐照核燃料的类型和数量、打算对回收材料的处理和设施设计时所考虑的安全和维修原则。 /p p   一个“辐照燃料元件后处理厂”包括通常直接接触和直接控制辐照燃料和主要核材料以及裂变产物工艺液流的设备和部件。可以通过采取各种避免临界(例如通过几何形状)、辐射照射(例如通过屏蔽)和毒性危险(例如通过安全壳)的措施来确定这些过程,包括钚转换和钚金属生产的完整系统。 /p p   strong  3.1 辐照燃料元件切割机 /strong /p p   专门设计或制造供上述确定的后处理厂用来切割或剪切辐照燃料组件、燃料棒束或棒的遥控设备。 /p p    strong 注释 /strong /p p   这种设备能切开燃料包壳,使辐照核材料能够被溶解。专门设计的金属切割机是最常用的,当然也可能采用先进设备,例如激光器。 /p p    strong 3.2 溶解器 /strong /p p   专门设计或制造供上述确定的后处理厂用来溶解辐照核燃料,并能承受热、腐蚀性强的液体以及能远距离装料和维修的临界安全容器(例如小直径、环形或平板式的容器)。 /p p    strong 注释 /strong /p p   溶解器通常接受切碎了的乏燃料。在这种临界安全的容器内,辐照核材料被溶解在硝酸中,而剩余的壳片从工艺液流中被去掉。 /p p    strong 3.3 溶剂萃取器和溶剂萃取设备 /strong /p p   专门设计或制造用于辐照燃料后处理厂的溶剂萃取器,例如填料塔或脉冲塔、混合澄清器或离心接触器。溶剂萃取器必须能耐硝酸的腐蚀作用。溶剂萃取器通常由低碳不锈钢、钛、锆或其他优质材料,按极高标准(包括特种焊接和检查以及质量保证和质量控制技术)加工制造而成。 /p p    strong 注释 /strong /p p   溶剂萃取器既接受溶解器中出来的辐照燃料的溶液,又接受分离铀、钚和裂变产物的有机溶液。溶剂萃取设备通常设计得能满足严格的运行参数,例如很长的运行寿命,无需维修或易于更换,操作和控制简便以及可适应工艺条件的各种变化。 /p p    strong 3.4 化学溶液保存或贮存容器 /strong /p p   专门设计或制造为辐照燃料后处理厂用的保存或贮存容器。这种保存或贮存容器必须能耐硝酸的腐蚀作用。保存或贮存容器通常用低碳不锈钢、钛或锆或其他优质材料制造。保存或贮存容器可设计成能远距离操作和维修,而且它们可具有下述控制核临界的特点: /p p   (1)壁或内部结构至少有百分之二的硼当量,或 /p p   (2)对于圆柱状容器来说,最大直径175mm,或 /p p   (3)对于平板式或环形容器来说,最大宽度75mm。 /p p   注释 /p p   溶剂萃取阶段产生三种主要的工艺液流。所有这三种液流在如下的进一步处理过程中要使用保存或贮存容器: /p p   (a)用蒸发法使纯硝酸铀酰溶液浓缩,然后使其进到脱硝过程,并在此过程中转变成氧化铀。这种氧化物再在核燃料循环中利用。 /p p   (b)通常用蒸发法浓缩强放射性裂变产物溶液,并以浓缩液形式贮存。随后可蒸发这种浓缩液并将其转换成适合于贮存或处置的形式。 /p p   (c)在将纯硝酸钚溶液转到下几个工艺步骤前先将其浓缩并贮存。尤其是,钚溶液的保存或贮存容器要设计得能避免由于这种液流浓度和形状的改变导致的临界问题。 /p p   3.5 流程控制用中子测量系统 /p p   专门设计或制造与辐照燃料元件后处理厂的自动化流程控制系统相结合和共同使用的中子测量系统。 /p p    strong 注释 /strong /p p   这些系统涉及能动和非能动中子测量和鉴别能力,目的是确定特种可裂变材料的数量和成分。整套系统由中子发生器、中子探头、放大器和信号处理电子元件组成。 /p p   本条款的范围不包括为核材料衡算和保障或与辐照燃料元件后处理厂自动化流程控制系统的结合和共同使用无关的任何其他应用设计的中子探测和测量仪器。 /p p    span style=" color: rgb(255, 0, 0) " strong 4.用于制造核反应堆燃料元件的工厂和为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   核燃料元件是由本清单第一部分所述的一种或多种源材料或特种可裂变材料制造的。对于氧化物燃料这一种最常用的燃料类型,常用芯块压制、烧结、研磨和分级的设备。直到密封于包壳内,混合氧化物燃料是在手套箱内操作的(或等效的箱体)。在所有情况下,燃料被密封于一个合适的包壳内,这种包壳是设计作为包装燃料的主要包壳,以便在反应堆运行时提供适当的性能和安全。此外,在所有情况下,为保证可预计的和安全的燃料性能,必须按照最高标准精确控制流程、程序和设备。 /p p    strong 注释 /strong /p p   考虑属于燃料元件制造的和“专门设计或制造的设备”这一 /p p   含义的设备项目包括: /p p   (a)通常直接接触或加工或控制核材料生产流程的设备 /p p   (b)将核材料封入包壳的设备 /p p   (c)检验包壳或密封完整性的设备 /p p   (d)检验密封燃料的最终处理的设备 /p p   (e)用于装配核燃料元件的设备。 /p p   这一设备或这些设备系统可能包括: /p p   (1)专门设计或制造用于检验燃料芯块的最终尺寸和表面缺陷的全自动芯块检查台 /p p   (2)专门设计或制造用于将端塞焊接于燃料细棒(或棒)的自动焊接机 /p p   (3)专门设计或制造用于检验燃料细棒(或棒)成品密封性的自动化测试和检查台 /p p   (4)专门设计或制造用于制造核燃料包壳的系统。 /p p   第(3)项典型的包括设备用于:(a)细棒(或棒)端塞焊缝X射线检测,(b)充压细棒(或棒)的氦检漏,(c)细棒(或棒)的γ射线扫描以检验内部燃料芯块的正确装载。 /p p    span style=" color: rgb(255, 0, 0) " strong 5. 天然铀、贫化铀或特种可裂变材料同位素分离厂以及为其专门设计或制造的(除分析仪器以外的)设备 /strong /span /p p    strong 按语 /strong /p p   在很多情况下,铀同位素分离厂、设备和技术与“其他元素”的同位素分离厂、设备和技术有着密切联系。在特定情况下,本条款所述控制也适用于拟进行“其他元素”的同位素分离的工厂和设备。对“其他元素”的同位素分离厂和设备进行的这些控制是对《核出口管制清单》所涵盖的特种可裂变材料的加工、使用或生产而专门设计或建造的工厂和制造的设备进行控制的补充。本条款关于涉及“其他元素”的使用的这些补充控制适用于气体离心法、气体扩散法、等离子体分离法和空气动力学过程,不适用于电磁同位素分离法。对一些过程而言,其与铀同位素分离的关系取决于将要分离的元素。这些过程是:基于激光的过程(如分子激光同位素分离和原子蒸气激光同位素分离)、化学交换和离子交换。因此,供应方必须对这些过程逐一进行评价,以便相应地适用本条款对涉及“其他元素”的使用的控制。 /p p   可以认为属于为铀同位素分离“专门设计或制造的(除分析仪器外的)设备”这一概念范围的设备物项包括: /p p    strong 5.1 气体离心机和专门设计或制造用于气体离心机的组件和构件 /strong /p p    strong 按语 /strong /p p   气体离心机通常由直径在75mm 和650mm之间的薄壁圆筒组成。圆筒处在真空环境中并且以大约300m/s或更高的线速度旋转,旋转时其中轴线保持垂直。为了达到高的转速,旋转构件的结构材料必须具有高的强度/密度比,而转筒组件及其单个构件必须按高精度公差来制造以便使不平衡减到最小。 /p p   与其他离心机不同,浓缩铀用的气体离心机的特点是:在转筒室中有一个(或几个)盘状挡板和一个固定的管列用来供应和提取UF6气体,其特点是至少有三个单独的通道,其中两个与从转筒轴向转筒室周边伸出的收集器相连。在真空环境中还有一些不转动的关键物项,它们虽然是专门设计的,但不难制造,也不是用独特材料制造的。不过,一个离心机设施需要大量的这种构件,因此其数量是能够反映最终用途的一个重要指标。 /p p    strong 5.1.1 转动部件 /strong /p p strong   (a)完整的转筒组件: /strong /p p   用本节注释中所述的一种或一种以上高强度/密度比材料制成的若干薄壁圆筒或一些相互连接的薄壁圆筒 如果是相互连接的,则圆筒通过以下5.1.1(c)所述的弹性波纹管或环连接。转筒(如果是最终形式的话)装有以下5.1.1(d)和(e)所述一个(或几个)内挡板和顶盖/底盖。但是完整的组件可能只以部分组装形式交货。 /p p   strong  (b)转筒: /strong /p p   专门设计或制造的厚度为12mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的薄壁圆筒。 /p p   strong  (c)环或波纹管: /strong /p p   专门设计或制造用于局部支承转筒或把数个转筒连接起来的构件。波纹管是壁厚3mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的有褶短圆筒。 /p p    strong (d)挡板: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的安装在离心机转筒内的盘状构件,其作用是将排气室与主分离室隔开,在某些情况下帮助UF6气体在转筒的主分离室中循环。 /p p    strong (e)顶盖/底盖: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的装在转筒端部的盘状构件,这样就把UF6包容在转筒内,在有些情况下还作为整体一部分支承、保持或容纳上轴承件(顶盖)或支持马达的旋转件和下轴承件(底盖)。 /p p   注释 /p p   离心机转动构件所用材料包括: /p p   (a)极限抗拉强度为1.95× 109N/m2或更高的马氏体钢 /p p   (b)极限抗拉强度为0.46× 109N/㎡或更高的铝合金 /p p   (c)适合于复合结构用的纤维材料,其比模量应为3.18× 106m或更高,比极限抗拉强度应为7.62× 104m或更高(“比模量”是用N/m2表示的杨氏模量除以用N/m3表示的比重 “比极限抗拉强度”是用N/m2表示的极限抗拉强度除以用N/m3表示的比重)。 /p p    strong 5.1.2 静态部件 /strong /p p strong   (a)磁悬浮轴承: /strong /p p   1)专门设计或制造的轴承组合件,由悬浮在充满阻尼介质箱中的一个环形磁铁组成。该箱要用耐UF6的材料(见5.2的注释)制造。该磁铁与装在5.1.1(e)所述顶盖上的一个磁极片或另一个磁铁耦合。 /p p   此磁铁可以是环形的,外径与内径的比小于或等于1.6:1。它的初始磁导率可以是0.15H/m(120000CGS制单位)或更高,或剩磁98.5%或更高,或产生的能量高于80kJ/m3。除了具有通常的材料性质外,先决条件是磁轴对几何轴的偏离应限制在很小的公差范围内(低于0.1mm)或特别要求磁铁材料有均匀性。 /p p   2)专门设计或制造供气体离心机使用的主动磁轴承。 /p p    strong 注释 /strong /p p   这些轴承通常具有下述特点: /p p   是为使以600Hz 或更高速度旋转的转子保持居中而设计的 /p p   与可靠的电源和(或)不间断电源单元相连,以便运行1小时以上。 /p p    strong (b)轴承/阻尼器: /strong /p p   专门设计或制造的架在阻尼器上的具有枢轴/盖的轴承。枢轴通常是一种淬硬钢轴,一端精加工成半球,而另一端能连在5.1.1(e)所述底盖上。但是这种轴可附有一个动压轴承。盖是球形的,一面有一个半球形陷穴。这些构件通常是单独为阻尼器提供的。 /p p    strong (c)分子泵: /strong /p p   专门设计或制造的内部有已加工或挤压的螺纹槽和已加工的腔的泵体。典型尺寸如下:内径75mm到650mm,壁厚10mm或更厚,长度等于或大于直径。刻槽的横截面是典型的矩形,槽深2mm或更深。 /p p    strong (d)电动机定子: /strong /p p   专门设计或制造的环形定子,用于在真空中频率范围为600Hz或更高、功率范围为40VA或更高条件下同步运行的高速多相交流磁滞(或磁阻)式电动机。定子由在典型厚度为2.0mm或更薄一些的薄层组成的低损耗叠片铁芯上的多相绕组组成。 /p p    strong (e)离心机壳/收集器: /strong /p p   专门设计或制造用来容纳气体离心机的转筒组件的部件。离心机壳由一个壁厚达30mm的刚性圆筒组成,它带有经过精密机械加工的两个端面以便固定轴承和一个或多个便于安装的法兰盘。这两个经过机械加工的端面相互平行,并以不大于0.05度的误差与圆筒轴垂直。离心机壳也可是一种格状结构以容纳几个转筒。 /p p    strong (f)收集器: /strong /p p   专门设计或制造的管件,它们用来借助皮托管作用(即利用一个例如扳弯径向配置的管的端部而形成的面迎转筒内环形气流的开口)从转筒内部提取UF6气体,并且能与中心气体提取系统相连。 /p p    strong 5.2 为气体离心浓缩工厂专门设计或制造的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体离心浓缩工厂用的辅助系统、设备和部件是向离心机供应UF6,把单个离心机相互联接组成级联(多级)从而逐渐提高浓缩度并且从离心机中提取UF6“产品”和“尾料”所需的各种工厂系统,以及驱动离心机或控制该工厂所需要的设备。 /p p   通常利用经加热的高压釜将UF6从固体中蒸发出来,气态形式的UF6通过级联集管线路被分配到各个离心机。通过级联集管线路使从离心机流出的UF6“产品”和“尾料”气流通到冷阱(在约203K(-70℃)下工作),气流在冷阱先冷凝,然后再送入适当的容器以便运输或贮存。由于一个浓缩工厂由排成级联式的数千个离心机组成,所以级联的集管线路有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都是按非常高的真空和净度标准制造的。 /p p    strong 注释 /strong /p p   以上所列一些物项不是直接接触UF6工艺气体就是直接控制离心机和直接控制这种气体从离心机到离心机以及从级联到级联的通路。耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p    strong 5.2.1 供料系统/产品和尾料提取系统 /strong /p p   专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜(或供料器)、加热炉或系统,用于将UF6送往离心机级联 /p p   (b)凝华器(或冷阱)或泵,用于从级联中取出UF6,以便随后加热转送 /p p   (c)固化站或液化站,用来通过压缩UF6和将其转化成液态或固态,使UF6离开浓缩工艺线 /p p   (d)“产品”和“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.2.2 机械集管管路系统 /strong /p p   专门设计或制造用于在离心机级联中操作UF6的管路系统和集管系统。管路网络通常是“三头”集管系统,每个离心机连接一个集管头。这样,在形式上有大量重复。全都用耐UF6的材料(见本节注释)制成或用这种材料进行保护并且按很高的真空和净度标准制造。 /p p    strong 5.2.3 特种截流阀和控制阀 /strong /p p   (a)专门设计或制造的作用于单台气体离心机中的供料、产品或尾料UF6气流的截流阀。 /p p   (b)专门设计或制造用于气体离心浓缩厂主系统或辅助系统的手动或自动波纹管密封阀、截流阀或控制阀,用耐UF6腐蚀的材料制成或用这种材料进行保护,内径10-160mm。 /p p   注释 /p p   专门设计或制造的阀,典型的包括波纹管密封阀、速动封闭阀、速动阀和其他阀。 /p p    strong 5.2.4 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.2.5 频率变换器 /strong /p p   为满足5.1.2(d)中定义的电动机定子的需要而专门设计或制造的频率变换器(又称变频器或变换器)或这类频率变换器的部件、构件和子配件。它们具有下述所有特点: /p p   1. 多相输出600Hz或更高 /p p   2. 高稳定性(频率控制优于0.2%)。 /p p    strong 5.3 专门设计或制造用于气体扩散浓缩的组件和部件 /strong /p p    strong 按语 /strong /p p   用气体扩散法分离铀同位素时,主要的技术组件是一个特制的多孔气体扩散膜、用于冷却(经压缩过程加热的)气体的热交换器、密封阀和控制阀以及管道。由于气体扩散技术使用的是六氟化铀(UF6),所有的设备、管道和仪器仪表(与气体接触的)表面都必须用同UF6接触时能保持稳定的材料制成。一个气体扩散设施需要许多这样的组件,因此其数量是能够反映最终用途的一个重要指标。 /p p   strong  5.3.1 气体扩散膜和扩散膜材料 /strong /p p   (a)专门设计或制造的由耐UF6腐蚀的金属、聚合物或陶瓷材料(见5.4款注释)制成的很薄的多孔过滤膜,孔的大小为100-1000Å ,膜厚5mm或以下,对于管状膜来说,直径为25mm或以下。 /p p   (b)为制造这种过滤膜而专门制备的化合物或粉末。这类化合物和粉末包括镍或含镍60%(或以上)的合金、氧化铝或纯度99.9%(或以上)的耐UF6的完全氟化的烃聚合物(见5.4款注释),粒度小于10μm,粒度高度均匀。这些都是专门为制造气体扩散膜制备的。 /p p    strong 5.3.2 扩散室 /strong /p p   专门设计或制造的密闭式容器,用于容纳气体扩散膜,由耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.3 压缩机和鼓风机 /strong /p p   专门设计或制造的压缩机或鼓风机,吸气能力为1m3UF6/min或更大,出口压力高达500kPa,其被设计成在UF6环境中长期运行。这种压缩机和鼓风机的压力比10:1或更低,用耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.4 转动轴封 /strong /p p   专门设计或制造的真空密封装置,有密封式进气口和出气口,用于密封把压缩机或鼓风机转子同传动马达连接起来的转动轴,以保证可靠的密封,防止空气渗入充满UF6的压缩机或鼓风机的内腔。这种密封装置通常设计成将缓冲气体泄漏率限制到小于1000cm3/min。 /p p    strong 5.3.5 冷却UF6的热交换器 /strong /p p   专门设计或制造的用耐UF6材料(见5.4款注释)制成或保护的热交换器,在压差为100kPa下渗透压力变化率小于10Pa/h。 /p p    strong 5.4 专门设计或制造的用于气体扩散浓缩的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体扩散浓缩工厂用的辅助系统、设备和部件是向气体扩散组件供应UF6,把单个组件相互联接组成级联(或多级)以便使浓缩度逐步增高并且从各个扩散级联中提取UF6“产品”和“尾料”所需的工厂系统。由于扩散级联的惯性很大,级联运行的任何中断,特别是停车,会导致严重后果。因此,在所有工艺系统中严格持续地保持真空、自动防止事故、准确地自动调节气流对气体扩散工厂是很重要的。所有这一切,使该工厂需要装备大量专用的测量、调节和控制系统。 /p p   通常UF6从置于高压釜内的圆筒中蒸发,以气态形式经级联集管管路被分配到进口。从出口流出的UF6“产品”和“尾料”气流通过级联集管管路被分配到冷阱或压缩装置,UF6气体在那里液化,然后再进到适当的容器以便运输或贮存。由于一个气体扩散浓缩工厂由排成级联式的大量气体扩散组件组成,所以级联的集管管线有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都按非常高的真空和净度标准制造。 /p p    strong 注释 /strong /p p   耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p   以下所列物项直接接触UF6气体或直接控制级联中的气流: /p p   strong  5.4.1 供料系统/产品和尾料提取系统 /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入气体扩散级联 /p p   (b)凝华器、冷阱或泵,用于从扩散级联中取出UF6以便随后在加热时转送 /p p   (c)固化站或液化站,将来自级联的UF6气体压缩并冷凝成液态或固态,使其离开气体扩散级联 /p p   (d)“产品”器或“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.4.2 集管管路系统 /strong /p p   专门设计或制造用于在气体扩散级联中操作UF6的管路系统 /p p   和集管系统。 /p p   注释 /p p   这种管路网络通常是“双头”集管系统,每个扩散单元连接一个集管头。 /p p    strong 5.4.3 真空系统 /strong /p p   (a)专门设计或制造的大型真空歧管、真空集管和抽气能力为5m3/min(或以上)的真空泵。 /p p   (b)专门设计的在含UF6气氛中使用的真空泵,用耐UF6腐蚀的材料制成或保护(见本条款注释)。这些泵可以是旋转式或正压式,可有排代式密封和碳氟化合物密封并且可以有特殊工作流体存在。 /p p    strong 5.4.4 特种截流阀和控制阀 /strong /p p   专门设计和制造的由耐UF6材料制成或保护、手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气体扩散浓缩工厂的主系统和辅助系统中。 /p p    strong 5.4.5 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.5 专门设计或制造用于气动浓缩厂的系统、设备和部件 /strong /p p    strong 按语 /strong /p p   在气体动力学浓缩过程中,要压缩气态UF6和轻气体(氢或氦)的混合气,然后使其通过分离元件。在这些元件中,通过在一个曲壁几何结构面上产生的高离心力,完成同位素分离。已经成功地开发了这种类型的两个过程:喷嘴分离过程和涡流管过程。就这两种过程而言,一个分离级的主要部件包括容纳专用分离元件(喷嘴或涡流管)的圆筒状容器、气体压缩机和用来排出压缩热的热交换器。一座气动浓缩工厂需要若干个这种分离级,因此其数量是能够反映最终用途的一个重要指标。由于气动过程使用UF6,所有设备、管线和仪器仪表中与这种气体接触的表面,都必须用同UF6接触时能保持稳定的材料制成或加以保护。 /p p    strong 注释 /strong /p p   本节所列物项不是直接接触UF6流程气体就是直接控制级联中的这种气流。所有接触流程气体的表面,均需用耐UF6材料制成或用耐UF6材料保护。就本节有关气动浓缩物项而言,耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%或以上(按重量计)的合金以及氟化的烃聚合物。 /p p    strong 5.5.1 分离喷嘴 /strong /p p   专门设计或制造的分离喷嘴及其组件。分离喷嘴由一些狭缝状、曲率半径小于1mm的耐UF6腐蚀的弯曲通道组成,喷嘴中有一分离楔尖能将流过该喷嘴的气体分成两部分。 /p p    strong 5.5.2 涡流管 /strong /p p   专门设计或制造的涡流管及其组件。涡流管呈圆筒形或锥形,用耐UF6腐蚀材料制成或加以保护,并带有1个或多个切向进口。这些涡流管的一端或两端装有喷嘴型附件。 /p p    strong 注释 /strong /p p   供料气体在涡流管的一端切向进入涡流管,或通过一些旋流叶片,或从沿涡流管周边分布的若干个切向位置进入涡流管。 /p p    strong 5.5.3 压缩机和鼓风机 /strong /p p   专门设计或制造的用耐UF6/载气(氢或氦)混合气腐蚀材料制成或加以保护的压缩机或鼓风机。 /p p    strong 5.5.4 转动轴封 /strong /p p   专门设计或制造的带有密封式进气口和出气口的转动轴封,用于密封把压缩机或鼓风机转子同驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏或空气或密封气体渗入充满UF6/载气混合气的压缩机或鼓风机内腔。 /p p    strong 5.5.5 冷却气体用热交换器 /strong /p p   专门设计或制造的用耐UF6腐蚀材料制成或加以保护的热交换器。 /p p    strong 5.5.6 分离元件外壳 /strong /p p   专门设计或制造的用耐UF6腐蚀的材料制成或加以保护的用作容纳涡流管或分离喷嘴的分离元件外壳。 /p p    strong 5.5.7 供料系统/产品和尾料提取系统 /strong /p p   专门为浓缩工厂设计或制造的用耐UF6腐蚀材料制成的或加以保护的流程系统或设备,包括: /p p   (a)供料釜、供料加热炉或供料系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化器或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩流程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.5.8 集管管路系统 /strong /p p   专门为操作气动级联中的UF6设计或制造的用耐UF6腐蚀材料制成或保护的集管管路系统。这种管路系统通常是“双头”集管系统,每级或每个级组连接一个集管头。 /p p    strong 5.5.9 真空系统和泵 /strong /p p   (a)为在含UF6气氛中工作而专门设计或制造的由真空歧管、真空集管和真空泵组成的真空系统 /p p   (b)为在含UF6气氛中工作而专门设计或制造的用耐UF6腐蚀的材料制成或保护的真空泵。这些泵也可用氟碳密封和特殊工作流体。 /p p    strong 5.5.10 特种截流阀和控制阀 /strong /p p   专门设计或制造的由耐UF6腐蚀材料制成或保护的直径为40mm或更大的可手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气动浓缩工厂的主系统和辅助系统中。 /p p    strong 5.5.11 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.5.12 UF6/载气分离系统 /strong /p p   专门设计或制造的将UF6与载气(氢或氦)分离开来的过程系统。 /p p   注释 /p p   这些系统是为将载气中的UF6含量降至1ppm或更低而设计的,并可装有下述的设备: /p p   (a)低温热交换器和低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温制冷设备,能承受153K(-120℃)或更低的温度 或 /p p   (c)用于将UF6与载气分离开来的分离喷嘴或涡流管设备 或 /p p   (d)能冻结分离出UF6的冷阱。 /p p    strong 5.6 专门设计或制造用于化学交换或离子交换浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   铀的几种同位素在质量上的微小差异,能引起化学反应平衡小的变化。这可用作同位素分离的基础。已经开发成功两种工艺过程:液-液化学交换过程和固-液离子交换过程。 /p p   在液-液化学交换过程中,两种不混溶的液相(水相和有机相)作逆流接触,结果给出数千分离级的级联效果。水相由含氯化铀的盐酸溶液组成 有机相由载氯化铀的萃取剂的有机溶剂组成。分离级联中使用的接触器可以是液-液交换柱(例如带有筛板的脉冲柱),或是液体离心接触器。在分离级联的两端要求实现化学转化(氧化和还原)以保证各端的回流要求。一个重要的设计问题是避免这些过程物流被某些金属离子沾污。所以,一般使用塑料的、衬塑料的(包括用氟碳聚合物)和(或)衬玻璃的柱和管线。 /p p   在固-液离子交换过程中,浓缩是由铀在一种特制的作用很快的离子交换树脂或吸附剂上的吸附/解吸完成的。使铀的盐酸溶液和其他化学试剂,从载有吸附剂填充床的圆筒形浓缩柱中通过。就一个连续过程而言,需要有一个回流系统,以便把从吸附剂上解吸下来的铀返回到液流中,这样便可收集“产品”和“尾料”。这是通过使用适宜的还原/氧化化学试剂来完成的。这些试剂可在单独的外部系统中完全再生,并可在同位素分离柱内部分地再生。由于在这种工艺过程中有热的浓盐酸溶液存在,使用的设备应该用专门的耐腐蚀材料制造或保护。 /p p    strong 5.6.1 液-液交换柱(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂专门设计或制造的有机械动力输入的逆流液-液交换柱。为了耐浓盐酸溶液的腐蚀,这些交换柱及其内部构件一般用适宜的塑料(例如氟碳聚合物)或玻璃制作或保护。交换柱的级停留时间一般被设计得很短(30秒或更短)。 /p p    strong 5.6.2 液-液离心接触器(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂而专门设计或制造的液-液离心接触器。此类接触器利用转动来达到有机相与水相的分散,然后借助离心力来分离开这两相。为了耐浓盐酸溶液的腐蚀,这些接触器一般用适当的塑料(例如碳氟聚合物)或玻璃来制造或保护。离心接触器的级停留时间被设计得很短(30秒或更短)。 /p p    strong 5.6.3 铀还原系统和设备(化学交换) /strong /p p   (a)为使用化学交换过程的铀浓缩工厂专门设计或制造的、用来将铀从一种价态还原为另一种价态的电化学还原槽。与过程溶液接触的这种槽的材料必须能耐浓盐酸溶液腐蚀。 /p p    strong 注释 /strong /p p   这种槽的阴极室必须设计成能防止铀被再氧化到较高的价态。为了把铀保持在阴极室中,这种槽可有一个由特种阳离子交换材料制成的抗渗的隔膜。阴极一般由石墨之类适宜的固态导体组成。 /p p   (b)装在级联的产品端,为将有机相流中的U+4移出、调节酸浓度和向电化学还原槽供料而专门设计或制造的系统。 /p p    strong 注释 /strong /p p   这些系统由以下设备组成:将有机相流中的U+4反萃取到水溶液中的溶剂萃取设备,完成溶液pH值调节和控制的蒸发设备和(或)其他设备,以及向电化学还原槽供料的泵或其他输送装置。一个重要的设计问题是要避免水相流被某些种类的金属离子沾污。因此,对该系统那些接触这种过程物流的部分,要用适当的材料(例如玻璃、碳氟聚合物、聚苯硫酸酯、聚醚砜和用树脂浸过的石墨)制成或保护的设备来构成。 /p p   strong  5.6.4 供料准备系统(化学交换) /strong /p p   专门设计或制造的用来为化学交换铀同位素分离工厂生产高纯氯化铀供料溶液的系统。 /p p    strong 注释 /strong /p p   这些系统由进行纯化所需的溶解设备、溶剂萃取设备和(或)离子交换设备,以及用来将U+6或U+4还原为U+3的电解槽组成。这些系统产生只含几个ppm的铬、铁、钒、钼和其他两价或价态更高的阳离子金属杂质的氯化铀溶液。处理高纯度U+3系统的若干部分的建造材料包括玻璃、碳氟聚合物、聚苯硫酸酯或聚醚砜塑料衬里的石墨和用树脂浸过的石墨。 /p p    strong 5.6.5 铀氧化系统(化学交换) /strong /p p   专门设计或制造用于将U+3氧化为U+4以便返回化学交换浓缩过程的铀同位素分离级联的系统。 /p p    strong 注释 /strong /p p   这些系统可装有如下设备: /p p   (a)使氯气和氧气与来自同位素分离设备的水相流相接触的设备以及将所得U+4萃入由级联的产品端返回、已被反萃取过的有机相的设备 /p p   (b)使水与盐酸分离开来,以便水和加浓了的盐酸可在适当位置被重新引入工艺过程的设备。 /p p   strong  5.6.6 快速反应离子交换树脂/吸附剂(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的快速反应离子交换树脂或吸附剂包括:多孔大网络树脂,和(或)薄膜结构(在这些结构中,活性化学交换基团仅限于非活性多孔支持结构表面的一个涂层),以及处于包括颗粒或纤维在内的任何适宜形式的其他复合结构。这些离子交换树脂/吸附剂的直径有0.2mm或更小,而且在化学性质上必须能耐浓盐酸溶液腐蚀,在物理性质上必须有足够的强度因而在交换柱中不被降解。这些树脂/吸附剂是专门为实现很快的铀同位素交换动力学过程(低于10秒的交换速率减半期)而设计的,并且能在373-473K(100-200℃)的温度范围内操作。 /p p    strong 5.6.7 离子交换柱(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的用于容纳和支撑离子交换树脂/吸附剂填充床层的直径大于1000mm的圆柱。这些柱一般用耐浓盐酸溶液腐蚀的材料(例如钛或碳氟塑料)制成或保护,并能在373-473K(100-200℃)的温度范围内和高于0.7MPa的压力下操作。 /p p   strong  5.6.8 离子交换回流系统(离子交换) /strong /p p   (a)专门设计或制造的用于使离子交换铀浓缩级联中所用化学还原剂再生的化学或电化学还原系统。 /p p   (b)专门设计或制造的用于使离子交换铀浓缩级联中所用化学氧化剂再生的化学或电化学氧化系统。 /p p    strong 注释 /strong /p p   离子交换浓缩过程可使用例如Ti+3作为还原阳离子,在这种情况下,所用还原系统将通过还原Ti+4使Ti+3再生。 /p p   离子交换浓缩过程可使用例如Fe+3作为氧化剂,在这种情况下,所用氧化系统将通过氧化Fe+2来使Fe+3再生。 /p p    strong 5.7 专门设计或制造用于以激光为基础的浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   目前利用激光的浓缩过程的系统有两类:一类是过程介质为原子铀蒸气的系统,另一类是过程介质为铀化合物蒸气的系统。这些过程的通用名称包括:第一类——原子蒸气激光同位素分离(AVLIS或SILVA) 第二类——分子激光同位素分离(MLIS或MOLLS),包括同位素选择性激光活化化学反应(CRISLA)。 /p p   用于激光浓缩厂的系统、设备和部件包括:(a)铀金属蒸气供料装置(用于选择性光电离)或铀的化合物蒸气供料装置(用于选择性光离解或化学活化) (b)第一类中作为“产品”和“尾料”浓缩的铀金属和贫化的铀金属收集装置,和第二类中作为“产品”的浓缩的铀化合物和作为“尾料”的贫化的铀化合物的收集装置 (c)用于选择性地激发铀-235的激光过程系统 和(d)供料准备设备及产品转化设备。鉴于铀原子和铀化合物能谱的复杂性,可能需要与现有激光和激光光学技术中的任何一种联合使用。 /p p    strong 注释 /strong /p p   本节所列的许多物项将直接接触铀金属蒸气、液态金属铀,或由UF6或UF6和其他气体的混合物组成的过程气体。所有与铀或UF6接触的表面,都全部由耐腐蚀材料制造或保护。就有关基于激光的浓缩的物项而言,耐铀金属或铀合金蒸气或液体腐蚀的材料包括:氧化钇涂敷石墨和钽 耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或镍含量60%(按重量计)或以上的合金和氟化的烃聚合物。 /p p    strong 5.7.1 铀蒸发系统(AVLIS) /strong /p p   专门设计或制造的铀蒸发系统,供用于激光浓缩。 /p p    strong 注释 /strong /p p   这些系统可能含有电子束枪,设计供到靶上的功率(1kW或更大)足以按激光浓缩功能要求的速率产生铀金属蒸气。 /p p    strong 5.7.2 液态或蒸气铀金属处理系统(AVLIS)和部件 /strong /p p   专门设计或制造的用于激光浓缩的熔融铀、熔融铀合金或铀金属蒸气处理系统,或为这些系统专门设计或制造的部件。 /p p   strong  注释 /strong /p p   液态金属铀处理系统可包括坩埚及其冷却设备。这种系统的坩埚和其他接触熔融铀、熔融铀合金或铀金属蒸气的部分,要用有适当的耐腐蚀和耐高温性能的材料制成或保护。适当的材料可包括钽、氧化钇涂敷石墨、用其他稀土氧化物(见《核两用品及相关技术出口管制清单》)或其混合物涂敷的石墨。 /p p    strong 5.7.3 铀金属“产品”和“尾料”收集器组件(AVLIS) /strong /p p   专门设计或制造用于收集液态或固态铀金属的“产品”和“尾料”收集器组件。 /p p    strong 注释 /strong /p p   这些组件的部件由耐铀金属蒸气或液体的高温和腐蚀性的材料(例如氧化钇涂敷石墨或钽)制成或保护。这类部件可包括用于磁、静电或其他分离方法的管、阀、管接头、“出料槽”、进料管、热交换器和收集板。 /p p    strong 5.7.4 分离器组件外壳(AVLIS) /strong /p p   专门设计或制造的圆筒状或矩形容器,用于容纳铀金属蒸气源、电子束枪,及“产品”与“尾料”收集器。 /p p    strong 注释 /strong /p p   这些外壳有多种样式的开口,用于供电线路、供水管、激光束窗、真空泵接头及仪器仪表诊断和监测。这些开口均设有开闭装置,以便整修内部的部件。 /p p    strong 5.7.5 超声膨胀喷嘴(MLIS) /strong /p p   专门设计或制造的超声膨胀喷嘴,用于冷却UF6与载气的混合气至150K(-123℃)或更低的温度。这种喷嘴耐UF6腐蚀。 /p p    strong 5.7.6 “产品”或“尾料”收集器(MLIS) /strong /p p   专门设计或制造的用于在激光照射后收集铀产品材料或铀尾料材料的部件或设备。 /p p    strong 注释 /strong /p p   例如,产品收集器的作用是收集浓缩UF5固态材料。这种收集器可包括过滤式、冲击式或旋流式收集器,或其组合 并且耐UF5/UF6环境的腐蚀。 /p p    strong 5.7.7 UF6/载气压缩机(MLIS) /strong /p p   为在UF6环境中长期操作而专门设计或制造的UF6/载气混合气压缩机。这些压缩机中与过程气体接触的部件用耐UF6腐蚀的材料制成或保护。 /p p   strong  5.7.8 转动轴封(MLIS) /strong /p p   专门设计或制造的带密封进气口和出气口的转动轴封,用于密封把压缩机转子与驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏,或空气或密封气体漏入充满UF6/载气混合气的压缩机内腔。 /p p    strong 5.7.9 氟化系统(MLIS) /strong /p p   专门设计或制造的用于将UF5(固体)氟化为UF6(气体)的系统。 /p p    strong 注释 /strong /p p   这些系统是为将所收集的UF5粉末氟化为UF6而设计的。其UF6随后将被收集于产品容器中,或作为进料被转送到为进行进一步浓缩而设置的MLIS单元中。在一种方案中,这种氟化反应可在同位素分离系统内部完成,以便一离开“产品”收集器便反应和回收。在另一种方案中,UF5粉末将被从“产品”收集器中移出/转送到一个适当的反应容器(例如流化床反应器、螺旋反应器或火焰塔式反应器)中进行氟化。在这两种方案中,都使用氟气(或其他适宜的氟化剂)贮存和转送设备,以及UF6收集和转送设备。 /p p    strong 5.7.10 UF6质谱仪/离子源(MLIS) /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1.能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.7.11 进料系统/产品和尾料提取系统(MLIS) /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,用耐UF6腐蚀的材料制成或保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩过程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.7.12 UF6/载气分离系统(MLIS) /strong /p p   为将UF6从载气中分离出来专门设计或制造的工艺系统。 /p p    strong 注释 /strong /p p   这类系统可装有如下设备: /p p   (a)低温热交换器或低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温冷冻器,能承受153K(-120℃)或更低的温度 或 /p p   (c)能冻结分离出UF6的冷阱。 /p p   载气可为氮、氩或其他气体。 /p p    strong 5.7.13 激光系统(AVLIS,MLIS和CRISLA) /strong /p p   为铀同位素分离专门设计或制造的激光器或激光系统。 /p p    strong 注释 /strong /p p   在以激光为基础的浓缩过程中有重要意义的激光器和激光部件包括《核两用品及相关技术出口管制清单》中所列的那些激光器和激光部件。激光系统一般包含用于管理激光束(一个或多个)和向同位素分离室发射激光束的光学和电子部件。AVLIS过程使用的激光系统通常由两个激光器组成:一个铜蒸气激光器或某些固体激光器和一个可调染料激光器。MLIS使用的激光系统通常由一个CO2激光器或受激准分子激光器和一个多程光学池(两端有旋转镜)组成。这两种过程使用的激光器或激光系统都需要有一个谱频稳定器以便能够长时间地工作。 /p p    strong 5.8 专门设计或制造的用于等离子体分离浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在等离子体分离过程中,铀离子等离子体通过一个调到铀-235 离子共振频率的电场,使铀-235离子优先吸收能量并增大它们螺旋状轨道的直径。具有大直径径迹的离子被捕集从而产生铀-235 被浓集的产品。由电离的铀蒸气组成的等离子体被约束在由超导磁体产生的高强度磁场的真空室内。这个过程的主要技术系统包括铀等离子体发生系统、带有超导磁体(见《核两用品及相关技术出口管制清单》)的分离器组件和用于收集“产品”和“尾料”的金属移出系统。 /p p   strong  5.8.1 微波动力源和天线 /strong /p p   为产生或加速离子专门设计或制造的微波动力源和天线,具有以下特性:频率高于30GHz,且用于产生离子的平均功率输出大于50kW。 /p p    strong 5.8.2 离子激发线圈 /strong /p p   专门设计或制造的射频离子激发线圈,用于高于100kHz的频率并能够输送的平均功率高于40kW。 /p p   strong  5.8.3 铀等离子体发生系统 /strong /p p   为产生铀等离子体专门设计或制造的系统,供等离子体分离浓缩厂使用。 /p p   strong  5.8.4 铀金属“产品”和“尾料”收集器组件 /strong /p p   专门设计或制造的用于固态铀金属的“产品”和“尾料”收集器组件。这类收集器组件由抗热和抗铀金属蒸气腐蚀的材料构成或由这类材料作防护层,例如有钇涂层的石墨或钽。 /p p    strong 5.8.5 分离器组件外壳 /strong /p p   专门设计或制造的圆筒形容器,供等离子体分离浓缩厂用来容纳铀等离子体源、射频驱动线圈及“产品”和“尾料”收集器。 /p p    strong 注释 /strong /p p   这种外壳有多种形式的开口,用于供电线路、扩散泵接头及仪器仪表诊断和监测。这些开口设有开闭装置,以便整修内部部件 它们由适当的非磁性材料例如不锈钢构成。 /p p    strong 5.9 专门设计或制造的用于电磁浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在电磁过程中,由一种盐原料(典型的是四氯化铀)离子化产生的金属铀离子被加速并通过一个能使不同同位素离子沿不同轨迹运动的磁场。电磁同位素分离器的主要部件包括:同位素离子束分散/分离用的磁场、离子源及其加速系统和收集经分离的离子的系统。这个过程的辅助系统包括磁体供电系统、离子源高压供电系统、真空系统以及产品回收及部件的清洁/再循环用多种化学处理系统。 /p p    strong 5.9.1 同位素电磁分离器 /strong /p p   为分离铀同位素专门设计或制造的同位素电磁分离器及其设备和部件包括: /p p    strong (a)离子源 /strong /p p   专门设计或制造的单个或多个铀离子源由蒸气源、电离器和束流加速器组成,用石墨、不锈钢或铜等适当材料制造,能提供总强度为50mA或更高的离子束流。 /p p    strong (b)离子收集器 /strong /p p   收集器板极由专门为收集浓缩和贫化铀离子束而设计或制造的两个或多个槽和容器组成,用石墨或不锈钢一类的适当材料制造。 /p p   strong  (c)真空外壳 /strong /p p   为铀电磁分离器专门设计或制造的真空外壳,用不锈钢一类适当的非磁性材料制造,设计在0.1Pa或以下的压力下运行。 /p p    strong 注释 /strong /p p   外壳专门设计成装有离子源、收集器板极和水冷却管路,并有用于扩散泵连接结构和可用来移出和重新安装这些部件的开闭结构。 /p p    strong (d)磁极块 /strong /p p   专门设计或制造的磁极块,直径大于2m,用来在同位素电磁分离器内维持恒定磁场并在毗连分离器之间传输磁场。 /p p    strong 5.9.2 高压电源 /strong /p p   为离子源专门设计或制造的高压电源,具有以下所有特点:能连续工作,输出电压为20000V或更高,输出电流为1A或更大,电压稳定性在8小时内高于0.01%。 /p p   strong  5.9.3 磁体电源 /strong /p p   专门设计或制造的高功率直流磁体电源,具有以下所有特点:能在100V或更高的电压下持续产生500A或更大的电流输出,电流或电压稳定性在8小时内高于0.01%。 /p p    span style=" color: rgb(255, 0, 0) " strong 6. 生产和浓集重水、氘和氘化物的工厂和专门为其设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   重水可以通过多种方法生产。然而只有两种方法已证明具有商业意义:水-硫化氢交换法(GS法)和氨-氢交换法。 /p p   GS法是基于在一系列塔内(通过顶部冷和底部热的方式操作)水和硫化氢之间氢与氘交换的一种方法。在此过程中,水向塔底流动,而硫化氢气体从塔底向塔顶循环。使用一系列多孔塔板促进硫化氢气体和水之间的混合。在低温下氘向水中迁移,而在高温下氘向硫化氢中迁移。氘被浓缩了的硫化氢气体或水从第一级塔的热段和冷段的接合处排出,并且在下一级塔中重复这一过程。最后一级的产品(氘浓缩至30%的水)送入一个蒸馏单元以制备反应堆级的重水(即99.75%的氧化氘)。 /p p   氨-氢交换法可以在催化剂存在下通过同液态氨的接触从合成气中提取氘。合成气被送进交换塔,而后送至氨转换器。在交换塔内气体从塔底向塔顶流动,而液氨从塔顶向塔底流动。氘从合成气的氢中洗涤下来并在液氨中浓集。液氨然后流入塔底部的氨裂化器,而气体流入塔顶部的氨转换器。在以后的各级中进一步浓缩,最后通过蒸馏生产出反应堆级重水。合成气进料可由氨厂提供,而这个氨厂也可以结合氨-氢交换法重水厂一起建造。氨-氢交换法也可以用普通水作为氘的供料源。 /p p   利用GS法或氨-氢交换法生产重水的工厂所用的许多关键设备物项是与化学工业和石油工业的若干生产工序所用设备相同的。对于利用GS法的小厂来说尤其如此。然而,这种设备物项很少有“现货”供应。GS法和氨-氢交换法要求在高压下处理大量易燃、有腐蚀性和有毒的流体。因此,在制定使用这些方法的工厂和设备所用的设计和运行标准时,要求认真注意材料的选择和材料的规格,以保证在长期服务中有很高的安全性和可靠性。规模的选择主要取决于经济性和需要。因而,大多数设备物项将按照用户的要求制造。 /p p   最后,应该指出,对GS法和氨-氢交换法而言,那些单独地看并非专门设计或制造用于重水生产的设备物项可以组装成专门设计或制造用于生产重水的系统。氨-氢交换法所用的催化剂生产系统和在上述两种方法中将重水最终加浓至反应堆级所用的水蒸馏系统就是此类系统的实例。 /p p   专门设计或制造用于利用GS法或氨-氢交换法生产重水的设备物项包括如下: /p p    strong 6.1 水-硫化氢交换塔 /strong /p p   专门设计或制造用于利用GS法生产重水的交换塔。该塔直径1.5m或更大,能够在大于或等于2MPa压力下运行。 /p p    strong 6.2 鼓风机和压缩机 /strong /p p   专门为利用GS法生产重水而设计或制造的用于循环硫化氢气体(即含H2S70%以上的气体)的单级、低压头(即0.2MPa)离心式鼓风机或压缩机。这些鼓风机或压缩机的气体通过能力大于或等于56 m3/s,能在大于或等于1.8MPa的吸入压力下运行,并有对湿H2S介质的密封设计。 /p p    strong 6.3 氨-氢交换塔 /strong /p p   专门设计或制造用于利用氨-氢交换法生产重水的氨-氢交换塔。该塔高度大于或等于35m,直径1.5m至2.5m,能够在大于15MPa压力下运行。这些塔至少都有一个用法兰联接的轴向孔,其直径与交换塔筒体直径相等,通过此孔可装入或拆除塔内构件。 /p p   strong  6.4 塔内构件和多级泵 /strong /p p   专门为利用氨-氢交换法生产重水而设计或制造的塔内构件和多级泵。塔内构件包括专门设计的促进气/液充分接触的多级接触装置。多级泵包括专门设计的用来将一个接触级内的液氨向其他级塔循环的水下泵。 /p p    strong 6.5 氨裂化器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨裂化器。该装置能在大于或等于3MPa的压力下运行。 /p p    strong 6.6 红外吸收分析器 /strong /p p   能在氘浓度等于或高于90%的情况下“在线”分析氢/氘比的红外吸收分析器。 /p p    strong 6.7 催化燃烧器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水时将浓缩氘气转化成重水的催化燃烧器。 /p p    strong 6.8 整体重水提浓系统,或其蒸馏塔 /strong /p p   专门设计或制造用于将重水提浓至反应堆级氘浓度的整体重水提浓系统,或其蒸馏塔。 /p p    strong 注释 /strong /p p   通常采用水蒸馏技术从轻水中分离重水的这些系统是专门设计或制造用于由浓度较低的重水原料生产反应堆级重水的(即典型地99.75%氧化氘)。 /p p    strong 6.9 氨合成转换器或合成器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨合成转换器或合成器。 /p p   注释 /p p   这些转换器或合成器从氨/氢高压交换塔获得合成气体(氮和氢),而合成氨则返回到交换塔里。 /p p   strong   span style=" color: rgb(255, 0, 0) " 7. 分别如4.和5.所定义的用于燃料元件制造和铀同位素分离的铀和钚转换厂和专门为其设计或制造的设备 /span /strong /p p   出口 /p p   只有遵照《中华人民共和国核出口管制条例》所规定的程序才能出口本条款范围之内的成套主要设备。在本条款范围之内的所有工厂、系统和专门设计或制造的设备可用于处理、生产或使用特种可裂变材料。 /p p    strong 7.1 铀转化厂及专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   铀转化厂和系统可以对铀进行一种或几种转化使其从一种化学状态转变为另一种化学状态,包括:从铀矿石浓缩物到UO3的转化 从UO3到UO2的转化 从铀的氧化物到UF4或UF6的转化 从UF4到UF6的转化 从UF6到UF4的转化 从UF4到金属铀的转化 以及从铀的氟化物到UO2的转化。铀转化工厂所用许多关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。不过,这些物项中很少有“现货”供应,大部分将须按用户要求和规格制造。在某些情况下,为了适应所处理的一些化学品(HF、F2、ClF3和各种铀的氟化物)的腐蚀性质,需要作专门的设计和建造考虑。最后应该指出,在所有铀转化过程中,那些单独地看不是为铀转化专门设计或制造的设备物项,可被组装成专门为铀转化而设计或制造的系统。 /p p    strong 7.1.1 将铀矿石浓缩物转化为UO3而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从铀矿石浓缩物到UO3的转化可通过以下步骤实现:首先,用硝酸溶解铀矿石浓缩物,用磷酸三丁酯之类溶剂萃取纯化的硝酸铀酰 然后,硝酸铀酰通过浓缩和脱硝转化为UO3,或用气态氨中和产生重铀酸铵,接着通过过滤、干燥和煅烧转化为UO3。 /p p   strong  7.1.2 为将UO3转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UF6的转化可以直接通过氟化实现。该过程需要一个氟气源或三氟化氯源。 /p p    strong 7.1.3 为将UO3转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UO2的转化,可以用裂解的氨气或氢气还原UO3来实现。 /p p    strong 7.1.4 为将UO2转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO2到UF4的转化,可以用氟化氢气体(HF)在300—500℃与UO2反应来实现。 /p p    strong 7.1.5 为将UF4转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到UF6的转化,可以用氟气在塔式反应器中与UF4发生放热反应来实现。使流出气体通过一个冷却到-10℃的冷阱把热的流出气体中的UF6冷凝下来。该过程需要一个氟气源。 /p p    strong 7.1.6 为将UF4转化为金属铀而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到金属铀的转化,可用镁(大批量)或钙(小批量)还原UF4来实现。还原反应一般在高于铀熔点(1130℃)的温度下进行。 /p p    strong 7.1.7 为将UF6转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UO2的转化,可用三种方法来实现。在第一种方法中,用氢气和水蒸气将UF6还原并水解为UO2。在第二种方法中,通过溶解在水中而将UF6水解,然后加入氨沉淀出重铀酸铵,接着可在820℃用氢气将重铀酸铵还原为UO2。在第三种方法中,将气态UF6、CO2和NH3通入水中,结果沉淀出碳酸铀酰铵。在500-600℃,碳酸铀酰铵与水蒸气和氢气发生反应,生成UO2。 /p p   从UF6到UO2的转化,通常是燃料制造厂的第一个工序。 /p p    strong 7.1.8 为将UF6转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UF4的转化,是用氢还原实现的。 /p p    strong 7.1.9 为将UO2转化为UCl4而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   从UO2到UCl4转化可通过两个流程之一。在第一个流程中,在大约400℃的温度下,UO2与四氯化碳(CCl4)发生反应。在第二个流程中,在大约700℃的温度下,以及存在炭黑(CAS1333-86-4)、一氧化碳的条件下,UO2与氯发生反应产生UCl4。 /p p    strong 7.2 钚转化厂和专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   钚转化厂和系统可以对钚进行一种或几种转化使其从一种化学状态转化为另一种化学状态。包括,从硝酸钚到PuO2的转化 从PuO2到PuF4的转化 以及从PuF4到钚金属的转化。通常钚转化厂与后处理设施相关,但是,也可能与钚燃料元件制造设施相关。许多钚转化厂的关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。也需要热室、手套箱和遥控机械手。但是,这些物项很少有“现货”供应,大部分须按用户的要求和规格制造。对与钚有关的特殊的放射性、毒性和临界危险特别仔细的设计是关键的。在某些情况下,为了适应所处理的一些化学品(例如HF)的腐蚀性质,需要作专门的设计和建造考虑。最后应该注意,在所有的钚转化流程中,那些单独地看不是为钚转化专门设计或制造的设备物项,可被组装成专门为钚转化而设计或制造的系统。 /p p   strong  7.2.1 为将硝酸钚转化到氧化钚而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程包括的主要功能为:流程供料贮存和调料、沉淀和固-液分离,煅烧、产品处理、通风、废物管理,以及流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。在大多数后处理设施中,这一流程包括将硝酸钚转化到氧化钚。其它流程可能包括草酸钚或过氧化钚的沉淀。 /p p    strong 7.2.2 为生产钚金属而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程通常包括氧化钚的氟化,通常以高腐蚀性的氢氟酸来生产氟化钚,而后用高纯钙金属还原生成金属钚和氟化钙残渣。该流程所包括的主要功能是氟化(例如,包括采用贵重金属制造的或作为内衬的设备)、金属还原(例如,使用陶瓷坩埚)、残渣回收、产品处理、通风、废物管理和流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。其它流程包括草酸钚或过氧化钚的氟化,然后还原至金属。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制