当前位置: 仪器信息网 > 行业主题 > >

色谱控制管理系统

仪器信息网色谱控制管理系统专题为您提供2024年最新色谱控制管理系统价格报价、厂家品牌的相关信息, 包括色谱控制管理系统参数、型号等,不管是国产,还是进口品牌的色谱控制管理系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱控制管理系统相关的耗材配件、试剂标物,还有色谱控制管理系统相关的最新资讯、资料,以及色谱控制管理系统相关的解决方案。

色谱控制管理系统相关的论坛

  • 气相色谱仪机械控制系统简述

    气相色谱仪机械控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]随着色谱分析应用要求的日益提高,并且伴随着现代机械[/font][font=Times New Roman]-[/font][font=宋体]电子技术的发展,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url])色谱仪逐渐成为复杂的机械[/font][font=Times New Roman]-[/font][font=宋体]光学[/font][font=Times New Roman]-[/font][font=宋体]电子[/font][font=Times New Roman]-[/font][font=宋体]化学分析系统。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])系统中安装的自动进样器单元(包括液体自动进样器、自动阀进样器、顶空进样器、热解析进样器、吹扫捕集进样器、热裂解进样器等)、自动阀切换单元、风扇和柱温箱后开门部分在仪器运行工作中都需要进行精确地机械控制,这些单元需要精确控制的物理量有机械位置、机械位移、旋转角度、速度和加速度等。本文对机械控制系统的基本原理和方法给予简单叙述,希望对色谱工作者和色谱维修工作者的日常工作给予一定帮助。[/font][/font][align=center][font=宋体][font=宋体]简述[/font] [font=宋体]开环和闭环控制[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])分析系统中存在较多机械运动部件,系统需要根据分析方法的要求,在合适的时间和状态下对运动部件进行合适的控制,例如部件的空间位置和位移、部件的运行速度和角度以及部件运行的加速度。[/font][font=宋体][font=宋体]常见情况下,部件的基本控制方式分开环控制和闭环控制两种,图[/font][font=Times New Roman]1[/font][font=宋体]为开环控制的基本原理框图,控制系统由控制器、执行器(一般为电机或气缸)、传动机构和目标部件组成。信号由输入端向输出端单向传递,没有信号反馈形成闭环的回路,此种控制方式的特点为,输出量不会对输入量产生任何影响。[/font][/font][font=宋体]开环控制方式结构较为简单、调节方便、故障率低,控制器直接给出系统输入量,对系统中可能产生的干扰或者系统中参数变化均不给出补偿,在精度要求不高或者扰动影响较小的场合下较为适用。例如[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱后开门角度的控制、柱温箱或其他部件风扇运转速度的控制或者色谱柱切换阀旋转控制,一般采用开环控制方式。[/font][font=宋体]开环控制方式的缺陷较为明显,当系统出现故障时,目标部件不能完成控制目标,单系统不能识别此故障。例如在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱后开门控制系统中,当执行器(电机)不能运转致使柱箱后开门不能开启,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱温度将会产生降温速度异常降低的故障,但系统并不会给出硬件报警信息。[/font][img=,483,40]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115130118_3723_1604036_3.jpg!w690x57.jpg[/img][font=Calibri] [/font][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]开环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]2[/font][font=宋体]为闭环控制系统原理框图,与开环系统相比,该系统增加了传感器测量回路,使闭环控制系统有较高的精度,但结构更为复杂,系统的分析与设计相应较为困难。[/font][/font][font=宋体]闭环控制的工作原理是基于偏差的控制,在系统工作过程中,系统将传感器反馈的目标部件的实际位置传递给比较器,控制系统将反馈量与设定量进行比较,如果发生正向偏差,系统将向执行器(电机)给出命令,使其旋转或者降低速度,最终减小偏差。[/font][img=,503,114]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242115216501_132_1604036_3.jpg!w690x157.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]闭环控制系统原理框图[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的温度、流量、进样器位置、角度、速度的控制一般采用闭环控制方式,用以实现高稳定性、高速、高准确性的控制。例如某些型号的自动进样器,可以对进样针的空间位置实现[/font][font=Times New Roman]0.01mm[/font][font=宋体]精度的控制。[/font][/font][font=宋体] [/font][font='Times New Roman'] [/font]

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 气相色谱仪温度控制系统简述

    气相色谱仪温度控制系统简述

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制系统简述[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]温度控制的准确和可靠,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的可靠性而言至关重要。尤其是环境分析、生命科学、食品安全、石化分析、电子工业等样品较为复杂、分析方法较为复杂或者分析要求较高的领域,样品分析保留时间重现性的要求较高,对色谱系统温度的要求也比较高。本文简述色谱温度控制系统的基本原理和参与温度控制的主要元器件。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]随着社会科技进步,分析工作者面临着日益增多的分析要求较高的工作,例如食品安全、环境分析、石化分析等方面存在较多复杂样品,一般对组分保留时间的重复性有较高的要求,这就要求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]有更好的温度控制系统。[/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的温度控制系统属于典型的反馈控制系统,控制装置对目标部件的温度施加的控制作用,是取自目标部件温度的反馈信息,用来不断修正设定温度与实际温度之间的偏差,从而实现目标部件的控制任务,温度系统的结构如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][img=,503,129]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836001297_3118_1604036_3.jpg!w690x176.jpg[/img][font=宋体] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]温度控制系统框图[/font][/font][/align][font=宋体][font=宋体]以[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱为例对控制系统的工作过程予以说明,在分析工作过程中,如果柱温箱的实际温度发生异常扰动,温度传感器将测定温度值反馈给比较点,温度控制系统将设置温度与测定温度的偏差[/font][font=Times New Roman]e[/font][font=宋体]发送给温度控制器,温度控制器向执行器发出对应的指令——调节加热功率和冷却部件,执行器接受指令使柱温箱温度恢复为设定值。[/font][/font][align=center][font=宋体]温度控制系统元器件组成[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制元器件组成如图[/font][font=Times New Roman]2[/font][font=宋体]所示,被控部件(柱温箱、进样口、检测器或者其他部件)内安装的温度传感器测定其实际温度传送给控制器,控制器调节执行器(包括加热器和冷却器)的工作,使加热器释放的热量与被控部件耗散热量(包括部件自身耗散热量和冷却器消耗热量)达到平衡,被控部件的温度即可达到稳定状态。[/font][/font][align=center][img=,323,158]https://ng1.17img.cn/bbsfiles/images/2022/11/202211300836089450_6453_1604036_3.jpg!w690x338.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]温度控制系统元件示意图[/font][/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]温度传感器[/font][/font][font=宋体]常用的温度传感器为铂电阻、热敏电阻和热电偶。温度传感器可以及时准确的测定被控部件的温度反馈给控制器。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]执行器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]通常使用加热器、柱箱风扇、冷却组件、冷却风扇、液氮或液体二氧化碳控制器作为温度执行器。[/font][font=宋体]加热器一般选用加热丝、加热棒等电阻式加热器为进样口、色谱柱、检测器或者其他部件提供加热源,以升高各部件温度。[/font][font=宋体]柱箱一般采用流动空气浴方式加热,柱箱风扇可以使柱箱内温度分布更加均匀,并加快柱箱升温降温速度。[/font][font=宋体]柱箱冷却组件包括柱箱后开门、后开门控制电机、风道、辅助降温风扇以及液氮、液体二氧化碳等部件,以降低柱温箱温度。[/font][font=宋体]某些特殊场合下,某些形式的进样口带有冷却风扇、液氮、液体二氧化碳部件降低进样口温度。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]控制器[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制器通常情况下由晶闸管之类的电器元件和控制线路组成。色谱系统工作时,由控制器协调加热器和冷却器工作,以获得稳定温度。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]其他部件[/font][/font][font=宋体]保护器(温度熔断器、热电偶或温度开关),当温度控制出现严重故障时,迅速切换系统加热。[/font][align=center][font=宋体]温度控制系统的需要注意的问题[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]控制系统的时间常数[/font][/font][font=宋体]温度控制系统稳定工作需要传感器与执行器之间的响应时间配合良好,否则将会出现温度震荡的现象。色谱柱温箱要求控制系统响应速度较快,以满足高精度、高速度温度控制要求。一般需要选择响应速度快的薄膜铂电阻符合高速度的控制器工作要求。而检测器、进样口或者其他金属基体的部件,一般需要系统响应时间不要过快。[/font][font=宋体]以进样口为例,常见的进样口使用金属块作为基体,当温度传感器测量到进样口温度低于设定值,控制器发出指令使加热器提高加热功率提高进样口温度。但是进样口温度升高到设定值并不能瞬间完成,即进样口接收到加热指令直至温度上升到设定值之间需要一定的时间差异,如果系统控制时间常数过短,在此期间控制器仍旧发出加热指令,那么进样口温度就会较多超出设定值,降温过程也同样会存在此问题。色谱工作者就会观察到加样口温度在设定值附近发生震荡。[/font][font=宋体]进样口一般使用装配式铂电阻,感知温度也存在一定延迟,与金属块升温延迟都是进样口温度时间常数的重要组成部分,温控系统必须设定有良好的控制信号时间延迟。[/font][font=宋体]也就是说,对于进样口此类的加热惯性较大的部件,当温度控制系统检测到进样口温度发生偏差时,并非迅速给出加热或降温指令,而是首先延迟一段时间,然后再进行调节。[/font][font=宋体]柱温箱系统的加热惯性较小,温控系统需要较短的时间常数。[/font][font=宋体]温度控制不稳定,从而干扰色谱图基线和待测组分的保留时间,比较典型的结果是正弦波状态的基线。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]故障和保护[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度系统的基本原理和常用元器件功能。[/font]

  • 气相色谱流量与压力控制系统概述

    1 概述在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,我们需要各种各样的气体供应用以保证仪器的正常运行,例如需要载气以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离,需要空气(助燃气)、氢气(燃气)来保证氢火焰离子化检测器的燃烧,并需要氮气(尾吹气)稀释火焰调节灵敏度。根据塔板理论和速率理论,载气的流速/流量(两者具有一定的对应关系,下文根据习惯称之为流速或者流量)的不同会带来分离度和柱效的变化;对于氢火焰离子化检测器(FID)而言,空气、氢气和氮气的流量比例需要控制在大致10:1:1,常用的流量为300:30:30(mL/min)。更多的,对于进样口而言,载气、分流和隔垫吹扫流量的调节会影响分析结果;对于火焰光度检测器(FPD),空气、氢气和氮气的流量的不同会引起检测器出峰变化或者完全没有响应;电子捕获检测器(ECD)的尾吹气大小会影响峰宽和灵敏度等等。因此而言,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,载气流速/流量的控制显得尤为重要。那么,应当如何进行载气流速/流量的调节呢?2 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的流量/压力控制的装置类型一般而言,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器内部涉及到气体控制的描述,都是以流量的数值和描述来表示;涉及到压力的描述,常见的就是柱头压(又称之为柱前压)。柱头压指的是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口处的压力,在色谱柱和温度条件固定的情况下,一定的柱头压对应的色谱柱的流量值是固定的。本文为了描述方便,暂时不具体区分两者的细节,详细内容将在后期的文章中介绍;本文中,流量/压力控制是一个整体概念。对于目前市面上常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],其流量/压力控制采用的控制装置一般分为两类:即手动调节流量/压力的机械阀控制系统和可以自动调节流量/压力的电子流量控制系统。2.1 机械阀控制系统目前来说,国内外厂家都可以提供使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c4/5c/1c45c142c2d1fccc90fb1fadde70318e.png[/img]使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。以进样口的流量/压力控制而言,具有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ff/ff/affff8f6361ed469d2887a3e9d0b009f.png[/img][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器从诞生到现在的几十年时间中,使用机械阀进行流量/压力控制具有强大的生命力,一直未曾中断。其特点是性价比高、控制稳定;但是流量/压力调节较为繁琐,受到外部环境(如温度)的影响较大。2.2 电子流量控制系统目前来说,国内外厂家都可以提供使用电子流量控制装置进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。相对而言,国外厂家起步较早,发展更为成熟一些。使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量。2.2.1 电子流量控制装置发展的国内外趋势1984年,HP公司率先推出了电子气路控制器(EPC),尽管当时的压力调整精度仅0.1psi,线路连接比较复杂,气路接口多,体积较大,但它却大大提高了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析的方便性和数据结果的质量。随着科技的发展,Agilent公司相继推出了第二、三、四、五代EPC,压力调整精度提高到0.001psi,采用金属注射成型(3D)和数字化信号通路,数字化设定所有气路参数(包括进样口和检测器气路),可安装6路EPC模块,实现16个通道的EPC控制。通过精确EPC气路控制,使流量和压力精确稳定,实现了保留时间和峰面积高度重复,也使[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分析达到前所未有的水平。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/92/e4/b92e4af407ad117ba9863f0b1db0d268.png[/img]国外其它知名色谱仪器厂家,如:Shimadzu、Thermo Fisher、PE、Varian等公司都已推出了带电子流量控制装置的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],如:Shimadzu GC-2010,Varian 3800,PE Clarus 680等。尽管这些仪器价格比较昂贵,仅仪器主机价格就高达8~12万元,但由于采用了电子流量控制装置,自动化程度高,从而使其在高端市场的仪器中具有很大的竞争优势,并因此成为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]招标中的一个门槛。国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式。2005年,国产首款采用电子程序压力流量控制(EPC)系统的GC 128型全自动[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在上海精密科学仪器有限公司诞生,并于同年8月通过了上海市科委专家组的验收。该仪器是上海市科委下达的科技攻关项目,由复旦大学和上海精密科学仪器有限公司合作完成,实现了载气流量控制(EFC)、柱头压力控制(EPC)和检测器气体控制(PPC)。但只能对氮气和氢气两种气体实现控制。作为国家“十一五”科技攻关项目,浙江福立分析仪器有限公司实现了毛细管进样系统的EPC控制技术。GC-9710型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力控制精度高达0.0015psi,具备恒压/程序升压(8阶)、恒流/程序升流四种模式。北分瑞利在2009年推出的SP-2020型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也配备了载气和辅助气的电子流量控制,虽采用的是市售的EPC和MFC模块,但实现了压力和流量的计算机软件反控,提高了整体仪器的自动化程度。另外,北京东西分析的GC-4100、上海天美的GC7980,常州磐诺的A90、A91也都具有电子流量控制装置,并在市场上开始销售。此外,单独的电子流量控制模块也受到国内外非色谱厂家的关注,电子压力控制器和质量流量控制器作为成熟商品已推向市场。例如,美国PARKER公司已有成熟的微型电子压力控制器,而且有专门为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]设计的模块(下图)。国内也有多家单独开发电子流量控制装置的厂家,如杭州浩海等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/46/5a/8465af294507f122ff59c61cdd51c3fc.png[/img]2.2.2 电子流量控制装置的作用和功能使用机械阀控制[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的流量/压力,以毛细柱进样口为例,在进样模式上只能实现分流模式和完全不分流模式,一些厂家通过改装气路可以实现不分流进样;在控制方式上可以实现恒压(恒定柱头压)控制,如果色谱柱程序升温,那么分流流量就会发生变化。如果采用功能完善的电子流量控制,对于初学者而言容易上手,可以迅速了解仪器和进入工作。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bb/50/abb5089df37e5b85f6eccd08d669c664.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/3e/fae3eb16ed713166ef1aa583ec761781.png[/img]另外,采用电子流量控制,一方面可以在仪器或者工作站上快速实现流量、压力的设定;另一方面,可以实现分流进样、不分流进样和完全不分流进样、大体积进样等多种进样模式,同时可以实现恒定压力、恒定流量,程序压力、程序流量等控制模式。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/da/b5/0dab5c0a1402d6280f9402c6d2deaa10.png[/img]2.3 其他方式在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,涉及到不同的分析方法时候,更改最多的是进样口的参数——载气、分流和柱前压参数。检测器的温度、流量则更改较少。因此,为了节省成本和便于推广,一些厂家推出了简化版的自动化控制仪器,主要包括两种:2.3.1 采用机械阀+流量传感器这种配置应当算是机械阀控制的简单升级版。其主要改变是在需要读取流量的管路上加装流量传感器,可以直接读出流量数值,避免了采用皂膜流量计进行测定的繁琐。这种技术只能用来直接读取流量参数而不能在仪器操作面板上设定流量参数。目前市面上岛津的GC Smart(GC-2018)便采用了这种模式,厂家宣传称之为AFM(AdvancedFlow Monitoring)技术,省去以往繁复的计算,轻松获得流量比和分流比。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d1/0a/dd10afaaf62e56fd006354eafd0269ac.png[/img]2.3.1采用电子流量控制+机械阀该种配置是电子流量控制控制的简化版。其主要特色是,在需要经常调节流量/压力的进样口处采用电子流量控制;在较少调节的检测器,如氢火焰离子化检测器(FID)的氢气、空气和氮气处则采用机械阀。这种技术和全部采用电子流量控制的仪器没有太大的区别,主要在于使用户降低采购成本。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器随着时间和科技的发展,变得越来越自动化。但是出于成本和操作的考虑,采用机械阀控制和电子流量控制的仪器均大量存在。具体选用何种控制模式的仪器,要根据实际需要和预算水平来考虑。以上是本次文章的全部内容,在下面几期的文章中,将详细介绍机械阀控制系统和电子流量控制系统的组成、结构和工作原理。敬请关注

  • 色谱仪温度控制系统常见故障解析

    [align=center][font=宋体]色谱仪温度控制系统常见故障解析[/font][/align][font=宋体]首先需要保证实验室的电源电压、功率、温度、安装位置等满足色谱仪的工作要求。[/font][font=宋体][font=Calibri]1 [/font][font=宋体]电源:[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱加热功率较大(一般情况下,大于[/font][font=Calibri]2000W[/font][font=宋体]),实验室电源需要有正确的供电电压与足够的输出功率,否则可能造成温度控制问题,例如温度不能达到设定值或者程序升温过程中,实际柱温不能正确跟随温度程序。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]环境温度:[/font][/font][font=宋体][font=宋体]一般情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的柱温箱仅有加热功能并无制冷功能,柱箱的设置温度必须高于环境温度(一般要求高于环境温度[/font][font=Calibri]10[/font][font=宋体]℃左右)。当使用较低柱箱温度的色谱分析条件时,必须控制实验室温度。[/font][/font][font=宋体][font=Calibri]3 [/font][font=宋体]安装位置:[/font][/font][font=宋体]色谱仪重要的工作模块,例如柱温箱或者检测器,应当处于温度或者气流剧烈变动的位置,尽量避免空调之类的气流直吹。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的安装位置,需要保证散热环境良好。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]柱温箱的背面设计有后开门以利于降温,日常使用中需要注意色谱仪与实验室墙壁之间保持一定距离,清理其他可能会阻碍气流的障碍物。[/font][font=宋体]色谱仪温度系统常见的故障有:[/font][font=宋体][font=Calibri]1 [/font][font=宋体]部件温度显示数值异常[/font][/font][font=宋体]色谱仪开机自检或者运行过程中出现部件的显示温度明显与真实温度不同,某些情况下会出现开机报警现象。[/font][font=宋体]故障原因可能为:温度传感器开路、短路、绝缘不良或者温度传感器内部或者与色谱仪测控线路之间的连接部分接触不良。[/font][font=宋体] [font=宋体]色谱仪温度测控线路存在异常。[/font][/font][font=宋体][font=Calibri]2 [/font][font=宋体]部件不能升温。[/font][/font][font=宋体]一般情况下与执行器损坏有关,例如加热丝或者加热棒内部开路,温度控制线路或者控制线路供电部分异常。[/font][font=宋体]温度控制系统的执行器一般由加热体、控制线路和电源部分组成。常见的问题有控制线路中的晶闸管、继电器或者电源供电部分损坏。[/font][font=宋体][font=Calibri]3 [/font][font=宋体]部件温度失控。[/font][/font][font=宋体]色谱系统启动之后,某模块温度持续上升,不能稳定于设定数值。一般与控制线路工作异常有关,例如晶闸管失效。[/font][font=宋体][font=Calibri]4 [/font][font=宋体]部件温度不能达到设定值。[/font][/font][font=宋体]色谱系统启动之后,部件温度低于或者高于设定值。一般与温度传感器异或者柱箱后开门有关。[/font][font=宋体]温度传感器氧化或者内部发生接触不良造成传感器总体电阻过大,会造成部件温度显示数值错误。色谱柱温箱后开门不能正常关闭,也会造成色谱柱箱温度不能达到较高的设定值。[/font][font=宋体][font=Calibri]5 [/font][font=宋体]部件温度显示数值不稳定[/font][/font][font=宋体][font=Calibri]5.1 [/font][font=宋体]部件温度显示数值发生震荡[/font][/font][font=宋体]环境影响,实验室温度不稳定或者色谱仪靠近气流,例如空调出口。[/font][font=宋体]温度传感器时间常数过大(尤其是检测器部分),或控制线路异常。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱温箱需要使用时间常数较小的温度传感器,一般使用薄膜式铂电阻,可以迅速感知和传递柱温变化,不可以使用金属或陶瓷外壳的铂电阻代替。[/font][font=宋体]检测器部分的温度传感器一般需要与检测器的金属底座有良好的接触,某些仪器要求温度传感器外层包覆铝箔或者涂覆导热硅脂,如果物理接触不良,可能会造成温度的震荡。[/font][font=宋体][font=Calibri]5.2 [/font][font=宋体]部件温度显示数值发生剧烈变化[/font][/font][font=宋体]需要特别予以注意,受控部件尤其是检测器的真实温度是不会迅速发生变化的,尤其是高温迅速变化到低温。一般的原因是温度传感器内部的绝缘或者引线发生故障。[/font][font=宋体][font=Calibri]6 [/font][font=宋体]部件温度不能正常跟随温度程序。[/font][/font][font=宋体]程序升温过程中,色谱柱温箱温度不能跟随程序。[/font][font=宋体]考虑是否实验室电源的电压或者功率不足,或者柱箱后开门不能正常关闭。[/font][font=宋体][font=Calibri]7 [/font][font=宋体]程序升温降温恢复时间过长。[/font][/font][font=宋体]柱箱后开门不能正常开启,或色谱仪器散热环境较差,色谱柱温箱的热气流出口被阻挡。[/font][font=Calibri] [/font]

  • 实验室管理系统LIMS如何在质量管理方面实现控制?

    [font=宋体][font=宋体]实验室管理系统[/font]LIMS[font=宋体]遵循认证和认可准则,现场质控和实验室的质控都在系统中体现,并实现质量控制智能管理,使检测过程可控制,数据可追溯。[/font][/font][font=宋体][font=宋体]青之[/font]LIMS[font=宋体]系统满足质量管理部门对质量体系运行管理的要求,从制定质量控制计划、到计划的每一步落实、到体系在运行的过程中产生的不合格项,对不合格项采取的纠正和预防措施,系统中都有记录,并且每一步都落实到具体部门和相关人员,每一步都能追溯,实现全面的质量管理。可做到[/font][/font][font=宋体]1[font=宋体]、[/font][/font][font=Calibri][font=宋体]根据[/font]ISO/IEC 17025[font=宋体]准则的要求,对影响质量的要素进行有效的监控[/font][font=Calibri] [/font][/font][font=宋体]2[font=宋体]、[/font][/font][font=Calibri][font=宋体]制定质量控制计划,并传达计划给相应部门,做好质量控制,规范和监测检测过程,不符合时预警,质量部门进行质量追踪;[/font][/font][font=宋体]3[font=宋体]、[/font][/font][font=Calibri][font=宋体]记录实验室内审、管审、采取的纠正[/font]/[font=宋体]预防措施及其效果、投诉以及结果处理等质量管理信息。[/font][/font]

  • 目前检测结果能否输入控制管理系统?如何实现的?

    [font='Times New Roman'][font=宋体]可以,制药企业通常采用的控制管理系统是[/font]DCS[font=宋体]、[/font][font=Times New Roman]SCADA[/font][font=宋体]、[/font][font=Times New Roman]MES[/font][font=宋体]、[/font][font=Times New Roman]ERP[/font][font=宋体]系统等[/font][/font][font=宋体]。[/font][font='Times New Roman'][font=宋体]目前[/font][/font][font=宋体],[/font][font='Times New Roman'][font=宋体]主流的通讯协议为[/font]OPC[font=宋体]协议,近红外检测数据会通过[/font][font=Times New Roman]OPC[/font][font=宋体]协议与控制管理系统进行实时传输。[/font][/font]

  • 【资料】中药质量控制规范化及光谱相关色谱分析系统研究

    中药质量控制规范化是中药质量控制现代化的前提,是中药现代化必须首先解决的问题。本文重点研究了中药质量控制规范化的内容以及实现的途径。借助于现代分析技术和化学计量学方法在处理中药复杂体系质量分析问题上明显优势,对中药样品前处理、色谱分离分析以及三维可视化指纹谱定性和二维信息解析定量的质量评价方法的规范化进行了基础和应用研究。最终形成了一套能被多数中药参照应用的质量控制规范化的预案,并设计了一种和中药质量控制规范化内容相关的智能型光谱相关色谱分析系统,并通过了实验验证。本文的研究结果对多数中药建立规范化质量控制标准具有一定参考价值。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31319]中药质量控制规范化及光谱相关色谱分析系统研究[/url]

  • 实验室质量管理和控制重点

    实验室是专门从事检验测试工作的实体,其工作的最终成果是检测报告。为了确保检测数据的准确可靠,以保正检测报告的质量,所以必须有一个质量控制过程,必须明确质量控制各阶段可能影响检测报告的各项因素。从而对这些因素采取相应的措施加以管理和控制,以使其过程处于受控状态。可以选用的质量控制方法通常有以下几种:a)使用有证标准物质或次级标准物质开展内部质量控制;b)参加实验室间比对实验或能力验证计划;c)使用人员比对、方法比对、仪器比对等进行复现性检测;d)对存留物品进行再检测;e)分析一个物品不同特性结果的相关性;f)其他有效的技术核查方法。质量控制的目的:监控检测、校准的有效性,保证检测结果可靠。为了做好检测报告的质量控制我们该从几方面进行保证。1、实验室硬件设施、包括场地、使用材料、建筑要求等要按相关实 验室标准执行。2、实验室内部技术质量控制:也就是检验人员的检验技术控制,具体方法有:(1)标准物质(样品)盲样检测:由检测人员对标准物质(样品)盲样检测,将检测结果与标准值比较,以验证检测测量能力。(2)样品复测:某一样品的检测完成后,再用相同的方法对该样品 的相同参数进行复测,将两次的检测结果进行对比,以验证检测结果的可靠性。(3)人员比对:由不同的检测人员对某一样品进行相同方法的检测, 将两次的检测结果进行对比,以验证检测结果的可靠性。(4)样品不同特性的相关性检验:同一样品的某些参数之间往往有一 定的内在联系,对这些参数的检测结果进行比较,亦可作为判断检测结果可靠性的方式之一,若相关参数检测结果相互矛盾,应查找原因,对有疑问的项目进行复测,使相关参数间的关系趋于合理。3、第二步在实验室硬件软件的质控下,要做好实验室检测环节的质量控制。首先要做好实验室标准物质以及试剂的管理(1)标准物质(参考物质、标准溶液、对照品)对检测质量有重要的影响。对标准物质严格进行选择、采购、验收、标识、保存、使用、维护、校准。(2)采购标准物质必须确保选购有充分质量保证的供应商。如果供应商无独立质量保证、我们又对其质量无法实施检查或验证、不能证实其质量符合要求的,不得采购。(3)标准物质存储 标准物质需要在特殊条件下存储,需要配置必要的设施时,标准物质的存放环境、存放条件应符合规定要求和安全要求,并对标准物质存放场所做出明显标志。(4)标准物质使用 使用标准物质,必须进行领用登记,并对其质量进行跟踪记录;标准物质、参考物质的使用和保管由专人负责,存放在干燥、清洁的环境中,存放要求有序整齐,严禁变质、污染。标准物质使用应按登记表做好使用、消耗记录,并按说明书规定的条件使用,标准物质只准取出不准倒回。4、在实验室检测质控中其中一个关键的环节就是做好样品的质量保证。 供检验用的样品的质量虽不属于实验室检验的内容,但它却直接影响实验室质量保证和质量控制实验室质量保证—为保证分析结果能满足规定的质量要求,所必须的有计划的、系统的、全面管理的策略和手段。实验室质量控制—采用有效的质量控制措施,消除或控制误差,确保实验室分析结果在可接受的误差范围内的技术活动,是质量保证的重要环节。实验室质量控制组成—实验室内质量控制和实验室间质量控制。实验室要对哪些内容进行质量控制?分析方法的质量控制;实验室人员的质量控制;实验室环境和条件的质量控制;实验室仪器设备的质量控制;标准物质的质量控制;试剂的质量控制;实验过程的质量控制;检验报告的质量控制;实验室间质量控制。常用的仪器分析方法分光光度法—可见光、紫外光、荧光分光光度法,广泛用于无机和有机化合物的测定;使用最多的为可见光分光光度法。原子光谱法—原子吸收分光光度法、等离子体发射光谱法和原子荧光光谱法,主要用于金属和类金属及其化合物的测定。色谱法—有离子色谱法、气相色谱法和高效液相色谱法等,应用最多的是气相色谱法。电化学法 —有离子选择性电极法、催化极谱法、电位溶出法等,在测定氟及一些金属及其化合物时具有高度灵敏度。质谱法及其联机技术—利用质谱的优越的定性性能和色谱的高分离性能,进行定性和定量检测,气相色谱仪与质谱仪联用更多见。实验室选用检测方法的原则按以下次序选择:按照国家颁布的标准方法进行检测;按照国外的标准方法进行检测;按照国内外公认的权威机构推荐的方法;委托单位认可的测定方法;自行研制并进行验证获得批准的方法。分析方法的主要技术参数(一 )——校准曲线的意义和评价意义:1.反映方法的精密度和灵敏度;2.分析仪器的精密度;3.量取标准溶液量具的准确度;4.分析人员的操作水平;评价:1.相关系数|r|≥0.999;2.第1管和最后1管的吸光度差值以达到0.8为佳;3.任取标准曲线的2点代入方程,其理论值和拟合值的相对偏差≤5%。分析方法的主要技术参数(二)——准确度及其评价准确度:反映分析方法或测量系统存在的系统和随机误差的综合指标。评价准确度的方法有3种:----分析标准物质----加标回收法----采用不同原理(仪器)的分析方法分析方法的主要技术参数(三)——精密度及其评价(一)精密度:反映分析方法或测量系统存在的随机误差大小。室内精密度用绝对偏差和相对偏差表示。平行性:同一实验室,分析人员、分析设备和分析时间都相同,用同一分析方法对同一样品进行双份或多份平行样测定,所得结果之间的符合程度。再现性:用相同的分析方法,对同一样品在不同条件(实验室、分析人员、设备,时间)下获得的单个结果之间的接近程度影响分析结果的误差来源采样不当引起的误差;样品运输、保存过程产生的误差;空白值(固体吸附剂、试剂、水、器皿);玻璃仪器、天平的计量误差;样品处理不当产生的误差;环境条件的差异;标准物质的值不准;分析方法本身不够完善;仪器的性能指标不稳定性;主观误差。实验室质量控制措施(一)分析人员的测试水平和技能的培训,并持证上岗;定期进行检定或校验和期间核查,保证仪器设备的溯源性;标准溶液1 标准溶液配制执行GB/T 601-GB/T 603 或相关分析标准;2 新配置标准溶液应进行溯源或比对后方可使用;3 标准溶液应在规定的存放时间内使用;4 实验用水执行GB/T 6682 的要求;实验室质量控制措施(二)试剂:1 新购买的试剂要进行验收;2 对质量要求较高的试剂单个验收;3 试剂要分类放置;样品、标准系列、空白试液、质控样同时测量;用空白样品的测量值评估试剂、水或溶剂的质量和环境污染情况;用质控样考察仪器和分析条件是否受控;绘制工作曲线(5点以上)之斜率和截距判断仪器测量是否正常;移液管、容量瓶、比色管等计量器具应进行检定,合格后方可使用,每次使用前应洗涤干净;实验室质量控制措施(三)制作质控图控制分析质量,若质控图失控,则需查找原因,重新设置实验系统。定期使用有证标准物质进行监控,开展内部质量控制;参加实验室间的比对或能力验证计划;利用相同或不同方法进行重复检测或校准;对存留物品进行再检测或再校准;分析一个物品不同特性结果的相关性。实验室质量控制措施(四)发现质量控制数据失控,采取有计划的措施纠正出现的问题,并防止报告错误的结果。按数据修约规则整理分析数据,计算过程中,可多保留1位有效数字;最终结果保留的有效数字可比职业接触限值标准的数值多1位。对报告的编制、修改、签发进行控制,保证实验室所提供的都是准确的检验报告。(本文资料均来自互联网搜索,由实验与分析编辑整理。)

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对目前大多数气相色谱仪负压进样系统中存在的无法控制微量进样和真空度无法准确控制的问题,本文在发明专利“[/font]CN111239308A [font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”基础上提出了改进的解决方案。解决方案通过采用电容真空计、皮拉尼真空计、电控针阀和双通道真空度控制器组成的控制装置,可实现高真空范围内的任意设定点下的真空度快速和精密控制,使在线负压形式的微量气体进样方法真正能转化为实用的工程化仪器。[/font][/color][/b][color=#339999][/color][align=center][b][img=真空度控制技术在气相色谱仪微量进样系统中的应用,690,363]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201509012640_9289_3221506_3.jpg!w690x363.jpg[/img][/b][/align][size=18px][color=#339999][b]1. [font='微软雅黑',sans-serif]问题的提出[/font][/b][/color][/size] 现有的气相色谱仪分析气体样品时,均采用正压进样、常压进样或者持续负压抽样,这种进样的方式,对样品需要总量远大于进样分析实际消耗量,这些进样方式往往不能满足科研机构或院校的分析需求。特别是在微量样品情况下,在样品具有放射性、有毒情况下,若采用上述常规进样方式,样品进样量过多,不仅不能很好的进样分析,污染环境、危害人体健康,还会因为空气干扰造成数据不准确,所以需要一种在线负压微量气体进样方法及系统来解决上述问题。[font='微软雅黑',sans-serif] 为了实现气相色谱仪的高真空微量气体进样,很多机构开展了大量研究工作,比较典型的是常州磐诺仪器有限公司提出的专利“[/font][font=&]CN111239308A [/font][font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”,其工作原理是以定量环为中间载体对样品进行微量提取和输送,具体过程分为三个步骤:先将定量环抽取高真空,然后通过压差将样品气体吸入定量环,最终将定量环中的样品气体送入外接的色谱柱中进行分析。三个步骤的具体细节如下:[/font][font='微软雅黑',sans-serif] ([/font][font=&]1[/font][font='微软雅黑',sans-serif])定量环真空抽取和控制:两个六通阀全都处于关闭状态,整个气路处于图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示结构,此时定量环处于真空抽取状态,真空回路如图中红线所示,控制定量环内的真空度达到设定值并稳定。样品进气和载气则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][font='微软雅黑',sans-serif][color=#339999][b][/b][/color][/font][/align][align=center][color=#339999][b][img=01.六通阀V1关闭、六通阀V2关闭状态下定量环抽真空结构示意图,660,227]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201510594003_9946_3221506_3.jpg!w690x238.jpg[/img][/b][/color][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环抽真空结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]2[font='微软雅黑',sans-serif])定量环提取气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]打开和六通阀[/font]V2[font='微软雅黑',sans-serif]仍处于关闭,整个气路处于图[/font]2[font='微软雅黑',sans-serif]所示结构,此时在压差作用下样品气体进入定量环,提取气路如图中蓝线所示。真空回路和载气回路则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=02.六通阀V1打开、六通阀V2关闭状态下定量环进样结构示意图,660,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511221616_9654_3221506_3.jpg!w690x236.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]打开、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环进样结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]3[font='微软雅黑',sans-serif])定量环输送气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]关闭和打开六通阀[/font]V2[font='微软雅黑',sans-serif],整个气路处于图[/font]3[font='微软雅黑',sans-serif]所示结构,此时在载气作用下定量环内的样品气体输送到外部色谱柱,样品输送气路如图中黄线所示。真空回路和样品气体加载回路则处于图中红线和蓝线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=03.六通阀V1关闭、六通阀V2打开状态下定量环中样品送入色谱柱结构示意图,660,226]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511432359_1275_3221506_3.jpg!w690x237.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]3 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]打开状态下定量环中样品送入色谱柱结构示意图[/font][/color][/b][/align] 通过上述负压气体进样系统结构和工作过程可以看出,管路中的真空度并未采取任何控制措施,仅是通过真空泵来进行抽气,在实际应用中仅靠简单的真空泵抽取很难快速达到真空度稳定状态,这使得定量环的进气压差并不稳定和重复性差,势必会造成进样量的严重误差。为了解决此问题,本文提出了相应的解决方案,通过增加真空度控制装置使得定量环的每次进样都压差都保持准确恒定,从而使这种负压进样方法真正达到实用要求。[b][size=18px][color=#339999]2. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][/b][font='微软雅黑',sans-serif] 在气相色谱仪气体样品进样系统中,一般要求定量环真空度要具有达到绝对压力为[/font]1Pa[font='微软雅黑',sans-serif]的高真空,并在高真空范围内任意设定点下能实现恒定控制,由此来实现每次进样或重复性检测进样时具有很好的重复性。为此,本文提出了如下解决方案的真空度精密控制装置,真空度控制装置结构如图[/font]4[font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=04.负压气体进样系统及其真空度控制装置结构示意图,660,256]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201512027904_9758_3221506_3.jpg!w690x268.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]4 [/font][font='微软雅黑',sans-serif]负压进样系统及其高真空度控制装置结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][/font][font='微软雅黑',sans-serif] 在图[/font][font=&]4[/font][font='微软雅黑',sans-serif]所示的高真空度控制装置中,采用了动态平衡控制方法,即控制进气和排气流量达到某个平衡状态来实现不同真空度的准确恒定控制。由此,在控制装置中分别在进气和排气端配置了相应的电控针阀,分别用于调节进气和排气流量。电控针阀具有小于[/font][font=&]2%[/font][font='微软雅黑',sans-serif]的线性度,重复精度可达到[/font][font=&]0.1%[/font][font='微软雅黑',sans-serif],非常适用于气体进样系统的微小空间的真空度控制。[/font][font='微软雅黑',sans-serif] 为了在高真空范围内进行测量,装置中配备了一只精度可达[/font][font=&]0.25%[/font][font='微软雅黑',sans-serif]、量程为[/font][font=&]1Torr[/font][font='微软雅黑',sans-serif]的电容真空计。为了保证控制精度,装置中配备了一个高精度真空度控制器,控制器具有[/font][font=&]24[/font][font='微软雅黑',sans-serif]位[/font][font=&]AD[/font][font='微软雅黑',sans-serif]、[/font][font=&]16[/font][font='微软雅黑',sans-serif]位[/font][font=&]DA[/font][font='微软雅黑',sans-serif]和[/font][font=&]0.01%[/font][font='微软雅黑',sans-serif]最小输出百分比。[/font][font='微软雅黑',sans-serif] 通过上述硬件配置可以很容易的实现小于[/font][font=&]1%[/font][font='微软雅黑',sans-serif]的真空度控制精度。另外,为了监测真空泵抽气过程的真空度变化,装置中还串接了一个测量精度较差的皮拉尼真空计,以用来监测管路中气压从一个大气压到高真空的变化过程。为此,真空度控制器特意配备了一个双通道控制器,第一通道接电容真空计用来进行高真空度区间的控制,第二通道连接皮拉尼计用来进行全负压区间的监测。此真空度控制器具有[/font][font=&]RS485[/font][font='微软雅黑',sans-serif]通讯接口和相应的随机控制软件,可外接计算机进行远程调控。[/font][b][size=18px][color=#339999]3. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b] 综上所述,通过此解决方案所使用的真空计、电控针阀和真空度控制器,可很方便的按照设定值对定量环中的真空度进行快速和准确控制,可有效保证微量气体进样的准确和快捷,另外所用的各个部件体积小巧,结合六通阀和其他管路部件,很容易集成为独立的负压气体进样系统。[align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px]’[/size][/align][align=center][size=16px][/size][/align]

  • 气相色谱仪机械控制系统简述——传动部分

    气相色谱仪机械控制系统简述——传动部分

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]机械控制系统简述[/font][font=宋体]——传动部分[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url](或[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url])的机械控制系统中,传动部分是重要组成单元,较为常见的是以皮带、齿轮、蜗杆等方式实现的机械传动单元。通过传动部分的工作,色谱系统将来自执行器的旋转或者直线运动,转换成精确地目标部件的空间位置、位移或速度信号。本文对常见的机械传动方法予以简单说明,希望对于色谱工作者或色谱维修工作者的日常工作予以一定程度帮助。[/font][align=center][font=宋体]简述[/font][/align][font=宋体]将动力通过中间媒介或者机构传递给终端设备,传递动力是机器或机器部件运动或运转,此中间媒介或者机构即称为传动。机械系统中,传动机构为重要组成部分,其主要作用为:[/font][font=宋体]1. [/font][font=宋体][font=宋体]目标部件要求的速度或转矩与执行器不同。[/font] [/font][font=宋体]2. [/font][font=宋体]目标部件可能需要改变速度。[/font][font=宋体]3. [/font][font=宋体]执行器一般只能做回转或者往复运动,目标部件则需要其他的运动方式,例如直线运动、螺旋运动或者间歇运动等。[/font][font=宋体]4. [/font][font=宋体]多个目标部件可能需要使用一个执行器进行工作。[/font][align=center][font=宋体]常见的传动方式[/font][/align][font=宋体]1. [/font][font=宋体]皮带传动[/font][font=宋体][font=宋体]如图[/font][font=Times New Roman]1[/font][font=宋体]所示,传动系统主要由主动轮、从动轮、传动带和机架组成。其机构简单、维护方便、传动平稳、传动安全并具有减震功能,常见于自动进样器的注射器运动控制中。[/font][/font][font=宋体]其缺点为传动比不能严格保证(即打滑现象),外形尺寸较大,色谱仪经常啮合型皮带(同步齿形带)传动的方式,可以对此缺陷予以较好的补偿。[/font][align=center][img=,212,97]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213284773_2622_1604036_3.jpg!w690x315.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]皮带传动[/font][/font][/align][font=宋体]2. [/font][font=宋体]齿轮传动[/font][font=宋体][font=宋体]齿轮传动是现代机械中传递运动和动力的主要形式之一,利用齿轮副的一对轮齿依次交替接触(即啮合),从而实现一定规律的相对运动,由主动轮、从动轮和机架组成,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体]齿轮传动的传动比准确、效率高、工作可靠、寿命长,在色谱仪内小型空间内需要精确控制的部件中使用广泛。但其成本较高,传动的中心距离不能太大。[/font][align=center][img=,155,118]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213358504_4310_1604036_3.jpg!w655x500.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]齿轮传动[/font][/font][/align][font='Times New Roman'] [/font][font=宋体]3. [/font][font=宋体]链条传动[/font][font=宋体][font=宋体]链条传动由主动链轮、从动链轮、链条和机架组成,如图[/font][font=Calibri]3[/font][font=宋体]所示,靠链条和链轮齿之间的啮合来传递动力和运动。[/font][/font][align=center][img=,327,157]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213422091_1175_1604036_3.jpg!w505x243.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]链条传动[/font][/font][/align][font=宋体]其传动比较为准确、传动效率较高、可以在较恶劣工作状况下运行,但工作时有噪声,无过载保护功能。[/font][font=宋体]4. [/font][font=宋体]螺旋传动[/font][font=宋体]螺旋传动由螺杆、螺母和机架组成,通过螺纹副的传递运动和动力,可以将螺杆的旋转运动转换成直线运动,传动效率较高,可用于微调机构和自锁机构。[/font][align=center][img=,216,167]https://ng1.17img.cn/bbsfiles/images/2023/10/202310242213476057_563_1604036_3.jpg!w517x399.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]4 [/font][font=宋体]螺旋传动[/font][/font][/align][font=宋体]5. [/font][font=宋体]气压传动[/font][font=宋体]气压传动是以压缩空气为工作介质进行能量传递和信号传递的一门技术,一般由气源装置、控制元件和辅助元件组成。其传动速度较快、传动安全、可靠性好、维护成本低,但由于工作压力较低,输出力或者力矩收到限制。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的自动进样阀或者分析流路切换阀经常采用气压传动的工作方式。[/font][font=宋体]6. [/font][font=宋体]液压传动[/font][font=宋体]液压传动以液体为工作介质,在密封回路中以液体压力传递进行传动。一般由动力元件、执行元件、控制元件、辅助元件和工作介质组成。[/font]

  • REACH应对方法对比:REACH检测与有害物质控制供应链管理系统

    应对REACH法规的方法对比:第三方检测(SVHC检测)与产品有害物质控制供应链管理系统的优缺点对比第三方检测优点: 1、便捷简单。提供给检测机构样品,后续基本由检测机构完成。 2、周期短。检测一般需要3~5天完成,企业可尽快提供给进口商相关检测报告用以证明产品符合REACH法规。缺点1、从长远看不具可操作性。REACH法规目前已产生73项SVHC,而且要求考虑通报的SVHC预计将达1400多种,通过检测来确定产品中SVHC的存在情况是完全不具有可操作性的。2、检测成本高。通过检测方式需要支付高额费用,尤其当SVHC物质不断增加,会增加巨额检测成本,企业将不堪重负。3、产生重复检测。在供应链内不同层次中,对同种材料进行同样的检测,也是一种巨大的浪费。4、增加企业管理成本。需要检测的物质越多,检测过程控制的工作量就会越大,检测过程中产生的管理成本就会越高。如新增工作人员、牵涉信息收集、过程控制、变更控制等内容等。3、法规符合兼容性小。做SVHC检测报告只适用于应对REACH法规、做RoHS检测只适用于应对RoHS指令,而环保法规多种多样,无法“一劳永逸”。4、化学分析实际上并不是很科学。很多检测机构的检测结果是通过检测材料中某种元素的存在情况来推知某种受控物质的存在情况。检测结果实际上可能会牧户?,并不是很科学。5、从物品中抽提物质时可能会产生的问题:可能在抽提时生成本不存在的物质;不能完全抽提出全部物质,比实际物质量可能要少。6、化学分析可能存在的问题。物质可能是多组分物质,而测定时可能只是测出了化合物/化学组分;测量可能只是表明存在某些元素(如卤素)或分子量而不是物质;如果含有多种不同物质时,可能需要进行多个分析以识别物质,这时,如果不清楚要测定什么物质时,选择测定方法将特别困难;8、无良检测机构暗藏陷阱。由于广大企业对REACH物质的检测非常陌生,有些检测机构或人员枉顾职业道德,用一些貌似专业的建议欺骗企业,使得企业增加了不必要的检测项目和检测成本。SVHC分析与REACH法规符合评估供应链管理系统——HENZ系统优点:1、是目前ECHA所推荐的方法之一。2、工业界普遍认同进行扫描式的材料学分析是识别产品中物质存在的合理步骤 3、通过供应链材料物质数据收集且传递给下游进口商,今后在工艺,原材料不变的情况下不需要做数据修改。 4、通过材料学分析,减少需要进行检测的材料和物质,将大大减少物质的控制成本。5、法规符合兼容性大。做SVHC检测报告只适用于应对REACH法规、做RoHS检测只适用于应对RoHS指令,而环保法规多种多样,通过材料学分析与供应链材料物质数据信息传递,将 “一劳永逸”。6、先进行材料分析,将首先排除完全不需要检测即可确定不可能存在的物质。(将产品的物质信息与需应对法规比对,排除不必要检测等其他工作)这就大大减少了需要检测的材料,大大减少了材料中需要检测的物质种类。7、不需要检测的材料和项目,在不同供应链层次中,都不需要检测,将进一步降低整个供应链的法规应对成本。8、在于整个供应链建立产品有害物质控制与法规符合评估系统,将有害物质控制的重点主动地放在产品的设计、生产等上游,而不是仅仅依靠下游的检测来控制,这样不但可以起到预防的作用,而且从根本上解决了产品可能带来的有害物质超标的风险。缺点1、收集材料物质数据信息需要时间。 2、可能需要供应商配合提供。

  • 实验室管理的六大“控制”

    [align=center][b][size=16px]实验室管理的六大“控制”[/size][/b][/align][size=15px]光谱分析之家[/size] 实验室管理工作,要做好,需要多注意下面提到的这几点。这样子,才能够把实验室管理工作变得井井有条。做好实验室管理要懂得一些科学方法和借助一些先进的管理软件。接下来,我们来看看实验室管理工作中需要做好的几点具体内容吧。[b]标准规程的控制[/b] 标准规程是检测、判定的依据,要采取多种渠道,及时收集新标准,确保检测工作所依据的标准版本现行有效,同时对新、旧标准应加以分析比较,并按标准规程的新要求,做好仪器设备改造、配置以及新标准的贯标等基础工作。为此有必要对所管辖区的实验室制定出基础的技术标准配备规范,明确所辖业务的各类试验应该配备的基本技术标准,确保主要业务标准配备覆盖面达到100%,实现以标科研、以标实验,最大限度地避免因实验设计缺陷而造成的质量事故。[b]样品控制[/b] 试验用样品的状态应符合标准要求1.样品要有代表性,抽样采取随机抽取的方法进行。比如: 钻井泥浆、水泥类试验检测规定,袋装水泥要从该批不少于20袋水泥中任取等量样品,总量至少12kg,那种一次性提取半袋或整袋水泥作为试验样品,不符合标准要求,也是不可取的。  2.试样的数量关系到试验结果的准确性。 数量过少,试验带来误差增大,故标准对材料试样的数量都有要求。在实际试验工作中,要加强试验数量的控制。标准要求做平行试验的,应等分样品分别试验,如只做一次试验,就拼凑数据出报告,是应严格禁止的。  3.试样的尺寸关系到试验结果的准确性,试样的尺寸要满足标准要求。 在井下工具拉压扭试验采用的《金属材料室温拉伸试验方法》中明确了金属材料样品的尺寸(长度),如果样品的长度不符合标准要求,仅仅靠调节万能材料试验机上下钳口位置来完成试验,显然是不符合规范要求的。[b]仪器控制[/b] 仪器设备及各种计量器具是检测工作中最基本的工具,它的完好程度和准确度将直接影响检测数据的准确性,同样影响到对工程质量的评判。1.对计量标准器具的控制。 实验室计量标准器具或校准装置的建立、更换、封存与撤销,应建立内容完整的技术档案,并符合JJF1033《计量标准考核规范》的有关程序规定。计量标准器具周检率为100%,符合JJF1033的要求。  2.对国家明确规定的强制性计量检定的试验仪器设备,必须全部送检并及时送检,检完后对校准的器具进行复核,检查校准数据是否符合使用要求。  3.对部分不属强检范围,自行制定校准规范。对部分不属强检范围,国家又尚未制定校准规范的试验仪器设备,应依据仪器说明书、相关技术规范、相关计量检定规程等自行制定校准规范,作为定期自行校准的依据,控制好计量数据的精度。如:水泥抗压夹具、水泥试验筛通常也必须自行进行校验,否则对检测结果同样有着很大的影响。 4.除了检定(校准)之外,定期保养与检查。 还应注意仪器设备及各种计量器具平时的定期保养与检查,如每月检查水泥搅拌机叶片与锅之间的间隙,发现问题,立即停用,经计量部门重新检定(校准)并符合要求后才能使用。[b]标准物质控制[/b] 实验室应建立相关制度,从标准物质与标准材料的选购、验收、存放、发放、使用以及废弃标准物质处理等全过程进行有效控制,保证标准物质在有效期内使用,确保其定值准确度、均匀性、稳定性等计量性能满足检测要求。 购买到优质的标准物质和标准材料,应选择有资质和能力的服务方,并获得相应的资质和能力的证明性文件。对一些长期、重要供应商建立合格供方名录,以这些供应商作为固定用户,从而保证试验用材料的相对稳定性。如建筑试验用的标准砂,一般一个地区只有一家是指定销售商,在购买标准砂时,一定要向销售商索取销售授权书和合格证书,不要为便宜去买一些假的标准砂,进而影响试验的工作质量。[b]温湿度控制[/b] 温度和湿度对一些材料的性能有一定的影响,故在标准中对材料测试时的环境条件有明确规定,必须遵守。如热采水泥堵窜室内试验《水泥胶砂强度检验方法(ISO)法》规定,试体成型时试验室温度应稳定保持在20℃±2℃,相对湿度不低于50% 试体带模养护箱温度保持在20℃±1℃,相对湿度不低于90% 试体养护池水温度应在20℃±1℃范围内。为加强试验室的温、湿度控制,试验室可根据自身条件建立一套温湿度控制系统和控制措施,有条件的单位尽可能采用自动温、湿度控制系统。 [b]质量控制[/b] 试验工作中应通过重复试验、比对试验、能力验证等方法来抵消试验误差对试验结果的影响,提高试验室工作质量。1.重复试验  重复性是由同一个试验室在基本相同的情况下,用同一样品试验所得试验结果的误差。如水泥抗压强度试验方法的重复性是由同一个试验室,在相同的操作人员,相同的标准砂,较短时间间隔内,用同一样品所得试验结果的误差来定量表达。对于28天抗压强度的测定,一个合格的试验室在上述条件下的重复性以变异系数表示,要求在1%~3%之间。2.比对试验  试验室内的比对试验是试验室的不同人员,使用相同的仪器设备,用同一样品试验所得试验结果的比较。试验室内的比对试验具有易操作,且利于提高试验人员的检测能力。通过试验室间的比对试验可以消除试验室的系统误差,这一误差是重复试验、同一试验室由不同人员操作的比对无法消除的。通过此比对,找出发生偏差的原因,及时纠正与改进因操作、温湿度环境条件及设备因素等引起的各种偏差。 3.能力验证 要真正使试验室内部质量得到有效控制,检测能力上一个台阶,在通过比对改进之后,最好参加国家实验室认证认可机构的能力验证试验,只有通过能力验证,才能了解自己在该检测项目中的真实水平,发现问题,采取措施,及早纠正和整改。

  • 摩擦磨损试验机的控制系统

    摩擦磨损试验机的控制系统是连接试验人员与设备主机之间的纽带,用于对试验的进行控制与数据的显示,今天介绍的控制系统是济南凯锐公司自主研发,其不仅操作简单,而且功能齐全,还可以根据客户的需要量身定做。另外像电子万能试验机和液压万能试验机的控制系统其功能跟该系列产品大体也类似,具体看参照其他相关文章。1.摩擦磨损试验机的控制系统依托于windows控制系统,一切功能的实现都是在此基础上进行的,其全部内容所占空间也不过几百兆。控制系统相比较电脑系统来说,升级更容易,也更好操作。2.系统实现了分级别管理,控制系统的全部数据对于高权限的操作来说是完全公开的,不仅包括试验操作部分还包括设备的检定标定等功能。而对于普通的使用者来说也能对完全满足试验进行操作,即常规的试验操作部分。这样就保证系统的安全性,避免了因其他人对系统的操作造成系统的紊乱。3.控制系统具有完善的功能模块,有菜单栏,数据显示区(试验力显示区、摩擦力显示区、时间控制区、转速显示区、温度显示区、报警提示),曲线显示区(试验力-时间、摩擦力-时间-摩擦系数、摩擦系数-时间、转速-时间、温度-时间、摩擦力矩-时间),试验控制部分等思达部分组成。每个部分所能实现的功能还有很多,这里不一一介绍,详情可咨询凯锐的其他相关资料。4.该控制系统支持各种品牌商业用打印机,类似于三星、联想、爱普生等,兼容性高。5.操作功能不仅包括自动操作还可以进行手动操作,手动操作弥补了自动操作的一些缺点。适合用户进行各类复杂的数据分析。

  • 分布式控制系统适用的仪器讨论~

    覆盖全系统的交叉索引,增强了过程控制的智能性,可帮助改进与生产相关的决策。PlantStruxure PES具有以下性能特点:统一数据库PlantStruxure PES 为工厂的设计、运营和维护提供了单个统一的软件环境,使您的自动化系统更简便易用。您可以通过一个统一的管理界面配置过程自动化应用和网络拓扑(控制器、远程输入/输出、操作员工作站和现场设备)。通过采用PlantStruxure PES控制设施过程,您可以访问智能设备和电表中的能耗数据,并根据已完成的生产目标来审核这些数据,从而智能的实现高能效运营。PlantStruxure PES可以自动创建所有的变量、通信、警报和趋势……这项工作非常繁重复杂,以前我们都是手动配置完成,非常耗时耗力,而现在它帮助我们在操作员界面开发方面节省了大量时间。内置能效管理系统通过将能源和过程控制数据整合到一个系统中,PlantStruxurePES实现了过程控制中管理型节能增效的自动化。您可以通过彼此对照的方式查看数据,并在能源消耗过快的地点减少能源浪费PlantStruxure PES中的集成式能源管理库可将来自整个工厂中所有用电设备的数据汇总,通过提供能源使用的全局视图,使您对能耗状况一目了然。并且,根据自定义的负载优先等级,系统在能源成本超出KPI时执行减载。同时,还可利用专门的仪表盘,操作员可以将能源作为一种过程的对象对其进行跟踪。施耐德电气法国执行团队为我们在法国的一个玻璃熔炉工厂选择了PlantStruxurePES ,目的是将能源管理功能嵌入工厂的控制架构中。工厂控制架构改造的开支全部由玻璃熔炉所节省的能源成本支付。对象库PlantStruxure PES提供专门面向特定应用(设备、过程设备)和行业(矿、水泥、食品饮料、水)的预定义、可扩展对象库,减少项目开发的时间、成本和风险。PlantStruxure PES内置了一个标准的对象库,其中包含所有主流的过程对象,如阀门、电机、泵等。您可以在过程中直接使用这些对象,或根据特定要求配置这些对象。PlantStruxure PES还集成了标准的行业过程库,可满足具体行业的需求,包括水泥、食品饮料和水等。这些库是基于我们广泛的过程经验开发而成,可以帮助在多个地点运营的公司保持统一性和一致性。此外,由于我们考虑到了标准的过程要求,因此使开发时间大大缩短。通过对应用中的所有对象实例化,我们生成了90%的项目内容,因此显著缩短了工程设计时间。支持及服务我们遍布全球的支持中心提供全套支持及服务,确保在工厂生命周期的各个阶段都能为PlantStruxure PES提供可靠的支持。我们提供行业领先的创新支持计划,其中的主要服务将为您带来极大获益。这一计划包括一个内容丰富的知识库和经由一个专用的支持门户提供的综合数字化服务。该门户提供在线案例管理以及由我们的支持专家、解决方案架构师和开发团队协作开发的内容,如白皮书和设计指南等。对于技术支持人员可以迅速解决问题,我感到非常满意。通过电话咨询,技术支持立刻给予我正确的解决方案,并告诉我查找所需信息的支持网页,更难得的是,还将这些信息和我需要的其他可下载资料的信息发给我。总之,我对在CSR上获得的这次支持服务非常满意。标准以太网PlantStruxure PES基于标准以太网和EtherNet/IP,将PLC/SCADA 架构的灵活性和开发性优势扩展到了DCS领域。这意味着系统在支持可定制应用的同时,还继续保有其标准化方法和强大的集成功能。水处理和能源管理是施耐德电气的战略性业务领域。西班牙进行的一个脱盐厂项目为我们提供了一次展示自身实力的绝佳机会,借此项目,我们完美展示施耐德电气的一体化分布式控制系统如何控制所有的能源管理子系统。PlantStruxure PES的标准以太网面向所有的核心过程,集成了仪表检测、电机管理和电力管理功能,这最终促使客户选择PlantStruxure PES。施耐德电气开发构建了一种高效的控制系统,并设计了一个使用通用机柜(即服务器机架、通信柜、控制器和输入/输出柜)和全以太网网络架构的解决方案,从而控制并节省了此项目必需的投资开支。对象模型作为新一代的分布式控制系统,PlantStruxurePES提供了一个独特的对象模型,用户可以选择性地使用其结构中的各个组件,更加具有灵活性。而且用户可以只下载必要的组件,因此可以有效优化源程序代码。该模型还支持对象整个生命周期内的变更传播,为未来的扩展和定制预留了充足的空间,此外,还允许同时运行同一对象的不同版本,并支持更改的可追踪性。PlantStruxure PES提供面向对象的数据库,这意味着您可以在开发了一个过程对象之后,根据需要多次重复使用此对象。这样不仅可以节约系统开发的时间和成本,还能确保在整个项目的各个阶段运用和在其他应用的推广。由于以上原因,PlantStruxure PES 为巴西一个覆盖50个城市的大型水资源项目提供了完美的解决方案。PlantStruxure PES最吸引人的地方是在完成对象实例化之后如何在区块之间创建链接;它大大简化了我的日常工作。全面开放性PlantStruxure PES的开放性不只针对于一种标准。您能够以全新方式,开发一个真正开放的过程自动化系统,这其中不仅包括操作人员电脑,还包括对象模型和对象库、控制网络,甚至系统设计与集成的理念。PlantStruxure PES提供所需的一切,使DCS系统达到全新层次的开放性——譬如,您可根据需求调整对象模型,针对过程调节对象库,向第三方系统开放的控制网络,向任何IT 厂商开放的控制室等等。还有很重要的一点是,功能先进、即插即用、向第三方设备和应用开放的平台,借助它,施耐德电气及其联盟合作伙伴能够全方位满足客户需要。在我们的第一个项目部署完成后,我们不禁要由衷地赞叹PlantStruxurePES。有了它,使我们感到一切皆有可能。无论如何,我们都能够部署符合项目规范灵活变通的方案。可扩展硬件平台PlantStruxure PES支持各类不同的控制器,满足您的过程需要。这些控制器平台采用模块化、可扩展和冗余设计,能够在线增删硬件。它们支持多种输入/输出模块,以及专用通信模块和现场总线模块,提供电机控制,并

  • 气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    气相色谱仪流量控制原理与维护 —— 流量——压力转换单元

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体][font=宋体]流量[/font][font=宋体]——压力转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统在较多情况下用控制压力的方式实现气体流量的控制,例如供给检测器的辅助气体流量,供给色谱阀系统的气源控制单元流量,毛细管色谱柱的柱流量等。实现此功能的色谱仪部件,可以称之为压力[/font][font=宋体]——流量控制单元。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作于压力控制模式下,通常具有较低的硬件成本和较快的响应速度。压力控制方式的场合下,阀动作对色谱基线产生的干扰比较小,不易干扰检测器火焰状态或者造成检测器火焰的熄灭,色谱柱系统恢复切换之前流量的时间间隔也较短。压力[/font][font=宋体]——流量控制单元在机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中压力控制模式时得到了较为广泛的应用。[/font][/font][align=center][font=宋体]一、[/font][font=宋体][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]传统的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中的压力[/font][font=宋体]——流量转换单元按照其硬件结构主要分为两种,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font='Times New Roman'] [/font][align=center][img=,388,178]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062143598722_3198_1604036_3.jpg!w690x316.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]场合下压力[/font][font=Times New Roman]-[/font][font=宋体]流量转换单元[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]方式[/font][font=Times New Roman]a[/font][font=宋体],气体流路顺序安装稳压阀和针型阀,稳压阀提供恒定压力,通过调节针型阀的阀针,改变针型阀单元的阻尼,实现对气路流量的调节。[/font][/font][font=宋体]实际情况下,由于针型阀本身阻尼范围有限,针型阀并不单独使用,一般需要在针型阀之后再串联阻尼器,使流量调节更加容易。[/font][font=宋体]此种方式仪器硬件结构较为简单,针型阀惯性小,流量调节速度快。[/font][font=宋体][font=宋体]方式[/font][font=Times New Roman]b[/font][font=宋体],气体通道中安装稳压阀和阻尼器,通过调节稳压阀的不同输出压力实现流量的调节。[/font][/font][font=宋体]此种方式结构更加简单,硬件成本低,调节速度快,对稳压阀要求较高。[/font][font=宋体][font=宋体]两种方式下阻尼的前端均安装有压力计,当阻尼器确定、通过阻尼器的气体类型确定、温度确定的情况下,阻尼两端的压力[/font][font=宋体]——流量响应关系也是确定的。一般情况下,机械方式的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的说明书中会配备有该阻尼的压力——流量响应关系曲线,如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][align=center][img=,243,142]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144132310_5286_1604036_3.jpg!w413x242.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]阻尼器的压力——流量响应关系曲线[/font][/font][/align][font=宋体][font=宋体]严格意义上讲,阻尼器的压力[/font][font=宋体]——流量关系会受到阻尼器所处环境温度的影响。但阻尼器的安装环境一般处于室温,而室温的变化范围较为有限,室温对阻尼器的压力——流量响应关系影响不大。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的常见检测器[/font][font=宋体]——例如[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]、[/font][font=Times New Roman]NPD[/font][font=宋体]——的氢气、空气、尾吹气的流量控制经常会采用此两种方式。[/font][/font][font=宋体][font=宋体]某些型号的机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],控制毛细管柱流量时,也采用了压力控制的模式,此意义上也可以视为一种压力[/font][font=宋体]——流量转换单元。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]二、[/font][font=宋体][font=宋体]电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力[/font][font=宋体]——流量转换单元[/font][/font][/align][font=宋体][font=宋体]配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],压力[/font][font=宋体]——流量控制单元一般由比例电磁阀、阻尼器和压力计构成。[/font][/font][font=宋体] [/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144227918_2898_1604036_3.jpg!w690x145.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]比例电磁阀控制系统原理[/font][font='Times New Roman'][font=宋体]图[/font][/font][/align][font=宋体][font=宋体]该系统的输入端一般直接连接气源(氢气、空气或者尾吹气),色谱系统调节比例电磁阀的开度,以调整比例电磁阀的整体阻尼,使得阻尼器分配到正确的压力。与机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]原理上相同,根据阻尼器确定的压力[/font][font=宋体]——流量关系,色谱图系统通过调节的压力,实现通过阻尼流量的调节。[/font][/font][font=宋体]当毛细管色谱柱的尺寸规格确定、载气气体类型确定、色谱柱工作温度确定的情况下,色谱柱的阻尼也是确定的。电子流量式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制毛细管色谱柱的柱流量时,本质上通过控制色谱柱的柱前压力来控制毛细管柱流量。[/font][font='Times New Roman'] [/font][align=center][font=宋体]三、[/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的特点[/font][/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量控制单元一般具有较为简单的硬件结构,成本较低、可靠性较高、使用方便、调节速度快。[/font][/font][font=宋体][font=宋体]但是压力[/font][font=宋体]——流量转换单元本质上属于开环控制系统,色谱系统并不能感知真实输出的气体流量,如果阻尼器发生堵塞、断裂等问题,阻尼器的压力——流量关系会发生变化,系统的输出流量会发生错误。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出端一般只适合连接无阻尼的检测器或者固定阻尼的部件——例如确定的其他阻尼器或者色谱柱。阻尼器前端的压力传感器建议定期进行校准,否则也可能导致系统输出流量不准确。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]四、[/font][font=宋体]与差压式流量计的区别[/font][/align][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元与差压式流量控制器结构较为近似,核心均为阻尼器。差压式流量计通过测定阻尼两端的压力差确定系统输出流量,系统输出端可以连接不同的阻尼,例如色谱柱等。通过色谱系统的控制,实现恒流量或者程序流量。[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的输出一般情况下为常压,不可以连接阻尼,否则会造成流量显示错误。[/font][/font][font='Times New Roman'] [/font][align=center][img=,248,62]https://ng1.17img.cn/bbsfiles/images/2022/09/202209062144354098_6251_1604036_3.jpg!w690x174.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]差压式流量计[/font][/font][/align][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font='Times New Roman'][font=宋体]本文简单[/font][/font][font=宋体][font=宋体]压力[/font][font=宋体]——流量转换单元的基本原理和使用注意事项。[/font][/font]

  • 【分享】MAT-271质谱计进样控制系统改造

    针对MAT-271质谱计进样控制系统老化,操作方式繁琐的问题,提出一种基于Linux和MiniGUI的进样控制系统解决方案。利用PC/104主板控制PC/104总线规范的A/D及I/O驱动接口板,在Linux操作系统下,采用MiniGUI设计图形控制界面,通过大尺寸液晶触摸屏控制进样,并实时显示多个参数,实现对现有质谱计进样控制系统的升级改造。应用表明本系统不仅操作简便,而且显示直观,实现进样系统的自动化控制。

  • 实验室文件的管理和控制

    [align=center][/align]各类文件是实验室用以运行的基础和依据,实验室必须对其加以管理和控制,需从以下几个方面予以控制。1.文件的批准和发布实验室要求,凡作为管理体系组成部分发给实验室人员的所有文件,在发布之前应由实验室最高管理者、技术负责人或质量负责人审查并批准使用,质量手册和程序文件由实验室最高管理者批准发布实施,并明确识别文件当前的修订状态。资料员应建立文件控制清单,以防止使用无效和(或)作废的文件。外来文件应当视同实验室制定的文件一样受控。对于需执行的文件,也应履行必要的审核、转换、批准手续后正式发布实施。2.文件的使用和维护各负责人和对管理体系有效运行起重要作用的所有作业场所,都能得到相应文件的授权有效版本; 由专人定期审查文件,必要时进行修订,以保证持续适用和满足使用的要求;及时地从所有使用和发布处撤除无效或作废的文件,或用“作废”或“停用”标识方法确保防止误用; 出于法律或知识保存目的而保留的作废文件,应有“参考文件”的标记。实验室制订的管理体系文件应有唯一性标识。该标识应包括发布日期和(或)修订标识、页码、总页数或表示文件结束的标记和发布机构。管理体系文件的发布可以文本文件和网络文件的形式发布。网络文件是指在实验室计算机局域网上运行并通过网络传递发送和保存的文件,这类文件也应受控。3.文件变更实验室管理体系文件的变更应由原审查人进行审查,原批准人进行批准。被指定的人员应获得进行审查和批准所依据的有关背景资料。若可行,更改的或新的内容应在文件或适当的附件中标明。实验室的文件控制制度允许在文件再版之前由授权人员按照程序对文件进行手写修改。修改之处应有清晰的标注、签名缩写并注明日期。修订的文件应尽快正式发布。保存在计算机系统中的文件的更改和控制应有明确的文件规定。

  • 【讨论】EPC气路控制系统

    我用的agilent6890[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],epc电子气路控制系统用了两年了,有一天开机时,突然发出很大的漏气的声音,经维修工程师诊断,是epc气路控制模块损坏,主要是因为我的接入气体压力过高,为0.7MPa,长时间使用后使epc损坏。现在我把压力调到0.3-0.4MPa,只要能满足实验需求即可。

  • 气相色谱仪常用的控制器件——方向控制阀

    气相色谱仪常用的控制器件——方向控制阀

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用控制器件[/font][font=宋体]——方向控制阀[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]电磁阀分为单向阀、安全阀、方向控制阀、速度调节阀等种类,常用的方向控制阀有两位三通阀、两位四通阀、三位四通阀、两位五通阀等。方向控制阀又称换向阀,一般与气缸(油缸)等部件协同工作,实现对物体的旋转运动、直线运动和抓取等动作的控制。下文以气体两位五通阀为例,说明方向控制阀的工作原理。[/font][align=center][font=宋体]两位五通电磁阀的结构原理[/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]1[/font][font=宋体]为两位五通阀的示意图,阀带有五个气体端口,[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]和[/font][font=Calibri]B[/font][font=宋体]。其中[/font][font=Calibri]P[/font][font=宋体]为系统的气体入口,[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]为泄压端口,[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]端口一般连接执行部件的气缸。[/font][/font][align=center][img=,238,136]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122201497478_4227_1604036_3.jpg!w690x394.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]两位五通阀示意图[/font][/font][/align][font=宋体][font=宋体]两位五通阀的结构原理如图[/font][font=Calibri]2[/font][font=宋体]所示,其由带有[/font][font=Calibri]3[/font][font=宋体]组环形密封的铁芯、供电线圈、复位弹簧和五个气体输入输出端口组成,其中端口[/font][font=Calibri]P[/font][font=宋体]为气体入口。当线圈未通电时,铁芯在弹簧的作用下向右移动,端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]连通,可以向受控部件提供压力,端口[/font][font=Calibri]B[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]连通,用以排放受控部件的压力。当线圈通电后,铁芯在磁力的作用下向左移动,使端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]连通,端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]连通。[/font][/font][align=center][img=,260,194]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202291356_1349_1604036_3.jpg!w642x478.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]两位五通阀的结构原理[/font][/font][/align][align=center][font=宋体]两位五通阀与气缸的连用[/font][/align][font=宋体][font=宋体]两位五通阀一般与受控部件的气动执行器(气缸)连接,通过控制阀的线圈通电和断电,来控制气缸的机械运转,最终实现受控部件的直线或者旋转运动线运动的控制,其结构原理如图[/font][font=Calibri]3[/font][font=宋体]所示。[/font][/font][align=center][img=,422,204]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202388603_1512_1604036_3.jpg!w690x334.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]两位五通阀和气缸的联合控制[/font][/font][/align][font=宋体][font=宋体]两位五通阀的端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]通过管路连接至气缸的两个入口,气缸内活塞随其两端的压力差变化而发生移动。当两位五通电磁阀未通电时,具有一定压力的气体由[/font][font=Calibri]P[/font][font=宋体]端口、[/font][font=Calibri]A[/font][font=宋体]端口进入气缸左侧,气缸右侧气体由端口[/font][font=Calibri]B[/font][font=宋体]、端口[/font][font=Calibri]S[/font][font=宋体]逸出,活塞左侧压力大于右侧,活塞将向右移动。当两位五通阀的线圈通电,活塞则向左移动。[/font][/font][align=center][font=宋体]两位五通阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]及外设中的应用[/font][/align][font=宋体][font=宋体]复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统一般装备有多根色谱柱,通过各种阀的动作实现色谱柱在分析过程中的流路切换,实现单根色谱柱不能完成的分离分析工作。常见的切换阀带有两位五通阀[/font][font=Calibri]-[/font][font=宋体]旋转运动型气缸结构,驱动阀芯的迅速旋转。[/font][/font][font=宋体][font=宋体]某些型号的吹扫捕集自动进样器抓取进样瓶动作、热解析进样针的升降动作、热解析进样器加热器等动作也通过两位五通阀[/font][font=Calibri]-[/font][font=宋体]直线运动型结构来实现。[/font][/font][font=宋体]这些装置采用气动结构,驱动力量较大、速度快、动作可靠、维修方便。使用中需要注意气源的清洁、气源压力适度(过高压力会造成密封问题,过低压力会造成驱动速度降低)。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简介两位五通阀和气动执行器的结构原理与使用特点。[/font][align=center][font=宋体] [/font][/align][font=Calibri] [/font][font=Calibri] [/font][font=Calibri] [/font]

  • 微流体系统控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html]微流体系统控制器flowtest[/url][/b]是专业为[b]控制微流体器件[/b]设计,是用于micropump, microvalues等[b]微流体器件控制[/b]的进口[b]微流体控制器[/b]。[b]微流体系统控制器[/b]能够同时和独立地控制流体系统使用8个阀和8个泵,还可通过计算机编程控制微流动序列。此编程功能可以编辑新程序控制要求液体位移,取样和注射,并可以设置,存储和管理多个程序。用户可以毫不费力地检索和运行他们的程序。[img=微流体系统控制器]http://www.f-lab.cn/Upload/flow-test-controller.jpg[/img]在使用跨实验室和工业应用领域,需要精确液体转移。比如,微流体系统控制器FlowTest™ 将被证明是许多质量检测应用,流体系统发展或使用泵和阀门仪表的宝贵资产。微流体系统控制器还可以作为一个独立的仪器使用,无需电脑。在这种情况下,程序被加载在USB密钥上。通过位于控制盒的上方“运行/暂停”和“停”按钮,方便地操作控制器。微流体系统控制器:[url]http://www.f-lab.cn/microarray-manufacturing/microfluidic-controller.html[/url]

  • 【求助】关于色谱的控制问题

    我对色谱的控制不是很清楚,刚接触色谱,我用的泵和检测器都是岛津的,但是工作站是浙大的n2000。我看了看线路连接,检测器上只有电源和信号输出到工作站,泵是只有电源,其他的什么都没有连接,这样的泵和检测器分别属于什么控制?还有sys控制器,remote和local控制都分别是什么意思?是不是n2000只有两个通道?

  • 浅谈电子文件的管理与控制

    [align=center][/align][align=left][size=20px]【摘要】随着科技的进去发展,越来越多的信息以电子形式被保存,实验室如何来做好电子文件的管理与控制工作,文中从计划制定、文件命名规则等几个方面进行了详细阐述。[/size][/align][align=left][size=20px]【关键词】实验室、电子文件、管理、控制[/size][/align][size=20px]实验室电子文件的管理是一项重要而复杂的工作,需要确保文件的安全性、可靠性和可追溯性。[/size][size=20px]那么,实验室如何来做好电子文件的管理与控制,要做好电子文件的管理与控制,需做好以下几个方面工作。[/size][size=20px]1.管理[/size][size=20px]计划[/size][size=20px]制定[/size][size=20px]在管理电子文件之前,需要制定一个详细的[/size][size=20px]管理[/size][size=20px]计划,包括文件管理的目标、文件类型、文件命名规则、文件存储位置和文件访问权限[/size][size=20px]及控制[/size][size=20px]等。这个计划应该得到实验室[/size][size=20px]最高管理者[/size][size=20px]和其他相关管理人员的[/size][size=20px]审核[/size][size=20px]批准,以确保文件的合法性和合规性。[/size][size=20px]2.[/size][size=20px]建立文件命名规则[/size][size=20px]为方便管理和查找文件,需要建立文件命名规则,以确保每个[/size][size=20px]电子[/size][size=20px]文件都有唯一的名称。命名规则应该包括文件类型、日期、编号等信息,以便快速找到所需文件。[/size][size=20px]3.电子[/size][size=20px]文件分类[/size][size=20px]根据实验室的工作需要,可以将电子文件分为不同的类别,如[/size][size=20px]原始记录[/size][size=20px]、[/size][size=20px]检测[/size][size=20px]报告、标准操作规程(SOP)、质控数据、人员培训记录等。这样可以方便查找和管理不同类型的文件。[/size][size=20px]4.确定[/size][size=20px]电子文件的存储位置[/size][size=20px]为了确保电子文件的安全性和可靠性,需要建立可靠的存储系统来保存文件。这个存储系统应该具备以下特点[/size][size=20px]。[/size][size=20px]4.1[/size][size=20px]可靠性和稳定性[/size][size=20px]存储设备应具备高可靠性和稳定性,以确保数据不会丢失或损坏。[/size][size=20px]4.2[/size][size=20px]可扩展性[/size][size=20px]随着实验室工作的不断扩展[/size][size=20px]和数据的累积[/size][size=20px],存储需求也会不断增加,因此存储设备应该具备可扩展性。[/size][size=20px]4.3[/size][size=20px]数据安全性[/size][size=20px]存储设备应具备数据加密、备份和恢复等功能,以确保数据的安全性。[/size]5. [size=20px]电子[/size][size=20px]文件的[/size][size=20px]管理控制[/size][size=20px]5.1 访问权限控制[/size][size=20px]要保证[/size][size=20px]电子文件的安全性,需建立文件的访问权限[/size][size=20px]并严格控制[/size][size=20px],以控制哪些用户可以访问哪些文件。访问权限应该根据用户的角色和工作需要来确定,同时应该定期进行权限审查和更新。[/size][size=20px]定期备份文件[/size][size=20px]。[/size][size=20px]为确保电子文件的安全性,需要定期备份文件。备份应该包括所有重要文件,并存储在可靠的存储设备上,以防数据丢失或损坏。备份应该包括完整备份和差异备份,以便快速恢复数据。[/size][size=20px]5.2 电子[/size][size=20px]文件的版本控制[/size][size=20px]要[/size][size=20px]确保电子文件的可靠性,需要建立文件的版本控制。每个文件的版本都应该有一个唯一的编号,以便识别和管理。版本控制可以避免文件的混淆和错误使用。[/size][size=20px]6.管理培训[/size][size=20px]为确保[/size][size=20px]电子文件管理的有效性和合规性[/size][size=20px]的有效执行[/size][size=20px],需要对实验室[/size][size=20px]全体[/size][size=20px]人员进行培训。培训包括电子文件管理的重要性、文件命名规则、文件分类、存储设备的使用、访问权限的控制、备份和版本控制等。[/size][size=20px]总之,实验室电子文件的管理是实验室管理的重要组成部分,需要采取科学的方法和措施来确保文件的可靠性、安全性和可追溯性。[/size][size=20px]按照以上措施就能[/size][size=20px]更好地管理实验室的电子文件,提高工作效率和质量。[/size]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制