当前位置: 仪器信息网 > 行业主题 > >

色谱校正标定方法

仪器信息网色谱校正标定方法专题为您提供2024年最新色谱校正标定方法价格报价、厂家品牌的相关信息, 包括色谱校正标定方法参数、型号等,不管是国产,还是进口品牌的色谱校正标定方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱校正标定方法相关的耗材配件、试剂标物,还有色谱校正标定方法相关的最新资讯、资料,以及色谱校正标定方法相关的解决方案。

色谱校正标定方法相关的资讯

  • 鉴知科普 光谱仪波长标定测量方法
    鉴知科普 光谱仪波长标定测量方法波长精度和重复性是光谱仪重要的质量指标之一,两者对仪器的正确使用乃至实验结果有着很大影响;另外,由于温湿度、气压、磕碰等外界因素及仪器本身随着使用年限的增加,光纤发射角、光栅的衍射能力和检测器的探测效率等内部因素的变化,会对光谱仪传感器的响应产生影响,因此,光谱仪需要定期定标才能获得更准确的数据。定义:光谱定标就是明确成像光谱仪每个通道的光谱响应函数,即明确探测仪每个像元对不一样波长光的响应,从而获得通道的中心波长及其通光谱带的宽度。在实际微型光纤光谱仪中,光波波长是由CMOS像素所反映的,因此在实际测量中由于环境和时间的影响会引起光波波长与像素之间的变化,光谱仪中各CMOS像素所对应的实际光波波长必须准确确定,否则测量的准确度就会降低。如下图1所示,大家普遍使用的交叉式光纤光谱仪采用CMOS芯片收集光谱数据,为了得到准确的测量结果,光谱仪在使用前必须进行严格的标定,确定CMOS像素和光波波长的对应关系。图1 普遍使用的交叉式结构的光纤光谱仪常用的光纤光谱仪波长标定是采用特征光谱在CMOS对应的像素点上找到相应的位置,对于SR50C来说,探测用2048单元的线阵CMOS,测量光谱为200~1000nm,每个CMOS对应约0.4nm,光栅方程可以写成 其中,m为衍射级次,d为光栅常量,i为入射角(可以认为是定值),θ为衍射角,在小角度下可以认为(sinθ~θ~x),可知波长与衍射级次近似成线性关系,综合考虑大衍射角度等各种问题,我们可以采用最小二乘法三阶多项式进行拟合,从而得到最小的偏差平方和。式中a0,a1,a2,a3为拟合系数,x1,x2,…,x6为实测像素数,y1,y2,…,y6 为拟合后的波长。利用Matlab软件进行编程求解得到y=a0+a1x1+a2x2+a3x3中的拟合系数。采用汞-氩校准光源进行标定。以鉴知技术研发的微型光纤光谱仪SR50C为例,该光谱仪的汞氩灯光谱如图2所示图2 SR50C的汞氩灯光谱根据光纤光谱仪SR50C的波长标定结果来看,可以看出该产品的光谱范围广,支持200-1000nm范围内的光谱定制,可以实现紫外、可见光、近红外波段的高分辨率光谱检测。
  • 天津工生所建立无标定量MSE质谱数据分析流程
    超高效液相色谱-高分辨质谱(UPLC-HRMS)已经成为蛋白质组学、代谢组学以及药代动力学研究中的一项核心支撑技术,通过对不同生物样品的定量研究可以全面、精细地表征该生物体系的生理特性及预测功能。在用于蛋白质组学的质谱分析中,无标定量以其稳定性和安全性逐渐占据了主要地位。MSE方法是由Waters公司开发的应用在Q-TOF类型质谱仪器上的一种组学数据采集方法,作为一种数据独立获取(DIA)方式,它可以提高无标蛋白质定量的准确性和动态范围。但由于它特殊的输出格式形式,一些致力于分析数据依赖型(DDA)数据的常用开源软件不能对MSE 数据进行进一步的分析。   近日,中国科学院天津工业生物技术研究所水雯箐研究组成功建立了对基于MSE方法的无标定量蛋白质组学数据的新分析流程。在该研究中,结合开源软件Skyline和统计软件Diffprot建立起的工作流程,实现了对无标定量MSE质谱数据的定量分析。通过对磷酸化肽段和全细胞质蛋白质组定量数据的分析应用,验证了新开发流程的可靠性、稳定性、准确性和透明便捷的处理流程。另外,该研究创新性地发现改进后的新流程也可以应用于对小分子化合物的大规模定量分析,在蛋白质配体相互作用实验中,研究人员利用该新流程发现了针对药物靶点蛋白NDM1的新型小分子配体。   该研究获得国家自然科学基金和天津自然科学基金项目的支持,相关研究成果已经发表于Proteomics (2014,14:169&ndash 180),天津工生所和南开大学联合培养的研究生刘姗姗为第一作者。    无标定量MSE数据分析流程图
  • 溶解氧测试仪的两种标定方法分享
    氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。  溶解氧测试仪的电极由阴极和带电流的反电极、无电流的参比电极组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。  氧量测量传感器由阴极和带电流的反电极、无电流的参比电极组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,覆膜将电极和电解质与被测量的液体分开,只有溶解气体能渗透覆膜,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵人而导致污染和毒化。  向反电极和阴极之间施加极化电压,假如测量元件浸人在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上的氧分子就会被还原成氢氧根离子。电化学当量的氯化银沉淀在反电极上,对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流。  溶解氧测试仪的标定方法一般可采用现场取样标定或标准液标定,下面咱们就来了解一下:  1、现场取样标定法:在实际使用中,多采用Winkler方法对溶解氧分析仪进行现场标定。使用该方法时存在两种情况:取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数仍为M1,这时只须调整仪表读数等于A即可;取样时仪表读数为M1,化验分析值为A,对仪表进行标定时仪表读数改变为M2,这时就不能将调整仪表读数等于A,而应将仪表读数调整为1MA×M2。  2、标准溶液标定法:标准溶液标定一般采用两点标定,即零点标定和量程标定。零点标定溶液可采用2%的Na2SO3溶液。量程标定溶液可根据仪表测量量程选择4M的KCl溶液(2mg/L);50%的甲醇溶液(21.9mg/L)。
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 食品加工分析中的近红外方法
    这种方法允许同时对多个参数进行快速无损地分析近红外分析是基于样品中分子对近红外辐射(800 nm-2500 nm)的响应。当近红外光照射到样品上,要么被样品吸收,要么就发生散射,从而产生了能够反映样品物理性质和化学组成的光谱。近红外是一种间接的测量方式,必须借助于传统的标准化学分析方法的结果建立标定模型。采用化学计量学建立的模型可以用来分析混合物或者天然产物中物质的含量,如谷物和肉类。同时标定自身的数据丰富广泛,在日常检测时非常快速高效。优化近红外分析的小技巧1保持样品的一致性分析的样品应和标定在建模时使用的样品有相同的特性。例如,建模时使用小麦中蛋白质数据所建立的标定就不适用于其它谷物中蛋白质的分析。由于水分和样品颗粒大小也会影响近红外光谱,所以也要保证样品采用相同的处理方式。2校正样品均匀覆盖全部范围特别重要的一点是,建模时选取具有代表性的样品并使得参考值均匀地分布在日常检测所期望的范围内。例如,少量且数值相近的样品建立的模型就无法对一个变化较大的属性给出准确的预测结果。主成分分析(PCA)是一个有效的对比样品差异性的统计工具。3关注参考值可靠的近红外标定依赖参考值。如凯氏定氮测蛋白、索氏提取测脂肪这些参考方法有助于近红外分析得到准确的结果。这些参考方法在整个近红外方法建立过程中都应保持不变,因为不同的分析方法的准确性和精密的都有所区别。考虑这些方法的标准误差和测量不确定度,应为每项属性保留一份当前参考方法的记录。4使用近红外以辅助参考方法使用近红外方法,您能从批量化的检测中获益。专为离线和旁线设计的近红外分析仪器可以分别安装在实验室或生产部门,作为像凯氏定氮仪、脂肪提取器、色谱系统和滴定等传统分析仪器的补充。下述的例子就展示了使用近红外对节省分析支出的贡献:回报实例每天 10 个实验室样品可以节约花费月 15 欧元,一年以 200 天计算共节省 30000 欧元。假如一台近红外光谱仪的售价在 40000 欧元,只需1年就投资就能收获回报。获得额外的收益。试剂溶液以及其它相关实验耗材的使用量都显著地减少,近红外分析在极大地节约成本的同时还保证了安全性。此外,由于近红外分析速度的优势还能提升实验室的效率。步琦解决方案ProxiMate™ 是一台适合放置在产线旁的设备,它拥有 IP69 认证且支持触控,即使戴着手套也不会影响操作,具有强大且稳定的性能。不仅能够使用仪器提供的校准模型,而且也可使用整合在仪器中的自动校准 AutoCal 功能,轻松建立您的专属模型。步琦解决方案的更多信息:https://www.buchi.com/zh/products/instruments/proximate寻找更多有关我们近红外产品的信息:https://www.buchi.com/zh/knowledge/applications
  • 国产非制冷红外探测器新型场景校正方法
    现有国产非制冷红外探测器多采用挡板校正进行非均匀性校正,影响了红外探测器的观测效果与目标搜跟。近期,湖北久之洋红外系统股份有限公司的科研团队在《光学与光电技术》期刊上发表了以“国产非制冷红外探测器新型场景校正方法”为主题的文章。该文章第一作者为刘品伟,主要从事红外技术方面的研究工作。本文提出了基于国产非制冷红外探测器的新型场景校正方法。该方法包含两部分:第一部分是基于高频非均匀性的场景校正;第二部分是基于低频非均匀性的场景校正。通过对不同频域非均匀性分别进行处理来去除探测器响应的非均匀性。国产非制冷红外探测器非均匀性分析国产非制冷红外探测器工作过程中,探测器的状态参数会产生缓变,从而导致图像非均匀性的变化。图1所示是以黑体为目标的具有较强非均匀性的非制冷红外图像。图1 具有较强非均匀性的非制冷红外图像非均匀性包括低频非均匀性与高频非均匀性两部分。低频非均匀性表现为全局灰度分布不均匀,在图像中表现为平缓的明暗变化,如图像四周与中心灰度值差别大,如图2所示。低频非均匀性主要是由探测器及镜头不同位置温度变化不均匀引起的。高频非均匀性表现为局部区域灰度值剧烈变化,在图像中表现为亮暗点或条纹。高频非均匀性主要是探测器的响应不均匀引起的,如图3所示。图2 低频非均匀性的三维显示图3 9×9邻域内高频非均匀性的三维显示传统的场景校正方式很少涉及对低频非均匀性的消除,而对高频非均匀性的消除容易产生“鬼影“等副作用,同时消除低频与高频非均匀性才能真正提高图像质量。因此,本文将针对高频与低频非均匀性,采用不同的场景校正方法处理。基于高频非均匀性的场景校正国产非制冷红外探测器在工作过程中,随着探测器整体温度的变化,由于探测器响应的不均匀性,会出现较强的高频非均匀性,具体在图像上表现为散粒及细条纹,如图4所示。图4 高频非均匀性的不同类型目前常用的场景校正算法有恒定统计法、时域高通滤波法、神经网络校正算法、基于图像配准的校正算法等。这些算法能够在一定程度上根据场景的信息自适应地补偿热像仪的增益和偏置的漂移,但是在实际使用过程中,这类算法存在各种各样的使用限制条件。以传统的神经网络场景校正算法为例,该算法要求场景信息不断变化,否则会造成图像退化或者模糊,并且如果图像中存在较强边缘信息,该算法容易导致图像出现“鬼影”现象,严重影响图像质量。对此,提出了一种基于神经网络的新型场景校正算法来消除图像退化和“鬼影”现象。首先分析图像退化与“鬼影”现象产生的原因。当原始图像中存在较强的边缘信息时,低通滤波会使边缘信息产生损失,预测图像会产生模糊失真现象。若场景保持静止不动,随着场景校正参数的不断更新,图像就会逐渐退化失真;若场景长期静止后开始运动,图像就会包含静止图像中损失的边缘信息,也就是“鬼影”现象,如图5所示。图5 传统场景校正算法产生的“鬼影”现象为了解决传统场景校正算法存在的问题,提出了一种基于中值滤波=2。同时采用时空联合阈值作为校正判断条件,选择更新系数与校正区域。时空联合阈值分为两个阈值条件:时域连续运动条件与空域邻域均匀性条件。针对高频非均匀性的场景校正算法流程图如图6所示。的自适应场景校正算法。由于高频非均匀性中包含大量的散粒非均匀性,同时为了更好地保留图像的边缘信息,该算法采用中值滤波作为滤波器,中值滤波半径r。图6 高频非均匀性场景校正算法流程图分别用此算法与传统神经网络场景校正算法对原始图像进行处理,比较两种算法是否具有“鬼影”现象。将热像仪静止工作500帧后,观察两种方法处理后的运动图像。可以看到,该算法基本没有“鬼影”现象,而传统算法“鬼影”现象严重。因此,该算法能够有效地抑制“鬼影”现象。图7 本文方法与传统神经网络“鬼影”现象比较基于低频非均匀性的场景校正高频非均匀性去除后,图像仍残留有大量的低频非均匀性。低频非均匀性在非制冷探测器开始工作时较弱,随着探测器及镜头温度的变化,图像的低频非均匀性会逐渐增加,在图像上表现为四角与中心灰度值差别较大。如图8所示,可以看到,图像灰度分布不均匀,四周有明显的光圈,影响图像观感与图像质量。图8 低频非均匀性对图像的影响这里提出了一种基于时空联合低频滤波的场景校正方法,通过在时域和空域同时进行低通滤波,分离出图像的固定低频非均匀性并进行去除。由于探测器输出图像的低频非均匀性在短时间内位置保持不变,当图像产生运动时,可以通过时域低频滤波对低频非均匀性进行分离去除,因此首先需要判断场景是否处于运动中。这里仍采用上节提到的连续运动条件来判断场景是否处于连续运动中。当场景处于连续运动时,采用基于自适应时间常数的时域低频滤波来筛选图像的低频信息。时域滤波结果包含低频非均匀性与部分边缘细节信息,因此还需要对在空域上进行低通滤波,以消除存在的边缘信息细节,达到获取低频非均匀性的目的。采用均值滤波进行空域的低通滤波。为了验证此场景校正算法的效果,对仅处理高频非均匀性的图像与高频低频非均匀性均处理的图像进行比较,如图9所示。可以看到,此算法对低频非均匀性有良好的处理效果,能够有效地减少图像四周与中央灰度差异较大的问题。图9 运动200帧后是否处理低频非均匀性图像对比为进一步验证此场景校正算法的效果,使用两台相同规格的红外机芯,第一台仅对高频非均匀性进行处理,第二台对高频低频非均匀性都进行处理,均在运动条件下连续工作1 h后,对同一温度黑体成像,计算其图像非均匀性。结果表明,仅处理高频非均匀性的图像非均匀性为2.3%,而对高频低频非均匀性都进行处理的图像非均匀性为0.5%,该算法有利于提高输出图像的均匀性。算法总体流程及效果图本文算法首先通过连续运动条件判断场景是否处于连续运动中,若处于运动过程则分别更新高频与低频非均匀性处理模块校正参数,然后进行非均匀性校正;否则直接进行非均匀性校正,整体流程如图10所示,最终效果如图11所示。图10 本文算法流程图图11 最终校正输出结果结论本文提出了一种基于非制冷红外探测器的新型场景校正方法。首先通过改进的神经网络场景校正方法滤除高频非均匀性,在此基础上通过时空联合的低频滤波去除低频非均匀性,得到最终校正结果。该方法具有良好的校正效果,并且能够有效地抑制“鬼影”现象,有利于非制冷红外探测器的推广应用。
  • Incoatec发布Incoatec+微型X射线探测器标定光源-iXmini新品
    Incoatec 微型X射线探测器标定源 iXminiIncoatec推出了可用于探测器标定的便携式微型X射线源,iXmini,射线管阳极靶材为Fe或Cu。iXmini是探测器平场校准可信赖的光源,可完全替代实验室金属箔荧光和放射性同位素校准物。有了iXmini,即使没有其它可用x射线源时,如同步加速器停机期间,也可可随时校准探测器。iXmini是一种简单和易于使用的X射线源,也可用于辐射探测器系统定期检查。特点和功能l 非放射性校准物l 无放射源需要的特殊储存或处置许可l 操作简单和安全l 可用于低真空环境(低至10-2 – 10-3 mbar)l 占用空间小:103×120×89.5mm3l 集成高压发生器和安全联锁装置l 2组独立的安全线联锁系统l 最大功率100mW (4-10 kV,2-10 μA)l 4种可选预定义功率设置,控制旋钮选择iXmini阳极靶材为Fe(Kα= 6.4keV)或Cu(Kα= 8.04 keV),主要用于探测器刻度,无需放射性校准物或荧光金属箔。iXmini规格参数尺寸103×120×89.5mm3重量~ 1500g供电电压DC 24.0 ± 1 VX-射线管金属陶瓷,透射阳极靶材Fe或Cu(150nm铍窗)典型工作电压4.0 – 10 kV最大功率100 mW系统集成当2个安全联锁装置关闭时,只要接通24V电压,iXmini就放出X-射线。需求24V DC 1A外接电源,无需制冷功率设置iXmini有四种预定义功率设置,提供不同的X射线光强。从顶部旋钮选择。快门iXmini快门是手动的。在上电和关闭安全锁前手动打开,在关闭电源后手动关闭。指示灯iXmini有两个状态指示灯,X-RAY ON和BEAM ON。在X射线管功率上升期间,这两个指示灯会闪烁,达到设定功率后常亮。iXmini用于CMOS探测器平场刻度用于校正的图像:Cu靶,10kV10μA,曝光1000s两幅1000s图像对比,和相应的强度分布,有平场校正(上)和无平场校正(下)。从分布图可以看出,应用平场校正可显著改善强度分布。此外,获取了一组曝光时间不同的图像,以确定要得到好的校正结果所需的最短曝光时间。结果表明,600s曝光就可以得到相当不错的校正结果。强度均匀性与所用平场校正图像的曝光时间之间的相关性。600s曝光时间足以得到很好的校正结果创新点:iXmini是一款专用于X射线探测器标定的便携式、小型化X射线源,相较于之前的放射性源或金属荧光源,iXmini无需像放射性源一样的特殊使用许可,储存条件,使用也更为便捷,插电就可使用。同时iXmini可以在10-2 - 10-3 mbar的真空环境使用。 Incoatec+微型X射线探测器标定光源-iXmini
  • CEM Phoenix——世界上唯一内置NIST可追踪温度标定和验证的微波马弗炉
    CEM公司发明的微波马弗炉,是世界上唯一内置NIST可追踪温度标定和验证的微波马弗炉,可实现精确闭环温度控制,LCD屏显温度设定,实际炉内温度和升温指示,控制参数:加热速率(斜率),温度保持(闭锁)。双重TYPEK热电偶传感提供反馈信号,快速进行符合ISO和GLP的可溯源温度校正的温度计量标定和验证要求。 符合ASTM D5630-94热塑灰份测定,ASTM D1506-94b碳黑灰份测定,USP281灼烧残渣(硫化灰化测定)和USP733烧失量测定等标准。 1. 数字温度表标定梯度升温的参比精度; 2. NIST溯源标定器的快速标定; 3. 提供标定服务和证书,标定器溯源证明。 美国 CEM Phoenix 微波马弗炉/微波快速灰化系统 更多详情请浏览 http://www.pynnco.com , 或咨询培安公司:电话:010-65528800,传真:010-65519722,邮件 sales@pynnco.com
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 科学岛团队利用SMAC数据实现对多光谱卫星遥感影像的大气同步校正
    近期,中科院合肥研究院安光所光学遥感研究中心遥感信息表征技术科研团队徐玲玲博士生和崔文煜副研究员,利用高分多模卫星同步大气校正仪SMAC获取大气参数,实现了多光谱遥感影像的同步大气校正。相关研究工作发表在国际知名遥感期刊Remote Sensing上。   鉴于大气状态具有高时空变化特性,基于辐射传输原理去除遥感影像的大气辐射作用影响,往往受到难以有效获取与图像时空匹配大气参数的条件限制。安光所团队利用与主载荷相机同平台搭载的大气探测装置(SMAC:Synchronization Monitoring Atmospheric Corrector),获取了与卫星影像时空同步的大气参数,并在此基础上,提出并进行了同步大气校正。他们利用SMAC数据实现对高分多模卫星多光谱遥感影像的大气辐射校正和邻近效应去除,从而还原地表本征反射率分布,输出零视距反射率图像。   科研人员通过开展星地同步测量实验,对校正效果和精度进行了验证和评估。实验在对敦煌、嵩山和包头3个辐射定标场不同大气条件下的多幅多光谱影像进行大气同步校正,对比分析了校正前后的图像质量,并将校正后图像中的典型地物反射率与地面实测值进行了对比验证。结果表明,同步大气校正后的图像质量显著提升(图1),地物多波段反射率信息得到了准确恢复(图2)。该方法可更好地支撑高分多模卫星数据的定量化应用。   本研究工作得到高分辨率对地观测系统重大专项科研项目、航天科技创新应用研究项目和国家自然科学基金项目的资助与支持。
  • 化学分析方法“大聚会” 你用过多少
    常见的化学成分分析方法   一、化学分析方法   化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。   1.1重量分析   指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。   1.2容量分析   滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。   酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。   络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀 剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。   氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。   沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以硝酸银液为滴定液,测定能与Ag+反应生成难溶性沉淀的一种容量分析法)。虽然可定量进行的沉淀反应很多,但由于缺乏合适的指示剂,而应用于沉淀滴定的反应并不多,目前比较有实际意义的是银量法。   二、仪器分析   2.1电化学分析   是指应用电化学原理和技术,是利用原电池模型的原理来分析所测样品的电极种类及电解液的组成及含量和两者之间的电化学性质的关系而建立起来的一类分析方法。现在一般是使用电化学工作站来对样品进行测试。其特点是灵敏度高,选择性好,设备简单,操作方便,应用范围广。根据测量的电信号不同,电化学分析法可分为电位法、电解法、电导法和伏安法。   电位法是通过测量电极电动势以求得待测物质含量的分析方法。若根据电极电位测量值,直接求算待测物的含量,称为直接电位法 若根据滴定过程中电极电位的变化以确定滴定的终点,称为电位滴定法。   电解法是根据通电时,待测物在电他电极上发生定量沉积的性质以确定待测物含量的分析方法。   电导法是根据电解质溶液中溶质溶度的不同,其电导率也不同的原理,而测量分析溶液的电导以确定待测物含量的分析方法。   伏安法是将一微电极插入待测溶液中,根据被测物质在电解过程中的电流-电压变化曲线来进行定性或定量分析的一种电化学分析方法。   2.2光化学分析   光化学分析是基于能量作用于物质后,根据物质发射、吸收电磁辐射以及物质与电磁辐射的相互作用来进行分析的化学分析方法。其主要可分为光谱法和非光谱法两大类。光谱法是基于辐射能与物质相互作用时,测量有无之内不发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度而进行分析的方法。主要有原子吸收光谱法(AAS)、原子发射光谱法(AES)、原子荧光分析法(AFS)、红外光谱法(IR)等。非光谱法是基于光的波动性而对物质进行测试,主要有分光光度法和旋光法等。   2.2.1原子吸收光谱法(AAS)   原子吸收光谱法是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。由于各种原子中电子的能级不同,将有选择性地共振吸收一定波长的辐射光,这个共振吸收波长恰好等于该原子受激发后发射光谱的波长,由此可作为元素定性的依据,而吸收辐射的强度可作为定量的依据。   其基本原理是每一种元素的原子不仅可以发射一系列特征谱线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,即入射辐射的频率等于原子中的电子由基态跃迁到较高能态(一般情况下都是第一激发态)所需要的能量频率时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比:A=KC 式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础由于原子能级是量子化的,因此,在所有的情况下,原子对辐射的吸收都是有选择性的。由于各元素的原子结构和外层电子的排布不同,元素从基态跃迁至第一激发态时吸收的能量不同,因而各元素的共振吸收线具有不同的特征。   2.2.2原子发射光谱法(AES)   原子发射光谱法是依据各种元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,而进行元素的定性与定量分析的方法,是光谱学各个分支中最为古老的一种,可同时检测一个样品中的多种元素。   其基本原理是各物质的组成元素的原子的原子核外围绕着不断运动的电子,电子处在一定的能级上,具有一定的能量。从整个原子来看,在一定的运动状态下,它也是处在一定的能级上,具有一定的能量。在一般情况下,大多数原子处在最低的能级状态,即基态。基态原子在激发光源(即外界能量)的作用下,获得足够的能量,其外层电子跃迁到较高能级状态的激发态,这个过程叫激发。处在激发态的原子是很不稳定的,在极短的时间内(10s)外层电子便跃迁回基态或其它较低的能态而释放出多余的能量。释放能量的方式可以是通过与其它粒子的碰撞,进行能量的传递,这是无辐射跃迁,也可以以一定波长的电磁波形式辐射出去,其释放的能量及辐射线的波长(频率)要符合波尔的能量定律。   2.2.3原子荧光分析法(AFS)   原子荧光分析法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。 原子荧光光谱是介于原子发射光谱和原子吸收光谱之间的光谱分析技术。   其基本原理是通过测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度而进行定量分析。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,约经10-8秒,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收线波长相同,称为共振荧光 若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比,从而通过测试共振荧光的强度来确定待测元素的含量。   2.2.4分光光度法   分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。   其基本原理是在分光光度计测试中,将不同波长的光连续地照射到一定浓度的样品溶液时,便可得到与不同波长相对应的吸收强度。再以波长(&lambda )为横坐标,吸收强度(A)为纵坐标,就可绘出该物质的吸收光谱曲线。利用该曲线进行物质定性、定量的分析方法,称为分光光度法,也称为吸收光谱法。用紫外光源测定无色物质的方法,称为紫外分光光度法 用可见光光源测定有色物质的方法,称为可见光光度法。   2.2.5旋光法   旋光法是基于许多物质都具有旋光性(又称光学活性)如含有手征性碳原子的有机化合物,从而利用物质的旋光性质测定溶液浓度的方法。   其基本原理是将样品在指定的溶剂中配成一定浓度的溶液,采用旋光计测得样品的旋光度并算出比旋光度,然后与标准比较,或以不同浓度溶液制出标准曲线即工作曲线,求出含量。   2.3色谱分析   色谱分析是指通过利用不同物质在不同相态的选择性分配,以流动相对固定相中的混合物进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。色谱法中有两个相,一个相是流动相,另一个相是固定相。如果用液体作流动相,就叫液相色谱,用气体作流动相,就叫气相色谱。   2.3.1气相色谱法   气相色谱法的基本原理是利用气相色谱仪中的一根流通型的狭长管道(色谱柱)。在色谱柱中,不同的样品由于具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。而气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。   2.3.2液相色谱法   液相色谱法的基本原理是基于混合物中各组分对两相亲和力的差别。根据固定相的不同,液相色谱分为液固色谱、液液色谱和键合相色谱。应用最广的是以硅胶为填料的液固色谱和以微硅胶为基质的键合相色谱。根据固定相的形式,液相色谱法可以分为柱色谱法、纸色谱法及薄层色谱法。按吸附力可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱。近年来,在液相柱色谱系统中加上高压液流系统,使流动相在高压下快速流动,以提高分离效果,因此出现了高效(又称高压)液相色谱法。检测器主要有紫外吸收检测器、荧光检测器、电化学检测器和折光示差检测器,其中以紫外吸收检测器使用最广。   2.4波谱分析   波谱分析是指物质在光(电磁波)的照射下,引起分子内部某种运动,从而吸收或散射某种波长的光,将入射光强度变化或散射光的信号记录下来,得到一张信号强度与光的波长或波数(频率)或散射角度的关系图,用于物质结构、组成及化学变化的分析,这就叫波谱法。波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。除此之外还包含有拉曼光谱等。   2.4.1红外光谱法(IR)   红外光谱法是分子吸收光谱的一种,是通过将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。主要是应用于测试有机分子的价键结构以及官能团的种类等。   其基本原理是当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。   2.4.2紫外光谱法(UV)   紫外光谱法是测定物质分子在紫外光区吸收光谱的分析方法。其基本原理是物质吸收紫外光后,其价电子从低能级向高能级跃迁,须吸收波长在200~1000 nm范围内的光,此波长恰好落在紫外-可见光区域,从而产生相应的吸收峰。并非所有的有机物质在紫外光区都有吸收,只有那些具有共轭双键(&pi 键)的化合物,其&pi 电子易于被激发发生跃迁,在紫外光区形成特征性的吸收峰。   2.4.3核磁共振谱法(NMR)   核磁共振谱法是指具有核磁性质的原子核(或称磁性核或自旋核),在高强磁场的作用下,吸收射频辐射,引起核自旋能级的跃迁所产生的波谱,叫核磁共振波谱。而利用核磁共振波谱进行分析的方法,叫做核磁共振波谱法。   2.4.4质谱法   质谱法是指用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的荷质比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是具有多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子即可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。   其基本原理是使试样中各组分进行电离生成不同荷质比的离子,经加速电场的作用,形成离子束,进入质量分析器,利用电场和磁场使发生相反的速度色散,在磁场中离子发生角速度矢量相反的偏转,即速度慢的离子依然偏转大,速度快的偏转小 当两个场的偏转作用彼此补偿时,它们的轨道便相交于一点。与此同时,在磁场中还能发生质量的分离,这样就使具有同一质荷比而速度不同的离子聚焦在同一点上,不同质荷比的离子聚焦在不同的点上,将它们分别聚焦而得到质谱图,从而确定其质量。   2.4.5拉曼光谱法   拉曼光谱法是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。   其基本原理是当光照射到物质上会发生弹性散射和非弹性散射,其中弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,则统称为拉曼效应。由于拉曼效应起源于分子振动(和点阵振动)与转动,因此从拉曼光谱中可以得到分子振动能级(点阵振动能级)与转动能级结构的知识。其中)。如果分子能级的跃迁仅仅涉及转动能级,则发射的是小拉曼光谱 如果涉及到振动-转动能级,则发射的是大拉曼光谱。
  • 多普勒发布PM2.5/PM10切割器校准标定系统新品
    DPL-001 PM2.5切割器切割特效校准系统一、背景描述2012年3月2日,国家环保部发布新修订的《环境空气质量标准》,新标准增加了细颗粒物(PM2.5)和臭氧8小时浓度限值监测指标。3月5日,PM2.5首次被写入政府工作报告中。在空气质量问题日渐成为公众关注焦点的同时,PM2.5对于产业、公众的生活习惯等方面的影响正逐渐地蔓延开来。PM2.5纳入监控指标后,对采样、检测提出更高的要求,其关键部分在于PM2.5切割头的切割特性。美国EPA规定了PM2.5静态切割效率的三种测试方法,即洗脱法、静态箱法及分流法。洗脱法及静态箱法均采用标定过的荧光光度计来测量气溶胶浓度,而分流法既可采用荧光光度计法测量,也可用实时测量气溶胶数量浓度及粒径的方法来进行测量,对实时测量仪器的要求是:最小粒径范围1~10微米、分辨率0.1微米、准确度0.15微米。对气溶胶发生装置的要求是:通过震荡孔气溶胶发生器(VOAG)发生单分散固态的银光素铵气溶胶颗粒,颗粒空气动力学直径的要求是1.5±0.25 μm、2.0±0.25 μm、2.2±0.25 μm、2.5±0.25 μm、2.8±0.25 μm、3.0±0.25 μm、3.5±0.25 μm、4.0±0.5 μm;根据美国EPA最新的研究报告(“Methodology for Measuring PM2.5 Separator Characteristics Using an Aerosizer”, publishedby Aerosol Science and Technology 34:398-406, 2001),用雾化单分散PSL小球实时检测的方法是一种更快捷省时省力的方法,VOAG+光度计方法测量一条切割效率曲线需要1周的时间,而PSL+实时气溶胶检测仪的方法只需要2小时,该方法与传统方法测量结果非常吻合。我司根据上述标准及文献开发出了一套PM2.5切割头的标定系统,符合EPA关于PM2.5静态切割效率测试最新方法的要求。二、适用标准 系统能够自动采集数据并自动实现切割曲线拟合,并根据拟合得到公式自动计算Da50和几何标准差,Da50和几何标准差定义详见《环境空气颗粒物连续自动监测系统技术要求及检测办法》(HJ653-2013)中3.8,投标人需提供切割曲线公式,阐述切割曲线公式的拟合方法及所用软件,并阐述根据拟合出的切割曲线公式计算Da50和几何标准差的方法。三、系统稳定性参数 系统管道流量稳定性(4h):在风速范围内,固定一个风速,最低风速与最高风速偏差≤±2% 系统稳定性:各粒径点(1.5um、2.0um、2.2um、2.5um、2.8um、3.0um、3.5um、4.0um)发生气溶胶,连续切换(有切割器和无切割器管路)测试6 次,无切割器和有切割器管路6 次测得的数量浓度均分别小于平均数量浓度(有切割器和无切割器)的6%(每个粒径点数量浓度不低于10/cm3);创新点:1.结构更加紧凑,将气溶胶混匀通道、粒径谱仪、静电消除器合理的安排,并充分考虑颗粒物的混匀效果,整体外观和实用性有很大的提高 2.系统的稳定性提高,进口设备的配置使得整套系统的的稳定性控制在8%左右 PM2.5/PM10切割器校准标定系统
  • 岛津应用:将ATR光谱转换为透射光谱的高级ATR校正
    ATR法不仅用于验证分析,还广泛用于异物分析。对ATR法扫描获取的光谱和用透射法扫描获取的光谱进行比较可以发现,因为原理不同,纵轴及横轴的数值有一定差别。所以,将ATR法的光谱与透射法的光谱或数据库进行比较时,通过对ATR光谱进行适当的校正,可取得更高精度的结果。本文向您介绍通过高级ATR校正,对ATR光谱和透射光谱进行近似处理的示例。经高级ATR校正可使ATR光谱与透射光谱相似。并且,如果通过透射法数据库检索ATR谱图,可获取高精度的检索结果。 岛津高级ATR校正功能,可对上述纵轴和横轴变化进行校正。该校正可同时进行以下3种校正:1. 受波长影响的红外光穿透深度带来的峰强度变化。2. 由折射率的异常分散引起的低波数峰偏移。3. 由偏光特性引起的来自朗伯-比尔定律的偏差。 在BCEIA2013上展出的岛津IRTracer-100 了解详情,请点击“将ATR 光谱转换为透射光谱的高级ATR 校正的介绍” 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • Ready, 2024 国抽混标定制
    2024年的国家食品安全监督抽检即将开始!阿尔塔科技为您的国抽检测助力,提供定制混标解决方案,满足检测任务个性化需求,根据具体国抽实施计划,可选择不同组份、溶剂类型、浓度、包装规格,提供定制化服务!1)一针进样检测多种参数,高效便捷2)混标均在ISO17034质量管理体系下制备,保证所有组分的均匀性和稳定性,并有完整的数据支撑,可溯源3)证书包含浓度的测量不确定度以及溯源性信息4)400-6666-027热线,”007技术支持团队“,随时解答标品使用中的问题5)现货供应混标定制服务-定制混标组分 -用户可以根据自己的项目需求,并根据相应的检测方法列出所需的检测参数,阿尔塔会以用户实际需求组分提供定制服务。- 定制混标溶剂类型 -按照检测方法选择合适的溶剂类型,或参照化合物在不同溶剂中的溶解度和稳定性来进行方案定制与调整。- 定制特殊包装规格 -常规标液包装规格是1mL,定制的混标产品有多种规格供选择,包括:0.5mL*2、10mL等。- 定制不同浓度的混标组分产品 -满足不同的检测方法和化合物在仪器上的响应度对同一混标内各组分差异化浓度的个性化需求。了解更多定制详情,请联系我们关于阿尔塔天津阿尔塔科技有限公司立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并被认定为国家高新技术企业、国家级专精特新小巨人企业、天津市专精特新中小企业、天津市瞪羚企业等,与安捷伦共建创新合作实验室,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和国家重点研发计划重大专项,荣获2022年中国分析测试协会科学技术奖,CAIA一等奖,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 小菲课堂|别动!红外热像仪不可私自标定
    标定热像仪是将热像仪所看到的(红外辐射)与已知温度相关联的过程,以便热像仪能够准确测量其所检测到的辐射。所有的FLIR热像仪都按照工厂的规格进行了标定,但随着时间的推移,电子元件老化会导致标定偏移,并产生不准确的温度测量值。因此,您需要对手中的FLIR红外热像仪定时标定!能否自行标定?如果热像仪需要标定,你能自己重新标定你的热像仪吗?答案是否定的:为了保证热像仪的准确性,你需要把它送到热像仪制造商进行定期标定,我们建议您一年标定一次。为什么热像仪标定只能由热像仪制造商来执行?让我们首先来看看热像仪是如何在实验室标定的。实验室标定热像仪标定是在有大量黑体参考源的受控条件下进行的。黑体是辐射率非常高的物理体,这意味着它们辐射并吸收几乎所有的电磁辐射(理论上理想的黑体辐射率为1.0,完全吸收并释放所有辐射)。标定实验室中的黑体是经过认证的,并可追溯到国际标准。将黑体参考源布置成一个半圆,设定不同的已知温度,然后将热像仪(与机械臂相连)依次指向每个参考源。通过标定软件获取每个温度下的信号值,并将每对信号值和温度值绘制成曲线,曲线方程基于物理模型。然后将这些数据加载到热像仪中,对其进行标定,以确保其符合精度规范。由于条件的限制,热像仪需要在实验室里重新标定。然而,如果担心你的热像仪可能会偏离标定,你可以在现场进行一个简单的校验,它是不需要任何昂贵的设备。检查标定结果值得庆幸的是:如果你的热像仪标定不合格,那么它通常会超出很多,这意味着如果你进行了校验并得到了相当准确的结果,那么你的标定可能是有效的。不过,请记住,您自己进行的标定校验不能保证热像仪标定准确,也不能取代定期维护。为了让校验有效,您首先需要在已知热像仪标定准确的情况下(例如,在实验室标定后不久)进行基线测量,这将解释您的设置和程序中的系统性错误。标定校验是通过测量已知温度的目标,并将已知温度与测量温度进行比较。在这种情况下,你可以使用沸水和融化的冰。沸水的温度约为100°C(212°F),一定要让水剧烈沸腾,仅仅从底部冒出几个气泡是不够的。(一定要防止热像仪镜头上出现冷凝水)融化的冰的温度约为0°C(32°F)。使用时一定要融化,因为直接从冰箱里拿出来的冰块会冷得多,为了达到效果,可以把冰和少量的水混合。PS:校验过程中,请使用读数准确的温度计或者热电偶准确测量沸水和冰水混合物的实际温度。将热像仪的发射率设置为0.96,并将其面向水面进行温度测量。请参阅热像仪手册以了解您热像仪的精度。例如:如果您的热像仪精度为±2°C,则98°C-102°C(208.4°F-215.6°F)之间的任何读数都在沸水的规格范围内每年都需要标定?上面描述的标定校验是一个很好的方法来确定热像仪的标定是否有问题。然而,这并不能保证你的热像仪的精度,没有适当的维护和标定,精确的测量就无法保证。FLIR热像仪每个型号的标定都是不同的。FLIR的售后服务机构通过了ISO 9001:2015认证,有资格保证你的热像仪在高峰运行条件下,以可靠性和准确性来收集数据。为了确保热像仪的准确性,我们强烈建议您每年进行一次标定。
  • 谱写华章 彰显青岛埃仑色谱魅力
    [导读]2017年“仪商汇”中国仪器渠道峰会首次分站会议怎能独缺老友身影?!5月20日,“仪商汇”郑州站,青岛埃仑现场为您讲述离子色谱的传奇篇章。本次“仪商汇”郑州站,青岛埃仑依旧以离子色谱为主打,着重展示YC7000型离子色谱仪和YC9000智能型离子色谱仪。此外,来自青岛埃仑的HB6020自动烟尘烟气测试仪、HB6040紫外吸收烟气监测系统、HB6080多组分气体检测仪、HA6012大气综合采样器、DM-600型红外分光测油仪等多款小可爱也将盛装亮相,等待您现场检阅。  实力源于传承卓越,品质在于历久弥新,青岛埃仑是国内最早生产离子色谱仪的厂家之一,继承和发展了青岛易通研究所的技术,以研发、制造、销售和售后服务为一体,是离子色谱仪领导品牌。  2016年7月9日,青岛埃仑首次亮相“仪商汇”中国仪器渠道峰会,与众多行业大家齐聚美丽山城重庆,共话科学仪器行业渠道发展之路。并在会议现场展示了旗下多款主打产品,彰显青岛埃仑色谱风采。之后的“仪商汇”福州站、济南站、上海站、武汉站......每场活动青岛埃仑更是魅力尽显,生动演绎青岛埃仑色谱的传承创新。一曲《携手并进,合作共赢》的理念讴歌,更是把青岛埃仑与仪器渠道商共进退的期盼表达的淋漓尽致。  2017年5月20日的“仪商汇”郑州站,青岛埃仑将现场讲述离子色谱的传奇故事。本次活动中,青岛埃仑以离子色谱为主打,着重展示YC7000型离子色谱仪和YC9000智能型离子色谱仪。此外,还有HB6020自动烟尘烟气测试仪、HB6040紫外吸收烟气监测系统、HB6080多组分气体检测仪、HA6012大气综合采样器、DM-600型红外分光测油仪等多款小可爱也将盛装亮相,绝对会大放光彩。YC7000型离子色谱仪  YC7000型离子色谱仪是青岛埃仑针对国内中高端市场所研发出的一款全新型离子色谱。这款荣获CISILE 2017自主创新金奖的离子色谱采用国内目前面世的最高技术的控温TP检测器,拥有卓越的温度稳定性,采用抗信号、抗干扰新型材料外壳屏蔽,拥有迄今为止你所见到的任何背景信号都更低、更稳定的基线。不仅如此,内置的智能芯片还储存标准谱图,可直接用于软件验证和培训。  该款仪器配有三种不同进样模式,手动进样、电动进样、自动进样,三者之间可自由切换,给用户提供自动化、人性化的仪器应用体验。同时可选配不同的检测器电导检测器、紫外检测器、电化学检测器,广泛应用于固废垃圾、电解电镀行业、军事军工、核工业、污水处理、环境监测、食品药品、水文地质、卫生防疫等领域。YC9000智能型离子色谱仪  作为专利产品的YC9000智能型离子色谱仪,它是在传统离子色谱仪基础上,吸收国际最新技术成果,研发出的高精度、高灵敏度和高稳定的新型离子色谱仪,目前已获得多项国家专利,具有自主知识产权,是国内唯一采用功能模块化设计,全面集成智能MT技术,是集成度和智能化最高的一款智能型离子色谱仪,该技术使得离子色谱仪中的各个重要组件都具有智能化的思维能力,可自动识别、自动设置最优工作参数、自动保存使用记录和溯源。并能实现双通道和多种检测器同时检测。该款仪器的一体化、人性化设计、性价比等方面更易于被用户接受,其应用领域更为广泛,包括军事军工、核工业、科研院所,石油化工、水文地质、环境保护、质量检验、卫生防疫、电力电子等等。  (从左至右、从上至下:HB6020自动烟尘烟气测试仪、HB6040紫外吸收烟气监测系统、HB6080多组分气体检测仪、HA6012大气综合采样器)  HB6020自动烟尘烟气测试仪采用 双重自动跟踪采样方式,双核主机机构,多级光电隔离技术,具有自动存储采样数据功能,可测量烟气、烟尘、含湿量、流速、动压、静压、烟温、油烟(如 O2 ,SO2,NO,NO2,CO ,CO2,H2S)烟气排放量、空气过剩系数在内的等所有参数,这款仪器主要适用于测量烟尘、烟气、油烟、沥青烟和半挥发性/有机物,自动烟尘烟气分析仪采用工业级微型 PC机作为仪器的主控平台,是在传统原有的基础上,吸取国内外先进技术成果。继研制出的新一代智能型自动烟尘烟气测试仪,该仪器的成功研制,使我国的烟尘平行采样仪研制水平再上台阶。该仪器完全摒弃了国内同类仪器一直使用的单片机控制技术,因而具有众多传统该类仪器不可比拟的优异特点和性能。本产品一经推向市场,即获得了全国广大监测人员的一致赞誉。  HB6040紫外吸收烟气监测系统是一款适用于监测氧气、二氧化硫、一氧化氮、氨气的烟气监测系统,实现参数的备份、烟气测量的优化、标定流程的优化、工况测量操作的优化、整套从取谱到标定流程完成的优化 具有体积小,重量轻,数据稳定,使用寿命长,无需频繁标定,另外具有结构简单,安装方便,参数“保真”,能高效去除水对SO2、NO2、NH3吸收干扰,数据更真实,运算速度高、功能强大,数据量大,数据保存周期长等特点 使用目前最先进的实用化监测技术,解决电化学传感器无法解决的交叉干扰问题。  HB6080多组分气体检测仪 采用便携式结构,操作方便,体积轻巧,故障率低,维护简捷方便,适用范围广泛,是一种吸取国内外同类仪器之优点,由研发人员精心研制的新一代智能通讯型检测仪,该机技术性能指标符合国家政府部门颁布的有毒气体、室内气体检测等有关规定,传感器与主机结构设计合理,更换简单 单片机自动识别传感器种类,任意设定报警限值 采用新型贴片焊接工艺,极大地降低故障发生率 体积小巧,携带方便,确属应急事故检测、废弃物现场调查、室内空气检测、危险空间进入检测、作业场所安全检测等需求的必备产品。  HA6012大气综合采样器采用大屏幕液晶显示,微电脑同时控制大气采样及颗粒物采样,集采大气与颗粒物于一体,一键采样人性化设计,带有记忆功能,开机无需重新设置参数 体积小、重量轻、噪音低、智能化程度高、流量稳定、运行可靠,采样瓶、干燥瓶为内置式结构设计,恒温、避光性好 这款仪器广泛应用于环境监测、卫生防疫、企业工矿、评价机构、科研院校等部门进行有害气体及颗粒物的采样。本仪器集采集NOx、SO2等有害气体、颗粒物于一体的综合大气采样器,适用无人值守全天候工作,配套相应的切割器可采集TSP、PM10、PM5、PM2.5 、PM1等颗粒物。DM-600型红外分光测油仪  DM-600型红外分光测油仪是根据国家标准GB/T16488-1996所规定的水质、石油类和动物油的测定方法红外分光光度法进行开发研制的一类专用仪器。该仪器采用微机控制,能自动测量,光学元件固定、性能稳定,较之重量法,紫外法,荧光法等以前的方法,具有重现性好、准确度高、可比性强、不受油品成分结构限制,操作简单方便等显著特点,是与国际标准接轨的首选仪器,可广泛应用于各级环境监测部门对于地面水,地下水,生活污水,石油化工等行业循环水、污水中含油量及饮食油烟排放的监测。  一直以来,青岛埃仑坚持把产品质量做为企业生产之本、发展之源。一路走来,青岛埃仑始终践行企业承诺,兢兢业业,珍惜每次能与渠道商拓展合作的时机,与广大客户互利双赢。通过三十多年的不懈努力,青岛埃仑以卓越的产品质量和优质的客户服务,在业界获得了良好的口碑,成为国内离子色谱行业的领导者。5月20日,青岛埃仑期待与更多的合作伙伴共聚河南郑州。  关于青岛埃仑  青岛埃仑是国内最早生产离子色谱仪的厂家之一,继承和发展了青岛易通研究所的技术,是以研发、制造、销售和售后服务为一体的高新技术企业,是离子色谱仪领导品牌。并与中国科学院生态环境研究院、南开大学等单位战略合作,从事新技术、新检测方法的研究,为行业仪器的不断出新提供强有力的方法支持。专业造就实力,服务赢得信赖,青岛埃仑决心通过雄厚的技术力量、艰苦扎实的努力、高度的责任心和事业感,树立起中国分析仪器的一面旗帜,为色谱分析行业的快速发展做出更大的贡献。
  • 质检总局发布:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法SN/T 4429.2-2016
    中华人民共和国国家质量监督检验检疫总局公告 国质检认[2016]131号 现将《原油中总汞含量的测定 塞曼校正冷原子吸收光谱法》等110项出入境检验检疫行业标准予以发布。生效日期为2016年10月1日。该标准采用LUMEX高频塞曼测汞仪分析原油中的汞含量。塞曼校正技术具有高灵敏、高选择性以及抗干扰性强等特点,能有效去除芳香族的伪数据等问题。标准编号:SN/T 4429.2-2016标准名称:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法英文名称:Determination of total mercury in crude oil一Zeeman correction一 Cold atomic absorption spectrometry发布部门:国家质量监督检验检疫总局起草单位:中华人民共和国宁波出入境检验检疫局标准状态:现行发布日期:2016-03-09实施日期:2016-10-01标准格式:PDF标准简介:SN/T 4429的本部分规定了原油中总汞含量的塞曼校正冷原子吸收光谱测定方法。本部分适用于原油中总汞含量的测定,汞的最低测定限为2μg/kg。(来源:LUMEX公司)
  • 磁矩的量值溯源标定研究取得突破
    磁矩,是磁铁或载流体提供磁场能力的一种度量,得自其中所有闭合电流与回路面积相乘并矢量求和。关注和应用好磁矩,事关我们手机中的时钟更加精准(让原子钟的磁矩不受干扰),事关我们更早且更加清晰的看到体内发生的病变(核磁共振成像),事关我们用上更加绿色高效的电动车与发电机(高性能稀土永磁电机),事关我们从源头获知太阳与地球的演化规律并对灾害进行预测与防范(行星磁天气)……。由于未发现直接关联频标的量子效应,磁矩未被2019年颁布的新国际单位制列入量子基准序列,而且世界现行的磁性测量设备中参考的磁矩标准仍然完全依赖于镍球等实物。为了建立跟磁矩的重要性相匹配的计量手段,解决实物磁矩标准随温度、压力等环境影响的固有问题,一方面继续探索让磁矩关联频标的量子效应;另一方面应当尽快建立磁矩跟频标基准的间接关联。自20世纪50年代以来,振动样品磁强计(VSM)被开发并广泛用于研究物质磁性,尤其是尺寸形态受限材料的基本磁性,与磁天平和超导量子干涉仪(SQUID)等设备相比,VSM在磁矩测量范围、操作方便性和环境兼容性方面具有巨大优势,故而已成为表征磁性材料特性的标准仪器,其测量的精准度和可靠性提高对于磁性材料产业升级至关重要。美国国家技术研究所(NIST)曾引入比较法和斜率法两种不确定度约为0.5%的VSM校准方法,比较法使用标准镍球等实物的饱和磁矩点作为参考对象来标定设备磁矩;斜率法使用磁导率2000以上磁性材料,通过磁矩与磁场的线性依赖曲线实现磁矩和外部磁场的关联标定。原则上VSM也可以在没有标准参考的情况下运用非线性探测线圈的结构系数进行校准,然而除了无法溯源以及线圈系统的制造和组装过程偏离理想设计之外,内标非线性检测线圈的均匀鞍区比标准VSM小得多,对样品位置和振幅敏感也导致较大的不确定性。美国材料测试标准委员会(ASTM)等组织也曾经建议过使用线圈进行宽范围磁矩的标定,但标定不确定度以及如何准确溯源到量子基准,并未清晰描述。因此,宽范围、高精准度且不依赖于实物可独立溯源的磁矩标定是VSM计量校准中的一个重要问题。中国科学院物理研究所/北京凝聚态物理国家研究中心磁学国家重点实验室长期围绕我国稀土磁性材料产业升级过程中对测量设备的迫切需求,致力于提升材料磁性测量的精准度和一致性,同时攻克磁矩不能量子溯源等基础难题。公共技术组陆俊副主任工程师长期从事精密磁性测量研究,运用高灵敏与大鞍区的振动样品磁强计探测线圈阵列的研发、锁相放大器等关键技术积累,与M03组许志一副主任工程师以及计量院张志高与贺建高工合作,在部件完全国产的振动样品磁强计中,磁矩量通过电流线圈进行量子溯源。为了实现首次建立磁矩测量与计量通往量子基准的路径,让磁矩量不依赖于线圈的材质、匝数、温度与磁场的环境影响,线圈绕组匝面积和直流电流分别使用磁通计和量子电流标准进行原位标定;磁通计分别通过伏秒发生器和核磁共振(NMR)对磁通量和磁场进行标定,从而容易地溯源到量子基准;此外,电流磁矩的标定以电流差值引起磁矩变化作为依据,原位扣除掉材质等背景影响,以避免线圈材质磁性及外场对静态磁矩的影响。为了确保大范围磁矩标定的稳定性和复现性,一方面要绕制尺寸较小同时载流能力较大的磁矩线圈,更重要的是设计并实现专门用于量子溯源标定的VSM探测线圈阵列。国内外商用的VSM的通常1%均匀区范围不超过2毫米,远不能满足让磁矩线圈获得跟NIST镍球标准可比拟的精准度,这在很大程度上制约了前述利用电流磁矩线圈进行量子溯源难题的解决。碰巧,陆俊对于VSM探测线圈系统的设计已有多年的研究积累,他根据互易原理设计并系统优化四线圈VSM探测阵列,从Biot-Sarvart定理出发逐层建构线圈阵列的灵敏度因子对应的磁场梯度分布仿真平台。通过分析检测线圈的结构和配置中的五个主要参数:主直径、垂直间距、水平间距、径向绕组数和绕层数,寻求出逐步收敛的方式优化多参数,实现纵向8毫米内0.1%不均匀度的鞍区设计指标。通过线圈磁矩标定系统的设计制作调试与在VSM中反复验证,陆俊与张志高、许志一、以及贺建合作,将0.3%不确定的鞍区尺度提高到8毫米,使得磁矩微线圈以低不确定度标定,最终实现磁矩计量在宏观磁性测量设备中的突破:设计并验证可溯源到量子基准的磁矩线圈不仅能在四个数量级范围内进行标定,不受外加磁场变化与温度波动干扰,而且在2.5~3.7微安平方米之间的精准度达到0.3%(优于不确定度为0.5%的NIST镍球标准),在计量标准源头解除我国磁性测量设备对国外的依赖,且有助于国际磁性测量标准的改进。国际单位制的变迁反映人类认知客观世界的整体水平的逐步提升,磁矩在电磁量纲体系中仍然处于短板地位,一定程度上制约着电磁学的总体认知。为了深入磁矩的测量,磁学实验室将继续发挥自身基础研究的职责优势,跟国内外同仁一道,进一步通过系统降低测量不确定度来提高磁矩量子溯源的水平,同时不断探索直接关联宏观效应与微观磁矩的量子效应。宽范围磁矩溯源量子基准的标定研究,应用于振动样品磁强计的详细进展,近期发表于IEEE仪器与测量专刊【IEEE Transactions on Instrumentation and Measurement 71 (2022) 1006009】。本工作的资助先后获自国家自然科学基金(批准号:51327806、12174425)、中国科学院青年创新促进会(批准号:2018009)、中国科学院重点研究计划项目(批准号:ZDRW-CN-2021-3)、以及科技部重点研发计划(批准号:2018YFF0212603、2021YFF0701000)。图1 运用电流量子溯源的磁矩线圈在振动样品磁强计中进行磁矩标定的仪器结构图图2 振动样品磁矩探测线圈阵列的多参数系统设计与优化过程分析数据曲线图集图3 经磁场梯度均匀性优化的探测线圈阵列,鞍区内灵敏度分布仿真图图4 振动样品磁强计中用磁矩线圈标定的量子溯源路径示意图图5 实测的均匀区范围以及磁矩测量准确性随振动幅度依赖曲线图6 量子溯源标定线圈的磁矩稳定性曲线图7 量子溯源标定线圈的磁矩量值跨四个数量级准确性以及跟NIST现有标准性能对照曲线
  • 【自传】像差校正电镜技术先驱之Maximilian Haider
    p style=" text-align: justify text-indent: 2em " 日前,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。 a href=" https://www.instrument.com.cn/news/20200602/540174.shtml" target=" _self" style=" text-decoration: underline " 其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider、Knut Urban、Harald Rose和Ondrej L. Krivanek。 /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b9d1f53f-de22-4e55-bddf-c0c01576d0ad.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong Maximilian Haider,德国CEOS GmbH公司联合创始人 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 作为科维理奖的获奖人之一,Maximilian Haider是奥地利的物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。 /p p style=" text-align: justify text-indent: 2em " 他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。 /p p style=" text-align: justify text-indent: 2em " Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。 /p p style=" text-align: justify text-indent: 2em " 他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 112, 192) " 【自传】 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 1950年,我出生于奥地利一个历史悠久的小镇,我的父亲Maximilian Haider和母亲Anna Haider在那里经营着一家父亲从爷爷手里接管的制表店,我的长兄此时已经步入了自己的人生轨道,成为了制表师。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 300px height: 260px " src=" https://img1.17img.cn/17img/images/202006/uepic/e2d16dd2-a64c-4f1a-8242-d945013d069f.jpg" title=" 1960年,10岁的我在小学读书.png" alt=" 1960年,10岁的我在小学读书.png" width=" 300" height=" 260" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1960年,10岁的我在小学读书 /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-align: justify text-indent: 2em " 为了扩大业务,我在童年时期,就被早早的认为应该成为一个眼镜师。因此,在14岁的时候,我开始在奥地利林茨做眼镜师学徒。 /span /p p style=" text-align:center" span style=" text-align: justify text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/edd1ed71-dcc3-45ac-9096-2bfcb6511b50.jpg" title=" 2.png" alt=" 2.png" / /span /p p style=" text-indent: 0em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center " strong 在奥地利林茨当学徒时(我是右边的最后一个人) /strong /p p style=" text-indent: 0em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: justify text-indent: 2em " 第一次眼镜师认证考试后,我意识到自己并不喜欢作为眼镜师的一生。因此,在接下来的几年中,我通过了几次考试,上了大学,并在我26岁的时候,开始在基尔大学和德国达姆施塔特工业大学学习物理。 /p p style=" text-align: justify text-indent: 2em " 为了毕业论文,我联系了在理论粒子光学领域做研究的Harald Rose团队。当我还是一名眼镜师的时候就知道了电子光学中常见的像差,那时进行的像差校正项目更是深深的吸引住了我。我的任务是开发一种用于像差校正器的新型十二极元件,利用该元件生成所需的强四极和八极场。 /p p style=" text-align: justify text-indent: 2em " 在达姆施塔特工业大学应用物理研究所,由Otto Scherzer和Harald Rose领导的两个小组正在进行一项长期计划,即利用四极、八极杆校正系统装置校正传统TEM的Cs和Cc像差。这种校正器的开发是在七十年代末,是像差校正的最新技术,但是无法证明这确实能提高分辨率。由于自制瞬变电磁法的不稳定性失败了,而不是由于像差的限制。 /p p style=" text-align: justify text-indent: 2em " 因最后一位能够使用该仪器的科学家已离开本行业,所以在完成毕业论文之前,我必须学习如何操作复杂的仪器(最早的功能像差校正TEM):要控制大量电源的同时,还必须保持各种镜头的机械调节器稳定,整个系统的校准必须在没有计算机或CCD摄像机帮助的情况下手动进行。最后,该项目成功地证明了可以补偿Cs和Cc这两个像差,但未能显示出分辨率的提高。不过,该项目使我确信像差校正在未来可以提高分辨率,同时我也很清楚,人们应该只用足够的钱来购买最先进的TEM并首先对其进行研究以确保分辨率受到像差限制,否则,将会再次遇到相同的问题。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/eda0c272-eb6f-4790-9848-283409802f2c.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1984年,我与Joachim Zach一起参加布达佩斯欧洲会议 /strong /p p style=" text-align: justify text-indent: 2em " 取得文凭后,我继续在Rose小组工作,计划对现有的像差校正TEM进行改进。不幸的是,德国研究基金会(DFG)的资助提案被拒绝了,因为Harald Rose是一名理论家,而他申请的项目是一项具有实验挑战性的任务。 /p p style=" text-align: justify text-indent: 2em " 此后不久,达姆施塔特像差校正项目的第二位“父亲”Otto Scherzer去世,项目也无法获得资金。因此,我在海德堡的欧洲分子生物学实验室(EMBL)任职,开发用于STEM的电子光谱仪。对于这种设备,像差的补偿也是必不可少的。 /p p style=" text-align: justify text-indent: 2em " 1987年,随着针对专用STEM的高色散电子光谱仪的成功开发,以及与Rose小组的密切合作,我获得了博士学位。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 300px height: 367px " src=" https://img1.17img.cn/17img/images/202006/uepic/2b221dc1-8442-4339-9aba-14d2a2db5ba4.jpg" title=" 4.png" alt=" 4.png" width=" 300" height=" 367" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 1987年,我带着小女儿参加博士庆典 /strong /p p style=" text-align: justify text-indent: 2em " 之后,我继续将现有的两个专用STEM用于TEM,因为实现像差校正系统来提高可用分辨率的想法并没有让我失望。然而,在全球范围内,电子光学在当时的物理学中失去了吸引力。emeriti被来自其他领域的科学家代替后,几个小组不得不关闭。同样,因为全球的几个像差校正项目都失败了,各资助机构也失去了兴趣,并且人们普遍认为,高分辨率电子显微镜(EM)的像差校正行不通,并且是“不可想象的”,尤其是对于商业仪器而言。 /p p style=" text-align: justify text-indent: 2em " 唯一可行的选择似乎是通过增加加速电压来减小用于物体成像的电子波长。因此,仪器体积变大,价格也更昂贵了:仪器已经非常先进,材料科学领域的高分辨率证明可以达到300kV、400 kV甚至1.2 MV;分辨率的确可以提高,然而,在TEM中观察到的物体的光束损伤大大增加。 /p p style=" text-align: justify text-indent: 2em " 虽然电子光学领域的工作并不受欢迎,但我不能忘记我长期以来的想法,即扫除达到亚埃分辨率道路上最大的障碍。在生物领域里,除了一些习惯使用SEM检查完整细胞的细胞生物学家之外,几乎没有人对我的这个想法感兴趣。 /p p style=" text-align: justify text-indent: 2em " 然而,在一些内部资金和与半导体公司ICT(慕尼黑)的合作下,我们能够开始在EMBL内开发像差校正SEM。Rose团队的研究生Joachim Zach提出了一种像差校正SEM色谱柱的理论,该色谱柱的分辨率应从5-6 nm降低到1-2 nm。基于此,我们与ICT合作,包括在EMBL工作了两年的ICT科学家Stefan Lanio,设计并构造了一个像差校正器。 /p p style=" text-align: justify text-indent: 2em " 在为SEM构造像差校正器的这段时间内,Arthur Jones退休了,我成为小组负责人,Joachim Zach加入了团队,并继续我们的研发。因为没有钱买现代的高分辨率扫描电镜,我们利用使用过的SEM,安装了带有肖特基发射器的新型电子枪。该电子枪具有更高的亮度和更小的能量宽度。我们的像差校正系统由四个复合的静电和磁多极(十二极)元件组成。该系统允许激发所有需要的四极场来调整校正器内的象散射线路径,并使线焦点位于元素2和3的中心,在这一点上,我们通过激发强的、几乎完全平衡的静电和磁性四极场来补偿色差。在这些元件上,我们还能够通过激发强八极杆场来补偿两部分的球差,球差的第三部分由元素1和4上的附加八极杆场补偿。 /p p style=" text-align: justify text-indent: 2em " 1995年,我们终于能够证明物镜的色差和球面像差得到了完全补偿,并且在1 keV的加速能量下,分辨率从5.8 nm降低到了1.8 nm。这是有史以来第一次通过四极八极杆校正器提高分辨率。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/55af1aa6-e8b4-4aff-873c-09418f1763f1.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align: justify text-indent: 2em " 但是很明显,我们的SEM校正系统是为极低的能量设计的。TEMs的解决方案,即当电子通过一个薄物体时,使用更高的能量来产生主要的单次散射事件,仍有待发现。 /p p style=" text-align: justify text-indent: 2em " 在1990年代初,用于高分辨率TEM和STEM的新型电子源(场发射源)在市场上可以买到。这些电子发射器具有较高的亮度和较小的一次能量宽度等优点,这与1980年代和Harald Rose进行的多次讨论中提出的想法相吻合:通过仅将系统集中在球差补偿上,可以降低像差校正器的复杂性,如果能将一次能量宽度保持在1ev以下,并且用能量约为200kev的电子对物体成像,就能将色差引起的对比度降低降到最低。 /p p style=" text-align: justify text-indent: 2em " 早在1981年,Harald Rose提出了一种用于STEM的六极校正器,该校正器仅能补偿球差。他认为该校正器对于形成探针的电子束已经足够,因为它不允许TEM需要任何视野。 /p p style=" text-align: justify text-indent: 2em " 1989年,在萨尔茨堡举行的显微镜会议是我们开发经Cs校正的TEM起点,此后由大众基金会资助:MPI斯图加特新订购的1.2 MeV TEM展示引发了一种方法的讨论,它能够提高TEM在材料科学中的分辨能,但是成本较高。Knut Urban是Forschungszentrum Julich的一名材料科学家,他迫切需要高分辨率的仪器,电子光学理论家Harald Rose和我讨论了为一个更便宜、具有更好分辨率和更少光束损伤项目筹集资金的可能性。 /p p style=" text-align: justify text-indent: 2em " 1989年底,Rose扩展了STEM校正器概念,并提出了一种在物镜后面带有附加传输系统的六极校正器,以实现可接受的视野并将其应用于TEM中。 /p p style=" text-align: justify text-indent: 2em " 1990年,他在《Optik》杂志上发表自己的想法,作为“球形校正半平面中压透射电子显微镜的概述”。 /p p style=" text-align: justify text-indent: 2em " 与此同时,我们三个人继续讨论如何实现提出的校准器,1990年底,我们最终确定了大众基金会的拨款提案。在提交之前,我需要总干事的许可才能在EMBL内执行该项目——毕竟是分子生物学实验室,而不是物理研究所。但是由于所有的资助都是外部的,而且技术是前瞻性的,该仪器以后可以用于EMBL的结构研究,项目得到了许可。 /p p style=" text-align: justify text-indent: 2em " 1991年夏天,这项建议预先获得接受,并将五年里分了两个项目:第一部分的任务是在最先进的TEM获得资金之前,对概念进行验证;1992年1月,我们开始了六极校正器得研制。因此,我们的两个像差校正项目并排运行:SEM项目旨在校正1.5 kV至0.5 kV之间的色差和球差,而TEM项目旨在消除80 kV至200 kV的球差。 span style=" text-indent: 2em " 对于SEM项目,必须采用四极/八极校正器设计,而对于TEM项目,则要开发新的六极校正器。 /span /p p style=" text-align: justify text-indent: 2em " 在1994年夏季的巴黎国际会议上,证明了遵循Harald Rose概述的六极校正器的原理。这为新TEM的筹资铺平了道路。 /p p style=" text-align: justify text-indent: 2em " 1995年,仪器安装完毕,开始安装六极校正器。早在1995年底,Joachim Zach即可通过SEM像差校正器将分辨率从5.6 nm降低到1.8 nm。然而,与此同时,新的EMBL主任停止了物理仪器项目,这意味着我们组的所有合同,包括我自己的合同,将在1996年7月终止。看起来,我们已经快没有时间进行突破了。 /p p style=" text-align: justify text-indent: 2em " 因此,我们与时间的竞赛开始了。1996年夏天,我们能够在TEM中显示六极校正器对球差的补偿。但是,由于物镜中附加镜头的水冷引起的不稳定性,无法证明分辨率的提高。我获得了大众基金会一个为期一年的项目资金,并且在没有EMBL额外资金的情况下获得了可用空间进行此扩展的许可。1996年秋,我们设法摆脱了一些不稳定因素,但在1997春,在物镜区域仍然很明显地存在一种不稳定因素。 /p p style=" text-align: justify text-indent: 2em " 接下来的几个月是非常戏剧性的。我知道我们必须关闭TEM并将显微镜在7月底转移到Jü lich。5月,我决定在物镜下设计一个新的强透镜,以减少光束直径周围的不稳定区域。我们在6月份的时候就可以使用这种新镜片,但是在开启新镜片后的第一次测试中仍然显示出已知的不稳定性。然而,几个小时后,在午夜时分,我们突然获得了分辨率从最初的0.24 nm下降到0.12 nm的图像! /p p style=" text-align: justify text-indent: 2em " 1997年6月底,项目圆满完成。我们拍摄了一些照片用于会议演示,1997年7月,第一个经过校正的像差TEM被送到了位于Julich的Knut Urban实验室。 /p p style=" text-align: justify text-indent: 2em " 没有以下两个先决条件我们是不可能实现这一重大飞跃的。首先,在1996年夏季,当EMBL很显然无法实现进一步的发展时,我们在海德堡成立了校正电子光学系统(CEOS)公司。在很短的时间内,通过专门设计的中间镜头来消除不稳定性的策略,只有在CEOS一名员工的帮助下才可行,他把新镜头的设计和建造作为自己的首要任务。其次,在该项目的最后一年中,我从Rose小组聘请了Stephan Uhlemann,他在博士期间已经研究了六极校正器的理论,以开发一种对准策略。,实践证明,该方法对于使校正器和整个仪器都处于良好对准状态非常有用。 /p p style=" text-align: justify text-indent: 2em " 为什么CEOS公司成立于1996年? 就在第一个SEM校正器完成时,我们收到了日本JEOL公司的要求,用于开发用于晶圆检查工具的SEM校正器。为了执行此任务,我说服Joachim Zach(30%)共同创立了我们公司的CEOS。另外还有Harald Rose(5%)和我所在集团的前电子工程师Peter Raynor(5%)。公司成立后,我们开始与JEOL合作,并为他们的检测工具开发了第一个商用像差校正器。Harald Rose和Peter Raynor仅充当股东,而我和Joachim Zach共同管理,并在只增加三名员工的情况下创建了这家公司。 /p p style=" text-align: justify text-indent: 2em " 用于高分辨率TEM的新型六极校正器的展示引起了很多关注:实验室开始筹集资金,几家公司与我们进行了谈判,以确保获得这项新技术并出售包括新型校正器在内的仪器,德国研究基金会发起了一项为各种机构的新仪器提供资金的计划。越来越多的活动使得CEOS有必要在海德堡寻找新的办公地点,因此我们用私人资金投资建造了一座可以容纳四个单独实验室的新楼,为我们的客户——EM制造商Zeiss、Hitachi、JEOL和Philips/FEI。在2003年,我们已与四家公司达成了合作协议。 /p p style=" text-align: justify text-indent: 2em " 2000年,当新的像差校正系统很显然取得了成功,受到材料科学界的广泛认可和赞赏时,美国能源部开始讨论进一步开发300 kV的超高分辨率TEM,在TEM和STEM中均达到50 pm的分辨率,不仅要求TEM补偿球面色差,还要补偿色差。 span style=" text-indent: 2em " 随后,TEAM项目(透射电子像差校正显微镜)于2005年启动,且要在2008年夏季完成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 2008年4月,在Argonne的DOE实验室安装了TEM原型机,并在Oak Ridge安装了经过Cs校正的STEM之后,我们终于设法将整个双校正300 kV仪器运送到NCEM/Berkeley。对于STEM,我们开发了先进的六极校正器,甚至可以补偿五阶极限像差,并显示50 pm的分辨率。但是,对于Cc / Cs校正器,我们发现在200 kV时分辨率为55 pm,在300 kV时分辨率仅为65 pm,尽管在300 kV时较短的波长有望显示出更好的结果。即使接受了像差校正的TEM,我们也没有放弃调查在300kV和200kV时失去相干性的原因。 /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 直到2013年,我们才能够通过计算和实验工作(主要是Stephan Uhlemann)来解释降低分辨率的原因。由于校正器内电子束的直径较大,因此任何金属中的自由电子均会通过相关作用产生小的电子电流,其较小的磁场会产生磁噪声。由于四极场的强度有限,需要较大的束径才能产生足够的聚焦功率。为了解决磁噪声的问题,我们为Julich升级了TEAM的现有副本,从而将200kv和300kv的分辨率提高到50pm。 /span /p p style=" text-align: justify text-indent: 2em " 当我们刚刚完成TEAM项目时,乌尔姆大学的Ute Kaiser要求进行一个联合项目,以开发专用的低压(20kV至80kV最高)像差校正器。 /p p style=" text-align: justify text-indent: 2em " 亚秒级低压电子显微镜(SALVE)项目是与蔡司(Zeiss)的联合项目,该项目由德国联邦政府和DFG和巴登-符腾堡州共同资助。然而,2013年,蔡司停止了TEM业务,并与FEI找到了一个新的基础仪器项目合作伙伴。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 311px " src=" https://img1.17img.cn/17img/images/202006/uepic/6719a238-98b8-47c9-b5de-1bc2ec386768.jpg" title=" 6.png" alt=" 6.png" width=" 450" height=" 311" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 我和Christa Charlotte在夏威夷 /strong /p p strong /strong /p p style=" text-align: justify text-indent: 2em " 我们利用蔡司回酬谈判和与FEI达成新协议之间的时间来修改现有的SALVE校正器并针对磁噪声进行优化。 /p p style=" text-align: justify text-indent: 2em " SALVE项目于2016年完成,具有低能耗实现分辨率的新里程碑。例如,即使在40keV能量下,也能达到亚埃分辨率,尽管在这种能量下电子的波长要比200kV时大得多。作为实现分辨率的品质因数,采用了用于成像电子的波长:在具有挑战性的TEAM项目中,目标是达到20倍波长的分辨率。我们为SALVE项目设定了相同的目标,设法获得了20到80kV之间波长约15倍的分辨率,超过了TEAM项目的结果。与具有100倍波长分辨率的未校正TEM相比,提高了近7倍。 /p p style=" text-align: justify text-indent: 2em " 除了这些具有挑战性的研发项目外,我们还必须为多家公司组织Cs校正器的生产。因此,在2005年TEAM项目启动时,我们改变了与FEI在TEM和STEM方面的合作,并准许他们根据我们的技术生产六极Cs校正器。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/cf9f8aa9-53b9-45c8-81e3-fd7c7cb481e6.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " strong 2005年,和Joachim Frank在瑞士达沃斯举行的EM会议上 /strong /p p style=" text-align: justify text-indent: 2em " 多年来,CEOS公司不断发展壮大,从1996年5个人组成的团队发展成为如今拥有近50名员工的企业。由于与达姆施塔特的Roses团队的密切互动,我们认识了他的博士生,并且可以聘用一些。最后,我们聚集了Rose的前7名博士生,他们都对电子光学非常了解。 /p p style=" text-align: justify text-indent: 2em " 我们必须将Heidelberg公司的办公场所扩展三倍,到2019年底,全球共安装了约900台基于CEOS技术的六极校正器,约占像差校正电子显微镜全球市场的90%。 br/ /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/a7666669-5faf-4411-854c-27463941b80f.jpg" title=" 7.png" alt=" 7.png" width=" 450" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 一群曾经在CEOS公司工作的H.Rose的学生在大楼前庆祝10周年 /strong /p p style=" text-align: justify text-indent: 2em " 当我从眼镜师转为物理学家时,妻子Brigitte在1988年被诊断出患有癌症,我的生活发生了巨大变化。 /p p style=" text-align: justify text-indent: 2em " 1989年,我们从达姆施塔特搬到海德堡附近的一个村庄,住在离我当时工作的EMBL更近的地方。妻子于1990年去世,同年,Harald Rose、Knut Urban和我建立了经Cs校正的联合TEM项目,并且正为该项目筹集资金。 /p p style=" text-align: justify text-indent: 2em " 随着Brigitte病情的发展,她碰巧遇到正在休产假的新教牧师Christa Charlotte,她的孩子与我的两个孩子的年龄相近。在接下来的几个月中,Christa Charlotte承担起了对我妻子精神上的照顾,Brigitte去世后,作为单亲妈妈的她很支持我。我们坠入了爱河,于1995年建立了一个共同的家庭,并在2000年幸福地结婚。我感到非常荣幸,感谢我的第二任妻子和所有的孩子,我的生活经历了这种积极的变化。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/202006/uepic/88d5d50c-2606-4318-8bc5-dd5f5d8697bc.jpg" title=" 8.png" alt=" 8.png" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 2008年,我与K.Urban和H.Rose在本田奖庆祝活动后的合影 /strong /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 423px " src=" https://img1.17img.cn/17img/images/202006/uepic/684f5c59-1526-4dfc-82dd-a8b926dcb504.jpg" title=" 9.png" alt=" 9.png" width=" 450" height=" 423" border=" 0" vspace=" 0" / /p p style=" text-indent: 0em text-align: center " strong 与H.Rose一起参加海德堡大学生日研讨会 /strong /p p & nbsp /p p style=" text-align: justify text-indent: 2em " strong 延伸阅读: /strong /p p style=" text-align: left text-indent: 0em " span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" https://www.instrument.com.cn/news/20201104/563818.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " 【自传】像差校正电镜技术先驱之Harald Rose /a /span /p p style=" text-align: left text-indent: 0em " a href=" https://www.instrument.com.cn/news/20201112/564599.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Ondrej L. Krivanek /span /a /p p style=" text-indent: 0em text-align: left " a href=" https://www.instrument.com.cn/news/20201204/566735.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 【自传】像差校正电镜技术先驱之Knut Urban /span /a /p p br/ /p
  • 蓝菲光学公司的FS2投射灯测量系统用于标定光谱特性
    一种新的投射灯测量标准出现在地平线上,蓝菲光学公司已经开发出FS2投射灯光谱通量测量系统,它可以精确地测量出光辐射度、光度学和色度学等参数。对于商用、海用、军事、头戴式、应急路旁和室内外照明手电筒等投射灯的开发和制造方面,该专用的测试系统是对灯的发光效能进行综合评价的最有效校准仪器。 这种FS2系统可以测量总光谱辐射通量 (Watts/nm)、总辐射通量(Watts)、总光通量(lumens)、色温(CCT)、灯泡性能随时间的变化、峰值波长和主波长、光谱纯度、显色指数(CRI)、色度坐标和有效带宽等参数。该系统具有很大的动态范围,因此可以对各种灯泡,包括LED、钨灯、氙灯、氪灯等灯泡进行测量。 该系统包括一个积分球表面镀有蓝菲光学公司所特有的高漫反射率材料Spectraflect?的反射面,因此空间尺寸非常紧凑。对于测量方向性很强的投射光源来说,可以保证获得一致的、可重复和可再现的测量结果。借助于位于侧面的输入口,可以很方便地测量前向总光谱通量,在积分球的内部,有一个供选用的内部安装平台,可以用它来测量手电筒等投射灯的总光谱通量。 借助于一个吸收校正灯泡,可以对置换误差进行校正,并且提供了前向光谱通量标准,以供用户进行自行校准。灯泡的分布能进一步减少空间置换误差。投射灯专用的光谱通量测量软件MtrX-Flashlight提供了一个用户友好的、直观的平台,通过它可以对系统进行校正和分析测量结果。所有的测量结果都可以立即在图形界面中显示出来,并且能够生成并打印出报告。
  • 气相色谱仪检测器的常见问题,有没有戳到你?
    在气相色谱分析中,待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后采集记录数据得到色谱图,然后根据色谱图中出峰时间、峰面积或峰高,对待测组分进行定性和定量分析。因此,检测器是检测样品中待测组分含量的部件,是气相色谱的重要组成部分。如何选择合适的检测器?气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于zui佳状态。①检测器的正确选择和使用建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于zui佳状态。通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到zui佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。②其他条件的优化一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。如何提高FID的灵敏度?因为FID硬件方面对灵敏度的影响,在色谱仪出厂时已经基本确定,对于操作者而言,已经不能改变。下面主要从操作方面介绍如何提高FID检测器的灵敏度。①氮气/氢气(N2/H2)流量比N2/H2流量比将明显影响灵敏度,各生产厂家的结构设计不同,N2/H2比zui佳值也不同,可用实验来确定,一般情况下,N2流量比H2流量大些,一般N2∶H2是1∶1.5或1∶1为宜。若喷嘴孔径为φ0.4mm的,载气流量可在20-30mL/min之间;若喷嘴孔径为φ0.6mm以上的,流量可在40-50 mL/min左右为佳。其中,毛细管色谱的尾吹气,除了减少组分的柱后扩散效应外,另一个主要作用是保证zui佳N2/H2比,用来保证zui佳灵敏度。②空气流量空气流量小于200mL/min时,流量大小对灵敏度有一定影响,一般大于250mL/min条件下,空气流量对检测器灵敏度太大的影响。③放大器输入电阻与输出电路衰减值放大器输入电阻与输出电路衰减示意图,见下图。放大器输入电阻的大小决定放大器的电流放大倍数,影响FID灵敏度,输入电阻大,灵敏度高,但噪音会增大,在调节放大器输入电阻大小时,要兼顾仪器的信噪比。放大器的输出电路衰减值,有1/10、1/25、1/50,各生产厂家不同,内衰减比例也不同,改变或调节内衰减,也可改变FID灵敏度。如瓦里安公司的FID检测器的灵敏度,可设定为9、10、11、12。数字愈大代表灵敏度愈佳,数值差1代表讯号以10倍增减。当然,前提是要保证放大器基线稳定。④进样口、色谱柱、气路和FID喷嘴的清洁度进样口、气路或FID喷嘴污染,都会导致FID检测器的灵敏度下降,因此在使用过程中需要保持进样口、色谱柱、FID 喷嘴和气路的清洁,定期更换进样垫,衬管和石英棉,同时对FID检测器进行清洗。当FID被污染了应如何清洗?下面提供四种清洗FID检测器的方法,但在清洗检测器前,需仔细阅读所用气相色谱对应的说明书,以确保不会造成检测器损坏:①当喷嘴只是轻微被污染时,可以略微加大载气流量,同时增大检测器的温度,点火后,走基线,此时不要进样。因为FID检测器所检测的对象,大多为有机化合物,喷嘴上的残留以有机物为主,有机物可以通过燃烧生成水(气态)和二氧化碳(气体)被赶走。② 若喷嘴污染较严重,但还未完全堵住时,可以用专用工具小心拆下,置于预先盛有乙醇或丙酮的玻璃烧杯中(溶剂需浸没喷嘴),于超声波中超声清洗。如果超声清洗后还不行,可以用通针小心插入喷嘴孔中,轻轻抽拉,再用洗耳球将乙醇或丙酮从喷嘴的底座挤进去,让溶剂从喷嘴喷出(这会形成一定的压力,可以将喷嘴孔壁的附着物清除)。然后,再次重复上述超声波清洗操作,用超声波清洗。③当喷嘴表面积碳(一层黑色物质),这也会影响灵敏度。可用细砂纸轻轻打磨表面除去。然后按照上述②的方法将喷嘴进行清洗。④如果检测器是因为积水造成的污染,先升高检测器的温度,运行一段时间,看能否恢复正常;如果积水过多,则需要将检测器拆下,先用脱脂棉擦干,然后按照上述②的方法将检测器处理一边即可恢复使用。⑤清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气半小时,再点火升高检测室温度,zui好先在120℃保持几小时之后,再升至工作温度。TCD,如何确定物质相对校正因子?采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:①从文献上查找相对校正因子对于常规组分,通常可以在色谱相关书籍或文献上查到,如李浩春编写的《分析化学手册(第5分册)气相色谱分析》。对热导检测器(TCD)而言,常用的标准物为苯,所用载气为氦气。②实验测定相对校正因子对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。③利用规律对校正因子进行估算目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。采用TCD,产生负峰的原因有哪些?采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。FPD运行中出现熄火?信号异常?当出现FPD检测器在运行过程中出现火焰熄灭、信号过高或过低等异常现象时,应以检测样品、气路系统、检测器温度控制系统、仪器设置、FPD检测器为主要检查对象,逐步排查可能存在的问题24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 显示屏色彩管理与校正解决方案
    显示屏在当今社会扮演着至关重要的角色,触及游戏、办公、影视娱乐、零售业、交通出行等多个领域。屏幕的性能标准因应用而异,展现出广泛的多样性。这种多样性不仅体现在技术规格和视觉效果上,还反映了不同制造商和用户群体对于色彩精确度与一致性的独特需求。在这个基础上,探索各行各业的显示屏色彩测量与管理解决方案成为一项挑战,但也为技术创新和应用优化提供了广阔的空间。了解和应对这些需求,意味着能够提供定制化的色彩管理方案,以适应不同领域对视觉表现和色彩准确性的具体要求。一、电子价签的应用在现代零售环境中,电子价签正在逐渐取代传统的纸质标签,为商家提供了便捷的库存管理和产品信息更新方式。顾客也能通过扫描价签上的二维码,迅速获取商品的详细信息。然而,随着电子价签的普及,显示技术的色彩准确性和价签外壳颜色的一致性成为了重要考虑因素,尤其是在维护品牌形象和消费者体验的一致性方面。为了有效管理和控制色彩的一致性,采取以下措施至关重要:利用i1 Pro3高精度色彩测量工具及其配套软件,评估显示屏在不同颜色反射下的色彩饱和度,以及在亮度和色调方面的显示准确性。这种方法不仅帮助确保显示内容的视觉效果符合预期,也为优化用户体验提供了基础。采用Ci6x系列便携式色差仪测量电子价签外壳的色差(ΔE)数据,以准确分析和判断外壳的颜色偏差及其一致性。这一步骤对于保证产品外观质量和增强品牌识别度至关重要。通过这些专业的色彩管理工具和方法,商家可以有效地解决显示屏色彩不准确和价签外壳颜色不一致的问题,从而确保产品信息的准确传达和品牌形象的统一性。二、大尺寸高精度拼接屏应用在现代视觉展示领域,大尺寸高精度拼接屏广泛应用于多样化的场景中,随着技术的进步,这些拼接屏的边框越发微小,色彩呈现能力显著提升。尽管如此,保持各个组成单元在非工作状态下的色彩一致性依旧是一项挑战。观察从特定角度可见,即便是同一大屏,不同小屏组件展示的颜色差异明显,有的显色较深,有的则较浅,这些视觉差异影响了整体的观看体验。为了有效地管理和控制这些色彩差异,以下步骤是关键:利用高精度色彩测量工具,如eXact或Ci6x系列设备,来详细采集每个拼接屏单元的色彩数据。这一过程能精确识别各单元间的色差。根据测量得到的色差数据,将拼接屏单元按照色差大小进行系统性排序和安装,确保色差较小的单元相邻排列。这样的安排促使相邻屏幕之间的色彩差异最小化,整体色彩表现呈现出更加均匀和连贯的视觉效果。通过采用这些精细的色彩管理策略,可以大幅提升大尺寸高精度拼接屏的视觉一致性,从而优化整体观赏体验,满足高端显示需求。三、手机屏幕的应用在当代生活中,手机已成为人们日常使用频率最高的电子设备之一,随着消费者对视觉体验要求的提高,手机屏幕的色彩展现成为了一个重要的关注点。特别是在手机处于息屏或关机状态时,黑色显示的一致性尤为关键,这不仅关系到视觉效果,还影响到用户对品牌的整体印象。为了确保手机屏幕黑色显示的一致性以及在使用过程中的显色效果,以下色彩管理策略是必不可少的:反射测量:采用高端色彩测量仪器,如Ci7x00系列台式分光光度仪或Ci6x系列便携式分光光度仪,进行手机显示屏的颜色数据和反射率的准确测量。通过这些精确的数据,可以有效地进行色差管理,确保每一块生产出来的手机屏幕在色彩上的一致性。透射测量:推荐使用Ci7800或Ci7600台式分光光度仪,对手机触摸屏的透光率和雾度进行专业测试与分析。这种测量不仅有助于评估屏幕材料的质量,也是优化显示效果和提升用户体验的关键环节。通过上述色彩管理方法,可以在手机研发阶段就确保屏幕的色彩表现和质量达到高标准,从而满足消费者对高品质视觉体验的期待。四、专业显示器/笔记本终端客户对于专业设计师和摄影师而言,使用的显示器或笔记本电脑在色彩的准确性和一致性上有着极高的要求。他们常面临的挑战包括图像和视频的色彩无法真实还原或存在严重的色偏问题,以及难以评估所使用的显示设备是否达到了专业颜色标准。为确保色彩的准确管理和控制,以下方法是至关重要的:色彩校正解决方案:采用i1 Pro3色彩管理工具,这款集硬件与软件为一体的校色解决方案能够精确测量并校正显示设备的关键色彩参数,如白点、Gamma曲线、对比度和RGB色彩平衡。通过这一过程,可以建立精确的ICC色彩特性曲线,并将其加载至Windows或MAC操作系统,从而实现对显示设备的精准校正。后校正评估:在完成校正过程后,再次利用i1 Pro3等高精度测量工具对已校正的显示设备进行色彩精准度和色彩均匀性的综合评估。这一步骤不仅确保了校正结果的有效性,还能为用户提供详细的检测报告,展示校正前后的色彩表现差异。通过上述专业的色彩管理和校正流程,专业用户可以确信他们的显示设备在色彩还原和表现上达到了行业标准,有效提升了工作效率和创作质量。这种方法不仅适用于新设备的初次校正,也适合作为定期维护的一部分,以保持设备性能的持续优化。五、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 熔体校正过程需要花费多少成本?
    通过验证熔体化学性质以控制熔化过程,对于确保熔体满足铸造牌号的规格限制条件至关重要。火花直读光谱技术已被确定为铸造厂内完成该任务的最*佳方法。如今,铸造厂面临降低成本的巨大压力。简化装料过程(包括熔体校正方法)是降低成本的有效方法。然而,智能资源管理以及低成本废料和其他铸造资源的增加使用会使装料校正变得复杂、昂贵和耗时。熔体是否符合牌号要求?进行熔体分析后,如何将分析结果与牌号规格进行比较?或许可手动将熔体分析结果与公布的牌号表进行比较。该过程不仅耗费时间,甚至会带来错误结果。更好的方法是使用日立的牌号数据库,它是当今世界上可用的最全面的数据库,参考该牌号数据库可立刻提供所需的信息。如果熔体符合牌号规格要求,则其可令用户满意。但是如果熔体不符合牌号规格要求,情况将如何?下一个大问题是:如何计算需要向熔体中添加的具体附加材料方可使其符合牌号规格要求? 有多种方法可实现这一点:可使用试误法,依靠用户先前的经验。或者可使用电子表格或图表运行一些手动计算。通过使用这些方法,用户无法确定无误地校正熔体。不幸的是,如果用户必须重新开展整个测试-校正-测试过程,则成本可能会比较昂贵,并且会延迟生产线。应用装料校正过程的最有效方法是从第*一次熔体运行开始便进行校正,而这正是装料校正软件所具备的功能。与手动校正相比,使用装料校正软件可节省成本下文将列出一个应用手动装料校正过程时产生的额外成本的示例。为了保持数值的保守性,将着重以一家规模适度的工厂为例。读者可能会惊讶地发现,对于一家只有单个1吨容量感应炉的小型铸钢铸造厂而言,仅考虑能源和劳动力成本,其每年便能节省20,000欧元(约18万人民币)。所节省的时间将足以运行附加批次货物,甚至使财务状况更具吸引力。预计更大规模的工厂可节省更多的成本和资源。这些是使用日立的符合AdjCalc装料校正软件的GRADE数据库时可以节省的成本。关于如何使用这些工具以节省时间和金钱的详细演示,请关注“日立分析仪器”微信公众号点击“阅读原文”观看网络研讨会回放视频。在这段历时16分钟的视频中,日立的OES产品经理Wilhelm Sanders将为您逐步介绍装料校正过程,并显示一个详细的计算示例。
  • 技术解读 | 动态色谱法和静态容量法比较
    动态色谱法和静态容量法都是常用的比表面测试方法,目的都是确定吸附质气体的吸附量。吸附质气体的吸附量确定后,就可以由该吸附质分子的吸附量来计算待测粉体的比表面了。动态色谱法是将待测粉体样品装在样品管内(一般为U型,国仪精测具备专利直管技术,中国实用新型专利,专利号:ZL202120620155.0),通入一定比例的载气(He)和吸附质气体(N2)的混合气体,待混合气体流过样品后,根据吸附前后气体浓度变化,得到待测样品吸附量。静态容量法是将待测粉体样品装在一定体积的一段封闭的试管状样品管内,向样品管内注入一定压力的吸附质气体,根据吸附前后的压力或重量变化来确定被测样品对吸附质分子(N2)的吸附量。两种方法比较而言1、动态法的优点是适合快速比表面积测试,如电池材料、有机材料、金属粉体等的生产监控,分析速度快,分辨率高,重复性好;缺点是由于通过浓度变化来测试吸附量,当浓度为1的情况下吸附前后将没有浓度变化,所以只能测试较低的分压范围,使得孔径测试受限;动态法是相对测量,其结果的准确性受标样与待测样吸附行为异同的影响。2、静态容量法的优点是氮气分压可以实现从极低真空到接近饱和蒸汽压范围的连续且精准的控制(国仪精测已实现分压比低至10-9的极限测量),所以静态容量法可以实现比表面积及孔径的全面分析,尤其适合中大比表面和孔隙发达的样品,例如催化剂、分子筛、碳材料等样品的比表面及孔径分布分析测试。在多点BET法比表面分析方面,静态法无需液氮杯升降来吸附脱附,所以测试过程相对动态法省时;但静态法需要有抽真空、暖自由体积和冷自由体积标定的过程,加上部分样品吸附平衡过程较慢等因素,所以测试效率并不是该方法的优势。但静态法是绝对测量,其测试结果不受标样影响,在准确性上更能得到研究者的青睐;且随着真空系统和压力传感器的硬件技术发展,静态容量法在分辨率、稳定性方面都得到了很好的发展,是目前比表面积及孔径分析的主流技术。欢迎扫码咨询!
  • 气相色谱客户常见问题整理(一)
    气相色谱仪,其实是一种用气体作为流动相的色谱分析仪器,在很多领域都有其身影。原理主要是利用物质的沸点、极性及吸附性质的差异实现混合物的分离。不过,一些客户对于气相色谱的相关概念和问题还是知之甚少,今天,我们就先整理一部分内容供大家参考。一、气相色谱的分离原理是什么气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配,使原来只有微小的性质差异产生很大的效果,而使不同组分得到分离。二、气相色谱法的一些常用术语及基本概念1.相、固定相和流动相:一个体系中的某一均匀部分称为相 在色谱分离过程中,固定不动的一相称为固定相 通过或沿着固定相移动的流体称为流动相。2.色谱峰:物质通过色谱柱进到鉴定器后,记录器上出现的一个个曲线称为色谱峰。3.基线:在色谱操作条件下,没有被测组分通过鉴定器时,记录器所记录的检测器噪声随时间变化图线称为基线。4.峰高与半峰宽:由色谱峰的浓度极大点向时间座标引垂线与基线相交点间的高度称为峰高,一般以h表示。色谱峰高一半处的宽为半峰宽,一般以 x1/2表示。5.保留值与相对保留值:保留值是表示试样中各组分在色谱柱中的停留时间的数值,通常用时间或用将组分带出色谱柱所需载气的体积来表示。以一种物质作为标准,而求出其他物质的保留值对此标准物的比值,称为相对保留值。6.仪器噪音:基线的不稳定程度称噪音。7.基流:氢焰色谱,在没有进样时,仪器本身存在的基始电流(底电流),简称基流。8.峰面积:流出曲线(色谱峰)与基线构成之面积称峰面积,用A表示。9.死时间、保留时间及校正保留时间:从进样到惰性气体峰出现极大值的时间称为死时间,以td表示。从进样到出现色谱峰*值所需的时间称保留时间,以tr表示。保留时间与死时间之差称校正保留时间。以Vd表示。10.死体积、保留体积与校正保留体积:死时间与载气平均流速的乘积称为死体积,以Vd表示,载气平均流速以Fc表示,Vd=tdxFc。保留时间与载气平均流速的乘积称保留体积,以Vr表示,Vr=trxFc。三、何谓气相色谱?有几种类型?凡是以气相作为流动相的色谱*,通称为气相色谱。一般可按以下几方面分类:A、按固定相聚集态分类:(1)气固色谱:固定相是固体吸附剂。(2)气液色谱:固定相是涂在担体表面的液体。B、按固定相类型分类:(1)纸色谱:以滤纸为载体。(2)柱色谱:固定相装于色谱柱内,填充柱、空心柱、毛细管柱均属此类。(3)薄膜色谱:固定相为粉末压成的薄漠。C、按过程物理化学原理分类:(1)分配色谱:利用不同的组分在两相中有不同的分配系数以达到分离的色谱。(2)吸附色谱:利用固体吸附表面对不同组分物理吸附性能的差异达到分离的色谱。(3)其它:利用离子交换原理的离子交换色谱:利用胶体的电动效应建立的电色谱 利用温度变化发展而来的热色谱等等。D、按动力学过程原理分类:可分为冲洗法,取代法及迎头法三种。四、气相色谱法简单分析装置流程是什么?气相色谱法简单分析装置流程基本由四个部份组成:1.气源部分 2.进样装置 3.色谱柱 4.鉴定器和记录器。五、一般选择载气的依据是什么?常用的载气有哪些?作为气相色谱载气的气体,要求要化学稳定性好、纯度高、价格便宜并易取得、能适合于所用的检测器。气相色谱常用的载气有氢气、氮气、氩气、氦气、二氧化碳气等等。以上是今天整理的关于气相色谱的相关内容,后续还将继续分享,*关注我们。
  • 大连国际色谱会开幕 千名色谱学者汇聚一堂
    仪器信息网讯 2011年10月8日,由中科院大连化学物理研究所、中国化学会色谱专业委员会主办的“第二届大连国际色谱学术会议暨仪器展览会”在大连世界博览广场隆重召开。此次会议含第37届国际高效液相色谱及相关技术会议(HPLC 2011 Dalian) 、第18届全国色谱学术报告会及仪器展览会(18th NSEC),会议为期3天半,吸引了近千名国内外色谱专家、学者参与,可谓是我国色谱界的一大盛会。 会议现场   大连市副市长曲晓飞先生、中科院大连化物所所长张涛研究员、中科院大连化物所卢佩章院士、中科院大连化物所张玉奎院士、国家自然科学基金会庄乾坤教授、中科院化学所陈义研究员、荷兰阿姆斯特丹大学Peter Schoenmakers教授、中国化学会色谱专业委员会副理事长武杰研究员等出席开幕式,开幕式由中科院大连化物所许国旺研究员主持。 中科院大连化物所卢佩章院士致辞 中科院大连化物所张玉奎院士致辞 中科院大连化物所所长张涛研究员致辞 大连市副市长曲晓飞先生致辞   卢佩章院士、张玉奎院士、张涛研究员、曲晓飞副市长先后致辞,他们对于色谱领域最著名、规模最大的学术会议之一HPLC会议能首次在中国大连举办感到很荣幸,希望与会者能借此平台交流学习,并有所收获,最后预祝此次大会圆满成功。 中科院化物所许国旺研究员主持开幕式   简短的开幕式后,进入大会报告环节。主办方邀请了美国田纳西州大学Georges Guiochon教授、中科院化学所陈义研究员、国家自然科学基金委庄乾坤教授、荷兰莱顿大学Jan van der Greef教授、中科院生态环境研究中心江桂斌院士、日本名古屋大学Yoshinobu Baba教授分别作大会报告,报告内容涉及色谱柱技术最新进展、持久性有机污染物研究面临的挑战及国家自然科学基金在分析化学方面的资助情况等。 美国田纳西州大学Georges Guiochon教授   Georges Guiochon教授介绍了液相色谱柱技术最新进展,其在报告中说到,“近年来,液相色谱柱技术方面进展主要有:1999-2000年整体柱技术、2000年以来的超细颗粒技术、2007年至今的核壳型填料技术(如Halo柱、Kinetex柱、Poroshell120柱),这些进展正在改变液相色谱柱的发展轨迹。此外,更好的仪器设备也需要更好的色谱柱。总之,不同类型填料的出现将对色谱柱性能产生意想不到的改善,而这些也改变人们对传统问题的看法,并且有助于分离科学取得更大的进步。” 中科院化学所陈义研究员   陈义研究员介绍了表面等离子体共振成像(SPRi)的原理、应用及与其他技术的联用。SPRi是近年来发展的一种高灵敏、实时、免标记、高通量的成像分析新方法,能对固定在传感膜表面上分子的行为进行静态和动态的分析,尤其适合于研究生物分子的识别等反应,在生命科学、临床医学、药物筛选乃至食品检测等领域中均有广阔的应用前景。目前,该种类商品化仪器较少,陈义研究员课题组自主研发了SPRi仪器,并且实现与GC及CE联用,但是SPRi在检测灵敏度等方面还面临挑战。 国家自然科学基金委庄乾坤教授   庄乾坤教授向与会者介绍了国家自然科学基金委(NSFC)在分析化学基础研究方面的资助情况及NSFC在加强国际交流与合作方面的努力。据其介绍,NSFC在分析化学方面的资助力度在逐年加大,而在其所资助的13个领域中,对色谱、电分析化学、光谱分析方面资助力度最大。在国际交流与合作方面,NSFC也有多种形式,如国际交换项目、国际联合研究项目及在中国召开学术会议或交流会,为中国科学家与国外科学家的联系或合作搭建良好平台。 荷兰莱顿大学Jan van der Greef教授   Jan van der Greef教授介绍了通过分析细胞、血液、尿液、唾液、呼吸的不同生物状态来测定和标定生命体系,以系统网络的方式来理解生物学,能够了解到更具价值的信息。此外,Jan van der Greef教授认为通过这种系统研究可以更好地理解中医的整体性作用。 中科院生态环境研究中心江桂斌院士   江桂斌研究员介绍了持久性有机污染物(POPs)分析所面临的挑战以及对未来研究的展望。POPs是一类半挥发性的物质,其具有在环境中难降解、长距离迁移、具有生物累积和放大效应、毒性大等特点。目前,在POPs的分析研究中,由于POPs物质分子量差别很小、含量非常低、基体复杂等,因此必须使用高分辨的色谱-质谱系统、超净实验室、农残级或更低的溶剂及同位素内标等。对于POPs分析研究,样品前处理也是一个难题,江院士课题组在此方面研究了碳纳米管固相萃取技术及离子液体技术,取得了一定的效果。 日本名古屋大学Yoshinobu Baba教授   Yoshinobu Baba教授介绍了用于癌症诊断和干细胞疗法体成像的单一生物分子和细胞分析的纳米生物设备。纳米生物设备是一个集合纳米生物技术、生物技术的设备或组件,用于生物、医学和临床。报告中,Yoshinobu Baba介绍了纳米生物设备分析生物分子和细胞的发展,以及其所开发了的基于单一生物分子分离和检测的纳米诊断设备情况及应用实例。   此次会议除了大会报告外,主办方还为与会者准备了多达15个分会场的188个口头报告、548个墙报展示及15家仪器公司的新产品推介报告。会议同期还举办仪器展览,展览会吸引了安捷伦、岛津、赛默飞世尔、沃特世、创新通恒、依利特等60多家国内外仪器公司参展。 展览现场
  • 教你如何轻松解决软件问题 变身色谱达人(上)
    赛智科技(杭州)有限公司生产的浙大N2000色谱工作站做为目前国内使用量最高的软件,市场占有率已经达到70%以上。客户在使用N2000过程中,经常会出现一些小问题。赛智科技根据客户反馈主动出击,教您如何轻松解决软件问题,瞬间变身色谱达人。 问题一:工作时,经常死机? 赛智教您:电脑感染病毒,请用杀毒软件杀毒。确认计算机无病毒后,重新安装色谱工作站。 2.内存不足,增加内存或删除部分其他软件。 问题二:工作时,发现色谱工作站无法采样?(按下摇控制开关分析时无信号) 赛智教您:检查计算机后面的联线是否松开,请拧紧所有固定螺丝。检查串行口设置是否正确,更改串行口设置。数据采集线是否完好,更换数据采集线。所连接的串行口已坏,连接其他串行口。若是外置式,看看显示灯是否亮,不亮,则电源保险丝已断。 问题三:点击校正时不起作用? 赛智教您:所选用积分方法是面积(高度)归一法 请选择您所要的积分方法 在查看基线或采集数据的同时,进行校正 请先停止查看基线再进行校正 软件系统文件已破坏,请重新安装软件。 问题四:使用内标法时,分析结果为零 赛智教您:1.编辑组分表时,内标纯量未输入 请重新编辑组分表并输入内标纯量 2.保留时间不对 请在组分表中找到保留时间不对的峰,重新输入保留时间 3.计算数值超界 将你所输入的样品重量及各组分含量扩大10、100、1000 倍;4.除内标峰外,其它组分峰内标量也输入了数值。请重新校正,且除内标外其他组分内标纯量不要输入数据。 问题五:N2000色谱工作站在打开通道以后,系统跳出一错误信息online.exe出错。 赛智教您:1.计算机硬件配置没有达到软件要求;若是CPU未能达到要求,请升级计算机;若是内存不足,请增加内存;2.操作平台可能损坏;重装WINDOWS操作系统3.N2000操作系统已受损。重装N2000色谱工作站软件;若以上还不能解决,请先找到系统所在路径,并除去与N2000有关的所有文件,再重装软件。 问题六:N2000工作站打开离线时出错,系统跳出一错误信息AVI.不能打开 赛智教您:参考问题5问题七:在线中输入采样自动结束时间后,跳出一窗口 赛智教您:系统最大时间限为27小时。 更多培训资料请与赛智科技联系全国服务热线:400 001 2010公司总机:0571-28021919技术服务热线:0571-28021930官网:www.surwit.com
  • 迪马第22届全国色谱会精彩继续!
    2019年4月21日-23日,由中国化学会主办,中国化学会色谱专业委员会、中国科学院大连化学物理研究所、复旦大学承办,上海分析仪器产业技术创新战略联盟协办的“中国化学会第22届全国色谱学术报告会及仪器展览会”在上海光大会展中心国际大酒店隆重召开。 作为两年一度的色谱行业盛会,来自色谱分析领域的近千名专家学者、企业代表参加了此届会议,并且邀请到多位院士和国际zhu名学者作大会特邀报告,为广da色谱工作者提供相互交流的平台。第22届全国色谱学术报告会及仪器展览会开幕式 迪马科技作为全球ling先的色谱消耗品制造商和供应商,在37号展位为与会者现场展示了气/液相色谱柱、SPE前处理小柱、ProTrap热解析管、醛酮类气体样品采集管、xStandard化学标准品、样品瓶及针头式滤器等诸多色谱消耗品和解决方案,助力本次色谱盛会。气/液相色谱柱 迪马科技成立于1993年,专注色谱消耗品二十多年,拥有众多气/液相明星色谱柱产品,特点如下: DikmaCap DM系列毛细柱 高性价比,超低柱流失DikmaCap DM系列毛细柱是迪马科技产品中的jiao佼者; 每一根毛细柱都会进行检测,测定其涂渍效率、选择性、膜厚度、惰性和流失水平; 低流失水平降低了检测器噪声,信噪比好,使得测试结果更准确、重复性更高 液相色谱柱 多款液相色谱柱:Endeavorsil(奋进)色谱柱,Navigatorsil(领航)色谱柱,Leapsil(飞跃)色谱柱,Diamonsil(钻石)色谱柱,Inspire(英帕尔)色谱柱,Spursil(思博尔)极性改性的通用型反相色谱柱、聚合物基质液相色谱柱等,ling先的色谱柱填装技术、独有的键合和封端技术确保色谱柱的稳定性、重现性和寿命。气/液相色谱柱SPE前处理小柱 样品前处理作为分析检测的重要环节一直备受分析工作者关注,迪马科技也一直致力于样品前处理新技术和新产品的开发,展会现场展示了ProElut SPE柱、QuEChERS多农残分析方法包等多款样品前处理产品及配套分析方案。/相色谱ProTrap热解析管 ProTrap热解析管:具有回收率高、线性良好、空白干扰低、密封性好的优势,用来富集空气或其他样品中挥发性和半挥发性有机物。气/液相色谱柱醛酮类气体样品采集管 ProElut-Silica DNPH醛酮类气体样品采集管:产品稳定性好、回收率高,方法重现性优异、满足HJ/T 400-2007、HJ 683-2014、EPA Method TO-11A等标准方法。xStandard化学标准品 紧密跟踪2018、2019年新发布的环境、食品等国标和行标,迪马科技全新定制了相应xStandard混标:挥发性有机物、邻苯二甲酸酯、多氯联苯、硝基苯、偶氮、农残、兽残、石油烃类等。混标严格符合标准中组分、浓度、溶解溶剂的要求,极大节省了分析工作者配制混标的时间,提高工作效率。 另外,迪马科技还可根据用户的个性化需求提供混标定制服务。样品瓶&针头式滤器2 mL 螺纹广口瓶 组装好的瓶盖和垫,方便直接使用 带书写处,方便铅笔等标记(可选) 适用各种型号自动进样器 严格的品质保证,每批产品尺寸完全一致ProMax针头式过滤器 多种滤膜材质 用于HPLC、GC前处理样品及溶剂的过滤 超洁净聚丙烯壳体,低溶出物,适合于痕量分析 会议期间,与会专家和学者纷纷到访迪马展台,对迪马科技近26年来在色谱分析行业不断推陈出新的产品和取得的成绩,表示极大的认可和赞赏。为期三天(4月21日-23日)的中国化学会第22届全国色谱学术报告会及仪器展览会仍在如火如荼的进行,迪马科技的精彩也将继续呈现,期待您的到来。会议期间,与会专家和学者纷纷到访迪马展台,对迪马科技近26年来在色谱分析行业不断推陈出新的产品和取得的成绩,表示极大的认可和赞赏。为期三天(4月21日-23日)的中国化学会第22届全国色谱学术报告会及仪器展览会仍在如火如荼的进行,迪马科技的精彩也将继续呈现,期待您的到来。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制