当前位置: 仪器信息网 > 行业主题 > >

质谱分子结构分析

仪器信息网质谱分子结构分析专题为您提供2024年最新质谱分子结构分析价格报价、厂家品牌的相关信息, 包括质谱分子结构分析参数、型号等,不管是国产,还是进口品牌的质谱分子结构分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱分子结构分析相关的耗材配件、试剂标物,还有质谱分子结构分析相关的最新资讯、资料,以及质谱分子结构分析相关的解决方案。

质谱分子结构分析相关的论坛

  • 【求助】求助质谱解析-有没有可以分析出小分子量残片的分子结构的软件?

    wsearch软件可以根据分子量预测出分子式,但不能给出分子结构,有没有软件可以直接给出可能的分子结构的。这样分析残片时可以知道是什么,毕竟小的分子量的元素组合也没多少,可能的就更少了。或者网上有没有什么地方可以用分子量检索出可能结构的。例如:质谱中最小的峰为87,那么可能的分子式是什么呢?

  • 样品分子结构,pK值等,对液质联用的分析有啥影响啊

    [color=#444444]在做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]分析方法的开发时,首先了解样品分子结构,pK值,pI值;pK值,pI值对[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url]的分析有啥影响啊?请高手帮忙讲解一下啊[/color]

  • 小分子结构

    最近查了AFM研究的最新进展,发现一个现象:AFM的运用范围在扩大,讨论最新运用方面的文章比较多,但是在精度上却没有什么提高,样品扫描的范围通常在几百个纳米以上,被研究样品的结构分析不能达到小分子结构的程度上去。 不知湖内有没有用AFM的研究小分子结构的GGMM,希望能和你们交流。

  • 实验室分析仪器--质谱仪的功用介绍

    质谱仪本身具有侦测化合物分子量的基本功能,更可以有效地定性及定量分析物种的种类。质谱仪的运用开始于一九一二年,汤木森(Joseph J. Thompson)对小分子结构的分析。此外,一九三四年诺贝尔奖得主哈诺德?尤瑞(Harold Urey)发现氘,以及一九九六年的诺贝尔奖「富勒烯」(fullerenes,又称碳六十、球烯)的发现,皆借助于质谱仪的分析。质谱仪的发明,让我们可以快速鉴定出一个样品中化合物的分子量,并且可以进一步知道其分子结构,随着新式质谱仪的开发,更提供了一个针对生化大分子研究的有利工具。质谱仪的结构共分为五大部分,包括样品导入系统、离子源、质量分析器、侦测器、及数据处理系统。二○○二年的诺贝尔化学奖得主芬恩和田中耕一的主要贡献,就在游离源方法的研发与突破。游离源的功能是使原本是中性的分子变成带电荷的离子,而质谱仪是利用侦测物质的质量与电荷比值大小来分析离子。传统上使分子游离的方法有电子游离法(EI)、化学游离法(CI)、热洒法(TS)、场游离法(FI)、场脱附法(FD)、快速原子撞击法(FAB)、电浆脱附法(PD)等

  • 【分享】生物质谱在糖蛋白结构分析中的应用

    【分享】生物质谱在糖蛋白结构分析中的应用

    生物质谱在糖蛋白结构分析中的应用项目完成人:桑志红 蔡 耘项目完成单位:国家生物医学分析中心 随着人们对糖蛋白参与生命活动机理的日益深入了解,对天然糖蛋白及重组糖蛋白类药物的分析越来越受到重视。重组糖蛋白类药物的质量控制更是直接关系到药物的疗效及至人类的健康。九十年代以来,随着带有反射功能的基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF-MS)和纳升电喷雾串联质谱(nano-ESI-Q-TOF)等具有软电离方式的现代质谱 技术的发展,质谱以其高灵敏度和强有力的分析混合物的能力,提供了生物大分子的分子量、序列、一级结构信息以及结构转换、修饰等方面的信息,使糖基化分析有了重要的进展。 通常研究糖蛋白的方法是把蛋白链上的寡糖切下来,分别研究蛋白部分和寡糖部分的结构,因此无法研究与两部分共同相关的结构问题,也不能区分不同糖基化位点上切下来的寡糖。自90年代初,国外有人开始用质谱法研究糖蛋白的结构,同时描述了各个位点的不均一性。我们用建立的现代生物质谱技术研究糖蛋白一级结构的方法,将其应用与基因重组糖蛋白的结构分析。为糖蛋白结构分析及基因重组糖蛋白类药物的质量控制提供新的手段。一、 生物质谱研究糖蛋白结构方法的建立实验所用仪器为:1.德国BRUKER 公司的REFLEXIII型基质辅助激光解吸附电离飞行时间质谱仪,N2激光器,波长337nm,线性飞行距离150cm,加速电压2kv。2.英国Micromass 公司Q-TOF型电喷雾串联质谱仪。源温80°C,气体流速40L/h,枪头电压650V,检测频率2.4S,氩气碰撞池压力6*10-5mbar。1. 基质的选择,在MALDI-TOF-MS分析中,基质起着相当重要的作用。不同的基质对不同类的物质响应不同,a-氰基-4-羟基肉桂酸用于测定糖蛋白核糖核酸酶B效果相对较好。2. 糖蛋白分子量的测定,糖蛋白核糖核酸酶B由124个氨基酸组成,在34位Asn处连有一个高甘露糖型N-糖链。由于糖链的微不均一性,与普通蛋白质及核酸不同,其分子离子峰在MALDI-TOF-MS 质谱图上表现为一簇峰,各峰之间约相差一个糖基。正是由于这种微不均一性,使得其分子离子峰变宽,灵敏度降低。糖链分子量越大,峰越宽,灵敏度越低,所以一般只有糖链较短,蛋白的质量不太大的糖蛋白才能测定其平均分子量。用MALDI-TOF可直接测定糖蛋白核糖核酸酶B的平均分子量为 15208.6Da。http://ng1.17img.cn/bbsfiles/images/2011/03/201103211511_284179_1604317_3.jpg3. 糖含量的测定,采用O聚糖酶及内糖苷键酶F分别作用于核糖核酸酶 B,只有内糖苷键酶F能够是其分子量发生变化,表明核糖核酸酶B分子中不存在O-连接糖链存在着N-连接糖链。内糖苷键酶F切断N-糖链五糖核心最内侧的GlcNAc-GlcNAc糖苷键,得到含一个GlcNAc的肽链,减去GlcNAc,可以计算出准确的肽链分子量T=13695.6,与糖蛋白平均分子量之差为糖链的平均分子量G=1513.4,平均糖含量为:(糖链大小/糖蛋白分子量)×100%=9.95%。4. 糖基化位点的确定,研究糖基化类型及糖基化位点的策略:采用蛋白酶酶解与糖苷内切酶酶解相结合的方法,通过酶切前后含糖肽片的位移,结合网上数据库检索,可以确定糖基化类型和糖基化位点。以不同类型的糖苷内切酶作用于糖蛋白(N-糖苷键酶或O-糖苷键酶),在MALDITOF-MS 上观察其质量的变化,可以直接确定糖蛋白中是否含有响应类型的糖链,这是我们确定糖蛋白中糖苷键类型的基础。我们采用先将核糖核酸酶B还原烷基化,加Glu-C酶切,产物再用内糖苷肩酶F酶切,可观察到含糖肽段出现位移,将核糖核酸酶B的肽质量指纹图进行数据库检索,证实发生位移的肽段中含有N-糖链特异连接位点,由此确定34位Asn为糖基化位点。另外我们采用内糖苷键酶F及肽-N-聚糖酶F两种酶进行差位酶切法对含糖肽段进行验证,两种酶酶切后分子离子峰的差值除以GlcNAc的质量,结果就是N-糖基化位点的个数5. 质谱测定氨基酸序列, 我们对核糖核酸酶B肽质量指纹谱中的含糖肽段进行了串联质谱测定,首先在一级质谱图中选择离子4972.23,在串联质谱的碰撞活化室以氩气与其碰撞产生碎片,从碎片的质荷比推算出此肽片中的一段氨基酸序列,检索结果为核糖核酸酶B,从而判断其理论序列是否一致。6. 糖链结构的研究,凝集素对糖肽的亲和提取,进一步分析糖肽序列及糖链结构的关键是含糖肽段的提取。核糖核酸酶B中糖链为高甘露糖型,我们选用对其有特异性吸附的伴刀豆球蛋白对其进行提取利用这种简捷的亲和质谱的方法,对糖肽段进行了分析。建立了亲和质谱分析糖肽类物质的方法,为今后糖肽序列分析及糖链结构分析奠定了基础。二、基因重组糖蛋白人促红细胞生成素(rhEPO)的结构分析。 利用以上建立的方法,我们对样品重组人促红细胞生成素进行了分析,断定此样品为非完全糖基化,样品中只存在N-连接的糖链,无O-糖链。应用酶切法用肽-N-聚糖酶处理后,得到两个含糖肽段,进行数据库检索,测得38位及83位为N-糖基化位点,与文献报道相符,结果可靠。因此,该项课

  • 求助正离子质谱分析产物结构与底物对比

    求助正离子质谱分析产物结构与底物对比

    [color=#444444]如题 直接上图,预测的物质与质谱分析的结构有差异,请帮助分析下,谢谢!!![/color][color=#444444]底物ST:分子量是324,底物的结构见图底物;[/color][color=#444444]产物分子量是:352,质谱图见产物图;[/color][color=#444444]请问:产物如果是双羟基化合物或者是开环物(二者的分子量都是358),分子量与分离的产物的正离子-MS所示的分子量(352)不是很符合,请指教。[/color][color=#444444]因为产物的积累量不够,还没有作核磁,先把MS图贴上,请大神给分析分析,或者能帮着分析下可能的产物结构,谢谢。[/color][color=#444444][img=,690,426]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091002250247_7652_1843534_3.jpg!w690x426.jpg[/img][/color][color=#444444][color=#008000]底物:MW=324,结构如图,已知[/color][/color][color=#444444][color=#008000][img=,690,409]https://ng1.17img.cn/bbsfiles/images/2019/09/201909091002449526_3497_1843534_3.jpg!w690x409.jpg[/img][/color][/color][color=#444444][color=#008000][color=#008000]产物的MS:MW=352,结构可能是ST-二羟基化合物或者是开环物(自己猜的)[/color][/color][/color]

  • 【求助】关于工作站分子结构图的问题

    进行数据分析时候,想看分子结构图,以前可以的,现在不行了.原来按如下步骤操作后可以解决:工作站上-view/parametric retrieval进入下一个窗口.点击structures/select structres database,从database中选择molstruc-出现suset.sdb,选择之.问题是现在此方法行不通.根本就没有molstruc这个.只在另一个文件夹下面有,选择其,然后还是看不到分子结构图.请问我这个是哪里出了问题?望解答之....谢谢!~

  • 【讨论】如何通过氢谱 和碳谱化学位移值,模拟分子式或者分子结构

    如何通过氢谱 和碳谱化学位移值,模拟分子式或者分子结构。就是想知道现在有相关的核磁软件具有这个功能吗。比如gNMR或者Nuts软件。现在有的可以是画出结构式,模拟氢谱和碳谱化学位移。我想了解有反过来知道化学位移,模拟出分子结构式的吗?望熟悉的朋友说说啊,谢谢呢,急

  • NMR在大分子结构解析中的应用

    一般NMR在大分子结构解析中要通过哪些方面来获取有用的结构信息?化学位移在大分子体系里过于复杂,应该有别的手段来进行结构解析吧?

  • 【资料】分子结构与色谱保留

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=79552]分子结构与色谱保留[/url]---------------------------------------------------------[color=#DC143C]鼓励新手发帖,但稍稍提醒一下,这个东东已经有人发过了,http://www.instrument.com.cn/download/shtml/007172.shtml,以后发帖请搜索一下--gaara2000[/color]

  • 【分享】质谱分析法应用

    [size=3][b][/b]  质谱是纯物质鉴定的最有力工具之一,其中包括相对分子量测定、化学式确定及结构鉴定等。[/size][size=3][b]  一、相对分子质量的测定[/b][/size][size=3]  利用质谱图上分子离子峰的m/z可以准确的确定该化合物的相对分子质量。一般说来,除同位素峰外,分子离子峰一定是质谱图上质量数最大的峰,它应该位于质谱图的最右端。但是,由于有些化合物的分子离子峰稳定性较差,分子离子峰很弱或不存在,给正确识别分子离子峰带来困难。因此,在判断分子离子峰时应注意以下问题。[/size][size=3][b]  (一)分子离子稳定性的一般规律[/b][/size][size=3]  分子离子的稳定性与分子结构有关。碳数较多,碳链较长(有例外)和有支链的分子,分裂几率较高,其分子离子峰的稳定性较低 具有π键的芳香族化合物和共轭。[/size][size=3][b]  ( 二)分子离子峰必须符合氮规律[/b][/size][size=3]  在只含有C、H、O、N的化合物中,含有偶数个(包括零)氮组成的化合物,其相对分子质量必为偶数 含有奇数个氮原子的化合物的相对分子量为奇数。这是因为在由C、H、O、N、S、P卤素等元素组成的化合物中,只有氮原子的化合价为奇数而质量数为偶数。这个规律称为"氮律"。不符合"氮律"的离子峰一定不是分子离子峰。[/size][size=3][b]  (三)利用碎片峰的合理性判断分子离子峰[/b][/size][size=3]  在离子源中,化合物分子电离后,分子离子可以裂解出游离基或中性分子等碎片。若裂解出一个• H或• CH3、H2O、C2H4碎片,对应的碎片峰为M-1、 M-15、M-18、M-28等,这叫做存在合理的碎片峰。若出现M-3至M-14,M-21至M-25范围内的碎片峰,称为不合理碎片峰,则说明分子离子峰的判断有错。表明试样中可能存在杂质或者把碎片峰错误判断为分子离子峰。表7-2中列出从分子离子中裂解的常见碎片。[/size][size=3]  表7-2 从分子离子中裂解的常见碎片[/size][size=3]  [b](四)利用同位素峰识别分子离子峰[/b][/size][size=3]  有些元素如35Cl、79Br、32S的同位素37Cl、81Br、34S相对丰度较大,其M+2同位素峰十分明显,通过M、M+2等质谱峰来推断分子离子峰,若分子中含一个氯原子时,M峰与M+2峰的强度比为3:1 若分子中含一个溴原子时M峰与M+2峰强度比为1:1,这是因为M峰与M+2同位素峰强度比与分子中同位素种类、丰度有关。总之,同位素离子峰的信息有助于分子离子峰的正确判断。[/size][size=3][b]  (五)由分子离子峰强度变化判断分子离子峰[/b][/size][size=3]  在电子轰击离子源(EI)中,适当降低电子轰击电压,分子离子裂解减少、碎片离子减少,则分子离子峰的强度应该增加 在上述措施下,若峰强度不增加,说明不是分子离子峰。逐步降低电子轰击电压,仔细观察m/z最大峰是否在所有离子峰中子后消失,若最后消失即为分子离子峰。[/size][size=3][b]  二、化学式的确定[/b][/size][size=3]  用质谱法确定有机化合物的化学式,一般是通过同位素峰相对强度法来确定。各元素具有一定天然丰度的同位素(见表7-1),从质谱图上测得分子离子峰M、同位素峰M+1和M+2的强度,并计算其(M+1)/M、(M+2)/M强度百分比,根据拜诺(Beynon J H)质谱数据表查出可能的化学式,再结合其他规律,确定化合物的化学式。[/size][size=3] [b] 例题:某化合物的质谱数据如下,试确定该化合物的化学式。[/b][/size][size=3]  m/z M(150) M+1(151) M+2(152)[/size][size=3]  与M强度比/% 100 9.9 0.9[/size][size=3]  下一页[/size][size=3]  第七章 质谱分析法[/size][size=3]  解:由M+(M)的质量数,可知此化合物的相对分子质量为150。M+2峰的强度百分比为0.9%,由表7-1可知,该化合物不含Cl、Br、S。查阅拜诺表可知,相对分子质量为150的化学式共有29个,其中M+1峰的强度百分比在9%-11%的化学式有如下7种:[/size][size=3]  此化合物相对分子质量为偶数,根据氮规律,应该排除②、④、⑥三个化学式 在剩下的四个化学式中,⑤化学式的M+1峰的强度百分比与9.9%最接近,M+2峰的强度百分比与0.9%也最接近。因此,该化合物的化学式应该是C9H10O2。[/size][size=3]  [b]三、结构式的确定[/b][/size][size=3]  在确定了未知化合物的相对分子质量和化学式以后,首先根据化学式计算该化合物的不饱和度,确定化合物化学式中双键和环的数目。然后,应该着重分析碎片离子峰、重排离子峰和亚稳离子峰,确定分子断裂方式,提出未知化合物结构单元和可能的结构。最后再用全部质谱数据复核结果。必要时应该考虑试样来源、物理化学性质以及红外、紫外、核磁共振等分析方法的波谱信息,确定未知化合物的结构式。[/size][size=3]  例题:某化合物分子式为C3H8O,其质谱图如图7-7所示。红外光谱数据表明在3640cm-1和1065~1015cm-1有尖而强的吸收峰,试解析该化合物的分子结构。[/size][size=3]  图7-7 C3H8O质谱图[/size][size=3]  解:分子的不饱和度为[/size][size=3]  说明化合物分子内的化学键皆是单键。在3640cm-1及1065~1015cm-1有强红外吸收峰,表明化合物属醇类。[/size][size=3]  由质谱图可知,m/z 60峰是分子离子峰,该化合物的相对分子质量为60。 由于m/z 59峰的出现,可能发生下述裂解:[/size][size=3]  m/z 42峰是由分子离子峰失去中性碎片H2O而生成的,其裂解反应的机理如下:[/size][size=3]  反应中有亚稳离子生成, ,这与质谱图中的亚稳离子峰的位置相符合。[/size][size=3]  基峰m/z 31是CH=碎片离子峰,断裂的机理为:[/size][size=3]  因此,该化合物为正丙醇,结构式为CH3-CH2-CH2-OH。[/size][size=3] [b] 四、质谱定量分析[/b][/size][size=3]  (一)无机痕量分析[/size][size=3]  火花源质谱仪可以分析无机固体试样,它已成为金属、合金、矿石和超导体中痕量元素分析的重要方法。通过离子峰相对强度的测量可进行质谱定量分析。该方法的特点是灵敏度高,对元素的检出限约为纳克每克数量级(ng• g-1)。由于质谱图简单,并且各元素峰强度大致相当,应用很方便。[/size][size=3]  (二)同位素的测定[/size][size=3]  质谱定量分析最早用于同位素丰度的研究。稳定的同位素可以用来"标记"各种化合物,例如确定氘苯C6D6的纯度,通常可用C6D6+与C6D5H+、 C6D4H2+等分子离子峰的相对强度进行定量分析。在考古学和矿物学研究中,应用同位素比测量法来确定岩石、化石和矿物年代。[/size][size=3]  (三)混合物中的定量分析[/size][size=3]  混合物的质谱定量分析,目前常用于多组分气体和石油中挥发性烷烃的分析。通过计算机求解数个联立方程,得到各组分的含量。该方法一次进样实现全分析,快速、灵敏。[/size]

  • 分子光谱与分子结构 第一卷 双原子分子光谱

    分子光谱与分子结构 第一卷 双原子分子光谱[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14616]分子光谱与分子结构 第一卷 双原子分子光谱[/url]

  • 【分享】质谱——质谱图解析流程

    未知样的质谱图解析流程  (一)解析分子离子区(1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。(2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。 (3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素的元素。 (4)推导分子式,计算不饱和度。由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。 (5)由分子离子峰的相对强度了解分子结构的信息。分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。 例如:萘分子离子峰m/z128为基峰,蒽醌分子离子峰m/z 208也是基峰。分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。   (二)、解析碎片离子(1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。 若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。若出现或部分出现m/z77,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。若m/z91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。若质谱图中基峰或强峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。(2)综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。 (3)分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1HNMR、13CNMR、IR)配合,确证结构。

  • 【求助】请教一下核磁测高分子结构

    关于高分子结构的测定,想问一下:1 核磁有没有可能测定分析高分子的连接方式,如头-头,头-尾,尾-尾连接方式的比例?2 核磁可以用来研究高分子的空间立构吗?如全同,间同以及无规立构的比例。谢谢了。

  • 【求助】根据分子结构上的什么特点

    关于有机波谱学的一个问题!!!要鉴别两种有机物质,提供红外光谱、核磁共振两种方法,请问要根据分子结构上的什么特点来确定用哪种方法?(两种物质的分子结构均已给出)

  • 质谱仪的功用

    质谱仪本身具有侦测化合物分子量的基本功能,更可以有效地定性及定量分析物种的种类。质谱仪的运用开始于一九一二年,汤木森(Joseph J. Thompson)对小分子结构的分析。此外,一九三四年诺贝尔奖得主哈诺德?尤瑞(Harold Urey)发现氘,以及一九九六年的诺贝尔奖「富勒烯」(fullerenes,又称碳六十、球烯)的发现,皆借助于质谱仪的分析。质谱仪的发明,让我们可以快速鉴定出一个样品中化合物的分子量,并且可以进一步知道其分子结构,随着新式质谱仪的开发,更提供了一个针对生化大分子研究的有利工具。

  • 【分享】分子结构、性质与活性

    分子结构、性质与活性[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15188]分子结构、性质与活性[/url][color=#dc143c]原始附件目前失效,不过某人发现可以到资料中心下载,只需一分: --handsomeland [/color]http://www.instrument.com.cn/download/shtml/022123.shtml王连生,化学工业出版社,1998目录第一章结构、性质与活性1.1结构-性质研究发展过程1.2化学键模型与分子结构的表示1.3结构对物理化学性质的影响1.4结构-性质相关预测水中溶解度1.5分子连接性指数与硝基芳烃理化参数的相关性1.6结构-怀质相关估算土壤-沉积物吸附系数1.7应用结构-性质相关研究有机物的亨利常数1.8摩尔体积与理论参数相关性1.9结构与活性第二章量子化学在定量结构-性质-活性相关研究中的应用2.1分子轨道理论方法2.2MOPAC软件及其计算方法2.3应用量子化学参数预测有机污染物的理化性质2.4应用量子化学参数预测有机污染物的生的活性2.5量子化学在有机污染物定量结构-性质-活性相关研究中的展望第三章典型有机物毒理学机理3.1典型有机物毒性反应类型3.2典型有机物的分子毒性机制3.3典型有机物遗传毒理学原理3.4典型有机物毒性作用的生命替代性机制第四章人工神经网络技术在结构-性质-活性关系研究中的应用4.1人工神经网络的构造和功能4.2人工神经网络在结构-性质-活性研究中的应用实例4.3一个BP型神经网络计算程序示例第五章拓扑学方法在结构-性质-活性相关研究中的应用5.1结构-性质-活性相关研究中的拓扑学方法5.2分子连接性指数方法在结构-性质-活性相关研究中的应用5.3Am指数在结构-性质-活性相关研究中的应用5.4自相关拓扑指数的计算方法及其改进5.5拓扑指数与有机物理化学性质的相关性5.6自相关拓扑指数与含氯有机化合物遗传毒性的相关性5.7自相关拓扑指数与有机物对水生生物急性毒性的定量关系第六章基团贡献法预测有机物理化性质6.1ASOG模型6.2UNIFAC法6.3其他基团贡献法第七章一种新的Lewis酸碱性判别指数及其应用7.1Lewis酸碱强度研究概述7.2原理7.3Lewis酸碱性指数的定量化7.4酸碱性指数的应用第八章反相液相色谱保留在定量结构-性质-活性相关研究中的应用8.1概述8.2反相液相色谱保留与分子连接性指数的关系8.3反相液色谱保留在定量结构-性质相关(QSPR)、定量结构-活性相关(QSAR)研究中的应用第九章有机污染物理化性质测定与估算方法9.1分配系数的测定与估算9.2溶解度的测定与估算9.3萘在水溶液中的光化学氧化9.4对硝基苯甲腈水解速率常数的测定9.5苯和间二甲苯挥发速率的测定9.6有机化合物在自然沉积物上吸附与解吸动力学数快速测定9.7有机物饱和蒸气压测定方法9.8分子连接性指数计算9.9分子表面积计算方法9.10EXAMS模式用于研究湖泊中污染物的迁移转化规律第十章生物活性测定与预测10.1有机物对水蚤的急性毒性10.2应用光发菌测定有机化合物的毒性10.3有机物对酵母菌毒性的测定方法10.4鼠伤寒沙门氏菌/哺乳动物肝微粒体致突变性10.5哺乳动物经口急性毒性试验10.6哺乳动物骨髓细胞微核试验10.7利用前线分子轨道能预测氯代芳烃化合物生物毒性的方法10.8典型有机物对鱼毒性的预测10.9典型有机物对藻类毒性的预测10.10典型有机物对小鼠毒性的预测10.11取代芳烃对蝌蚪毒性及其预测10.12毒物风险评价外推法参考文献

  • 质谱解析程序

    解析未知样的质谱图,大致按以下程序进行。(一)解析分子离子区 (1) 标出各峰的质荷比数,尤其注意高质荷比区的峰。 (2) 识别分子离子峰。首先在高质荷比区假定分子离子峰,判断该假定分子离子峰与相邻碎片离子峰关系是否合理,然后判断其是否符合氮律。若二者均相符,可认为是分子离子峰。 (3) 分析同位素峰簇的相对强度比及峰与峰间的Dm值,判断化合物是否含有C1、Br、S、Si等元素及F、P、I等无同位素的元素。 (4) 推导分子式,计算不饱和度。由高分辨质谱仪测得的精确分子量或由同位素峰簇的相对强度计算分子式。若二者均难以实现时,则由分子离子峰丢失的碎片及主要碎片离子推导,或与其它方法配合。 (5) 由分子离子峰的相对强度了解分子结构的信息。分子离子峰的相对强度由分子的结构所决定,结构稳定性大,相对强度就大。对于分子量约200的化合物,若分子离子峰为基峰或强蜂,谱图中碎片离子较少、表明该化合物是高稳定性分子,可能为芳烃或稠环化合物。 例如:萘分子离子峰m/z 128为基峰,蒽醌分子离子峰m/z 208也是基峰。分子离子峰弱或不出现,化合物可能为多支链烃类、醇类、酸类等。(二)、解析碎片离子 (1) 由特征离子峰及丢失的中性碎片了解可能的结构信息。 若质谱图中出现系列CnH2n+1峰,则化合物可能含长链烷基。若出现或部分出现m/z 77,66,65,51,40,39等弱的碎片离子蜂,表明化合物含有苯基。若m/z 91或105为基峰或强峰,表明化合物含有苄基或苯甲酰基。若质谱图中基峰或强峰出现在质荷比的中部,而其它碎片离子峰少,则化合物可能由两部分结构较稳定,其间由容易断裂的弱键相连。 (2) 综合分析以上得到的全部信息,结合分子式及不饱和度,提出化合物的可能结构。 (3) 分析所推导的可能结构的裂解机理,看其是否与质谱图相符,确定其结构,并进一步解释质谱,或与标准谱图比较,或与其它谱(1H NMR、13C NMR、IR)配合,确证结构。

  • 新型化学分析仪器——质谱仪(Mass Spectrometer)

    新型化学分析仪器——质谱仪(Mass Spectrometer)新型化学分析仪器——质谱仪(Mass Spectrometer)是一种具有创新性的技术,它在化学领域的研究和应用中起到了重要的作用。质谱仪采用了先进的技术和方法,可以对化学样品进行精确的分析和鉴定,为科学家们提供了更为准确和可靠的数据。质谱仪的创新之处在于其结合了质量分析和光谱分析的原理,实现了对化学样品的高灵敏度和高分辨率的测量。传统的化学分析仪器往往只能提供宏观的化学数据,而质谱仪通过将样品中的分子离子化并分离,可以实现对各种化学物质的定性和定量分析。这种高灵敏度和高分辨率的分析能力能够更加准确地了解化学样品的组成和结构,提供了更为详细和全面的信息。质谱仪在前处理合计数方面也进行了改进和优化。传统的化学分析仪器在前处理过程中往往需要复杂的操作和多个步骤,容易出现误差和不确定性。而质谱仪通过引入自动化和智能化的前处理系统,可以实现对样品的快速处理和准确计数。这不仅提高了分析的效率,还减少了人为因素对结果的影响,提高了分析的精确度和可靠性。作为一名北化学子,我有幸在实验室中使用了质谱仪,这是一种非常先进的仪器,可以用于分析物质的组成和结构。在使用质谱仪的过程中,我有了一些真实的使用心得。首先,质谱仪的操作相对复杂,需要一定的技术和经验。在使用之前,我们需要对仪器进行详细的了解,并且掌握基本的操作方法。这包括样品的准备、仪器的开机、参数的设置等等。只有熟练掌握了这些基本操作,才能更好地使用质谱仪进行分析。其次,质谱仪的结果需要进行正确的解读和分析。质谱仪可以提供非常详细的分析结果,包括物质的分子量、分子结构、相对丰度等等。然而,这些结果并不是直接给出的,而是需要我们进行解读和分析。在解读结果时,我们需要结合样品的特性和实验的目的,进行合理的判断和推理。只有正确地解读结果,才能得到准确的分析结论。再次,质谱仪在实验中的应用非常广泛。质谱仪可以用于分析各种不同类型的样品,包括有机物、无机物、生物样品等等。它可以用于分析样品的成分、结构、质量等等。这使得质谱仪成为化学研究和实验的重要工具。在我的实验中,我使用质谱仪进行了有机物的分析,得到了非常有价值的结果。最后,质谱仪的使用需要注意安全。质谱仪在操作过程中会产生一些有害物质,如有机溶剂的蒸气、气体等等。因此,在使用质谱仪时,我们需要佩戴适当的防护设备,如手套、护目镜等等。同时,我们也需要注意仪器的维护和保养,确保仪器的正常运行和安全使用。质谱仪在化学领域的研究和应用中取得了重要的成果。例如,在药物研究中,质谱仪可以帮助科学家们快速鉴定和定量分析药物中的活性成分和杂质,从而保证药物的质量和安全性。在环境监测中,质谱仪可以实时监测空气、水和土壤中的各种有机和无机污染物,为环境保护和治理提供有力支持。此外,质谱仪还可以应用于食品安全、生物医学等领域,实现对各种化学样品的快速分析和鉴定。质谱仪作为一种新型化学分析仪器,具有创新性的技术和方法。它通过高灵敏度和高分辨率的分析,实现了对化学样品的精确鉴定和分析。在前处理合计数方面的改进,使得分析结果更加准确和可靠。研究成果在化学领域的应用广泛,为科学家们的研究和实践提供了重要的支持。在使用质谱仪时,我们需要掌握基本的操作方法,正确解读结果,并注意安全。通过使用质谱仪,我们可以更好地进行化学研究和实验,为科学的发展做出贡献。

  • 多肽类药物分子结构确证的相关仪器

    在多肽的结构鉴定过程中,氨基酸分析、序列分析、核磁共振波谱分析及质谱分析起着决定性的作用。纯肽的氨基酸分析可提供该多肽的氨基酸组成和数量,序列分析则提供氨基酸残基的精确排列顺序。基于多种技术的质谱,主要用于提供多肽的相对分子量及其序列信息,肽谱是多肽通过酶解得到的肽片段经分离和分析所得到的“指纹图谱”,当多肽含有20个以上的氨基酸残基时,肽谱分析对多肽结构研究和特性鉴别具有重要意义。另外,在多肽的结构鉴定的信息中,应提供样品的红外光谱、紫外光谱、旋光度、园二色性、元素分析、X-射线单晶衍射、X-射线粉末衍射等检测数据。

  • 原子价与分子结构

    原子价与分子结构[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15316]原子价与分子结构[/url]

  • 实验室分析仪器--质谱仪器真空系统结构分析

    真空系统能够使离子源、质量分析器和检测器在低气压状态下工作,待测离子不会因与残存气体分子发生碰撞而散射,有利于分辨率和灵敏度的提高。常用旋片式机械泵、涡轮分子泵和钛离子泵串联组成真空系统,使离子源区气压约为10-3~10-5Pa,分析器区气压约为10-4~10-Pa,检测器区气压为10-10-2Pa以上。为防止残存有机物和反油污染离子源和分析室,在前级机械泵与涡轮分子泵接口处、离子源与分析室接口处设置液氮冷阱。亦可用旋片式机械泵和油扩散泵(加去除烃分子的捕集器)串联组成抽真空系统,并在油扩散泵与质谱仪之间加可自动控制的隔板,一旦停电隔板将自动关闭,既可防止反油污染质谱仪,又可维持质谱仪的真空在一定时间内变化不大。[b]1)油扩散泵[/b]优点:价格便宜、使用寿命长。缺点:抽速慢、耗时长,往往需要一小时以上才能达到所需要的真空要求。[b]2)涡轮分子泵[/b]优点:仅需十几分钟就可以达到所需的真空度,既无反油危险,噪声本底也小。缺点:价格昂贵、使用寿命短。[img=f90a81ec3d9887cd55167161ab7ac95.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643179791717997.jpg[/img]涡轮分子泵结构图[b]3)离子泵[/b]在排气量较小时,离子泵是最佳选择,它不但无污染,而且使用寿命长,极限真空比涡轮泵还高。要求超高真空的静态真空质谱仪都选用涡轮泵和离子泵。真空系统是影响质滤器及检测器功能的重要因素。质谱仪根据离子不同质荷比进行分离,需将离子引入某种电场和/或磁场中,利用电场和/或磁场分离离子,要求离子具有较大的平均自由程,与其他离子、背景气体分子等的碰撞概率最低。研究表明,压力为10-6Torr时可确保质滤器中扰动碰撞次数少于1

  • 质谱仪的应用

    质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用

  • 实验室分析仪器--质谱仪四极杆质量分析器结构及原理

    四极杆质谱仪自20世纪50年代问世以来,目前已成为最主要的质量分析器之一,其体积小、结构简单、造价低廉,且性能相对优秀。对于一般用途而言,其价值和性能都具有较为明显的优势。早期的四极杆质谱仪最大的限制在于其小的质量范围,一般在几百以内,但如今新一代仪器的质量分析范围已经可以较为普遍地达到3000,甚至更高。[b]1.基本原理[/b]四极杆质量分析器由四根相互平行并均匀安置的金属杆构成,金属杆的截面多为双曲线,但也可以简单地制作为圆形或其他形状。图1为一种双曲线截面四极杆质量分析器的示意图。相对的两根极杆连接在一起,施加相同的电压,两组极杆电压相反。施加的电压由直流分量和交流分量叠加而成。从而,形成了一个在电极间对称于z轴(垂直于x-y平面)的电场分布。离子束进入电场后,在交变电场作用下产生了振荡,在一定的电场强度和频率下,只有较窄质荷比范围的离子能通过电场到达检测器,其他离子则由于振幅增大而撞到极杆上。 [img=image.png,500,203]https://i2.antpedia.com/attachments/att/image/20220126/1643167399292927.png[/img]图1 四极杆质量分析器示意图[b]2.三重四极杆[/b]利用三重四极杆,可以实现多级质谱分析。第二个四极杆(现在多数为六极杆或八极杆)并不是用于离子的选择和扫描的,而是作为一个含有气体的碰撞池。利用这样的装置,就可以实现低能的CID碎裂。这种手段虽然能较为高效地产生碎片离子,但是仪器与仪器之间的重复性并不好。这是由于碰撞气体的选择、气压、碰撞能量以及其他相关参数都会较为严重地影响二级质谱谱图。得到碎片离子后,离子进入第三个四极杆进行分析。三重四极杆最大的优势在于能够对母离子进行扫描并且筛选出其中某一个母离子进行碎裂分析检测。 [img=image.png,500,380]https://i2.antpedia.com/attachments/att/image/20220126/1643167401866561.png[/img]图2 二维四极场的稳定区图(I 和Ⅱ代表第一和第二稳定区)与扇形分析器类似,四极杆分析器非常适用于连续离子源,例如电喷雾离子源(ESI),并不太合适脉冲离子源,例如基质辅助激光解吸电离源(MALDI),但目前仍然有文章报道利用三重四极杆分析器检测 MALDI离子源产生的样品。四极杆质谱仪价格相对便宜,体积小,因此经常与[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联用

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制