当前位置: 仪器信息网 > 行业主题 > >

质谱质量型检测器

仪器信息网质谱质量型检测器专题为您提供2024年最新质谱质量型检测器价格报价、厂家品牌的相关信息, 包括质谱质量型检测器参数、型号等,不管是国产,还是进口品牌的质谱质量型检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱质量型检测器相关的耗材配件、试剂标物,还有质谱质量型检测器相关的最新资讯、资料,以及质谱质量型检测器相关的解决方案。

质谱质量型检测器相关的论坛

  • 质量型检测器和浓度型检测器的区别

    大家知道什么时候选择用峰高定量,什么时候用峰面积定量吗?还有,有朋友问影响峰高和峰面积的因素。那么首先必须要了解的一个概念就是浓度型检测器和质量型检测器的区别。浓度型检测器浓度型检测器(concentration detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与流动相中被测组分浓度成正比(R∝C)。浓度型检测器当进样量一定时,瞬间响应值(峰高)与流动相流速无关,而积分响应值(峰面积)与流动相流速成反比,峰面积与流动相流速的乘积为一常数。绝大部分检测器都是浓度型检测器,如:热导池检测器(TCD)、电子捕获检测器(ECD)、液相色谱法中的紫外-可见光检测器(UVD)、电导检测器与荧光检测器也是浓度型检测器。凡非破坏性检测器均为浓度型检测器。质量型检测器质量型检测器(mass detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与单位时间内通过检测器的溶质的量(被测溶质质量流速)成正比,即响应值R与单位时间内进入检测器中的某组分质量成正比R∝dm/dt;。质量型检测器其峰高响应值与流动相流速成正比,而积分响应值(峰面积)与流速无关。这类检测器较少,常见的有氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、质量选择检测器(MSD)等。浓度型检测器其响应值与载气流速的关系:峰面积随流速增加而减小,峰高基本不变。当组分的量一定时、改变载气流速时,只改变组分通过检测器的速度,即半峰宽,其浓度不变。因此,一般采用峰高来定量。当检测器的响应值取决于单位时间内进入检测器的组分的量时,为质量型检测器,一般破坏性的检测器,如FID,MSD,NPD等均为质量型检测器。其响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变.改变载气流速时,只改变单位时间内进入检测器的组分量,但组分总量未变。因此,一般采用峰面积来定量。所以,大家明白了吧,对于浓度型检测器和质量型检测器峰高和峰面积的影响因素是不同的。当然对于定量来讲,在条件一定的情况下,也是都可以用另一种定量方式的。对于峰高和峰面积的影响因素,这是其中之一。不同检测器都有其具体的影响因素。但是流速的影响大家一定要分开,其对于浓度和质量型检测器的区别。(来源:实验之家)

  • 你真的了解质量型和浓度型检测器吗?

    先看教科书的讲述:[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相常见的检测器可分为两大类:即浓度型和质量型检测器。热导检测器(TCD)、电子捕获检测器(ECD)、液相色谱法中的紫外-可见光检测器(UVD)、电导检测器与荧光检测器为浓度型检测器。凡非破坏性检测器均为浓度型检测器。[color=#333333]浓度型检测器当进样量一定时,瞬间响应值(峰高)与流动相流速无关,而积分响应值(峰面积)与流动相流速成反比,峰面积与流动相流速的乘积为一常数。[/color]而质量型检测器其峰高响应值与流动相流速成正比,而积分响应值(峰面积)与流速无关。这类检测器较少,常见的有氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、质量选择检测器(MSD)等。1. 如何理解? 浓度型和质量型检测器是分析化学中重要的分类,最早概念来至于(Halász, 1964)的Anal.Chem.文章,本意是浓度流速敏感型检测器和质量流速敏感型检测器(Concentration and Mass Flow Rate Sensitive Detectors),定义如下:检测器中待测物浓度 c=V1/(V1+V2)质量型检测器 S=kV1 式(1)浓度型检测器 S=KV1/(V1+V2) 式(2)其中:S 为响应值;V1为待测物流速,单位为mol/s;V2为载气流速,单位为mol/s;K 为比例因子/常数原来质量型检测器是质量流速敏感性检测器。如果定格时间,质量型检测器当时存在于检测器中待测物质量(绝对量),而浓度型检测器就是当时存在于检测器中待测物质浓度(质量浓度)。当S对时间积分后就变成峰面积A,[img=,62,22]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] 质量型检测器 A=km 式(3) 浓度型检测器 A=km/(V1+V2) 式(4)(近似,恒定(V1+V2))因此质量检测器的峰面积就是所有进入检测器的质量,式(3),因此与载气流速无关。而浓度型检测器的峰面积就与流速有关,式(4)误解主要来至于定义的理解上,这个二分类本来建立在质量流速上,而现有文献省略了定义的本身,造成理解困难。2. 实际意义和应用。2.1 如果标准和标准和样品在同样的条件下进行,这两个分类对于定量都没有影响,此时V2恒定。2.2 只有在不同的操作条件下(特别是载气流速变化时)想比较不同检测器灵敏度;或不同操作条件下定量时有重要意义,这也是引入这两个概念的初衷。2.3 为降低浓度检测器的流速影响,仪器厂家在浓度型检测器中还加入尾吹技术以降低载气流速对定量的影响: 浓度型检测器 S=KV1/(V1+V2+V3) 其中V3为尾吹流量,此时V3Vi+V2,这样就降低了程序升温中流速影响([url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的仪器上的流速基本是按柱子尺寸,压力和温度算出来的),此时面积只与V3有关。所以当你使用ECD检测器必须打开尾吹,提高重现性。Refence:Halász, I. (1964). Concentration and Mass Flow Rate Sensitive Detectors inGas Chromatography. [i]Analytical Chemistry[/i], [i]36[/i](8), 1428-1430.https://doi.org/10.1021/ac60214a009

  • 【讨论】质量型与浓度型检测器定量问题讨论

    检测器分质量型和浓度型浓度型检测器的响应值与载气流速的关系是:峰面积随流速增加而减小,峰高基本不变。如TCD,PID等,凡是非破坏性检测器都是浓度型检测器质量型检测器的响应值与载气流速的关系是:峰高随流速增加而增大,峰面积基本不变。如FID、FPD、NPD等这样的话是不是检测定量时为了获得准确检测结果,浓度型检测器用峰高定量;质量型检测器用峰面积定量?

  • LCMS中的MS是浓度型检测器还是质量型检测器?

    我们都知道检测器按照对浓度敏感和对质量敏感分为浓度型检测器和质量型检测器,常见的VWD,DAD,FLD,TCD等均为浓度型检测器,而ELSD,CAD,FID等为常见的质量型检测器,那MS属于何种类型呢?我一直都没搞明白。

  • 浓度型检测器和质量型检测器定量方法有区别吗

    浓度型检测器响应值取决于载气中组分的浓度,当载气载气流速时,组分浓度是不会改变的,那么定量的时候是以峰高还是以峰面积来计算?质量型检测器响应值取决于单位时间内通过检测器的质量,当改变流速时,单位时间内的通过检测器的物质的量是会发生变化的,具体是在峰高上还是峰面积上体现出来?

  • PDHID是浓度型还是质量型检测器

    现在遇到一个问题PDHID是浓度型还是质量型检测器,由于要计算检测限,这两个类型的检测器需要的公式是不一样的。我现在有点困惑:有资料说非破坏型都是浓度型,PDHID时非破坏型的,但是他的信号类型又和FID相同,有些机器直接将PDHID接入FID的信号处理中。不知道各位同道中人有没有确切的信息可供参考。

  • 大家说说浓度型检测器与质量型检测器到底有什么区别?

    气相检测器分类中按响应者与浓度还是质量有关,可以分为浓度型检测器与质量型检测器。凡非破坏型检测器均是浓度型检测器。是不是浓度型检测器就是响应只与浓度有关系,而与质量没关系呢,那么进相同浓度但进样量不同,为什么响应肯定会不同?进5ppm,1UL 与进0.5ppm,10ul 响应一样?而质量型检测器是不是只于质量有关系,而与浓度没关系呢,是不是只要进入检测器中的目标物的质量总量一样,浓度不同,是不是响应会一样呢?进5ppm,1UL 与进0.5ppm,10ul 响应一样?

  • 关于FID和TCD,关于质量型检测器和浓度型检测器

    关于FID和TCD,关于质量型检测器和浓度型检测器

    http://ng1.17img.cn/bbsfiles/images/2012/07/201207201621_378832_1842115_3.jpg这是“气相色谱检测方法”一书中提到的有关内容。算引用吧。我的疑问是,不管质量型还是浓度型,我的待测样品中的组分受不受载气中同样组分的影响,或者说受不受本底的影响。例如:载气中有0.5ppm的一氧化碳,那待测样品中同样有0.8ppm的一氧化碳,用FID检测器能测出来吗?测出来的结果是0.8ppm还是0.3ppm呢? 或者,载气中有0.5ppm的氮,那待测样品中同样有2ppm的氮,用TCD检测器能测出来吗?测出来的结果是2ppm还是1.5ppm呢?

  • LCMS中的ESI离子源是浓度型检测器,APCI源是质量型检测器 还和源有关?

    [font=Arial, Helvetica, sans-serif][color=#333333]看到一个说法,不知道是否正确?[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LCMS[/color][/url]中的ESI离子源是浓度型检测器,APCI源是质量型检测器,这[/color][/font][font=Arial, Helvetica, sans-serif][color=#333333]还和源有关?求助各位老师结合应用讲解,谢谢![/color][/font]

  • 质量 浓度型检测器?

    质量型检测器,载气流速变化,为什么峰高变化,峰面积不变?浓度型检测器,载气流速变化,为什么峰高不变,峰面积变化?

  • 气相色谱讲义-检测器

    目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽)(一)灵敏度——应答值单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S表示:(3)由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异:对于浓度型检测器:当试样为液体时,S的单位为 mV•ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数;当试样为气体时,S的单位为mV•ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数;对于质量型检测器:当试样为液体和气体时,S的单位均为:mV•s/g,即每秒钟有1g的组分被载气携带通过检测器所产生的mV数。灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。(二)检测限(敏感度)噪声——当只有载气通过检测器时,记录仪上的基线波动称为噪声,以 RN 表示。噪声大,表明检测器的稳定性差。检测限——是指检测器产生的信号恰是噪声的二倍(2RN)时,单位体积或单位时间内进入检测器的组分质量,以D 表示。灵敏度、噪声、检测限三者之间的关系为:(4)检测限的单位:对于浓度型检测器为mg/ml或 ml/ml;对质量型检测器为:g/s。检测限是检测器的重要性能指标,它表示检测器所能检出的最小组分量,主要受灵敏度和噪声影响。D 越小,表明检测器越敏感,用于痕量分析的性能越好。在实际分析中,由于进入检测器的组分量很难确定(检测器总是处在与气化室、色谱柱、记录系统等构成的一个完整的色谱体系中)。所以常用最低检出量表示:图2 检测器噪声(三)最低检出量——恰能产生2倍噪声信号时的色谱进样量,以 Q0 表示。 (三)线性范围检测器的线性范围是指其响应信号与被测组分进样质量或浓度呈线性关系的范围。通常用最大允许进样量QM与最小检出量Q0的比值来表示。比值越大,检测器的线性范围越宽,表明试样中的大量组分或微量组分,检测器都能准确测定。

  • 【求助】检测器原理

    今天看到载气流速对浓度型检测器和质量型检测器的影响,但是不明白浓度型检测器和质量型检测器的原理是什么,浓度型检测器怎么就对浓度敏感,而质量型检测器又怎么对质量敏感的?哪位高手知道恳请指导一二。

  • 气相色谱检测器的特点与选择

    气相色谱检测器的特点与选择

    通常我们把[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的色谱柱比作色谱分离的心脏,那检测器就是色谱设备的眼睛。无论色谱分离的效果多好,没有好的检测器就“看”不到分离结果。因此,高灵敏度、高选择性的检测器一直是色谱发展的关键技术。目前,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]采用的检测器有很多种类,商品化的有TCD、FID、FPD、NPD、ECD、PID、AED、IRD和MSD等这几种。下图为大家展示了几种常见检测器的特点和技术指标。[img=,690,956]http://ng1.17img.cn/bbsfiles/images/2017/09/201709251427_01_2384346_3.jpg[/img] 质谱检测器(MSD)是质量型、通用型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器,其原理与质谱相同。它不仅能够给出一般[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器能获得的色谱图(也叫总离子流图TIC),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分子结构的信息,是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定性分析的有效工具。常被称为色谱-质谱(GC/MS)分析,将色谱的高分离能力与质谱的结构鉴定能力结合在了一起。质谱检测器实际上是一种专用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的小型质谱设备,一般配置电子轰击(EI)和化学电离(CI)源,也有直接质谱进样功能。质谱检测器的质量数范围通常为800-1000道尔顿,检测灵敏度和线性范围与FID接近,采用选择离子检测(SIM)时灵敏度更高。 原子发射光谱检测器(AED)采用微波等离子体技术,实际上也是一种联用分析技术。它是将色谱的高分离能力与原子发射的元素分析能力结合在一起,也是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有效的定性手段。GC/AED原则上可以测定除载气以外的所有元素,一次进样可同时检测不同元素的色谱图,根据元素色谱峰的面积或峰高可以确定化合物的元素组成。AED一个重要的优点是其响应值只与元素的含量有关,而与化合物的结构无关,因此可以进行所谓的绝对定量分析。 检测器的选择要依据分析对象和目的来确定,上图所列的各种检测器的主要用途可以供大家参考。一般,FID是通用型检测器,通常都要配置;ECD、NPD或FPD则是测定农残主要采用的检测器种类。PID主要用于芳烃和杂环类化合物的分析,化学发光检测器则主要用于含硫化合物的高灵敏度检测,这两种检测器的使用则较不普遍。

  • 色谱分析常用的检测器有哪些?

    气相色谱分析常用的检测器有热导检测器、电子捕获检测器、氢火焰离子化检测器和火焰光度检测器。前两项属于浓度型检测器,后两项属于质量型检测器。对检测器的要求是:灵敏度高、检测度(反映噪声大小和灵敏度的综合指标)低、响应快、线性范围宽。

  • 你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    你了解气相色谱的各种“D”么?——浅谈气相色谱检测器的分类与选择

    检测器是气相色谱分析中不可或缺的部分,被称做色谱仪的“眼睛”。被测组分经色谱柱分离后,以气态分子与载气分子相混状态从柱后流出,必须要有一个装置或方法,将混合气体中组分的真实浓度或质量流量变成可测量的电信号,且信号大小与组分量成比例关系,此装置就是检测器,是一种能检测气相色谱流出组分及变化的器件。检测器按照不同方法有不同的分类:按照性能特征分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201417_614520_2384346_3.png按照工作原理分类:http://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614522_2384346_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610201419_614521_2384346_3.png 大家可以发现气相色谱检测器的种类繁多,而平日里我们最常见到的检测器有电子捕获检测器(ECD)、氮磷检测器(NPD)、火焰离子化检测器(FID)和质谱仪(MSD)等。今天就和大家聊一聊这些检测器的选择问题。通性 MSD与ECD、NPD、FID等都可作为GC的检测器,提供GC分离后的组分相关信息。样品经色谱柱分离后,各成分按保留时间不同,顺序地随载气进入检测器,检测器按时间及其浓度(质量)的变化,把组分化合物转化成易于测量的电信号,经过必要的放大传递给记录仪或计算机,最后得到该样品的色谱图及定性和定量信息。区别 ECD、NPD、FID都属于有一定选择性的检测器,仅对某类特征化合物有响应,可以排除样品中其他组分的干扰,从而可简化复杂样品的前处理,降低对色谱柱分离能力的要求。而MSD是质量型、通用型检测器,只要化合物能够离子化,就能获得响应,在总离子流色谱图上表现出来。对不同的化合物,各种检测器的适用性和信号响应有所差别,见图1,具体如下:①电子捕获检测器(ECD)是灵敏度最高的气相色谱检测器之一。ECD工作原理是色谱柱流出载气及吹扫气进入ECD池,在放射源放出β-射线轰击下被电离,产生大量电子;在电源、阴极和阳极电场作用下,该电子流向阳极,得到10-9-10-8A的基流;当电负性组分从柱后进入检测器时,即俘获池内电子,使基流下降,产生一负峰;通过放大器放大,在记录器记录,即为响应信号。其大小与进入池中组分量成正比。负峰不便观察和处理,通过极性转换即为正峰。ECD仅对那些能俘获电子的化合物(含电负性元素)有响应,如卤代烃、含N、O和S等杂原子的化合物,但线性范围较窄。②氮磷检测器(NPD)是一种质量型检测器。NPD工作原理是将一种涂有碱金属盐如Na2SiO3、Rb2SiO3类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当试样蒸气和氢气流通过碱金属盐表面时,含氮、磷的化合物便会从被还原的碱金属蒸气上获得电子,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。NPD对氮、磷化合物有较高的响应,灵敏度极高,可以检测到5×10-13g/s偶氮苯类含氮化合物,2.5×10-13g/s的含磷化合物,如有机磷及氨基甲酸酯类农药等。③火焰离子化检测器(FID)由Harley和Pretorious发明,演化自Scott发明的燃烧热检测仪(Heat of Combustion Detector)。FID工作原理是以氢气作为燃烧气,和空气在一个圆筒状的电极里的喷嘴处燃烧,燃烧的火焰作为能源,其中氦气、氮气等载气作为洗脱剂,在极化极和收集极之间外加的高电压电场作用下,利用含碳有机物在火焰中燃烧产生离子,使离子形成离子流,收集起来产生电流,根据离子流产生的电信号强度,放大并传送到记录仪或电脑数据采集系统的A/D转换器处,从而检测被色谱柱分离出的组分。④质谱检测器(MSD)是质量型、通用型检测器,对所有适合于GC检测、能离子化的化合物都能给出响应。MSD不仅能给出色谱图(即总离子流色谱图,TIC),且能够给出每个色谱峰时间点的质谱图,利用计算机对标准谱库的自动搜索,可提供化合物分子结构信息,是GC定性分析的有效工具。将色谱的高分离能力与MS的结构鉴定能力结合在一起,采用保留时间和质谱图双重定性,灵敏度高。MSD数据处理工作量非常大,一般必须配计算机系统才能有效地工作;根据仪器配置不同,还可以采用EI、CI等电离方式,结合不同扫描方式,提高灵敏度与准确度。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://ng1.17img.cn/bbsfiles/images/2015/06/201506241721_551410_2989334_3.png图1 气相色谱不同检测器灵敏度对比

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制