质谱噪比计算方法

仪器信息网质谱噪比计算方法专题为您提供2024年最新质谱噪比计算方法价格报价、厂家品牌的相关信息, 包括质谱噪比计算方法参数、型号等,不管是国产,还是进口品牌的质谱噪比计算方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱噪比计算方法相关的耗材配件、试剂标物,还有质谱噪比计算方法相关的最新资讯、资料,以及质谱噪比计算方法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱噪比计算方法相关的厂商

  • 400-860-5168转4496
    衡昇质谱专注无机质谱等分析仪器的研发和制造。公司业务聚焦在质谱领域的自主研发,既定战略是:只专注发展有自主知识产权的质谱仪器。 以“衡昇”命名,是将“张衡”“毕昇”两位我国古代科技创新的杰出代表作为榜样,希望继承先贤之创新精神,立足科学研究,促进创新发明,为我国科学仪器事业做贡献。
    留言咨询
  • 合肥迪泰质谱检漏仪专业生产厂家。氦质谱检漏仪用于真空检漏、如电厂汽轮机组,镀膜机,高压真空柜,真空炉,如有需要请联系 15056044460 王小姐合肥迪泰真空技术有限公司是专业氦质谱检漏设备供应商。主要产品有:氦质谱检漏仪,充氦回收系统,真空箱检漏系统,高真空设备,真空零配件等。公司拥有专业化的研发团队和科技人才队伍。所生产的新一代全自动高灵敏度氦质谱检漏仪采用多项国际先进技术。真空箱氦检漏系统设计科学,产品性能稳定。氦质谱检漏广泛应用于航天航空,汽车制造,真空应用等领域。
    留言咨询
  • 400-860-5168转6112
    质谱佳科技是国内专业从事分析仪器维修等技术服务、进口二手分析仪器销售和租赁的领先企业,原厂工程师团队为客户在色谱、光谱、质谱仪的维护保养、维修、仪器认证、技术升级、仪器搬迁,软硬件操作培训等多方面提供完善的技术支持和整体解决方案。 质谱佳科技在美国、欧洲、日本有着良好的合作伙伴,凭借优质的进货渠道和专业的选品团队为客户提供优质的二手仪器。主营品牌有:Thermo(赛默飞)、AB Sciex(爱博才思) 、Agilent (安捷伦)、Waters(沃特世)、Shimadzu(岛津)等,另外质谱佳科技还提供分析仪器配件、耗材的销售。 质谱佳科技总部位于长沙,通过设在上海、海口等地的分公司,形成服务全国的网络。为制药、食品、环保、三方检测、新能源等多个行业以及高校、科研院所、政府实验室等客户提供方便快捷的本地化服务。
    留言咨询

质谱噪比计算方法相关的仪器

  • Thermo Scientific Prima PRO和Sentinel PRO:开启质谱新时代依托超过 30年在线质谱仪的成功研发应用经验,新一代 Thermo Scientific Prima PRO和Sentinel PRO在线质谱仪可从容应对石油化工应用的众多挑战,其中包括: 天然气处理 烯烃生产 裂解炉优化 环氧乙烷 /乙二醇 聚烯烃生产 合成氨 有毒挥发性有机化合物(VOC)的泄漏 凭借着经实践证明的更快、更全面的在线气体成分分析能力,Prima PRO可以对多流路气体进行精确分析,进而提高产量。它维护量少、易于操作并且可提供可靠、实时的数据到 DCS系统,从而确保投资回报率。基于和Prima PRO相同的操作平台, Sentinel PRO环境质谱仪以其众多同样的优势,被设计用于满足微量泄漏环境监测的需要。半连续监测 60-120个取样点及高灵敏度的检测能力,确保可靠的泄漏检测,从而提高生产装置的安全性和生产制度的规范性。此外,单台 Sentinel PRO或 Prima PRO可以轻松取代多台气相色谱仪(GC),减少取样时间,简化维护程序,更重要的是降低整体投资成本。操作原理Prima PRO、Sentinel PRO进行稳定、快速气体分析首选技术的基础是扫描磁扇质谱技术。利用这种技术,气体可以通过一个多流路进样阀源源不断的从取样系统到达离子源,在这里,气体分子被离子化和碎片化。离子被高能电场加速后进入电磁质量分析器,目标离子进入检测器。分子碎片能够产生重复性极好的“指纹”谱图,这可以让具有相似分子量的气体被精确测量而不受干扰。内置控制器使用一系列的工业标准协议,将气体浓度数据和其他诸如热值和碳平衡的计算数据直接传送到过程控制系统。耐用性和容错性设计在显著降低维护要求的同时,可以保证 99.7%以上的投用率。新型号带来更高的投资回报率 快速在线气体分析(每个取样点 1至20秒),准确反映工艺 动态 全组分气体分析,提供更多的数据给先进过程控制系统(APC)高稳定性,90天的标定间隔(自动) 可靠,容错设计,确保投用率超过99.7% 占地面积小 最少的维护量需求,降低运营成本天然气加工原料气可能来源于附近的气田或其他加工过程(如炼油厂的尾气),以及油田收集的伴生气。因此,气体工厂来料的体积和成份会有很大的差别。通常天然气含有 85%的甲烷和数量不定的天然气凝液( NGL),包括液化乙烷(C2H6)、丙烷(C3H8)、正丁烷(n-C4H10)、异丁烷(i-C4H10)、戊烷和更重烃(C5+)、惰性气体(典型的是氮和氦),和硫化氢(H2S)、二氧化碳(CO2)等酸性气体。酸性气体通过采用膜分离技术或氨水溶液进行脱除。硫是通过硫装置(或 Claus装置),采用加热和催化两步法将硫化氢中的硫还原为单质硫。对于剩余气体(通常称之为尾气),要对其残留的硫化氢进行处理,随后焚烧。气体工厂在把原气分馏为残留气体、乙烷、丙烷、丁烷和天然汽油产品前要去除水蒸汽、微量的汞和氮气。分馏系统的各阶段依靠馏份的沸点差来分馏各个烷烃。Prima PRO:快速、精确的气体成分分析利用Prima PRO,可对加工气体的成分进行快速、高精度的在线分析。分析包括全面和精确的成分分析以及热值(粗热值和净热值)、密度、比重、华比指数、化学需气量和燃烧需气量指数(CARI)的计算。燃烧需气量用于加工厂燃烧气体时对燃烧的控制。Prima PRO还能为控制气体加工阶段的物料平衡方程提供精确的气体组成数据。Prima PRO还有下列优点: 减少能源消耗(燃气和电能) 提高液化产品的回收 精确测量产品的能值 减少向环境中的排放烯烃生产典型的烯烃厂有两个基本工段:裂解炉和分馏系统。烯烃裂解炉或热解炉将饱和烃裂解成较小的不饱和烃。生产较轻的烯烃,包括乙烯、丙烯和丁烯所用的主要工业方法是蒸汽裂解法。在这一过程中,用蒸汽稀释气态或液态的烃原料(即石脑油、液化石油气、氢裂粗柴油或简单乙烷和丙烷混合物),并在裂解炉内短时加热。典型的反应温度很高(约为 850℃),反应时间限制在一秒钟内。在现代的裂解炉中,驻留时间缩短到毫秒级,产生超音速气流,从而提高所需产品的产量。当达到裂解温度以后,气体在传输线热交换器中急速骤冷以停止反应。反应时的产量取决于进料的成份、烃与蒸汽的比例、裂解温度和炉内驻留时间。轻烃物料,包括乙烷、液化石油气或轻石脑油,产生的产品富含轻烯烃,包括乙烯、丙烯和丁二烯。石脑油和炼油厂液态原料不仅可生产出这些轻质烯烃的一部分,还能生产出富含芳香烃产品,适于高温热解汽油或燃油。较高的裂解度,有利于乙烯和苯的生成,而较低的裂解度则生产较多数量的丙烯、C4烃和液态产品。这一过程也会导致焦炭慢慢沉积在炉管或裂解盘管壁上。由于炭层会限制热传导和增加压降,因此反应器的效率会降低。设计反应条件时应使焦炭沉积的速率减小到最低。采用动力学模型预测焦炭层的厚度,以保证依赖炉温的裂解效果能被预测。蒸汽裂解炉通常只能运行几个月,就需从裂解线上分离出来除炭。蒸汽或蒸汽 /空气混合气通过裂解炉盘管,可以使硬质固体的炭层转化为一氧化碳和二氧化碳。当这一反应完成后,裂解炉就可重新使用。另一种方法是离线的低温机械式清除法,用低温碱性清洗剂去除盘管上的沉积炭是有效的。不管用何种方法,在除炭过程中每一台炉要至少停炉27小时。以下的内容介绍了如何利用Prima PRO使裂解炉的使用得以优化。裂解炉优化的基本原理在任何给定时刻,产量取决于许多因素,包括原料成份、稀释蒸汽流量、烃流量、盘管温度分布(即炉子燃烧率和燃料能量)、炉子抽力和盘管焦炭成份。模型预测控制(MPC)利用多种测量参数,如盘管出口温度和进料率等来预测上述因素。这样,温度和驻留时间可以优化,在使焦炭沉积率最小的同时,实现烯烃的最高产量。虽然众多过程变量的关系是复杂的,但如果裂解度太低,乙烯产量将会很低。如果裂解度太高,则积炭率也会高,产量的减少也将是不可接受的。裂解度技术比较当动力学模型没有成份反馈时,实际的裂解度如何随时间变化。在这种情况下,一台气体裂解装置通常有62%的乙烯产率。使用在线气相色谱仪(GC)测量实际裂解度指数的益处(如丙烯/乙烯比和丙烯/甲烷比)。采用这种六分钟间隔的定时测量,就能通过提高裂解度的设定值来强化对裂解度的控制。这种升级一般能使气体裂解装置的产量提高 5%。这就是为什么世界上多数乙烯装置将气相色谱仪用于过程控制的原因。图4c说明了在一个更现代化的装置上用 Prima PRO取代气相色谱仪所带来的更强的控制。由于Prima PRO快速分析,可以用一台在线质谱仪(MS)取代 5台气相色谱仪,并把取样间隔从6分钟缩减到2分钟,从而得到另外 2%的增产。应注意到,由于在这个动力特性很强的过程中速度是很重要的,气相色谱分析将限定在 C1到C3分析。它能满足对于实际裂解度指数的测量,但不能提供足够的数据使动力学模型能精确地预测由于重烃的凝结和聚合作用所产生的焦炭沉积率。因此,在一般的装置中,对于速度很低的 C1烃到C4烃的扩展分析要用附加的气相色谱仪,以提供动力学模型所需数据。对于液态物料裂解炉,这种分析还要进一步扩展到 C5烃,以计算动力裂解因子(KSF),这一因子用于根据市场条件优化特种烯烃的生产。通常会将附 加的扩展分析色谱仪多路配置,使每一台气相色谱仪能监测 4到5台炉。然而,使用一台Prima PRO就能监测炉内裂解产物而无需额外的装置。Prima PRO的扩展分析还能提供对重烃进行监测的附加功能,重烃通常被 Thermo Scientific PyGas自清洗取样器所去除。这一数据能预测当样品处理系统发生故障时的维护能力,从而保证更可靠的运行。裂解度控制成本/效益分析Prima PRO解决方案一台配置了60个取样口和24个标定口的Prima PRO 在线质谱仪。如图7所示,一对有类似配置的冗余质谱仪系统可以取代15个气相色谱仪,这能节省约33%的成本,并具有更先进的分析性能。另外,两台Prima PRO可安装在相对便宜的分析小屋中,大约是气相色谱仪的分析小屋成本的25%。维护成本也只有气相色谱仪方案成本的20%左右。虽然Prima PRO的标定气体消耗要高一些,但与气相色谱仪的购置成本和维护费用相比,其费用是极低的。另外,Prima PRO不需要助燃气或载气,这是一种更经济的解决方案。气相色谱仪解决方案气相色谱仪的典型配置,用10台气相色谱仪控制裂解度,5台气相色谱仪提供所需数据用于APC动力模型分析。此方案的成本约100万美元;另外,在所有季节中都要进行维护。有些气相色谱仪能够完全补偿气候的影响,装在室外无需庞大、昂贵的分析小屋,而大多数则不能。一个预制的分析小屋包括全套的样品预处理系统、通讯设施及其他必要的公用工程,分析小屋在为维护人员提供良好工作环境的同时,大的分析小屋也带来了更高的制造成本。如果有很多气相色谱仪需要维护,总拥有成本就会很高:每年每台气相色谱仪大约要7000美元的维护费,这还不包括载气、助燃气和标定气体的消耗等费用。环氧乙烷 /乙二醇环氧乙烷(EO)是通过氧化银催化剂直接氧化乙烯而成的。由于环氧乙烷分子活性极强,因此生产通常与容易运输的乙二醇生产结合在一起。先对乙烯、压缩氧气和循环气预热,然后将这些气体注入装有氧化银催化剂环管反应器中的一个。由于生产中的目标分子不是二氧化碳和水,所以可通过氯化合物添加剂来改进选择性。催化剂的活性随时间而降低,要求逐步提高反应温度。为了增强反应器的燃烧率,要加入甲烷。 Prima PRO:最佳气体分析解决方案 Prima PRO能利用精确测量选择性和测量碳氧分子平衡实现气体分析过程的最优化。采集的数据经常用于控制氯添加剂。Prima PRO也能用于催化剂的开发研究,其目的是在高活化率的条件下增加催化效率。聚烯烃生产聚乙烯(PE)主要按其密度和支链分为几种不同的类别。聚乙烯的物理性能主要取决于几个变量,包括支链的长度和类型,晶体结构和分子量。高密度聚乙烯(HDPE)的支链少,因此具有较强内部分子力和抗拉强度。选择适当的催化剂和反应条件可以减少支链。线性低密度聚乙烯(LLDPE)是一种有大量短支链的聚合物,通常由乙烯与短链α烯烃(如:1-丁烯、1-己烯和1-辛烯)发生共聚作用形成。可利用一个或两个流化床气相反应器的交换工艺来制造全范围聚合物。这些聚合反应器的进料为乙烯、氢气、共聚单体和循环气。聚合物的质量是通过气体组份来控制的,这就需要准确、快速在线分析Prima PRO:精确,快速和多流路监测实验期间生成的数据。其中将专为监测五个工艺流路而配置的Prima PRO与专为监测反应器进料气体组分而整理的GC数据进行比较。Prima PRO清楚追踪了氢气/乙烯比的变化,精度高于GC。此外,Prima PRO更新DCS的速度要比单流路GC快九倍,即便Prima PRO测量五个流路亦是如此。在前四十个PMS数据点中,DCS试图利用GC数据来控制这个比率。当控制切换至Prima PRO数据时,此比率变化的监测得到显著改进,包括: 产品质量更稳定 分子量分布更集中 不合格产品更少 稳态动力学有所改进合成氨从烃进料中除去硫,然后与蒸汽混合通过镍基催化剂,生成氢气和一氧化碳。通过将蒸汽 /碳比维持在 3:1以上,将单质碳的形成减至最低限度,从而保护催化剂。未反应的甲烷(称作“损耗”)亦需控制在较低水平,以便优化转化炉 /变换炉的性能。在次级重整 /裂化装置中,空气在流量控制条件下引入,使氢 /氮比为 3:1。空气中的氧气可将大部分 CO氧化成 CO2,同时加入蒸汽,以便将剩余的 CO转化为CO2和氢气。在吸收塔中除去大部分CO2,微量的碳在催化剂作用下转化成甲烷。转炉进料气与循环气混合,转炉入口处的氢 /氮比(H:N)再次受到严格控制,以实现NH3转化效率的最大化。进气中所包含的惰性气体(如:氩气和氦气)的聚集情况需要予以监测,因为这些气体如果不定期清除的话,会成为重要的稀释剂。Prima PRO:稳定,可靠的在线气体分析 进气组分和热值计算精度最高;因严格控制蒸气/碳比(±0.01%)而减少消耗掉的能量 精确控制氢 /氮比(±0.003%),使产量最大准确测量甲烷损耗,以降低生产成本与较慢的色谱或稳定性较差的质谱控制作用相比,高取样率(在不到两分钟内10至12流路)可使产量提高1%至2%总成本极低 快速收回成本 有毒挥发性有机物(VOC)的泄漏只要化学品生产装置存在,就存在有毒挥发性有机物泄漏的潜在危险,监管机构通常都会要求工厂监测环境气体成分,以避免工人受到长期接触的伤害。有各种形式的捕获装置包括真空罐(苏玛罐)、可挥发性有机物报警器或吹扫和捕获装置。收集到的样品需要送往环境实验室进行分析。另外,还可利用电化学传感器来即时显示是否存在浓度超过预定水平的目标分子。还有一种定量方法是使用开路式傅利叶变换红外光谱仪测定VOC是否在警戒线以内。利用这些不同技术获得的数据,通常都用来满足当地法规的要求。然而,这些技术都不能提供满足诉讼依据要求的时间和空间的分辩率。Sentinel PRO环境质谱仪:简单全面的数据采集Sentinel PRO环境质谱仪能够在15分钟以内监测100个以上的取样点,并在0.01至1ppm精度范围内检测特定物质。凭借其速度和精度,它可监测所有关键区域的短时泄漏,并提供准确的8小时、时间加权平均泄露数据。由于具有大量可用的取样点,许多取样点可位于靠近潜在泄漏点的地方,如:阀杆处等,以便在有毒危害发生之前进行泄漏检测和修复。尽管安装这种装置的主要目的是为了保护操作人员和符合环保法规,但其使用效果往往超越了对泄露防护的要求。
    留言咨询
  • 岛津抗污染型高灵敏度气相色谱质谱联用仪GCMS-QP2020 NX是目前同类产品中硬件性能卓越,软件智能化高的超快速质谱产品。搭载全新大容量超高效真空系统,集成高辉度离子源和屏蔽板(Shield)技术,使其超强抗污染性能和超高灵敏度脱颖而出,成为复杂样品痕量物质分析的有力利器。提供20,000 u/sec的扫描速度,配合ASSPTM技术,使其在定量和定性方面均达到fg水平,从而获得高通量,高精度,高灵敏度的数据结果,有效缩短分析周期,显著提高实验室分析效率。此外,GCMS Insight软件提供从方法创建到数据分析一体化的分析流程,通过量身定制的专属性丰富数据库,实现全方位的应用支持和专业性的解决方案,满足不同领域用户苛刻的分析需求。广泛应用于食品安全,环境保护,毒物分析和代谢物分析,高功能新材料和化学品的研究和开发,毒性生物标记物的发现,医疗领域中诊断标记等不同领域。 抗污染型高灵敏度气相色谱质谱联用仪GCMS-QP2020 NX,具有以下特点:1. 集成高灵敏度和低实验成本 依托卓越质谱技术,兼容多种载气类型(He,H2,N2),开拓质谱技术分析极限。无需更换离子源,轻松切换离子化方式。(1)高灵敏度采用屏蔽板(Shield)技术的整体惰性化高灵敏度离子源和“偏转透镜(OD lens)技术”配合“新型低噪音CPU板”,有效降低复杂样品的基质干扰和电子噪音,实现业界GCMS更高灵敏度(S/N≥2000:1),成为复杂样品中痕量物质分析的有力利器。另外,通过设定调谐参数也可以适用于高浓度样品的分析。从而在低到高的宽动态范围内,轻松获得理想的高精度分析结果。(2)全新超高效大容量真空系统GCMS-QP2020 NX搭载全新“大容量超高效真空系统”——采用离子源(200L/sec)和四极杆质量分析器(200L/sec)分别排气的涡轮分子泵,实现双入口差动式排气量可达400L/sec,同时压缩气体作用提升3倍以上,有效保证在任何载气条件下实现最佳的质谱状态。超强高效的真空系统全方位支持以下应用: 1) 支持同时安装2根不同极性色谱柱至真空系统中组成“Twin Line MS双柱系统”。在不损失灵敏度的前提下,有效减少不同应用中更换色谱柱所需要的时间,直接通过软件的简单操作即可实现在两根色谱柱之间切换。 2) 超高效大容量真空系统保证质谱系统的高真空度,有效降低离子源污染,因此可以减少离子源的维护操作。3) 支持实现仪器的快速启动,在开机30分钟内即可进行实际样品分析,提高仪器的稳定性和数据的可靠性。4) 最大柱流量可达15 mL/min,因此可以连接内径为0.53mm的宽口径毛细管柱,实现大体积进样等高通量、高拓展要求的分析。 (3)超快速扫描性能(ASSPTM)采用高精度加工的全金属四极杆质量分析器,配合全新设计的高速数据采集运算处理平台,具备目前同类产品中最快扫描速度(20,000 u/sec) ,并且在高速采集数据时,采用Advanced Scanning Speed Protocol(ASSPTM),加速离子传输,有效降低高质量端歧视,最大程度的减小10,000u/sec以上的高速扫描时的灵敏度下降和质谱图正确性下降的问题,与传统方式相比,灵敏度提高5倍以上,特别是在Fast-GCMS、Scan/SIM同时测定的FASST模式、GC×GC/MS的应用中,可以有效地提高扫描数据的灵敏度,得到经典的质谱图,因此使得GCMS-QP2020在快速分析中更加优异。(专利:U6610979)3. 维护简便及独特设计 4. 生态模式设计(1)Ecology Mode生态模式GCMS-QP2020 NX在待机时可以切换至“Ecology Mode”生态模式,节省仪器的耗电量及载气消耗量,这有助于降低仪器的日常消耗,并减少环境排放。按每天工作6h,待机18h计算,可以比传统机型节约36%的耗电量。岛津的管理理念是“为了人类和地球的健康”,因此,我们非常注重全球的环境保护。该仪器采用了Ecology mode设计,使得GCMS生产线上排放的CO2数量仅为从前制造工艺的30%。 (2)聚焦全球气候变暖岛津的管理理念是“为了人类和地球的健康”,因此,我们非常注重全球的环境保护。该仪器采用了Ecology mode设计,使得GCMS生产线上排放的CO2数量仅为从前制造工艺的30%。5. 法规符合性GCMS Insight软件具有安全性策略、系统策略、用户权限和用户管理、审核追踪等功能,在实现高效系统运行的同时,完全符合GXP和FDA 21 CFR Part11或厚生劳动省相关法规的要求。
    留言咨询
  • 环氧乙烷残留量计算方法结果计算 :环氧乙烷残留相对含量: CEO=1.775Vc1×103CEO:单位产品中环氧乙烷的相对含量,单位为微克每克(μg/g)  V:平行组标准曲线上找出的供试液相应体积的平均值,单位为毫升(mL)  C1:乙二醇标准溶液浓度,单位为克每升(g/L)如:v=0.426 C1=0.011。样品环氧乙烷残留相对含量 CEO=1.775×0.426×0.011×1000=8.19ug/g小于10ug/g 判定合格。操作步骤:1.标样配制:用100mL玻璃针筒从纯环氧乙烷小钢瓶中抽取环氧乙烷标准气(重复放空二次,以排除原有空气),塞上橡皮头,用10mL针筒抽取上述100mL针筒中纯环氧乙烷标准气10mL,用氮气稀释到100mL(可将10mL标准气注入到已有90mL氮气的带橡皮塞头的针筒中来完成)。用同样方法根据需要再逐级稀释2~3次(稀释1000~10000倍),作三个浓度的标准气体。按环氧乙烷小钢瓶中环氧乙烷的纯度、稀释倍数和室温计算出终标准气中的环氧乙烷浓度。2.样品处理:至少取2个小包装产品,将其剪碎,随机精确称取2g,放入萃取容器中,加入5mL三氯甲烷或丙酮,充分摇匀,放置4h或振荡0.5h待用。3.分析、计算待仪器稳定后,在同样条件下,环氧乙烷标准气体各进样0.5μL,待分析样品各进样2μL。根据保留时间定性,根据峰面积(或峰高)进行定量计算。此工作由工作站自动进行,并直接打出实际含量。4.使用仪器GC-2010气相色谱仪-北分三谱分析AHS-20A plus全自动顶空进样器--北分三谱分析BF-300E氢气发生器-北分三谱分析BF-2L空气发生器-北分三谱分析分析天平-精度0.01mg氮气钢瓶—高纯气体99.999%其他玻璃仪器及注射器
    留言咨询

质谱噪比计算方法相关的资讯

  • 石化和涂料油墨制造行业VOCs排放量计算方法(2017版)来了!
    p   通过一年多的试行,上海市环保局组织修订并发布了《上海市石化行业VOCs排放量计算方法(2017年修订版)》和《上海市涂料油墨制造业VOCs排放量计算方法(2017年修订)》。新版的内容有哪些变化? /p p & nbsp & nbsp & nbsp & nbsp 1.新增储罐修正周转量《修订方法》在储罐公式法中增设了修正周转量,其根据实测“液位高度变化”与“最高液位高度”比值对储罐周转量进行了修正。 /p p & nbsp & nbsp & nbsp & nbsp 2.& nbsp 新增储罐和装卸平衡管效率系数《修订方法》中在储罐和装卸公式法增设了平衡管效率系数,充分考虑了油气平衡管控制效率和减排效果,更接近实际排放情况。 /p p & nbsp & nbsp & nbsp & nbsp 3.& nbsp 加入废水WATER9《修订方法》中废水公式法加入WATER9了模型法,丰富了在废水中VOCs全组份种类及浓度已确定的情况下VOCs排放量计算方法。 /p p & nbsp & nbsp & nbsp & nbsp 4.& nbsp 加入冷却塔汽提实测法《修订方法》中冷却塔加入汽提实测法,更加精准测算冷却塔、循环水中VOCs排放量。 /p
  • 环保部印发《国控污染源排放口污染物排放量计算方法》
    关于印发《国控污染源排放口污染物排放量计算方法》的通知   各省、自治区、直辖市环境保护厅(局),新疆生产建设兵团环境保护局:   根据《国务院批转节能减排统计监测及考核实施方案和办法的通知》(国发〔2007〕36号)的要求,为了加强污染源自动监测和监督性监测数据在排污收费和总量核定等环境管理方面的应用,进一步规范污染物排放量的计算,我部制定了《国控污染源排放口污染物排放量计算方法》。现印发给你们,请遵照执行。   附件:国控污染源排放口污染物排放量计算方法   二○一一年一月二十五日
  • 质谱分析|Native MS中计算质量、误差和不确定性的方法
    大家好,本周为大家介绍的是一篇发表在Journal of the American Society for Mass Spectrometry上的文章Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry1,文章通讯作者是来自美国亚利桑那大学化学与生物化学系的Michael T. Marty教授。  非变性电喷雾离子化质谱(native ESI mass spectrometry)已经发展为一种成熟的、表征生物分子相互作用和结合化学计量的技术,通过将生物分子的缓冲体系换成质谱可兼容的挥发性盐溶液,来保护样品的结构和非共价相互作用在离子化过程中不被破坏。随着该技术的发展,一些计算概念的标准化是有必要讨论的。本文介绍了native MS中质量的定义、计算、误差和不确定性。  对于一个质谱峰,有三个位置可以描述它的质荷比:平均值(mean)、中位数(median)和顶点(apex)。平均值又称为质心,即每根峰的质荷比加权其强度得到的平均值 中位数很少被用来描述峰值 顶点是指峰强度最高处的质荷比。在理想的情况下,质谱峰应该是完全对称形状的,质心和顶点的质荷比应该相同(图1A),但这种情况在native MS中比较少见,因为经常会有盐离子等小分子加合到峰上,导致质心和顶点分离以及峰型不对称(图1B),在这种情况下,顶点作为计算真实质量的参数更为合理。Native MS峰也可能与噪音(图1C)和基线(图1D)叠加,相比之下,噪音对顶点的影响大于基线,很可能干扰顶点的识别,这种情况下,选择超过一定阈值的质心计算质量更为合适。由于待测物会产生一系列电荷分布,建议在每个电荷态单独计算出质量后,再按电荷态的相对强度进行加权,获得最终的检测质量。  图1. 几种可能的谱峰形状:理想(A)、有加合(B)、有噪音(C)、基线高(D)。  在比较实测质量和理论质量时,误差指的是实测质量减理论质量,在谱峰鉴别时通常需要计算误差,而不确定程度是指在测量过程中不可避免的值的离散,为了评估误差和不确定程度,作者考虑了三个指标:①从不同电荷态计算出的质量的加权标准差(图2A),这反映了通过所有电荷态计算出的质量的平均值的准确程度,标准差越小,平均值就越准确,这种计算标准差的衡量不确定程度的方式,适合手动计算质量时使用。②峰宽(图2B),如果将质谱峰视为高斯分布,峰宽也是体现不确定程度的参数,在native MS中通常使用半峰宽来衡量峰之间的差异,由于重叠的峰难以手动区分但可以被软件识别,这种衡量方式更适合软件。③重复性(图2C),相比于前两种方式,重复性是更好的确定不确定程度的方式,不确定程度可以定义为多次重复测量出的质量的标准差,但重复实验也需要考虑实验重复性因素(喷针口径,样品制备方法,样品批次,仪器校准等)。  图2. 三种测量峰不确定程度的方法:不同电荷态计算出的质量的加权标准差(A),峰宽(B),重复性(C)。  总结:本文讨论了native MS谱峰的质量、误差和不确定程度的定义,推荐从native MS谱图中不同电荷态的峰计算质量后,加权平均以获得精确质量,并通过重复实验考察不确定程度。  1. Marty, M. T., Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? Journal of the American Society for Mass Spectrometry 2022, 33 (10), 1807-1812.

质谱噪比计算方法相关的方案

质谱噪比计算方法相关的资料

质谱噪比计算方法相关的论坛

  • 【原创】色谱检出限计算方法

    方法检出限的测定必须包括该分析方法中涉及的所有样品测试步骤。 1. 根据下述原则之一,并结合经验,估计检出限:(a) 相应于3-5倍仪器信/噪比的浓度值; (b) 将分析物配在空白水中,用仪器重复测定值标准偏差的3倍所对应的浓度值;(c) 标准曲线在低浓度端的折点(灵敏度明显变化之处);2. 空白水(试剂水)中应尽可能不含待测分析物,或其中的待测物、干扰物低于方法检出限。3. (a) 若用空白加标的方式作方法检出限,将分析物加到空白水中配置一个标准浓度样,该浓度值是估计的方法检出限值的1-5倍。然后进行步骤4。(b) 若方法检出限在实际样品基体中作出,则分析样品,若测定值在估计检出限的3-5倍范围内,则进行步骤4;若测定值低于估计检出限,则需要在样品中加入已知量的待测物,使得待测物的浓度在估计检出限的3-5倍范围内;若测定值高于5倍的估计检出限,则需重新选择另一个具有同样基体、但浓度水平较低的实际样品。4. 按照样品分析的全部步骤,最少分析7次样品,用所得的结果来计算方法检出限,如果需要作空白测定来计算分析物的测定结果,则每个样品均要作分别的空白测定,在相应的样品测定值中减去平均空白测定值。 5. 计算平行测定的标准偏差: 6. 计算方法检出限 MDL=S×t(n-1,0.99)(如果连续分析7个样品,在99%的置信区间,t(6,0.99)=3.143) 其中:S为平行测定的标准偏差, t(n-1,0.99)为置信度为99%、自由度为n-1时的t值。n为重复分析的样品数t值表测定次数自由度 (n-1)t(n-1,0.99)763.143872.998982.8961092.82111102.76416152.60221202.52826252.48531302.45761602.3907. 方法检出限合理性判定一般要求加标样品测定平均值与计算出的方法检出限比值在3~5之间的化合物数目要大于50%,小于1和大于20的化合物数目要小于10%,这说明用于测定MDL的初次加标样品浓度比较合适。对于初次加标样品测定平均值与MDL比值不在3~5之间的化合物,要增加或减少浓度,重新进行平行分析,直至比值在3~5之间。选择比值在3~5之间的MDL作为该化合物的MDL。八、色谱、色谱/质谱法分析有机污染物的方法定量下限1.参考美国EPA方法,可将5~10倍的检出限作为方法定量下限2.也可以将曲线最低一点浓度作为估计定量下限。

  • 冶金分析化学中回收率计算方法研究

    [font=宋体][font=宋体]冶金的原料中有着较高回收价值的金属原料[/font][font=Calibri],[/font][font=宋体]一些金属原料会在冶金的过程中随着[/font][/font][font=宋体]金属[/font][font=宋体][font=宋体]半成品的不断变多而开始大规模的聚集在一起[/font][font=Calibri],[/font][font=宋体]在金属电解精炼的情况下才与金属分离[/font][font=Calibri],[/font][font=宋体]产生了阳极泥。[/font][/font] [font=宋体][font=宋体]对当前的冶金行业来说[/font][font=Calibri],[/font][font=宋体]回收率是能有效反映出冶金工业投人到人物科以及成品生产具体状况的主要指标。为此如何精准计算到冶金分析化学中的回收率是当前相关工作人员应当解决的难题。[/font][/font] [font=宋体][font=Calibri]1[/font][font=宋体]回收率的概念[/font][/font][font=宋体]:[/font] [font=宋体][font=宋体]回收率包括绝对回收率以及相对回收率。毫无疑问[/font][font=Calibri],[/font][font=宋体]回收[/font][/font][font=宋体]率[/font][font=宋体][font=宋体]低与样品处理后可直接用于详细分析的药品比例标准有关。这是因为无论是生物有机基质还是药物在生物制剂的辅助材料中[/font][font=Calibri],[/font][font=宋体]作为一种分析方法,试验样品在处理后都会有[/font][/font][font=宋体]全部[/font][font=宋体]的损失。低回收率[/font][font=宋体]一般[/font][font=宋体][font=宋体]在[/font][font=Calibri]50%[/font][font=宋体]以上[/font][/font][font=宋体],[/font][font=宋体]这是药物在填充植入物中的定量添加[/font][font=宋体],[/font][font=宋体][font=宋体]以及产品与特定标准产品的比率。标准中间体直接从高速流动相稀释[/font][font=Calibri],[/font][font=宋体]这是不[/font][/font][font=宋体]同[/font][font=宋体]的。[/font] [font=宋体][font=宋体]如果用同样的方法处理产品[/font][font=Calibri],[/font][font=宋体]那么不添加有机基质的后续处理可能会屏蔽许多影响很大的外部因素[/font][font=Calibri],[/font][font=宋体]从而失去正回收率研究的[/font][/font][font=宋体]初衷[/font][font=宋体]。严格的回收方法有两种,一种是回收过程测试方法,另一种是样品添加[/font][font=宋体]回[/font][font=宋体]收过程测试方法。相对而言,将药物添加到空白[/font][font=宋体]矩阵[/font][font=宋体]中,并且特定的标准曲线相同。通常使用这种确定方法[/font][font=宋体],[/font][font=宋体][font=宋体]将已知溶解度的药物添加到样品中,以与基本标准曲线进行比较,特定标准曲线发生变化以将药物添加到有机基质中。准确性是指通过这两种方法测得的最终结果与实际值或批准的数据参考值[/font][font=Calibri]([/font][font=宋体]有时称为真实性[/font][font=Calibri])[/font][font=宋体]之间的子级别。因此,准确度是定性确定的充分条件。[/font][/font] [font=宋体][font=Calibri]1.[/font][/font][font=宋体][font=Calibri]1:[/font][font=宋体]含量测定[/font][/font] [font=宋体][font=宋体]由于可以通过所包含的方法来确定与定性测量结果相关的检查项目[/font][font=Calibri],[/font][font=宋体]因此可以通过精度验证测试对各种杂质进行定量验证[/font][font=Calibri],[/font][font=宋体]并且精度应超出法律规定的范围。说到准备[/font][font=Calibri],[/font][font=宋体]恢复测试通常用于验证过程[/font][/font][font=宋体]中[/font][font=宋体]。[/font] [font=宋体]在独特的测试设计中,应在明确定义的[/font][font=宋体]扩展范围内[/font][font=宋体][font=宋体]准备相同浓度范围的样品[/font][font=Calibri],[/font][font=宋体]每个样品应进行三次测试[/font][font=Calibri],[/font][font=宋体]即九次。应分析报告的未知添加剂量或试验最终值与真实值和置信度极限之间的回收率[/font][font=Calibri](%)[/font][font=宋体]之间的[/font][/font][font=宋体][font=宋体]差异。可以使用推断出的最高纯度的参考物质或不满足要求的基本[/font][font=Calibri]APl[/font][font=宋体]来准确确定主要[/font][font=Calibri]AP[,[/font][font=宋体]或者将通过此方法获得的最终结果与通过方法获得的最终结果进行比较以确定准确性。组分均匀混合物的测定结果。如果不能获得生物制剂的所有成分,则可以将已知量的测试物品添加到制剂产品中并进行测量。如有必要,可将结果与确定准确性的方法进行比较,确定总制剂产品的总含量。立即添加调味料中已知含量的主要药物的回收率为[/font][font=Calibri]80%[/font][font=宋体],[/font][font=Calibri]100%[/font][font=宋体]和[/font][font=Calibri]120%[/font][font=宋体]。这是一种基于总含量确定结果的方法。[/font][/font] [font=宋体][font=Calibri]1.2[/font][font=宋体]杂质定量试验[/font][/font] [font=宋体]在对[/font][font=宋体]杂质[/font][font=宋体]进行定[/font][font=宋体]时和定[/font][font=宋体]量[/font][font=宋体]测试[/font][font=宋体]时[/font][font=宋体][font=Calibri],[/font][font=宋体]可以将已知故量的[/font][/font][font=宋体]杂质[/font][font=宋体]添加到[/font][font=宋体]基本原料[/font][font=宋体][font=宋体]药或注射剂中以采取测量方法。如果无法去除杂质[/font][font=Calibri],[/font][font=宋体]则可以将该方法的结果与另一种[/font][/font][font=宋体]非常成熟且通用[/font][font=宋体]的方法进行比较。[/font] [font=宋体][font=宋体]可以获得针对各种杂质的较小的有源响应生长因子,并且可以在最终数据线上测最杂质的相关方面。例如,如果使用二极管阵列检测信号来测是紫线的可见光谱,则当去除的杂质的光谱与主要成分的可见光谱非常相似时,主要[/font][font=Calibri]AP[/font][font=宋体]的快速响应增长因子可用于匹配所含的杂质[/font][font=Calibri]"[/font][font=宋体]。应该清楚的是,一个以上的杂质去除量和杂质的总和等于其主要成分的重盘比[/font][font=Calibri](%)[/font][font=宋体]或总面积比[/font][font=Calibri](%)[/font][font=宋体]。[/font][/font] [font=宋体][font=Calibri]2 [/font][font=宋体]冶金分析化学中回收率的计算方法[/font][/font] [font=宋体][font=宋体]冶金有机化学中有两种常见的计算回收率的方法[/font][font=Calibri]:[/font][font=宋体]平衡法和连续乘法。根据冶金行业无机化学的生产特点,选择方法。[/font][/font] [font=宋体][font=宋体]首先,分别计算粗加工和消洗过程的总回收率。如果将测试样品退回进行冶炼,则需要增加由回收的产品的回收所造成的更多损失,然后将每个过程的平均回收率相乘以获得总回收率。科学研究中化学物理学中的平均回收率可以完全正确地计算出方法,方法可以通过多种方法计算出综合数据的准确性,从而基本确定,对于更具体的标准来说,准确度通常是不准确的。将标准重量加到冶金工业回收的所有样品中,以制备混合搅拌样品。钢铁冶金药品分析中回收率的计算方法常用方法的准确度取决于样品和混合样品的平均值在分析机械制造和计算有机化学回收率的准确度时,必须保持混合金居材料和样品合金的所有样品的物理和化学性质[/font][font=Calibri]-[/font][font=宋体]致,以防止错误回收。为了提高计算结果的可信度,可以进行其它几种不同的重金属元素回收率试验。如果在冶金工业中没有定量干扰回收率的计算方法进行药物分析,回收率的测定如果不准确,也可以说明回收率的准确性不高。冶金行业仪器分析的回收率是总体平均值。在化学元素样品中添加基本标准以测试回收率是方法中的一种,这对于全面测试外部干扰对多种元素的影响至关重要。在检验分析中检查回收利用率可以计算出常用方法的准确性。如果没有可靠的计复方法,并且常用方法可以很好地恢复结果,则可以检查数据计算最终结果的准确性。[/font][/font] [font=宋体][font=Calibri]3[/font][font=宋体]计算结果分析[/font][/font] [font=宋体][font=Calibri]3.1[/font][font=宋体]冶金分析化学初期金属数量变化较大[/font][/font] [font=宋体] [/font] [font=宋体][font=宋体]从计算方法的最终数据可以看出,在分析中,回收率的计算方法与平衡法不尽相同。各重金属回收过程的结果差异很大。两组数据的综合最终结果表明,用平衡法数据计算的平均理化回收率的冶金分析,并没有充分考想产品铜冶炼时的巨大损失,而是在实际情况下进行灵活操作的精相加工金属材料的退料量大,平衡计算法的结果准确率很低。必须小规模连续生产,特别是在钢铁冶金药物的早期分析中,金属的最发生了很大的变化,从理论上讲,在使用平衡方法计算计算的可重复使用性时,有必要使用合金在初始阶段和最终阶段的总消耗星来反转要计算的原始金属材料的量。计出的计算方法大大降低了钢铁冶金有机物回收率。该方法难以计草[/font][font=Calibri],[/font][font=宋体]因此在计算该方法的平均回收率时将被忽略[/font][font=Calibri],[/font][font=宋体]因此在好的计算方法结果中会存在一定的精度误差。另外,冶金深度分析的理化分析输出并非全部是最终的产品,另一部分是粗加工过程的半成品。[/font][/font] [font=宋体][font=Calibri]3.2 [/font][font=宋体]平衡法数据来计算钢铁当金仪器[/font][/font] [font=宋体]当使用平衡法数据计算钢铁冶[/font][font=宋体]金仪器分析的总再利[/font][font=宋体]用率时,没有考虑钢铁粗加工和[/font][font=宋体]精炼过程造成的损失,因此[/font][font=宋体]回收率低的计算方法最终会变的太低而无法反映[/font][font=宋体]总回收率低的计算方法的[/font][font=宋体]实际[/font][font=宋体][font=Calibri]-[/font][font=宋体]操作结果是分析化学。在宣布连续[/font][/font][font=宋体]分割[/font][font=宋体]计算方法时,将冶[/font][font=宋体]金[/font][font=宋体]过程中返还产品的总损失加到了化学无机化学平均回收器的计算中。与[/font][font=宋体]平衡法[/font][font=宋体][font=Calibri]-[/font][font=宋体]计算方法的数据相比,连续乘法运算[/font][/font][font=宋体]可以[/font][font=宋体]更准确地[/font][font=宋体]反映钢铁[/font][font=宋体]冶金无机化学回收率的实际水平。[/font] [font=宋体]通常将通过达到平衡法和[/font][font=宋体]连续相乘[/font][font=宋体]获得的总回收率称为整个机械制造的总回收率,但是[/font][font=宋体]由于去[/font][font=宋体]除了大量的半成品以及冶金和冶金行业中产生的杂质无机化学,并非所有金属材料的开采可以将材料区域加工成各种金属或这种金属化合物。[/font] [font=宋体]但是,称其为冶金工业中物理和化学的总再利用率并不准确。也可以称为所有材料机械制造的回收率。冶金行业分析中两种计算再利用数据的方法的报告显示,人员提供的数据通常仅是包括金属在内的金属材料的资产负债表。机械制造商等长期的官方统计数据无法计算出低回收率和低总回收率。[/font][font=宋体] [/font] [font=宋体][font=Calibri]4[/font][font=宋体]结语[/font][/font] [font=宋体][font=宋体]由上可知[/font][font=Calibri],[/font][font=宋体]在计算冶金化学分折回收率的同时一定要[/font][/font][font=宋体]依据冶金厂自身结构,选择适合的回收率计算方法,需要充[/font][font=宋体]分的考慰到计算的误差对回收率造成的影响、从而提升到治金分析化学回收率比的准确率[/font][font=宋体]。[/font][align=center][size=21px]冶金分析化学中回收率计算方法研究[/size][/align] 冶金的原料中有着较高回收价值的金属原料,一些金属原料会在冶金的过程中随着金属半成品的不断变多而开始大规模的聚集在一起,在金属电解精炼的情况下才与金属分离,产生了阳极泥。 对当前的冶金行业来说,回收率是能有效反映出冶金工业投人到人物科以及成品生产具体状况的主要指标。为此如何精准计算到冶金分析化学中的回收率是当前相关工作人员应当解决的难题。 1回收率的概念[font='宋体']:[/font] 回收率包括绝对回收率以及相对回收率。毫无疑问,回收率低与样品处理后可直接用于详细分析的药品比例标准有关。这是因为无论是生物有机基质还是药物在生物制剂的辅助材料中,作为一种分析方法,试验样品在处理后都会有全部的损失。低回收率一般在50%以上,这是药物在填充植入物中的定量添加,以及产品与特定标准产品的比率。标准中间体直接从高速流动相稀释,这是不同的。 如果用同样的方法处理产品,那么不添加有机基质的后续处理可能会屏蔽许多影响很大的外部因素,从而失去正回收率研究的初衷。严格的回收方法有两种,一种是回收过程测试方法,另一种是样品添加回收过程测试方法。相对而言,将药物添加到空白矩阵中,并且特定的标准曲线相同。通常使用这种确定方法,将已知溶解度的药物添加到样品中,以与基本标准曲线进行比较,特定标准曲线发生变化以将药物添加到有机基质中。准确性是指通过这两种方法测得的最终结果与实际值或批准的数据参考值(有时称为真实性)之间的子级别。因此,准确度是定性确定的充分条件。 1.1:含量测定 由于可以通过所包含的方法来确定与定性测量结果相关的检查项目,因此可以通过精度验证测试对各种杂质进行定量验证,并且精度应超出法律规定的范围。说到准备,恢复测试通常用于验证过程中。 在独特的测试设计中,应在明确定义的扩展范围内准备相同浓度范围的样品,每个样品应进行三次测试,即九次。应分析报告的未知添加剂量或试验最终值与真实值和置信度极限之间的回收率(%)之间的差异。可以使用推断出的最高纯度的参考物质或不满足要求的基本APl来准确确定主要AP[,或者将通过此方法获得的最终结果与通过方法获得的最终结果进行比较以确定准确性。组分均匀混合物的测定结果。如果不能获得生物制剂的所有成分,则可以将已知量的测试物品添加到制剂产品中并进行测量。如有必要,可将结果与确定准确性的方法进行比较,确定总制剂产品的总含量。立即添加调味料中已知含量的主要药物的回收率为80%,100%和120%。这是一种基于总含量确定结果的方法。 [color=#000000]1.2杂质定量试验[/color] [color=#000000]在对[/color][color=#000000]杂质[/color][color=#000000]进行定[/color]时和定量测试时,可以将已知故量的杂质添加到基本原料药或注射剂中以采取测量方法。如果无法去除杂质,则可以将该方法的结果与另一种非常成熟且通用的方法进行比较。 可以获得针对各种杂质的较小的有源响应生长因子,并且可以在最终数据线上测最杂质的相关方面。例如,如果使用二极管阵列检测信号来测是紫线的可见光谱,则当去除的杂质的光谱与主要成分的可见光谱非常相似时,主要AP的快速响应增长因子可用于匹配所含的杂质"。应该清楚的是,一个以上的杂质去除量和杂质的总和等于其主要成分的重盘比(%)或总面积比(%)。 2 冶金分析化学中回收率的计算方法 冶金有机化学中有两种常见的计算回收率的方法:平衡法和连续乘法。根据冶金行业无机化学的生产特点,选择方法。 首先,分别计算粗加工和消洗过程的总回收率。如果将测试样品退回进行冶炼,则需要增加由回收的产品的回收所造成的更多损失,然后将每个过程的平均回收率相乘以获得总回收率。科学研究中化学物理学中的平均回收率可以完全正确地计算出方法,方法可以通过多种方法计算出综合数据的准确性,从而基本确定,对于更具体的标准来说,准确度通常是不准确的。将标准重量加到冶金工业回收的所有样品中,以制备混合搅拌样品。钢铁冶金药品分析中回收率的计算方法常用方法的准确度取决于样品和混合样品的平均值在分析机械制造和计算有机化学回收率的准确度时,必须保持混合金居材料和样品合金的所有样品的物理和化学性质-致,以防止错误回收。为了提高计算结果的可信度,可以进行其它几种不同的重金属元素回收率试验。如果在冶金工业中没有定量干扰回收率的计算方法进行药物分析,回收率的测定如果不准确,也可以说明回收率的准确性不高。冶金行业仪器分析的回收率是总体平均值。在化学元素样品中添加基本标准以测试回收率是方法中的一种,这对于全面测试外部干扰对多种元素的影响至关重要。在检验分析中检查回收利用率可以计算出常用方法的准确性。如果没有可靠的计复方法,并且常用方法可以很好地恢复结果,则可以检查数据计算最终结果的准确性。 3计算结果分析 3.1冶金分析化学初期金属数量变化较大 从计算方法的最终数据可以看出,在分析中,回收率的计算方法与平衡法不尽相同。各重金属回收过程的结果差异很大。两组数据的综合最终结果表明,用平衡法数据计算的平均理化回收率的冶金分析,并没有充分考想产品铜冶炼时的巨大损失,而是在实际情况下进行灵活操作的精相加工金属材料的退料量大,平衡计算法的结果准确率很低。必须小规模连续生产,特别是在钢铁冶金药物的早期分析中,金属的最发生了很大的变化,从理论上讲,在使用平衡方法计算计算的可重复使用性时,有必要使用合金在初始阶段和最终阶段的总消耗星来反转要计算的原始金属材料的量。计出的计算方法大大降低了钢铁冶金有机物回收率。该方法难以计草,因此在计算该方法的平均回收率时将被忽略,因此在好的计算方法结果中会存在一定的精度误差。另外,冶金深度分析的理化分析输出并非全部是最终的产品,另一部分是粗加工过程的半成品。 3.2 平衡法数据来计算钢铁当金仪器 当使用平衡法数据计算钢铁冶金仪器分析的总再利用率时,没有考虑钢铁粗加工和精炼过程造成的损失,因此回收率低的计算方法最终会变的太低而无法反映总回收率低的计算方法的实际-操作结果是分析化学。在宣布连续分割计算方法时,将冶金过程中返还产品的总损失加到了化学无机化学平均回收器的计算中。与平衡法-计算方法的数据相比,连续乘法运算可以更准确地反映钢铁冶金无机化学回收率的实际水平。 通常将通过达到平衡法和连续相乘获得的总回收率称为整个机械制造的总回收率,但是由于去除了大量的半成品以及冶金和冶金行业中产生的杂质无机化学,并非所有金属材料的开采可以将材料区域加工成各种金属或这种金属化合物。 但是,称其为冶金工业中物理和化学的总再利用率并不准确。也可以称为所有材料机械制造的回收率。冶金行业分析中两种计算再利用数据的方法的报告显示,人员提供的数据通常仅是包括金属在内的金属材料的资产负债表。机械制造商等长期的官方统计数据无法计算出低回收率和低总回收率。 4结语 由上可知,在计算冶金化学分折回收率的同时一定要依据冶金厂自身结构,选择适合的回收率计算方法,需要充分的考慰到计算的误差对回收率造成的影响、从而提升到治金分析化学回收率比的准确率。

质谱噪比计算方法相关的耗材

  • 在LC技术平台间轻松转换 —UPLC方法转换包
    在LC技术平台间轻松转换—UPLC方法转换包越来越多的公司已经意识到UPLC技术所带来的益处,包括提高生产率和数据质量、节省每个样品的分析成本、加快产品上市时间等等。ACQUITY UPLC H-Class系统正是这种转换的范本,其在LC平台转换的同时能够确保分析方法的有效性。除了方法中的所有参数根据色谱柱规格及颗粒大小进行调整外,成功的分析方法转换需要在不同粒径的色谱柱之间,保持同样的分离选择性和分离度。沃特世公司行业内领先的制造工艺不仅保证了不同批次之间空前的重现性,也保持了HPLC和UPLC颗粒间的选择性一致。新的方法转换工具能够确保色谱分离在HPLC和UPLC之间的成功转换。ACQUITY UPLC方法转换套装[MTK: Method Transfer Kit]* 套装名称 UPLC 色谱柱2.1 mmID HPLC 色谱柱4.6 mm ID 部件编号CSH C 18 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186005529CSH Phenyl-Hexyl 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186005530CSH Fluoro-Phenyl 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186005531BEH C 18 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186004958BEH Shield RP18 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186004959BEH HILIC 1.7 to 5 μm MTK 50 mm, 1.7 μm 150 mm, 5 μm 186004960HSS C 18 1.8 to 5 μm MTK 50 mm, 1.8 μm 150 mm, 5 μm 186004961HSS T3 1.8 to 5 μm MTK 50 mm, 1.8 μm 150 mm, 5 μm 186004962HSS C 18 SB 1.8 to 5 μm MTK 50 mm, 1.8 μm 150 mm, 5 μm 186004963HSS Cyano 1.8 to 5 μm MTK 50 mm, 1.8 μm 150 mm, 5 μm 186005979HSS PFP 1.8 to 5 μm MTK 50 mm, 1.8 μm 150 mm, 5 μm 186006000CSH C 18 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186005532CSH Phenyl-Hexyl 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186005533CSH Fluoro-Phenyl 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186005534BEH C 18 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186004964BEH Shield RP18 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186004965BEH HILIC 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186004966BEH Amide 1.7 to 3.5 μm MTK 50 mm, 1.7 μm 100 mm, 3.5 μm 186004967HSS C 18 1.8 to 3.5 μm MTK 50 mm, 1.8 μm 100 mm, 3.5 μm 186004968HSS T3 1.8 to 3.5 μm MTK 50 mm, 1.8 μm 100 mm, 3.5 μm 186004969HSS C 18 SB 1.8 to 3.5 μm MTK 50 mm, 1.8 μm 100 mm, 3.5 μm 186004970HSS Cyano 1.8 to 3.5 μm MTK 50 mm, 1.8 μm 100 mm, 3.5 μm 186005980HSS PFP 1.8 to 3.5 μm MTK 50 mm, 1.8 μm 100 mm, 3.5 μm 186006001CSH C 18 1.7 to 3.5 μm High Rs MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186005535CSH Phenyl-Hexyl 1.7 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186005536CSH Fluoro-Phenyl 1.7 to 3.5 μm 高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186005537BEH C 18 1.7 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004971BEH Shield RP18 1.7 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004972BEH HILIC 1.7 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004973BEH Amide 1.7 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004974HSS C 18 1.8 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004975HSS T3 1.8 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004976HSS C 18 SB 1.8 to 3.5 μm高分辨MTK 100 mm, 1.7 μm 150 mm, 3.5 μm 186004977HSS Cyano 1.8 to 3.5 μm高分辨MTK 100 mm, 1.8 μm 150 mm, 3.5 μm 186005981HSS PFP 1.8 to 3.5 μm高分辨MTK 100 mm, 1.8 μm 150 mm, 3.5 μm 186006002*每个套装都含有一根UPLC色谱柱和一根HPLC色谱柱,可从ACQUITY UPLC在线社区www.waters.com/myuplc下载ACQUITY UPLC Columns Calculator用于计算方法转移。
  • GPC凝胶色谱工作站
    GPC凝胶色谱工作站是一款完全32位的Windows软件,可在Windows98以上的操作系统下运行。此款工作站在通用色谱工作站基础上增加了计算高分子物质各种统计分子量、分子量分布宽度指数、分子量累积重量分布曲线的功能,它具有两个显著的特点: 1、允许用户在计算出来的各种统计分子量及分子量分布宽度指数的基础上自由设计公式或编写宏程序,以完成额外的计算。2、 可以与N2000色谱数据工作站兼容。 1. GPC提供三种较正方法--峰位法、普适法、试误法;2. 分子量方法:单峰计算方法、区间计算方法;3. 分子量测定由分子量校正曲线及峰切片面积计算高分子物质的,可以与各种型号的色谱仪联接使用; 标样校正:软件可以进行任意数目的标准样品进行校正。同一样品多次平行进样,消除误差。几种校正计算方法:峰位法、普适法、试误法和内标峰修正法。校正曲线可以使用一次线性方程,二次和三次多项式方程,采用最小二乘法进行拟合。自动求取标准偏差和相关系数。可以在报告中输出校正曲线图。 分子量测定:两种方法计算分子量:单峰计算法和区间计算法可以设置切片的方法,对谱图中任意段计算相应的分子量,并自动进行基线的扣除。可以求得如下分子量并做出分子量分布图: 硬件要求:CPUPentium133以上内存64MB以上内存硬盘除系统外>1GB的空间光驱安装软件必需RS232串口至少一个显示器800*600*256色以上键盘鼠标必须 GPC凝胶色谱工作站由通用色谱工作站软件和分子量测算专用模块两部分组成。通用色谱工作站软件负责谱图的采集及处理(即检测谱图中的峰、并为检测到的峰确立恰当的基线),而分子量测算专用模块则负责根据事先拟合好的标定曲线(分子量与出峰时间的关系曲线)实现分子量的计算功能。
  • 天津市奥淇洛谱耐高温培养皿(高硼硅)[1177]
    培养皿 披氏PETRI CULTURE DISHES 生化培养皿BLOCHEMISTRY PETRI CULTURE DISHES 定量培养皿QUANTITY PETRI CULTURE DISHES 别名:双重皿、二重皿、双蝶、培养蝶、平板皿、(阜氏皿、 皮氏皿、陪替氏皿.均为petri 外文译音) 一、概况及用途 培养皿 目前在国外已出现塑料代替,在出厂前已进行消毒,用过一次即丢掉。在我国目前有三种培养皿,它生产使用的玻璃料不同,普迪培养血是用硬料或中性料在大炉炉台上经桃料、吹泡、再入模具人工吹制成型,经联合烘爆口(或磨口)、退火、喷(印) 标即成产品。生化培养皿其生产工艺相同,但它是用“g5”料玻璃生产,在质量要求较普通培养皿为高。定量培养皿使用玻璃料为“95热料,生产工艺完全不同,它是先在大炉炉台上,吹制成5000ml烧杯,然后将口、底爆去成为玻璃筒,再将玻璃筒燥开,经加温到玻璃软化点压成平板玻璃,再用金钢刀划成园片,经加温熔融逐步成型。由于工艺复杂、成品率低、成本高。速度慢所以产量不高。用途:适用于防疫特别是02病的带菌病人的菌种培养化验、医院临床诊断、食品、药品检验分析,这些单位用于细菌的分离培养。抗菌素效价检验(微生物测定法一一杯蝶法)以及在农业科学研究对种子发芽、植物、昆虫、鱼种的人工培养、孵化研究。近年来由于电子工业的发展,大规格的培养皿又用于“锗”片的保管及烘干做盛器。固此培养皿使用面广、用量大。一般讲防疫、医院单位多用90--- -100mm 规格:农科院、水产学院多用120m/m以上的大规格。 生化培养皿,适用于生物制品、制药工业作生物检验、或对抗菌素的药效测定。当然也可代替普通培养皿使用。 定量培养皿、适用于在显微镜下进行检查、观察细菌的形态、分类或对药物效价的检定、培养作定量分析操作使用,它不但要决定培养细菌的性质、而且还要决定培养的量。 二、造型: 它的造型是根据pet ri氏设计的,是口、底垂直、底平、壁钱的二个平底皿套合而成。皿四成烘光(或磨平)皿口烘光的优点是边沿光滑机械强度高,不易崩损和染色吸附于皿口。缺点是在爆口时留有玻滴,对底和盖之间的密合性有影响,新菌易侵入。口. 部磨平的优点是口部边沿平整,密合性好,新荡不易侵入,缺点是边沿易崩损,在染色操作时,染色易吸附于皿口,不易清除。 三、使用方法: 使用前经过清洁消毒,培养皿清洁与否对工作影响较大,可影响培养基的酸硷度,若有某些化学药品的存在,会抑制细菌的生长。新购的培养皿应先用热水冲洗,再置于1%或2%的盐酸溶液中浸泡数小时,使游离险性物质除去(或用砂皂洗刷),再用蒸馏水冲洗二次,若要培养细蘭再用高压蒸气灭菌(一般在15磅高压蒸气) ,即l20C的温度下30分钟灭蘭,置室温中干燥,或用干热灭蘭,就是将培养皿置于烘箱内 温度控制在120C左右的情况下维持2小时,即可杀死细菌的胞芽。经过消毒的培养皿才能接种培养使用。 “培养皿通常使用固体培养基制成平板培养(就是平板皿名称的由来),平板培养基制作是将已装好的灭菌琼脂培养基,用温水(无菌)熔化,取下试管的棉花塞,管口于酒精灯火焰上通过,然后微启灭菌的培养皿盖,使试管口能深入为宜,倾入培养基后即可盖密,再轻轻的摇匀倾入的培养基,使之均匀的分布f皿底上疑结,即得平板培养基。由于细菌的繁殖、发育生长是与所供给的培养基(营养) 有直接关系,尤其是作定量检验分析,对提供营养物的多少,有决定意义,细菌培养时对营养物提供的多少,是否均匀,这对于培养皿、皿底是否平整极为重要。如培养皿皿底不平,琼脂的培养基分布的厚薄将随培乔m血底是否平整而有厚有薄,薄的部分营养供给就不足,这对定量分析有着密切关系,故对定量培养皿m底要求特别平整的原因所在。但作-般定性培养皿(检验细菌、菌落生长、繁殖等),使用普通培养皿即可。 细菌的分离培养,一般标本中常同时混有数种细菌,如口腔咽喉菌及耳朵的分泌物、痰液、小便、大便等,凡需研究的细菌,须先用分离培养法,使其成为纯培养,通过对细菌作纯培养,用肉汁加2 %琼脂的固体培养基,经保温湖斗以脱脂棉花过滤,注入试管中,二天后检验无新菌,再投入培养皿内,先制成平板,在无菌的条件下进行接种, 接种后把培养I倒置移入25--30^C的恒温箱内(倒置是避免水蒸气凝成液滴滴入m底内,影响菌落的生长),通过培养进一步观察细菌的形态和色泽,研究致病的病菌,以及对它防治的效果。 生化培养皿、定量培养皿的使用方法,基本与普通培养皿相同,但它的质量要求为高。定量培养皿培养后,还要放在显微镜下进行检验, 四、规格及质量要求: (一)规格及参考尺寸: 培养皿规格尺寸的计算,在国际上有两种不同的计算方法,-种方法是按皿盖计算,理由是在培养时使用恒温箱内进行培养,它可以计算恒温箱的体积可存放多少个培养皿。另一种计算方法是按照培养皿皿底计算,理由是在培养时可按照培养m的皿底体积计算使用多少培养基。目前在我国亦存在二种计算方法,但在轻I部QB520-- 66 规定标准中是按皿底计算。现根据上海实际生产情况列表 (二)玻璃色泽,无色透明或微带青绿色或微黄色。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制