当前位置: 仪器信息网 > 行业主题 > >

质谱测定下分子量

仪器信息网质谱测定下分子量专题为您提供2024年最新质谱测定下分子量价格报价、厂家品牌的相关信息, 包括质谱测定下分子量参数、型号等,不管是国产,还是进口品牌的质谱测定下分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱测定下分子量相关的耗材配件、试剂标物,还有质谱测定下分子量相关的最新资讯、资料,以及质谱测定下分子量相关的解决方案。

质谱测定下分子量相关的资讯

  • 国家市场监督管理总局关于对《蛋白质分子量测定 液相色谱-飞行时间质谱联用法》等225项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《焊缝无损检测 磁粉检测 验收等级》等225项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年7月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001282,查询项目信息和反馈意见建议。2023年6月5日相关标准如下:#项目中文名称制修订截止日期1蛋白质分子量测定 液相色谱-飞行时间质谱联用法制定2023-07-052肝素酶活性的测定制定2023-07-053硫酸软骨素酶活性的测定制定2023-07-054葡萄糖氧化酶活性检测方法制定2023-07-055包装袋 试验条件 第1部分:纸袋制定2023-07-056产品几何技术规范(GPS) 坐标测量机(CMM)确定测量不确定度的技术第3部分:应用已校准工件或标准件修订2023-07-057产品召回 生产者安全管理韧性评价制定2023-07-058电梯、自动扶梯和自动人行道的电气要求 信息传输与控制安全制定2023-07-059电梯安全要求 第2部分:满足电梯基本安全要求的安全参数修订2023-07-0510工业废硫酸的处理处置规范修订2023-07-0511工作场所环境用气体探测器 第1部分:有毒气体探测器性能要求制定2023-07-0512工作场所环境用气体探测器 第2部分:有毒气体探测器的选型、安装、使用和维护制定2023-07-0513合格评定 管理体系审核认证机构要求 第 14 部分:文件管理体系审核与认证能力要求制定2023-07-0514化学品 快速雄激素干扰活性报告(READR)试验制定2023-07-0515化学品 水-沉积物系统中穗状狐尾藻毒性试验制定2023-07-0516化学品 液态粪肥中的厌氧转化试验制定2023-07-0517化学品 鱼类细胞系急性毒性:RTgill-W1细胞系试验制定2023-07-0518环境试验 第2部分:试验方法 试验:温度/湿度/静负载综合制定2023-07-0519家用燃气快速热水器 通用技术规范制定2023-07-0520腈水合酶纯度和活性的测定制定2023-07-0521跨境电子商务 海外仓服务质量评价指标制定2023-07-0522实验动物 动物模型鉴定与评价技术规范制定2023-07-0523塑料 丙烯腈-丁二烯-苯乙烯(ABS) 模塑和挤出材料 第1部分:命名系统和分类基础修订2023-07-0524塑料 聚醚醚酮(PEEK)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-07-0525搪玻璃层试验方法 第6部分:高电压试验修订2023-07-0526无损检测仪器 超声检测设备的性能与检验 第1部分:仪器修订2023-07-0527无损检测仪器 超声检测设备的性能与检验 第2部分:探头修订2023-07-0528无损检测仪器 超声检测设备的性能与检验 第3部分:组合设备修订2023-07-0529项目、项目群和项目组合管理 项目管理指南修订2023-07-0530项目成本管理制定2023-07-0531消费品缺陷工程分析 危险温度点测量方法制定2023-07-0532消费品缺陷线索采集与评估规范制定2023-07-0533医疗器械 制造商的上市后监督制定2023-07-0534邮政业术语修订2023-07-0535真空技术 真空计 皮拉尼真空计的规范、校准和测量不确定度制定2023-07-05
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
  • 如何区分仪器检出限、方法检出限、样品检出限及测定下限
    p   检出限是分析测试的重要指标,对于仪器性能的评价和方法的建立都是重要的基本参数之一。在日常检测过程中,检出限为具体量度指标,特别是在痕量分析中,痕量分析误差与样品含量相对于检出限的倍数相关联。检出限的确定对于分析方法的选择具有重要意义。对检出限的忽视有可能导致检测结果的不确定度增大。长期以来,各个领域的检测人员针对检出限概念、估算方法及在各个不同领域的应用都进行了大量的探讨。像分析仪器在测定过程中存在与噪音相区别的小信号检出问题,同时也存在着分析方法能可靠测定物质最低含量的界限问题,这两个概念有着本质的不同。在实际应用中,仪器检出限、方法检出限及样品检出限及测定下限的概念经常混乱。 /p p   在检验检疫行业中,进出口产品的种类繁多,涉及的领域也是多种多样,对检测人员的要求高,为保障进出口产品质量把关服务的有效进行,合理的使用仪器分析,科学有效的评估仪器分析,都要求在仪器的检出限等各项指标上有个清晰完整的认识。为理清在检出限概念和层次上的认识,本文将对检出限的概念、分类和影响因素进行详尽的探讨。 /p p   span style=" color: #ff0000" strong  一、检出限的概念 /strong /span /p p   1947年,德国人Hkaiser首次提出了有关分析方法检出限的概念,并提出检出限和分析方法的精密度、准确度一样,也是评价一个分析方法测试性能的重要指标。国际纯粹与应用化学联合会( IU-PAC) 于1975年正式推行使用检出限的概念及相应 /p p   估算方法,于1998年又发表了《分析术语纲要》对检出限检出,检出限的定义为:某特定方法在给定的置信度内可从样品中检出待测物质的最小浓度或量,公式表示为: /p p style=" text-align: center" img alt=" " height=" 152" src=" http://img1.17img.cn/17img/old/NewsImags/images/20151511437.jpg" style=" width: 282px height: 110px" width=" 411" / /p p   欧盟《执行关于分析方法运行和结果解释的欧盟委员会指令》(2002/657/EC)的最新检测限的概念 CC& amp #945 和 CC& amp #946 检测限( & gt & gt & amp #945 ) 是指大于等于此浓度限,将以& amp #945 误差概率得出阳性结论。检测能力(CC& amp #946 ) 是指样品中物质以& amp #946 误差概率能被检测、鉴别和/或定量的最小含量。对于未建立容许限的物质,检测能力是以1-& amp #946 可信度能被检测出来的最低浓度。如果容许限已经建立,检测能力就是以1-& amp #946 可信度能被检测到的容许限浓度。 /p p    span style=" color: #ff0000" strong 二、检出限的不同分类 /strong /span /p p    strong 1、美国国家标准局的分类 /strong /p p   (1)仪器检出限: 即相对于背景,仪器检测的可靠最小信号。通常用信噪比(S/N) 表示,当 (S/N)& amp #8805 3时,定义为仪器检出限。 /p p   (2)方法检出限: 即某方法可检测的最小浓度。通常用外推法可以求得。即在低浓度范围内选三个浓度(C1、C2、C3) ,对每一浓度水平分别重复测定,求出各浓度水平的标准偏差 S1、S2、S3,用线性回归法做出拟合曲线,延长该线与纵坐标相交于S0(浓度为零时空白样品的标准偏差)。3S0则定义为方法检出限。 /p p   (3)样品检出限: 指相对于空白可检测的样品的最小含量。它定义为三倍空白标准偏差,即3& amp #963 空白( 或3S空白)。 /p p    strong 2、国内检出限分类 /strong /p p   国内有研究人员刘菁和冉敬等也把检出限分类为仪器检出限、方法检出限和样品检出限。田强兵将检出限分为了仪器检出限、方法检出限和仪器的测定下限和方法的测定下限。 /p p    span style=" color: #ff0000" strong 三、检出限的介绍及影响因素 /strong /span /p p    strong 1、仪器的检出限 /strong /p p   仪器检出限是指在规定的仪器条件下,当仪器处于稳定状态时,仪器本身存在着的噪音引起测量读数的漂移和波动。仪器检出限的水平可对同类仪器之间的信噪比、检测灵敏度、信号与噪音相区别的界限及分析方法进行测量所能达到的最低限度等方面提供依据。仪器的检出限的物理含义为:在一定的置信范围内能与仪器噪音相区别的最小检测信号对应的待测物质的量。通过配制一定浓度的稀溶液12份进行测量,可用下式计算: /p p style=" text-align: center" img alt=" " height=" 209" src=" http://img1.17img.cn/17img/old/NewsImags/images/201515113548.jpg" style=" width: 252px height: 135px" width=" 399" / /p p    strong 2、方法的检出限 /strong /p p   方法的检出限是指一个给定的分析方法在特定条件下能以合理的置信水平检出被测物的最小浓度,它是表征分析方法的最主要的参数之一。分析方法随机误差的大小不但与仪器噪声有关,而且决定了方法全过程所带来的误差总和,与样品性质、预处理过程都有关系。为了能反映分析方法在整个分析处理过程的误差,可采用已知结果的标准物质或样品按照分析步骤进行测量,通过分析12份已知结果的实际样品来计算方法的检出限,计算公式如下: /p p style=" text-align: center" img alt=" " height=" 199" src=" http://img1.17img.cn/17img/old/NewsImags/images/201515113611.jpg" style=" width: 300px height: 145px" width=" 443" / /p p    strong 3、样品的检出限 /strong /p p   即单个样品的检出限,指相对于空白可检测的样品的最小含量。故只有当空白含量为零时,样品检出限才等于方法检出限。一方面空白含量往往不为零,由于空白含量及其波动的存在,尽管方法检出限通过外推法可能求得很低的浓度( 或含量),实际上样品检出限可能要比方法检出限大得多 另一方面分析方法检出限采用的是一系列标准物质,基体各不相同,因此只能是一类型样品的平均检出限,并非严格适用于单个样品。对于单个样品确定检出限,必须固定样品基体,即样品检出限的确定应使用样品本身,采取标准加入法作出和方法检出限类似的曲线,使用外推法进行计算。 /p p   正因为如此,在实际使用中,样品检出限要比方法检出限要有意义得多。当被测样品种类变化或测定所用试剂和环境变化时,即使使用同一分析方法,样品检出限可能相差很大。在痕量分析时,测量结果的可靠性在很大程度上取决于空白值的大小及空白值的波动情况。设 Wt代表被测样品的总值,Wb 代表空白值,则被测组分的含量( Wt-Wb)与检测可靠性的关系如表1所示( 表中”& amp #963 空白”为测定分析空白时的标准偏差)。 /p p style=" text-align: center" img alt=" " height=" 222" src=" http://img1.17img.cn/17img/old/NewsImags/images/20151511387.jpg" style=" width: 353px height: 191px" width=" 459" / /p p    strong 4、空白对检出限的影响 /strong /p p   在分析化学中,空白值可分为试剂空白、接近空白与真实空白。真实空白是完全不含待测物质,其它组分与待测样品完全相同的一种分析样品,且按照待测样品的全部分析程序,测定空白试样。但在实际分析中,许多分析工作者使用试剂空白或接近空白,试剂空白:按照真实空白的加入顺序和操作方法混合本实验所需的全部试剂。接近空白: 在试剂空白中加入检出限2倍或3倍的待测物质。由此可见,真实空白的基体较复杂,所以它的值高于试剂空白和接近空白。在分析中应尽量使用真实空白,它更体现了体系的特征。 /p p    strong 5、仪器的测定下限和方法的测定下限 /strong /p p   检出限只能粗略的表征体系性能,仅是一种定性的判断依据,通常不能用于真实分析。测定下限则是痕量或微量分析定量测定的特征指标。仪器的测定下限表示仪器进行定量分析时所能达到的最低界限,是指在高置信度下测定物质的最低浓度或量,其计算公式同式(2)只是一般取K=6,即D sub D /sub = img alt=" " height=" 32" src=" http://img1.17img.cn/17img/old/NewsImags/images/201515114052.jpg" style=" width: 67px height: 25px" width=" 75" / 。在高置信度下,用特定分析方法能够准确定量测定的待测物质最小浓度或量,称为该分析方法的测定下限。其计算公式同式(3) ,计算时一般 img alt=" " height=" 27" src=" http://img1.17img.cn/17img/old/NewsImags/images/201515113915.jpg" style=" width: 202px height: 20px" width=" 232" / /p p    span style=" color: #ff0000" strong 四、结语 /strong /span /p p   当以检出限作为分析方法和分析仪器比较标准时,应约定统一的检出限计算方法$测定下限反映出分析方法能准确地定量测定低浓度水平待测物质的极限值$随着实验测试技术的不断进步,痕量分析逐步成为实验室最主要的工作。针对痕量分析方法以及一些基本应用理论的研究也愈发重要。因此,为适应检验测试工作实际需要,应当对检出限的计算方法进行优化统一,从而不断促进实验测试技术的发展,欢迎加入仪器大讲堂QQ群:290101720,入群学习更多仪器知识。 /p
  • 小身材大智慧丨检测器级MS助力寡核苷酸和多肽药物分子量测定
    导读随着生物医药技术的发展,越来越多的生物药陆续上市,如治疗慢性疾病的寡核苷酸药物Leqvio,“一年只需注射两针”就可以长效持久的降低血液中胆固醇含量,以及用于治疗II型糖尿病的多肽类药物Mounjaro。在寡核苷酸和多肽药物的质量控制中,分子量测定是定性表征中不可缺少的一部分,而单四极杆液质联用仪(LCMS)是测定分子量的利器。但与小分子药物相比,多肽和寡核苷酸药物极性和分子量均较大,在LCMS中带多电荷,所以分子量测定时可能会存在分子量测定范围窄、灵敏度低等问题。小身材大智慧 LCMS-2050岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化和高性能,其离子源为加热型ESI/APCI(DUIS)源,使得寡核苷酸和多肽药物等分子量较大的极性化合物更容易电离,所以LCMS-2050具有分析灵敏度高,分子量测定范围广的特点。此外,岛津LabSolutions软件自带分子量解卷积功能,可以快速对多电荷质谱图进行解卷积,获得分子量相关信息。分子量测定案例分享寡核苷酸药物本方案中寡核苷酸药物为小干扰核苷酸(siRNA),是一类双链RNA分子(正义链和反义链),长度为20-25个碱基对。通过流动相的调整和质谱参数的优化,LCMS-2050(负模式)检测得到了siRNA多电荷质谱图,质荷比为600~1700。此时质谱图中无其他加和离子干扰,且高质荷比也有明显响应。通过岛津LabSolutions软件自带的多电荷解卷积功能,计算得到siRNA正义链电荷数量为4~11,分子量为6631.64 Da,反义链电荷数量为4~10,分子量为6637.66 Da,与理论值的偏差均小于0.4 Da。siRNA色谱图正义链质谱图正义链分子量解卷积结果反义链质谱图反义链分子量解卷积结果多肽药物此多肽药物为一种生长抑素,其理论分子量为1637. 72 Da。LCMS-2050(正模式)检测得到质荷比为546.76~1638.47,通过LabSolutions解卷积功能计算得到分子量为1637.45 Da,与理论值偏差为0.27 Da。多肽药物色谱图多肽药物质谱图多肽药物分子量解卷积结果结语岛津最新款单四极杆质谱仪LCMS-2050兼顾小型化与高性能,适用于多肽、寡核苷酸等化合物分子量测定,具有灵敏度高、分子量测定范围广的优势。了解更多详情,敬请下载《LCMS测定小干扰核苷酸siRNA分子量》《LCMS-2050在多肽分子量定性分析检测中的应用》本文内容非商业广告,仅供专业人士参考。
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。 span style=" text-indent: 2em " 除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。 /p p style=" text-align: right text-indent: 2em line-height: 1.75em " ——R.Yamaguchi, E.Matsuo, T.Yamamoto /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 1、不同基质涂布方法对MS成像分析造成的影响 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title=" 微信截图_20200619165723.png" alt=" 微信截图_20200619165723.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1 基质升华装置iMLayer /p p style=" text-align: center " 表1 基质涂布方法对结晶形成和MS成像分析造成的影响 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2、基质升华后重结晶法 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title=" 33333333333333.png" alt=" 33333333333333.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图2 9AA升华后重结晶的方法 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title=" 444444444.png" alt=" 444444444.png" / /p p style=" text-align: center " 图3 成像质谱显微镜iMScopeTRIO /p p style=" text-align: center " 表2 iMScope i TRIO /i 测量参数 /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title=" 55555555555.png" alt=" 55555555555.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3、使用升华后重结晶法提高MS成像灵敏度 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope& nbsp i TRIO /i (图3),根据表2的参数进行质谱成像分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。 /p p span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 质谱图(升华法和升华后重结晶法的比较) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图5 MS图像(升华法和升华后重结晶法的比较) /p p br/ /p
  • 国产飞行时间质谱仪实现纳秒级精确测定
    p   毫厘之差,已远不能形容现代科技测量的变化范围。高新技术企业北京毅新博创生物科技公司研发的飞行时间质谱仪,能在纳秒级对物质分子量进行测定,更敏锐地发现基因变化。记者日前获悉,该技术产品已获得北京市科委新技术新产品认证。 /p p   1纳秒相当于十的负九次方,即十亿分之一秒,飞行时间质谱仪的精度可见一斑。通过这一技术,可测定基因、蛋白、糖基的变化,从而发现肿瘤、缺陷基因等突变,在优生优育、精准医学、分子遗传育种等领域有着极广的应用。此前,该技术和产品均被国外垄断。 /p p   据项目工程人员介绍,该技术利用试剂把基因、蛋白质等生物大分子离子化后,在高能脉冲电压作用下,让其“飞一会儿”,最终通过测量离子飞行时间,计算分子量的变化,分析出基因或蛋白中发生的具体变化。 /p p   “精度可以达到分子量的千分之一量级。”毅新博创董事长马庆伟介绍。在一般初中和高中的化学课本中,精确到个位数的分子量,已足够人们去计算各种化学反应中物质种类、数量的变化。测量到千分位后,对分子内部变化都可以“明察秋毫”。举例说,水的分子量是18,如果精确到千分位,就可知道水分子中不同元素的同位素比例,来自长江、黄河的水即使提炼为纯净水,也一样可以迅速、精确地分辨出来。 /p p   该项目运用到临床中,可提前预警肿瘤。一位70岁的患者肺部出现阴影,但无法确诊是否是肿瘤。通过飞行时间质谱仪,检测到基因出现变化,并准确判断出血液循环肿瘤DNA中“KRAS”基因发生了突变。这名患有结肠癌合并肺转移的患者手术后,通过测量血液循环肿瘤DNA,术后第二周就可以发现基因突变,预警肿瘤复发,而目前临床检测手段直到术后第八周才能确诊肿瘤是否复发。 /p p   据介绍,飞行时间质谱仪对肿瘤的检测灵敏度,要比基因测序检测提高十倍。基因测序需要将所有基因测一遍,才能发现突变基因;而飞行时间质谱仪可以很精确地检测发生突变的基因位点。过去寻找基因中的突变靶位,需要几天时间才能完成基因测序,解读测序数据又需要花费几周时间。而利用飞行时间质谱仪几个小时就能完成检测,速度提升数十倍,患者所花费的检测费用也会大幅降低。 /p p   高精度的飞行时间质谱仪应用非常广泛。例如,用在优生优育领域,可以无创检测侏儒症、先天性耳聋等基因,完成产前检查、新生儿筛查 用在分子遗传育种领域,可以快速、准确找到优势基因,实现精确杂交,过去几年才能完成的杂交育种筛选,有望一两年内就能完成。目前飞行时间质谱仪已经开始在水稻、玉米、小麦等品种中建立基因数据库,下一步将在花卉、蔬菜、奶牛、蛋鸡等品种中开展基因数据库的建设,为推出高产、高质的新品种奠定分子基础。飞行时间质谱仪还可以用于病毒分析等微生物检测。 /p p   “之前,这一领域是外国技术的天下,现在终于实现中国‘智’造。”马庆伟介绍,这项完全自主知识产权的技术,已经申请发明专利60余项。今年年底到明年年初,马庆伟计划与美国霍普金斯大学合作建立一个实验室,让这项新技术接受国际竞争与挑战。 /p
  • 《水质 半挥发性有机物的测定 气相色谱-质谱法》征求意见
    半挥发性有机物是一大类较挥发性有机物挥发性较慢的有机物,它们更容易在水、土壤、空气、生物等介质中迁移转化,长期存在于水、土壤中,通过生物富集而危害人体健康。这类有机物的共性是脂溶性、易溶于有机溶剂,可在有机溶剂中分配,同时可进行气相色谱分析。按照萃取条件的不同还可将这一大类有机化合物分为碱-中性可萃取有机物和酸性可萃取有机物。半挥发性有机化合物种类较多,包括多环芳烃、氯苯类、硝基苯类、硝基甲苯类、邻苯二甲酸酯类、亚硝基胺类、苯胺类、氯代苯胺类、氯代烃类、氯代醚类、联苯胺类、氯代联苯胺类、氯代酚类和硝基酚类等。通常,有机氯农药、有机磷农药、其它除草剂等有机物都可归入这类有机物范围内。由于半挥发性有机物的毒性高,对环境的危害较大,有多种化合物被我国、美国等国家列入水中优先控制的污染物。我国的《地表水环境质量标准》(GB 3838-2002)、《生活饮用水卫生标准》(GB 5749-2006)、《石油化学工业污染物排放标准》(GB 31571-2015)、《城镇污水处理厂污染物排放标准》(GB 18918-2002)、《污水综合排放标准》(GB 8978-1996)、《渔业水质标准》(GB 11607-1989)等均规定了部分半挥发性有机物的标准值。目前国内个别半挥发性有机物的测定主要以气相色谱法、液相色谱法为主。《水质 酚类化合物的测定 液液萃取/气相色谱法》(HJ 676-2013)、《水质 氯苯类化合物的测定 气相色谱法》(HJ 621-2011)、《水质 硝基苯类化合物的测定 液液萃取-气相色谱法》(HJ 648-2013)、《水质 多环芳烃的测定 液液萃取高效液相色谱法》(HJ 478-2009),另外我国已发布了《土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法》(HJ834-2017)和《固体废物 半挥发性有机物的测定 气相色谱-质谱法》(HJ 951-2018)2 个标准。国际上对水中半挥发性有机化合物测定的标准方法所采用的主流技术是气相色谱质谱测定方法,以 US EPA 方法以及相关文献涉及较多。国外气相色谱法质谱联机测定半挥发性有机物的方法主要有 EPA 8270D、EPA 3510C 和 EPA 625 方法,其中 3510 方法使用液液萃取方法,8270 和 625 方法是采用液液萃取的方法,在碱中性和酸性的条件下,用二氯甲烷分别对水样进行萃取,合并有机相,经无水硫酸钠脱水后浓缩,用气相色谱-质谱法来分析水样中的半挥发性有机物。当然随着各种新型前处理技术的不断丰富更新和发展,现有的液液萃取方法将逐步被更加高效先进的固相萃取、固相微萃取以及膜萃取取代,这也是当前前处理技术发展的必然趋势。《水质 半挥发性有机物的测定 气相色谱-质谱法》用二氯甲烷分别在 pH11 和 pH2 的条件下,萃取样品中的半挥发性有机物。萃取液经脱水、浓缩和定容后,经气相色谱-质谱法(GC/MS)分离检测,根据保留时间和目标化合物的特征离子定性,内标法定量。本标准适用于地表水、地下水、工业废水和生活污水中 64 种半挥发性有机物的筛查鉴定和定量分析,对于特定类别的化合物,应在此筛选基础上选用专属的分析方法测定。当取样体积为 1000 ml,试样体积为 1.0 ml,采用全扫描方式测定时,方法检出限为 0.1μg/L~2 μg/L,测定下限为 0.4 μg/L~8 μg/L。征求意见稿:《水质 半挥发性有机物的测定 气相色谱-质谱法》(征求意见稿)
  • 赛默飞:DMT+Orbitrap质谱 实现超大分子量的蛋白直接检测
    质谱仪器作为一种质量检测仪器,被应用到各个学科领域中,尤其是在化学化工、环境能源、医药、生命及材料科学等领域发挥着重要作用。在常规质谱分析中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场或磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来。而在这种原理下,质谱仪测量的是离子的质荷比(m/z),而不是质量本身。利用质谱仪器对样品的分析过程中,样品的雾化过程十分关键。目前,常用的电喷雾技术原理是由John Fenn提出的电喷雾电离(ESI)技术,这一理论也获得了2002年的诺贝尔化学奖。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以使用软件进行解卷积得到m分布。这种分析手段对于分析分子量较小(分子量在5万以下)、简单纯净的蛋白样品还是很有效的。然而,在实际应用中对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化,很宽的质量分布(可达上千Da)使得不同价态的峰群连接在一起。如图1所示,这种缺少电荷状态以及同位素峰的“死亡驼峰”,我们很难通过解卷积的形式进行分析。并且,对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用解卷积软件来获得分子量的分布信息。因此,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。在这种情况下,电荷检测质谱(CDMS)技术便成为了我们的“救命稻草”。电荷检测质谱(CDMS)通过同时测量单个离子的质荷比和电荷数,进而计算获得离子质量m。因此,相较于其他类型质谱,CDMS技术的关键是如何准确地测量单个离子的电荷。目前,电荷检测质谱技术还没有现成的商品化仪器,只有能够自己开发质谱仪器硬件,或自己改编FTMS软件的专家才能进行这样的实验。而在今年的ASMS会议上,赛默飞公司重磅推出了直接分析质谱技术(DMT),并将其结合在了Orbitrap上,这使得超大分子量的复杂蛋白的直接质谱检测成为了可能。直接分析质谱技术其原理是:在Orbitrap中检测来自离子沿中心电极的中心轴旋转的轴向频率,进而确定离子的m/z信息;与此同时,来自外电极上的感应电荷振幅也会被检测,从而确定离子的电荷z的信息。直接分析质谱技术模式为 Orbitrap 质量分析仪增加了电荷检测功能,能够同时测量数百个单个离子的质荷比 (m/z) 和电荷数 (z)。这使得 Orbitrap 质量分析仪可以直接计算分析物的质量,而不需要根据 m/z 去卷积。根据 m/z 去卷积的方法依赖于测量结果中已分辨的电荷状态和/或同位素分辨的信号。直接分析质谱技术模式提高了分辨率,并且扩展了动态范围,提高了可获得的质量测量结果的上限,同时由于单个离子测量的灵敏度较高,可以从浓度明显较低的样品中采集到更有价值的数据。
  • 国家市场监督管理总局发布《多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法》等223项拟立项国家标准项目公开征求意见稿
    各有关单位:经研究,现对《电化学储能系统火灾监测预警系统通用技术要求》等223项拟立项国家标准项目公开征求意见,征求意见截止时间为2024年4月10日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001651,查询项目信息和反馈意见建议。2024年3月11日 相关标准如下:#项目中文名称制修订截止日期1地理标志产品质量要求 安吉白茶修订2024-04-102地理标志产品质量要求 坦洋工夫茶修订2024-04-103地理标志产品质量要求 武夷岩茶修订2024-04-104地理标志产品质量要求 政和白茶修订2024-04-105多糖分子量及分子量分布的测定 高效凝胶渗透色谱-激光光散射法制定2024-04-106标准数字化平台 第1部分:系统架构制定2024-04-107标准知识图谱 第1部分:实现指南制定2024-04-108蛋白检测 CRISPR Cas12a蛋白反式切割活性检测方法制定2024-04-109工业品电商平台供应商能力建设指南 总则制定2024-04-1010医疗装备运维服务 第1部分:通用要求制定2024-04-1011制药装备 生物反应器通用技术要求制定2024-04-1012智能消费品安全 第1部分 危害(源)识别制定2024-04-1013智能消费品安全 第2部分 风险评估制定2024-04-1014智能消费品安全 第3部分:风险控制制定2024-04-1015重组蛋白试剂 亲和力测定方法制定2024-04-10
  • 全自动粘度仪—聚异丁烯粘均分子量测定
    聚异丁烯(Polyisobutylene,PIB)是由异丁烯经正离子聚合制得的聚合物,其分子量可从数百至数百万。它是一种典型的饱和线型聚合物。分子链主体不含双键,无长支链存在,其结构单元为-(CH2-C(CH3)2)-,其中无不对称碳原子,并且结构单元以首一尾有规序列连接。聚异丁烯可以耐酸碱。如氨水、盐酸、60%氢氟酸、乙酸铅水溶液、85%磷酸、40%氢氧化钠、饱和食盐水、800}硫酸、38%硫酸+14%硝酸的侵蚀,但不能抵抗强氧化剂、热的弱氧化剂(如60%的高锰酸钾)、某些热的浓有机酸(如373K的乙酸)和卤素(氟、氯、漠)的侵蚀。聚异丁烯的应用领域与其分子量密切相关切。通常,低分子量聚异丁烯和中分子量聚异丁烯可以用作油品添加剂、胶薪剂、密封剂、涂料、润滑剂、增塑剂和电缆浸渍剂。高分子量聚异丁烯叮用作塑料、生胶及热塑弹性体的抗冲击改性添加剂等。聚异丁烯具有饱和烃类化合物的化学特性,侧链甲基紧密对称分布,是一种性能独特的聚合物。聚异丁烯的聚集态和性质取决十其分子量和分子量分布,黏均分子量在70000~90000范围时,聚异丁烯发生由翻性液体到弹性固体的转变。通常,根据聚异丁烯分子量的大小分为以下系列:低分子量聚异丁烯(数均分子量=200-10000);中分子量聚异丁烯(数均分子量=20000-45000);高分子量聚异丁烯(数均分子量=75000-600000);超高分子量聚异丁烯(数均分子量大于760000)。 粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系:用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上称量到0.0001g,通过自动配液器将溶液浓度配制到**/ml,再将样品瓶放置到多位溶样器室温中溶解,溶解完毕后取出待用。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。
  • 国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿发布
    为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,规范固定污染源废气中挥发性有机物的测定方法,生态环境部组织编制了国家生态环境标准《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法》征求意见稿,现公开征求意见,并于2023年9月1日前将意见建议书面反馈至生态环境部,注明联系人及联系方式,电子文档请同时发送至联系人邮箱。此标准为首次发布,规定了测定固定污染源废气中70种挥发性有机物的容器采样/气相色谱-质谱法,附录A为规范性附录,附录B~附录D为资料性附录。此标准适用于采样温度低于150 ℃的固定污染源有组织排放废气中氯甲烷等70种挥发性有机物的容器采样和测定。 进样体积为1.0 ml时,在全扫描(Scan)模式下,本方法70种目标化合物的方法检出限为0.07 mg/m3~1 mg/m3,测定下限为0.28 mg/m3~4 mg/m3。详见附录A此标准由生态环境部生态环境监测司、法规与标准司组织制订,主要起草单位为:黑龙江省生态环境监测中心,验证单位为:黑龙江省哈尔滨生态环境监测中心、黔西南生态环境监测中心、内蒙古自治区环境监测总站、内蒙古自治区环境监测总站呼和浩特分站、黑龙江省佳木斯生态环境监测中心和北京博赛泰克质量技术检测有限公司。附件:1.征求意见单位名单.pdf 2.固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿).pdf 3.《固定污染源废气70种挥发性有机物的测定 容器采样/气相色谱-质谱法(征求意见稿)》(编制说明).pdf
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心 对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。 ■ 自动标注蛋白的各种不同修饰形态。 ■ 以直观方式,比较样品与标品间差异。 ■ 自动计算蛋白质的各种修饰形式间的峰强度比例。 ■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。 图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。 图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。 图4. 完整及还原后IgG质量测定解决方案示意图。 参考文献 (1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN (2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN (3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN (4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN (5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 自动粘度仪用毛细管法测定聚乙烯(PE)的分子量
    聚乙烯(polyethylene ,简称PE)是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70°C),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。常温下不溶于一般溶剂,吸水性小,电绝缘性优良。产品用途:高压聚乙烯:一半以上用于薄膜制品,其次是管材、注射成型制品、电线包裹层等。中低、压聚乙烯:以注射成型制品及中空制品为主。超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可作为工程塑料使用。 目前毛细管法测定聚乙烯分子量是行业内作为控制产品质量重要的指标之一实验方法如下实验所需仪器:卓祥全自动超高温粘度仪、多位溶样块、自动配液器、万分之一电子天平。实验所需试剂1:十氢萘、抗氧剂溶剂的配置:在十氢萘中加入一定比例(质量比)的抗氧剂,并搅拌致抗氧剂完全溶解溶剂粘度的测定:卓祥全自动超高温粘度仪将实验温度设置成135度并且稳定后,加入溶剂,软件中启动测试任务待结束。连续测三次时间之差在0.2秒内粘度管的清洗:启动卓祥全自动超高温粘度仪干燥程序,仪器自动将粘度管清洗干燥后待用。PE样品溶液的制备:在万分之一天平上精准称量精确到O.0055g,通过卓祥自动配液器将溶液浓度精准配制到0.0002g/ml,具体可参考GBT1632.3中7.31表格,放在卓祥多位溶样块中溶解。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。连续测三次时间之差与其平均值在0.2秒内。粘度管的清洗:再次启动卓祥超高温全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照公式(1)计算样品的粘数(比浓粘度)I: 式中:t/t0-----分别代表的是样品流经平均时间/溶剂流经平均时间,单位为秒(S);C ----135度时溶液质量浓度的数值,单位为克每毫升(g/ml);公式(2): γ——20度和135度下溶剂的膨胀系数,等于相对应的密度之比,约等与1.107公式(3)特性粘度 [n]的计算 K —— 同聚合物浓度和结构有关的计算,可用K=0.27计算公式(4)分子量M的计算 以上内容未经过原作者或者现发布者的同意,任何个人或者单位都不可以转载和使用上述内容
  • 全自动乌氏粘度仪-甲基乙烯基硅橡胶粘均分子量测定
    甲基乙烯基硅橡胶简称乙烯基硅橡胶,是由二甲基硅氧烷与少量乙烯基硅氧烷共聚而成,乙烯基含量一般为0.1%~0.3% (摩尔分数)。少量不饱和乙烯基的引入使它的硫化工艺及成品性能,特别是耐热老化性和高温抗压缩变形有很大改进。甲基乙烯基硅氧烷单元的含量对硫化作用和硫化胶耐热性有很大影响,含量过少则作用不显著,含量过大【达0.5% (摩尔分数)】 会降低硫化胶的耐热性。甲基乙烯基硅橡胶具有很好的耐高、低温性,可在-50~250℃下长期工作,防潮、电绝缘性,耐电弧,电晕性。耐老化、耐臭氧性。表面不粘性和憎水性。压缩变形小,耐饱和蒸汽性。广泛应用于耐高、低温密封管、垫圈、滚筒、按键胶辊、瓷绝缘子的更新换代。按照GB/T 28610粘均分子量测定方法。粘度法是测定聚合物分子量较为简捷的方法。特性粘度[η]是高分子溶液浓度趋近于零时的粘数值或对数粘数值(ηsp/C或Inηr/C)。在甲苯溶剂中,高分子物质的分子量和特性粘度的关系用下式表示: [η]=KMα式中:K-----常数,K=9.46×10-3;M----粘均分子量; α-----特性常数值;α=0.71用此计算公式计算得到分子量。实验所需仪器:卓祥全自动粘度仪、多位溶样器、自动配液器、万分之一电子天平。实验所需试剂:甲苯、无水乙醇。(AR级)溶剂粘度的测定:卓祥全自动粘度仪设置到实验目标温度值并且稳定后,加入甲苯,软件中启动测试任务待结束。粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。样品制备:在万分之一天平上精准称量精确到0.0001g,通过自动配液器将溶液浓度精准配制,再将样品瓶放置到多位溶样器室温中溶解,待溶解完毕取出待用(室温静置需N小时以上)。样品粘度的测定:加入样品,启动软件中特定公式测试,待任务结束。粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。按照以下公式1-5计算:ηr=t/t0---------------------------------------------------1ηsp=ηr-1--------------------------------------------------2c=m/v---------------------------------------------------3[η]=KMα-------------------------------------------------5式中:ηr------相对粘度;t ------溶液时间值,单位为秒(s);t0-----溶剂时间值,单位为秒(s);ηsp-----增比粘度;c------样品的浓度,单位为克每毫升g/ml;m----样品质量,单位为g;v---溶剂体积,单位为ml;[η]------特性粘度;M----粘均分子量; K-----常数,K=9.46×10-3; α-----特性常数值,α=0.71;
  • 《固定污染源废气VOCs的测定气相色谱-质谱法》地标发布(附全文)
    p   日前,重庆市环保局发布《固定污染源废气VOCs的测定气相色谱-质谱法》。全文如下: /p p style=" text-align: center " img title=" 1.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/06055e9a-e5bd-4f16-84eb-3264f8978689.jpg" / /p p style=" text-align: center " img title=" 2.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/insimg/6fe66004-5e87-46b1-9ae6-d4f3281d295e.jpg" / /p p   前言为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》等法律、法规,保护和改善生活环境、生态环境,保障人体健康,规范固定污染源废气中挥发性有机污染物的监测方法,制定本标准。 /p p   本标准规定了固定污染源废气中挥发性有机物的气相色谱-质谱测定法。本标准为首次发布。本标准由重庆市环境保护局提出并归口。 /p p   本标准起草单位:重庆市环境监测中心。 /p p   本标准主要起草人:邓力,罗财红,邹家素,朱明吉,郭志顺,龚玲,余轶松。 /p p   本标准于2016年7月20日发布,自2016年10月1日起实施。 /p p style=" text-align: center " strong 固定污染源废气VOCs的测定气相色谱-质谱法 /strong /p p   警告:本方法所使用的部分化学药品对人体健康有害,操作时应按规定要求佩带防护器具,避免接触皮肤和衣服。所有药品均应完全密封独立储放,并放置于低温阴凉处,以免外漏污染。 /p p   1 适用范围 /p p   本标准规定了固定污染源有组织和无组织排放废气中19种挥发性有机物的气相色谱-质谱法。本方法适用于固定污染源有组织和无组织排放废气中19种挥发性有机物的测定,包括苯,甲苯,乙苯,间-二甲苯,对-二甲苯,邻-二甲苯,1,2,4-三甲苯,1,3,5-三甲苯,1,2,3-三甲苯,苯乙烯,丙酮,丁酮,环己酮,乙酸乙酯,乙酸丁酯,正丁醇,异丁醇,甲基异丁酮,乙酸异丁酯。其他污染源排放的挥发性有机物通过验证也适用于本标准。本方法在进样量为100.0ml时,19种物质其检出限范围为0.0008mg/m3~0.03mg/m3,测定下限为0.0032mg/m3~0.12mg/m3。详见附录A。 /p p   2 规范性引用文件 /p p   本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其有效版本适用于本标准。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T37 /p p   3 固定污染源监测质量保证与质量控制技术规范(试行)HJ/T397固定源废气监测技术规范HJ/T55大气污染物无组织排放检测技术导则3方法原理废气中的挥发性有机物由惰性化处理过的不锈钢罐直接采样,经过进样预浓缩系统浓缩后进入气相色谱-质谱联用仪分析,采用保留时间和定性离子定性,内标法定量。 /p p   4 试剂和材料4.1VOC标准气体:浓度为100.0mg/m3。高压钢瓶保存。可根据实际工作需要,购买有证标准气体或在有资质单位定制合适的混合标准气体。 /p p   4.2内标标准气体:组分为1,4-二氟苯、氯苯-d5。各组分浓度为100.0mg/m3。 /p p   4.3 4-溴氟苯(BFB):浓度为50μg/ml。用于GC-MS性能检验。取适量色谱纯的4-溴氟苯(BFB)配制于一定体积的甲醇(4.7)中。 /p p   4.4 高纯氦气(& gt 99.999%)。 /p p   4.5 高纯氮气(& gt 99.999%)。 /p p   4.6 液氮。 /p p   4.7 甲醇:农残级或者等效级。 /p p   5 仪器和设备 /p p   5.1 气相色谱-质谱联用仪:气相部分具有电子流量控制器,柱温箱具有程序升温功能,可配备柱温箱冷却装置。质谱部分具有70eV电子轰击(EI)离子源,有全扫描/选择离子(SIM)扫描、自动/手动调谐、谱库检索等功能。 /p p   5.2 毛细管色谱柱:60m× 0.25mm,1.4μm膜厚(6%腈丙基苯基-94%二甲基聚硅氧烷固定液),或其他等效毛细管色谱柱。 /p p   5.3 气体冷阱浓缩仪:具有自动定量取样及自动添加标准气体、内标的功能。至少具有二级冷阱:其中第一级冷阱能冷却到-180℃,第二级冷阱能冷却到-50℃:若具有冷冻聚焦功能的第三级冷阱(能冷却到-180℃),效果更好。气体浓缩仪与气相色谱-质谱联用仪连接管路均使用惰性化材质,并能在50℃~150℃范围加热。 /p p   5.4 浓缩仪自动进样器:可实现采样罐样品自动进样。 /p p   5.5 罐清洗装置:能将采样罐抽至真空(& lt 10Pa),具有加温、加湿、加压清洗功能。 /p p   5.6 气体稀释装置:最大稀释倍数可达1000倍。 /p p   5.7 采样罐:内壁惰性化处理的不锈钢采样罐,容积3.2L、6L等规格。耐压值& gt 241kPa。 /p p   5.8 液氮罐:不锈钢材质,容积为100L~200L。 /p p   5.9 流量控制器:与采样罐配套使用,使用前用标准流量计校准。 /p p   5.10 校准流量计:在0.5ml/min~10.0ml/min或10ml/min~500ml/min范围精确测定流量。 /p p   5.11 真空压力表:精确要求≤7kPa(1psi),压力范围:-101kPa~202kPa。 /p p   5.12 抽气泵:双通道无油采样泵,双通道能独立调节流量。 /p p   5.13 采样管:足够长度的聚四氟乙烯管。5.14过滤器或玻璃棉过滤头:过滤器孔径≤10μm,或直接将实验用玻璃棉加装在采样管前端,过滤排气中颗粒物。 /p p   6 样品 /p p   6.1 采样前准备罐清洗:使用罐清洗装置对采样罐进行清洗,清洗过程可按罐清洗装置说明书进行操作。清洗过程中可对采样罐进行加湿,降低罐体活性吸附。必要时可对采样罐在50℃~80℃进行加温清洗。清洗完毕后,将采样罐抽至真空(& lt 10Pa),待用。每清洗20只采样罐,应至少取一只清洗后的罐注入高纯氮气,分析氮气样品,以确定清洗后的采样罐是否清洁。每个采集高浓度样品的真空罐在使用后应标识,清洗后放置1天以上,使用前进行本底污染的分析,确认无污染残留后使用。 /p p   6.2 预调查在测试固定污染源废气中挥发性有机物排气前,需事先调查污染源相关信息,包括企业生产使用的有机溶剂名称及用量、生产负荷、生产工艺、废气治理工艺等情况。 /p p   6.3 采样 /p p   6.3.1 有组织采样按照GB/T16157、HJ/T373、HJ/T397的相关规定和采样要求,确定采样位置、采样频次和采样时间,进行样品采集。 /p p   6.3.1.1 采样管路连接。如图1管路连接。洗涤瓶和吸附剂用于排放废气的吸收处理。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/f0a97bce-a009-40e9-af91-b8898aa8989a.jpg" / /p p & nbsp /p p & nbsp   系统漏气检查:关上采样管出口三通阀,打开抽气泵抽气,使真空压力表负压上升到13kPa,关闭抽气泵一侧阀门,如压力计压力在1min内下降不超过0.15kPa,则视为系统不漏气。如发现漏气,要重新检查、安装,再次检漏,确认系统不漏气后方可采样。当排放口排气压力为正压或常压时,可直接用聚四氟乙烯采样管连接不锈钢罐进行采样,在采样管前端加塞玻璃棉过滤头。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。当排放口排气压力为负压时,应按照图1所示不锈钢罐采样系统连接。在聚四氟乙烯采样管后连接一个三通阀门,分别连接不锈钢罐和抽气泵。采样前,开启连接抽气泵一侧的阀门,以1L/min流量抽气约5min,置换采样系统的空气。然后切换至不锈钢罐的气路,开启阀门使气体进入不锈钢罐。连接管路应尽可能短,内径应大于6mm。不锈钢罐安装流量控制器,根据排气中VOCs浓度的高低,调节流量控制器来控制采样时间,一般采集样品20min~60min。流量控制器采样流量对应的采样时间见表1。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/1ed36cb3-6d07-41e9-828a-e6574e1f5699.jpg" /   /p p & nbsp /p p   6.3.1.2 同步测定并记录排气管道内废气温度、流量和含湿量等参数。 /p p   6.3.1.3 由于质控等特殊要求,需要采集平行样品时,可将三通阀更换为四通阀,将负压相同的两个不锈钢罐并联,同时开启,同步采集。 /p p   6.3.2 无组织采样按照HJ/T55的相关规定和采样要求,确定采样点位、采样频次和采样时间,进行样品采集。 /p p   6.3.2.1 开启不锈钢罐控制阀门。当采集瞬时样品时,只需开启不锈钢罐阀门,使无组织气体被吸入不锈钢罐内,达到压力平衡后关闭不锈钢罐。当需要采集累积时段样品时,不锈钢罐安装流量控制器,根据无组织中VOCs含量大小调整持续采样时间。不同恒定流量对应的采样时间见表1。 /p p   6.3.2.2 同步测定并记录大气压力、风速风向、环境温度等气象参数。 /p p   6.4 全程序空白采样将高纯氮气(4.5)注入预先清洗好并抽至真空的采样罐(5.7)带至采样现场,与同批次采集样品后的采样罐一起送回实验室分析。 /p p   6.5 样品保存不锈钢罐采样后,立即将阀门拧紧密封。样品在常温下保存,采样后尽快分析,14天内分析完毕。 /p p   7 分析 /p p   7.1 仪器参考条件 /p p   7.1.1 预浓缩仪进样装置条件一级冷阱:捕集温度:-150℃ 解析温度:10℃ 阀温:100℃ 烘烤温度:150℃ 烘烤时间:5min 二级冷阱:捕集温度:-30℃ 解析温度:180℃ 烘烤温度:180℃ 烘烤时间:2.5min 三级聚焦:聚焦温度:-160℃ 解析时间:2.5min。7.1.2气相色谱仪参考条件柱温:50℃(5min)??℃/min?℃(2min)??℃/min?℃(1min) 载气流量:1.0ml/min 进样口温度:140℃ 溶剂延迟时间:2min 载气流量:1.0ml/min 分流比:10:1。 /p p   7.1.3 质谱仪参考条件扫描方式:全扫描或选择离子扫描,选择离子扫描参数参考表2 扫描范围:30aum~200aum 离子化能量:70eV。 /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/0633fc24-82db-45f5-bb5e-47e0f33318a1.jpg" / /p p   7.2 仪器性能检查在分析样品前,需要检查GC/MS仪器性能。将4-溴氟苯(BFB)(4.3)1μL(50ng)进样,得到的BFB关键离子丰度必须符合表3中的标准。 /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/f81001d2-5d95-49dc-8f72-4288bf0ac3ae.jpg" /    /p p   7.3 校准 /p p   7.3.1 标准系列配制将VOC标准气体(4.1)的钢瓶和高纯氮气(4.5)钢瓶与气体稀释装置(5.6)连接,设定稀释倍数,打开钢瓶阀门调节两种气体的流速,待流速稳定后取预先清洗好并抽至真空的采样罐(5.7)连在气体稀释装置(5.6)上,打开采样罐阀门开始配气。配制1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3(可根据实际样品情况调整)的标准系列。 /p p   7.3.2 内标使用气体配制内标使用气体浓度为5.0mg/m3。将内标标准气体(4.2)按7.3.1步骤配制而成。 /p p   7.3.2 校准曲线绘制通过浓缩仪自动进样器(5.4)分别抽取1.0mg/m3、2.0mg/m3、5.0mg/m3、10.0mg/m3、20.0mg/m3标准系列气体400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件,依次从低浓度到高浓度进行测定。根据目标化合物/内标化合物质量比和目标化合物/内标化合物特征质量离子峰面积比,用相对响应因子(RRF)绘制校准曲线。按照公式(1)计算目标化合物的相对响应因子(RRF)。 /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/467c1605-df2c-47d8-857f-366254063acf.jpg" /    /p p & nbsp /p p   7.3.3 标准色谱图目标化合物参考色谱图见图2。 /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/e33d0bdb-4eb7-4761-a50d-fb5b6548ce04.jpg" /    /p p   7.3.4 目标化合物出峰时间详见附录B,附表B-1。7.4样品测定通过浓缩仪自动进样器(5.4)抽取样品400ml,同时加入5.0mg/m3内标使用气体100ml,按照仪器参考条件进行测定。 /p p   7.5 全程序空白样品测定按照与样品测定相同的操作步骤进行全程序空白样品的测定。 /p p   8 结果计算与表示 /p p   8.1 定性以全扫描方式进行测定,根据样品中目标化合物的相对保留时间、定量离子和辅助定性离子间的丰度比与标准中目标化合物对比来定性。样品中目标化合物的相对保留时间(RRT)与校准系列中该化合物的相对保留时间的偏差应在?3.0%内。校准系列目标化合物的相对离子丰度高于10%以上的所有离子在样品中要存在。标准和样品谱图之间上述特定离子的相对强度要在20%之内。按照公式(2)计算相对保留时间。 /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/1dcedb09-0915-4232-ade5-fa45c4d8f3ad.jpg" /    /p p   8.2 定量 /p p   8.2.1 目标化合物的浓度计算采用平均相对响应因子(RRF)进行定量计算,平均相对响应因子按照公式(3)计算,样品中目标化合物的浓度按照公式(4)进行计算。 /p p style=" text-align: center " img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/96c92845-3949-481d-8186-22de4ae11916.jpg" /    /p p & nbsp   8.2.2 总挥发性有机化合物(TVOC)的浓度计算 /p p & nbsp   空气样品中TVOC的浓度按公式(5)进行计算。?? /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201709/noimg/8d14fb5b-e6c7-4d7d-b302-8122c6649f01.jpg" /    /p p   8.3 结果表示列出所有目标化合物的浓度。当目标化合物的浓度小于1mg/m3时,分析结果保留至小数点后3位,当目标化合物的浓度大于等于1mg/m3时,保留3位有效数字。 /p p   9 精密度和准确度配制挥发性有机物含量为5.0mg/m3标准样品,连续进样5次,精密度由相对标准偏差表示,结果小于10% 准确度由相对误差表示,结果小于15%。结果详见附录C。 /p p   10 质量保证和质量控制 /p p   10.1 全程序空白每批样品应至少做一个全程序空白样品,目标化合物浓度均应低于方法测定下限。否则应查找原因,并采取相应措施,消除干扰或污染。 /p p   10.2 空白加标每批样品应至少做一个空白加标,回收率应在80%~120%。 /p p   10.3 平行样品分析每10个样品或每批样品(少于10个)采样采集平行样品,平行样品分析相对偏差小于30%。10.4每批样品应分析一个校准曲线中间浓度点的样品,其相对误差要在20%以内。若超出允许范围,应重新配制中间浓度点,若还不能满足要求,应重新绘制校准曲线。10.5系统处理要求试验中用到的不锈钢罐及其配气系统、清洗系统和预浓缩进样系统,管路内壁都需要硅烷化处理,减少对目标化合物的吸附。 /p p   11 注意事项 /p p   11.1 采样时,应根据实际情况注意温度、湿度及颗粒物等因素对采样效率的影响。 /p p   11.2 实验室环境应远离有机溶剂,降低、消除有机溶剂和其它挥发性有机物的本底干扰。 /p p   11.3 进样系统、冷阱浓缩系统中气路连接材料挥发出的挥发性有机物会对分析造成干扰。适当升高、延长烘烤时间,将干扰降至最低。 /p p   11.4 所有样品经过的管路和接头均需进行惰性化处理,并保温以消除样品吸附、冷凝和交叉污染。 /p p   11.5 易挥发性有机物在运输保存过程中可能会经阀门等部件扩散进入采样罐中污染样品。样品采集结束后,须确认阀门完全关闭,并用密封帽密封采样罐采样口,隔绝外界气体,可有效降低此类干扰。 /p p   11.6 分析高浓度样品后,须增加空白分析,如发现分析系统有残留,可启用气体冷阱浓缩仪的烘烤程序,去除残留。 /p p style=" text-align: center " img title=" 12.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/e7de60aa-8ae0-4901-9782-72e6e2947b07.jpg" / /p p style=" text-align: center " img title=" 13.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/a9853489-4702-497f-bcf4-5e103b8aa972.jpg" / /p p style=" text-align: center " img title=" 14.jpg" style=" float: none " src=" http://img1.17img.cn/17img/images/201709/noimg/721fae4c-d91f-4ef5-ba55-962ea8c9682d.jpg" / /p p /p
  • 蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法(BJS202103)解读
    链霉素和双氢链霉素(DHSTR)属于氨基糖苷类抗生素,对革兰氏阴性菌有明显的抗菌活性效果,可以预防和治疗多种动物疾病。由于链霉素和双氢链霉素能够有效地治疗蜜蜂的幼虫病,在养蜂行业应用普遍,但由于管理和使用的不科学,会造成蜂产品中该类物质的残留。长期食用链霉素和双氢链霉素超标的蜂产品,会对健康产生一定的危害,尤其是听觉神经。因此,国内和国际对蜂产品中链霉素、双氢链霉素的限量均有相关的规定。我国《绿色食品蜂产品》(NY/T 752-2012)中规定了蜂蜜中链霉素的最大残留限量为20μg/kg;英国食品标准署规定蜂蜜中链霉素的限量为50μg/kg;德国规定蜂蜜中链霉素的限量为20μg/kg。在山东省食品药品检验研究院组织的蜂蜜风险监测中,链霉素检出率较高。因此,建立蜂蜜中链霉素、双氢链霉素残留量的先进、高效、准确的检测方法,对保障公众的饮食健康具有重要意义。研制背景  原有蜂蜜中链霉素和双氢链霉素的检验标准有三项,这三个标准存在如下问题:(1)在流动相或提取剂中使用离子对试剂,离子对试剂的使用会污染色谱柱,且与质谱检测器不兼容,易造成离子源污染和信号抑制,甚至造成其他目标物无法检测;(2)净化方式均采用双柱串联,检测成本较高,步骤繁琐、耗时、检测效率低;(3)对花粉含量较高的蜂蜜,净化时易造成固相萃取柱的阻塞;(4)采用液相色谱法测定链霉素,需衍生化,重现性差,对同时含有链霉素和双氢链霉素的样品无法准确定量。因此,各检验机构无法利用原有方法进行蜂蜜中链霉素和双氢链霉素的检测。检验方法的不完善造成2018年-2021年,蜂产品的国家风险监测方案将链霉素和双氢链霉素两项目取消。方法简介  本方法适用于蜂蜜中链霉素和双氢链霉素的测定。方法采用含三氯乙酸的磷酸盐缓冲溶液提取试样中的链霉素和双氢链霉素,经离心和过滤后,HLB固相萃取柱净化,混合型两性离子键合的SIELC Obelisc R色谱柱分离,液相色谱-串联质谱仪进行检测,外标法定量。  本标准与原有检测标准相比,具有以下优势:(1)摒弃了离子对试剂,与质谱检测器更好地兼容;(2)突破常规的双柱串联固相萃取方式,采用单柱净化模式,提高了检测效率,节约了检验成本。技术要点  蜂蜜含有大量的果糖和葡萄糖,为了达到去除杂质的目的,需要在前处理过程中对目标物进行净化、富集。固相萃取因简单、快速、高效等特点被广泛应用于蜂蜜中链霉素和双氢链霉素的净化。HLB固相萃取柱在去除糖类、蛋白等杂质上有一定的优势,虽不能直接保留目标物,但是借助一定的提取溶剂,两种化合物均能得到很好地保留。  链霉素和双氢链霉素属于碱性化合物,易溶于水,难溶于甲醇、乙腈等有机溶剂,因此可采用缓冲液进行提取。链霉素和双氢链霉素极性大,文献多采用提取溶液中添加离子对试剂或三氯乙酸的方法,以增加两种目标物在固相萃取柱上的保留。若前处理过程中离子对试剂去除不彻底,对色谱柱和质谱检测器将会有一定程度的污染,因此,本标准选择添加三氯乙酸的方法。研究发现,含20 g/L三氯乙酸的缓冲液pH在6~7之间时,回收率较高且比较稳定,之后再增加溶液的pH,回收率逐渐下降。  在实际样品测定中,用2%TCA(pH 6.8)提取后,不同蜂蜜样品之间回收率差别较大,且回收率偏低。对提取后的样品处理液进行pH值测定,发现pH在3.5~6.2之间,这是引起回收率偏低的重要原因。蜂蜜样品含有多种有机酸,而提取液无缓冲能力,经提取后样品处理液的pH值会发生变化。为解决此问题,研究人员在提取液中加入10 mmol/L~50 mmol/L磷酸盐。研究结果表明,50mmol/L磷酸盐缓冲效果较好,样品处理液的pH值稳定在6.2~ 6.7。综合以上因素,50 mmol/L磷酸盐缓冲液(含20 g/L三氯乙酸,pH 6.8)作为最终的提取溶剂。  研究人员进一步对洗脱溶剂中甲酸的浓度和洗脱体积对链霉素和双氢链霉素回收率的影响进行了考察,甲酸-乙腈-水(2: 5:93,v/v/v)溶液1.0 mL为最佳洗脱条件。操作注意事项  蜂蜜在存放过程中很容易析出结晶,为保证分析结果的准确性和代表性,对无结晶的实验室样品,直接将其搅拌均匀;对有结晶的样品,检验前,在密闭情况下,置于不超过60℃的水浴中温热,振荡,待样品全部融化后搅匀,分出0.5 kg作为待测试样用于检验。  在标准溶液配制过程中还需注意,若采用非本标准中形式的标准物质,需进行分子量折算后再进行标准品称量;若经常使用,建议将标准储备液分装成小包装,每次将小包装解冻使用。此外,氨基糖苷类药物易与玻璃器皿发生吸附,实验过程中尽量使用塑料器皿;提取溶液的pH值将影响目标物在固相萃取柱上的保留效果,因此需采用pH计准确调节pH值至指定范围。  SIELC Obelisc R色谱柱是在硅胶表面修饰了羧酸类的官能团,醇类会酯化硅胶表面键合的羧酸,影响物质的保留时间与重现性,因此色谱柱使用过程不能接触甲醇。建议严格按照色谱柱使用说明进行色谱柱的活化与维护。方法应用  BJS 202103《蜂蜜中链霉素和双氢链霉素的测定液相色谱-串联质谱法》已于2021年1月发布实施,已列入2022年全国食品安全风险监测计划中,在全国范围内得到广泛应用。本方法的发布实施可以为企业和监管部门提供技术支持,对市场监管具有重要意义。□山东省食品药品检验研究院 薛 霞
  • 食品检测实验室气相色谱质谱仪的选型
    p style=" text-indent: 2em " 现在绝大多数食品检测实验室均是配置色-质联用仪,单独使用质谱仪检测的已经非常少了。唯一单独使用的是应用同位素质谱仪检测蜂蜜等食品中的同位素比,以确定产品是否掺伪。本文主要介绍一下GC-MS购置时需要考虑的主要性能及功能。 /p p   GC-MS是高分离功能的GC与能提供被测物质分子信息的MS联用分析仪器。两种仪器功能互补,使仪器的分析功能更强大。例如:质谱能提供被测物的特定分子信息,对化合物的定性更加准确。但是,质谱无法区分同分异构体,而色谱分离同分异构体很容易。所以,色-质联用仪的功能是 1+1& gt 2。 /p p   现在GC-MS的GC部分均采用高分离性能的毛细管色谱,可以选配不同类型的进样口,如:最常用的分流/不分流进样口和(温度/压力)可编程控制进样口。柱箱多级程序升温控制。在谈到气质联用性能时,现在国内市场上比较常见品牌的主流型号GC的性能、功能并无多大差异。故在GC方面不再做比较。 /p p   MS的类型有多种,通常是按照分析器的类型来分,有四极杆质谱、离子阱质谱、飞行时间质谱、四极杆串联质谱、高分辨磁质谱等。不同厂家的不同型号的MS性能、功能、价格或者说性价比都存在较大差异。所以,本文将主要围绕MS进行论述。目前食品检测实验室配置使用的GC-MS联用仪多配置低分辨MS,这类仪器以目标化合物的定性、定量为主,兼有一定的未知物定性功能。选用这类仪器有两个目的: /p p   第一, 也是主要目的,是对食品中残留物进行分析。 /p p   既然是用于残留物分析,仪器的灵敏度至关重要,也是选仪器时首先应考虑的。但这不是唯一的指标(特别是不能仅看标称指标),还要综合考虑仪器的分辨率、质量稳定性、质量范围、动态线性范围、抗污染能力(包括仪器离子源、预四极等部件的清洗维护是否方便)、以及软件操作是否方便等。 /p p   GC-MS在残留物的分析中应用愈来愈普遍,是因为MS是一个通用型检测器,对大多数有机化合物都有比较好的响应。另一方面,四极杆质谱检测时有一个选择离子方式(SIM方式),与全扫描方式相比可以提高检测灵敏度2、3个数量级,检测灵敏度较氢火焰检测器(FID)、火焰光度检测器 (FPD)、氮磷检测器(NPD)高,稍逊于电子俘获检测器(ECD)对有机多卤素化合物的检测。残留物分析多为目标物检测,所以,用SIM方式检测既有广谱性(对化合物的响应而言),又有特异性(对不同化合物各自的特征离子而言),因而特别适合用于多种残留物的检测,提高分析效率。 /p p   现在仪器公司买仪器时所列出的技术指标有:灵敏度、分辨率、质量稳定性、质量范围、动态线性范围等。 /p p   市场上厂家标称的灵敏度为什么这么高? /p p   现在表述灵敏度是用八氟萘(OFN),如:EI+,1pg OFN信/噪(S/N)& gt 100。现在的信/噪比是RMS(均方根)方式,数值上与过去的灵敏度值相比高了很多。过去信/噪比是峰-峰比,即:信号的峰高/基线噪音的峰高,比较一目了然,自己拿尺子量都能量出来。但据厂家说,在选择基线噪音时有人为误差。现在厂家将信/噪比编成固定的程序,比如信号值与固定时间段(如1~2min,其实这段时间的基线是比较平的)噪音的比值。但现在的测定方式厂家其实同样有很多偷手,比如测试时用厂家自带的短测试柱 (10m或15m),质量的扫描范围减少,进样量增加(过去是空气-样液-空气绝对1μL,而现在1μL是包括针头死体积)。没办法,现在厂家为了竞争都这样做,用户也只好跟着走。所以,现在仅看厂家的标称指标是不够的。 /p p   做灵敏度指标时应该注意几个问题: /p p   (1)应该先做分辨率,在保证单位质量分辨时,再做灵敏度。如下图所示,可以采用一种近似方法,即,半峰高处的峰宽不小于1/2峰宽(此图转载自www.antpedia.com网dingdang的“谈谈有机质谱的分辨率”一文。在此表示感谢。)。灵敏度与分辨率成反比,若为了灵敏度而损失分辨率,会降低了质谱定性功能。 /p p   (2)质量扫描范围也应有规定,比如:OFN,200-300amu,扫描范围减小也能提高信/噪比。这些限制性条件应在谈合同时就确定下来。 /p p   (3)检测电压应该是正常检测时的工作电压,不同型号的质谱仪因参数表示的含义有差异,所以,各家仪器推荐使用的检测电压值也不同。但是,做灵敏度测试时的电压不应高于推荐正常使用时的工作电压。否则在实际工作时就会有问题,因为实际样品检测时是有基质干扰的,高电压不能提高信/比,而且还会使电子倍增器寿命降低。 /p p   现在国内出现了一些过分强调,或者说厂家过分宣传自己仪器灵敏度高的现象,导致现在标称的灵敏度越来越高,听说RMS信/噪比都有给出 1000的了。其实做标准品的指标只是个参考,将来做基质复杂的实际样品(如动物内脏)能得到好的、稳定的结果才是关键。现在有仪器的单位越来越多了,可以在购仪器前做一个实际样品到各家仪器上实测一下,并且了解一下各种仪器用户的反应,这比仅仅比指标更好。 /p p   仪器的其它指标一般不会有太大问题。 /p p   对于低分辨质谱,分辨率达到单位分辨一般没有问题。 /p p   质量范围现在多标称为2~1025(或1500)u,这个质量范围对于GC-MS够用了。因为,GC-MS分析物是挥发或半挥发物质,分子量一般不会太大。唯一要注意的是若做污染物十溴联苯(MW 954)和十溴联苯醚(MW 970)检测,不能选质量数小于1025u的(个别厂家的MS质量范围最高只有800u)。 /p p   质量的稳定性一般在0.1amu/8hr,这个指标其实也挺重要的。好的仪器几个月校正一次质量数即可,差的每周都要校正。虽不影响检测,但增加操作者的工作量。 /p p   线性范围大于10e4,对残留分析够用了。这些指标验收仪器时均需要按照合同的规定认真做。 /p p   此外,仪器的一些功能在验收仪器时也一定要都亲手做一遍,比如:化学电离源(CI)的更换、直接进样杆的操作、复合电离切换方式 (EI/CI)、复合扫描方式(TIC/SIM)等。许多农药含有卤素和电负性基团,因此有电负性。负化学源(NCI)检测这类物质可以获得较高灵敏度,这是由于NCI的本底较低,检测电负性物质时可以获得更高的信/噪比。对于定性也可以起到补充确证的作用。做NCI时需要通入反应气,所以,要求仪器的真空系统要比较好。现在厂家提供的GC-MS配置是可以选配的,若配NCI就一定要配置大抽率的真空泵,起码大于250L/min,最高配置有2× 200L /min。另外,还应考虑更换离子源的方便性,有的型号仪器更换离子源可以不破坏真空。 /p p   残留分析通常是目标物检测,目标物多为农药、兽药、添加剂、化学污染物等。这里的定性仅仅是对目标物进行确证。对于这种定性可以用两种方法,一是与仪器自带的NIST谱库(2006版提供约14万多张)的质谱图进行比对,二是与对应的标准品的质谱图进行比对。实际检测时后者的比对方法更好、更准确。因为,被测物经过前处理和毛细管柱后,基质的干扰会使被测物质谱图的离子碎片和丰度比与NIST谱库的质谱图(通常是由纯品直接进样得到的) 产生偏差。而且,定量时也需要有标准品。 /p p   第二个分析功能是对未知物分析 /p p   这里的未知物并非真正意义上完全未知的物质,若真是那种完全未知的物质仅仅靠MS,特别是低分辨的MS对其准确确证还是很难做到。这里的所谓未知物其实是已被人们认知的物质,该物质的质谱信息已被收录在了NIST谱库中,只是我们检测的物质中不知含有这些物质中的那一种。比如,不同地域的同一种天然产物产品的成分是不太一样的,同为玫瑰精油,国产的和进口的成分组成存在差异,通过MS分析及与NIST谱库比对,就能找出两种精油特征物质是什么,量有多少差异,不同在那里。再如,养鱼塘里的鱼突然死了,搞不清是什么原因,那么就取鱼塘里的水化验一下,水里含有什么物质并不清楚,这时我们就认为水里含有某种未知物。拿到实验室化验,经质谱NIST谱库检索比对,初步认为验出了甲胺磷。为保险起见,再打一针甲胺磷的标准品,结果保留时间、离子的丰度比都一致,最终确定水里含有的甲胺磷是致鱼死亡的原因。这类工作在日常工作中遇到的比较少,其对仪器的要求就是检测得到的质谱图与NIST谱库的尽可能相近,这样得到的结果会更准确些。所以,这种最好选择四极杆质谱、飞行时间质谱或高分辨磁质谱。而离子阱质谱,特别是内源式离子阱质谱得到的谱图与 NIST库谱图差异要大些。 /p p br/ /p
  • 聚丙烯酰胺(PAM)特性粘度及相对分子量的测定方法
    聚丙烯酰胺(PAM)是指由丙烯酰胺单体均聚或与其他单体共聚而成的一类聚合物,通常是由丙烯酰胺单体头尾键接而成,工业也把聚丙烯酰胺分子链中丙烯酰胺单体的含量高于50%的聚合物统称为聚丙烯酰胺。聚丙烯酰胺在常温下为坚硬的玻璃态固体,由于制法不同,产品有白色粉末、半透明珠粒和片状等,具有良好热稳定性。由于聚丙烯酰胺分子侧链存在有酰胺基团,它能以任意比例溶于水,且有很高的反应活性。可以对其进行交联、接枝、改性等,使得聚丙烯酰胺成为水溶性高分子中应用最广泛的聚合物之一,目前广泛应用于石油开采、污水处理、食品加工、农业等领域,被誉为“百业助剂”。石油开采和污水处理是聚丙烯酰胺应用的主要领域:聚丙烯酰胺作为润滑剂、悬浮剂、粘土稳定剂、驱油剂、降失水剂和增稠剂,在钻井、酸化、压裂、堵水、固井及二次采油、三次采油中都有广泛应用,同时聚丙烯酰胺在水处理中也常用于生活污水处理,化工废水,有机化学污水的解决。国标GB/T 17514-2017和GB/T 31246-2014中规定了水处理剂领域中聚丙烯酰胺的质量标准,使用乌氏粘度法测量聚丙烯酰胺的特性黏度及黏均分子量是其中的关键检测内容。这一点在石油的行业标准中也有体现。乌氏粘度法由于它独有的优势被应用于聚丙烯酰胺等材料的质量控制中,但传统的手动黏度测定方法仍存在诸多弊端。随着生产企业以及研发机构等对于实验数据高标准、高精度、高效率的要求,全自动乌氏粘度仪已逐步取代传统手动测试方法。以杭州卓祥科技有限公司的IV8000系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗/干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 沃特世推出更快速可靠的自动化解决方案,助力生物药物分子量和纯度分析
    沃特世公司(纽约证券交易所代码:WAT)近日推出全新软件和分析柱产品,旨在助力生物分子药物发现和开发。使用waters_connect平台新增的Waters Intact Mass应用程序,科学家们能够在BioAccord LC-MS系统上快速确认合成或重组工艺生成的生物分子和杂质分子量,其分析速度可达市场上其他产品的近两倍 i。图. Waters BioAccord LC-MS系统的完整分子量分析在几分钟内为生物工艺工程师提供有关药物和工艺质量的关键信息沃特世公司高级副总裁Jon Pratt表示:“采集生物分子的质量数和纯度数据相当耗时。复杂的质谱数据需要由具备一定技能水平的人员来分析,因此这项工作通常会交给远程专业分析实验室。借助这款新的Waters Intact Mass应用程序,生物工程师和生物化学家使用简单的技术就可以加快药物发现和开发,在几分钟或几小时内即可自行生成质量数确认数据,不再需要花费长达数天乃至数周的时间。”完整分子量分析是在蛋白质、肽、寡聚核苷酸治疗药物和偶联药物等生物药物开发的各个阶段都会开展的一项常规分析。在药物发现的早期阶段,生物化学家每周需要分析数百甚至数千个不同的样品。为了加快分析速度,Waters Intact Mass应用程序提供了一套快速可靠的自动化解决方案,旨在助力新型生物治疗药物的质量数确认和纯度测定。这款应用程序特有的智能自动解卷积功能让用户在减少指令输入的情况下,在采集样品数据后几分钟内即可完成处理。沃特世推出MaxPeak Premier BEH C4 300Å蛋白分析专用柱,助力完整蛋白和亚基分析与Intact Mass应用程序一同推出的还有全新分析柱系列,将在完整生物分子及其亚基分析中发挥关键作用。用于BioAccord LC-MS系统的ACQUITY Premier和XBridge Premier BEH C4 300Å蛋白分析专用柱采用MaxPeak高性能表面(HPS)技术,能阻止样品中的磷酸化和羧基化分子被LC系统和色谱柱的金属表面吸附,进而避免样品分析物损失。得益于此,低浓度完整分子量分析的灵敏度可提高达3倍,磷酸化蛋白完整分子分析和低浓度单克隆抗体亚基分析的灵敏度则可提高达2倍ii 。目前,新购BioAccord LC-MS系统的waters_connect平台已预置Intact Mass应用程序,已安装的系统可通过版本升级获取此应用程序。沃特世现已面向全球供应MaxPeak Premier BEH C4 300Å蛋白分析专用柱。其他参考资料- 阅读博客文章:Automating Intact Mass Deconvolution: It' s About Time(《完整分子量的自动化解卷积:时机已到》)- 阅读沃特世应用纪要:Intact Mass - A Versatile waters_connect Application for Rapid Mass Confirmation and Purity Assessment of Biotherapeutics(《Intact Mass - 用于生物治疗药物快速质量数确认和纯度评估的多功能waters_connect应用程序》)- 欢迎您通过www.waters.com关注和联系沃特世。关于沃特世公司(www.waters.com)沃特世公司(纽约证券交易所代码:WAT)是全球知名的专业测量仪器公司,作为色谱、质谱和热分析创新技术的先驱,沃特世服务生命科学、材料科学和食品科学等领域已有逾60年历史。公司在全球35个国家和地区直接运营,下设14个生产基地,拥有约7,400名员工,旗下产品销往100多个国家和地区。关于沃特世中国自上世纪80年代进入中国以来,沃特世的规模与实力与日俱增,在大陆及香港、台湾均设有运营中心,拥有近700名本地员工,并在上海、北京、广州、成都设立实验中心和培训中心。自2003年成立沃特世科技(上海)有限公司以来,今天的中国已成为沃特世全球营收仅次于美国的第二大市场。作为分析科学家的理想合作伙伴,沃特世始终坚持提高本地技术能力、支持本地技术人才培育,并推动制药、食品安全、健康科学、环境保护等相关行业标准和法规的建立和完善。凭借出众的人才与全球布局,沃特世已经为其商业合作伙伴创造了显著的价值,并致力于满足广大中国消费者对更美好生活的需求。 i“两倍”估计值基于96个样品的分析,比较了Waters BioAccord系统配合Intact Mass运行“并行采集和处理”工作流程与市场上其他产品运行“先采集后处理”工作流程的速度。 ii基于MaxPeak Premier BEH C4 300Å蛋白分析专用柱与ACQUITY 300Å蛋白分析专用不锈钢柱的比较结果。
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析 Mia Summers和Michael O&rsquo Leary 沃特世公司(美国马萨诸塞州米尔福德) 应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案 ACQUITY® 超高效聚合物色谱(APC&trade )系统 ACQUITY APC XT色谱柱 沃特世聚合物标准品 带有GPC选项的Empower® 3色谱数据软件关键词 聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言 凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验 Alliance® GPC系统条件 检测器: 2414 RI (示差折光检测器) RI流通池: 35 ℃ 流动相: THF 流速: 1mL/min 色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L ACQUITY APC系统条件 检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃ 流动相: THF 流速: 1 mL/min 色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L 数据管理 Empower 3色谱数据软件 样品 1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL) 结果与讨论 为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。 图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率 使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。 图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点 一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。 图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。 图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。 APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。 结论 由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 【热点应用】高级多检测器GPC测量低分子量样品
    高级多检测器GPC测量低分子量样品凝胶渗透色谱(GPC)是测量天然和合成聚合物分子量和分子量分布的常见工具。先进的光散射检测器,越来越多地被用来克服传统GPC测量的局限性,准确提供绝对分子量以及分子尺寸。由于样品的光散射(Rθ)灵敏度会受到聚合物的分子量Mw、浓度(C)和折光指数增量(dn/dc)的影响,所以对于低分子量聚合物而言,准确测定分子量对大多数GPC/SEC系统来说是一个挑战。例如,PLGA等药物递送聚合物的dn/dc通常很低,而环氧树脂、多元醇等分子量可能极低。马尔文帕纳科最新GPC系统OMNISEC可用于克服测量低分子量聚合物测定的困难,这要归功于光散射和示差检测器灵敏度的提高。借助OMNISEC光散射灵敏度,您可以:以更高的准确度测量较低分子量的样品。可以较低样品浓度测量珍贵样品。以更高的准确度和灵敏度测量具有低dn/dc的样品。对环氧树脂、多元醇和PLGA样品的分析清楚地表明,先进的检测技术现在可以轻松地应用于低分子量等聚合物的表征。 环氧树脂双酚A用于生产双酚A二缩水甘油醚等环氧树脂,是一种低分子量样品,我们可以用OMNISEC在正常浓度下成功测量。在图1中,对浓度为3 mg/ml的双酚A(分子量为228 g/mol)进行分析,显示出示差RI检测器和光散射检测器LS都具有良好信噪比的信号响应。(图1)图1:双酚A(分子量228 g/mol)在THF中运行的多检测器色谱图(RI和RALS检测器)。样品浓度为3 mg/ml。用OMNISEC系统分析分子量为340g/mol的双酚A二缩水甘油醚,得到的色谱图(图2)显示了清晰的峰和良好的信号响应,尽管聚合物的分子量很低。图2:双酚A二缩水甘油醚(分子量340g/mol)在四氢呋喃中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为5 mg/ml。多元醇多元醇是具有多个羟基官能团的材料,通常用作合成其他聚合物(如聚氨酯)的反应物,或在食品工业中使用多元醇作为糖的替代品。了解这些材料的分子量分布对于监测它们在不同应用环境中使用是至关重要的。本文采用聚乙二醇(PEO)和聚丙二醇(PPG)为例进行分析。图3显示了极低分子量PEO的OMNISEC色谱图和结果。在RALS探测器中观察到良好的信噪比,使得对聚合物的全面表征成为可能。图3:多检测器SEC色谱图(RI、RALS和粘度计检测器)。分子量为196g/mo的聚乙二醇。样品浓度为3.9 mg/ml。在图4和表1中,您可以看到PPG的分析,它在THF具有非常低的dn/dc(0.045ml/g)。所有的检测器都有很好的响应,并且多次注射之间有很好的重复性。图4:聚丙二醇在THF中的多检测器色谱图(RI、RALS和粘度计检测器)。样品浓度为6 mg/ml。表1:三个聚丙二醇样品重复注射的分子量数据。样品浓度为6 mg/ml。聚乳酸-羟基乙酸 PLGA聚乳酸-羟基乙酸(PLGA)是一种生物相容性和生物可降解性聚合物,最常用于药物输送和组织工程应用。在药物输送应用中,PLGA用于配制药物和蛋白质在体内的受控输送装置。这些PLGA设备的工作方式是,当PLGA在体内降解时,它会释放与之相关的药物分子。PLGA给药装置的物理性能可以通过控制药物浓度、PLGA分子量以及组成PLGA的聚乳酸和乙醇酸的比例来调节。然而,由于PLGA在THF中的dn/dc非常低,约为0.05ml/g,因此SEC对PLGA的表征历来是非常困难的。如图5所示,使用OMNISEC系统在THF中按SEC分析PLGA 50:50后,每个检测器均可获得良好的信号响应和完整的样品表征。图5:PLGA 50:50多检测器SEC色谱图(RI、RALS、LALS和粘度检测器)。样品浓度为3.028 mg/ml。结论:与传统GPC相比,OMNISEC系统具有高灵敏度,因此可以在正常浓度下测量低dn\dc和低分子量样品,如环氧树脂、多元醇和PLGA,并具有极好的重复性。
  • 非变性质谱在生物制药完整蛋白分析中的应用
    p   何为非变性质谱?就是选用温和的溶液体系及质谱条件,使蛋白保持在非变性状态下被分析。听到这,有些小伙伴可能会一头雾水:师兄师姐教我处理蛋白质样品的时候,第一步就是要变性啊,怎么现在又不要变性了? /p p   在通常的蛋白质相关分析中,为了破坏蛋白质的三维立体空间结构,便于酶解等操作,会通过加热或是加入高浓度的变性试剂(如尿素、盐酸胍等),使蛋白质变性 另外,对于常用的分离手段——反相色谱来讲,其流动相的酸性pH条件与高有机相同样也会使蛋白质变性。当需要对蛋白质中的非共价结合进行研究时,为了避免非共价结合被强烈的变性条件所破坏,则需在非变性的液相-色谱条件下(通常为50mM醋酸铵,pH=7的中性体系)进行研究 另外,对于组成较为复杂的蛋白样品,在非变性条件下分析时,由于体系中质子数减少,所以蛋白电荷态数目也会相应减少,电荷态之间的相互重叠度也会下降,进而减少复杂组分之间的相互影响,从而能够得到复杂蛋白样品中每个组分的分子量信息(图1)。 /p p style=" TEXT-ALIGN: center" img title=" 图1_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/56171fe8-be7c-4cc8-a672-814a9fe87e30.jpg" / /p p style=" TEXT-ALIGN: center"   strong 图1 /strong 同一样品分别于变性及非变性条件下进行分子量测定的原始谱图 /p p   目前, strong 非变性质谱技术主要应用在两个方面 /strong :一是 strong 生物制药领域 /strong ,通过打开单克隆抗体链间二硫键后在Cys位点上偶联小分子药物(Cys-ADC)的完整分子量分析,此类药物的链间仅靠非共价力结合,故变性条件下各条链会分离,无法测得其完整状态的分子量 另一应用方向为 strong 研究蛋白质多聚体 /strong ,非变性条件下不仅可以保持各个亚基间的非共价相互作用,同时由于中性条件更接近生理状态,得到的结果更具意义。 /p p   现在,非变性质谱与氢氘交换、X-ray衍射、核磁共振、冷冻电镜和cross-linking等技术联合使用、互为补充,已经越来越多的被应用在结构生物学、生物医药等领域的研究中。本期文章将会重点介绍非变性质谱在治疗性生物医药制品完整分子量测定中的研究,下期文章将会侧重介绍非变性质谱用于蛋白复合物的研究进展。 /p p span style=" COLOR: #002060" strong Orbitrap超高分辨质谱:非变性质谱研究的理想平台 /strong /span /p p   古人云:工欲善其事,必先利其器。要想研究做得好,趁手工具不可少!针对于非变性质谱研究中的需求,我们在Orbitrap质谱平台上对相关参数进行了优化,包括离子源区脱溶剂能量、质量范围的扩展以及高质荷比离子传输效率的优化等,使Orbitrap在固有的高分辨率、高质量精度及高灵敏度基础上,在非变性质谱领域也能有出色表现。 /p p style=" TEXT-ALIGN: center" img title=" 图2_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/caeec8f3-896f-4e02-a44a-84aae9ecd287.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图2 /strong Orbitrap质谱平台用于非变性质谱分析 /p p   上文中提到,在生物制药领域中,会通过分子工程设计,在单克隆抗体的特定氨基酸上通过化学反应,偶联上小分子治疗药物,通过单克隆抗体的靶向识别功能将小分子药物精确带至病变细胞处并释放,达到精确给药、减少毒副作用的目的,这类药物被称作抗体药物偶联物(Antibody Drug Conjugates,ADCs)。在这类药物中,通过将单抗链间二硫键打开从而在Cys位点上偶联药物的Cys-ADC,由于其链间仅靠非共价力结合,故需在非变性质谱条件下才能对其完整分子量进行测定(图3)。 /p p style=" TEXT-ALIGN: center" img title=" 图3_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/270ff8dd-d5c1-442b-baf1-f287fcb557b9.jpg" / /p p style=" TEXT-ALIGN: center"   strong  图3 /strong Cys-ADC结构示意图 /p p style=" TEXT-ALIGN: center"   图4展示了使用非变性质谱平台对Cys-ADC进行完整分子量测量的结果。由图中不难发现,使用体积排阻色谱(SEC),可以将单克隆抗体与其他杂质分离开,而Orbitrap质谱平台能够得到基线分离、信噪比高的原始谱图。经数据处理软件解卷积处理后,可见偶联了0/2/4/6/8个小分子药物的簇峰分布,符合Cys-ADC的典型分布特征 解卷积后计算所得该ADC的药物/抗体比值(Drug to Antibody Ratio, DAR),与之前报道过的DAR值相符。 /p p style=" TEXT-ALIGN: center" img title=" 图4_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/b494de8a-6ac5-42cf-ad12-d84637e32bef.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图4 /strong 使用非变性质谱平台对Cys-ADC进行完整分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   作为对照,在变性条件下也对同一个样品进行了分子量测定(图5),发现链间的非共价结合在强烈的变性条件下均被破坏,只能观察到部分ADC的分子量信息。该实验进一步说明了在非变性条件下对Cys-ADC进行分子量测定的必要性。 /p p style=" TEXT-ALIGN: center" img title=" 图5_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/46b85220-b769-47dc-b534-f92c93b56cff.jpg" / /p p style=" TEXT-ALIGN: center"    strong 图5 /strong 变性质谱条件下对Cys-ADC进行分子量测量。 /p p style=" TEXT-ALIGN: center"   (上),原始色谱/质谱图 (下),解卷积后谱图。 /p p   对于常见的另外一种ADC——Lys-linked ADC,虽然其小分子药物与单克隆抗体是通过共价键相结合,但偶联上小分子药物后,ADC的复杂度大大增加,此时若在非变性条件下进行分子量测定,可以减少信号之间的干扰,得到更加准确的测量结果(图6)。 /p p style=" TEXT-ALIGN: center" img title=" 图6_20170406090915_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/7c9e60f0-f01a-45eb-85eb-f9dceece9c46.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件可减少复杂组分间信号重叠 /p p style=" TEXT-ALIGN: center" img title=" 非变性2_20170406090518_副本.jpg" src=" http://img1.17img.cn/17img/images/201704/insimg/e634be51-bf68-49f2-b7be-e205227a7242.jpg" / /p p style=" TEXT-ALIGN: center"   ▲非变性条件下Lys-ADC完整分子量测量结果 /p p style=" TEXT-ALIGN: center"    strong 图6 /strong 使用非变性质谱平台对Lys-ADC进行完整分子量测量。 /p p    strong 小结 /strong /p p   本期我们对非变性质谱技术的原理、适用范围进行了介绍,并以Cys-ADC与Lys-ADC样品的完整分子量测量为例展示了该方法的应用,不知道小伙伴们有没有对非变性质谱技术有个初步的了解呢?下期我们将会介绍该技术在蛋白复合物研究中的应用,各位看官走过路过不要错过,我们下期见! /p p   参考文献 /p p   [1] Dabaene et al., Anal Chem. 2014, Nov 4 86 (21):10674-83. /p p & nbsp /p
  • 解决方案 | GPC在测量壳聚糖分子量及分布上的应用
    壳聚糖及其测定壳聚糖是目前研究最多的多糖类天然高分子材料,对于生物体来说,壳聚糖具有优良的生物相容性和降解性。将其植入人体后,可被人体组织中的酶缓慢吸收,是用来制作缝线和创伤覆盖材料的高分子材料。由于其优越的性能,使得壳聚糖在化工、 轻工、 医药、 食品及环境保护等领域中的开发应用研究十分活跃。 壳聚糖的学名为β-(1,4)聚-2-氨基-D-葡萄糖,是甲壳素最重要的衍生物,是除蛋白质以外含氮量MAX的有机氮源,也是自然界中仅有的碱性多糖,其相对分子量通常在10万-30万,但几乎不溶于水,其中分子量是影响壳聚糖溶解性的主要因素之一,分子量越低其溶解性就越好。 凝胶色谱法(GPC)是测定壳聚糖相对分子质量及其分布的常用方法,这将有助于推动壳聚糖作为生物医用材料的选择和设计。 应用案例——GPC测定壳聚糖本案例基于Waters1515凝胶色谱仪,搭配Ultrahydrogel色谱柱,对市售壳聚糖的相对分子量及分布进行计算。1、仪器 ▲Waters1515凝胶色谱仪,配示差检测器 2、标准品聚乙二醇标准品套组 3、实验条件01RI流通池温度40 °C02流动相50 mM 的醋酸+100 mM 硝酸钠缓冲液03流速0.45 mL/min04色谱柱Waters Ultrahydrogel 2000柱,7.8 ×300 mm05柱温40 °C 06样品稀释剂50 mM 的醋酸+100 mM 硝酸钠缓冲液07进样量50 μL08数据处理软件Empower QS +GPC计算模块色谱数据软件09样品处理1 mg/mL的壳聚糖4、结果与讨论壳聚糖样品的色谱图如下: 图1. 壳聚糖样品色谱图 利用Empower QS中GPC选项的功能,采用标样的保留时间绘制标准曲线,来计算壳聚糖样品的分子量分布,软件会自动计算出对应的重均分子量(Mw)、数均分子量(Mn)、多分散性等相关参数。 连续6针进样的重复性色谱图如下,通过计算Mw的RSD小于0.2%,表明此方法重复性良好。 Waters GPC优势行业先驱 Waters 从 1963 年起就致力于 GPC 技术的研究和开发,经过 50 多年的发展,使Waters 成长为 GPC 技术的引航者。专业 多项*技术加持,保证检测结果的准确性及重现性。易上手 简单、易操作,性能稳定,专为高聚物领域量身打造。参考文献[1] 凝胶渗透色谱法研究壳聚糖生物材料酶降解过程的均匀性[2] 用GPC研究壳聚糖氧化降解过程中的分子量及其分布_刘羿君[3] 壳聚糖作为医用高分子综述-王霞
  • 北京肿瘤医院大型生物质谱平台建设完成,进入试运行
    北京肿瘤医院中心实验室新引进两套大型质谱:基质辅助激光解吸电离飞行时间质谱(MALDI-TOF/TOF)和液相色谱四极杆飞行时间质谱仪(micrOTOFQ II LC/MS QTOF),已于3月11日结束培训,目前进入试运行阶段。  MALDI-TOF/TOF (Bruker 公司)质谱平台是新一代标准化飞行时间质谱仪,具有smartbeam,配有MALDI离子源、线性和反射操作模式、源后裂解(PSD)串联质谱和高能量碰撞诱导解离(CID)。主要用途:1)结合磁珠即液体芯片用于从复杂体液发现潜在的生物标志物 2)蛋白质样品分子量测定 3) 肽质量指纹图谱(Peptide Mass Fingerprinting,PMF)分析 4)蛋白质的鉴定。 micrOTOFQ II (Bruker 公司) 属于四级杆-飞行时间串联质谱(Q-TOF MS)类质谱。其主要组成部分包括电喷雾离子漏斗源、四级杆、TOF质量分析器、注射泵和数据采集与处理部分。该质谱与液相色谱联用自动进样,适合于多肽的分离、检测与测序,可应用在大规模药物开发、蛋白质组学等新兴技术领域。主要用途:1)分子量的测定 2)精确质量测定及元素组成分析 3)肽质量指纹谱 4)蛋白质的鉴定。目前,该仪器已检测了近40例一维和二维胶内蛋白样品(包括考染和银染胶),同份样品在军事医学科学院和北京大学医学部分析测试中心进行测定,结果一致。
  • 国产质谱仪替代进口产品面临两个瓶颈
    事件描述:近期,我们拜访了天瑞仪器公司,与该公司高管就公司的经营和发展进行了交流。   点评:   2014年上半年业绩下滑。2014年上半年公司营业总收入为13732.68万元,同比下降10.59% 归属于上市公司股东的净利润为2136.17万元,同比下降18.10%。业绩下滑的主要原因是公司对部分针对水泥、钢铁等行业的产品价格进行一定下调,影响公司收入和利润水平。我们预计随着上半年产品价格下调到位,下半年毛利率将于上半年持平。由于公司是细分行业的龙头,下游需求相对比较分散因此单一行业需求下滑对公司业绩影响有限,因此我们认为公司未来收入仍将保持相对稳定。   质谱仪产品为未来公司的一大看点。分析仪器从测量技术上主要分为色谱、光谱和质谱。国内在色谱和光谱产品方面发展较快,而技术含量最高的质谱仍由海外厂商垄断。国内各类质谱仪需求空间较大。国内已经有包括天瑞仪器在内的多家厂商具备质谱产品的生产能力,且均处在市场开拓阶段。国产质谱仪替代进口产品目前仍有两个瓶颈,一是产品的稳定性、可靠性,二是下游客户对国内品牌的认可度。我们认为这两个瓶颈会拉长进口产品的替代周期。但公司无论从技术和品牌角度,均是行业的龙头企业,将是未来质谱仪进口替代进程中的主要受益者。   未来新产品看点多多。在食品安全领域,国家粮食局标准质量中心组织北京、河南、湖北、湖南、广东、江西、四川、安徽等国家粮食质量监测中心在湖北国家粮食质量监测中心对公司开发的粮食中镉含量快速测定产品适用于国家标准的可行性进行了测试验证。之后,中心邀请有关专家对验证结果进行了评审,认为上述方法可满足稻米中镉含量快速检测的需要,建议推广使用。在大气污染物检测方面,公司的三套环境空气颗粒物PM2.5浓度在线分析仪和三套环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统送中国环境监测总站进行环境适应性验证的工作正在顺利推进中。我们预计以上新产品存在大规模推广的可能性。   外延式增长可期。公司于2014年5月9日公告,由于交易双方未能就细化交易方案达成一致意见,公司终止收购宇星科技。我们认为公司所处行业特征决定外延式扩张是更有效的发展方式,通过收购获得技术、专利、人才和客户群以进入新细分领域。目前公司拥有10亿的货币资金,具备外延式增长的客观条件。   盈利预测:公司是细分行业龙头,原有业务比较稳定,新产品虽然看点较多,但爆发点均存在一定不确定性,外延式发展是短期内主要的看点。我们预计,公司2014-2016年EPS将分别达到0.33元、0.35元和0.36元。我们上调评级至&ldquo 审慎推荐&rdquo 。
  • “100家实验室”专题:访中科院化学所北京质谱中心
    为广泛征求用户的意见和需求,了解中国科学仪器市场的实际情况和仪器应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近期,仪器信息网工作人员参观访问了本次活动的第三十四站:中国科学院化学研究所北京质谱中心。   中国科学院化学研究所北京质谱中心,是根据《国务院关于“九五”期间深化科技体制改革的决定》中提出的“要采取有力措施,促进共建、共用大型仪器设备”的精神,由科学技术部、中科院和教育部共同出资,于1998年12月建立。   北京质谱中心成立以来,成功完成其科学研究、人才培训、测试服务三个中心的功能定位,作为面向全国科研机构和生产企业的开放性公共技术平台,充分发挥了现有仪器的性能,不失时机地开展了各类质谱学和质谱应用技术方面的科学研究,取得了一批具有创新和实际应用意义的科研成果,增加了自身的质谱技术储备。   王光辉研究员和熊少祥研究员热情接待了仪器信息网到访人员,据介绍,北京质谱中心装备了多台不同类型的质谱仪,配有多种电离技术。其中,傅立叶变换离子回旋共振(FT-ICR)质谱仪是中国大陆引进的第一台超高分辨率质谱仪,无论使用哪种电离技术,都可以给出准确的离子质量数,误差小于百万分之四(外标法),可以进行多级质谱分析。     我国第一台FT-ICR质谱仪   这台仪器承担着重要的检测任务,自运营后基本上都是24小时运转,除去节假日,很少停机。在我们采访之际,了解到这台FT-ICR质谱仪的真空泵停止了运转,王光辉研究员正带领实验室的部分工作人员维修这台FT-ICR质谱仪。由于其复杂的结构和电路,所以一旦出现故障,其维修过程也是一个高难度、高挑战的巨大工程。王光辉研究员利用多年的质谱操作经验,仔细研究了真空泵的内部构造,甚至自己研究各个部件的电路图,关键部件的维修和调试过程中,完全是靠自主研发和自购原材料,为国家和本实验室节省了很大的维修费用。   王光辉老师向我们讲解维修仪器的技术难题   就在截稿之日,记者通过电话了解到,这台高端精密仪器已经修理完毕并投入使用,在短短的两天内,已分析了近百个高难度的样品,获得数据的准确度多在2ppm左右,充分说明这台仪器已达到维修之前的最佳水平。   另外,北京质谱中心还配有基质辅助激光解吸电离-飞行时间(MALDI-TOF)质谱仪,这台仪器则可以分析分子量高达数十万的分子。   Autoflex III飞行时间质谱系统(MALDI-TOF)   北京质谱中心其他的分析仪器:   QP2010型GC/MS质谱仪   GCT型GC-TOF质谱仪   2010型LC/MS质谱仪   Ultima Global型Q-TOF质谱仪   北京质谱中心是中国第一个大型科学仪器共用中心的试点,目的是要统筹资金、共享仪器,建立一个仪器配套、人员精干的专业化大型仪器中心。北京质谱中心自1998年成立后每年国家拨款20万补贴,作为仪器维护、实验室运转的费用。自2009年开始,国家不再供给补贴,中心完全自负盈亏。而记者了解质谱中心每台仪器的维护成本相当高,以FT-ICR质谱仪为例,平均每年的液氦需要8万左右,再加上液氮的费用,一年的维护成本就已经达到十几万。   由于集中使用资金,保证了北京质谱中心能有精良而配套的质谱仪器,因此可以承担覆盖面很广的各种分析任务:从非极性分子到极性分子,从有机物小分子到生物大分子及合成高分子,从纯化合物结构分析到复杂混合物的联用分析,从一般性结构分析到疑难的结构分析。   北京质谱中心成立至今,为中科院、教育部、卫生部、公安部、军事医学科学院等部委所属的研究机构和国内生产企业提供了大量的高质量分析测试服务。所测样品种类繁多,来自全国各地,许多是在当地难以解决的高难度样品和问题。样品中三分之二以上属于国家自然科学基金、攀登计划、863、973、国家科技攻关、国防军工等重要项目。   北京质谱中心的科研人员在完成分析测试任务的同时,积极开展相关的科学研究。其获得的学术成果,在国内外核心学术期刊上发表论文约100篇,并多次被邀请作大会报告或专题报告,达到了扩大北京质谱中心影响,与国内外同行交流学术思想和工作经验的良好效果。   王光辉研究员(左二)、熊少祥研究员(左三)和仪器信息网工作人员   采访后记   本次采访过程中,令笔者印象深刻的莫过于:王光辉研究员带领北京质谱中心工作人员成功维修、升级改造中国第一台FT-ICR质谱仪的事情,除去科研人工成本之外,仅仅再投入几万元的资金就使这台高端仪器重新运转起来、充分发挥其效能。   可以说,大型科学仪器设备的升级改造,对于改善我们的科研基础条件,逐步提升现有大型科学仪器的应用水平,具有非凡的意义 同时,充分挖掘现有科技资源的潜力,盘活了国家固定资产,又具有良好的经济社会效益。   目前,由于市场需求与行业发展,国家的确需要投入大量的人力、物力新建各种检测机构,但同时也可能存在重复建设的情况,或许政府机构对检测机构应合理规划,并对已有检测机构给予更多支持或进行结构调整,同时,科技部与各地省市部门在大型仪器设备升级改造项目支持政策上适度倾斜,在资源共享的基础上充分发挥新老检测机构的功能。   附录:北京质谱中心近几年取得的学术成果   北京质谱中心先后主持、参加了国家自然科学基金、中国科学院重大项目、北京市自然科学基金等多项研究项目。这些研究项目的组织和实施,充分发挥了北京质谱中心的研究中心功能,在分析方法上取得了一批具有创新性意义和实用价值的成果,极大地支持和促进了化学和生命科学中的基础研究。现略举数例如下:   (1)首次发展了一种简便易行而且廉价的样品靶表面处理方法,可以在靶面上形成一层疏水薄膜,从而使分析样品的最小需要量下降了约2个数量级,对于分子量为1000左右的多肽,在样品靶改进之前,需要约0.1 pmol的样品才能得到信噪比S/N 10:1的质谱图,而样品靶处理之后则只需要约1 fmol的样品即能得到信噪比相当的质谱图(灵敏度提高了2个数量级),而且质量测定的误差由原来的大于100ppm下降到小于30ppm。这一成果对当前处于研究热点的蛋白质组研究具有重大的应用价值,解决了含量低的蛋白质组分,用常规的质谱技术无法检测的难题。已经成功地用于研究脊椎损伤修复过程蛋白质或多肽的变化等项目中的蛋白质鉴定。   (2)用电喷雾电离-傅立叶变换离子回旋共振质谱,分别测定了从牛脑、蝎毒、芋螺毒素、蚯蚓中提取分离得到的具有生物活性的蛋白质的精确分子量,方法简单、快速。研究的从罂粟花粉中分离得到的17肽,其对人胃癌肿瘤细胞(BGC-823)和膀胱癌肿瘤细胞(ET)有一定的抑制效果。另外,用ESI/CID方法,分析了多种具有生物活性的多肽,分别获得了完整的b系列离子及y系列离子,从而准确地确定了多肽的序列,其具有的高分辨、高准确度特点,是其它质谱无法相比的。   (3)研究了用基质辅助激光解吸电离飞行时间质谱测定了一系列甲克型液晶高分子材料的新方法,获得了分子量分布规律,确定了末端基 测定了一系列发光高分子材料的分子量分布及推断其不同的末端基。准确地确定了高分子材料的结构。为改进合成工艺和改善高分子材料的性能提供了可靠的实验数据。其分析方法和实验数据推广应用到了包括国外新加坡大学等单位。   (4)利用傅里叶变换离子回旋共振质谱(FT-ICR-MS),分析了复合粘土和采油添加剂样品中的两类复杂表面活性剂成份。结果表明:高分辨FT-ICR-MS,可以简单、快速、准确地获得两类化合物的结构信息,利用其高准确度的质量测定数据,计算出复杂样品中各组份的元素组成,鉴定出具体化合物,显示了FT-ICR-MS的在分子结构分析和未知物鉴定中的强大能力。   (5)对基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱表征大环多糖进行了研究,探讨了基质种类、添加剂、样品浓度、制备方法等因素的影响,建立了MALDI-TOF质谱分析大环多糖的方法,对两个从植物中提取得到的实际样品,进行了测定,获得了满意的结果。   (6)选用了包括纳米粒子在内的多种化合物作为基质或辅助物,以甘油、硝基苄醇、液体石蜡等为溶剂,形成了多种不同组成的液相基质。以多肽、蛋白、大环寡糖、小分子有机化合物等为测试样品,系统地考察所用液相基质对各种类型化合物的MALDI-TOF质谱分析的适用情况,找到了一些具有较大普适性的液相基质体系,建立了新的利用液相基质定性、定量的MALDI-MS分析方法。   (7) 目前,将内标物引入质谱中以保证质量测定准确度的方法,还存在许多问题。最近本实验室发明了一种新型的多功能大气压下离子枪(已申请专利),使用这种离子枪的组合,能方便、可靠地将内标物引入质谱中,从而显著地提高了质量测定的准确度,该方法已在本实验室的 Q-TOF质谱仪上进行严格的考查,在三个月的日常分析中,分析了近百个各种类型的实际样品,获得质量测定准确度在3ppm。Q-TOF质谱仪装备了该离子枪后,性能得到显著提高。该离子枪还可用于进行多种分子离子反应的研究。
  • 6项水质国家生态环境标准征求意见发布,涉及光、色、质谱及运行维护规范
    为规范生态环境监测工作,生态部组织编制了《水质 硝酸盐氮的测定 气相分子吸收光谱法》等6项国家生态环境标准征求意见稿,现公开征求意见。征求意见将于2024年6月11日截止。一、水质 硝酸盐氮的测定 气相分子吸收光谱法本标准规定了测定地表水、地下水、生活污水、工业废水和海水中硝酸盐氮的气相分子吸收光谱法。方法的检出限为 0.008 mg/L,测定下限为 0.032 mg/L。本标准是对《水质 硝酸盐氮的测定 气相分子吸收光谱法》(HJ/T 198-2005)的修订。《水质 硝酸盐氮的测定 气相分子吸收光谱法》(HJ/T 198-2005)首次发布于2005年,本次为第一次修订,主要修订内容有:——修改了方法的适用范围、方法原理、试剂与材料、样品的采集和保存;——增加了规范性引用文件、质量保证和质量控制以及废物处置等条款;——删除了术语与定义条款、气液分离装置的描述;——优化了干扰和消除、仪器参考条件和分析步骤。自本标准实施之日起,《水质 硝酸盐氮的测定 气相分子吸收光谱法》(HJ/T 198-2005)废止。本标准起草单位:中国环境监测总站、黑龙江省哈尔滨生态环境监测中心、北京市生态环境监测中心、河北省生态环境监测中心。标准编制组主要成员:张霖琳、陈 莹、薛荔栋、马琳、袁懋、周健楠、王淑娟、吴丹、马倩。二、水质 丙烯酰胺的测定 高效液相色谱-三重四极杆质谱法本标准规定了测定地表水、地下水、生活污水、工业废水和海水中丙烯酰胺的高效液相色谱-三重四极杆质谱法。本标准为首次发布。本标准主要起草单位:中国环境监测总站、浙江省生态环境监测中心。进样体积为 10.0 µl 时,丙烯酰胺方法检出限为 0.02 μg/L,测定下限为0.08 μg/L。编制组主要成员:王 超、王 静、周菁清、陈烨、袁懋、刘铮铮三、地表水水质自动监测站选址与基础设施建设技术要求本标准规定了地表水水质自动监测站选址、站房与采水单元等基础设施建设和验收等技术要求。本标准是对《地表水自动监测技术规范(试行)》(HJ 915—2017)中地表水水质自动监测站站址选择、站房建设与采水单元建设部分的修订,本次为第一次修订。主要修订内容如下:——完善了地表水水质自动监测站选址的相关内容;——细化了地表水水质自动监测站站房建设的要求,增加了站房给排水、暖通、供电、通讯、安防等方面的具体要求;——细化了地表水水质自动监测站采水单元建设的要求。自本标准实施之日起,《地表水自动监测技术规范(试行)》(HJ 915—2017)中地表水水质自动监测站站址选择、站房建设与采水单元建设部分废止。本标准主要起草单位:中国环境监测总站、辽宁省生态环境监测中心、天津市生态环境监测中心。标准编制组主要成员:陈鑫、姜明岑、姚志鹏、陈亚男、刘允、李东一、杨凯、铁振平、李延东、李旭冉。四、地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范本标准明确了地表水水质自动监测站设备安装、系统调试、试运行、验收、档案与记录等技术要求。本标准部分内容是对《地表水自动监测技术规范(试行)》(HJ 915—2017)地表水水质自动监测站各单元建设和验收部分的内容的修订。本次为第 1 次修订,修订的主要内容如下:——增加设备安装技术要求;——增加系统调试技术要求;——增加试运行技术要求;——修订了仪器设备验收要求。自本标准实施之日起,《地表水自动监测技术规范(试行)》(HJ 915—2017)有关地表水水质自动监测站各单元建设和验收部分的内容废止。本标准主要起草单位:中国环境监测总站、重庆市生态环境监测中心、河南省生态环境监测中心。本标准适用于标准型和简易型地表水水质自动监测站的安装、调试、试运行及验收。适用的水质自动监测仪器为水温、pH、溶解氧、电导率、浊度、高锰酸盐指数(CODMn)、氨氮(NH3-N)、总磷(TP)、总氮(TN)等水质自动监测仪器,其他监测项目的水质自动监测仪器可参照本标准安装验收。标准编制组主要成员:刘 允、姚志鹏、陈亚男、姜明岑、李东一、李晓明、陈文鹏、刘喜惠、邓 力、王潇磊。五、地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范本标准规定了地表水水质自动监测站检查维护、运行质量控制、异常情况处置和运行记录等技术要求。本标准是对《地表水自动监测技术规范(试行)》(HJ 915—2017)地表水水质自动监测站运行维护、质量保证与质量控制等部分内容的修订,本次为第一次修订。修订的主要内容如下:——调整了地表水水质自动监测站质量保证与质量控制的要求,增加了期间标样核查等质量控制措施及要求;——删除了数据平台日常管理的要求;——调整了远程维护、现场维护的要求,增加了数据异常处置、人工测试等异常情况处置的要求;——调整了运维档案与运维记录要求。自本标准实施之日起,《地表水自动监测技术规范(试行)》(HJ 915—2017)有关地表水水质自动监测站运行维护、质量保证与质量控制要求等部分废止。本标准起草单位:中国环境监测总站、江苏省常州环境监测中心、河南省济源生态环境监测中心、杭州市环境监测中心站。本标准适用于水站检查维护、运行质量保证和质量控制等工作,适用的水质自动监测仪器为水温、pH、溶解氧、电导率、浊度、高锰酸盐指数(CODMn)、氨氮(NH3-N)、总磷(TP)、总氮(TN)等水质自动监测仪器,其他监测项目的水质自动监测仪器可参照本标准开展运行维护工作。标准编制组主要成员:陈亚男、姚志鹏、刘允、王延军、陈鑫、杨凯、王亮、申田田、何纪平、李旭冉。六、地表水自动监测系统通信协议技术要求本标准规定了地表水水质自动监测系统数据传输的系统结构、协议层次和协议内容等技术要求。本标准为首次发布。本标准主要起草单位:中国环境监测总站、江苏省常州环境监测中心、生态环境部环境工程评估中心、辽宁省生态环境监测中心。本标准适用于地表水水质自动监测站与地表水水质自动监管平台之间的数据传输,新建或升级改造的地表水水质自动监测系统的数据传输应满足本标准要求。编制组主要成员:姚志鹏、王延军、陈亚男、刘允、崔莉妍潘 晨、赵 菲、谢 轶、陈文鹏、罗忠福。附件:1、水质 硝酸盐氮的测定 气相分子吸收光谱法(征求意见稿).pdf2、《水质 硝酸盐氮的测定 气相分子吸收光谱法(征求意见稿)》编制说明.pdf3、水质 丙烯酰胺的测定 高效液相色谱-三重四极杆质谱法(征求意见稿).pdf4、《水质 丙烯酰胺的测定 高效液相色谱-三重四极杆质谱法(征求意见稿)》编制说明.pdf5、地表水水质自动监测站选址与基础设施建设技术要求(征求意见稿).pdf6、《地表水水质自动监测站选址与基础设施建设技术要求(征求意见稿)》编制说明.pdf7、地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范(征求意见稿).pdf8、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)安装验收技术规范(征求意见稿)》编制说明.pdf9、地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范(征求意见稿).pdf10、《地表水水质自动监测站(常规五参数、CODMn、NH3-N、TP、TN)运行维护技术规范(征求意见稿)》编制说明.pdf11、地表水自动监测系统通信协议技术要求(征求意见稿).pdf12、《地表水自动监测系统通信协议技术要求(征求意见稿)》编制说明.pdf
  • 质谱成像技术概念及质谱成像方法介绍
    p   现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。 /p p   因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。 /p p   质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: /p p style=" text-align: center " img title=" 9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg" / /p p   简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。 /p p   最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。 /p p   正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。” /p p   这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。 /p p    strong I. 挑战高分子量蛋白——MALDI质谱分子成像技术 /strong /p p   在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。 /p p   来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。 /p p   MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。 /p p   通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。 /p p    strong Ⅱ. 无需样品处理 实时成像——电喷雾电离技术 /strong /p p   一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。 /p p   一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。 /p p   这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。 /p p   DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。 /p p    strong Ⅲ. 活体成像——APIR MALDI/LAESI技术 /strong /p p   了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。 /p p   来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。 /p p   实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。 /p p   因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。 /p p   为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。 /p p   与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。 /p p    strong Ⅳ. 3D成像——二次离子质谱技术 /strong /p p   质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。 /p p   但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。 /p p   SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。 /p p   这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。 /p p   Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。 /p p   C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。 /p p   这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。 /p p   strong  Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术 /strong /p p   质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。 /p p   来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 /p p   NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 /p p   通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 /p p   由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。 /p p & nbsp /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制