当前位置: 仪器信息网 > 行业主题 > >

色谱期间核查方法

仪器信息网色谱期间核查方法专题为您提供2024年最新色谱期间核查方法价格报价、厂家品牌的相关信息, 包括色谱期间核查方法参数、型号等,不管是国产,还是进口品牌的色谱期间核查方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱期间核查方法相关的耗材配件、试剂标物,还有色谱期间核查方法相关的最新资讯、资料,以及色谱期间核查方法相关的解决方案。

色谱期间核查方法相关的资讯

  • 哪几类检测仪器要做期间核查?
    实验室一般对仪器进行定期检定或校准,以保证其量值的溯源性,并加以必要的维护和保养,以保证设备的有效性和可靠性。因此,大多数实验室认为,只要对仪器进行了定期检定或校准,仪器就是可靠的,出具的数据就是有效的,使得仪器的期间核查成为实验室最易忽视也最不重视的环节。期间核查如何定义?期间核查(intermediatechecks)是指为保持对设备校准状态的可信度,在两次检定之间进行的核查,包括设备的期间核查和参考标准器的期间核查,二者合起来本质上相当于ISO/IEC导则25(1990)中的运行检查。这种核查应按规定的程序进行。通过期间核查可以增强实验室的信心,保证检测数据的准确可靠。为什么要进行期间核查实际上,使用频率高、易损坏、性能不稳定的仪器在使用一段时间后,由于操作方法,环境条件(电磁干扰、辐射、灰邕、温度、湿度、供电、声级),以及移动、震动、样品和试剂溶液污染等因素的影响,并不能保证检定或校准状态的持续可信度。因此,实验室应对这些仪器进行期间核查。几个例子1.比如分析天平是实验室称取物质质量的常用仪器,使用频率最高,容易受到被称量物质的污染,过载、使用不当还会造成刀口损坏,影响天平的灵敏度和准确度。2.又如,分光光度计对光波长的要求很高,在叶绿素的测定中波长偏差1-2nml~p可造成叶绿素b浓度测定结果10-20%左右的相对误差。此外,仪器的信噪比、单色光带宽、杂色光强度和样品室、比色皿的污染等都可能影响仪器的灵敏度和准确度。除了在开机前和关机后检查仪器外,对重要的检测设备在两次周期检定(校准)之间需进行期间核查。最终使其满足监测工作要求,保证监测结果的质量。了解仪器的精度、准确度和灵敏度是否有变化,也对从上次检定到本次核查期间所做的工作作一结论,如以后仪器再发生问题,无需核查本次核查前的结果。核查原因期间核查通常在下述情况下进行:(1)按照年核查次数进行;(2)仪器设备导出数据异常;(3)仪器设备故障维修或改装后;(4)常期脱离实验室控制的仪器设备在恢复使用前(如外界);(5)仪器设备经过运输和搬迁;(6)使用在中心控制范围以外的仪器设备。核查内容核查内容一般为:(1)仪器设备的基本漂移、本底水平、信噪比、零点稳定度检测;(2)光学仪器设备的波长重现性和灵敏度检测;(3)采用有证标准物质,对仪器设备进行准确度和精密度的检测;也可将以前做过的工作再做一次(留样再测)、使用标准样再测(作质控图)。(4)制作测量工作校准曲线,根据线性回归方程,获得修正因子,确认仪器设备的检测范围和检出限量。期间核查的方法分类开展“期间核查”的方法是多样的,基本上以等精度核查的方式进行,如仪器间的比对、方法比对、标准物质验证、加标回收、单点自校等都是可以采用的。更多的期间核查是通过核查标准来实现.所谓核查标准是指用来代表被测对象的一种相对稳定的仪器、产品或其他物体。它的量限、准确度等级都应接近于被测对象,而它的稳定性要比实际的被测对象好。核查标准本身也应进行校准和确认。①使用标准物质核查。标准物质包括各种标准样品、实物标准。使用标准物质核查时应注意所用的标准物质的量值能够溯源、在有效期内。如pH计、离子计、电导率仪等采用定值溶液进行核查,气体检测仪采用标准气体进行核查,气体采样器采用标准流量计等。使用标准物质核查时应注意所用的标准物质的量值能够溯源,并且有效。②使用仪器附带设备核查。有些仪器自带校准设备,有的还带有自动校准系统,可以用来核查。如电子天平往往自带一个校准砝码。③参加实验室间比对。④与相同准确度等级的另一设备或几个设备的量值进行比较。⑤对保留样品量值重新测量:保留的样品性能(测试的量值)稳定,也可以用来作为期间核查的核查标准。⑥在资源允许的情况下,采用高等级的仪器设备进行核查。核查结果期间检查情况应记录并归档。期间检查中发现设备运行有问题时,应停用报修。对运行有问题的设备所涉及检测结果有效性有影响时,应对检测项目进行重新检测。基本要求:(1)使用标准物质和标准样品进行测定,误差应不超过允许差值的2/3。(2)对适宜保留的样品进行再检验,比较检验结果,偏差应不超过相关检测方法标准规定的平行允差的1.5倍。(3)与其它实验室进行比对实验。偏差应不超过检测方法标准规定的平行允差的2倍。是不是全部仪器都要做?不是所有的设备都需要进行期问核查。通常来讲,期间核查的对象主要是新购设备,使用频次高的和使用环境恶劣的检测设备;主要或重要检测设备;不够稳定、易漂移、易老化且使用频繁的检测设备;经常携带到现场检验、校验的设备;运行过程中有可疑现象发生的检验、校验设备;选择对关键参量的检测质量影响较大的检测设备。期间核查主要是核查测量仪器、测量标准或标准物质的系统漂移,即其长期稳定性。必须具备相应的核查标准和实施条件的,对无法寻找核查标准(物质)的不进行期间核查。期间核查可以提高监测质量的可靠性,降低出错的风险,但不能完全排除风险。期间核查的实施以及实施频次应结合监测机构自身的特点寻求成本和风险的平衡点。对于采用相对测量方法的仪器,一般不必进行期间核查。包括:可见分光光度计、红外分光光度计、紫外分光光度计、原子吸收分光光度计、等离子发射光谱仪、色谱类仪器等。应针对具体的设备或计量标准的各自特点,从经济性、实用性、可靠性、可行性等方面综合考虑相应的期间方法。使用技术手段进行期间核查的方法。期间核查重点关注的10类仪器设备仪器设备的期间核查并不是每一个都要做,有些仪器并不需要做期间核查,下面这十类设备需要在做期间核查的时候重点关注:1.对测量结果有重要影响的(比如在用液相色谱测醛类物质含量,液相色谱需要期间核查);2.检定或校准周期较长(比如校准和检定周期超过两年的设备);3.频繁使用的(比如一把卡尺每天使用的次数非常多);4.容易损坏的仪器设备;5.性能不稳定的仪器设备;6.检测数据有争议、易漂移的仪器设备;7.易老化的仪器设备;8.经常带到现场使用的仪器设备;9.贵重的仪器设备(比如ICP-MS);10.仪器设备的使用环境较为恶劣,导致了仪器设备的性能可能发生改变的。实验室应针对具体的仪器进行分析研究,掌握仪器分析原理和性能特性以及可能影响检验结果准确性和稳定性的因素,确定需要进行期间核查的仪器名称,编制相应的期间核查方法。仪器的期间核查并不等于检定周期内的再次检定,而是核查仪器的稳定性、分辨率、灵敏度等指标是否持续符合仪器本身的检测/校准工作的技术要求。针对不同仪器的特性,可使用不同的核查方法,如仪器间比对、方法间比对、标准物质验证、添加回收标准物质等。条件允许时,也可以按检定规程进行自校。期间核查的时间间隔一般以在仪器的检定或校准周期内进行一二次为宜。对于使用频率比较高的仪器,应增加核查的次数。来源:实验与分析微信
  • 安谱实验成功举办标准品期间核查培训
    2016年8月,上海安谱实验科技股份有限公司成功举办了标准品期间核查培训,本次培训为安谱公司首次举办的收费培训,到场听众有接近200位。为了保障培训效果,安谱公司将报名客户分为两场进行。在会后的客户采访中,听众一致的评价是培训内容很实用,很接地气,有别于以往参加的产品推介会,培训更专注于技术,实操注意事项,经验的分享,同时培训现场人数的控制,确实对培训效果有很好的帮助,给听众带来了更好的体验。回顾安谱的发展之路,核心是“以客户为中心”,而标准品产品线是以客户为中心的思想的杰出体现:客户需要什么?我们能提供什么?怎样对客户最有帮助?我们一直在思考这些问题,也一直朝着这个方向发展。从提供常规的标准品到定制服务,从简单咨询到专业培训,依靠这个秘诀十年间安谱标准品销售额从1千万增长到了1个亿。现在,安谱的标准品产品线每年服务于8000多个客户,涉及60多个品牌,销售数量超过20万瓶。在工作中,我们的销售团队和技术服务团队遇到最多的问题,就是标准品开启之后的有效期。而供应商COA所保证的是未启用的产品有效期,在启用之后,由于用户使用的具体情况各异,厂家无法提供任何数据和保证,所以用户需要对自己所使用标准品的使用期限进行确认,这就需要期间核查。然而,实验室的标准品众多,针对具体的标准品,期间核查往往缺乏明确、具体和操作性强的方法,实验室不知如何着手进行,所以安谱就在思考怎样才能帮助用户寻求具体的期间核查方法以期实验室能更加科学、合理、简单、方便地开展这项工作,实实在在地降低实验室的时间和经济成本,同时能够控制住实验室因标准品性质变化而带来的风险。为此,公司的培训团队专门请教了郑吉园老师,郑老师作为资深的CNAS评审专家,在业内为大家所熟悉和尊敬。这次能够请到郑老师在百忙之中,给安谱的客户带来他对标准品期间核查的见解、运用和经验的分享,我们要向郑老师表示衷心地感谢,也希望安谱作为桥梁,通过策划和组织能为用户带来切实的帮助,解决实验室的一大难题!未来,安谱也在规划对于期间核查的解决方案,除了常规的期间核查,安谱将推出小包装附有准确重量的产品,客户可一次性使用,省去准确称量的步骤,减少开瓶后储存和核查的繁琐工作;还会为用户提供标准曲线的套装标液,解决用户称量、配置、稀释过程中不确定度引入,而带来不必要的实验误差的问题;另外,安谱也在谋划期间核查数据共享平台的运营,以达到不同实验室避免做相同期间核查的效果,也就是说,安谱将作为一个纽带和平台,实现期间核查数据的共享,为客户提供专业,全面,准确的使用期监测报告,降低客户期间核查的工作量,为用户创造产品以外更有意义的附加价值。总而言之,在这个发展快速、日新月异的行业,安谱能为客户提供的不仅仅是传统意义上的产品,安谱将在整个供应链中,为客户提供更多的助力,除了稳定优质的产品,更有高效专业的服务,行业一流的客户体验,前沿实用的技术信息,成为客户成长过程中的伙伴!
  • 阻容法含湿量检测器“期间核查”该如何做?
    由上海市环境科学学会组织、上海市环境监测中心牵头制定、青岛崂应环境科技有限公司参与起草的《固定污染源废气 湿度的测定 阻容法》团体标准(t/ssesb 1-2020)于2020年9月22日正式发布,自2020年10月1日起正式实施。 标准第12条“质量保证和质量控制”中提出了“定期对仪器进行期间核查,检查结果应满足7.2要求”引起了客户的广泛关注。(“期间核查”即“使用期间的核查工作”之简称,下同。) 随着标准的实施,“期间核查要如何做?”、“期间核查内容有哪些?”、“期间核查报告哪里可以出具?”等一系列问题接踵而来。今天小编就带大家了解一下阻容法含湿量检测器“期间核查”到底是个啥?1、期间核查内容 标准中要求的期间核查内容主要包括:零点核查、响应时间、多点示值误差核查。标准详情如下图: 期间核查完成后要如实填写《仪器期间核查记录》,详情如下: *表格内容摘自《固定污染源废气 湿度的测定 阻容法》团体标准(t/ssesb 1-2020) “期间核查”的目的是为了保证含湿量检测器在两次校准或检定之间的时间间隔内保持测量仪器校准状态的可信度。有条件的企业可以根据使用频次定期进行自检并记录,也可以委托计量院或可出具报告的生产厂家(如崂应)等外部机构进行期间核查,注意留存“期间核查记录”。2、崂应服务说明 为了更好地服务广大客户,为崂应客户提供便利,崂应贴心推出“含湿量检测器期间核查服务”,并可出具《期间核查记录》,如有需要请在《返厂登记表》中注明“要做含湿量期间核查”,资费详情请咨询所在区域销售经理。 另外,崂应所做“期间核查”多点示值误差,默认测定标准湿度为4%、15%和25%,如有特殊需求也请在《返厂登记表》中注明。崂应现有3款阻容法含湿量检测器且都支持期间核查,分别是: 受产品电路、软件等影响,部分产品需要进行升级后才能进行期间核查,升级内容如下:①软件v1.13及之前版本的“崂应1062a型 阻容法烟气含湿量检测器”需要进行硬件升级,软件v1.13之后版本的只需将程序升级至当前发布最新版本程序即可。②崂应1062a型 阻容法烟气含湿量检测器(20款)及崂应1062b型 阻容法烟气含湿量多功能检测器,只需将程序升级至当前发布最新版本程序即可。硬件升级可能会产生费用,详情请咨询所在区域销售经理。
  • 山西省认证认可协会发布 《 PH(酸度)计期间核查规程》等四项团体标准
    按照《山西省认证认可协会团体标准管理办法》规定, 经山西省认证认可协会团体标准审评委员会 2023年8月3 日会议审定,现批准发布 4 项团体标准, 其标准名称和标准号如下:1.《PH(酸度)计期间核查规程》(T/SXCAA 028-2023)2.《电导率仪期间核查规程》(T/SXCAA029-2023)3.《柴油十六烧值测定机核查规程标准物质法》(T/SXCAA 030-2023)4.《汽油研究法辛烧值测定机核查规程标准物质法》 CT/SXCAA 031-2023)以上标准于 2023年9月1 日起施行山西省认证认可协会2023年8月21日山西省认证认可协会关于发布 《 PH(酸度)计期间核查规程》等四项团体标准的公告.pdf
  • 河北发布《固定污染源挥发性有机物核查与监测 技术指南》
    作为PM2.5和O3的主要前体物质,VOCs的减排与控制成为当前阶段我国大气污染治理的重中之重,VOCs治理工作当前进入精细化深入治理的关键阶段,国家和河北省将挥发性有机物排放作为重点污染防治和监控监测对象。目前,已发布实施的国家固定污染源排放与控制相关标准中含挥发性有机物含量限量标准共85项,其中涉挥发性有机排放与控制的标准为43项,占总标准数量51%。目前,针对固定污染源挥发性有机物排放的管理、控制、监测和标准、技术规范不断完善提高,但是,现有国家及地方对固定污染源挥发性有机物排放的监督管理,还没有贯通对涉及VOCs排放控制的现有固定污染源的VOCs排放控制管理,制订《固定污染源挥发性有机物排放核查与监测技术规范》是国家相关技术规范与标准的补充、完善和具体化,是对固定污染源挥发性有机物排放核查与监测具体实施的规范。近日,河北省地方标准《固定污染源挥发性有机物核查与监测 技术指南》发布,该标准由河北省生态环境厅提出并归口,起草单位为河北省生态环境监测中心、河北上善若水智慧水务有限公司和河北华测检测服务有限公司。该标准于2022年3月31正式实施。标准规定了固定污染源挥发性有机物(VOCs)核查与监测的基本要求、工作阶段、工作准备、 具体要求及方法,以及核查与监测报告的要求。适用于固定污染源VOCs排放控制管理。在附件A中对各类固定污染源挥发性有机物的监测方法进行了总结,涉及气相色谱法、高效液相色谱法、离子色谱法、气/液相质谱法和分光光度法等监测方法。标准中挥发性有机物的监测方法标准如下:—— GB/T 3186 色漆、清漆和色漆与清漆用原材料 取样—— GB/T 8017 石油产品蒸气压的测定 雷德法—— GB/T 14676 空气质量 三甲胺的测定 气相色谱法—— GB/T 14678 空气质量 硫化氢 甲硫醇甲硫醚 二甲二硫的测定 气相色谱法—— GB/T 15432 环境空气 总悬浮颗粒物的测定 重量法—— GB/T 15439 环境空气 苯并(a)芘的测定 高效液相色谱法—— GB/T 15501 空气质量 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺 分光光度法—— GB/T 15502 空气质量 苯胺类的测定 盐酸萘乙二胺分光光度法 —— GB/T 15516 空气质量 甲醛的测定 乙酰丙酮分光光度法—— GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法—— GB/T 23984 色漆和清漆.低 VOC 乳胶漆中挥发性有机化合物(罐内 VOC)含量的测定—— GB/T 23985 色漆和清漆.挥发性有机化合物(VOC)含量的测定.差值法—— GB/T 23986 色漆和清漆.挥发性有机化合物(VOC)含量的测定.气相色谱法—— GB/T 34675 辐射固化涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 34682 含有活性稀释剂的涂料中挥发性有机化合物(VOC)含量的测定—— GB/T 37884 涂料中挥发性有机化合物(VOC)释放量的测定—— GB/T 38608 油墨中可挥发性有机化合物(VOCs)含量的测定方法—— GBZ/T 160.62 工作场所空气有毒物质测定 酰胺类化合物—— HJ/T 28 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法—— HJ/T 31 固定污染源排气中光气的测定 苯胺紫外分光光度法—— HJ/T 32 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法—— HJ/T 33 固定污染源排气中甲醇的测定 气相色谱法—— HJ/T 34 固定污染源排气中氯乙烯的测定 气相色谱法—— HJ/T 35 固定污染源排气中乙醛的测定 气相色谱法—— HJ/T 36 固定污染源排气中丙烯醛的测定 气相色谱法—— HJ/T 37 固定污染源排气中丙烯腈的测定 气相色谱法—— HJ 38 固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法—— HJ/T 39 固定污染源排气中氯苯类的测定 气相色谱法—— HJ/T 40 固定污染源排气中苯并(a)芘的测定 高效液相色谱法—— HJ/T 66 大气固定污染源 氯苯类化合物的测定 气相色谱法—— HJ/T 68 大气固定污染源 苯胺类的测定 气相色谱法—— HJ 77.2 环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法—— HJ 583 环境空气 苯系物的测定 固体吸附/热脱附-气相色谱法—— HJ 584 环境空气 苯系物的测定活性炭吸附/二硫化碳解析-气相色谱法——HJ 604 环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法—— HJ 605 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 639 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法—— HJ 642 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 643 工业固体废物 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 644 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法—— HJ 645 环境空气 挥发性卤代烃的测定 活性炭吸附-二硫化碳解析/气相色谱法—— HJ 646 环境空气和废气 气相和颗粒物中多环芳烃的测定气相色谱-质谱法—— HJ 647 环境空气和废气 气相和颗粒物中多环芳烃的测定 高效液相色谱法—— HJ 683 环境空气 醛、酮类化合物的测定 高效液相色谱法—— HJ 686 水质 挥发性有机物的测定 吹扫捕集/气相色谱法—— HJ 695 土壤 有机碳的测定 燃烧氧化-非分散红外法—— HJ 703 土壤和沉积物 酚类化合物的测定 气相色谱法—— HJ 713 工业固体废物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 714 工业固体废物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 732 固定污染源废气 挥发性有机物的采样 气袋法—— HJ 734 固定污染源废气 挥发性有机物的测定 固定相吸附-热脱附/气相色谱-质谱法—— HJ 735 土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法—— HJ 736 土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法—— HJ 738 环境空气 硝基苯类化合物的测定 气相色谱法—— HJ 739 环境空气 硝基苯类化合物的测定 气相色谱-质谱法—— HJ 741 土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法—— HJ 742 土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法—— HJ 759 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法—— HJ 760 工业固体废物 挥发性有机物的测定 顶空-气相色谱法—— HJ 784 土壤和沉积物 多环芳烃的测定 高效液相色谱法—— HJ 801 环境空气和废气 酰胺类化合物的测定 液相色谱法 —— HJ 810 水质 挥发性有机物的测定 顶空/气相色谱-质谱法—— HJ 834 土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 912 工业固体废物 有机氯农药的测定 气相色谱-质谱法—— HJ 914 百草枯和杀草快的测定 固相萃取-高效液相色谱法—— HJ 919 环境空气 挥发性有机物的测定 便携式傅里叶红外法—— HJ 950 工业固体废物 多环芳烃的测定 气相色谱-质谱法—— HJ 951 工业固体废物 半挥发性有机物的测定 气相色谱-质谱法—— HJ 975 工业固体废物 苯系统的测定 顶空-气相色谱法—— HJ 976 工业固体废物 苯系统的测定 顶空/气相色谱-质谱法—— HJ 1016 固定污染源废气 挥发性卤代烃的测定 气袋采样-气相色谱法—— HJ 1020 土壤和沉积物 石油烃(C6-C9)的测定 吹扫捕集/气相色谱法—— HJ 1021 土壤和沉积物 石油烃(C10-C40)的测定 气相色谱法—— HJ 1041 固定污染源废气 三甲胺的测定 抑制型离子色谱法—— HJ 1042 环境空气和废气 三甲胺的测定 溶液吸收-顶空/气相色谱法—— HJ 1048 水质 17 种苯胺类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1049 水质 4 种硝基酚类化合物的测定 液相色谱-三重四极杆质谱法—— HJ 1050 水质 氯酸盐、亚氯酸盐、溴酸盐、二氯乙酸和三氯乙酸的测定 离子色谱法 —— HJ 1051 土壤 石油类的测定 红外分光光度法—— HJ 1058 硬质聚氨酯泡沫和组合聚醚中 CFC-12、HCFC-22 CFC-11 和 HCFC-141b等消耗臭氧 层物质的测定 便携式顶空/气相色谱-质谱法—— HJ 1067 水质 苯系物的测定 顶空/气相色谱法—— HJ 1070 水质 15 种氯代除草剂的测定 气相色谱法—— HJ 1072 水质 吡啶的测定 顶空/气相色谱法—— HJ 1073 水质 萘酚的测定 高效液相色谱法—— HJ 1076 环境空气 氨、甲胺、二甲胺和三甲胺的测定 离子色谱法—— HJ 1077 固定污染源废气 油烟和油雾的测定 红外分光光度法—— HJ 1078 固定污染源废气 甲硫醇等 8 种含硫有机化合物的测定 气袋采样-预浓缩/气相色 谱-质谱法—— HJ 1079 固定污染源废气 氯苯类化合物的测定 气相色谱法—— HJ 1153 固定污染源废气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— HJ 1154 环境空气 醛、酮类化合物的测定 溶液吸收-高效液相色谱法—— DB 11/T 1367 固定污染源废气 甲烷/总烃/非甲烷总烃的测定 便携式氢火焰离子化检测器法 点击下载原文:DB13_T5500-2022固定污染源挥发性有机物核查与监测技术指南.pdfDB13_T5500-2022说明.doc
  • 北美华人色谱协会Pittcon期间举办联谊晚宴
    仪器信息网讯 美国亚特兰大,2011年3月15日,北美华人色谱协会(Chinese American Chromatography Association ,CACA)在Pittcon展会期间举办联谊晚宴,在北美从事色谱相关工作的华人科学家、企业家以及部分到美国亚特兰大参加Pittcon展会的中国大陆科学家和企业家约100余人参加了此次联谊会。其中,来美参加Pittcon展会的中国科学院张玉奎院士、陈洪渊院士、江桂斌院士、中国分析测试协会张渝英秘书长、中国计量科学研究院化学计量与分析科学研究所李红梅常务副所长、北京理工大学生命科学与技术学院邓玉林院长也特邀参加了晚宴。联谊晚宴由北美华人色谱协会会长杨彦博博士主持。 宴会现场 北美华人色谱协会(CACA)会长杨彦博博士   据杨彦博博士介绍,随着近几年从事色谱研究的北美华人越来越多,大家强烈要求成立一个组织来加强学术交流,在这样的背景下,北美华人色谱协会(CACA)就诞生了。其目地是促进在北美从事色谱研究和工作的华人在科学研究方面加强联谊、共享和帮助。CACA正式成立的时间是2008年5月12日,也就是在美国马里兰州巴尔的摩港举办的“HPLC 2008”期间成立的。   CACA是一个非营利组织,由在北美从事色谱相关领域研究的杰出科学家和在色谱领域创业的企业家组成;由于协会的会员居住地比较分散,因此选择在HPLC和Pittcon会议同期举办CACA的联谊会。   张玉奎院士介绍了最近几年中国大陆在分析化学方面的一些进展,特别介绍了国家自然科学基金委从“源头创新,基础研究”出发,在科研、人才引进和人才培养方面的政策。最后张玉奎院士介绍了大连化学物理所在科研、人才引进和人才培养方面的采取的一些措施。另外,张玉奎院士对于CACA非常支持,也是协会的发起人之一。 中国科学院张玉奎院士   陈洪渊院士向在座的各位华人介绍了中国大陆在科研方面,如863、973等科研项目的立项过程、开展情况和支持力度等。 中国科学院陈洪渊院士   江桂斌院士、张渝英秘书长、李红梅常务副所长、邓玉林院长也先后发言,他们希望CACA和国内的色谱界加强学术交流,促进国内国外色谱学科和技术的共同发展。 中国科学院江桂斌院士 中国分析测试协会张渝英秘书长 中国计量科学研究院化学计量与分析科学研究所李红梅常务副所长 北京理工大学生命科学与技术学院邓玉林院长     此外,CACA也得到了色谱相关企业的大力资助,这些企业家大多数经历过留学、创业等艰辛的过程,因此对CACA有特别的感情。   此次联谊会上,博纳艾杰尔科技有限公司董事长梁萍女士、迪马科技有限公司副总裁李广庆博士、莱伯泰科有限公司董事长胡克博士、月旭材料科技(上海)有限公司董事长赵岳星博士、Orochem Technologies Company CTO Dr. Anil Oroskar应邀对公司做简要介绍。 博纳艾杰尔科技有限公司董事长梁萍女士 迪马科技有限公司副总裁李广庆博士 莱伯泰科有限公司董事长胡克博士 月旭材料科技(上海)有限公司董事长赵岳星博士 Orochem Technologies Company总裁兼CEO Asha A. 博士, CTO Anil Oroskar博士   宴会最后CACA还邀请迪马科技马国辉董事长为大家分享自己的创业经历和在海外拓展业务经验,博纳艾杰尔科技有限公司总经理汪群杰博士介绍“千人计划”。 迪马科技马国辉董事长 博纳艾杰尔科技有限公司总经理汪群杰博士   CACA的活动通常是选择在HPLC和Pittcon这样国际性的学术会议和展会期间举办,所以这次联谊晚宴也可以称作是色谱领域内的一次小型的世界华人聚会。由于具有相同的文化背景、完全没有语言障碍等原因,CACA和中国大陆色谱界一直保持着密切的联系和广泛的学术交流 这种交流活动对于促进华人色谱界的交流合作、增进友谊、提高华人在世界科研领域中的学术地位起到积极的促进作用。 交流现场   北美华人色谱协会网站:www.ca-ca.org   加入北美华人色谱协会:http://www.linkedin.com/groups?mostPopular=&gid=1857030
  • 公安部一所基于拉曼/离子迁移谱的易制毒化学品核查仪通过验收
    “十二五”国家科技支撑计划“查缉、管控毒品违法犯罪核心技术与装备研究”项目“易制毒化学品运输管控检验技术与装备研究”课题顺利通过验收  2月28日,公安部科技信息化局在北京公安部第一研究所组织专家对“十二五”国家科技支撑计划“查缉、管控毒品违法犯罪核心技术与装备研究”项目“易制毒化学品运输管控检验技术与装备研究”课题进行验收,验收专家组由来自公安部物证鉴定中心、北京理工大学、公安部第三研究所、浙江警察学院、北京工业大学等11名专家组成,浙江大学周建光教授担任组长。公安部科技信息化局、公安部禁毒局和来自内蒙、河南、天津、浙江的一线专家、课题承担单位公安部第一研究所和课题参与单位中科软科技股份有限公司科研、财务审计相关人员共40余人出席了会议。会议现场  课题承担单位公安部第一研究所陈学亮副所长在致辞中对近三年来各位专家从立项开始到立项的研制过程到现在的项目验收,辛勤付出表示感谢,对公安部科技信息化局、公安部禁毒局对项目、对团队的信任、支持和帮助表示感谢,他表示整个课题按照“十二五”国家科技支撑计划的要求,很好的完成课题任务,尤其是课题成果的应用和使用情况,部分超过了课题要求。公安部第一研究所 陈学亮副所长致辞  公安部禁毒局办公室副主任刘铭介绍了当前全国制毒违法犯罪情况,制毒物品非法加工制造注入制毒渠道问题屡禁不止,易制毒化学品非法流向境外制成毒品后贩运回境内的犯罪活动日益猖獗,对此国家禁毒委高度关注,将五省10个县(区)列入制毒物品犯罪警示地区,积极部署开展为期半年的专项打击行动,有效防止易制毒化学品流入非法渠道,破获了一大批制毒物品犯罪案件,缴获易制毒化学品1000余吨。对该课题成果紧扣实战需求,迫切解决基层缺少毒品和易制毒化学品的查缉管控技术和装备表示感谢,他希望课题成果加速推广,更广泛的应用于禁毒实战,早日发挥威力。公安部禁毒局办公室副主任 刘铭讲话  验收专家组听取了公安部第一研究所王青研究员、李彬副研究员对项目执行情况的汇报,观看了课题成果应用视频,与会专家现场观看了本课题研制的基于拉曼光谱技术研发的易制毒化学品核查仪现场演示,审阅了相关技术及财务材料,并经过质询与认真讨论,专家组按照《国家科技支撑计划管理办法》和《“十二五”国家科技支撑计划公安项目验收工作实施细则》的要求,一致通过验收。专家组认为该课题研制了基于陶瓷材料一体化双模式漂移管的离子迁移谱易制毒化学品检测仪器,提出了基于聚类柱状计算法对离子迁移谱峰识别方法,具有原创性。融合了自主开发的现场拉曼光谱∕离子迁移谱分析检测技术、隐形矩阵复合码防伪技术和信息管理平台技术,实现了易制毒化学品人、车、物、证全方位的精准管控与轨迹溯源,创新了易制毒化学品管控综合管理模式。课题成果已转化为产品,在国内外获得推广应用,为打击毒品、易制毒化学品违法犯罪发挥了重要作用。中科软科技股份有限公司科研人员现场演示易制毒化学品核查仪使用情况  据了解,该课题旨在通过易制毒化学品现场快速查验、电子证书机读防伪识别等多项技术研究,研制开发易制毒化学品的轨迹综合查验设备与运输查询管控平台,实现对易制毒化学品的现场检验与化学成份分析、对易制毒化学品的携带排查与整车排查以及进行易制毒化学品电子证书信息与实物、车辆的比对。该课题研究成果将有效解决易制毒化学品在申报、运输、使用中与实际情况不符而无法查验的问题,有效杜绝易制毒化学品在运输、使用过程中被掉包或非法流失等问题。同时轨迹综合查验设备与物联网应用技术的结合还可实现对易制毒化学品轨迹的实时查询与监管,并建立易制毒化学品轨迹综合信息的获取与管控查询平台。基于该智能平台可实现对企业生产、销售、购买、运输、使用、仓储、进口、出口等环节的有效监督管理,除此之外,还可实现各类许可、备案等办理流程的自动化,对易制毒化学品的流向动态进行历史记录和监督管控。从而有效遏制易制毒化学品流入非法渠道。  据悉,该课题成果检测仪器可以检测种类包括20种易制毒化学品及15种毒品,对易制毒化学品电子证书的检测时间小于3秒,对易制毒化学品检测时间小于10秒,已经在江苏、甘肃、河南和内蒙古自治区等多个省份示范应用,在网企业19700家,共办理购买许可证620000张,运输证300000张,培训公安民警2600余人,培训企业22000余家,全面提升了应用省份易制毒化学品管理工作的制度化、规范化和信息化水平,在有效监管的同时也提高了企业和单位的办事效率,有效遏制了易制毒化学品非法流失。
  • 最强实用攻略 | 方法开发时,如何选择 C18 色谱柱?
    在色谱方法开发过程中,分离度、柱效、峰形是考察色谱柱选择性是否合适的主要性能指标。方法开发中的分离度根据分离度(Rs)公式,分离度的影响因素主要有柱效(N)、选择性(α)和保留因子(或称容量因子,k):(公式 1)公式1作为分离度改善的理论基础。通常,方法开发过程中,通过提高化合物保留 (k)、提高柱效 (N)、以及提升选择性 (α) 来达到分离度的改善。选择性因子(α):(公式 2)式中 k1 和 k2 分别是第一个峰和第二个峰的保留因子。根据公式 1 和公式 2,当选择性因子提高 0.1 时,对分离度的贡献是 Rs 大约为原来的 1.8 倍。因此选择性的改变对分离度的改善效果显著,如图 1 所示。图 1. 分离度与柱效、选择性、保留因子的关系与选择性有关的因素:固定相:选择不同化学修饰的键合相(不同的 C18 柱或其它键合类型色谱柱)流动相:调整有机相的类型、pH 值、盐浓度、两相比例等柱温方法开发中的色谱柱选择在色谱固定相的选择和使用中,最常用的键合相类型是十八烷基硅烷键合硅胶(C18)。不过,由于固定相物理特性与化学修饰的差异,使得不同的 C18 选择性不尽相同。选择色谱柱时,如果一种类型的 C18 柱分离度不足,就可以选择与之选择性差异较大的 C18 柱来进行优化。以 Agilent InfinityLab Poroshell 系列中的 C18 液相色谱柱为例:Poroshell 120 EC-C18 为封端的碳十八固定相,对酸性、碱性、中性化合物都有良好的选择性,已经成为方法开发的首选,也是在 Agilent 1260 Infinity II 四元泵液相色谱系统中标配的色谱柱。与 EC-C18 柱不同,Poroshell 120 SB-C18 柱却是不封端的碳十八固定相。由于裸漏的硅醇基存在,可与待分离物发生氢键、离子间作用等,因此 SB-C18 的选择性与封端的 C18 柱存在显著差异。可以利用这个特点,在方法开发时 SB-C18 和 EC-C18 通常可以作为方法开发的起始色谱柱。另外,SB 的全称是 StableBond,顾名思义意为“稳定的键合相”,这里说的稳定,主要是在C18硅烷长链的两侧采用异丁基进行立体的保护,使得 SB-C18 在低 pH 下有较好的耐受性能。同样采用 Poroshell 120 的硅胶,HPH-C18 与 EC-C18 和 SB-C18 又有所不同。在进行键合之前,在 Poroshell 硅胶的表面多孔层,先进行了有机杂化处理,再进行 C18 键合和封端修饰,得到的 HPH-C18 色谱柱具有了高 pH 耐受的特点。因此,表面化学结构的差异,三种常用的 Poroshell C18 柱,在选择性上具有显著区别。表 1 列出了以 EC-C18 为基准,HPH-C18 与 SB-C18 的相似度因子 Fs。当 Fs 因子大于 3.0 时,固定相选择性存在差异。表 1. 三种固定相选择性差异比较(以 EC-C18 为基准)问渠哪得清如许,为有源头活水来,新产品 Poroshell CS-C18 上市!Poroshell 色谱系列在色谱分析行业已经得到了广泛的认可,安捷伦也一直在拓展 Poroshell 系列色谱柱的产品线。2020 年 11 月,安捷伦推出了新产品 Poroshell CS-C18 柱,进一步拓展了 C18 固定相的类型。该固定相是在 Poroshell实心核颗粒的表面多孔层在进行高 pH 耐受的杂化处理之后,再进行 C18 键合、封端和正电荷修饰,其中使用的键合相还进行了侧立基的保护。这样 CS-C18 固定相的表面,不仅具有 C18 提供的疏水作用、而且还具有正电荷的离子作用,选择性也与其它的 C18 键合相有显著差异。同时,硅烷链侧立基保护、多孔硅胶表面杂化处理,使得固定相pH耐受范围得到了拓宽。在 Poroshell C18 的四种 C18 键合相中,涵盖了 RPLC 模式下的主要作用力,选择性彼此之间有显著差异,见图 2。利用这些固定相的选择性差异,可以方便地进行方法开发中的色谱柱选择。图 2. Poroshell 的 4种 C18 固定相应用实例碱性条件下选择性差异在 pH=10 的体系下,耐碱的 CS-C18 与 HPH-C18 选择性存在显著差异。图 3. 农药组分在碱性体系下 LC-MSMS 色谱图结果比较酸性条件下选择性差异在酸性体系下,不同 Poroshell C18 柱的保留、分离度有显著差异。图片图 4. 阿片类药物在酸性体系下 HPLC 分析色谱图比较峰形及载样量比较在酸性体系下,在碱性药物阿米替林的杂质分析时,采用 CS-C18 与传统封端的 C18 柱进行比较,CS-C18 柱对碱性组分具有更好的峰形、载样量和分离度。图 5. 不同色谱柱对阿米替林及杂质(0.25%)不同进样量分析结果比较酸性体系下 LC/MS 灵敏度比较在甲酸体系下,在进行液质联用分析时,CS-C18 柱提供可更好的灵敏度、响应和峰形。图 6. 甲酸体系中低浓度标样(50ng/ml) 在 LC/MS/MS 中灵敏度比较安捷伦 &bull 618618 活动期间2024 年 6 月 3 日 ~ 30 日Agilent Poroshell 120 2.7um 全线 6 折!参考文献:1. L. R. SNYDER , J. J.KIRKLAND, J. W. DOLAN. Introduction to Modern Liquid Chromatography, ThirdEdition.2. 液相色谱手册-液相色谱柱与方法开发指南. 安捷伦科技.5990-7595CHCN3. Agilent InfinityLabPoroshell 120 CS-C18 助您将 pH 值用作方法开发工具. 安捷伦科技. 5994-2274ZHCN4. 使用 Agilent InfinityLab Poroshell 120 CS-C18 色谱柱改善碱性分析物的峰形. 安捷伦科技. 5994-2094ZHCN
  • 第十七届全国色谱学术报告会及仪器展览会 第一轮通知
    会议主办单位: 中国化学会色谱专业委员会 中国色谱学会 会议承办单位: 中国科学院大连化学物理研究所 会议协办单位: 湖南省精密仪器测试学会色谱专业委员会 一、会议日期、地点 第十七届全国色谱学术报告会及仪器展览会定于2009年4月19-21日在湖南长沙枫林宾馆举行。 二、会议介绍 会议内容包括:大会特邀报告、分会邀请报告、专题报告与讨论、论文墙报展讲。会议 期间还将组织相关仪器及其配件展示。 本次会议将是全国色谱工作者二年一度的又一盛会,预计与会代表 600 人左右,并将邀请多位院士和部分国际著名学者与会作大会特邀报告。本次盛会将为广大色谱工作者以及从事色谱仪器设计与制造的厂商提供相互交流和展示的平台。欢迎广大科技工作者积极参加,踊跃投稿。欢迎相关公司、企业利用此次契机,扩大影响,参与会展。 三、会议重要日期 2009年 1月31 日 提前注册及论文摘要投稿截止 2009年 2月30 日 第二轮通知(论文录用通知及安排) 2009年 3月31 日 第三轮会议通知(会议详细安排) 2009年 4月18 日 会议报到 2009年 4月19 日-21 日 会期 四、征文范围 本次会议将集中交流我国在气相色谱、液相色谱、毛细管电泳等色谱及其相关技术分离分析领域的研究、开发成就,包括多维色谱技术、色谱质谱联用技术、微流控芯片等相关的基础、仪器、方法等: 1、色谱基础 包括新固定相;新检测方法;样品制备;联用技术;多维分离;芯片实验室;分离机制;制备色谱;快速和超快分离;手性分离;电驱动分离;小型化、微型化色谱;痕量分析;自动化;化学计量学。 2、色谱应用 包括基因组学/蛋白组学;代谢组学;药物代谢;生命科学、生物分析; 生物技术工业中的分离科学;HPLC 柱表征;环境和有毒物分析;生物医学和药物应用;天然产物和食品分析;石油和工业应用;单细胞分析中的应用。 凡在上述领域的基础研究、新方法新技术发展、分析应用、仪器及其部件研制等方面水平较高的论文均可应征。 五、应征论文格式要求 论文要求:内容简明扼要,能反映工作特色,含图表和参考文献不超过两页的论文详细摘要。 页面:A4 标准(宽:21厘米,长:29.7 厘米)。 页面设置:左右上下各留空白 2.5 厘米。 论文题目:三号黑体,居中。作者名:小四号仿宋,居中。单位名、市名、邮编、E-mail 地址:五号宋体,加圆括号,居中,下空一行。关键词(五号宋体,自版芯左起顶格),正文(小标题 小四号黑体;内容 五号宋体,行距固定值 16 磅)、主要参考文献(小五号宋体,自版芯左起顶格)。 请参照摘要模板(网站 http://www.402.dicp.ac.cn/new/17th.htm可下载)。 征文摘要电子版请按格式要求排版后发送至 sepu_17th@sina.com,并务必在邮件主题上写明“第十七次色谱会征文_ Poster” 或“第十七次色谱会征文_口头”字样。并同时在邮件中写明投稿者联系方式(电话,传真,email 及详细邮寄地址) ,方便接收后续通知。 论文征集截稿日期:2009 年1 月31日 六、展览会介绍: 与报告会同期举行的仪器展览会,旨在展出当今世界各著名分析仪器厂商近年来研制、生产的新型分析仪器、生命科学仪器、环保分析仪器、实验室仪器、食品分析仪器、化学试剂等,同时可举办仪器发展论坛、技术讲座和贸易洽谈活动。本次盛会将为广大色谱工作者以及从事色谱仪器设计与制造的厂商提供一个信息流通、产品与技术展示、贸易洽谈的平台。 展会地点:湖南长沙枫林宾馆 展会日程: 布展日期:2009 年4 月18 日 下午 14点至晚上 22点 正式展出:2009 年4 月19 日 — 4 月21 日 撤展日期:2009 年4 月21 日下午 欢迎如下内容参展: 1、新型分析仪器、生命科学仪器、环保分析仪器、实验室仪器、食品分析仪器及配件; 2、化学试剂; 3、化学学术期刊与书籍; 参展事宜: 1、参展人员一律以正式代表出席会议(缴纳会议注册费,享受正式代表待遇。每一单独租用展台的公司可免除 1 人注册费) ,食宿可由会议统一安排(也可自行安排) ,费用自理。 2、展位费用等更多信息将公布在会议网站 http://www.402.dicp.ac.cn/new/17th.htm 3、技术交流,费用另付。展览会期间,参展者可进行技术交流,由参展厂家的专家向国内有关专业人员介绍他们的产品和技术。 参展手续: 1、填写《参展申请表》 (从会议网站上下载) ,加章后于 2009年 1 月31 日前邮寄(或传真)至中科院大连化物所许国旺研究员、侯晓莉处。 2、组委会收到合约后签字并盖公章回寄或传真给参展商,参展商在收到合约后的一个月内将参展费用全额电汇或交至组委会。 户 名: 中国科学院大连化学物理研究所 帐号: 3400200309014415739 开户行: 中国工商银行大连市分行青泥洼桥支行 3、展位分配原则:“先申请、先付款、先安排”。参展商在汇出各项费用后,须将银行汇款单传真至组委会,以便核查。 七、其它事宜 有关会议内容将不断在网上发布。 网址为 http://www.402.dicp.ac.cn/new/17th.htm http://www.instrument.com.cn http://www.54pc.com http://www.sepu.net 会务秘书组联络方式: 联络人:侯晓莉 许国旺 教授 地址:中国科学院大连化学物理研究所国家色谱中心 大连市中山路 457 号 邮编:116023 电话:0411-84379520 传真:0411-843795559 Email: sepu_17th@sina.com 中国化学会色谱专业委员会 中国色谱学会 2008年 10月 24 日 第十七届全国色谱学术报告会及仪器展览会 第一轮通知.PDF
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • Pittcon 2015期间,参加北美华人色谱协会(CACA)晚宴
    美国当地时间3月10日晚,北美华人色谱协会CACA(Chinese American Chromatography Association)晚宴在路易斯安那州新奥尔良举行。该活动是每年PITTCON期间美国华人色谱专家们的一次惯例性的欢聚盛筵。 CACA成立于2008年5月12日,是由在北美从事色谱领域研究的杰出科学家和在色谱领域创业的企业家组成的非营利组织。由于协会会员居住地比较分散,因此选择在HPLC和Pittcon会议同期举办CACA的联谊会。今年有100多位专家学者到场参会,他们大都是在美国工作和学习的、从事色谱相关研究或应用的华人,以及从国内赶来参加Pittcon会议的色谱研究人员。 月旭科技董事长赵岳星博士被邀请在CACA晚宴上介绍月旭科技的发展战略及色谱技术未来的发展前景。色谱界赫赫有名的专家Ron Majors也参加了此次晚宴,在宴会上与月旭董事长赵岳星博士深入交流,共同探讨当前色谱领域的新技术和未来发展方向,Ron Majors也对月旭十年来在色谱领域做出的突出贡献给予高度赞扬。月旭科技董事长赵岳星在CACA晚宴上发言月旭科技董事长赵岳星与Ron Majors亲切交谈Ron Majors与月旭人合影Ron Majors光临月旭展位
  • 沃特世携众旗舰产品亮相第21届全国色谱学术报告会及仪器展览会
    沃特世公司(Waters)近日参加了于2017年5月19-22日在甘肃兰州召开的第21届全国色谱学术报告会及仪器展览会。作为本次会议的金牌赞助商,沃特世展示了包括ACQUITY QDa质谱检测器、Xevo TQ-XS三重四极杆质谱仪在内的诸多创新产品和先进技术。 第21届全国色谱学术报告会及仪器展览会现场 在大会上,沃特世蛋白质组学应用科学家殷薛飞博士作了题为“QDa,让质谱走进千家万户”的报告,主要介绍了沃特世公司ACQUITIY QDa质谱检测器。有别于传统质谱,QDa检测器即开即用、操作直观,能够满足大多数生物、化学、食品环境等实验室的日常分析需求。殷博士还对蛋白分子量和序列覆盖度测定、后修饰肽段的检测、蛋白糖链分析等应用做了详细的阐述。 殷薛飞博士作了题为“关于QDa在生物制药中的应用”的报告 此外,沃特世还在大会期间展示了其液相质谱相关的诸多产品,包括ACQUITY Arc系统、ACQUITY UPC2系统、ACQUITY QDa质谱检测器、Xevo TQ-XS三重四极杆质谱仪,以及Xevo G2-XS QTof 高分辨质谱等,展现了沃特世在液相色谱及质谱领域广泛而专业的产品线及服务能力。 沃特世展台前人头攒动 值得一提的是,ACQUITY QDa质谱检测器在今年三月举行的“2017美国匹兹堡分析化学和光谱应用会议暨展览会”(Pittcon 2017)上凭借其在缩短方法开发时间、提升化合物纯化工作流程效率等方面的优秀表现,荣获《Pittcon Today》卓越金奖。而Xevo TQ-XS串联四极杆液质联用仪也在刚结束的“2017第十一届中国科学仪器发展年会”(ACCSI 2017)中斩获“2016科学仪器行业优秀新产品”。 沃特世公司分离技术市场经理陈静女士表示:“在今年的全国色谱学术报告会上,我们很高兴可以和广大色谱工作者交流色谱技术经验。沃特世在实验室检测技术领域积累了丰富的经验,拥有领先的技术优势,未来我们也将继续致力于实验室检测技术创新,为我们的用户带来更加准确、高效的检测方案。” 本届全国色谱学术报告会由中国化学会主办,中国科学院兰州化学物理研究所、中国化学会色谱专业委员会,及中国分析测试学会色谱专业委员会承办,为广大色谱工作者以及从事色谱仪器设计与制造的厂商提供了相互交流和展示的平台。作为行业最重要的盛事之一,本届大会吸引了来自各高校院所、实验室的色谱届专家学者,及国内外仪器厂商代表等1000余人参加。 关于沃特世公司沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。
  • Pittcon 2014期间 举办北美华人色谱协会聚餐会
    北美华人色谱协会聚餐会,当地时间3月4日晚在芝加哥中国城举行。这也算是每年PITTCON期间美国华人色谱专家们的一次惯例性的欢聚盛筵,莱伯泰科的赞助也成为惯例。尽管所有与会人员不能免费出席,但昨天到场人数还是超过预期,将近150人参加,人气爆棚。协会邀请了Brigham Young大学的Milton Lee教授做了关于便携式LC-MS的报告,中国国家食品安全风险监测中心的杨欣女士也应邀介绍了中国食品分析发展现状。气氛轻松愉快,共话友谊与学术进展,在座不少华人都是在全球化学界赫赫有名,为推动色谱发展做出了重大贡献。
  • 色谱检测方法新标准来啦(十)——三种化妆品中限用防腐剂的测定
    检测方法 气质联用法仪器配置:气相色谱-质谱联用仪(EI源)色谱柱:5%苯基-95%甲基聚硅氧烷石英毛细管色谱柱(30m*250μm*0.25μm)3种防腐剂的气相色谱质谱总离子流图 液相色谱法仪器配置:二元梯度洗脱LC+PAD检测器 (柱前衍生)色谱柱:C18,1.8μm,50mm*2.1mm内径 或C18,5.0μm,150mm*4.6mm内径二甲基噁唑烷标准物质衍生物的色谱图 岛津推荐仪器 气质联用仪:GCMS-QP2020 NX GCMS-QP2020 NX是兼顾高抗污染性能的高灵敏度单四极杆型气相色谱质谱联用仪,配备大容量超高效真空系统,集成高辉度离子源和屏蔽板技术,成为复杂样品痕量物质分析的有力利器。搭载岛津旗舰级Nexis GC-2030,创新ClickTek技术使初学者拥有大师级维护水准。 高性能、抗污染、易维护的GCMS-QP2020 NX,满足化妆品中限用防腐剂的测定。扫码了解更多信息 液相色谱仪:Nexera LC-40Nexera LC-40是功能强、性能佳的旗舰型液相色谱系统,具有全系列产品组合,满足所有耐压需求。将人工智能和物联网紧密结合,助力优化数据质量及提升整体分析工作效率,在智能化、便捷化和自动化领域已成为行业标准的新风向标。 ◆ INTELLIGENCE 智能主控◆ EFFICIENCY 倍速高通◆ DESIGN 精巧便捷 扫码了解更多信息
  • 2010年全国生物医药色谱学术交流会在景德镇隆重召开
    仪器信息网讯 2010年5月8日,由中国化学会色谱专业委员会及北京理化分析测试技术学会北京色谱学会主办,中国科学院化学研究所、北京理化分析测试技术学会承办的2010年全国生物医药色谱学术交流会在美丽的瓷都景德镇隆重召开。共有来自高校、研究所及政府检测机构的代表250余人参加了此次会议。仪器信息网作为合作媒体也应邀参加此次会议。 会议现场 北京色谱学会理事长、中国科学院化学研究所刘国诠研究员致辞 北京色谱学会副理事长、中国石油勘探研究院武杰研究员主持大会   开幕式由中国石油勘探研究院武杰研究员主持,本次大会组委会主席刘国诠研究员代表组委会欢迎大家参加此次会议,并感谢对会议筹备付出辛勤劳动与努力的组委会工作人员,希望大家在此次会议上有所收获。随后,中科院大连化物所所张玉奎院士致辞,其表示很高兴能参加此次会议,并预祝大会取得圆满成功。 报告人:中国科学院大连化物所张玉奎院士 报告题目:色谱进展   简短的开幕式后,进入大会报告环节,首先中国科学院大连化物所张玉奎院士以“色谱进展”为主题,介绍了大连化物所所作的研究工作。在生命科学、药物开发、食品安全、环境科学等领域的样品具有“成分数目庞大、含量差异巨大、时空动态变化”等特点,因此发展新技术新方法是解决复杂体系高效分离鉴定的唯一途径。   在高效富集分离材料方面,大连化物所的老师分别研究了无机有机杂化硅胶基质材料、硅胶基质新型固定相、复合金属氧化物微球基质材料、介孔纳米材料及蛋白质印迹材料。在微尺度生物分离分析研究方面,研究了固载pH梯度等电聚焦材料、样品热变形-固定化酶反应器-反相色谱-质谱联用系统、集成芯片固定化酶反应器-反相色谱-质谱联用系统。在多维色谱与联用技术方面,构建了在线正相-反相色谱、二维银离子色谱-反相色谱等平台。在创新仪器与装置方面,研制了12通道快速药物筛选仪、胺类毒剂检测器与传感器、大气VOC采样-分析系统等。张院士还表示,“我们这些学化学的人,在以机械、电子技术为基础的仪器研制方面可能不具备优势,但是作为化学人,在分离材料研究方面应该很有优势。近年来我一直在呼吁国家在此方面应该多投入,提高我国的水平。” 报告人:中国科学院生态环境研究中心江桂斌院士 报告题目:色谱-质谱联用技术在新型化学污染物分离与识别中的应用   中国科学院生态环境研究中心的江桂斌院士一直从事持久性有机污染物的研究,并且首次发现了一些新的持久性有机污染物。此次江桂斌院士就色谱-质谱联用技术在新型化学污染物分离与识别中的应用进行了介绍。持久性有机污染物(POPs)是一类半挥发性的物质,如二恶英(Dioxin)、多氯联苯(PCBs)和多溴联苯醚(PBDEs)等,其具有在环境中难降解、长距离迁移、具有生物累积和放大效应、毒性大等特点。目前,在POPs的分析研究中,由于POPs物质分子量差别很小、含量非常低、基体复杂等,因此必须使用高分辨的色谱-质谱系统,超净实验室、农残级或更低的溶剂及同位素内标使用等。江桂斌院士表示,未来中国还将达到50个持久性有机污染物检测相关实验室的规模。   对于POPs分析研究,样品前处理也是一个难题,江院士课题组在此方面研究了碳纳米管固相萃取技术及离子液体技术,取得了一定的效果。目前POPs里的污染物都是国外发现的,但是根据国情的不同,污染物也会有差别,因此为了在国际谈判中获得话语权,筛选与识别新型的化学污染物就显得十分重要。目前,江院士课题组通过物理化学性质导向、质量平衡导向、效应引导等发现了一些有价值的新型化学污染物。 报告人:北京大学刘虎威教授 报告题目:二维液相色谱-四极杆飞行时间质谱联用分析生物样品中的磷脂   刘虎威教授首先介绍说,研究证明磷脂与某些疾病存在关系,因而成为生物化学、临床分析中的重要研究对象。目前已经产生了脂质组学的概念,关于脂质类物质的研究越来越热门,美国、新加坡、日本已经展开了相关工作,而我国还尚未真正起步。正相色谱到反相色谱的在线联用是十分理想的研究脂质物质的手段,其中接口技术尤为关键。刘虎威教授的研究团队通过对二维液相色谱接口技术进行必要改进,成功完成复杂脂质样品的二维色谱在线分离,实现了一次进样同时分离不同种类和相同种类的脂质分子,一次性可分析的磷脂数量多达11600多个,为脂类组学研究提供了新的工具。其团队并通过该方法,成功找出427个标记物,其中127个具有活性。未来其研究团队将继续深化脂质物质的研究工作。 报告人:军事医学科学院药物研究所李桦研究员 报告题目:化学核查的现场和场外分析   来自军事医学科学院毒物药物研究所的李桦研究员,就化学武器的使用历史、化学武器公约的诞生过程、禁止化学武器组织(OPCW)的组成及工作流程、化学核查机制、化学核查使用的仪器及分析方法进行了详细的介绍。《化学武器公约》于1997年4月正式生效,目前世界上有188个国家签署了公约。公约的履行及监察由OPCW负责,核查的物质包括化学武器、化学战剂及公约附表化合物中43类,上万种化学品。   李桦研究员表示,目前现场采样与分析是最有效的核查手段。在现场核查中,使用的仪器是便携式气质联用仪。为了保证核查的准确性,OPCW在派调查员现场核查时,大到通风柜、气质联用仪等仪器设备,小到试剂、耗材等,均由OPCW自己携带,而且所有的耗材都是一次性使用。李老师还特别介绍了,在现场核查出现阳性的情况下,样品需要送到OPCW的指定实验室进行场外核查。目前,全世界有18家OPCW指定实验室,我国有2家。在场外核查中,可以不局限于GC-MS技术而使用任何技术方法与谱库的搜索,但是结果必须是目标图谱库的化合物。目前,场外核查常用的技术有NMR、GC、GC-MS、LC-MS。 报告人:中科院大连化物所许国旺研究员 报告题目:如何应用色谱-质谱方法发现代谢标志物?   许国旺研究员简要介绍了生物标志物的作用及分类,并指出小分子的功能正被极大地忽视,但它是一种重要的信号分子,与生理病理过程也有着密切的关系。血液、尿液作为临床样品,是很好的标志物来源,但很难从中发现标志物。而且,疾病的早期诊断十分困难,样品采集不易。基于以上原因,其团队提出了一种基于代谢组学的从胆汁到血液、从动物到人的研究策略,包括:利用高温液相色谱(温度达80度)质谱联用技术,从胆汁着手初步筛选标志物,再取血清进行分析,进行进一步筛选;以大鼠为研究对象,通过研究其血液代谢组变化趋势、重要代谢物筛选等流程,筛选出可预测肝病发展进程的标志物等。其中,肝病的研究被用作例子,同时也阐明了分析方法的重要性。 报告人:中山大学李攻科教授 报告题目:生物挥发性有机化合物(生物气味)分析的研究进展   李攻科教授介绍了生物挥发性有机物(VOCs)是生物代谢及生物体表面微生物共同作用的结果,它具有特定的化学结构,包含重要的生物信息。此后简要介绍了VOCs研究的意义、VOCs的主要形成途径及人类、植物气味的分类,以及“嗅诊”等。李攻科教授介绍了生物VOCs研究中存在的难点,如:待发展新型的VOCs采样方法、缺乏相应的标准物质、如何从大量数据中提取有效信息、没有与生物代谢过程联系起来等。在生物VOCs分析中,常用到的采样技术有吹扫捕集采样装置、固相微萃取装置、多种采样手段集成技术,主要用到的分析检测技术是气相、气质,此外还有电子鼻、便携式离子阱质谱等,另外还涉及到化学计量学方法。李教授还介绍了其团队在该方面的研究内容,如:研究不同人体手臂在不同季节散发的VOCs的差异等,研究内容与人类现实生活息息相关。 报告人:岛津公司北京分析中心董静博士 报告题目:离子阱-飞行时间质谱在有机小分子研究中的应用   此外来自岛津公司北京分析中心的董静博士介绍了岛津公司最新离子阱-飞行时间质谱在有机小分子研究中的应用。离子阱质谱可以产生多级离子碎片,而飞行时间质谱具有高质量精确性、高分辨率、高灵敏度等特点,两者联用可以在药物分析、农药快速筛查、蛋白质组学、代谢组学等研究中发挥极大的作用。其以氨曲难中杂质分析、喷雾剂药材包装材料杂质分析、利托君注射液杂质分析、唑吡坦及其代谢物分析四个实例详细介绍了此系统的应用。 报告人:戴安公司上海应用实验室李浪博士 报告题目:双三元梯度液相色谱技术及其应用   来自戴安公司上海应用实验室的李浪博士介绍了戴安双三元梯度液相色谱技术及其应用。戴安双三元梯度液相色谱采用独特的双三元梯度泵、独特的柱温箱,其可以实现样品在线前处理(集成SPE小柱做作样品前处理提高自动化,直接进脏样品)、提高质谱灵敏度(在线快速脱盐、使用左泵作为辅助泵等)、柱后衍生、与现有的HPLC系统兼容。这些功能的实现通过泵的串联、并联等方式来实现。李浪先生用实例分别进行了详细的介绍。   会议还将举行“理论与方法”、“生化与诊断”、“药物与检验”、“环境与安全”四个分会报告,并评选“东曹达”优秀青年报告奖。此外,会议同期还举行小型仪器展,安捷伦、戴安、岛津、东曹达、Fisher Scientific、Sigma-Aldrich、北京普立泰科、北京普源精仪、岛津技迩、兰州中科安泰、密理博等厂商参展,安捷伦公司、岛津公司还分别赞助了会议的午宴与晚宴。 刘国诠研究员向安捷伦科技牟一萍副总裁赠送礼品 岛津公司曹磊博士致辞 展会现场
  • 天瑞仪器股价异动待核查 明起停牌
    12月25日讯 天瑞仪器25日晚间公告,公司股票12月23日、12月24日、12月25日连续三个交易日收盘价格涨幅偏离值累计达到20%以上,属于股票交易异常波动。   由于公司股票近期涨幅较大,经公司申请,公司股票将于2013年12月26日起停牌,停牌期间公司将就股票交易异常波动及媒体相关报道情况进行全面核查,待公司完成相关核查工作并披露相关结果公告后复牌。
  • 光谱科学等6个国家重点实验室名单通过整改核查
    p style=" TEXT-ALIGN: center" strong span style=" COLOR: #ff0000" 科技部基础研究司关于发布地学领域和数理领域国家重点实验室整改核查结果的函 /span /strong /p p style=" TEXT-ALIGN: center" 国科基函〔2017〕37号 /p p 四川省科技厅,教育部科学技术司、中国科学院前沿科学与教育局、中国气象局科技与气候变化司: /p p   根据国家重点实验室管理有关要求,科技部组织专家组对在2015年地学领域和数理领域国家重点实验室评估中被列为限期整改的油气藏地质及开发工程等6个国家重点实验室(见附件)整改情况进行了现场核查。核查结果表明,6个实验室及其依托单位针对评估专家提出的意见和建议,认真查找自身存在的问题,采取切实有效的整改措施,取得了明显成效,主要问题已得到解决。 /p p   经研究,同意6个实验室通过整改核查,保留国家重点实验室称号,按照良好类国家重点实验室予以支持。同意油气藏地质及开发工程国家重点实验室研究方向调整。 /p p   附件:通过整改核查的地学领域和数理领域6个国家重点实验室名单 /p p style=" TEXT-ALIGN: right"   科技部基础研究司 /p p style=" TEXT-ALIGN: right"   2017年9月30日 /p p   附件 /p p style=" TEXT-ALIGN: center" strong 通过整改核查的地学领域和数理领域6个国家重点实验室名单 /strong /p table tbody tr class=" firstRow" td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: rgb(0,0,0) 1px solid BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" 序号 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: rgb(0,0,0) 1px solid BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" 实验室名称 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: rgb(0,0,0) 1px solid BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" 依托单位 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: rgb(0,0,0) 1px solid BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" 主管部门 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: rgb(0,0,0) 1px solid BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" 领域 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 1 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 油气藏地质及开发工程国家重点实验室 /span span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px FONT-WEIGHT: bold" * /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 西南石油大学 /span span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" , /span span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 成都理工大学 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 四川省科技厅 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 地学 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 2 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 大地测量与地球动力学国家重点实验室 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国科学院测量与地球物理研究所 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国科学院 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 地学 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 3 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 荒漠与绿洲生态国家重点实验室 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国科学院新疆生态与地理研究所 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国科学院 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 地学 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 4 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 灾害天气国家重点实验室 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国气象科学研究院 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" TEXT-ALIGN: left MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 中国气象局 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 地学 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 5 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 核物理与核技术国家重点实验室 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 北京大学 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 教育部 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 数理 /span /p /td /tr tr td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: rgb(0,0,0) 1px solid PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 55" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 6 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 366" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 精密光谱科学与技术国家重点实验室 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 258" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 华东师范大学 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 132" p style=" MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 教育部 /span /p /td td style=" BORDER-BOTTOM: rgb(0,0,0) 1px solid BORDER-LEFT: medium none PADDING-BOTTOM: 4px PADDING-LEFT: 4px PADDING-RIGHT: 4px BACKGROUND: rgb(255,255,255) BORDER-TOP: medium none BORDER-RIGHT: rgb(0,0,0) 1px solid PADDING-TOP: 4px" valign=" middle" width=" 57" p style=" TEXT-ALIGN: center MARGIN-TOP: 4px MARGIN-BOTTOM: 0px" span style=" LETTER-SPACING: 0px FONT-FAMILY: & #39 宋体& #39 FONT-SIZE: 16px" 数理 /span /p /td /tr /tbody /table p   *研究方向调整为:含油气盆地动力学及油气成藏理论、油气储层地质学理论与预测方法技术、复杂油气藏开发开采理论与方法、复杂油气藏钻完井理论与关键技术、深海天然气水合物开发理论及关键技术 /p
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 市场监管总局发布 《食用农产品抽样检验和核查处置规定》
    各省、自治区、直辖市及新疆生产建设兵团市场监管局(厅、委):  为进一步规范食用农产品抽样检验和核查处置工作,依据《中华人民共和国食品安全法》等法律、法规和规章,制定行政规范性文件《食用农产品抽样检验和核查处置规定》。现印发给你们,请认真遵照执行。 市场监管总局2020年11月30日食用农产品抽样检验和核查处置规定  为进一步规范市场监管部门食用农产品抽样检验和核查处置工作,依据《中华人民共和国食品安全法》《食品安全抽样检验管理办法》《食用农产品市场销售质量安全监督管理办法》等法律、法规和规章,现就食用农产品抽样检验和核查处置作出以下规定:  第一条 市场监管部门可以自行抽样或委托承检机构抽样。委托抽样的,应当不少于2名监管人员参与现场抽样。  第二条 现场抽样时,应检查食用农产品销售者是否有进货查验记录、合法进货凭证等。食用农产品销售者无法提供进货查验记录、合法进货凭证或产品真实合法来源的,市场监管部门应当依法予以查处。  第三条 对易腐烂变质的蔬菜、水果等食用农产品样品,需进行均质备份样品的,应当在现场抽样时主动向食用农产品销售者告知确认,可采取拍照或摄像等方式对样品均质备份进行记录。  第四条 现场封样时,抽样人员应按规定要求采取有效防拆封措施。抽样人员(含监管人员)、食用农产品销售者,应当在样品封条上共同签字或者盖章确认。  第五条 抽样人员应当使用规范的抽样文书,详细记录被抽样食用农产品销售者的名称或者姓名、社会信用代码或者身份证号码、联系电话、住所,食用农产品名称(有俗称的应标明俗称)、产地(或生产者名称和地址)、是否具有合格证明文件,供货者名称和地址、进货日期,抽样批次等。在集中交易市场抽样的,应当记录销售者的摊位号码等信息。  现场抽样时,抽样人员(含监管人员)、食用农产品销售者,应当在抽样文书上共同签字或盖章。  第六条 带包装或附加标签的食用农产品,以标识的生产者、产品名称、生产日期等内容一致的产品为一个抽样批次;简易包装或散装的食用农产品,以同一产地、生产者或进货商,同一生产日期或进货日期的同一种产品为一个抽样批次。  第七条 检验机构在接收样品时,应当核对样品与抽样文书信息。对记录信息不完整、不规范的样品应当拒绝接收,并书面说明理由,及时向组织或者实施抽样检验的市场监管部门报告。  第八条 承检机构应按规范采取冷冻或冷藏等方式妥善保存备份样品。自检验结论作出之日起,合格样品的备份样品应继续保存3个月,不合格样品的备份样品应继续保存6个月。  第九条 食用农产品销售者对监督抽检结果有异议的,可按照规定申请复检。  第十条 食用农产品销售者收到不合格检验结论后,应当立即对不合格食用农产品依法采取停止销售、召回等措施,并及时通知相关生产经营者和消费者;对停止销售、召回的不合格食用农产品应依照有关法律规定要求采取处置措施,并及时向市场监管部门报告。  复检和异议期间,食用农产品销售者不得停止履行上述义务。未履行前款义务的,市场监管部门应当依法责令其履行。  第十一条 抽检发现的不合格食用农产品涉及种植、养殖环节的,由组织抽检的市场监管部门及时向产地同级农业农村部门通报;涉及进口环节的,及时向进口地海关通报。  第十二条 对食用农产品销售者、集中交易市场开办者经营不合格食用农产品等违法行为,市场监管部门应当依法予以查处,并开展跟踪抽检。  第十三条 市场监管部门应当依法依规、及时公布食用农产品监督抽检结果、核查处置信息。与不合格食用农产品核查处置有关的行政处罚信息,应当依法归集至国家企业信用信息公示系统。  第十四条 各级市场监管部门应当按要求将食用农产品抽样、检验和核查处置等信息,及时录入国家食品安全抽样检验信息系统。  第十五条 市场监管部门在集中交易市场、商场、超市、便利店、网络食品交易第三方平台等食用农产品销售场所开展抽样检验和核查处置工作,适用本规定。  第十六条 省级市场监管部门应当加强对食用农产品抽样检验和核查处置的指导,可结合地方实际制定本地区食用农产品抽样检验和核查处置实施细则。《食用农产品抽样检验和核查处置规定》解读  日前,市场监管总局依据《中华人民共和国食品安全法》等法律、法规和规章,制定和公布《关于印发的通知》(国市监食检〔2020〕184号,以下称《规定》)。现就《规定》内容解读如下:  一、制定背景   近年来,各级市场监管部门按照“四个最严”要求,不断加大市场销售食用农产品抽检力度,对不合格食用农产品及时核查处置,取得一定成效。但是食用农产品与预包装食品差异较大,基层普遍反映存在不合格产品追溯难、备样保存难、核查处置难等一些难点问题。   为切实保障人民群众食品安全,督促食用农产品销售者履行主体责任,促进食用农产品源头治理,控制不合格食用农产品安全风险,市场监管总局在实地调研、广泛征求各有关方意见建议基础上,充分考虑食用农产品属性、行业发展水平、监管制度等特点,起草并印发《规定》。   二、主要内容   (一)推动“检管结合”。明确监管人员可自行抽样或参与抽样。现场抽样时,监管人员可对抽样场所开展监督检查,对食用农产品销售者不履行法律义务、存在违法行为的,及时固定证据、依法查处,提高监管执法效率,形成监管合力。   (二)针对产品特性规范抽样。一是明确易腐烂变质的食用农产品可进行均质处理,防止因样品腐烂变质无法实现复检。二是考虑到食用农产品与普通食品的属性特点差异,规范抽样信息采集,明确食用农产品的“抽样批次”概念,以利于有效开展核查处置和追查不合格产品来源。三是明确食用农产品的备样应按规范冷藏或冷冻储存。   (三)多措并举震慑违法行为。明确市场监管部门除依法监督不合格食用农产品销售者采取风险控制措施,依法查处违法行为外,还将采取以下措施:作为重点监管对象跟踪抽检,公布监督抽检结果和核查处置信息,将核查处置涉及的行政处罚信息归集到国家企业信用信息公示系统。   (四)加强不合格信息通报。不合格食用农产品涉及种植、养殖环节和进口环节的,由组织抽检的市场监管部门及时向产地同级农业农村部门或者海关通报。   (五)明确适用范围。考虑到各地食用农产品监管制度和要求存在差异,明确各省可结合实际制定实施细则。 (来源:市场监管总总局)
  • 2016年新增色谱分析方法标准59项 气相最多
    p   仪器信息网讯 2016年,国家标准委、农业部、工信部、环保部等多个部门连续多次发布相关分析方法标准或征集意见,其中包括明确指定仪器分析方法标准。据仪器信息网不完全统计,2016年度,各政府部门发布正式标准及征集意见标准超过100多次。 /p p   根据仪器信息网不完全跟踪报道整理,2016年度各部门发布或征集意见的色谱/色谱-质谱仪器相关标准共计59项,涉及气相色谱、液相色谱、毛细管电泳、离子色谱、凝胶渗透色谱、液相色谱-质谱联用、气相色谱-质谱联用七类仪器。从分析仪器种类来看,气相色谱和液相色谱方法居多 从发布的部门看,国家标准委、环保部、农业部发布的标准数量排在前三位。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/9a3bb2e3-d858-4d4b-ba81-f79605bce883.jpg" title=" 色谱标准及数量.jpg" / /p p   数据来源:仪器信息网整理 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201612/insimg/32aadb46-ef96-428d-8b87-5991487de8d8.jpg" title=" 部门.jpg" / /p p   数据来源:仪器信息网整理 /p p   整理发现,发布液相色谱方法相关标准最多的部门为农业部,共计6项,涉及农业、饲料、饮料等产品分析检测 ;发布气相色谱方法相关标准最多的部门为国标委,共计12项,涉及纺织品、燃料、化工产品、食品接触材料等产品分析检测;发布离子色谱方法相关标准最多的部门为环保部,共计5项,涉及水质、空气等分析检测。 /p p style=" text-align: center " strong 2016年发布/征集意见的色谱方法相关标准 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr class=" firstRow" td width=" 48%" p style=" text-align:center " strong 标准名称 /strong /p /td td width=" 25%" p style=" text-align:center " strong 色谱仪器种类 /strong /p /td td width=" 25%" p style=" text-align:center " strong 发布部门 /strong /p /td /tr tr td width=" 48%" p style=" text-align:left " 分析型气相色谱方法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 亚硝胺类化合物的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 丙烯腈和丙烯醛的测定 吹扫捕集气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 轻质石油馏分和产品中烃族组成和苯的测定 多维气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 纺织品 消臭性能的测定& nbsp & nbsp & nbsp 第3部分:气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 喷气燃料中芳烃总量的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 蜂蜡中二十八烷醇、三十烷醇的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 光敏材料用多官能团丙烯酸酯单体中有机溶剂的测定 顶空进样毛细管气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 光敏材料用多官能团丙烯酸酯单体纯度(酯含量)的测定 毛细管气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用苯乙烯试验方法 第1部分:纯度及烃类杂质的测定 & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 纺织品 消臭性能的测定& nbsp & nbsp & nbsp 第3部分:气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 喷气燃料中芳烃总量的测定& nbsp & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 反刍动物甲烷排放量的测定 六氟化硫示踪—气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 食品接触材料& nbsp & nbsp 纸和纸制品中饱和烃矿物油(MOSH)的测定 & nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 文具中苯、甲苯、乙苯及二甲苯的测定方法& nbsp & nbsp 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 塑料& nbsp & nbsp 聚苯乙烯和抗冲聚苯乙烯中残留苯乙烯单体含量的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用异戊二烯中微量炔烃和二烯烃含量的测定气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 工业用碳十粗芳烃中烃类组分的测定气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 焦炉煤气 萘含量的测定 气相色谱法 /p /td td width=" 25%" p style=" text-align:center " 气相色谱 /p /td td width=" 25%" p style=" text-align:center " 工信部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 稻米中γ-氨基丁酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中叶酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中斑蝥黄的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中β-阿朴-8& #39 -胡萝卜素醛的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中串珠镰刀菌素的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 咖啡及制品中葫芦巴碱的测定高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气和废气 酰胺类化合物的测定 液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中伏马毒素B1、B2的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中黄曲霉毒素的测定 超高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中脱氧雪腐镰刀菌烯醇的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中玉米赤霉烯酮的测定& nbsp 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检测 粮食中赭曲霉毒素A的测定 超高效液相色谱方法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中植物生长调节剂的测定& nbsp & nbsp & nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 蜂蜜中脯氨酸的测定 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 有机肥料中土霉素、四环素、金霉素与强力霉素的含量测定& nbsp & nbsp & nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中植物生长调节剂的测定& nbsp 高效液相色谱法 /p /td td width=" 25%" p style=" text-align:center " 液相色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 离子色谱分析方法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 可溶性阳离子(Li+ 、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气和废气 氯化氢的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气 颗粒物中水溶性阴离子(F-、Cl-、Br-、NO2-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 环境空气 颗粒物中水溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 区域地球化学样品分析方法 第22部分:氯和溴量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国土资源部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 区域地球化学样品分析方法 第23部分:碘量测定 & nbsp & nbsp 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国土资源部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中三聚氰胺含量的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 硅中氯离子含量的测定 离子色谱法 /p /td td width=" 25%" p style=" text-align:center " 离子色谱 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 农药理化性质测定试验导则 第35部分:聚合物分子量和分子量分布测定(凝胶渗透色谱法) /p /td td width=" 25%" p style=" text-align:center " 凝胶渗透色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 农药理化性质测定试验导则 第36部分:聚合物低分子量组分含量测定(凝胶渗透色谱法) /p /td td width=" 25%" p style=" text-align:center " 凝胶渗透色谱 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 饲料中氨基酸的测定 毛细管电泳法 /p /td td width=" 25%" p style=" text-align:center " 毛细管电泳 /p /td td width=" 25%" p style=" text-align:center " 农业部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 毛细管电泳法通则-征求意见稿 /p /td td width=" 25%" p style=" text-align:center " 毛细管电泳 /p /td td width=" 25%" p style=" text-align:center " 教育部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 水质 挥发性有机物的测定 顶空/气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 环保部 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中多氯联苯的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中四溴双酚A的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 肥料中多环芳烃含量的测定 气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 汽油中苯胺类化合物的测定 气相色谱质谱联用法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 橡胶烟气中挥发性成分的测定 热脱附-气相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 气质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 粮油检验 粮食中黄曲霉毒素等16种真菌毒素的测定 & nbsp & nbsp 液相色谱-串联质谱法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国家粮食局 /p /td /tr tr td width=" 48%" p style=" text-align:left " 玩具产品 聚碳酸酯和聚砜材料中双酚A迁移量的测定& nbsp & nbsp & nbsp 高效液相色谱-质谱联用法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr tr td width=" 48%" p style=" text-align:left " 电子电气产品中六溴环十二烷的测定& nbsp & nbsp & nbsp 高效液相色谱-质谱法 /p /td td width=" 25%" p style=" text-align:center " 液质联用 /p /td td width=" 25%" p style=" text-align:center " 国标委 /p /td /tr /tbody /table p style=" text-align: left "   依据仪器信息网整理的色谱分析方法相关标准,农业部和国家粮食局发布15个色谱方法标准中有11个与液相色谱方法直接相关。据国家粮食局发布的《粮食行业“十三五”发展规划纲要》,未来五年,将重点建立和完善 500 个国家粮食质量检验监测机构,提高常规质量、储存品质、卫生安全、添加剂和非法添加物、微生物等方面的综合检验监测能力,粮食质量安全指标的综合检验能力达到70%以上。而日前,农业部下发“关于开展“十三五”新增农业部重点实验室申报工作的通知”,“十三五”期间将新增37个重点实验室。可以预见,在未来五年,液相色谱在粮食行业的市场潜力可见一斑。 /p p   依据《国家环境保护“十三五”科技发展规划纲要》,大气、土壤、地下水等成为未来重点攻关的对象,并且在未来五年,将新建一批国家环境保护重点实验室和科学观测研究站,建设完善一批国家环境保护工程技术中心,建成环保科技基础数据和信息共享平台。争取新建1~2个国家重点实验室、国家工程技术中心或国家工程实验室。而仪器信息网统计的环保部发布的色谱方法相关标准中,离子色谱和气相色谱方法居多,此两类仪器在环境领域的市场或有可期。 /p p   2016年度,国家标准委发布的色谱方法相关标准共计25项,其中气相色谱方法标准11项,而涉及的分析检测对象包含文具、食品接触材料、化学品、电子电器产品等。依据《质量监督检验检疫事业发展“十三五”规划》,到2020年国家质检中心和国家检测重点实验室数量将达到1000个,新增检测实验室数量逾百个,并且重点加强对儿童用品、食品、化妆品、化学品等产品质量安全监管。未来五年,气相色谱仪器在质检领域的应用也有增长。 /p p br/ /p
  • 《化学检测仪器核查指南》发布
    在实验过程中,影响化学仪器正常工作和稳定性的因素有很多,有些影响在常规检测工作中不易被察觉,当不良影响积累到一定程度,会造成所使用的化学仪器状态发生变化,并直接影响检测结果准确。为提高和保证仪器使用的准确度,化学检测实验室做好仪器的校准、维护、核查工作等是十分必要的。但由于化学检测仪器的复杂性,实验室在仪器设备核查中存在一定的难点。近日,中国合格评定国家认可委员会发布《化学检测仪器核查指南》,旨在阐明化学检测仪器核查的原则,对不同仪器在不同使用阶段的核查重点提出建议,并介绍一些常用化学检测仪器可供选择的方法和手段。《指南》主要涉及在使用化学仪器开展定性定量分析的情况下,化学仪器核查的技术和方法指导,适用于化学检测过程中常用的化学仪器,对规范化学检测实验室的仪器核查起重要作用。 点击查看
  • 岛津在东北地区隆重首发旗舰级液相色谱新品Nexera LC-40
    5月30日,“首届中国实验室绿色技术报告会暨展览会”在丹东珍珠岛江畔国际酒店揭幕。为在分析测试及相关领域践行节能、环保、安全、健康的绿色发展理念,本次大会围绕着实验样品绿色前处理技术、绿色检测分析方法研究、实验室绿色安全管理与技术、绿色实验室标准与管理、绿色实验室设计与绿色实验室装备等新技术展开了学术交流。 为支持中国实验室绿色技术水平的快速提升,岛津公司作为大会冠名及金牌赞助商积极参与了本次大会,并在大会开幕首日特别举办了“岛津之夜”晚会,为与会专家用户提供了轻松交流的平台。在晚会上,岛津公司首次在东北地区隆重发布了岛津首套融合“AI”与“IoT”尖端技术的旗舰级液相色谱新品Nexera LC-40。“岛津之夜”晚会岛津公司分析仪器事业部李硕经理主持晚会 中国分析测试协会副理事长刘成雁教授率先发表致辞,他在致辞中表示中国实验室绿色技术已取得了喜人的进步,并对其未来发展充满信心,并期待岛津的卓越技术在未来实验室绿色技术的发展过程中发挥出更大的推动作用。中国分析测试协会副理事长刘成雁教授发表致辞 随后,岛津公司分析仪器事业部李军波营业部长发表致辞,对首届中国实验室绿色技术报告会暨展览会的成功举办送上了热情的祝福。他在致辞中还回顾了岛津公司进入中国数十年来的发展历程以及近年来岛津实验室绿色技术的创新成果,并向与会专家隆重推介了岛津最新重磅产品Nexera LC-40。在致辞的最后,他表示岛津将以庞大的新产品阵容亮相今年十月召开的BCEIA大会。岛津公司分析仪器事业部李军波营业部长发表致辞 致辞结束后,中国分析测试协会副理事长刘成雁教授与岛津公司分析仪器事业部李军波营业部长共同为旗舰级液相色谱新品Nexera LC-40揭幕。Nexera LC-40惊艳亮相,礼花齐放,闪耀夜空,晚会达到高潮。刘成雁教授与李军波部长共同为液相色谱新品Nexera LC-40揭幕 Nexera LC-40秉承了岛津一直以来的设计理念,将源自日本的“匠人精神”和面向未来的互联网技术相结合,融合岛津优秀的工业设计和人工智能(AI)、智能物联(IoT)等尖端技术,成为一台真正的面向未来的液相色谱仪。在提供卓越性能的同时,带来如‘流动相精灵’、‘自我诊断’、‘智能恢复’、‘智能流速控制’等多项人性化、智能功能,能够给各位用户带来非同以往的便利操作体验。 在“首届中国实验室绿色技术报告会暨展览会”举办期间,多位中科院院士、国家首批千人计划专家、国家杰出青年专家、国家跨世纪人才计划以及外国专家等出席了会议。会议期间同时进行了国内外先进仪器设备、实验室装备、实验室设计与建设、实验室现代化管理展示。岛津公司中国质谱中心负责人滨田尚树先生做了主题为“岛津在绿色化学领域的挑战——超临界流体萃取及分析技术的开发”的演讲。在演讲中他从绿色化学领域为出发点,讲解了超临界流体萃取及分析技术的定义、特点和应用等问题,强调超临界流体萃取及分析技术的开发克服了传统萃取的污染严重、操作繁琐等问题,具有广泛的发展前景。他在演讲中和与会专家分享了岛津在线超临界流体萃取(SFE)色谱(SFC)系统Nexera UC的特点和优势:1.从萃取到分析的自动化在线系统,防止易氧化物质的分解,改善了工作流程并防止手动操作造成的误差;2.自动交换萃取容器,可进行多样品萃取,最多对48个样品进行连续萃取、分析;3.具备高灵敏度,这得益于低容量低扩散从而大幅提升了灵敏度。通过灵活组合可用于干血斑检测生物标记物、聚合物添加剂萃取等多种应用。他在演讲后半程中就岛津SFC方法开发系统和SFC-LCMS二维系统的特点展开了论述。配合岛津开发的软件,SFC可简便地进行多种化合物方法开发,SC-LC/MS系统可通过六通阀实现无缝切换,对于脂溶性维生素实现简便的分析过程及高分辨、高选择性的检测结果。岛津公司中国质谱中心负责人滨田尚树先生在演讲中在大会特设展厅中的岛津展台现场传真
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 推动色谱技术高质量发展 2023北京色谱年会成功召开
    仪器信息网讯 2023年12月15日,由北京理化分析测试技术学会色谱专业委员主办的“第二十二届北京色谱年会(BCAC 2023)”于北京四川龙爪树宾馆成功举行。北京色谱年会秉承传统,从2002年举办以来,已经走过21个年头,为北京地区及全国色谱工作者提供了一个绝佳的交流沟通平台。本次年会的主题是“色谱与发展 ”,旨在推动色谱学向高层次发展, 推动色谱技术为解决我国重大科学和国计民生问题作出不可替代的贡献。来自科研院校、应用单位、仪器企业等200余名业内相关人士参加了本次会议。仪器信息网全程参与并报道了此次会议。会议现场北京理化分析测试技术学会色谱专业委员会理事长、中国科学院化学研究所研究员陈义主持开幕北京理化分析测试技术学会色谱专业委员会荣誉理事长、北京大学 刘虎威教授致辞本次会议邀请了中国科学院大连化物所张玉奎院士、中国科学院生态中心江桂斌院士等9位色谱相关研究领域著名的专家学者及4位知名厂商技术专家作报告。中国科学院大连化学物理研究所 张玉奎院士报告题目:《外泌体分析技术进展》外泌体是由细胞分泌的尺寸约30-200nm的囊泡,外泌体是干细胞发挥治疗作用的,可用于多种疾病治疗。外泌体的规模制备和质控是制约外泌体发展的瓶颈。报告主要介绍了团队发展的外泌体制备的新方法以及在鹿茸干细胞与外泌体研究领域的应用实例。中国科学院生态环境研究中心 江桂斌院士报告题目:《金属形态与原子光谱》金属是生命的必需,但金属污染也导致环境与健康问题。金属形态决定其环境迁移与毒性,而原子光谱是金属形态分析的最佳技术选择。报告主要介绍了多年来江院士及团队在金属形态分析等相关检测技术及仪器硬件开发上所做的大量工作。中国农业科学院 王静研究员报告题目:《快速检测助力农产品高质量发展》快速检测技术检测具有速度快、灵敏度高,特异性、高通量,前处理简单、成本低,可以定性、半定量或定量,便携、自动化等优点,近年来,我国对食品安全问题越加重视,发展适合的食品快检技术,在助力食品及农产品高质量发展上有着积极意义。报告介绍了当前农产品快检技术的发展情况、标准建设进展并着重分享了近年来课题组在茶叶农残多通道快速检测技术等食品快检领域所做的创新型工作。中国科学院化学研究所 汪福意研究员报告题目:《纳米亲和探针-质谱定量蛋白质组学研究铂基抗癌药物损伤DNA的细胞应答机制》顺铂(CDDP)等铂基抗癌药物是临床上治疗各种恶性肿瘤的主要化疗药物,其作用机制被认为是通过损伤DNA诱导细胞发生凋亡——这也是大多数铂类药物设计的基础。报告主要介绍了课题组建立的基于纳米金亲和探针-质谱蛋白组学分析方法,并利用该方法对铂基抗癌药物损伤DNA的细胞应答机制开展的相关研究工作。中国检验检疫科学研究院 吴玉杰研究员报告题目:《色质谱分析技术在预制菜质量安全发展中的应用》色质谱技术的发展推动食品检测技术不断进步。目前色质谱技术在食品检测领域应用十分广泛,包括农兽药残留、添加剂、毒素分析、成分组成、有机污染物、致病菌检测方方面面。报告回顾了我国食品领域色质谱技术的应用发展史,并分享了在预制菜产业飞速发展的当下,对产业健康发展的思考。海军军医大学 陈啸飞教授报告题目:《基于膜受体原位合成生物色谱(iSMAC)的药物复杂体系活性分析》传统细胞膜生物色谱存在专属性不足、受体朝向不可控、细胞培养、蛋白表达、装柱步骤繁琐等问题,限制了该技术的广泛应用。为了改善上述问题,陈啸飞课题组建立了一种膜受体原位合成生物色谱(iSMAC)新技术,并利于该技术在药物复杂体系活性分析中取得了一系列应用新进展。该技术是合成生物学技术在生物色谱中的首次应用,具有不依赖细胞培养、制备速度快、固定相膜蛋白具有单一性、朝向一致等特点。北京化工大学 魏芸教授报告题目:《逆流色谱技术在农业废弃活性物质分离中的应用》逆流色谱技术是上世纪80年代发展的一种新型高效的液-液分配色谱分离技术,由于它不用固体分离介质,因此具有许多传统色谱技术所不具备的独特优势。报告主要介绍了魏芸团队利用逆流色谱技术在农业废弃物分离多种有效活性成分并成功实现了相应国家标准样品制备及开发的相关研究成果。北京理工大学 徐伟教授报告题目:《迁移电泳-非变性质谱仪器与蛋白结构分析应用》报告主要介绍了徐伟课题组发展了一种具有高稳定性、高重复性的液相离子迁移电泳技术,该方法利用Laminar flow取代了传统的电渗流,通过引入Taylor扩散实现了样品分子的分离、半径和分子有效带电量的同时测量。团队进一步将离子迁移电泳与非变性质谱技术相结合,进一步获取蛋白质等生物大分子较全面的结构信息。同时,基于液相离子迁移原理,课题组还开发了液相离子阱装置,不仅可以实现复杂样品的分离,也可以将质谱仪器的检测灵敏度大幅提升。军事科学院军事医学研究院 谢剑炜研究员报告题目:《应对化学威胁关注的若干分析化学问题》当前,国际形式风云变化,国防安全及公共安全领域受到全球关注和重视,核生化等威胁有喜有忧,化学武器控制得到国际社会的重视,但政治化趋势明显。分析化学技术在监测和防范化学事故和恐怖袭击中能发挥的重要作用,报告介绍了目前化学武器核查的相关技术、以及分析化学界要关注的环境及健康热点问题,并分享了关于化学威胁防控面临的新问题的思考。岛津企业管理(中国)有限公司 王鑫报告题目:《二维遇上制备:实现高速、高效、高通量的制备净化系统》报告主要分享了岛津的Nexera UFPLC制备液相色谱系统的技术特点、应用优势。安捷伦科技(中国)有限公司 吴建涛报告题目:《安捷伦色谱产品和应用发展概览》报告介绍了安捷伦气相色谱仪目前在技术、色谱软件耗材的相关产品及服务情况,并介绍了在石化行业整体解决方案、新能源锂电池等最新应用解决方案。赛默飞世尔科技(中国)有限公司 柴瑞平报告题目:《赛默飞电雾式检测技术(LC-CAD)在产业与科研中的最新应用》报告介绍了赛默飞Vanquish系列液相色谱产品以及独有的电雾式检测器的技术优势。以及利用电雾式检测技术在制药、科研以及半导体等领域的最新解决方案。苏州纳微科技股份有限公司 米健秋报告题目:《新一代硅胶产品UniSil Revo用于GLP-1药物的纯化工艺》报告介绍了纳微科技全新的UniSil Revo填料的技术特点及优势以及其在GLP-1药物纯化方面的优势及应用实例。本届色谱年会受到了多家仪器厂商的赞助,包括岛津、安捷伦、赛默飞、纳微科技、成都科林、珀金埃尔默、东曹、日立科学仪器、中仪宇盛、海光、明尼克、天美仪拓、成都珂睿、北分瑞利、皖仪科技等。各家厂商在会议上展示了各自的产品,吸引了大量与会者驻足。参会厂商
  • 制药生产工艺核查拉开帷幕
    12月23日,国家食药监总局药品审评中心发布《关于对已上市药品生产工艺信息登记模板公开征求意见的通知》。通知发布了中药、化学药品和生物制品的生产工艺信息登记模板(征求意见稿),这暗示着国家食药监总局对药品的生产工艺核查要正式开始了!  生产工艺核查风暴开启!  早在今年8月11日,国家食药监总局发布《关于开展药品生产工艺核对工作的公告》(征求意见稿),要求药品生产企业自公告发布之日起对每个批准上市药品的生产工艺(中药为制法)开展自查,排除质量安全隐患。药企应于2016年10月1日前完成自查并上报自查情况。  根据当时的公告,对于药企的自查结果,应分别采取以下处理措施:  1、实际生产工艺与批准生产工艺一致  药品生产企业应将自查情况报告与药品生产工艺等资料一并归档,作为监管部门开展日常监管、现场核查的备查资料。  2、实际生产工艺与批准生产工艺不一致  要求开展充分的研究验证。  生产工艺变化对药品质量不产生影响的,药品生产企业应按照《药品注册管理办法》提出补充申请。  生产工艺变化对药品质量产生影响的,企业应立即停产。  药品生产企业应于2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作,其他暂不生产品种应于2017年12月31日前完成上述工作 未按时完成的,应停止生产。  停产大潮要来了?  从以上信息看来,此次公布中药、化学药品和生物制品的生产工艺信息登记模板,是为了让药企在2017年6月30日前完成在产品种生产工艺的研究验证、提交补充申请等相关工作提前做准备。只有半年的时间,对于药企而言,如果被查实际生产工艺与批准生产工艺不一致,将很可能面临停产的处理。  有业内人士表示,因为药企当初申报一种药品时,其工艺流程等是按照实验室的数据上报的。在实际投入生产时,由于环境和设备的变化,药品的稳定性可能会出问题,这时药企就不得不对工艺做调整,从而获得相对正确的数据应对飞检以及其他各种检查。  此外,在新版GMP的软、硬件要求和严格的飞检下,对于制药企业而言,利润剧减也是必须直面的问题。很多中小药企一旦正规操作,在利润面前就显得完全没有竞争力。因此,就有了简化生产流程、篡改生产工艺等不合规行为。这些问题,在本轮生产工艺核查风暴中都很可能会被暴露。  如今,在国家食药监总局各种飞检下,大力打击药品生产工艺问题过程中,肯定会有不少药企在飞检严查中暴露问题,在即将到来的2017年,会迎来大批药企的停产大潮吗?我们拭目以待。  附:生产工艺信息登记模板(生产工艺信息基本要求)  中药生产工艺信息基本要求:  1.提供完整的生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准要求的产品。详细的生产工艺可附后(必要时可以图表的形式表示)。  2. 应根据实际生产所用的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,明确商业生产批量范围。  3.根据实际生产情况,明确各步工序的规模范围以及收率范围。  4.按单元操作过程描述工艺,明确投料量、操作流程、工艺参数和范围、生产过程质控的检测项目及限度。  5.在描述各单元操作时,建议根据剂型特点及具体品种的实际情况撰写,并关注以下内容:  1)前处理:明确药材(饮片)前处理的方法和条件,明确处理后饮片(药粉等)的保存时间和条件等。  2)提取:明确提取方法及条件,提取用溶媒的种类、用量,提取次数,提取温度、时间,提取液过滤的方法及条件等。  3)浓缩:明确浓缩的方法、条件,如温度、压力的范围,浓缩过程允许的最长受热时间等。明确浓缩液的相对密度,明确浓缩液或浸膏的得率范围。  4)纯化:明确纯化的方法及条件,详述相关工艺参数。  5)干燥:明确干燥的方法、条件及设备等,明确得率范围。  6)制剂工艺:明确制剂处方,详述成型工艺的方法及参数,包括原辅料的加入方法、条件和投料顺序,以及成型方法及条件等。  6.其他事项  1)对于不连续工序,应注明物料的存放条件及允许存放时间。  2)对于无菌制剂,应详细描述原辅料的预处理、直接接触药品的内包装材料等的清洗、灭菌、除热原等 详细描述除菌/灭菌的工艺过程及参数,包括灭菌温度、灭菌时间和目标F0值,初滤及精滤的滤材种类和孔径、过滤方式、滤液的温度与压差、流速等。  3)企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格。  化学药品生产工艺信息基本要求:  1.提供完整的反应式和生产工艺。生产工艺描述应与工艺规程内容一致,应能使经过培训的专业技术人员根据申报的生产工艺可以完整地重复生产过程,并制得符合其质量标准的产品。  2.应采用与商业生产一致的生产线和生产设备,存在多个生产线的情况应按生产线分别列出,批量应在商业生产批量范围内。  3.按商业生产规模投料 并注明各步工序的规模及收率范围。  4.按单元操作过程描述工艺,包括各单元操作的反应方程式,所用物料的投料量及投料比(或摩尔比),工艺操作、工艺参数及参数的控制范围、生产过程质控(包括反应终点控制)的检测项目、方法及限度,中间体的检测项目、方法及限度。  5.在描述生产工艺各单元操作时,注意:  (1)对于非化学合成原料药,可根据其工艺特点,参照上述要求对工艺步骤及操作进行详细的描述。  (2)对于不连续下个工序,应注明存放条件及允许存放时间。  (3)对于无菌原料药,应详细描述相关物料的无菌处理、除菌/灭菌的工艺过程及控制参数。  6. 企业需填写实际生产批量,如有多个批量,可增加数据列。如单个表格无法容纳,可按当前格式新增表格.
  • CFDA征求《关于药物临床试验数据核查有关问题处理意见的公告(修改稿)》意见
    p   国家食品药品监督管理总局起草了《关于药物临床试验数据核查有关问题处理意见的公告(征求意见稿)》,于2016年8月19日至9月18日首次向社会公开征求意见,共收到制药企业、医疗机构、合同研究组织和行业协会等单位以及个人反馈意见280条。国家食品药品监督管理总局结合反馈意见进行了修改。 /p p   在修改过程中,国家食品药品监督管理总局坚持按照法律法规要求,明确政策界限,严肃查处注册申请中临床试验数据造假行为 同时,又从实际出发,区别并非主观故意及其他客观情况影响判定的,给予补救措施。采纳了合理意见建议,主要归纳有6项: /p p   一、对于数据造假的行为,不列入漏报可能与临床试验用药相关的严重不良事件和漏报试验方案禁用的合并药物等情况。 /p p   二、对于药物临床试验数据造假的申请人在被处罚期间所涉及品种,如确属临床急需,可以提出特殊申请,国家食品药品监督管理总局组织专家论证后作出是否受理的决定。 /p p   三、对于数据造假所涉及的药物临床试验机构,由临床试验机构限期整改调整为所涉及专业限期整改。 /p p   四、对于数据造假所涉及的主要研究者,参与研究所有已受理的注册申请由不予批准调整为暂停审评审批。 /p p   五、对于数据造假涉及的品种,明确处理相关人员的程序,调整向社会公布和列入黑名单的内容。 /p p   六、对于处理及当事人的复议,增加相关内容,明确具体程序和途径。 /p p   未采纳的意见建议归纳有3项: /p p   一、建议根据发现数据造假的比例处理,在比例较小时不进行行政处罚。法律法规规定是根据违法行为本身的性质来定性,具体数量是情节问题。国家食品药品监督管理总局药物临床试验数据核查发现数据造假后终止了核查进程,在未完成全部药物临床试验数据的核查情况下,并不能保证其他数据的真实。用发现数据造假比例进行处理,法律依据不足。对此项意见未予采纳。 /p p   二、建议仅对数据造假的临床试验机构和研究者进行处罚,不对申请人处罚。根据法律法规规定,申请人提出药品注册并承担相应法律责任。申请人是开展药物临床试验的委托人和受益人,必须保证注册申请中临床试验数据的真实、完整和规范,是相关法律责任主体。对此项意见未予采纳。 /p p   三、建议黑名单中不列入具体监查员信息。建立黑名单制度,将名单具体化,强化对具体监查人员的责任追究并向社会公开,是促进申请人监督药物临床试验项目实施责任的有效落实措施。对此项意见未予采纳。 /p p   国家食品药品监督管理总局现将修改后的《关于药物临床试验数据核查有关问题处理意见的公告(修改稿)》再次向社会公开征求意见。请于2017年4月21日前将有关意见以电子邮件形式反馈国家食品药品监督管理总局药品化妆品注册管理司。 /p p   联系人:罗小文 /p p   电子邮箱:luoxw@cfda.gov.cn /p p & nbsp & nbsp 全文如下: /p p style=" text-align: center "    span style=" color: rgb(0, 112, 192) " strong 关于药物临床试验数据核查有关问题处理意见的公告(修改稿) /strong /span /p p   据《国务院关于改革药品医疗器械审评审批制度的意见》(国发〔2015〕44号)的有关要求,针对部分药品注册申请中的临床试验数据不真实甚至弄虚作假问题,2015年7月22日国家食品药品监督管理总局发布《关于开展药物临床试验数据自查核查工作的公告》(2015年第117号),组织对已申报生产或进口的待审药品开展临床试验数据核查工作。此后,国家食品药品监督管理总局先后发布了《关于8家企业11个药品注册申请不予批准的公告》(2015年第229号)、《关于14家企业13个药品注册申请不予批准的公告》(2015年第260号)、《关于7家企业6个药品注册申请不予批准的公告》(2016年第92号)。上述公告中所述药物临床试验活动中存在的数据不真实、不完整和不规范等问题,违反了《中华人民共和国药品管理法》及其实施条例和《药物临床试验质量管理规范》(GCP)的有关规定,给药品安全性、有效性带来隐患,严重影响公共安全。现将药物临床试验数据核查中发现的有关问题的处理意见公告如下: /p p   一、申请人、药物临床试验机构和合同研究组织的责任: /p p   (一)申请人是药品注册的申请者和权利人,必须保证注册申请中临床试验数据的真实、完整和规范,监督临床试验项目的实施,对所报申请资料及相关试验数据可靠性承担法律责任。 /p p   (二)研究者受申请人委托具体实施临床试验项目,必须保证试验行为符合GCP规定,保证试验数据真实、完整、规范及可溯源,对临床试验数据真实性、完整性、规范性承担直接法律责任。临床试验机构是药物临床试验项目直接管理者,对临床试验数据的真实性、完整性和规范性负有管理监督责任。 /p p   (三)临床试验合同研究组织受申请人委托,承担临床试验相关工作,对临床试验数据真实性、完整性、规范性承担法律及合同约定的责任 对其出具的相关报告和数据承担直接法律责任。 /p p   二、违反GCP第六条、二十条、二十六条、二十七条、四十条、四十八条、四十九条、六十二条等规定的下列行为之一的,属于数据造假: /p p   (一)编造或者无合理解释地修改受试者信息以及试验数据、试验记录、试验药物信息 /p p   (二)以参比制剂替代试验组用药、以试验组用药替代参比制剂或者以市场购买药品替代自行研制的试验用药品,以及以其他方式使用虚假试验用药品 /p p   (三)隐瞒、弃用或者以其他方式违反试验方案的选择性使用试验数据 /p p   (四)瞒报可能与临床试验用药相关的严重不良事件 /p p   (五)瞒报试验方案禁用的合并药物 /p p   (六)故意损毁、隐匿临床试验数据或者数据存储介质 /p p   (七)其他故意破坏药物临床试验数据真实性的情形。 /p p   三、核查发现申请人、药物临床试验机构、合同研究组织的直接责任人和主要研究者有第二条所列数据造假行为的,由国家食品药品监督管理总局依法按以下原则处理,涉嫌犯罪的,移交司法机关处理: /p p   (一)对于2015年11月11日《关于药品注册审评审批若干政策的公告》(国家食品药品监督管理总局2015年第230号,以下简称第230公告)发布后核查发现的药物临床试验数据造假,依据《中华人民共和国药品管理法实施条例》第六十五条规定,对药物临床试验数据造假的申请人,自行政处理或者行政处罚决定作出之日起,三年内不受理其申报该品种的药品注册申请。 /p p   (二)对第230号公告发布后核查发现的药物临床试验数据造假的申请人,自行政处理或者行政处罚决定作出之日起,一年内不受理其所有药品注册申请,已经受理的不予批准。 /p p   在被处罚期间申请人如有确属临床急需的药物上市,可以根据有关规定提出申请,由国家食品药品监督管理总局药品审评中心(以下简称药审中心)组织专家论证后,报国家食品药品监督管理总局作出决定。 /p p   (三)对第230号公告发布后核查发现的药物临床试验数据造假所涉及的临床试验机构,责令所涉及专业限期整改,整改期间不得再承接药物临床试验,已承接的药物临床试验不得入组新病例 整改完成前不接受其参与研究的申报资料。药物临床试验专业整改完成后应委托第三方机构审查评估,并向国家食品药品监督管理总局提出申请,检查通过后恢复临床试验资格 检查不通过的,取消其临床试验资格。 /p p   对主要研究者参与研究的所有已受理注册申请暂停审评审批。 /p p   临床试验机构同一个专业有两个及以上临床试验出现数据造假行为的,其专业完成临床试验的所有已受理注册申请暂停审评审批。 /p p   临床试验机构有三个及以上临床试验出现数据造假行为的,吊销临床试验机构的资格,其机构完成临床试验的所有已受理注册申请暂停审评审批。 /p p   (四)有第二条所列数据造假行为的品种,国家食品药品监督管理总局将直接处理其申请人的法定代表人以及在药品注册申报资料上签署姓名的相关责任人。如申请人认为有其他责任人时,可在本公告发布一个月内向国家食品药品监督管理总局报告详细情况并注明其所负责任,国家食品药品监督管理总局核实后一并进行处罚。 /p p   (五)对于本条第三项暂停审评审批的具体品种,由国家食品药品监督管理总局通知申请人,并向社会公开。申请人接到通知后15日内向国家食品药品监督管理总局提出撤回申请的,视为主动撤回申请,按主动撤回有关政策处理。申请人认为其临床试验数据真实,能够作出合理解释并提供证据证明的,可以向国家食品药品监督管理总局提出现场核查申请 经核查情况属实的继续审评审批,不属实的将依法查处。 /p p   (六)对临床试验数据不完整、不规范,不足以证明药品安全性和有效性的,其注册申请不予批准 仅存在数据不规范,通过补充资料可以完善的,由国家食品药品监督管理总局要求申请人一次性补充,补充后按程序进行审评审批。 /p p   (七)根据第二条认定的药物临床试验数据造假的药品注册申请人及其组织机构代码以及项目负责人、监查员和其他直接责任人名单,临床试验机构名单和组织机构代码以及研究者和其他直接责任人名单,合同研究组织名单和组织机构代码以及项目负责人、监查员和其他直接责任人员的名单信息,在国家食品药品监督管理总局作出处罚决定时一并向社会公布,并列入黑名单。 /p p   四、有下列情形之一的,责令药物临床试验机构整改,整改期间不得再承接药物临床试验,已承接的药物临床试验不得入组新病例 不按要求整改的,依法查处。 /p p   (一)未经受试者知情同意,或者受试者未签署知情同意书,即违背方案对受试者开展临床试验相关操作的 /p p   (二)明知临床试验过程中可能存在安全隐患,仍未采取有效措施切实保护受试者,影响受试者安全的 /p p   (三)试验用药品保存、使用不当,影响受试者安全的 /p p   (四)擅自将药物临床试验某些工作委托给无相关资质的单位或者人员,影响受试者权益、安全以及药物临床试验结果的 /p p   (五)其他违反相关法律法规和药物临床试验质量管理规范开展临床试验,明显影响到受试者权益、安全以及药物临床试验数据质量的情形。 /p p   五、从重、从轻、减轻和免除处罚的具体情况。拒绝、逃避、阻碍检查的,依法从重处罚,列入黑名单 积极配合监管部门调查核查工作、及时说明和处理存在问题的注册申请的,可依法从轻或者减轻处罚。 /p p   按照国家食品药品监督管理总局的公告要求,主动开展自查,主动报告问题,主动撤回申请的,可以免除行政处罚: /p p   (一)申请人在核查前主动撤回注册申请的,依据《关于药物临床试验数据自查情况的公告》(国家食品药品监督管理总局公告2015年第169号),可以免于行政处罚 申请人可以按照《关于药物临床试验数据自查核查撤回品种重新申报有关事宜的公告》(国家食品药品监督管理总局公告2016年第113号)有关要求重新开展或者补充完善临床试验。 /p p   (二)临床试验机构、合同研究组织自查发现数据不真实的,主动将具体品种、申请人的名称以及不真实的具体问题向国家食品药品监督管理总局和所在地省级食品药品监督管理局报告,同时告知申请人的,可以免除行政处罚。 /p p   在现场核查计划网上公示之前,国家食品药品监督管理总局将不真实的数据所涉及的品种情况通知药品注册申请人,申请人在接到通知15日内向国家食品药品监督管理总局和所在地省级食品药品监督管理局提出撤回申请的,按主动撤回处理 未提出撤回的申请,并且在国家食品药品监督管理总局现场核查中查实临床试验机构和合同研究组织报告存在问题的,依法从重查处。 /p p   六、处理及当事人的救济权利。 /p p   对数据造假违法行为的处罚,由国家食品药品监督管理总局稽查局会同食品药品审核查验中心(以下简称核查中心)、药审中心以国家食品药品监督管理总局名义作出决定 涉及完整性、规范性问题的处理,由国家食品药品监督管理总局药品化妆品注册司会同核查中心、药审中心以国家食品药品监督管理总局名义作出决定。处罚决定作出前,将书面听取当事人的陈述申辩,当事人应当于3日内提出。当事人的解释及接受解释的情况,在作出处罚决定时一并向社会公开。处罚决定作出后,当事人不服的,可以依法申请行政复议,由国家食品药品监督管理总局组织复议。必要时可以进行听证或者听取专家咨询委员会的意见。 /p p br/ /p
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制