当前位置: 仪器信息网 > 行业主题 > >

色谱气路控制装置

仪器信息网色谱气路控制装置专题为您提供2024年最新色谱气路控制装置价格报价、厂家品牌的相关信息, 包括色谱气路控制装置参数、型号等,不管是国产,还是进口品牌的色谱气路控制装置您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱气路控制装置相关的耗材配件、试剂标物,还有色谱气路控制装置相关的最新资讯、资料,以及色谱气路控制装置相关的解决方案。

色谱气路控制装置相关的论坛

  • 气相色谱中的电子流量控制装置概述

    1 概述[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。无论使用什么样的名词,一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气(以及氢气、空气等各种辅助气体)进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量;同时,也可以有更多的流量/压力操作模式,如使用压力编程、流量编程等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/85/8b/5858b3500c995683ff3ef85201d0e334.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/02/52/50252701047c00b67f30eef56f064434.png[/img]国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,早期多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/06/cf/206cf3f6eff14718ef9d9bd8abc8be8e.jpeg[/img]上述模式主要应用于单气路通道的填充柱载气控制、检测器的燃气(氢气)、检测器的助燃气(空气)以及尾吹气的使用上;对于毛细柱进样口等需要多气路通道(载气、分流、隔垫吹扫)的结构而言,初期时候是将多个上述模块分别安装的载气、分流、隔垫吹扫气路上,但是实际使用效果很差;后期则逐渐在模块中安装压力传感器,使用压力控制柱前压和毛细柱的载气流量,使用上述模块控制分流流量;目前,多数厂家已经抛弃上述模式,逐渐转向多气路通道(载气、分流、隔垫吹扫)整体和关联调节的集成式的气路模块。二 组成部件和简单的工作原理使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/56/55c562d04af13eec09a42850ee170c6a.png[/img]其中:气路部件用以气体穿过,同时在气路部件上安装比例阀、流量传感器、压力传感器等其他部件;气路部件一般为金属材质;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/be/63/3be636931161170518396a8f833014ba.png[/img]比例阀通过调节开度的大小来调节出口处的流量或者压力;[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bd/5e/2bd5eed5a52e4b81c88d76c8bdfd5be3.png[/img]流量传感器用以测量比例阀前或者比例阀后流量的大小;压力传感器用以测量比例阀前或者比例阀后压力的大小;在一个电子流量控制模块中,可能只安装流量传感器或者压力传感器,也可能两者同时安装。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/3c/ec/63cec76faee1a7d47079b33fad1de5bf.png[/img]另外,在出口之后根据实际需要,还可能安装有气阻等部件电子流量装置工作的简单原理是:控制电路获取仪器设定的流量或者压力的数值,通过比较压力传感器或者流量传感器的实测值,来调节比例阀的开度大小,从而使设定值和实测值相同。以上是本节的全部内容,在随后的文章中将介绍电子流量控制装置的具体工作模式和其他相关内容,敬请关注

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 气相色谱仪中气路辅助控制

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]说的气路复制控制是什么意思,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]安装六通阀进样,还需不需要安装进样口,色谱柱直接连接到六通阀上,六通阀来回切换,时间长了会不会使色谱柱连接处松动,辅助气路控制需要安装几路,请教

  • 升级试验机的拉伸装置中的控制器

    改造升级方案加热炉的改造将原有的一个固定对开式电阻加热炉,改造升级为两个移动对开式电阻加热炉。具体改造方法是在试验机上增加旋转臂炉架,如所示。旋转臂炉架分前臂和后臂两部分,分别与试验机底座上的立柱和加热炉连接。通过调节旋转臂炉架的位置不仅能相对试验机调整加热炉的高度,而且能方便地将高温炉炉膛和试验机的夹头中心轴线调整到适当的位置。  可旋转的对开式电阻加热炉示意图两个可移动对开式电阻加热炉的主要参数如下:外形尺寸320mm440mm,炉膛尺寸80mm320mm,均热带150mm,加热炉上、中和下三段发热体(镍铬电热合金丝)的直径均为1.0mm,绕制成螺旋体。加热炉上、中和下三段发热体的最大功率分别为1000,2000和1000W,试样上绑扎热电偶(K型热电偶)与加热炉上、中和下三段发热体和各段温度控制器对应。高温拉伸夹具的改造改造前拉杆和试验机保持相对的固定关系,在进行完一次高温拉伸试验后要等待高温拉杆冷却到室温状态(或接近室温)后,才能进行下一次高温拉伸试验的控温过程。为提高工作效率,对试验机的高温拉伸夹具也进行了改造。重新设计了高温拉伸夹具,在夹具的上部分增加隔热板,在隔热板上增加可以调节高度的悬挂固定杆,从而有效地解决了高温拉杆和试验拉棒在高温环境中产生的热膨胀变形问题。悬挂固定杆(根据不同试样的长度调节以保证试样位于加热炉的中央)可以保证高温夹具位置在高温炉中保持相对固定,解决了不同试样造成的在加热炉内的相对位置不同的问题,提高了控温过程中的精度。另外,加入悬挂固定杆后,相当于增加了一个把手,实现了在高温试验过程结束后将已拉断试样快速拿出,将另一支含有高温试样的拉杆装入加热炉内,从而有效地提高了加热炉的利用效率。  同时把以上设计为两个可以移动的加热炉,在试验机后侧两端分别增加一个支柱,可以再次提高一倍的工作效率。最后,将高温夹具设计为上下两部分可以与拉伸试验机分离的结构部件,待保温结束后再与拉伸试验机连接进行高温拉伸试验,其他时间可以利用该试验机进行常温拉伸等试验,从而可以实现试验机的最大利用率。温度控制器的升级该试验机高温装置原温度控制仪表功能很简单,主要存在如下缺点:由于其控制方式为加热、保持和停止三位式控制,存在着温度控制波动大、温度控制精度差和加热功率不可调节等缺点,因而能源浪费大,加热效率低;该温度控制仪表老化严重,存在着温度控制失灵等故障,仪表控制精度难以满足相关高温拉伸试验标准的精度要求,而且此仪表要求日常频繁维护。因此,对试验机高温拉伸装置中的温度控制器进行了升级,优化了控制器的控制参数。通过调研,笔者决定采用国产宇电A1-808P仪表替代原控制仪表,主要增加了程序控制和手动调节等方便试验控制的功能。A1-808P仪表属于智能型控制仪表,在整个温度控制中可以人工干涉控制参数,以保证试验的精度要求。在应用人工智能调节算法功能后,能自动学习系统特性。当自整定完成后,虽然初次控制时效果不太理想,但第二次使用时便能获得非常精确的控制。

  • 填充柱进样口的气路控制模式

    1 填充柱进样口的基本结构填充柱进样口的结构相对简单,对于填充柱进样口而言,载气一般从进样器的侧面进入内部,在适配器与壳体之间进行预热;然后载气从适配器的顶部进入适配器内部,将样品带入填充柱。[img]https://img.antpedia.com/cache/wxarticle/dcb153df128bf46d502eb97e0e5c387c.jpeg[/img]2 填充柱的基本控制模式由上图,多数的填充柱进样口只有一路载气进入,然后载气通过色谱柱,最终从检测器流出。常见的填充柱进样口多采用稳压阀+稳流阀的模式进行气体流量控制。简单的示意图如下:[img]https://img.antpedia.com/cache/wxarticle/12bd606e9e7952c6c783a919d0b4a9af.png[/img]稳压阀用于稳定和调节输入仪器之后的气体压力;稳压阀后的压力表则显示输入压力的大小,输入压力的大小可以通过稳压阀来调节。一些仪器中稳压阀在出厂前调好,其后不再安装压力表。稳流阀则用于调节通过色谱柱的载气流量;稳流阀后的压力表则显示色谱柱的柱前压,柱前压的大小可以通过稳流阀来调节。在恒温条件下,柱前压和色谱柱流量是正相关对应;在程序升温条件下,随着色谱柱温度的升高,色谱柱的柱前压升高,但是流量保持不变。3 简化版的填充柱控制模式以上连接方式为多数厂家使用的填充柱进样口的流量/压力控制方式。也有一些厂家出于各种各样的原因采用其他模式来进行流量/压力控制,常见的有两种:3.1 只使用稳压阀的模式一部分厂家设计的填充柱气路,秉承填充柱只能使用恒温分析的思路,只使用稳压阀来控制流量/压力,这种情况下,在恒温分析时可以保持色谱柱流量不变,在柱箱升温时,柱前压保持不变,色谱柱流量降低。[img]https://img.antpedia.com/cache/wxarticle/968c8431251ea8c3f2634b3c8441bd09.png[/img]该种模式下通过调节稳压阀来控制色谱柱柱前压;需要注意的是,如果仪器中还有其他载气气路(如尾吹气),则需要连接在图示中的稳压阀之前,并且应当在连接处之前具有额外的稳压装置(稳压阀)。3.2 只使用稳流阀的模式部分厂家的填充柱进样口的仪器内部气路中只有稳流阀,见下图:[img]https://img.antpedia.com/cache/wxarticle/b4c0f7f5a6a3c8fd87a58678dbf33bf4.png[/img]稳流阀在工作时候,为了保证其流量稳定,需要在其前安装稳压阀。部分厂家采用上图模式的原因在于要求钢瓶采用双级减压阀,用钢瓶的双级减压阀代替仪器本身的稳压阀——本质上还是稳压阀+稳流阀模式。该种模式可以参见下图气路图:[img]https://img.antpedia.com/cache/wxarticle/4af6fdfcf7450ff73c83a12b9ac865f1.png[/img]4 带隔垫吹扫的填充柱进样口目前市面上存在带隔垫吹扫的填充柱进样口,其流路仍然是采用稳压阀+稳流阀的模式,主要改变是增加了针型阀来控制隔垫吹扫的流量。4.1 带隔垫吹扫的填充柱进样口的基本结构带隔垫吹扫的填充柱进样口的基本结构见下图:[img]https://img.antpedia.com/cache/wxarticle/8ceb758361d1a79e554df8cc4dde2c27.jpeg[/img]4.2 带隔垫吹扫的填充柱进样口的气路控制如下图,在隔垫吹扫出口安装针型阀控制隔垫吹扫流量。[img]https://img.antpedia.com/cache/wxarticle/171ed6b57e534b03f97228f2ec583d51.png[/img]该种控制模式下:在恒温条件,柱前压保持稳定,柱流量和隔垫吹扫流量不会发生变化;在升温条件,柱前压升高,总流量(经过稳流阀的流量)不变,隔垫吹扫流量会增大,柱流量会有些许的变化。当然,如果填充柱进样口采用了本文中3.1的模式——柱前压采用稳压阀控制的话,如果在隔垫吹扫出口安装针型阀控制隔垫吹扫流量,那么:在恒温条件,柱前压保持稳定,柱流量和隔垫吹扫流量不会发生变化;在升温条件,柱前压不变,总流量(经过稳压阀的流量)变小,隔垫吹扫流量不变,柱流量会变小。以上是填充柱进样口的气路控制模式的全部内容。填充柱进样口气路简单,常见的控制模式采用稳压阀+稳流阀的方式,了解控制模式中各个部件的作用,可以熟练地的对填充柱的色谱条件进行调节和设定

  • 冷水机制冷装置控制方式的设计

    在冷水机的实际运行中,由于外界条件的变化,热负荷和设备运行参数都会不断地波动变化,这就必须对整个冷水机制冷装置进行及时准确的调节,以保证冷水机制冷装置在安全、稳定和经济合理的条件下运行。 随着科技的发展,现在冷水机制冷系统中已经应用各种自动化装置。按照自动化程度的不同,大致分为:1、手动控制配合安全保护装置。2、局部自动控制:在实现安全保护的基础上,增加液泵回路和蒸发器回路的自动控制,它可以提高调节精度,稳定被冷却对象温度,节省能耗。目前,国内对冷库的局部控制应用越来越多,已经总结了成熟的设计管理阶段。3、半自动控制:除了局部控制内容外,主要体现在压缩机的自动启停和能量调节上。4、全自动控制:除了半自动控制的内容外,还实现辅助设备操作及湿度等自动控制,如制冷装置自动加油、自动放油、自动放空气、自动调节冷凝器冷却水量等。5、最佳工况调节控制:所控制的参数不是一个确定的数值,而是引入微型计算机随着实际运行条件的变化,按输入的程序对各种条年作出判断,从预定的同种工况中选出相对节能效率高的一种工况进行控制,使系统保持在最佳工况运行。这种控制方式要求对制冷装置运行有更深的认识,建立合理的数学模型,开发出更好的控制模式,这样才能使制冷装置的控制和节能提高到更高的水平。 随着自动控制程度的提高,控制精度越来越高,冷水机制冷产品质量也随之提高,装置能耗随之降低,同时还有效地降低了操作人员的劳动强度,防止事故发生,保障操作人员人身安全。但设备一次性投资将增加,装置的维护检修也将更加复杂。因此,在选择控制方式时,不要盲目追求自动控制的程度,而要从节能、经济、操作和维护等实际因素来综合考虑。

  • 气相色谱流量与压力控制系统概述

    1 概述在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,我们需要各种各样的气体供应用以保证仪器的正常运行,例如需要载气以一定的流速将气体样品或经气化后的样品带入色谱柱进行分离,需要空气(助燃气)、氢气(燃气)来保证氢火焰离子化检测器的燃烧,并需要氮气(尾吹气)稀释火焰调节灵敏度。根据塔板理论和速率理论,载气的流速/流量(两者具有一定的对应关系,下文根据习惯称之为流速或者流量)的不同会带来分离度和柱效的变化;对于氢火焰离子化检测器(FID)而言,空气、氢气和氮气的流量比例需要控制在大致10:1:1,常用的流量为300:30:30(mL/min)。更多的,对于进样口而言,载气、分流和隔垫吹扫流量的调节会影响分析结果;对于火焰光度检测器(FPD),空气、氢气和氮气的流量的不同会引起检测器出峰变化或者完全没有响应;电子捕获检测器(ECD)的尾吹气大小会影响峰宽和灵敏度等等。因此而言,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,载气流速/流量的控制显得尤为重要。那么,应当如何进行载气流速/流量的调节呢?2 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的流量/压力控制的装置类型一般而言,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器内部涉及到气体控制的描述,都是以流量的数值和描述来表示;涉及到压力的描述,常见的就是柱头压(又称之为柱前压)。柱头压指的是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]进样口处的压力,在色谱柱和温度条件固定的情况下,一定的柱头压对应的色谱柱的流量值是固定的。本文为了描述方便,暂时不具体区分两者的细节,详细内容将在后期的文章中介绍;本文中,流量/压力控制是一个整体概念。对于目前市面上常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],其流量/压力控制采用的控制装置一般分为两类:即手动调节流量/压力的机械阀控制系统和可以自动调节流量/压力的电子流量控制系统。2.1 机械阀控制系统目前来说,国内外厂家都可以提供使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/c4/5c/1c45c142c2d1fccc90fb1fadde70318e.png[/img]使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等。以进样口的流量/压力控制而言,具有稳流阀-背压阀、稳流阀-针型阀、稳压阀-背压阀和稳压阀-针型阀等多种类型。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ff/ff/affff8f6361ed469d2887a3e9d0b009f.png[/img][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器从诞生到现在的几十年时间中,使用机械阀进行流量/压力控制具有强大的生命力,一直未曾中断。其特点是性价比高、控制稳定;但是流量/压力调节较为繁琐,受到外部环境(如温度)的影响较大。2.2 电子流量控制系统目前来说,国内外厂家都可以提供使用电子流量控制装置进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器。相对而言,国外厂家起步较早,发展更为成熟一些。使用电子流量控制装置进行流量/压力控制的装置和技术,岛津称作AFC和APC,安捷伦称作做EPC,瓦里安称作EFC,PE则称之为PPC。一言概括,就是可以对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的载气进行自动化的流量设定和压力设定,避免了重复性的、简单繁琐的使用皂膜流量计手动测定流量。2.2.1 电子流量控制装置发展的国内外趋势1984年,HP公司率先推出了电子气路控制器(EPC),尽管当时的压力调整精度仅0.1psi,线路连接比较复杂,气路接口多,体积较大,但它却大大提高了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析的方便性和数据结果的质量。随着科技的发展,Agilent公司相继推出了第二、三、四、五代EPC,压力调整精度提高到0.001psi,采用金属注射成型(3D)和数字化信号通路,数字化设定所有气路参数(包括进样口和检测器气路),可安装6路EPC模块,实现16个通道的EPC控制。通过精确EPC气路控制,使流量和压力精确稳定,实现了保留时间和峰面积高度重复,也使[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]和[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]分析达到前所未有的水平。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/92/e4/b92e4af407ad117ba9863f0b1db0d268.png[/img]国外其它知名色谱仪器厂家,如:Shimadzu、Thermo Fisher、PE、Varian等公司都已推出了带电子流量控制装置的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],如:Shimadzu GC-2010,Varian 3800,PE Clarus 680等。尽管这些仪器价格比较昂贵,仅仪器主机价格就高达8~12万元,但由于采用了电子流量控制装置,自动化程度高,从而使其在高端市场的仪器中具有很大的竞争优势,并因此成为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]招标中的一个门槛。国内厂家对应用于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的电子流量控制装置的研究起步较晚,多集中在单个比例阀和传感器构成的简单电子流量控制模块的使用上,类似于质量流量计的模式。2005年,国产首款采用电子程序压力流量控制(EPC)系统的GC 128型全自动[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在上海精密科学仪器有限公司诞生,并于同年8月通过了上海市科委专家组的验收。该仪器是上海市科委下达的科技攻关项目,由复旦大学和上海精密科学仪器有限公司合作完成,实现了载气流量控制(EFC)、柱头压力控制(EPC)和检测器气体控制(PPC)。但只能对氮气和氢气两种气体实现控制。作为国家“十一五”科技攻关项目,浙江福立分析仪器有限公司实现了毛细管进样系统的EPC控制技术。GC-9710型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的压力控制精度高达0.0015psi,具备恒压/程序升压(8阶)、恒流/程序升流四种模式。北分瑞利在2009年推出的SP-2020型[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也配备了载气和辅助气的电子流量控制,虽采用的是市售的EPC和MFC模块,但实现了压力和流量的计算机软件反控,提高了整体仪器的自动化程度。另外,北京东西分析的GC-4100、上海天美的GC7980,常州磐诺的A90、A91也都具有电子流量控制装置,并在市场上开始销售。此外,单独的电子流量控制模块也受到国内外非色谱厂家的关注,电子压力控制器和质量流量控制器作为成熟商品已推向市场。例如,美国PARKER公司已有成熟的微型电子压力控制器,而且有专门为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]设计的模块(下图)。国内也有多家单独开发电子流量控制装置的厂家,如杭州浩海等。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/46/5a/8465af294507f122ff59c61cdd51c3fc.png[/img]2.2.2 电子流量控制装置的作用和功能使用机械阀控制[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的流量/压力,以毛细柱进样口为例,在进样模式上只能实现分流模式和完全不分流模式,一些厂家通过改装气路可以实现不分流进样;在控制方式上可以实现恒压(恒定柱头压)控制,如果色谱柱程序升温,那么分流流量就会发生变化。如果采用功能完善的电子流量控制,对于初学者而言容易上手,可以迅速了解仪器和进入工作。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/bb/50/abb5089df37e5b85f6eccd08d669c664.png[/img][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/3e/fae3eb16ed713166ef1aa583ec761781.png[/img]另外,采用电子流量控制,一方面可以在仪器或者工作站上快速实现流量、压力的设定;另一方面,可以实现分流进样、不分流进样和完全不分流进样、大体积进样等多种进样模式,同时可以实现恒定压力、恒定流量,程序压力、程序流量等控制模式。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/da/b5/0dab5c0a1402d6280f9402c6d2deaa10.png[/img]2.3 其他方式在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析过程中,涉及到不同的分析方法时候,更改最多的是进样口的参数——载气、分流和柱前压参数。检测器的温度、流量则更改较少。因此,为了节省成本和便于推广,一些厂家推出了简化版的自动化控制仪器,主要包括两种:2.3.1 采用机械阀+流量传感器这种配置应当算是机械阀控制的简单升级版。其主要改变是在需要读取流量的管路上加装流量传感器,可以直接读出流量数值,避免了采用皂膜流量计进行测定的繁琐。这种技术只能用来直接读取流量参数而不能在仪器操作面板上设定流量参数。目前市面上岛津的GC Smart(GC-2018)便采用了这种模式,厂家宣传称之为AFM(AdvancedFlow Monitoring)技术,省去以往繁复的计算,轻松获得流量比和分流比。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d1/0a/dd10afaaf62e56fd006354eafd0269ac.png[/img]2.3.1采用电子流量控制+机械阀该种配置是电子流量控制控制的简化版。其主要特色是,在需要经常调节流量/压力的进样口处采用电子流量控制;在较少调节的检测器,如氢火焰离子化检测器(FID)的氢气、空气和氮气处则采用机械阀。这种技术和全部采用电子流量控制的仪器没有太大的区别,主要在于使用户降低采购成本。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器随着时间和科技的发展,变得越来越自动化。但是出于成本和操作的考虑,采用机械阀控制和电子流量控制的仪器均大量存在。具体选用何种控制模式的仪器,要根据实际需要和预算水平来考虑。以上是本次文章的全部内容,在下面几期的文章中,将详细介绍机械阀控制系统和电子流量控制系统的组成、结构和工作原理。敬请关注

  • 电子流量控制装置的流量校准

    一般认为,电子流量控制装置通过压力传感器和流量传感器可以获得相应的压力值和流量值。但实际上,对于从供应商处购买的传感器,都需要进行校准——因为未经校准的传感器测得的数值和实际数值可能并不一致。压力传感器稍微好一些,流量传感器则可能偏差较大。[font=微软雅黑, sans-serif]校准[/font][font=微软雅黑, sans-serif]在计量上的定义是在规定条件下,为确定计量器具示值误差的一组操作。即是在规定条件下,为确定计量仪器或测量系统的示值,或实物量具或标准物质所代表的值,与相对应的被测量的已知值之间关系的一组操作。在本文中,只进行简单的示意和举例,[color=red]说明流量传感器如何使示值接近真实值[/color],可能并不严格的遵循相应的法律和法规,同时与计量上的检定和校准也略有区别。[/font][font=微软雅黑, sans-serif]简单举例,对于未经校准的流量传感器,其信号值对应的流量是30ml/min,但通过精度和准确度较高的流量计测量,其实际流量可能是40ml/min,也可能是25 ml/min。见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/40/7e/a407ea8c51458ec224ca27729516c8e8.png[/img][/align]依上图所示,初始的流量传感器可以依据流量值-信号值做一条曲线(上图右中的实线);实际中,流量传感器在某一确定的信号输出值处,其流量可能会在一定范围内有偏差(上图右中的虚线)。换句话说,对于某一确定的实际流量(如200ml/min,见图中红线),流量传感器的信号输出值可能是3,也可能是3.5 —— 那么,电子流量控制装置流量的校准,指的就是找到其组成部件流量传感器在某一流量时的真正的信号输出值。实际操作中,一般在一定的温度、压力等条件下,为电子流量控制装置/流量传感器设定一个信号值,通过精度和准确度更高的流量计测量其实际流量;通过测定一系列的点形成信号-实际流量曲线,并将其存入电子流量控制装置内部,从而完成电子流量控制装置的流量校准。[align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/ae/f1/2aef1c833fcb9d04d71b14b1f3509ac3.png[/img][/align]简单来说,电子流量控制装置/流量传感器的校准就相当于色谱分析中的标准曲线法:信号值相当于峰面积,气体流量相当于样品浓度。完成校准以后,电子流量控制装置则可以正常工作。当在仪器上设定一定的流量值之后,电子流量控制装置的比例阀调节开度,使流量传感器的信号值达到曲线上设定流量对应的信号值,从而完成调节。以上是本节的全部内容,最后需要说明的是,压力传感器和流量传感器校准的方法类似。对于电子流量控制装置而言,其校准极为重要,保证准确度可以确保分析的重现性,同时也便于分析方法的比较、讨论和移植。

  • 气相色谱进样口压力如何控制

    请问论坛大神,气相色谱柱的柱流量或者柱压力是通过控制载气总流量控制装置控制的吗,还是进样口附近就有流量或者压力控制器啊

  • FID气相色谱流路的EPC压力控制和EFC流量控制哪个更优

    首先说明 :EPC,内部使用压力传感器和电磁比例阀,实现稳定的电子压力控制EFC,内部使用MEMS流量传感器和比例阀,实现稳定的流量控制部分厂家采用EPC和通径来计算的流量控制不在此讨论中。曾经请教过色谱技术人员,对方说氢气和助燃空气采用EFC流量控制合适。色谱柱载气采用EPC控制。论坛里有网友说EFC流量控制精度不高,也有网友说EFC是更新一点的先进技术。我的个人看法是氢气、空气和色谱柱载气使用EFC更好,流量更直观,EPC并不能完全反应流量。但是填充柱和毛细柱的内径差很多,是否毛细柱用EPC压力控制更好?大家怎么看

  • 【原创大赛】气相色谱气路知识(之一)气流控制的基本原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的流动相又称作载气。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的分离作用正是通过目标物在载气与固定相两相之间的反复分配平衡而实现的,是一个动态平衡过程。而推动这一过程的动力正是载气的不断流动。因此,气流的控制是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中需要解决的关键问题,气路控制系统也是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的核心技术之一。 作为检测人员,其工作是使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],而不是维修和制造仪器,因此很多人认为把仪器当做一个黑箱就好了,只需要把样品放进去,然后等报告一个结果出来。其实不然。把仪器当做黑箱来使用,就永远只能进行机械的重复,难以有所突破;只有了解仪器的结构与特性,才能充分发挥仪器的潜力。君不见,运动员都要学习生理学和解剖学,这样才能最充分的提升体能;狙击手要对枪械的结构与性能了如指掌才能够弹无虚发;甚至连厨师也必须对锅的材质、灶的火力了然于心,否则难以烹制出美味。因此,检验人员也是应当对仪器原理与结构有充分了解的。 目前国内关于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的教材与专著甚多,但是对于仪器结构,特别是对于气路控制系统的讲解很少。有些只简单介绍了大致框架,有些讲解的内容较为陈旧,与当前的仪器相去甚远,甚至还有不少脱离实际、以讹传讹的东西出现在教材上,对初学者产生误导。而仪器厂商出于保护商业利益的目的,提供的资料往往对结构细节避而不谈,或者对关键技术遮遮掩掩。为了能够对气流控制的原理的方法有完整的理解、能够更好的使用和维护[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的气路,我对相关资料进行了收集和整理,编订成4个部分的内容,供大家学习参考。 以下为第一篇。.[b]气流控制的基本原理[/b] 流体力学中对于气体的流动有相对庞杂的讨论,涉及到很多复杂的概念和公式。但是作为化学检测的相关人员,在这方面没有必要进行精确的计算,只需要进行定性的理解和半定量的估算就够了。因此这里只对最基本的概念和最简化的公式进行介绍,对于概念只做描述而不下定义,对于数量关系只做估算或者半定量分析。想要深入学习,则需要详细阅读流体力学相关书籍。.[b]1 基本概念(1)气体[/b] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中常用的纯气体有氢气、氮气、氧气、氩气等,混合气体有空气、氩-甲烷(96/4)等。这些气体在常用的工作条件下都可以近似认为是理想气体,服从理想气体状态方程:[align=center][img=,72,21]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702437968_4111_2204387_3.png[/img] 或 [img=,85,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702439346_3131_2204387_3.png[/img] 或 [img=,73,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702437801_1661_2204387_3.png[/img][/align]其中:p为气体压强,V为气体体积,T为气体温度,m为气体质量,ρ为气体密度,M为摩尔质量(混合气体时为平均摩尔质量),n为物质的量。[b](2)流量[/b] 流量是指单位时间内通过某处的气体的多少。气体的多少可以用体积表示,响应的有“体积流量”(用F[sub]V[/sub]表示),也可以用质量表示,相应的是“质量流量”(用F[sub]m[/sub]表示)。虽然也可以用物质的量表示气体的多少,但是实际上很少这样用。 质量流量与体积流量可以通过理想气体状态方程来进行换算,公式如下:[align=center][img=,85,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702442299_7819_2204387_3.png[/img][/align] 虽然通常习惯使用体积流量较多,但应该注意,体积是受压强与温度影响的,不同温度、压强下的体积流量的数值是不同的。因此我们在使用体积流量时,一般必须换算成标态下(101 KPa、25℃)的体积流量F[sup]θ[/sup][sub]V[/sub],这样的流量数据才具有可比性,否则就无法提供参考价值。换算公式如下:[align=center][img=,132,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702440815_5028_2204387_3.png[/img][/align][b](3)压力[/b] 通常所说的压力,本质上应该是指气体压强。压力这一说法并不规范,但习惯上却广泛使用,难以改正过来。我们在使用时应对其真实含义有正确的认识。 另一个要区分的概念是“绝对压力”与“表压”。绝对压力就是指的物理定义上的气体压强。而表压则是压力测量装置显示出的压强数值。由于对于大部分压力测量装置无法测量气体压强的绝对值,只能测得对象与某参考点之间的压强差值,因此必须指定一个参考点。通常都是以大气压作为参考点,所以:[align=center]气体压强 = 表压 + 101KPa[/align]例如,某钢瓶上的压力表显示读书为5MPa,那么钢瓶中充装气体的实际压强应该为5.1MPa;又例如,某色谱仪显示柱前压为80KPa,那么实际上色谱柱前端载气的压强是181KPa。 要注意的是,作为参考点的大气压并不是常数,而会随天气、地理位置发生变化,因此在需要准确计算时不能直接算作101KPa,而是以大气压计实测为准。另外要注意的是,并不是所有的压力仪表都以大气压为参考点,也有少部分仪表的读数是以真空为参考点,所以使用时要注意区别。但是根据习惯,未指明时,表压默认都是以大气压为参考点。 在考虑流量问题时,只测量气路中某一点的压力是不够的,我们一般更加关心的是气路中某两点之间的压差(也叫做压降)。这一点实际上与电路中的电压类似,分析电路时我们更加关心的实际上是电位差,而不是电位的绝对值。对于一段管路,如果在其入口处安装一个压力表,出口处通大气,那么出口处压强是101KPa,入口处压强是表压+101KPa,所以这段管路上的压降在数值上就等于表压。但要明确的是,这只是数值上相等,压强与压降的物理意义是不同的。如果出口压强不是大气压,表压是不等于压降的,必须通过两个压力表同时测定入口和出口压强,相减之后得到管路上的压降。[b](4)阻尼(或者叫做“气阻”)[/b] 无论什么形状的管路,气流在通过的时候都不可能完全畅通无阻,或者说任何管路对气流的流动都有一定的阻碍。这种阻碍作用的大小可以用阻尼来表示。对阻尼的理解,可以类比电阻,电流流过导体时要克服一定阻力,这种阻力称作电阻(一般用R表示);气流流过管路也需要克服一定阻力,这种阻力我们可以较为通俗的称作“气阻”(这里用r表示)。.[b]2 压力与阻尼对流量的影响[/b] 前面对于各个基本概念进行了介绍,其实本质目的是要进一步讨论上述几个量之间的相互关系。前面为了便于理解,多次运用了与电路基本概念类比的方法。这里为了避免引入复杂的流体力学推导过程,仍然采用类比的方法,相关结论虽然并不十分严谨,但基本上是符合原理和实验事实的。需要了解准确结果和严格推导过程的,可以参阅流体力学相关教材。 在电路中,为了使电子流过电阻R,需要通过电势差U来作为推动力。在电势差U的推动作用下,流过电阻R的电流大小为I,符合欧姆定律:[align=center][img=,44,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702445236_1451_2204387_3.png[/img][/align] 类似的,在气路中,为了是气体流过阻尼为r的管路,需要压强差Δp来作为推动力。在压强差Δp的推动作用下,流过气阻r的体积流量大小为F[sub]V[/sub],三者之间的关系与欧姆定律类似:[align=center][img=,61,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702443613_2488_2204387_3.png[/img] 或 [img=,111,41]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702447984_7698_2204387_3.png[/img][/align]其中p[sub]in[/sub]、p[sub]out[/sub]分别为入口气体压强和出口气体压强,k在一定条件下为常数,可通过实验测得。 上述公式并不完全准确,却可以很好的帮助我们理解影响气体流量的因素。根据上述公式可以得到如下结论:.[b]当管路阻力恒定时,维持压差恒定就可以获得恒定的流量。当管路阻力恒定时,通过改变压差可以获得任意需要的流量。当维持压差恒定时,通过改变阻力大小可以获得任意需要的流量。当管路阻力增大时,如果压差维持恒定,流量将减小;反之亦然。当管路阻力增大时,为了维持流量恒定,则必须相应的增加压差;反之亦然。如果维持流量恒定,压差增大可以反映出管路阻力的增大(如堵塞现象);压差减小可以反映出管路阻力的减小(如泄漏现象)。如果维持压差恒定,流量的增大可以反映出管路阻力的减小(如泄漏现象)。;流量减小可以反映出管路阻力的增大(如堵塞现象)对于一个确定管路系统,如果其出口与大气直接相通,则p[sub]out[/sub]为恒定值且已知,此时根据入口压就可以确定其流量。如果其出口与大气没有直接连通,则必须分别测定其入口和出口的压强才能计算其流量。.[/b] 要注意的是,上述公式主要用于定性理解。由于气体具有显著的可压缩性和热膨胀性,准确的计算公式十分复杂,不仅要考虑压差,还要考虑压强的绝对值。而且管路的阻尼大小难以简单的定量衡量,气阻r只是为了理解方便而假想的一个物理量,因此遇到定量计算时必须要采用更加准确的公式。例如,对于内径均匀光滑的毛细管,其流量计算的准确公式为:[align=center][img=,204,48]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702449391_8222_2204387_3.png[/img][/align] 而对于形状不规则的管路,目前尚无有效的计算公式,只能通过实验测得经验公式。这种经验公式一般具有幂函数[i]F = Δp[/i][sup]a[/sup](1<a<2),或者二次函数F = a[i]Δp[/i][sup]2[/sup] + b[i]Δp[/i]的形式。较为典型的拟合图形如下:[align=center] [table][tr][td=1,1,605] [align=center][img=,276,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702447992_9492_2204387_3.png[/img][img=,276,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702452617_9131_2204387_3.png[/img][/align] [align=center]25℃时氢气流经毛细管(内径0.1mm,长100mm)的压强-流量拟合(出口压强101KPa)[/align] [/td][/tr][/table][/align][align=center] [/align][b].3 影响阻尼的因素[/b] 前面已经讲到,阻尼(或气阻)的大小很难定量表达和计算。但要对阻尼的大小进行定性和半定量的讨论却是较为容易的,这种讨论也有助于我们更加清楚的理解气体流动时产生阻力的原因。总的来说,影响阻尼大小的因素包括管路几何形状、气体粘度、管壁粗糙程度三个方面。[b]3.1管路几何形状的影响[/b] 从生活常识中我们很容易知道,粗而短的水管阻力小、出水量大,细而长的水管阻力大、出水量小。气体流动的规律也是符合这一生活常识的。一般来讲,管路阻尼大小正比于管路的长度,而反比于其横截面积的平方。对于截面为规则圆形的管路,则可以导出,阻尼大小与半径的4次方成反比。对于截面大小不均匀的管路就难以用简单数学关系表示,此时可以把不规则的管路分成若干节,每一节近似为均匀的,总的阻尼就可以理解为所有个节阻尼的加和。阻尼的变化可以从恒定压差时流量的变化反映出来。对于截面为圆形的均匀毛细管,内径与长度对流量的影响如下图:[align=center] [table][tr][td=1,1,302] [align=center][img=,276,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702453994_2929_2204387_3.png[/img][/align] 内径0.2mm,长分别为100、200、300、400、500mm [/td][td=1,1,302] [align=center][img=,275,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702455423_8386_2204387_3.png[/img][/align] 长500mm,内径分别为0.10、0.15、0.20、0.25、0.30mm [/td][/tr][tr][td=2,1,302] [align=center]25℃时氢气流经毛细管的压强-流量拟合(入口压强151KPa,出口压强101KPa)[/align] [/td][/tr][/table][/align]. 管路横截面积对阻尼的影响,从本质上讲是气流线速度对流动阻力的影响。显然,体积流速F[sub]V[/sub]是线速度u与横截面积S[sub]截[/sub]的乘积:[align=center][img=,69,25]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702454104_7596_2204387_3.png[/img][/align]横截面积越小则气流的线速度越大,而流体力学中已经证明,在大多数情况下,流动阻力与线速度的平方成正比。. [b]从线速度的角度进行分析,还可以发现影响气体流动的另一个隐藏因素是温度。[/b]因为气体的体积与热力学温度T成正比,在质量流量恒定(或者是标态下的体积流量恒定)时,线速度近似正比于热力学温度,所以在温度升高时,流动的阻力会显著增加。而当推动力恒定(也就是压强恒定)时,质量流量(或标态下的体积流量)或显著减小。根据这一原理,就能更好的理解,为什么毛细管柱程序升温过程中柱压恒定而柱流量逐渐减小,或者柱流量恒定而柱压逐渐升高。这两种变化如下图所示: [table][tr][td=1,1,302] [align=center][img=,275,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702455718_9540_2204387_3.png[/img][/align] p[sub]in[/sub]=151KPa,p[sub]out[/sub]=101KPa [/td][td=1,1,302] [align=center][img=,275,240]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702460563_8516_2204387_3.png[/img][/align] F[sup]θ[/sup][sub]V[/sub]=2.5mL/min,p[sub]out[/sub]=101KPa [/td][/tr][tr][td=2,1,302] [align=center]毛细管柱(30m*0.32mm)程序升温过程中柱流量、柱压随温度的变化[/align] [/td][/tr][/table][b].3.2气体粘度的影响[/b] 根据线速度进行分析,压力恒定时,流量应该与热力学温度的平方成反比。但上图显示,流量随温度变化的幅度略小于这一趋势。这是因为随着温度升高,气体的粘度减小,这对气体流动是有利的,因此抵消了一部分流量降低的趋势。 粘度对气体流动的影响是显而易见的。生活常识告诉我们,菜油这类粘稠液体比清水流动要困难得多。气体流动也是类似的。除了前面提到温度影响粘度的情况外,最主要的是不同种类气体粘度不同。通常氢气粘度是最小的,氦气、氮气、氩气等粘度要大得多。不同气体流经毛细管的流量-压力曲线如下:[align=center] [table][tr][td=1,1,302] [align=center][img=,282,247]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702459249_6379_2204387_3.png[/img][/align] 25℃时不同气体流经毛细管(内径0.1mm,长100mm)的压强-流量拟合(出口压强101KPa) [/td][/tr][/table][/align][b].3.3管壁粗糙度的影响[/b] 气体流动的阻力除了来自气体内部的摩擦力外,还有气体与管壁之间的摩擦力。色谱仪使用的管路和阀件一般有不锈钢、黄铜、塑料、玻璃等材质,这些材料表面一般都较为光滑,气体与管壁之间的摩擦力不大。相对前面提到的各个因素来说,管壁造成的摩擦要小得多,基本上可以忽略不计,所以一般不予讨论。.[b]小结:以上用比较粗浅的语言和简化的数学模型讨论了气体流动和控制的基本原理。这些内容虽然与仪器的使用没有直接的关系,但在遇到气路故障的时候对分析解决问题却是有一定帮助的。但应切记,所述内容经过了过度的简化和近似,只能做初步的定性和半定量讨论,用于准确定量研究是不够的,也不可过度的解读和衍生。[/b]

  • 【讨论】EPC气路控制系统

    我用的agilent6890[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],epc电子气路控制系统用了两年了,有一天开机时,突然发出很大的漏气的声音,经维修工程师诊断,是epc气路控制模块损坏,主要是因为我的接入气体压力过高,为0.7MPa,长时间使用后使epc损坏。现在我把压力调到0.3-0.4MPa,只要能满足实验需求即可。

  • ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    ARC加速量热仪的温度跟踪和压力补偿自动控制装置

    [color=#990000][size=16px]摘要:现有的[/size][size=16px]ARC[/size][size=16px]加速量热仪普遍存在单热电偶温差测量误差大造成绝热效果不好,以及样品球较大壁厚造成热惰性因子较大,都使得[/size][size=16px]ARC[/size][size=16px]测量精度不高。为此本文提出了技术改进解决方案,一是采用多只热电偶组成的温差热电堆进行温差测量,二是采用样品球外的压力自动补偿减小样品球壁厚,三是用高导热金属制作样品球提高球体温度均匀性,四是采用具有远程设定点和串级控制高级功能的超高精度[/size][size=16px]PID[/size][size=16px]控制器,解决方案可大幅度提高[/size][size=16px]ARC[/size][size=16px]精度。[/size][/color][align=center][size=16px][color=#990000][b]==============================[/b][/color][/size][/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b][size=16px] 加速量热仪(Accelerating Rate Calorimeter)简称ARC,是一种用于危险品评估的热分析仪器,可以提供绝热条件下化学反应的时间-温度-压力数据。加速量热仪(ARC)基于绝热原理,能精确测得样品热分解初始温度、绝热分解过程中温度和压力随时间的变化曲线,尤其是能给出DTA和DSC等无法给出的物质在热分解初期的压力缓慢变化过程。典型的加速量热仪的结构如图1所示。为了保证加速量热计的测量精度,ARC装置需要实现以下两个重要条件:[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热计典型结构,500,267]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121740385310_8045_3221506_3.jpg!w690x369.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图1 ARC加速量热仪典型结构[/b][/color][/size][/align][size=16px] (1)被测样品始终处于绝热环境。绝热环境的实施需采用等温绝热方式,即样品球周围的护热加热器温度始终与样品球温度保持一致,两者的温差越小,样品散失或吸收的热量则越小,量热仪测量精度越高。[/size][size=16px] (2)空心结构样品球(样品池或样品容器)的壁厚越薄越好,以最大限度减少热惰性因子,减少球体吸热和放热影响。[/size][size=16px] 在目前的各种商品化ARC加速量热仪中,并不能很好的实现上述两个边界条件,主要存在以下几方面的问题:[/size][size=16px] (1)样品温度和护热温度仅采用了两只热电偶温度传感器,而热电偶的测温精度和一致性本身就较差,仅靠两只热电偶测温和控温,很难保证达到很好的等温效果,往往会造成漏热严重的现象,导致测量精度较差。热电偶在使用一段时间后,这种现象会更加突出。[/size][size=16px] (2)因为化学反应过程中会产生高温高压,使得现有ARC的样品球壁厚必须较厚以具有较大的耐压强度,避免样品球或量热池产生形变或破裂,但这势必增大了热惰性因子。这种壁厚较厚和较大热惰性因子,是造成ARC加速量热仪测量误差较大的另一个主要原因。[/size][size=16px] (3)由于首先要保证壁厚和耐压强度,量热池所用材质往往是高强度金属,但这些金属材质相应的热导率往往较低,较低的热导率则会影响量热池侧壁温度的快速均匀。这种低导热材质所带来的样品球温度非均匀性问题,又会造成周边护热温度控制的误差,所带来的连锁效果会进一步降低测量精度。[/size][size=16px] 为了解决目前ARC加速量热仪存在的上述问题,本文提出了以下解决方案。[/size][size=18px][color=#990000][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案主要包括两方面的技术改进,一是采用多只热电偶构成温差热电堆来提高温差检测的灵敏度和更好的保证绝热环境,二是在样品球外增加气体压力自动补偿。改进后的ARC加速量热仪的结构及控制装置如图2所示。[/size][align=center][size=16px][color=#990000][b][img=ARC加速量热仪温度和压力控制装置结构示意图,550,283]https://ng1.17img.cn/bbsfiles/images/2023/09/202309121741195817_6742_3221506_3.jpg!w690x356.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#990000][b]图2 ARC加速量热仪温度和压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在如图2所示的高温高压控制装置中,采用了4对热电偶组成的热电堆来检测样品球与护热加热器之间的温差,这样可以使温差测量灵敏度提高4倍,即可使原来采用单只热电偶的量热计测量精度得到大幅提高。在实际应用中,热电堆中的热电偶数量并不限制于4只,可以根据ARC结构和体积采用更多的热电偶,由此可进一步提高温差测量灵敏度,但在选择热电偶时,需要采用尽可能细的热电偶丝,以减少热量通过热电偶丝进行传递。[/size][size=16px] 对于补偿压力的控制,如图2所示,在ARC中增加了一路高压气路。压力控制回路由压力传感器、压力调节器和PID控制器构成,通过压力调节器将来自高压气源(如氮气)的压力进行自动减压控制,使得高温高压腔体内的压力始终跟踪样品球内的压力变化,从而尽可能降低样品球内外的压力差。压力调节器是一个内置压力传感器、PID控制器和两只高速进出气阀门的压力控制装置,可直接接收外部压力设定信号进行快速和准确的压力控制,非常适用于像ARC量热仪高温高压腔这样的密闭腔室的气体压力控制。压力调节器的压力控制范围为0~5MPa(表压),如需要更高压力调节,则需增加一个高压背压阀,但压力调节还是通过压力调节器。[/size][size=16px] 在图2所示的高温高压控制装置中,温差传感器的灵敏度、压力传感器测量精度以及压力调节器控制精度都决定了ARC加速量热计边界条件是否精确,但这些部件对ARC的最终测量精度贡献还需PID控制器来决定。PID控制器作为ARC绝热量热仪的核心仪表,需要满足以下要求才能真正保证最终精度:[/size][size=16px] (1)在量热仪绝热实现方面,采用温差热电堆,可灵敏检测出样品球与护热加热器之间的微小温差变化,但温差灵敏度最终是要通过PID控制器的检测精度得以保证,由此要求PID控制器应有尽可能高的采集精度。同样,绝热控制的最终效果是温差越小越好,这也对PID控制器的控制输出提出了很高的要求,即要求控制精度越高越好。本解决方案中选择了VPC2021系列的超高精度PID控制器,这是目前国际上最高精度的工业用小尺寸PID调节器,具有24位AD、16位DA和0.01%最小输出百分比,可完全满足微小温差热电势信号高精度检测和高精度温度控制的要求。[/size][size=16px] (2)在量热仪高压补偿控制方面,需要对高温高压腔室内的气体压力进行跟踪控制以尽可能的减小样品球内外的压力差。在压力控制回路中,压力传感器用来检测样品球内部的压力变化,同时此传感器的输出压力值又作为高温高压腔室压力控制的设定值,PID控制器根据此设定值来动态控制高温高压腔室压力,这就要求PID控制器具有远程设定点功能,并具有与压力调节器组成串级控制回路的功能,而本解决方案配置的VPC2021系列PID控制器则具备这种高级控制功能。[/size][size=18px][color=#990000][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案采用了温差热电堆和压力补偿两种技术手段对现有ARC加速量热仪进行改进,改进后的ARC加速量热仪具有以下特点:[/size][size=16px] (1)温差热电堆可明显提高温差检测灵敏度,可更好的实现绝热效果。[/size][size=16px] (2)压力补偿可使得样品球的壁厚更薄,并降低了样品球材质的强度要求,样品球就可以采用高导热金属,在降低样品球热惰性因子的同时,更能提高样品球整体的温度均匀性,可显著提高量热仪测量精度。[/size][size=16px] (3)采用了具有远程设定点和串级控制这些高级功能的超高精度PID控制器,可充分发挥上述技术改进措施的优势,真正使ARC加速量热仪测量精度的提高得到了保障。[/size][size=16px] (4)所采用的技术手段,可推广应用到其它形式的热反应量热仪中。[/size][align=center][color=#990000][b][/b][/color][/align][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][/size]

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

  • 真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    真空度控制技术在气相色谱仪微量气体负压进样系统中的应用

    [b][color=#339999][font='微软雅黑',sans-serif]摘要:针对目前大多数气相色谱仪负压进样系统中存在的无法控制微量进样和真空度无法准确控制的问题,本文在发明专利“[/font]CN111239308A [font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”基础上提出了改进的解决方案。解决方案通过采用电容真空计、皮拉尼真空计、电控针阀和双通道真空度控制器组成的控制装置,可实现高真空范围内的任意设定点下的真空度快速和精密控制,使在线负压形式的微量气体进样方法真正能转化为实用的工程化仪器。[/font][/color][/b][color=#339999][/color][align=center][b][img=真空度控制技术在气相色谱仪微量进样系统中的应用,690,363]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201509012640_9289_3221506_3.jpg!w690x363.jpg[/img][/b][/align][size=18px][color=#339999][b]1. [font='微软雅黑',sans-serif]问题的提出[/font][/b][/color][/size] 现有的气相色谱仪分析气体样品时,均采用正压进样、常压进样或者持续负压抽样,这种进样的方式,对样品需要总量远大于进样分析实际消耗量,这些进样方式往往不能满足科研机构或院校的分析需求。特别是在微量样品情况下,在样品具有放射性、有毒情况下,若采用上述常规进样方式,样品进样量过多,不仅不能很好的进样分析,污染环境、危害人体健康,还会因为空气干扰造成数据不准确,所以需要一种在线负压微量气体进样方法及系统来解决上述问题。[font='微软雅黑',sans-serif] 为了实现气相色谱仪的高真空微量气体进样,很多机构开展了大量研究工作,比较典型的是常州磐诺仪器有限公司提出的专利“[/font][font=&]CN111239308A [/font][font='微软雅黑',sans-serif]一种在线高真空负压气体进样系统及方法”,其工作原理是以定量环为中间载体对样品进行微量提取和输送,具体过程分为三个步骤:先将定量环抽取高真空,然后通过压差将样品气体吸入定量环,最终将定量环中的样品气体送入外接的色谱柱中进行分析。三个步骤的具体细节如下:[/font][font='微软雅黑',sans-serif] ([/font][font=&]1[/font][font='微软雅黑',sans-serif])定量环真空抽取和控制:两个六通阀全都处于关闭状态,整个气路处于图[/font][font=&]1[/font][font='微软雅黑',sans-serif]所示结构,此时定量环处于真空抽取状态,真空回路如图中红线所示,控制定量环内的真空度达到设定值并稳定。样品进气和载气则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][font='微软雅黑',sans-serif][color=#339999][b][/b][/color][/font][/align][align=center][color=#339999][b][img=01.六通阀V1关闭、六通阀V2关闭状态下定量环抽真空结构示意图,660,227]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201510594003_9946_3221506_3.jpg!w690x238.jpg[/img][/b][/color][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]1 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环抽真空结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]2[font='微软雅黑',sans-serif])定量环提取气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]打开和六通阀[/font]V2[font='微软雅黑',sans-serif]仍处于关闭,整个气路处于图[/font]2[font='微软雅黑',sans-serif]所示结构,此时在压差作用下样品气体进入定量环,提取气路如图中蓝线所示。真空回路和载气回路则处于图中蓝线和黄线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=02.六通阀V1打开、六通阀V2关闭状态下定量环进样结构示意图,660,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511221616_9654_3221506_3.jpg!w690x236.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]2 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]打开、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]关闭状态下定量环进样结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif] ([/font]3[font='微软雅黑',sans-serif])定量环输送气体样品:使六通阀[/font]V1[font='微软雅黑',sans-serif]关闭和打开六通阀[/font]V2[font='微软雅黑',sans-serif],整个气路处于图[/font]3[font='微软雅黑',sans-serif]所示结构,此时在载气作用下定量环内的样品气体输送到外部色谱柱,样品输送气路如图中黄线所示。真空回路和样品气体加载回路则处于图中红线和蓝线所示的各自独立气路状态。[/font][align=center][b][color=#339999][img=03.六通阀V1关闭、六通阀V2打开状态下定量环中样品送入色谱柱结构示意图,660,226]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201511432359_1275_3221506_3.jpg!w690x237.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]3 [/font][font='微软雅黑',sans-serif]六通阀[/font][font=&]V1[/font][font='微软雅黑',sans-serif]关闭、六通阀[/font][font=&]V2[/font][font='微软雅黑',sans-serif]打开状态下定量环中样品送入色谱柱结构示意图[/font][/color][/b][/align] 通过上述负压气体进样系统结构和工作过程可以看出,管路中的真空度并未采取任何控制措施,仅是通过真空泵来进行抽气,在实际应用中仅靠简单的真空泵抽取很难快速达到真空度稳定状态,这使得定量环的进气压差并不稳定和重复性差,势必会造成进样量的严重误差。为了解决此问题,本文提出了相应的解决方案,通过增加真空度控制装置使得定量环的每次进样都压差都保持准确恒定,从而使这种负压进样方法真正达到实用要求。[b][size=18px][color=#339999]2. [font='微软雅黑',sans-serif]解决方案[/font][/color][/size][/b][font='微软雅黑',sans-serif] 在气相色谱仪气体样品进样系统中,一般要求定量环真空度要具有达到绝对压力为[/font]1Pa[font='微软雅黑',sans-serif]的高真空,并在高真空范围内任意设定点下能实现恒定控制,由此来实现每次进样或重复性检测进样时具有很好的重复性。为此,本文提出了如下解决方案的真空度精密控制装置,真空度控制装置结构如图[/font]4[font='微软雅黑',sans-serif]所示。[/font][align=center][b][color=#339999][img=04.负压气体进样系统及其真空度控制装置结构示意图,660,256]https://ng1.17img.cn/bbsfiles/images/2023/07/202307201512027904_9758_3221506_3.jpg!w690x268.jpg[/img][/color][/b][/align][font='微软雅黑',sans-serif][size=16px][color=#339999][/color][/size][/font][align=center][b][color=#339999][font='微软雅黑',sans-serif]图[/font][font=&]4 [/font][font='微软雅黑',sans-serif]负压进样系统及其高真空度控制装置结构示意图[/font][/color][/b][/align][font='微软雅黑',sans-serif][/font][font='微软雅黑',sans-serif] 在图[/font][font=&]4[/font][font='微软雅黑',sans-serif]所示的高真空度控制装置中,采用了动态平衡控制方法,即控制进气和排气流量达到某个平衡状态来实现不同真空度的准确恒定控制。由此,在控制装置中分别在进气和排气端配置了相应的电控针阀,分别用于调节进气和排气流量。电控针阀具有小于[/font][font=&]2%[/font][font='微软雅黑',sans-serif]的线性度,重复精度可达到[/font][font=&]0.1%[/font][font='微软雅黑',sans-serif],非常适用于气体进样系统的微小空间的真空度控制。[/font][font='微软雅黑',sans-serif] 为了在高真空范围内进行测量,装置中配备了一只精度可达[/font][font=&]0.25%[/font][font='微软雅黑',sans-serif]、量程为[/font][font=&]1Torr[/font][font='微软雅黑',sans-serif]的电容真空计。为了保证控制精度,装置中配备了一个高精度真空度控制器,控制器具有[/font][font=&]24[/font][font='微软雅黑',sans-serif]位[/font][font=&]AD[/font][font='微软雅黑',sans-serif]、[/font][font=&]16[/font][font='微软雅黑',sans-serif]位[/font][font=&]DA[/font][font='微软雅黑',sans-serif]和[/font][font=&]0.01%[/font][font='微软雅黑',sans-serif]最小输出百分比。[/font][font='微软雅黑',sans-serif] 通过上述硬件配置可以很容易的实现小于[/font][font=&]1%[/font][font='微软雅黑',sans-serif]的真空度控制精度。另外,为了监测真空泵抽气过程的真空度变化,装置中还串接了一个测量精度较差的皮拉尼真空计,以用来监测管路中气压从一个大气压到高真空的变化过程。为此,真空度控制器特意配备了一个双通道控制器,第一通道接电容真空计用来进行高真空度区间的控制,第二通道连接皮拉尼计用来进行全负压区间的监测。此真空度控制器具有[/font][font=&]RS485[/font][font='微软雅黑',sans-serif]通讯接口和相应的随机控制软件,可外接计算机进行远程调控。[/font][b][size=18px][color=#339999]3. [font='微软雅黑',sans-serif]总结[/font][/color][/size][/b] 综上所述,通过此解决方案所使用的真空计、电控针阀和真空度控制器,可很方便的按照设定值对定量环中的真空度进行快速和准确控制,可有效保证微量气体进样的准确和快捷,另外所用的各个部件体积小巧,结合六通阀和其他管路部件,很容易集成为独立的负压气体进样系统。[align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px][/size][/align][align=center][size=16px]’[/size][/align][align=center][size=16px][/size][/align]

  • 正压和负压控制技术在离体肺通气装置中的应用

    正压和负压控制技术在离体肺通气装置中的应用

    [size=16px][color=#339999][b]摘要:模拟肺呼吸过程的离体肺通气控制新方法——真空压力(正负压)法,目前还停留在理论层面的文献报道,还未见到这种方法的仪器化内容和细节。本文基于这种新方法提出了仪器化实现的具体解决方案,解决方案的核心内容是采用了正负压调节器和具有远程设定点功能的高精度PID控制器,由此可实现离体肺内部正压的恒定控制以及离体肺外部负压的周期性波动控制。此解决方案具有很强的灵活性、适用性和拓展性,可进行真空压力宽工作范围内的任意定点和多种波形的设置和控制,便于通气过程中各种实验参数的探索和优化。[/b][/color][/size][align=center] [img=离体肺通气装置中真空和压力控制的解决方案,600,385]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956065298_5355_3221506_3.jpg!w690x443.jpg[/img][/align][b][size=18px][color=#339999]1. 离体肺正负压通气方法及需解决的问题[/color][/size][/b][size=16px] 肺移植是有效的治疗方法之一,供体肺在进行移植手术之前可能需要进行离体灌注和通气以恢复或保持其功能,或评估或评价它们的用于移植的质量或适宜性。对于供体肺的离体通气,常见的传统的机械通气技术是利用正压施加到气管支气管树上,由此在气管支气管树和肺泡之间形成压差,从而使得气流在压差驱动下进入肺泡。[/size][size=16px] 有些文献报道了采用负压进行离体通气的方法,即在离体肺周围形成低于大气压的真空负压,使离体肺自然充满一个大气压左右的通气气体,通过真空负压的变化来形成肺呼吸。也有文献报道了采用正压和负压(真空和压力)相结合的不同通气方法,如图1所示,即通过内部正压和外部负压之间的变化来引起肺呼吸。这种正负压通气方法的最大优点是通过调节离体肺气道内的正压能有效的防止肺泡萎陷。[/size][align=center][size=16px][color=#339999][b][img=01.离体肺真空压力通气方法示意图,300,406]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956399204_1288_3221506_3.jpg!w493x668.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 离体肺真空压力通气方法示意图[/b][/color][/size][/align][size=16px] 目前文献所报道的离体肺真空压力通气过程是:离体肺放置在密闭腔室内,将通气气体加载到肺的气道上并使腔室(肺周围)形成真空。在调节通气压力以维持肺气管处于恒定不变正压的同时,离体肺周围的真空度在一个较低水平和一个较高水平之间进行周期性变化以引起肺呼吸。 然而,这种离体肺正负压通气方法并未详细报道具体实施细节,而且在实施过程中还需解决以下几方面的问题:[/size][size=16px] (1)如何实现正压和负压的独立控制,特别是如何在仪器化方面得到实现。[/size][size=16px] (2)在临床应用之前要进行实验室阶段的通过过程和参数探索,要求正负压力可调节。[/size][size=16px] (3)负压过程要求实现周期性波动且可控,需要实现负压波形周期和幅值的设定和控制。[/size][size=16px] 为了解决上述离体肺通气方法中的正负压控制问题,本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 正负压离体肺通气控制系统结构如图2所示,通气控制的具体步骤如下:[/size][size=16px] (1)首先对放置在密闭腔室内的离体肺加载正压气体,在离体肺气管内形成正压。正压压力大小可通过手动调节旋钮或真空压力控制器按键进行实时设置,也可通过上位机软件进行设置,真空压力控制器驱动正压调节器将来自高压气源的气体压力恒定控制在设定值上。[/size][size=16px] (2)开启真空泵进行抽真空,为离体肺所处的密闭腔室提供真空源。通过周期信号发生器的按键或软件设置负压波动周期和幅值大小,真空压力控制器驱动负压调节器按照所设置的周期和幅值大小对密闭腔室内的真空度进行控制,并形成准确的周期性负压变化波。[/size][align=center][size=16px][color=#339999][b][img=用于离体肺通气的真空压力控制装置结构示意图,650,404]https://ng1.17img.cn/bbsfiles/images/2023/06/202306290956585893_3785_3221506_3.jpg!w690x429.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 用于离体肺通气的真空压力控制装置结构示意图[/b][/color][/size][/align][size=16px] 在此解决方案中采用了两个关键部件,它们的主要特点如下:[/size][size=16px] (1)正负压力调节器:正负压力调节器是一种集成了真空压力传感器、高速电磁阀和PID控制器的气体气压控制器件,可在表压-80kPa至1000kPa范围内实现真空压力准确控制。真空压力控制设定值可通过外部电压信号进行设定,可在几十毫秒的时间内将真空压力快速控制达到设定值并恒定不变。正负压力调节器的这种工作范围和高速响应速度,非常适合离体肺通气过程中的真空压力控制,特别是能满足周期性负压变化对控制精度和速度的要求。[/size][size=16px] (2)真空压力控制器:真空压力控制器是一种多功能高精度的PID调节器。高精度特性是通过24位AD、16位DA、双精度浮点运算和0.01%最小输出百分比的软硬件指标来实现,多功能特性是在普通PID调节器基本功能的基础上还具有远程设定点、串级控制和比值控制等其他高级功能,远程设定点功能特别适用于各种周期性波形控制和设定值的手动调节。另外,此真空压力控制器具有标准MODBUS通讯协议的RS485接口和随机软件,通过上位计算机和运行软件可以直接操控和运行控制器,非常便于快速搭建离体肺正负压通气装置而无需编写软件程序。[/size][size=16px] 需要说明的是,本解决方案仅介绍了如何工程实现正负压自动精密控制的关键细节,其他离体肺通气过程中的一些常规性相关细节并未提及,如流量测量和过滤等内容,但在实际过程中要加上这些内容。[/size][size=16px] 另外,此解决方案也可以根据实验室具体试验过程的需要进行以下两方面的拓展:[/size][size=16px] (1)在靠近离体肺气管的一端增加独立的压力传感器。此传感器可与正压调节器和真空压力控制器构成闭环控制回路,这样可以更准确的监测和控制离体肺的内部压力,避免使用正压调节器内部压力传感器的精度不够以及因气管较长所引起的压力不准确问题。[/size][size=16px] (2)在密闭容器的顶盖上增加独立的真空度传感器。同样,此真空度传感器与负压调节器和真空压力控制器构成闭环控制回路,这样可以更准确的监测和控制离体肺外部的负压变化,避免使用负压调节器内部负压传感器的精度不够以及因真空管路较长所引起的真空度不准问题。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 通过上述解决方案,可通过离体肺正负压通气过程的自动控制来模拟肺的呼吸过程,解决方案具有如下特点:[/size][size=16px] (1)实现了准确和高速的正负压全自动控制,可有效防止肺泡萎陷现象的出现。[/size][size=16px] (2)正压工作范围和设定值可手动或程序调节并实现自动控制,具有很强的灵活性和适用性,适合研究过程中的各种实验参数探索。[/size][size=16px] (3)同样,负压工作范围和变化波形可手动或程序设置并实现自动控制,并具有很强的灵活性和适用性,便于研究过程中的各种实验参数探索。[/size][size=16px] (4)此解决方案具有一定的拓展性,如可拓展应用到离体肺的灌注过程控制。[/size][size=16px][/size][align=center][size=16px][b][color=#339999]~~~~~~~~~~~~~~~~~[/color][/b][/size][/align]

  • 智能补水装置——水位控制设备

    智能补水装置——水位控制设备

    [size=24px][font=宋体]智能补水装置(自动补水器)采用的是光学原理,主要用于检测缺水和满水状态,控制水泵和电磁阀。通常用在鱼缸、水族馆等需要自动补水换水设备。[/font][font=宋体]智能补水器是由控制器和磁性吸盘组成,将磁性吸盘部分安装在内侧,控制器部分安装于外侧,对准安装在需要检测的水位线上,然后将电源插入控制器通电,即可检测。[/font][font=宋体]智能补水器检测原理是:当水位下降到低于补水器检测点时,补水器接收到无水信号时,则会自动控制水泵抽水,当水位升到设定位置时,补水器就会自动停止加水。[/font][font=宋体]智能补水器稳定性高、光学感应原理、免调试、安装方便(磁铁吸附安装)、可供定制服务。[img=,682,440]https://ng1.17img.cn/bbsfiles/images/2022/11/202211110938197388_4044_4008598_3.png!w682x440.jpg[/img][/font][/size]

  • 关于恒湿的控制装置。

    由于工作需要制作一个超小型的恒温恒湿装置,恒温好解决,恒湿要达到90%,有些为难,请问谁有较好的恒湿控制装置方案?

  • 碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    碳化硅氧化工艺中加热炉的正负压力精密控制方法及装置

    [size=16px][color=#339999][b]摘要:在目前的各种半导体材料热氧化工艺中,往往需要对正负压力进行准确控制并对温度变化做出快速的响应,为此本文提出了热氧化工艺的正负压力控制解决方案。解决方案的核心是基于动态平衡法分别对进气和排气流量进行快速调节,具体采用了具有分程控制功能和传感器自动切换功能的超高精度真空压力控制器,并结合高速电控针阀和电控球阀,可很好的实现0.1Torr~800Torr绝对压力范围内的正负压快速准确控制。[/b][/color][/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/b][/color][/size][/align][color=#339999][b][size=16px] [/size][size=18px]1. 问题的提出[/size][/b][/color][size=16px] 热氧化工艺是碳化硅等半导体器件制程中的优选工艺,其特点是简便直接,不引入其他杂质,适合器件的大规模生产。目前比较有效的热氧化工艺有微正压和负压控制两种技术:[/size][size=16px] (1)微正压:氧化过程中氧化炉内1.05atm以上压力的恒定控制。[/size][size=16px] (2)负压:生长气压为10mTorr-1000mTorr范围内的控制。[/size][size=16px] 在热氧化工艺中,无论采用上述那种技术,都需要对氧化炉内的气压进行准确控制,以保证氧化硅层的质量,但如何实现准确控制正负压则是一个需要解决的技术问题。为此本文提出相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 目前碳化硅热氧化工艺,正负压控制范围为0.1Torr~800Torr(绝对压力)。对此范围的绝对压力控制,基于动态平衡控制方法,本文设计的控制系统结构如图1所示。[/size][align=center][color=#339999][b][img=碳化硅热氧化工艺真空压力控制系统,690,354]https://ng1.17img.cn/bbsfiles/images/2023/08/202308251740511222_1299_3221506_3.jpg!w690x354.jpg[/img][/b][/color][/align][align=center][size=16px][color=#339999][b]图1 碳化硅热氧化工艺真空压力控制系统[/b][/color][/size][/align][size=16px] 在图1所示的解决方案控制系统中,从加热炉的一端输入工作气体,工作气体流经加热炉以及炉内放置的圆晶后,由真空泵抽气排出。工作气体可根据工艺要求进行选择和配置,可选择多种气体按照比例进行混合。[/size][size=16px] 为了在0.1Torr~800Torr整个量程范围内实现正负压力的准确控制,需要至少采用两只不同量程的真空度,如1Torr和1000Torr,图1中只标识了一只真空计。在图1所示的控制系统中,真空计、电控阀门和真空压力控制器构成一个闭环控制系统,具体控制过程如下:[/size][size=16px] (1)工作气体和真空泵始终处于开启状态。[/size][size=16px] (2)两只真空计分别连接控制器的主输入端和辅助输入端,控制器具有传感器自动切换功能,可根据加热炉内的实际压力自动切换到相应量程的真空计。[/size][size=16px] (3)整个正负压力控制采用PID分程控制功能,电控针阀连接控制器的反向输出端,电控球阀连接控制器的正向输出端,由此可以根据不同的压力设定值自动调节进气和出气流量来实现压力的准确控制。[/size][size=16px] 由于热氧化工艺所使用的温度和正负压力范围较宽,本解决方案采用了以下关键装置:[/size][size=16px] (1)由于在真空压力控制过程中,加热炉始终处于加热或冷却状态,温度变化会对压力控制产生严重的影响。为了始终将氧化过程中的正负压力控制在设定值上,阀门的调节速度起着关键作用,本解决方案配备了响应时间小于1秒的高速电控针阀和电控球阀,由此可以将温度和其他因素对压力的波动影响快速恢复和稳定到设定压力。[/size][size=16px] (2)由于正负压力范围宽泛,跨越了好几个数量级,所采用的2只真空压力传感器往往在较低量程区间的信号输出比较弱小,这就需要真空压力控制器具有很高的采集精度和控制精度。为此,本解决方案配备了超高精度的真空压力控制器,技术指标是24位AD、16位DA和0.01%的最小输出百分比,可完全满足全量程真空压力的准确测量和控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述正负压力控制解决方案可以在全正负压力量程内达到很高的控制精度和响应速度,真空压力控制器除了具有高控制精度和分程控制功能外,还具有程序控制和PID参数自整定等多种功能。控制器还配备有RS485通讯接口,可便捷的与PLC上位机控制系统进行集成,采用自身所带软件也可在计算机上直接进行工艺调试和控制。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器 —— 差压式流量计

    气相色谱仪流量控制原理与维护 —— 电子流量控制器中的流量传感器  —— 差压式流量计

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font][/font][font=宋体] [font=宋体]—— 电子流量控制器中的流量传感器 —— 差压式流量计[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的[/font][/font][font=宋体]电子[/font][font='Times New Roman'][font=宋体]流量控制[/font][/font][font=宋体]单元的[/font][font='Times New Roman'][font=宋体]流量测量[/font][/font][font=宋体]原理[/font][font='Times New Roman'][font=宋体]和[/font][/font][font=宋体]常见流量传感器[/font][font='Times New Roman'][font=宋体]的原理[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量计(节流式流量计)[/font][/align][font='Times New Roman'][font=宋体] 采用电子流量控制方式[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],[/font][/font][font=宋体]进样口、检测器或者其他辅助部件单元中,均安装有[/font][font='Times New Roman'][font=宋体]电子流量控制[/font][/font][font=宋体]单元[/font][font='Times New Roman'][font=宋体],[/font][/font][font=宋体]可以给进样口、色谱柱、检测器以及特殊部件提供准确和稳定的气体流量。[/font][font=宋体] 气体流量的大小可以由流量控制单元内置的流量计予以测定,流量计的具体形式较多,其中[/font][font='Times New Roman'][font=宋体]比较常见的为差压式流量计。[/font][/font][font='Times New Roman'][font=宋体] 差压式流量计是工业生产中[/font][/font][font=宋体]用以测定[/font][font='Times New Roman'][font=宋体]气体、液体和蒸汽流量的[/font][/font][font=宋体]较为常见[/font][font='Times New Roman'][font=宋体]的[/font][/font][font=宋体]一类[/font][font='Times New Roman'][font=宋体]流量计[/font][/font][font=宋体],包括节流式流量计、均速管流量计、弯管流量计等。其中使用最多的是节流装置和差压计组成的节流式流量计[/font][font='Times New Roman'][font=宋体]。[/font][/font][font=宋体] 节流式流量计具有结构简单、工作可靠、成本低、易标准化的优点,在工业生产中应用较为广泛。其[/font][font='Times New Roman'][font=宋体]基本原理如图[/font]1[font=宋体]所示,管路中如果存在截面积小于管路的[/font][/font][font=宋体]节流装置[/font][font='Times New Roman']R[font=宋体],[/font][/font][font=宋体]当[/font][font='Times New Roman'][font=宋体]流体通过[/font][/font][font=宋体]该节流装置[/font][font='Times New Roman'][font=宋体]时,在[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]的前后[/font][/font][font=宋体]两端[/font][font='Times New Roman'][font=宋体]将产生一定的压力差。[/font][/font][font='Times New Roman'][font=宋体] 在一定的流体参数条件之下([/font][/font][font=宋体]节流装置的[/font][font='Times New Roman'][font=宋体]尺寸、压力测量位置、[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的管路状况),[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的压力差[/font][/font][font='Times New Roman']Δ[/font][font='Times New Roman']p[/font][font=宋体]与流体[/font][font='Times New Roman'][font=宋体]流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]之间有[/font][/font][font=宋体]确[/font][font='Times New Roman'][font=宋体]定的函数关系。因此可以通过测量[/font][/font][font=宋体]节流装置[/font][font='Times New Roman'][font=宋体]前后的差压来确定流体的流量。[/font][/font][align=center][img=,298,176]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911348571_4335_1604036_3.jpg!w684x403.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]差压式流量计结构示意图[/font][/font][/align][font='Times New Roman'][font=宋体] 对于可压缩流体([/font][/font][font=宋体]例如[/font][font='Times New Roman'][font=宋体]气体),体积流量[/font]F[/font][sub][font='Times New Roman']v[/font][/sub][font='Times New Roman'][font=宋体]与[/font][/font][font=宋体]节流装置两端[/font][font='Times New Roman'][font=宋体]压力差[/font][/font][font=宋体]的[/font][font='Times New Roman'][font=宋体]流量关系式为:[/font][/font][align=center][img=,170,52]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010913553235_7720_1604036_3.jpg!w559x133.jpg[/img][font=宋体] [font=宋体]([/font][font=Times New Roman]1-1[/font][font=宋体])[/font][/font][/align][font=宋体] [font=宋体]公式[/font][font=Times New Roman]1-1[/font][/font][font='Times New Roman'][font=宋体]中[/font][/font][font=宋体]:[/font][font=宋体] [/font][font='Times New Roman']Α[/font][font=宋体] [/font][font='Times New Roman'] [/font][font=宋体]—— [/font][font='Times New Roman'][font=宋体]流体的流量系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']ε[/font][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]可膨胀性系数[/font][/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman']A[/font][sub][font='Times New Roman']0[/font][/sub][font='Times New Roman'] [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]管路截面积[/font][/font][font='Times New Roman'] ρ [/font][font=宋体] [font=宋体]—— [/font][/font][font='Times New Roman'][font=宋体]流体密度[/font][/font][font='Times New Roman'] Δ[/font][font='Times New Roman']p[/font][font=宋体] [font=宋体]—— 节流装置两端的压力差[/font][/font][font=宋体][font=Times New Roman] F[/font][/font][sub][font=宋体][font=Times New Roman]v [/font][/font][/sub][font=宋体]—— 流体的体积流量[/font][font=宋体] 该公式中流量系数、可膨胀系数与流体的粘度、可压缩性、温度均有关。[/font][font=宋体] 差压式流量计适用于性质和状态均匀的牛顿流体的流量测量,一般不适用于流体脉动较大的场合。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font=宋体]差压式流量传感器[/font][/align][font=宋体][font=宋体] 随着微电子[/font][font=宋体]——微机械系统的发展,差压式流量计目前可以被制作成体积较小的单个电子元件——流量传感器,可以安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口流量控制单元或者系统辅助流量控制单元中,其结构原理如图[/font][font=Times New Roman]2[/font][font=宋体]所示。[/font][/font][font=宋体] 流量传感器内置有微气体阻尼器,代替经典差压式流量计的节流装置,阻尼器的两端集成两个微压力传感器,测定阻尼器两端的压力差。[/font][font=宋体] [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统根据实际工作过程中使用的气体种类(不同的气体粘度和可压缩系数)、环境温度等参数,对阻尼器压力差进行计算和修正,获得正确的气体流量。[/font][align=center][img=,389,98]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911232086_5053_1604036_3.jpg!w690x204.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]流量传感器原理示意图[/font][/font][/align][font=宋体][font=宋体]流量传感器一般安装在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口电子流量控制单元或辅助流量控制单元内部,与微电磁阀等部件构成负反馈控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的指令协调下多个部件联合工作,用以提供流量准确、重现性良好的气体,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,526,177]https://ng1.17img.cn/bbsfiles/images/2022/09/202209010911470920_3574_1604036_3.jpg!w690x232.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]流量传感器在流量控制单元中的位置[/font][/font][/align][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]差压式流量计的特点和使用注意事项[/font][/align][font=宋体][font=宋体] 与传统的机械阀方式调节流量控制器相比较,电子流量控制器有更高的精密度和重现性,在保留时间要求较高的分析应用场合下(例如复杂样品的[/font][font=Times New Roman]PONA[/font][font=宋体]分析,多阀多柱的复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]分析系统等),有更好的应用表现。[/font][/font][font=宋体][font=宋体] 差压式流量计组成元件较少,结构比较简单,长期运行的可靠性较高,装配差压式电子流量计的电子流量控制器的故障率较低。通过良好的电气[/font][font=Times New Roman]-[/font][font=宋体]气流控制设计,差压式流量计可以获得较好的惯性,压力[/font][font=Times New Roman]-[/font][font=宋体]流量调节速度较快。差压式流量计的流量测量范围较大,适用色谱分析方法的范围较广。[/font][/font][font=宋体] 使用带有电子流量传感器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],需要注意以下几个方面的问题:[/font][font=宋体][font=Times New Roman] 1 [/font][font=宋体]气体类型的配置信息必须准确[/font][/font][font=宋体][font=宋体] 由公式[/font][font=Times New Roman]1-1[/font][font=宋体]可知,气体流量与节流装置(阻尼器)两端的压力差与气体种类、环境温度等参数有关,使用不同种类的气体,流量——压力差的特性不同。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的硬件[/font][font=Times New Roman]/[/font][font=宋体]软件配置需要正确指定正确的气体类型,否则最终测定的气体流量数值不正确。[/font][/font][font=宋体][font=Times New Roman] 2 [/font][font=宋体]流量——压力需要进行校准[/font][/font][font=宋体][font=宋体] 色谱系统在长时间运行之后,有可能存在电子元件电气性能变化,从而造成流量传感器测定的阻尼两端的压力值的偏差,进而导致流量值测定发生错误,在必要的情况下需要运行压力[/font][font=宋体]——流量的校准。[/font][/font][font=宋体][font=Times New Roman] 3 [/font][font=宋体]气源的要求[/font][/font][font=宋体][font=宋体] 流量传感器要求气源洁净,操作时尽可能去除气体中的水分、[/font] [font=宋体]油污等有机物杂质和固体颗粒物,以避免损坏压力传感器和堵塞阻尼,造成流量测量产生一定误差。[/font][/font][font=宋体]避免气源或管路气流压力、流量的瞬间剧烈变化,可能对流量计造成较大的压力和流量冲击。[/font][font=宋体]气源压力不可超出色谱系统允许输入压力,避免损坏流量计中的压力传感器。[/font][font='Times New Roman'] [/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体]本文简单介绍压差式流量测量的原理,和压差式流量传感器的原理和使用注意事项。[/font][font='Times New Roman'] [/font]

  • 低温烹饪装置中高精度压力控制问题的彻底解决

    低温烹饪装置中高精度压力控制问题的彻底解决

    [color=#000099]摘要:真空低温烹饪法作为已经经典的高品质烹饪方法,并未得到广泛的应用,主要问题是无法针对各种食材进行真空度的准确设定和控制。本文将针对低温烹饪目前存在的真空度控制问题,提出相应的解决方案。解决方案的核心是采用动态平衡法进行真空压力控制,真正解决真空度精密控制难题,同时采用智能控制器兼顾温度控制,使得真空低温烹饪技术及其相应装置真正实用化,特别是满足大型低温烹饪装置和实验室研究设备的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[img=低温慢煮中真空度的准确控制方法,500,379]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301033507148_223_3221506_3.jpg!w690x524.jpg[/img][/align][size=18px][color=#000099][b]1. 真空低温烹饪技术现状和存在的问题[/b][/color][/size] 真空低温烹饪法(Sous Vide)作为一种经典的食品高品质烹饪方法,是基于气压越低加热介质的液体沸点越低这一基本物理原理,通过控制气压来实现加热介质较低的沸点温度,最终达到食品低温烹饪的目的。在食品发生热交换过程中,根据热力学定律,食品周围加热介质的压力、温度和体积彼此相关。温度的增加会使得压力升高和体积变大,并且压力的增加会使得沸点升高。因此,真正的真空低温烹饪法应该是能消除由于加热介质引起的压力以及控制体积变化,以便能更好地了解和控制食品烹饪温度,即完美的实现真空低温烹饪,需要准确控制真空压力、温度和时间这三个变量。根据烹饪形式的不同,真空低温烹饪法可以分为几个大类:[b][color=#000099]1.1 密封袋浸泡式低温烹饪法[/color][/b] 密封袋浸泡式低温烹饪法是将食品放入特制塑料袋后抽真空并密封,然后将此内部装有食品并具有一定真空度的密封袋浸泡在温度受控的水中进行烹饪,水温需要精确控制在55~70℃范围内的某个设定温度点上,由此通过水对密封袋内食品的低温加热,实现食品的真空低温烹饪。 密封袋浸泡式低温烹饪法具有较长的历史,因造价低和便于实现,是目前低温烹饪的主流技术,市场上也有众多相应产品和装置。尽管近年来也有不少技术试图进行改进,但绝大多数主要都聚焦在如何提高温度控制精度、改进搅拌加热均匀性和替换升级真空密封袋结构。 现有真空密封袋式低温烹饪法及其装置中,普遍存在以下几方面的不足: (1)抽真空时真空密封塑料袋的内部气压并不准确已知,不同真空泵和不同抽气时间会造成密封袋内的气压差别很大,由此使得外部加热液体的温度设置很难达到准确,往往需要操作人员根据具体装置和食品最终口感来进行摸索和粗略确定。如果要进行不同食品的不同真空度和不同温度下的烹饪,这就显着尤为不便和难以准确把控,这是限制真空低温烹饪法在家庭中普遍应用的主要因素。 (2)密封袋抽取真空后,真空密封食品的塑料袋中并不是没有一点气体,残存气体会随着烹饪过程中的温度升高而使得真空塑料袋中的压力变大,密封袋产生膨胀,从而使得沸点温度逐渐升高,造成采用密封塑料袋的真空低温烹饪法无法准确确定合理的烹饪温度,很难形成真空度和加热温度的准确对应关系。 总之,这种烹饪过程中的真空度不稳定和难以准确控制问题,是目前真空低温烹饪法采用塑料密封袋形式存在的主要缺陷,因此也限制了真空低温烹饪法的普及和应用。[b][color=#000099]1.2 开放浸泡式低温烹饪法[/color][/b] 为了解决真空密封袋浸泡式低温烹饪法存在的不足,近几年来开发了各种开放浸泡式低温烹饪法,即将食品直接放置在浸泡在水中,用传统烧、煮、炖方法和燃烧、电阻、电磁和微波等加热方式的条件下,增加了真空度控制技术,以真正有效和便捷的实现低温烹饪。 通过对众多相关技术的分析发现,现有各种开放浸泡式低温烹饪法和装置中,在真空度控制方面存在以下严重问题: (1)大多数技术只是涉及了真空度控制的原理性方案,具体方案都是静态模式形式,仅对真空泵端的抽气流量进行调节和控制。在实际低温烹饪过程中如果应用这种静态控制模式,在控制真空泵抽气流量的同时,需要等待密闭烹饪容器的自然漏气来缓慢补充进气,这种静态控制模式会使得真空度达到设定值的过程非常缓慢,基本都无法实现对真空度的准确控制。 (2)实际低温烹饪中的真空度控制需要很快的速度,对于低温烹饪中所用的密闭式器皿,需要采用动态控制模式,即分别调节进气流量和出气流量才能实现真空度的快速准确控制,由此需要配备传感器、进出气调节装置和PID控制器。很多现有技术明显缺少这方面的内容,如有些技术没有使用真空度传感器,或没有将进气口和出气口独立分开,或没有对进气口和出气口进行独立控制,控制器也多为简单的开关控制而不是精密的PID控制。 (3)在有些低温烹饪过程中,如蒸米饭和煮粥等,必须控制执行不同的真空度变化速度程序,以避免真空度突变所带来的爆沸、液体溢出和噪音大等问题。这些真空度程序化控制方面的高级功能,现有技术都无法实现。 (4)在食物真空低温烹饪过程中,很容易有溢出的汤水进入抽真空管路和器件中而造成堵塞和出现故障。现有技术明显缺少这些防堵塞的技术手段,同时也缺少维护维修堵塞的结构设计。 总之,缺乏真空度精密控制技术以及合理的辅助功能和结构设计,是这种开放浸泡式低温烹饪技术和装置目前存在的主要缺陷,也限制了这种真正实用且有发展前景的真空低温烹饪法的普及应用。[b][color=#000099]1.3 蒸烤烘焙炸熏式低温烹饪法[/color][/b] 除了上述烧、煮、炖形式的开放浸泡式低温烹饪法之外,通过增加真空度控制技术,也能在蒸、烤、烘、焙、炸和熏等常用烹饪方式中有效应用真空低温烹饪法。同时,真空度对面团制作中也起着重要作用,一定真空度的混合还可以使面团的微观结构更加连续和致密,并增加面条的断裂力和延伸率。 与上述开放浸泡式低温烹饪法一样,蒸烤烘焙炸熏式低温烹饪法现有技术存在同样的共性问题,同样缺乏动态真空度精密控制技术以及合理的辅助功能和结构设计。[b][color=#000099]1.4 腌制和卤制低温烹饪法[/color][/b] 腌制和卤制是传统的常温常压下美食制作方法,采用真空低温烹饪技术可以大幅提高传统腌制和卤制方法的效率和效果,可使入味速度更快和更深。 与上述现有低温烹饪技术一样,腌制和卤制低温烹饪法的现有技术存在同样的共性问题,同样缺乏动态真空度精密控制技术以及合理的辅助功能和结构设计。另外,腌制和卤制低温烹饪法的不同之处是需要采用真空脉冲技术,而真空脉冲技术更需要真空度的精确控制才能实现对不同食品的腌制和卤制。 从上述几种真空低温烹饪技术可以看出,应用和改进的重要方向之一就是解决真空度的精密控制问题,设法将目前的真空度静态控制技术升级为更准确的动态控制技术,而这恰恰是当前针对低温烹饪装置需要解决的难题之一。更有意义的是,真空度精密控制也是今后人们饮食习惯向着低温、低醇和低农残等方面发展的重要技术保障。 本文将针对真空低温烹饪目前存在的上述问题,提出相应的解决方案。解决方案的核心是采用动态平衡法进行真空压力控制,真正解决真空度精密控制难题,同时采用智能控制器同时兼顾温度的准确控制,使得真空低温烹饪技术及其相应装置真正实用化。[b][color=#000099][size=18px]2. 解决方案[/size]2.1 解决方案的工作原理[/color][/b] 任何烹饪装置或器皿都可以设定为具有一定气密性的容器,其内部真空压力的控制可采用静态和动态两种控制模式,其基本原理如图 1所示。[align=center][color=#000099][img=真空度控制中的静态和动态模式示意图,690,331]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301035266906_5954_3221506_3.jpg!w690x331.jpg[/img][/color][/align][align=center][color=#000099]图1 真空度控制中的静态和动态模式示意图[/color][/align] (1)静态模式 控制原理:采用静态模式对密闭容器真空度进行控制时,控制器首先关闭进气阀门并打开抽气阀门,开启真空泵对容器进行抽气,同时真空度传感器监测容器内的真空度变化。当真空度达到设定值时,关闭抽气阀门或真空泵,停止对密闭容器,理想情况下此时密闭容器内的真空度应保持稳定而实现真空度的恒定控制。如果要打开密闭容器进行操作,需要开启进气阀门通入外部大气。 控制结果:在实际真空度控制中,任何密闭容器都存在漏气现象。由于存在漏气,密闭容器的真空度会发生改变,漏气越严重这种变化速度越快,停止抽气后真空度会发生改变。当真空度由于漏气而超过设定值时,控制器自动再开启抽气阀门或真空泵进行抽气,达到设定值后停止抽气,由此循环往复使真空度在设定值上下波动,如图1所示。 适用范围:静态模式是一种开关式简单控制形式,因此静态模式比较适用于漏气比较严重、低真空度且对控制精度要求不高的情况,特别是无法应用于密闭容器内存在热源和内部物体会产热气体时的真空压力控制。 (2)动态模式 控制原理:动态模式是静态模式的一种自动化升级,在静态模式基础上给控制器增加了PID控制算法,并将静态模式中的进气和抽气阀门改变为开度可渐变控制的数字阀门,PID控制器根据真空度传感器采集数据和设置值,自动调节进气阀和出气阀开度,使得进气与出气流量达到动态平衡,由此实现真空度的准确控制。 控制结果:动态模式的真空度控制精度和速度要远优于静态模式,采用PID参数自整定功能可以根据设定值自动确定控制参数,采用不同精度的真空度传感器和PID控制器,可以实现高精度和高稳定性的真空度控制,如图1所示。 适用范围:动态模式是一种数字化的高级控制形式,控制过程中无需考虑密闭容器的漏气速度,可以覆盖整个真空度范围的控制,对于小体积密闭容器的真空度控制具有很高的相应速度,更适用于密闭容器内存在热源和内部物体会产热气体时的真空度控制,而且PID控制器还可以同时兼顾各种加热方式的温度控制。[b][color=#000099]2.2 解决方案[/color][/b] 真空低温烹饪法解决方案基于上述的动态模式的真空度控制方法,并考虑了其他实用性功能。解决方案的整体结构如图2所示。[align=center][color=#000099][img=真空低温烹饪压力控制系统结构示意图,690,438]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301035575049_4516_3221506_3.jpg!w690x438.jpg[/img][/color][/align][color=#000099][/color][align=center][color=#000099]图2 真空低温烹饪压力控制系统结构示意图[/color][/align] 在图2所示的解决方案中,使用真空泵作为真空源,进气和排气分别通过卫生级电动阀调节进气和排气流量。采用一个双通道的真空控制器来采集烹饪器皿中的气压信号,并根据所采集的气压信号来快速控制两个电动阀的开度,使烹饪器皿内的压力快递恒定在设定值上。为了避免高温蒸汽对压力传感器和电动阀的影响,在排气口处配置了一个冷凝器以降低排气气体温度。 在真空低温烹饪中,另一个重要控制参数是温度,且真空控制通常伴随着温度控制功能一起使用。本解决方案中的真空控制器可以很容易增加温度控制功能,只需在图2所示的PID控制器中增加一路用于温度控制,由此可实现真空度和温度的同时控制。 温度和真空压力控制的工作过程完全一样,可以根据需要按照图3所示的设定曲线进行程序设定,只是设定量分别是温度和真空度。[align=center][color=#000099][img=真空度控制设定曲线,450,277]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301038053568_7396_3221506_3.jpg!w690x425.jpg[/img][/color][/align][align=center][color=#000099]图3 真空度程序控制设定曲线[/color][/align] 本解决方案的真空压力精密控制装置,主要特点就是可以实现密闭容器内真空度的快速和准确控制,此特点非常便于满足低温烹饪中对各种真空度复杂变化的要求,最典型的应用是可以实现精确的真空脉冲控制,即控制真空度严格按照设定的脉冲幅度、脉冲周期和不同斜率进行变化,可完美实现不同品类食物的低温烹饪、不同咖啡和茶叶的快速冷冲泡、以及不同食材的腌制和卤制等。 真空脉冲控制方法的使用首先是要在真空度控制器中输入控制程序,典型的真空脉冲控制程序如 所示。按照实际烹饪、冲泡和腌制卤制等应用中的真空脉冲过程要求,真空脉冲控制程序一般包括脉冲过程、恒定过程和脉冲恒定过程的组合形式,不同食材和烹饪过程需要不同的真空脉冲参数和程序。在实际应用中,将设计好的控制程序输入到真空度控制器后既可自动运行,也可调用存储在真空度控制器中验证过的真空脉冲控制程序。[align=center][color=#000099][img=真空脉冲控制设定曲线,500,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301036559194_9044_3221506_3.jpg!w690x436.jpg[/img][/color][/align][align=center][color=#000099]图4 真空脉冲控制设定曲线[/color][/align] 真空低温烹饪真空度和温度同时控制的典型应用之一是咖啡和茶叶的快速冷泡过程,冷泡过程采用真空脉冲法。由于在真空度变化过程中,冲泡水的沸点会随之发生变化,因此在冷泡过程中需要设置精确的真空度和温度控制程序才能在较短时间内得到满意的饮品。典型的冷泡控制程序如图5所示。[align=center][color=#000099][img=快速冷泡过程中的真空度和温度控制设定曲线示意图,550,320]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301037374359_9780_3221506_3.jpg!w690x402.jpg[/img][/color][/align][align=center][color=#000099]图5 快速冷泡过程中的真空度和温度控制设定曲线[/color][/align][b][size=18px][color=#000099]3. 总结[/color][/size][/b] 真空低温烹饪中的关键技术是准确的真空控制,本文提出的解决方案可以完美解决真空压力控制问题,非常适用于各种大型低温烹饪装置和实验室研究设备。由于真空度的精确、快速和可编程控制控制,此解决方案可在多种食品低温食品烹饪、饮品冲泡和腌制卤制中得到应用。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    【原创大赛】气相色谱仪分流不分流进样口 手工流量控制器的结构原理

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流不分流进样口 手工流量控制器的结构原理 [align=center]概述[/align][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口手工流量控制原理简介,各部件介绍和控制方式的特点。[align=center]简介[/align]分流/不分流进样口是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的重要部件,其气流控制的稳定性、精确度会显著影响[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的结果的重复性、样品的真实性。随着电子技术的发展、手工流量控制器再现性较差,调整不方便等原因,进样口配备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]逐渐成为实验室仪器的主流配置。但是手工流量控制因其安装和维护成本低廉、性能可靠等优点,目前仍然在较多的实验室具有一定的存量。尤其是对于色谱行业的初学者,有机会使用手工流量控制类型的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],将会有助于较快的学习和领会到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的基本结构和原理。[align=center]手工流量控制模式[/align]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分流/不分流进样口的手工流量控制模式大致有两种,压力控制模式和流量控制模式。1.1压力控制模式其结构原理如图1所示,色谱仪通过恒压阀的调节,提供进样口的柱前压力(即控制柱流量);通过分流流路和隔垫吹扫流路针型阀的调节,实现分流流量和隔垫吹扫流量的控制。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903058201_1362_1604036_3.jpg[/img][/align][align=center]图1 压力控制模式基本原理图[/align]下面以较为经典的Shimadzu的GC-2014为例予以说明,其调节阀结构如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059080_3480_1604036_3.jpg[/img][/align][align=center]图2 进样口压力控制模式阀结构图[/align]载气首先经由两级稳压阀的一级减压和二级减压,输送进入进样口,提供稳定的柱前压力,根据色谱柱尺寸、载气种类和操作温度,调节合适的压力。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中分流流量和隔垫吹扫流量的具体调节都通过针型阀来实现。隔垫吹扫流路和分流流路均存在捕集阱,一般填充活性炭、硅胶之类的吸附剂,用以吸附流经气体中的高沸点杂质,用以保护针型阀和分流电磁阀,避免过多的杂质凝结在阀中造成堵塞和开关失效。在分流流路中设计有电磁阀,当进样口需要工作在不分流状态之下时,通过电磁阀的通断操作,实现分流流路的切断和恢复。1.2 压力控制模式的优点和缺点采用控制柱前压力的方法来实现色谱柱流量的控制,执行部件使用了恒压阀,恒压阀的调节速度较快。色谱进样时,由于液体样品的受热迅速膨胀或者进样阀造成的流路瞬间切断,会导致进样口压力变化。采用压力控制方案(即使用恒压阀控制),进样口的压力会快速恢复。恒压阀和针型阀各自独立工作,互相不存在干扰和反馈的问题。其缺陷是结构较为复杂,分析方法开发时,调节不太方便。例如更换不同色谱柱之后,进样口压力、分流流量和隔垫吹扫流量均需要进行调节。此外如果进样口存在一定程度泄漏时,系统并不会有明显的异常。在色谱柱安装之后,一定要仔细检查泄漏。2.1流量控制模式其结构原理如图3所示,色谱仪通过总流量控制器(恒流阀)的调节,向进样口提供正确的进样口载气流量,由分流控制器(背压阀)提供正确的柱前压,同时提供正确的分流比。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903059959_5598_1604036_3.jpg[/img][/align][align=center]图3 流量控制模式原理[/align]其阀结构如图4所示,[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903060554_1498_1604036_3.jpg[/img][/align][align=center]图4 进样口流量控制模式阀结构图[/align]载气首先经由稳压阀进行减压,输送给恒流阀,向进样口提供稳定的载气流量。流出进样口的载气流量分成三部分,柱流量、分流流量和隔垫吹扫流量,其中隔垫吹扫流量的调节通过针型阀来实现。分流流量通过背压阀来调节,背压阀的工作特性是可以使阀输入的压力保持稳定不变。利用这个特点背压阀可以同时调节进样口压力。通过三通电磁阀的状态切换,实现进样口分流和不分流状态的调整,如图5所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/09/202109191903062977_9863_1604036_3.jpg[/img][/align][align=center]图5 分流和不分流状态阀结构图[/align]流量控制模式结构简单,背压阀的调节较为重要,调节速度和进样口压力扰动的恢复速度比压力模式要低。另外还有一类采用混合控制模式的手工流量控制器,将进样口入口侧的恒流阀改换成恒压阀,进样口压力控制速度得到改善。但是进行方法开发时,稳压阀和背压阀会互相影响,流量调节就会比较耗费时间。

  • 【原创大赛】烟气脱硝测试装置控制系统改造

    [font='宋体'][size=13px][color=#333333]烟气脱硝测试装置是模拟燃煤电厂烟气条件进行脱硝催化剂测试的非标装置,测试装置的参数按照[/color][/size][/font][font='宋体'][size=13px][color=#333333]DT/L1286要求进行控制。整个测试系统主要有:配气系统、制氮系统、反应器、控制系统、测试系统、取样系统等构成。[/color][/size][/font][font='宋体'][size=13px][color=#333333]1.控制系统作用及问题[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制系统单元主要由电源模块、传感器模块、质量流量计、继电器、电磁阀、P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]控制器等组成,主要[/color][/size][/font][font='宋体'][size=13px][color=#333333]作用是[/color][/size][/font][font='宋体'][size=13px][color=#333333]对系统参数的采集、控制及报警。全尺寸平台使用P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行控制,通过控制电脑提供人机交互界面,并结合软件平台实现控制元件参数的设定和自动化运行。随着对设备[/color][/size][/font][font='宋体'][size=13px][color=#333333]使用的不断积累[/color][/size][/font][font='宋体'][size=13px][color=#333333],以及检测能力扩大迫切的要求,伴随着多项技术改造,原始控制系统已经无法满足使用要求[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.系统改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]为完善自动控制功能,增强控制系统运行安全性和稳定性,对控制系统采取[/color][/size][/font][font='宋体'][size=13px][color=#333333]了如下的[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术改造[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.1[/color][/size][/font][font='宋体'][size=13px][color=#333333]对P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]进行升级,增加一套冗余P[/color][/size][/font][font='宋体'][size=13px][color=#333333]LC[/color][/size][/font][font='宋体'][size=13px][color=#333333]专门用于分布式控制温控系统和电加热系统[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.2[/color][/size][/font][font='宋体'][size=13px][color=#333333]对模拟量数据采集和阀的控制等实现全局掌控,避免发生卡顿、宕机等隐患。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.3[/color][/size][/font][font='宋体'][size=13px][color=#333333]在空压机和制氮机端增加双绞屏蔽电缆和电脑通讯,既可以远程启停设备,还可以监视设备运行各项参数及状态,对冷干机使用基于L[/color][/size][/font][font='宋体'][size=13px][color=#333333]oRa[/color][/size][/font][font='宋体'][size=13px][color=#333333]技术的远程控制方式。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.4[/color][/size][/font][font='宋体'][size=13px][color=#333333]对所有软件平台进行优化,整合线路,更换软件架构,采用无线与网线相结合的传输模式配合分布式多中央控制系统,增加系统运行的安全性。对设备控制根据各系统进行模块化布置,对测试过程按照逻辑顺序进行显示和监控。在保留和优化原有重要报警及保护程序的基础上,增加各系统分部锁定、多分布连锁,以及分布复位和总复位功能。有效发挥数据库管理系统作用,为组分配置提供数据参考[/color][/size][/font][font='宋体'][size=13px][color=#333333]。[/color][/size][/font][font='宋体'][size=13px][color=#333333]2.5[/color][/size][/font][font='宋体'][size=13px][color=#333333]对供气系统软件程序根据气源变化重新编辑公式以满足自动配气功能。根据管道加热器控制柜的改造,设计研发独立的控制软件,既能设定温度,还能控制交流接触器开断,实时监控温控表、电力调整器的各项参数,具备储存报警信息、三相电流异常数据、操作记录等功能。[/color][/size][/font][font='宋体'][size=13px][color=#333333]经过上述技术改造,控制系统更合理,可靠性和稳定性进一步增强,提高了测试效率。[/color][/size][/font]

  • 气相色谱仪常用的控制器件——方向控制阀

    气相色谱仪常用的控制器件——方向控制阀

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用控制器件[/font][font=宋体]——方向控制阀[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]电磁阀分为单向阀、安全阀、方向控制阀、速度调节阀等种类,常用的方向控制阀有两位三通阀、两位四通阀、三位四通阀、两位五通阀等。方向控制阀又称换向阀,一般与气缸(油缸)等部件协同工作,实现对物体的旋转运动、直线运动和抓取等动作的控制。下文以气体两位五通阀为例,说明方向控制阀的工作原理。[/font][align=center][font=宋体]两位五通电磁阀的结构原理[/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]1[/font][font=宋体]为两位五通阀的示意图,阀带有五个气体端口,[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]和[/font][font=Calibri]B[/font][font=宋体]。其中[/font][font=Calibri]P[/font][font=宋体]为系统的气体入口,[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]为泄压端口,[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]端口一般连接执行部件的气缸。[/font][/font][align=center][img=,238,136]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122201497478_4227_1604036_3.jpg!w690x394.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]两位五通阀示意图[/font][/font][/align][font=宋体][font=宋体]两位五通阀的结构原理如图[/font][font=Calibri]2[/font][font=宋体]所示,其由带有[/font][font=Calibri]3[/font][font=宋体]组环形密封的铁芯、供电线圈、复位弹簧和五个气体输入输出端口组成,其中端口[/font][font=Calibri]P[/font][font=宋体]为气体入口。当线圈未通电时,铁芯在弹簧的作用下向右移动,端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]连通,可以向受控部件提供压力,端口[/font][font=Calibri]B[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]连通,用以排放受控部件的压力。当线圈通电后,铁芯在磁力的作用下向左移动,使端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]连通,端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]连通。[/font][/font][align=center][img=,260,194]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202291356_1349_1604036_3.jpg!w642x478.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]两位五通阀的结构原理[/font][/font][/align][align=center][font=宋体]两位五通阀与气缸的连用[/font][/align][font=宋体][font=宋体]两位五通阀一般与受控部件的气动执行器(气缸)连接,通过控制阀的线圈通电和断电,来控制气缸的机械运转,最终实现受控部件的直线或者旋转运动线运动的控制,其结构原理如图[/font][font=Calibri]3[/font][font=宋体]所示。[/font][/font][align=center][img=,422,204]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202388603_1512_1604036_3.jpg!w690x334.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]两位五通阀和气缸的联合控制[/font][/font][/align][font=宋体][font=宋体]两位五通阀的端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]通过管路连接至气缸的两个入口,气缸内活塞随其两端的压力差变化而发生移动。当两位五通电磁阀未通电时,具有一定压力的气体由[/font][font=Calibri]P[/font][font=宋体]端口、[/font][font=Calibri]A[/font][font=宋体]端口进入气缸左侧,气缸右侧气体由端口[/font][font=Calibri]B[/font][font=宋体]、端口[/font][font=Calibri]S[/font][font=宋体]逸出,活塞左侧压力大于右侧,活塞将向右移动。当两位五通阀的线圈通电,活塞则向左移动。[/font][/font][align=center][font=宋体]两位五通阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]及外设中的应用[/font][/align][font=宋体][font=宋体]复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统一般装备有多根色谱柱,通过各种阀的动作实现色谱柱在分析过程中的流路切换,实现单根色谱柱不能完成的分离分析工作。常见的切换阀带有两位五通阀[/font][font=Calibri]-[/font][font=宋体]旋转运动型气缸结构,驱动阀芯的迅速旋转。[/font][/font][font=宋体][font=宋体]某些型号的吹扫捕集自动进样器抓取进样瓶动作、热解析进样针的升降动作、热解析进样器加热器等动作也通过两位五通阀[/font][font=Calibri]-[/font][font=宋体]直线运动型结构来实现。[/font][/font][font=宋体]这些装置采用气动结构,驱动力量较大、速度快、动作可靠、维修方便。使用中需要注意气源的清洁、气源压力适度(过高压力会造成密封问题,过低压力会造成驱动速度降低)。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简介两位五通阀和气动执行器的结构原理与使用特点。[/font][align=center][font=宋体] [/font][/align][font=Calibri] [/font][font=Calibri] [/font][font=Calibri] [/font]

  • 气相色谱仪汽化室温度控制故障的原因分析

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]温度控制电路几乎都用采用开环给定方式进行控制。其温控范围大都在60℃~400℃之间。汽化室温控部分所产生的故障有:1 汽化室不升温;2 汽化室温度失控;3 汽化室温度升不高;4 汽化室温度波动太大。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]汽化室温度控制故障的原因分析1 汽化室不升温在电源供给色谱仪的温控单元后,打开汽化室加热开关,按要求设定汽化温度,30min左右汽化室温度应能达到所要求的温度值,如果在这段时间内汽化室一直不能升温,或受柱室影响略有温升,则可判定为汽化室不升温故障。汽化室不升温的原因有以下几个:1电源保险丝短路;2加热铬铁芯烧断;3可控硅损坏;4开关接触不良;5全桥损坏;6触发电路故障;7电源变压器次级开路;8脉冲变压器次级开路。2 汽化室温度失控仪器正常时,汽化室温度应按设定值调节而有升降。如果汽化室温度一直向高温度升温而且不受汽化室设定值的控制,则认为是汽化室温度失控故障。汽化室温度失控的原因有如下几种:1 可控硅阴阳两极间击穿;2 加热丝或加热引线与机壳相碰;3脉冲变压器初级线圈间漏电;4单接管电路自触发。3 汽化室温度升不高且变动大在正常情况下,汽化室温度高可达300℃以上。如果汽化温度都不能达到这一标准,则认为存在汽化温度升不高的故障。造成汽化温度升不高的主要原因是加热铬铁芯断开

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 气相色谱的样品引入装置:热解吸_热脱附装置(九)

    [font=微软雅黑, sans-serif][size=16px][color=#212529]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析中,进样时候常见的样品形态为液体或者气体。实际样品(如蔬菜)经过溶剂提取、过滤、萃取、浓缩和定容等前处理步骤之后变为溶液中的组份成为[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]液体样品[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529];水质中的易挥发组份(经处理后)、大气和工厂废气、天然气等化工气体等则作为气体样品。[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]样品形态和性质的不同[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]会使得其引入进样口的方式不同,[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]催生出多种多样的样品引入装置[/color][/size][/font][font=微软雅黑, sans-serif][size=16px][color=#212529]。[/color][/size][/font][font=微软雅黑, sans-serif]在使用热解吸_热脱附装置进行样品分析时,根据挥发性和半挥发性组份从采样管中解吸之后是否再进行冷聚焦浓缩,将热脱附装置分为一次热解吸装置和二次热解吸装置。本文将进行介绍二次热解吸装置的仪器结构、流路与工作过程。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]1 [/font][font=微软雅黑, sans-serif]概述:二次热解吸的一般过程[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]使用二次热解吸/热脱附(Thermal Desorption,TD) 技术/装置分析样品,在完成样品采集之后,分析过程主要包括一次解吸/脱附,富集,二次解吸/脱附,进样和老化等步骤。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/95/96/995966fcfbdd7c6854387f1c44171dca.png[/img][/align][font=微软雅黑, sans-serif]完成样品采集之后,将采样管按照要求正确安装在热解吸仪器上;通过一次解吸使采样管在高温下将吸附的样品释放出来;采样管中吸附的样品释放出来之后被带入[color=red]低温冷阱[/color](与采样管中吸附剂相同,处于低温,体积更小且可以迅速升温)进行[color=red]二次浓缩和富集[/color],然后快速升温释放并被载气带入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器进行分析;[/font][font=微软雅黑, sans-serif]分析完成后,一般需要对采样管进行老化以降低残留。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2 [/font][font=微软雅黑, sans-serif]二次热解吸的仪器流路[/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]二次热解吸仪器[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]二次热解吸_热脱附装置流路较一次热解吸_热脱附装置稍微复杂,在工作时涉及到进样流量和吹扫流量的切换,[color=red]多数使用六通阀作为核心流路切换部件[/color](也有不使用六通阀的厂家)。下图为某国外热解吸外观图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/12/99/0129939665b863a4f1233b42b596b051.png[/img][/align][font=微软雅黑, sans-serif]该装置具有样品盘,可以放置多个采样管并自动依次进行分析。目前国内厂家也有二次热解吸_热脱附装置,具有单通道(只能进行一个采样管的分析)和多通道(带样品盘)的不同类型。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/6a/66/c6a66c5271a06602dbe1228a8c6ab9ea.jpeg[/img][/align][font=微软雅黑, sans-serif]2.2[/font][font=微软雅黑, sans-serif] 二次热解吸仪器流路[/font][font=微软雅黑, sans-serif]二次热解吸_热脱附装置的基本原理类似,但是流路设计多种多样;典型的二次热解吸装置的流路可以参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/03/97/b0397afc6cc9096c3a1473bf178243d4.png[/img][/align][font=微软雅黑, sans-serif]仪器内部装置实物可以参见下图:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/23/09/323096a9f1f625dbc6da7e2ae5e17225.png[/img][/align][font=微软雅黑, sans-serif]仪器内部的关键部件为:六通阀用以切换流路;冷阱/聚焦管可以将采样管中解吸之后的样品再进行冷聚焦浓缩;除此之外,有控制流路切换的开关电磁阀、调节分流流量的机械阀(或者电子流量控制装置),以及测量内部压力的PM(数字压力计)以及测量分流流量、出口流量的FM(数字流量计);当然,这些装置并非必须,是可选项。[/font][font=微软雅黑, sans-serif][size=14px](说明:流量计仅仅用以测量流量,流量控制器则可以调节、控制并测量流量;本例中热解吸装置内部一律使用机械阀调节流量,使用数字流量计测量流量。)[/size][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在仪器外部,仪器背面配有两个单独的气体入口,其中载气(Carrier Gas)用于将解吸出来的样品带入色谱柱,由[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]提供;氮气进口(DriveGas、Auxiliary Gas In等,统称为[color=red]辅助气[/color])用于吹扫、一次解吸和老化等过程(一般使用与载[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]同的气体),可以使用机械阀或者电子流量控制装置调节,本例中使用DPC(数字压力控制器)。[/font][font=微软雅黑, sans-serif][size=14px]有关热解吸装置外部管路气路连接的内容可以参考本公众号往期文章:[url=https://ibook.antpedia.com/x/335525.html][color=#7030a0]第34篇 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的样品引入装置:热解吸_热脱附装置(三)[/color][/url]。[/size][/font][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.3 [/font][font=微软雅黑, sans-serif]仪器的工作模式和过程[/font][font=微软雅黑, sans-serif]对于二次热解吸装置而言,其工作状态主要包括:等待和就绪、加压和检漏、干吹、一次解吸(采样管解吸_脱附)、冷阱/聚焦管富集、二次解吸(冷阱/聚焦管解吸_脱附)、进样、老化等多个步骤。由于各厂家设计思路不同,对于实际的仪器,可能相邻的两个工作状态和步骤会进行合并,但是整体顺序不变。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.3.1 [/font][font=微软雅黑, sans-serif]等待和就绪阶段[/font][font=微软雅黑, sans-serif]等待和就绪阶段[/font][font=微软雅黑, sans-serif]指将采样管安装在热解吸装置上(并非置于热解吸_热脱附装置的加热模块中,而是安装在仪器上,如放置于样品盘中),并等待仪器温度、流量就绪的过程;所有仪器设定条件达到时,仪器就绪。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/dc/1b/9dc1b62574c54644035058dde2d047c4.png[/img][/align][font=微软雅黑, sans-serif]仪器处于就绪状态时,[color=red]采样管[/color]处于样品盘中;由数字压力控制器(DPC)控制的[color=red]辅助气[/color](Auxiliary Gas)关闭,采样管中没有辅助气(一般和载气使用同种气体)通过,采样管处于封闭状态;用以样品分流的[color=red]SV3阀[/color]可以根据设置打开或者关闭;排空口的[color=red]SV2阀[/color]处于开启状态;[color=red]载气[/color]则不通过六通阀-冷阱/聚焦管而是通过SV1阀和传输线进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的进样口,此种方法可以避免冷阱/聚焦管可能的污染对仪器造成的影响。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]另外,需要单独说明的说,此时冷阱/聚焦管可以根据分析方法设置为低温制冷状态,如设置为-30℃。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制