当前位置: 仪器信息网 > 行业主题 > >

色谱微量蛋白检测

仪器信息网色谱微量蛋白检测专题为您提供2024年最新色谱微量蛋白检测价格报价、厂家品牌的相关信息, 包括色谱微量蛋白检测参数、型号等,不管是国产,还是进口品牌的色谱微量蛋白检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱微量蛋白检测相关的耗材配件、试剂标物,还有色谱微量蛋白检测相关的最新资讯、资料,以及色谱微量蛋白检测相关的解决方案。

色谱微量蛋白检测相关的论坛

  • 尿微量蛋白(尿微量白蛋白/蛋白尿)试验

    尿微量蛋白(尿微量白蛋白/蛋白尿)试验(也称“白蛋白试验”,“尿微量白蛋白”和“蛋白尿”试验)何为尿微量白蛋白(白蛋白)试验?尿微量白蛋白试验是对尿液中的蛋白质进行测定的筛选试验。人体血液中有一种蛋白质称为白蛋白。在正常情况下,几乎无法在尿液中检测到。只有在肾脏受损,尤其是损伤早期,它可以优先于其他肾损伤标志物在尿液中被检测出,因此,尿微量白蛋白在诊断肾脏疾病、早期肾损伤等方面具有重要意义。此项试验有何目的?蛋白质是人体的基本构成“材料”,具备一些重要的功能和作用,可结合营养物质将其运输至各个组织,,并将人体中循环的体液量维持在适当水平。肾脏功能正常时,蛋白质几乎无法通过肾脏进入尿液(仅会排出血液循环产生的废料)。然而,如果人的肾功能受损或衰竭,该肾脏对蛋白质的过滤能力将有所下降,因而一些蛋白质将会透过肾脏而出现在尿液中,称为尿微量蛋白。尿微量白蛋白与蛋白尿有何不同?白蛋白是一种大量存在于血液中的典型蛋白质。因其分子个头小,当肾脏功能出现问题时,白蛋白是能够率先通过肾脏进入尿液的几种蛋白质之一。尿液中出现少量白蛋白的情况称为尿微量白蛋白。若肾脏功能受损严重,尿液中的白蛋白数量呈现出增长趋势,这种症状被改称为蛋白尿。尿微量白蛋白/蛋白尿有何症状?病症早期,并无明显症状或征兆显现。随着肾功能衰竭的加重,大量蛋白质出现在尿液中,手脚、腹部和面部可能出现肿胀。如果蛋白尿的情况加重,可能会造成永久性肾功能损伤,有些病人可能需要做透析或肾移植。不论上述症状是否存在,尿蛋白测定是确定有多少蛋白质进入尿液的唯一办法。蛋白尿还可能引发心血管疾病。血管受损除了会引发肾脏疾病外,还可能会造成窒息和心力衰竭。患蛋白尿(症)的高危人群有哪些?患有糖尿病、高血压、心血管疾病和其他类型肾脏疾病等慢性病的病人易出现蛋白尿。老年人、肥胖人群以及有肾脏疾病家族史的人群。其

  • 【原创】微量核酸蛋白定量的最新技术结晶 – NanoVue

    随着常规分子生物学研究的深入,越来越多的生物实验室日常需要测量的核酸、蛋白样品量也在不断地加大。传统的分光光度计虽然已经非常普及,但由于需要在测量后清洗比色杯,实际上消耗了不少宝贵的研究时间。同时,由于核酸样品的体积较小,即使使用昂贵的微量石英比色杯(容积数十ul左右),也往往需要对原始样品进行稀释,从而带来可能的操作偏差。对于一些稀有的样品来说,稀释即意味着测量后无法回收,同样也会对后续研究带来更高成本。因此,无需比色杯,仅需数ul即可测定样品浓度的超微量分光光度计现在受到很多实验室的关注和欢迎。NanoVue是GE Healthcare公司于2008年最新推出超微量分光光度计。GE Healthcare公司的分光光度计品牌Ultrospec和GeneQuant在市场上已经有了十多年的历史,在用户中有着很好的信誉和口碑。NanoVue在该系列仪器的基础上延续了出众的检测性能,同时大大改进了检测的光路设计,通过专利的检测技术使检测样品的体积最小仅需0.5ul, 190-1100nm的宽范围连续波长设计较市场上同类仪器宽了一倍左右,使得能够轻松检测核酸、蛋白样品和Cydye荧光染料标记物的浓度。仪器内置了RNA、DNA 和寡核苷酸浓度和纯度测定方法;寡核苷酸转换因子,分子量,理论Tm计算功能;包括一般紫外、Bradford、 Biuret、BCA、Lowry的蛋白定量法;以及波长扫描,动力学,标准曲线,多波长测定等扩展功能。除了强大的检测性能外,NanoVue还在许多操作性能上进行了精心的设计,能够给用户带来众多全新的体验,主要包括以下方面:1 唯一不需电脑就能在仪器面板上直接检测的超微量分光光度计。仪器配置了一块大面积高分辨率的背光液晶屏和操作面板。相对于点样后转去电脑控制,再回去仪器清洁的过程,NanoVue不仅节省了购买电脑的支出,同时点样,按键测量,擦拭一气呵成。可以通过整合的打印机直接打印分析数据。当然,如果需要在电脑上保存分析数据,NanoVue同样支持USB或蓝牙连接电脑,将珍贵的实验数据永久记录下来。2 通过特别设计的疏水点样表面,能够很容易回收稀有的样品,并且有效避免多个测量间的样品交叉污染,提高测量的准确性。NanoVue的点样表面具有专利设计,表面坚固而且光滑。不管是样品回收还是测量完直接擦去都非常简易,不会有任何样品粘附残留在点样面上。而且点样面耐用性也非常出众,保守估计可以至少测量20000个样品以上。3 最快的检测速度。NanoVue通过独特的光路设计,使得所有样品的检测都能够在5秒钟之内完成,把微量分光光度计的测量时间提升到了一个新的高度。而且NanoVue具备即开即用功能,避免了许多分光光度计开机需要预热的麻烦,真正做到省时省力。由此可见,NanoVue不仅性能出众,其易用性和灵活性也是目前超微量分光光度计中出类拔萃的。通过试用NanoVue的体验,使用者可以完全感受到,原来,核酸蛋白的测定可以这么简单,这么快速!目前,NanoVue已经正式在中国推出,欲了解更多的信息,请直接联系GE公司。

  • 【求助】微量定氮仪测蛋白数据不平行

    请各位高手发表一下看法:我用凯式微量定氮仪测蛋白,同一瓶消化液,容量瓶内的消化液已经应该均匀了,我都摇晃6次的,但在同一个时间段里测两个数据,结果不平行,请问是为什么啊?这种现象已经出现了100多次了,以前没这种情况的。最近一直为这个问题烦恼啊

  • 【分享】高效液相色谱检测乳制品中的乳铁蛋白含量

    借助高效液相色谱法测定乳制品中乳铁蛋白。方法:先通过额外加入的二价铁离子使乳铁蛋白的构型更利于沉淀。然后用体积分数60% 乙醇溶液沉淀蛋白除去糖分,再用醋酸盐缓冲液提取乳铁蛋白并分离掉酪蛋白,最后用高效液相色谱检测,采用LiChrosorb RP-C18 色谱柱,在质量浓度0.1g/100mL 的三氟乙酸溶液协助下,甲醇与水线性梯度洗脱。结果:乳铁蛋白的线性范围是0.4~2mg/mL(R2=0.9980),平均回收率95.4%。结论:此方法可以用于乳制品中乳铁蛋白的测定。

  • 可溶性蛋白的定量检测方法

    如题,,现在已经试验过茚三酮、考马斯亮蓝, 两种方法都有缺点,,,有没有简便点的方法进行检测,,谢谢补充,,可能我说的不是很清楚,,是我们的一种产品里面含有可溶性蛋白,,在我们产品里,,蛋白质属于杂质,,必须除去的那种,,很微量的,用于离交前进料质量的控制,,,所以方法必须简便,,毕竟生产车间使用的

  • 关于用半微量蒸馏装置做蛋白空白的问题

    请教各位,我们在用半微量蒸馏装置做蛋白空白时需要半个多小时硼酸才变绿,这样对蛋白的结果有影响吗?而且我们做的结果要比别的公司做的结果偏低,也不知道是什么原因,请各位赐教一下,在此先谢了

  • 【原创大赛】用检测血浆蛋白粉中免疫球蛋白G的含量来验收液相色谱仪

    【原创大赛】用检测血浆蛋白粉中免疫球蛋白G的含量来验收液相色谱仪

    今天去给客户安装了液相色谱仪,客户主要用它来检测血浆蛋白粉中免疫球蛋白G的含量,对于液相色谱仪安装已经有一些小小经验,所以仪器送到之后很快的我们就把仪器安装好了,仪器安装好之后呢肯定是要调试和验收的,验收中的安装已经完成,接下来我们运行确认和性能确认,既然要检测血清蛋白,那我们就通过检测它来完成后面的任务吧。首先我们完成运行确认,准备我们实验需要的流动相,流动相A:称取5.6765g磷酸氢二钠和4.6478g磷酸二氢钾至1000mL容量瓶中,加水定容至l000 mL,配制成pH-6.5,浓度为0.05 mol/L的磷酸盐缓冲液。流动相B:称取甘氨酸3.7535g与1000mL容量瓶中,加入800 mL水溶解,再加入4.75 mL6 mol/L的盐酸,用水定容至1000 mL,配制成pH-2.5,浓度为0.05 mol/L的甘氨酸盐酸缓冲液。[img=,255,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060953502175_13_3763765_3.jpg!w690x920.jpg[/img] [img=,248,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060945498254_8247_3763765_3.jpg!w690x945.jpg[/img] 将两种流动相经过过滤和脱气处理后,连接到我们的输液泵上,输液泵在第一次使用时要打开排液阀,将注射器安装到废液口,用注射器进行手动吸液当衍生试剂进入注射器内,观察并确定进液管内无明显气泡后关闭排气阀,换上废液管后开始运行输液泵。此时必须要确定泵腔内有液体且无气泡才可以运行泵,否则运行泵时会损坏泵头。两个泵都要经过此操作后才可以开始运行。打开我们的泵,查看机器是否可以顺利通过自检,检测泵的流速和流动相混合比例的准确度。随后打开检测器和工作站,我们用的色谱柱是HiTrap[sup]TM [/sup] Protein G HP柱,1mL。设置好实验所需参数:流动相梯度洗脱程序[table][tr][td][align=center]时间(min)[/align][/td][td][align=center]流速(mL/min) )[/align][/td][td][align=center]流动相A(%)[/align][/td][td][align=center]流动相B(%)[/align][/td][/tr][tr][td][align=center]0[/align][/td][td][align=center]0.4[/align][/td][td][align=center]100[/align][/td][td][align=center]0[/align][/td][/tr][tr][td][align=center]4.5[/align][/td][td][align=center]0.4[/align][/td][td][align=center]100[/align][/td][td][align=center]0[/align][/td][/tr][tr][td][align=center]5.5[/align][/td][td][align=center]0.4[/align][/td][td][align=center]0[/align][/td][td][align=center]100[/align][/td][/tr][tr][td][align=center]15.0[/align][/td][td][align=center]0.4[/align][/td][td][align=center]0[/align][/td][td][align=center]100[/align][/td][/tr][tr][td][align=center]15.5[/align][/td][td][align=center]0.4[/align][/td][td][align=center]100[/align][/td][td][align=center]0[/align][/td][/tr][tr][td][align=center]22.0[/align][/td][td][align=center]0.4[/align][/td][td][align=center]100 0[/align][/td][td][align=center]0[/align][/td][/tr][/table]检测波 长280nm。让流动相冲洗整个系统,查看基线,等待基线平稳。[img=,306,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060949079532_4842_3763765_3.jpg!w690x765.jpg[/img] [img=,316,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060949585645_8170_3763765_3.jpg!w690x742.jpg[/img] [img=,268,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060957536288_7365_3763765_3.jpg!w690x874.jpg[/img][img=,321,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060944094564_753_3763765_3.jpg!w690x730.jpg[/img] [img=,285,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060944599785_6578_3763765_3.jpg!w690x822.jpg[/img] 在这该阶段我们可以把标准品配制出来,首先我们来了解一下免疫球蛋白G,它是血清主要的抗体成分,占血清免疫球蛋白的百分比较多,大约占75%,但它只有40%-50%在血清中,其余在组织当中。它的主要功能是在机体免疫中起到保护作用,它也是唯一可以通过胎盘的免疫球蛋白。通过胎盘获取的母体免疫球蛋白G在出生后数月对防御白喉、[url=https://baike.baidu.com/item/%E9%BA%BB%E7%96%B9][color=#000000]麻疹[/color][/url]、脊髓灰质炎等感染起着重要作用。它的结构想一个“Y”字型,如图:[img=,357,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060948093745_2090_3763765_3.jpg!w440x418.jpg[/img] [img=,255,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908060953036898_4160_3763765_3.jpg!w690x920.jpg[/img] [img=,190,340]https://ng1.17img.cn/bbsfiles/images/2019/08/201908061003393034_7645_3763765_3.jpg!w690x1230.jpg[/img] 称取免疫球蛋白G标准品0.0102g(纯度=97%)置于10mL容量瓶,并用流动相A定容到10mL,摇匀,脱气。浓度为1mg/mL。取配置好的标准溶液母液,用流动相A稀释成浓度为0.2mg/mL、0.4mg/mL、0.6mg/mL、0.8mg/mL的标准工作液。检测进样阀的精密度:将标准溶液母液取20μL在检测波 长280nm条件下进样,连续进样6次,计算其相对标准偏差RSD=0.94%。依次进样标注品工作液20μL,由时间进行定性,峰面积进行定量。得出其平均相关系数r=0.9999。免疫球蛋白G检出质量浓度以3倍信噪比(s/N=3)计算,最低检出质量浓度为0.1 mg/mL。原本还有一步已知浓度样品的检测,前处理方法如下:称取0.1g精确至0.0001曲血浆蛋白粉于15mL的塑料离心管中,准确加入10mL流动相A,涡旋振荡10min,4 000 r/min离心5 min,取上清液经微孔膜(0.22μm)过滤,滤液待测。但是由于今天已知浓度的样品没有到,所以我们无法进行样品进样,但是建议大家在安装仪器时最好用已知浓度的样品进样验证仪器的准确性。好了,今天就到这里啦!

  • 色谱检测 问题咨询-乳铁蛋白检测

    最近开发了一个关于乳粉中乳铁蛋白检测的方法,结果发现了两个问题,造成的困扰很大,请各位支招1、检测发现产品有两个峰(挨的很近),查文献资料乳铁蛋白是有多种构型其中两种含量比较多,其分子量差异不大(84K与80K)。但对照品市场只能购买一种构型对照(还未标识是那种构型),我用这种对照去定量两个峰是否可行?请从方法合规性上分析2、采用的方法是梯度洗脱,刚好目标峰出在梯度峰一个时间,使用空白和不进样已经确认是梯度峰。尝试改变梯度,目标峰出的很差,所以非常纠结。这个梯度峰存在对方法合规性来说影响大吗?从定量角度来说应该是不影响定量的。

  • 悬赏征集真蛋白的检测技术(已征集18种)

    各位网友,在下想征集真蛋白的检测技术。80年代,曾有2种蛋白检测技术的诞生(可能不止两种,请大家集思广益),一种是凯氏定氮法,一种是杜马斯燃烧法。目前我们用的最多的是凯氏定氮法。 大家都知道,这两种方法都是以氮元素的量乘以相应的系数,得出蛋白的含量,是粗蛋白的含量。2008年的三鹿奶粉事件,就是因为不能检测真蛋白而发生的。 现在小弟在这个帖子中,征集各位大侠的检测方案。要求: 原理: 使用仪器: 检一个样的时长: 注意:每发一种新的检测帖,奖励30分,与楼上重复的不得分。各位先到先得了!http://simg.instrument.com.cn/bbs/images/default/em09502.gif==============================================非常感谢:hhciq对本帖的大力支持!送http://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gifhttp://simg.instrument.com.cn/bbs/images/brow/em23.gif,感谢xujing0202520的补充。现将hhciq及xujing0202520的回帖整理如下:请hhciq把把关,看有没有什么重复的。1、采用化学发光方法, 结合有效氮吸收装置,测定饲料中的粗蛋白质。静态注射化学发光法选用2.0×10-4mol/L的Luminol溶液,用量为2.00ml,待测液的用量为2.00ml。静态注射化学发光法简化了测试方法,缩短了时间,加标回收率为86.91%~104.60%,RSD5%(n=5),适用于饲料生产部门的质量控制。 2、反相高效液相色谱法 反相高效液相色谱法通常采用低离子强度酸性有机冲洗液和烷基硅胶键合固定相, 影响分离的因素主要有流动相组成、洗脱湿度、洗脱液p H值、离子对试剂和流速等; 有利于分离的条件是低 p H值、流动相、室温或较高的温度及使用乙腈或异丙醇作为有 机部分,三氟乙酸 ( T F A)对于蛋白质及气相色谱公认是一种较好的流动相添加剂。 蛋白质的保留性质和选择性还与键合固定相的性质有关, 采用大孔硅胶和短链烷基 键合固定相在蛋白质分离中具有优势。3、正交轴逆流色谱法是新近发展起来的一种方法。 具体是:以n l ( 质量分数为 1 2 . 5 % 的P E G 8 0 o 0 ) :n l( 质量分数为2 5 %的磷酸氢二钾)=1 :1 或i n( 质量分数为 1 2 . 5 %的 P E G 8 0 0 0 ) : m ( 质量分数为3 0 % 磷酸氢二钾) =1 :1 为溶剂系统,以下相作流动相,上相 作固定相,操作时采用5 0 0 r / m i n的转速和6 0 0 ml / h的流动相流速。该方法在分离度不大 的基础上提高了进样量,适用于分离天然生物大分子。4、微乳液毛细管电动色谱分离法 ( ME E K c) 微乳液毛细管电动色谱分离法是在胶束电动色谱 ( ME K c)基础上发展起来的,在E K C中,分离载体为离子胶束,它由表面活性剂组成,不同的表面活性剂构成不同的胶束,因而具有不同选择性,若以水包油微乳液作为分离载体,则称之为ME E K C法, 该法是一种新型的分离技术,目前多用于小分子中性物质的分离。5、毛细管电泳法 电泳一直是研究蛋白质的重要方法。毛细管电泳除了具备凝胶电泳的高分辨力以 外,以其快速、定量、重复性好。灵敏度高及自动化程度高等诸多优点在近几年内成为 蛋白质分离分析一项崭新且重要的技术。 其分离机理是根据被分离物质的泳动率不同而 将其分开,毛细管电泳仪就是基于这个原理而设计的自动化分离分析样品的仪器,由于 毛细管电泳刚兴起,目前主要应用的模式仍是自由溶液毛细管电泳,虽然此法具备多项 优点,但仍有不足之处。首先它不能用于制备分离,再者当样品较稀时不能象H P L C那 样进样较多体积,使样品吸附在柱上,然后洗脱下来。 6、毛细管导电聚焦法 ( C mF ) C l E F法可用于分离等电点 ( P I )相差0 . 1 2 p H单位的蛋白质,其基本步骤是:先在 毛细管内对蛋白质进行等电聚焦,然后对分离的蛋白质区带进行检测,按照迁移技术的 不同,分离方法可分为两步法、一步法、固定区带法。C l E F分离蛋白质应先解决基本 问题:消除或减少电渗的涂层方法、检测方法和条件,蛋白质区带的迁移及 P I测定方法,影响C I E F分离效能的因素,两性电解质的组成和浓度、毛细管长度、聚焦电压等。 7、反胶团萃取法 反胶团萃取分离蛋白质是一种新型的有发展前途的生物产品的分离技术。 它是利用 表面活性剂在有机溶剂中形成反向胶团,从而实施了对蛋白质的有效萃取,是表面活性 剂在生物工程中的一种成功应用。8、累加进样分离法 它是指导蛋白质在梯度开始后的一段时间内可以多次重复进样而其保留值无可觉 察的变化的方法。实验证明:在洗脱液远离突跃点时,蛋白质可以多次重复进样而其保 留值与常规分离无明显的变化。 这种累加进样分离法在蛋白质的制各纯化中有重要的应 用价值,它可以提高有效柱容器,节省大量时间和消耗,在一次色谱分离中完成聚集和 分离两步操作,可用分析型仪器制各数量较大的样品。9、凯氏( K j e l d a h 1 ) 定氮法 将被测试的样品与浓硫酸在硫酸铜和硫酸钾存在下共热消化, 含氮有机物即分解产生氨、二氧化碳和水, 氨与硫酸反应变成硫酸铵。消化后向消化液中加入强碱碱化使之分解放出氨,用水蒸气将氨蒸至硼酸液中, 用标准强酸溶液滴定收集氨的硼酸溶液, 即可计算出样品的氮含量, 从而折算出样品的蛋白质含量( 通常由含氮量乘以系数 6 . 2 5计算出( 该系数为蛋白质平均含氮量的倒数) , 乳制品通过乘以系数 6 . 3 8计算出( 该系数为乳制品中蛋白质含氮量的倒 数) ) 。这种方法是K j e l d a h l 在 1 8 8 3年发明的, 当时他只使用硫酸分解试样, 测定谷物中的蛋白含量, 需要较长的反应时间。后来 G u n n i n g 搞清楚了消化机理, 在消化时加入 K s O 使反应温度由原来的3 8 0 ~ C( 硫酸沸点) 上升到4 0 0 ~ C, 并加入硫酸铜为催化剂, 提高了消化速度, 改进了凯氏定氮法。该方法的缺点是耗时长, 灵敏度低, 样品中的含氮化合物会影响蛋白含量的测定。要想准确测定出蛋白含量, 可以先测定出总含氮量。再用三氯乙酸将样品溶液中的蛋白沉淀除去, 然后测定溶液的非蛋白含氮量, 最后从总含氮量中扣除非蛋白含氮量就可以比较准确地测定出样品的真正蛋白含量。10、

  • 【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    【原创大赛】近红外光谱快速检测人血白蛋白原液蛋白质含量的建模研究

    [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]快速检测人血白蛋白原液蛋白质含量的建模研究摘要:本研究建立[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析模型,对浓缩液蛋白含量进行快速及有效的测定。在实验室条件下配置不同浓度的蛋白样品,建立用于蛋白含量测定的定量分析模型,以实现浓缩液蛋白含量的快速及有效的判断。关键词:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术;人血白蛋白;定量分析模型1材料1.1 试剂供试品:人血白蛋白原液;生理盐水。1.2 仪器和软件AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国Thermo Fisher scientific公司);内径4×50 mm的玻璃小管(Kimble Chase,德国); MATLAB 2015a(美国Mathworks公司);PLS_Toolbox工具箱(美国Eigenvector Research公司)。2方法2.1 蛋白含量的测定及样品溶液的配制2.1.1 蛋白质含量的测定取生产过程中超滤浓缩后的人血白蛋白原液为实验供试品,用半微量凯氏定氮法测定蛋白质浓度,浓度应不低于26.5%。2.1.2样品溶液的配制根据试验需要,将供试品溶液用生理盐水进行稀释得到多个不同蛋白质浓度的实验样品。2.2 样品光谱的采集本实验使用AntarisⅡ傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],采用透射分析模块,采用仪器自带的RESULT-Intergration软件编写采集光谱的工作流程。光谱分辨率为8 cm-1,扫描范围为10000-4000 cm-1,扫描次数为32次,用偏最小二乘回归(Partial Least Squares Regression, PLSR)方法建立定量模型。2.3 校正集和验证集的划分校正集中的样品应包含使用该模型预测的未知样品的所有化学成分。且校正集中的样品的化学成分浓度范围应覆盖使用该模型预测的未知样品中可能存在的浓度范围。而且验证集中的样品应涵盖使用模型分析的待测样品中的化学组成,测定浓度范围也应尽可能覆盖该模型分析的待测样品可能存在的浓度范围,且分布均匀。所以,需要选择合理的样品集划分方法,以提高模型的应用性及准确性。2.4 预处理方法的选择为了消除噪声和产生的基线漂移,提高模型的预测能力,得到稳健的模型,需要在模型建立前对样品的原始光谱进行预处理,常用的谱图处理方法有均值中心化(Mean Center)、标准化(Auto scale)、平滑和导数等。导数是常用的基线校正和光谱分辨预处理方法,但也会放大噪声的信号,降低光谱的信噪比;为消除光谱变换带来的噪声,常对原始光谱进行平滑后求导,能有效提高信噪比;均值中心化可增大不同样品之间的差异,从而使模型的稳健性和预测能力得到提高;标准化可以使光谱中所有波长变量的权重相同,增加光谱之间差异化,适合于低浓度成分的建模。本研究中对Auto scale、Mean Center、一阶导数(First Derivative,FD)SG13点平滑、二阶导数(Second Derivative,SD)SG13点平滑等预处理方法进行了考察,以模型的RMSEP为指标,选择最合适的预处理方法。2.5 光谱区间的选择[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信息十分复杂,在建立校正模型的过程中选择有效的建模变量是十分必要的。本研究选用间隔偏最小二乘法(Interval Partial Least Squares Regression, iPLS)),以RMSECV值为评价标准,选择变量区间以建立最佳的定量模型。3 实验结果3.1 蛋白质含量的测定结果采用半微量凯氏定氮法进行蛋白含量的测定,测定得到17个样品的蛋白含量。用生理盐水稀释样品,共得到49个不同蛋白质含量的样品。3.2 样品的原始光谱图1为49个蛋白样品的原始光谱,原始光谱图中可见各样品的光谱差异不明显,因此需要使用化学计量学方法对样品光谱进行处理。[align=center][img=,494,237]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151606_01_1626619_3.png[/img][/align][align=center]图1 样品原始光谱图[/align]3.3 校正集和验证集的划分结果本研究采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,划分为33个校正集样品和16个验证集样品。图2为校正集样品和验证集样品的主成分得分图,图中灰色点为校正集样品,红色点为验证集样品,从主成分得分图中可以看出,校正集样品和验证集样品分布比较均匀,且验证集样品比较均匀的分布在校正集样品之间,符合理想校正集和验证集的要求。[align=center] [img=,467,301]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151608_01_1626619_3.png[/img][/align][align=center]图2 样品主成分得分图[/align]3.4 光谱预处理的结果建模过程中,分别采用各种方法对光谱数据进行预处理,包括标准化(Auto scale)、均值中心化(Mean Center)、一阶导数(First Derivative,FD)、SG13点平滑、二阶导数(Second Derivative,SD)等处理方法,以RMSEP作为评价模型的参数,通过对比预处理后的建模结果,选出最合适的预处理方法。表1列出了预处理后各模型的评价参数,通过比对,可以较直观的选出一阶导数SG13点平滑和Mean Center的组合为最佳预处理方法。图3所示为用经过一阶导数SG13点平滑和Mean Center 预处理后的光谱所建立的模型的结果,从图3中可以看出,建模效果较好,预测能力较高,Rc2=0.994,Rp2=0.986,RMSEC=0.1993%,RMSEP=0.2585%,RMSECV=0.2518%。[align=center]表1 不同预处理后各模型参数[/align][align=center][img=,629,241]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151613_01_1626619_3.png[/img][/align][align=left]FD+SG:一阶导数+SG13点平滑[/align][align=left]SD+SG:二阶导数+SG13点平滑[/align][align=center][img=,572,305]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151616_01_1626619_3.png[/img][/align][align=center]图3 一阶导数+SG平滑+ Mean Center[/align]3.5 光谱区间的选择结果通过筛选光谱区间,可以选择与样品白蛋白含量相关性大的光谱变量进行建模,去掉大量无关信息,减少模型的计算量,使得模型的效果更好。本实验采用iPLS进行变量的选择。将光谱进行SG13点平滑+一阶导数+ Mean Center预处理后,分别采用Forward iPLS和Reverse iPLS方法选择最佳的光谱区间,改变窗口宽度,分别选择最佳变量,以RMSECV为标准选择谱区。3.5.1Forward iPLS选择波段采用FiPLS的方法以RMSECV为标准选取最佳的光谱区间,分别选择50、100、200个变量进行自动选择,如表2所示窗口宽度为100个变量时建模结果较佳,结果图4所示。[align=center]表2 Forward iPLS结果[/align] [align=center][img=,645,163]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151618_01_1626619_3.png[/img][/align][align=center][img=,517,246]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151619_01_1626619_3.png[/img][/align][align=center]图4 Forward iPLS波段结果图[/align]由图4中可以看出,绿色部分为建模的波段,图5为建模预测结果图。[align=center][img=,551,291]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151620_01_1626619_3.png[/img] [/align][align=center]图5 Forward iPLS建模结果图[/align]3.5.2 Reverse iPLS选择波段采用Reverse iPLS的方法选取最佳的光谱区间,同样,分别选择50、100、200个变量进行自动选择,如表3所示窗口宽度为50个变量时建模结果较佳,波段选择结果如图6所示。[align=center]表3 Reverse iPLS结果[/align][align=center][img=,652,456]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151622_01_1626619_3.png[/img][/align] [align=center]图6 Reserve iPLS 选波段结果图[/align]如图6中所示,其中绿色部分为建模波段,图7为预测结果。[align=center][img=,520,228]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151624_01_1626619_3.png[/img][/align][align=center]图7 Reserve iPLS 建模结果图[/align]通过采用Forward iPLS和Reservei PLS波段选择方法建立PLSR模型,经过两种方法中选择的最优变量的对比(见表4),选择窗口宽度为100变量的Forward iPLS变量选择方法建立的模型最佳。最终建立的PLSR模型结果:模型的参数为Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%,建模结果较好。[align=center]表4不同变量选择方法的建模结果[/align][align=center][img=,641,142]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151629_01_1626619_3.png[/img][/align]3.6 一级数据与预测值比较对16个验证集样品的传统方法获得的蛋白含量和NIRS蛋白含量预测值进行偏差分析,结果见表5所示。蛋白含量一级数据和预测值的平均偏差和相对平均偏差的计算公式见式1和式2,蛋白含量NIRS的预测值和一级数据间的平均偏差为0.17,相对平均偏差为0.81,两者都较低,说明了NIRS和传统的凯氏定氮法结果相差较小,表明NIRS用于蛋白含量测定的准确性和可靠性。[align=center][img=,372,89]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151631_01_1626619_3.png[/img][/align]式中yi, actual为传统凯氏定氮方法得到的一级数据值,yi, predicted为NIRS得到的预测值,n为验证集样品数量。[align=center]表5 验证集样品方法结果比较表[/align][align=center][img=,585,86]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151632_01_1626619_3.png[/img][/align]3.7 预测值的精密度通过重复测量光谱计算,建立的蛋白含量校正模型的预测精密度。随机选取验证集样品中的1号、15号、35号、42号和47号样品,每个样品重复测量10次,然后采用建立的蛋白含量模型采集以上样品的光谱,得到样品的预测值。然后计算每个样品预测值的平均值、标准偏差和相对标准偏差,用这些指标来表示预测的精密度,结果见表6。如表中所示, RSD值均在1.0%以下,远远低于5.0%,证明了模型的精密度良好。[align=center]表6 模型精密度考察结果[/align][align=center][img=,584,394]http://ng1.17img.cn/bbsfiles/images/2017/09/201709151636_01_1626619_3.png[/img][/align]4结论和讨论本研究建立了人血白蛋白生产过程中蛋白含量测定的近红外定量模型,用于人血白蛋白原液蛋白质含量的测定,为下一步原液的生产配制提高依据。首先,取生产过程中的样品17个,用凯氏定氮法测得各个样品的蛋白含量,然后在实验室条件下,用生理盐水配制成49个不同浓度的蛋白样品。对49个样品进行[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集,然后对样品进行校正集和验证集的划分,对光谱进行预处理方法和不同的变量选择方法进行了考察;采用Kennard-Stone(K-S)分类的算法,按照2:1的比例进行样品集的划分,优先选出Mean Center +一阶导数SG13点平滑的预处理方法,并采用窗口宽度为100变量的Forward iPLS变量选择方法选出变量区间,最终建立最佳的近红外定量模型。最终建立的PLSR模型结果:Rc2=0.997,Rp2=0.987,均方根误差RMSEC=0.1394%,RMSEP=0.2560%,RMSECV= 0.1831%。除此之外,对模型进行了重复性考察,从结果可知模型具有较好的重复性。在模型的建立中,选用Kennard-Stone(K-S)分类的算法进行样品集的划分,通过PCA分析得到具有代表性的校正集和验证集样品。在预处理方法的选择中,分别选用Autoscale、Mean Center、SG平滑一阶导数以及各预处理方法的组合进行预处理方法的考察,其中SG平滑中,不同的窗口宽度会对平滑产生不同的效果,窗口宽度越宽平滑效果越好,但也会丢掉有用的信息,经过考察选择13点平滑时结果较佳。参考文献吴清, 周法根. 脑梗死治疗中白蛋白应用价值的探讨 . 心脑血管病防治, 2005, 5(2): 49-50.王华平, 米宇俊. 人血白蛋白治疗肾综合征出血热低血压休克患者疗效观察 . 医师进修杂志, 2001, 24(8):20-21.郑红光, 杨志藩, 关欣. 静脉输注人血白蛋白对肾病综合征的正负临窗效应观察 . 中国实用内科杂志, 2003, 23(1):25-27.刘丽萍. 人血白蛋白在肝硬化资料中的应用 . 中国医院用药评价与分析, 2013, 13(5):388-390.常花蕾, 史涛. 人血白蛋白临床不合理应用及改进措施 . 中国药物应用与监测, 2014, 11(1): 52-54.孙世光, 余明莲, 王建民, 张国辉. 人血白蛋白的临床应用误区及其对策 .解放军药学学报, 2009, 25(4):366-368.

  • 饲料检测_饲料水分检测_饲料粗蛋白检测

    [font=&][size=16px][color=#333333][url=https://www.woyaoce.cn/service/info-39790.html]点击打开链接:https://www.woyaoce.cn/service/info-39790.html[/url][/color][/size][/font][font=&][size=16px][color=#333333]服务背景[/color][/size][/font]饲料是一种以大豆、豆粕、玉米、鱼粉、氨基酸、杂粕、添加剂、乳清粉、油脂、肉骨粉、谷物、甜高粱等十多种不同的饲料原料制成的饲料。饲料安全在动物产品中占有举足轻重的地位。通常情况下,只有植物的饲料才是饲料,包括草、各种谷物、块茎、根等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]物理指标:感观(外观及气味)、粒度、水分、灰分、pH、混合均匀度营养成分:钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸等微生物:细菌总数、霉菌数、沙门氏菌、乳酸菌、大肠菌群、酵母菌数等有毒有害物质:黄曲霉毒素B1、水溶性氯化物、挥发性盐基氮、氰化物、亚硝酸盐、三聚氰胺、重金属残留、农药残留[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]饲料[/td][td]钙、粗脂肪、粗纤维、盐分、蛋白质、粗蛋白、维生素、微量元素含量、牛磺酸[/td][td]实验室方法[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]菲优特检测服务形式委托检测:环境检测、食品/医药/保健品检测、化工检测、水产养殖检测、微生物检测等。科研服务:高校科研服务(氨基酸类、维生素类、脂肪类、糖代谢类、有机酸类、动/植物激素类、核苷酸类、生物胺类、花青素类、黄酮酚酸类、皂苷类、氮代谢类、植物提取物类、神经递质类等。生物项目研发(毒理测试、动物饲养、动物模型构建、保健食品功能性评价服务、动物实验技术服务等)。仪器共享:HPLC检测平台、[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]检测平台、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]检测平台、动物实验服务平台。方法开发及咨询:实验室检测方法开发和应用、实验室管理咨询和培训、质量控制咨询与培训、实验仪器配置和选型等

  • 核酸蛋白检测仪应用和原理

    核酸蛋白检测仪是层析分析的主要装置,核酸蛋白检测仪配上层析柱、恒流泵、部分收集器、层析谱分析系统(根据需要选配)和电脑打印设备即构成一套完整的核酸蛋白检测仪分离层析系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。核酸蛋白检测仪分析系统广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。在生化分析、环保科学、食品研究、毒理研究、新药开发等领域中对核酸、蛋白检测、纯化和提取提供了一种独特的分析手段。

  • 牛奶蛋白质分析仪可以用于检测乳蛋白制品嘛

    牛奶蛋白质分析仪可以用于检测乳蛋白制品。以下是详细解释和相关信息:  功能与应用:牛奶蛋白质分析仪是一种专门用于分析牛奶及其制品中蛋白质含量的仪器。它基于先进的生化分析技术,如比色法、光谱法或电化学法等,能够准确、快速地检测样品中的蛋白质含量。  乳蛋白制品的检测:乳蛋白制品,如奶粉、酸奶、奶酪等,其蛋白质含量是产品质量和营养价值的重要指标。牛奶蛋白质分析仪可以有效地检测这些乳蛋白制品中的蛋白质含量,为生产厂家提供准确的质量控制手段。  优点与特点:  准确性高:牛奶蛋白质分析仪具有高灵敏度和高准确性,能够确保测量结果的可靠性。  快速便捷:该仪器操作简单,使用方便,可以快速得出测量结果,提高检测效率。  适用范围广:除了牛奶及其制品外,还可以用于其他含蛋白质样品的检测,如豆类制品、肉制品等。  在乳品工业中的重要性:随着乳品市场的不断扩大和消费者对乳制品质量要求的提高,牛奶蛋白质分析仪在乳品工业中的重要性日益凸显。它可以帮助乳品企业提高产品质量、降低生产成本,同时为消费者提供更加安全、健康的乳制品。  综上所述,牛奶蛋白质分析仪是一种功能强大、应用广泛的检测仪器,完全可以用于检测乳蛋白制品中的蛋白质含量。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/05/202405271615421543_8284_6238082_3.jpg!w690x690.jpg[/img]

  • 用高效液相色谱测乳清蛋白中各蛋白含量,拖尾峰严重是怎么回事

    我现在是一名研二学生,课题是从乳清蛋白中分离α-乳白蛋白,目前要用高效液相色谱做出α-乳白蛋白的标准曲线,实验室用的是型号POLARIS-211的液相色谱仪,目前出峰的拖尾峰明显,停留时间也不稳定,有用过这个仪器的朋友吗,希望得到大家的帮助http://simg.instrument.com.cn/bbs/images/default/em09511.gif

  • 几种常用的蛋白鉴定方法

    传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的comigration分析,或者在一个有机体中有意义的基因的过表达通常耗时、耗力,不适合高流通量的筛选。 目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序、进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。1 图象分析技术(Image analysis)“满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。 在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。 首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoroimagers,对图象进行数字化。 并成为以象素(pixels)为基础的空间和网格。 其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。 利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。图象分析检测的斑点须与肉眼观测的斑点一致。 在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。 通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。 以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。 第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。 由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。 IPG技术的出现已使斑点配比变得容易。 因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。 用来配比的著名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。 配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。 之后,扩展至整个胶。例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。 所估计的精确度大大依赖于所建网格的结构及标本的类型。 已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0。25个单位。 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。 故需联合其他的技术完成鉴定。2 微量测序(microsequencing)蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息。 尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术。 目前已实现蛋白质微量测序的自动化。 首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicomole水平的蛋白质的鉴定。 但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费

  • 【分享】ZHD型紫外蛋白核酸检测仪使用说明

    ZHD型紫外蛋白核酸检测仪使用说明 一、系统简介 蛋白核酸检测仪是层析分析的主要装置,配上层析柱、恒流泵、部分收集器(根据需要选配)和电脑打印设备即构成一套完整的液相色谱分离系统。它是当今从事生命科学研究、药物测定、化工、食品科学及医学研究等行业的现代分析实验仪器。广泛用于工业、农业、科研和大专院校的科学研究和教学实验。其原理是根据物质(样品)对紫外光有明显吸收的特征,实现对样品成份含量比对分析,以便进行样品蛋白、核酸物质识别检测和含量测定。然而,目前国内生产的蛋白检测仪虽然种类繁多,但均采用记录仪描谱且预热时间较长。 ZHD型紫外蛋白核酸检测仪的研制成功,为科研和实验人员利用电脑系统实现核酸蛋白检测和分析提供了一种先进的手段,其特点是系统稳定、操作简便、电脑显示谱图、数据分析和打印谱图。 二、系统特点 本系列检测仪有别于其他检测仪,主要有以下特点: 1、预热时间短,一般做实验只要预热10分钟左右。 2、稳定性高,预热后每小时漂移一般小于0.001。 3、操作简洁,开机后仪器自动调整透光率(T)到100%,吸光度(A)调整到0.000。 4、透光率(T)和吸光度(A)对应准确,点两者误差小于1%。 5、双数据显示,仪器适时显示吸光度(A)和透光率(T)。 6、仪器带有电脑接口和记录仪接口(吸光度0—200mv)。 7、工作软件提供谱图采集、分析计算、保存、打印等功能,可将谱图插入文档(word)文件中。 8、一台电脑可配多台检测仪(由电脑有效端口数决定)。 三、 技术性能 1、通过测量选择菜单,在电脑屏幕上可描出吸光度(A)谱图,透过率(T%)谱图以及A-T%谱图。 2、通过图形平移、复读伸缩和压缩选择等菜单,可对谱图并进行幅度、宽度调整和谱图参数计算,预览满意后打印输出。 3、在描谱过程中,电脑会自动将图形左移(也可人工调整),电脑描谱最长时间为20小时。 4、采集数据自动保存。 四、主要参数: 1、波长:254nm,280nm(可根据用户需要调配)。 2、样品池100ul,光程3mm。 3、量程:吸光度(A):0--2.000 透光率(T):1%—100%。 4、分辩率:吸光度(A):0.001 透光率(T):0.1%。 5、电脑分析参数:峰高、峰宽、峰面积、峰面积比、保留时间、面积含量(归一化)、层析柱分辩率等。 6、电源220V±10%,50HZ。 7、主机重量:约3.5Kg。 五、系统安装与操作步骤 1、将仪器背板上的输出端通过一根串行口连接电缆与电脑主机的COM1或COM2串行口相连。 2、打开紫外蛋白核酸检测仪电源,仪器预热10分钟左右。 3、打开电脑后,将应用软件(ZHD.exe)复制到硬盘上。钦一下仪器面板上的复位按钮,待仪器显示0.000A和100%T后,双击ZHD.exe启动应用软件,系统进入采集(分析)状态。 4、在“测量选择”菜单下,用鼠标选择检测项目。 5、在“检测操作”菜单下点击“测量开始”,电脑开始采集。 6、要停止采集,点击“检测操作”下的“测量结束”菜单,然后关闭紫外蛋白酸检检测仪。 六、层析普工作站软件使用 1、 对硬件的基本要求: a、电脑在简体中文Windowsxp操作系统上运行; b、显示器分辩率为1024*768,小字体,256色配置; c、图形打印机; d、电脑系统必须正常工作,并保证串行口(COM2或COM1)有效; 2、系统连接无误后先让检测仪工作,再执行应用软件ZHD.exe; 3、 点击文件操作菜单下的“打开谱图”,出现文件操作对话框,打开随机盘上的数据文件(.ran),图形被打开,熟悉菜单操作。菜单介绍如下: a、“文件操作”菜单下有打开谱图、保存谱图、打印谱图、打印预览等; b、“检测操作”菜单下有测量开始、测量结束(测量结束后,系统在应用程序目录下生成“文件名.TXT”文件,此格式文件可在Excel软件中打开,并可转贴到Word文档中使用); c、“灵敏度选择”菜单下有A、T%、A-T%选项; d、“谱图平移”菜单后有向左慢移动 []和向右快移动[]; e、“谱图重绘”菜单:从起始点描谱;清理屏幕;释放压缩; f、“谱图全貌”菜单:在屏幕上观察全部谱图。 g、“参数选择”菜单:可对谱图进行参数分析计算。方法如下:在吸光度状态下,点击鼠标左键选取基线及时间范围(第一次点击选取第一点,第二次点击选取第二点),点击“选择参数”下拉菜单的峰高、标准差、半峰宽、峰底宽、峰面积、峰面积比、面积含量及保留时间等参数进行计算,还可间接计算出层析柱分辨率;双击鼠标左键,即可取消本次计算。 h、在吸光度(A)或透光率(T%)状态下,单击鼠标右键,屏幕显示该鼠标点的数值;双击鼠标右健,擦除屏幕显示数值。 七、注意事项: a、 更改波长方法:打开样品池挡板后,可见到滤光片的燕尾型支架和印字(245或280代表当前所使用的波长),用手将其轻轻抽出,换向后插入原位,再将样品池挡板装上,拧紧固定螺钉即可。 b、 在检测仪和电脑正常工作后才能运行应用软件; c、 应用软件执行后,十秒钟后不出现采集分析界面,说明电脑未收到数据,需检查系统连接是否正常; d、 在A—T%描谱过程中,开始1小时内,T%谱以实蓝线表示;1小时后(或点击“图形重绘” ),已描过的T%谱会以虚蓝线表示; e、 测量开始后(特别是出峰以后)不要按复位按钮。 f、 要停止采集,请点击“测量结束”后,先点击“EXIT”,再关闭检测仪。 g、 开始测量时,屏幕会弹出保存文件对话框,要求输入数据文件名及存放路径;之后,电脑自动保存数据。 I、基线选取要保证基线与所选峰必须要有两个焦点,并与其他峰无焦点。

  • [推荐]蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用zz

    褚福亮,王福生, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室 北京市 100039项目负责人 王福生, 100039 ,北京市丰台路26号, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室. fswang@public.bta.net.cn电话:010-66933332 传真:010-63831870收稿日期 2002-08-15 接受日期 2002-09-03摘要新近广泛应用蛋白质芯片(ProteinChipâ Array)系统成功鉴定出了一些重要疾病(如肿瘤和危害性较大的传染病)新的、特异性的生物标记(biomarkers),后者不仅在生物医学的基础方面具有重要的科学价值,而且在临床疾病的诊断、治疗和预防发挥重要的指导作用,显示了良好的发展前景.本文就表面增强的激光解析电离-飞行时间-质谱(SELDI-TOF-MS)相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.此外,我们就蛋白质谱分析技术在病毒性肝炎、肝硬化和肝癌等一系列肝病方面的应用策略和前景进行了分析.褚福亮,王福生. 蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用.世界华人消化杂志 2002 10(12):1431-14350 引言人类基因组计划已经进入后基因组时代-即功能基因组时代[1],作为基因功能的直接体现者-蛋白质,及其之间的相互作用越来越引起基础和临床科学家们的关注[2-6] .因为要彻底了解生命的本质,只把基因测出来还是不够的,还必须要了解其在生物生长、发育、衰老和整个生命过程中的功能、不同蛋白质之间的相互作用以及他们与疾病发生、发展和转化的规律[7-14] .正因为如此,有关上述问题的蛋白质组学研究成了今天生命科学最重要的焦点之一[15] .为了阐明蛋白质在上述生命现象中的作用和相关机制,人们设计了许多新的方法技术,如:二维电泳、质谱分析、微距阵列、酵母双杂交和噬菌体展示等,这些方法在一些特定的情况下,虽然显示出了他们各自不同的优点,但是同样也存在着较大的局限性,难以开展大规模、超微量、高通量、全自动筛选蛋白质等方面的分析,因而设计更全面、同时研究多种蛋白质相互作用的技术,在功能基因组和蛋白组学的研究中建立一个更有效的技术平台,成为本领域中优先关注的问题[16] .近来,美国Ciphergen(赛弗吉)公司研制的ProteinChipâ Array的仪器,并建立了一种新的蛋白质飞行质谱-表面增强的激光解析离子化-飞行时间-质谱(surface-enhanced laser desorption/inionation-time of flight-mass spectra, SELDI-TOF-MS),已取得可喜的进展,筛选出了许多与疾病相关的新型生物标志,不仅为临床疾病的诊断和治疗等提供了新的选择,而且在基础科学、新药研制和疾病预防等方面具有广泛的应用前景[16-18] .本文就SELDI-TOF-MS相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.1 ProteinChipâ Array系统和SELDI-TOF-MS的特点1.1 蛋白质芯片系统的组成和原理 蛋白质芯片系统由三部分组成:蛋白质芯片、芯片阅读器和芯片软件.供研究用芯片上有6-10芯池,不同的芯片表面上的化学物质不同,芯片表面分为两大类:一类为化学类表面,包括经典的色谱分析表面,如:结合普通蛋白质的正相表面,用于反相捕获的疏水表面,阴阳离子交换表面和捕获金属结合蛋白的静态金属亲合捕获表面;另一类称为生物类,特定的蛋白质共价结合于预先活化的表面阵列,可以用来研究传统的抗体一抗原反应,DNA和蛋白质作用,受体、配体作用和其他的一些分子之间的相互作用[19] . 根据检测目的不同,可以选用不同的芯片,或者自己设计芯片.将样本和对照点到芯池上以后,经过一段时间的结合反应,用缓冲液或水洗去一些不结合的非特异分子,再加上能量吸收分子(energy absorbing molelule,EAM)溶液,使样本固定在芯片表面.当溶液干燥后,一个含有分析物和大量能量吸收分子“晶体”就形成了.能量吸收分子对于电离来说非常重要.经过以上步骤,就可经把芯片放到芯片阅读器中进行质谱分析. 在阅读器的固定激光束下,芯片上、下移动,使样本上每一个特定点都被“读”到.激光束的每一次闪光释放的能量都聚集在该区一个非常小的点上(focused laser beam,聚焦激光束).这样,每个区都含有丰富的,可寻址(addressable)的位置.蛋白质芯片处理软件精确控制激光寻读过程.当样本受到激发,就开始电离和解除吸附.不同质量的带电离子在电场中飞行的时间长短不同,计算检测到的不同时间,就可以得出质量电荷比,把他输入电脑,形成图像[19].Ball et al [20]采用一种称为人工神经网络(artifical neural network,ANN)的算法处理出现的成千上万的峰,鉴定出三个分子量为13 454、13 457和14 278的生物标记分子,使疾病预测率达到97.1 %.1.2 ProteinChipâ Array芯片和SELDI-TOF-MS的特点 新型蛋白芯片与以往的蛋白芯片不同之处:SELDI-TOF-MS,他是在MALDI(matrix-assisted laser desorption/inionation)[21,22]基础上,改进后实行表面增强的飞行质谱.SELDI-TOF-MS优于MALDI-TOF表现为他不会破坏蛋白质,或使样本与可溶的基质共结晶来产生质谱信号.对SELDI-TOF来说,可以直接将血清、尿液、组织抽取物等不需处理直接点样检测[40] 由于一部分非特异结合的分析物被洗去,因而出现的质峰非常一致,有利于后期分析[23,24] . 与二维电泳相比:二维电泳分析蛋白质的分子量在30 KDa以上时电泳图谱较清楚,对在组织抽提物中占很大比例的低丰度的蛋白质不能被检出;其次,二维电泳胶上的蛋白质斑点很大一部分包含一种以上的蛋白质;而且,二维电泳耗时长,工作量大,对象染色转移等技术要求高,不能完全实现自动化.而SELDI-TOF在200 Da-500 KDa区间都可以给出很好的质谱,对一个样本的分析在几十分钟内就可以完成[19],处理的信息量远远大于二维电泳;对于低丰度物质,即使浓度仅attomole(10-18)的分子,只要与表面探针结合,就可以检测到,这也是二维电泳所不具备的[24,25] . 对于微距阵蛋白芯片来说,需要一种不破坏折叠的蛋白质构象的固定技术,再与另外的蛋白质反应,经检测莹光来观察蛋白质之间的作用[26] .而基于SELDI-TOF-MS的ProteinChip分析蛋白质不需溶解、不需染色、廉价、针对性强. 因而蛋白质芯片仪具有以下优势:(1)可直接使用粗样本,如:血清、尿液、细胞抽提物等[27] .(2)使大规模、超微量、高通量、全自动筛选蛋白质成为可能;(3)他不仅可发现一种蛋白质或生物标记分子,而且还可以发现不同的多种方式的组合蛋白质谱,可能与某种疾病有关[28] (4)推动基因组学发展,验证基因组学方面的变化,基于蛋白质特点发现新的基因.可以推测疾病状态下,基因启动何以与正常状态下不同,受到那些因素的影响,从而跟踪基因的变化[2,14,15] . 其存在的问题:对于不同的样本,根据检测的目标采取或者设计几种芯片,理论上可以把所有的相同性质蛋白质捕获,但是实际上仍有少量的分子没与表面探针结合.使用SELDI-TOF-MS,仅能给出蛋白质的分子量,不能给出C端、N端的序列,也没法知道蛋白质的构型,因此需要将蛋白质充分纯化后,用蛋白酶消化芯片上的蛋白质,分析肽段,再用生物信息学方法鉴定蛋白质序列[18,24] .另外,在国内,该芯片费用较高,分析质谱需要大量后续工作支持.

  • 【原创大赛】【第十二届原创】高效亲和色谱法检测乳制品中乳铁蛋白的含量

    【原创大赛】【第十二届原创】高效亲和色谱法检测乳制品中乳铁蛋白的含量

    [align=left][color=black]乳铁蛋白([/color][color=black]Lactoferrin[/color][color=black])是乳清蛋白的主要成分之一,广泛分布在人和哺乳动物的乳汁中,是[/color][color=black][url=https://baike.pcbaby.com.cn/qzbd/4464.html][color=black]母乳[/color][/url][/color][color=black]中的核心免疫蛋白,能够帮助婴幼儿提高[/color][color=black][url=https://baike.pcbaby.com.cn/qzbd/10851.html][color=black]免疫力[/color][/url][/color][color=black],促进婴幼儿的生长发育。因此,添加乳铁蛋白的婴幼儿奶粉越来越受到消费者的青睐,[/color]食品安全国家标准-食品营养强化剂-乳铁蛋白(GB1903.17—2016)[color=black]也将乳铁蛋白列为营养强化剂之中,但该标准中的检测方法未经前处理,检测方法受杂质干扰大。我们自制的[/color][color=black]SelectCore Heparin[/color][color=black]肝素亲和[/color][color=black]SPE[/color][color=black]柱,可以快速高效的检测乳铁蛋白含量。[/color][/align][color=#00b0f0]适用范围[/color][align=left]该方法适用于测定婴幼儿配方奶粉、婴幼儿配方米粉、调制奶粉、发酵乳等食品中乳铁蛋白含量。[/align][align=left][color=#00b0f0]实验步骤[/color][/align][align=left]1、试剂准备[/align][align=left]磷酸氢二钠溶液(0.2 mol/L):称取14.2 g磷酸氢二钠,加水溶解,用磷酸调节pH值至8.00±0.50,加水定容至500 mL。[/align][align=left]磷酸氢二钠-氯化钠溶液:称取0.71 g磷酸氢二钠,5.84 g氯化钠,用磷酸调节pH值至8.00±0.50,加水定容至100 mL。[/align][align=left]乳铁蛋白标准品:乳铁蛋白母液,浓度10 mg/mL,称取1 g乳铁蛋白加水溶解,定容至100 mL。[/align][align=left]2、样品制备[/align][align=left]液体试样:准确称取5 g试样于50mL离心管中,加入5 mL磷酸氢二钠溶液,涡旋震荡0.5 min,4 °C下以10000 r/min的转速离心10 min,将上清液转移到另一50 mL离心管中。再加入5 mL磷酸氢二钠溶液重复一次,合并两次上清液备用。[/align][align=left]固体试样:准确称取1 g试样于50 mL烧杯中,加入5 mL温热的磷酸氢二钠溶液(温度不超过50 °C),搅拌使样品完全溶解,将样品全部转入50 mL离心管中。再向原烧杯加入5 mL磷酸氢二钠溶液,合并两次液体,涡旋震荡0.5 min,4 °C下以10000 r/min的转速离心10 min,将上清液转移到另一50 mL离心管中。再加入5 mL磷酸氢二钠溶液重复一次,合并两次上清液备用。[/align][align=left]3、净化[/align][align=left]SPE柱活化:[color=black]SelectCore H[/color][color=#333333][url=https://fanyi.so.com/#heparin][color=#333333]eparin[/color][/url][/color][color=black],规格[/color][color=black]1mL[/color][color=black]小柱[/color]加入5 mL磷酸氢二钠溶液活化;[/align][align=left]上样:加入步骤2中制备好的上清液;[/align][align=left]淋洗:待上清液完全流出后,再用10 mL磷酸氢二钠溶液淋洗,弃去全部淋洗液;[/align][align=left]洗脱:用2.5 mL磷酸氢二钠-氯化钠溶液洗脱,收集全部洗脱液,用磷酸氢二钠-氯化钠溶液定容至2.5 mL。将收集溶液过滤膜,供液相色谱分析。[/align][align=left]4、液相色谱仪器条件[/align][align=left]色谱柱:ChromCore C4-T,5μm,300A,250mm×4.6mm[/align][align=left]检测波长:280nm[/align][align=left]柱温:30 °C[/align][align=left]进样体积:20 μL[/align][align=left]流速:1.0 mL/min[/align][align=left]流动相:A相:0.1%三氟乙酸水溶液;B相:乙腈[/align][align=left]洗脱梯度:[/align] [table][tr][td] [align=center]时间(min)[/align] [/td][td] [align=center]流速(mL/min)[/align] [/td][td] [align=center]流动相A(%)[/align] [/td][td] [align=center]流动相B(%)[/align] [/td][/tr][tr][td] [align=center]0[/align] [/td][td] [align=center]1.000[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]15[/align] [/td][td] [align=center]1.000[/align] [/td][td] [align=center]40[/align] [/td][td] [align=center]60[/align] [/td][/tr][tr][td] [align=center]16[/align] [/td][td] [align=center]1.000[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]30[/align] [/td][/tr][tr][td] [align=center]26[/align] [/td][td] [align=center]1.000[/align] [/td][td] [align=center]70[/align] [/td][td] [align=center]30[/align] [/td][/tr][/table][align=left][img=,690,528]https://ng1.17img.cn/bbsfiles/images/2019/09/201909031133166835_5032_1641114_3.jpg!w690x528.jpg[/img][/align][align=center]图1 婴幼儿奶粉未经净化和净化后的色谱对比图[/align][align=left][color=black]图[/color][color=black]1[/color][color=black]显示[/color][color=black],未经净化处理的婴幼儿奶粉受基质效应影响较大,并且目标峰和杂质峰的分离度较差,净化处理的婴幼儿奶粉基线稳定,并且目标物质清晰可见。[/color][/align][align=left][color=black] [/color][/align][align=left][color=black] [/color][/align][align=left][color=#00b0f0]实验谱图及加标回收率数据[/color][/align][align=left]实验谱图:[/align][align=left][img=,690,434]https://ng1.17img.cn/bbsfiles/images/2019/09/201909031135563825_30_1641114_3.jpg!w690x434.jpg[/img][/align][table][tr][td] [/td][/tr][/table][align=center]图2 0.2mg/mL乳铁蛋白标准品色谱图[/align][align=left][img=,690,434]https://ng1.17img.cn/bbsfiles/images/2019/09/201909031136087003_2706_1641114_3.jpg!w690x434.jpg[/img][/align][align=center] 图3 婴幼儿奶粉加标(加标量:10mg/100g)色谱图[/align][align=left] [/align][align=left][img=,690,430]https://ng1.17img.cn/bbsfiles/images/2019/09/201909031136205115_9316_1641114_3.jpg!w690x430.jpg[/img][/align][align=center] 图4 婴幼儿奶粉加标(加标量:50mg/100g)色谱图[/align][align=left] [/align][align=left]加标回收率数据:[/align] [table][tr][td] [align=center][color=black]加标量[/color][/align] [/td][td] [align=center][color=black]加标回收率[/color][/align] [/td][/tr][tr][td] [align=center][color=black]10mg/100g[/color][/align] [/td][td] [align=center][color=black]85.30%[/color][/align] [/td][/tr][tr][td] [align=center][color=black]50mg/100g[/color][/align] [/td][td] [align=center][color=black]95.61%[/color][/align] [/td][/tr][/table][align=left]由以上谱图可以看出,婴幼儿奶粉的加标回收率较好,符合检测要求。[/align][align=left][color=#00b0f0]实验讨论[/color][/align][align=left][color=#333333]1. [/color][color=black]相比市面上常见的琼脂糖基质的肝素亲和小柱,纳谱分析采用单分散聚丙烯酸酯基质开发的肝素亲和小柱滴速更快,相同装量下滴速可以快[/color][color=black]1~2[/color][color=black]倍,加快了前处理的时间;[/color][/align][align=left][color=#333333]2. [/color][color=black]试验操作的时候,即使小柱流干也无需担忧,我们采用的单分散聚丙烯酸酯基质,机械强度高、化学稳定性好,即使小柱流干再次润湿也同样保证回收率。[/color][/align] [table][tr][td] [align=center]小柱状态[/align] [/td][td] [align=center]加标量[/align] [/td][td] [align=center]加标回收率[/align] [/td][/tr][tr][td] [align=center]未流干[/align] [/td][td] [align=center]1.0 mg/mL[/align] [/td][td] [align=center]95.33%[/align] [/td][/tr][tr][td] [align=center]流干后,再次润湿[/align] [/td][td] [align=center]1.0 mg/mL[/align] [/td][td] [align=center]94.20%[/align] [/td][/tr][/table][align=left] [/align]

  • 【讨论】反相可以检测变性蛋白么

    用0.1%三伏乙酸乙腈和水的反相液相可以检测变性蛋白和未变性蛋白的区别么? 我试了一下,结果未发现两张图谱有什么区别,保留时间没有变化。 变性是通过水煮和尿素变性2中方法分别处理的。 大家有什么好的区分变性非变性蛋白的方法么,求教~~~~~~~[em09508]

  • 几种常用的蛋白鉴定方法

    几种常用的蛋白鉴定方法传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的comigration分析,或者在一个有机体中有意义的基因的过表达通常耗时、耗力,不适合高流通量的筛选。 目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序、进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。1 图象分析技术(Image analysis)“满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。 在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。 首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoroimagers,对图象进行数字化。 并成为以象素(pixels)为基础的空间和网格。 其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。 利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。图象分析检测的斑点须与肉眼观测的斑点一致。 在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。 通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。 以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。 第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。 由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。 IPG技术的出现已使斑点配比变得容易。 因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。 用来配比的著名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。 配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。 之后,扩展至整个胶。例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。 在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。 所估计的精确度大大依赖于所建网格的结构及标本的类型。 已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0。25个单位。 同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。 未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。 故需联合其他的技术完成鉴定。2 微量测序(microsequencing)蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息。 尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术。 目前已实现蛋白质微量测序的自动化。 首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicomole水平的蛋白质的鉴定。 但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费3~4$。 这都说明泛化的Edman降解蛋白质不适合分析成百上千的蛋白质。 然而,如果在一个凝胶上仅有几个有意义的蛋白质,或者如果其他技术无法测定而克隆其基因是必需的,则需要进行泛化的Edman降解测序。近来,应用自动化的Edman降解可产生短的N-末端序列标签,这是将质谱的序列标签概念用于Edman降解,业已成为一种强有力的蛋白质鉴定。 当对Edman的硬件进行简单改进,以迅速产生N-末端序列标签达10~20个/d,序列检签将适于在较小的蛋白质组中进行鉴定。若联合其他的蛋白质属性,如氨基酸组分分析、肽质质量、表现蛋白质分子量、等电点,可以更加可信地鉴定蛋白质。 选择BLAST程序,可与数据库相配比。 目前,采用一种Tagldent的检索程序,还可以进行种间比较鉴定,又提高了其在蛋白质组研究中的作用。3 与质谱(mass spectrometry)相关的技术质谱已成为连接蛋白质与基因的重要技术,开启了大规模自动化的蛋白质鉴定之门。 用来分析蛋白质或多肽的质谱有两个主要的部分,1)样品入机的离子源,2)测量被介入离子的分子量的装置。 首先是基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)为一脉冲式的离子化技术。 它从固相标本中产生离子,并在飞行管中测其分子量。 其次是电喷雾质谱(ESI-MS),是一连续离子化的方法,从液相中产生离子,联合四极质谱或在飞行时间检测器中测其分子量。 近年来,质谱的装置和技术有了长足的进展。在MALDI-TOF中,最重要的进步是离子反射器(ion reflectron)和延迟提取(delayed ion extraction),可达相当精确的分子量。 在ESI-MS中,纳米级电雾源(nano-electrospray source)的出现使得微升级的样品在30~40 min内分析成为可能。将反相液相色谱和串联质谱(tandem MS)联用,可在数十个picomole的水平检测;若利用毛细管色谱与串联质谱联用,则可在低picomole到高femtomole水平检测;当利用毛细管电泳与串联质谱连用时,可在小于femtomole的水平检测。 甚至可在attomole水平进行。 目前多为酶解、液相色谱分离、串联质谱及计算机算法的联合应用鉴定蛋白质。 下面以肽质指纹术和肽片段的测序来说明怎样通过质谱来鉴定蛋白质。(1)肽质指纹术(peptide mass fingerprint, PMF)由Henzel等人于1993年提出。 用酶(最常用的是胰酶)对由2-DE分离的蛋白在胶上或在膜上于精氨酸或赖氨酸的C-末端处进行断裂,断裂所产生的精确的分子量通过质谱来测量(MALDI-TOF-MS,或为ESI-MS),这一技术能够完成的肽质量可精确到0。1个分子量单位。 所有的肽质量最后与数据库中理论肽质量相配比(理论肽是由实验所用的酶来“断裂”蛋白所产生的)。 配比的结果是按照数据库中肽片段与未知蛋白共有的肽片段数目作一排行榜,“冠军”肽片段可能代表一个未知蛋白。若冠亚军之间的肽片段存在较大差异,且这个蛋白可与实验所示的肽片段覆盖良好,则说明正确鉴定的可能性较大。(2)肽片段(peptide fragment)的部分测序肽质指纹术对其自身而言,不能揭示所衍生的肽片段或蛋白质。 为进一步鉴定蛋白质,出现了一系列的质谱方法用来描述肽片段。 用酶或化学方法从N-或C-末端按顺序除去氨基酸,形成梯形肽片段(ladder peptide)。 首先以一种可控制的化学模式从N-末端降解,可产生大小不同的一系列的梯形肽片段,所得一定数目的肽质量由MALDI-TOF-MS测量。 另一种方法涉及羧基肽酶的应用,从C-末端除去不同数目的氨基酸形成肽片段。 化学法和酶法可产生相对较长的序列,其分子量精确至以区别赖氨酸(128。09)和谷氨酰胺(128。06)。 或者,在质谱仪内应用源后衰变(post-source decay, PSD)和碰撞诱导解离(collision-induced dissociation, CID),目的是产生包含有仅异于一个氨基酸残基质量的一系列肽峰的质谱。 因此,允许推断肽片段序列。 肽片段PSD的分析在MALDI反应器上能产生部分序列信息。 首先进行肽质指纹鉴定。 之后,一个有意义的肽片段在质谱仪被选作“母离子”,在飞行至离子反应器的过程中降解为“子离子”。 在反应器中,用逐渐降低的电压可测量至检测器的不同大小的片段。 但经常产生不完全的片段。 现在用肽片段来测序的方法始于70年代末的CID,可以一个三联四极质谱ESI-MS或MALDI-TOF-MS联合碰撞器内来完成。 在ESI-MS中,由电雾源产生的肽离子在质谱仪的第一个四极质谱中测量,有意义的肽片段被送至第二个四极质谱中,惰性气体轰击使其成为碎片,所得产物在第三个四极质谱中测量。 与MALDI-PSD相比,CID稳定、强健、普遍,肽离子片段基本沿着酰胺键的主架被轰击产生梯形序列。 连续的片段间差异决定此序列在那一点的氨基酸的质量。 由此,序列可被推测。 由CID图谱还可获得的几个序列的残基,叫做“肽序列标签”。 这样,联合肽片段母离子的分子量和肽片段距N- C端的距离将足以鉴定一个蛋白质。4 氨基酸组分分析1977年首次作为鉴定蛋白质的一种工具,是一种独特的“脚印”技术。 利用蛋白质异质性的氨基酸组分特征,成为一种独立于序列的属性,不同于肽质量或序列标签。 Latter首次表明氨基酸组分的数据能用于从2-DE凝胶上鉴定蛋白质。 通过放射标记的氨基酸来测定蛋白质的组分,或者将蛋白质印迹到PVDF膜上,在15

  • 色谱测蛋白构象

    请问大家做蛋白的圆二色谱时用的蛋白buffer是什么,用tris-Hcl和Nacl对结果影响大吗?感谢感谢!

  • 使用AFS检测单分子水平的蛋白去折叠过程

    使用AFS检测单分子水平的蛋白去折叠过程

    [b]使用声力研究蛋白去折叠[/b]单分子力谱(SMFS)技术是研究蛋白结构与蛋白去折叠中的生物力学性质的有力工具。SMFS能够为研究和药物开发提供有价值的信息。SMFS有助于揭示人类疾病病理的分子机制,而机制往往被认为与错误折叠的蛋白的形成和积聚有关,如阿茲海默症和帕金森氏症。然而现有的SMFS仪器缺少同时并行研究多个蛋白去折叠的功能,使得研究过程耗时很长。使用声波来对数以百计的生物分子施力并操控是非常理想的高通量研究方法。此案例中,声力谱学(AFS)是最新的用于研究蛋白去折叠的单分子操控方法。[img=,500,145]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021031435408_23_981_3.png!w690x201.jpg[/img]1 AFS检测蛋白去折叠的图解。蛋白一端栓住玻璃表面,另一端拴住聚苯乙烯微球。[img=,400,238]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021032257008_8827_981_3.png!w421x251.jpg[/img]2 对视野范围内被蛋白分子拴在玻璃表面的4.5 μm聚苯乙烯微球同时成像。物镜放大倍数为20x。AFS设备使用压电元件共振激发平面声阱穿过微流控芯片。共振波对与周围介质密度不同的微球施力,每个生物分子被单独地由微球拉伸(图1)。仪器可以实时并行操控视野范围内数以百计的微球,获得大量的数据以研究每个生物分子的随机与异质行为(图2)。在Yan Jie(NUS)的实验室的这项试点研究中,我们首次展示了AFS如何对蛋白施力并操控。实验对踝蛋白施力引发(去)折叠同时以高精确度记录蛋白的拉伸。踝蛋白属于机械敏感性大分子,在调控蛋白粘附于胞外基质中起作用。踝蛋白是细胞代谢过程和信号通路中的关键,并能够在力的作用下改变构象,在单分子生物物理学中备受关注。[img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/08/201808021033524578_3892_981_3.png!w679x212.jpg[/img]3 使用AFS得到的单个踝蛋白分子的去折叠曲线,力变化速率为1 pN/s。轨迹在500 Hz下获得(彩色点),并平衡至50 Hz(黑色线)。3a 单个踝蛋白多次拉伸的力-距离曲线。3b 单个拉伸循环的力-距离曲线。3c 图3b中分子的时间-距离曲线。在这项研究中,连接了DNA的踝蛋白拴在聚苯乙烯微球和玻璃表面。启动声波后形成平面声阱,连接了踝蛋白的微球受到朝向声阱的力。实验中通过调节声波的振幅来改变力的大小。逐渐增加力的大小使得蛋白的结构域按顺序去折叠。实验循环进行拉伸与收缩的过程(力变化速率为1 pN/s)并同时以nm级的分辨率检测每个蛋白的拉伸长度(图3)。通过力-距离曲线(图3a)可以观察到单个踝蛋白的去折叠循环。将单个蛋白的去折叠轨迹叠加即可检测到单个结构域去折叠的发生,研究人员可以得到蛋白结构和蛋白去折叠自由能图谱信息。AFS仪器产生的超声并不会损害生物分子的结构完整性,因此蛋白可以连续去折叠和再折叠长达数小时,并能够得到单个蛋白多次去折叠和再折叠的曲线。相比于其他SMFS方法经过多次拉伸和收缩之后对蛋白造成光学损伤或力学损伤使得实验被迫终止,AFS能够获得更多的信息。图3b: 单个力-距离曲线中截取一小段,表示一个拉伸过程。将力从15 pN增加至19 pN,可以观察到4个去折叠过程,与蛋白的4个结构域相符合,拉伸长度为30 nm至100 nm。AFS的高分辨率检测功能可以很清晰地区分去折叠过程。AFS在x,y方向精度为2 nm,在z方向精度为4 nm(频率为25 Hz),可以大幅提高(去)折叠研究的精密程度。图3c: 图3b中分子的18秒范围内的时间-距离曲线。AFS可以检测短至毫秒级至长达10小时以上的事件,用于研究蛋白的热力学和动力学。通过检测踝蛋白的去折叠步骤并记录连续的高分辨率的去折叠轨迹,可以得出AFS如何用于研究蛋白去折叠。研究蛋白(去)折叠的详细机制能够在生物物理和生物医药领域产生突破性发现。今后的蛋白折叠以及蛋白相互作用的研究中,AFS的多分子并行操控功能将发挥重要作用,用户可以同时并行检测大量的蛋白分子。用户可以获得大量的实验数据,在不影响分辨率的同时对蛋白的机械性质数据作出分析。

  • 用ELISA实验检测牛酪蛋白的机构

    我们有几个古代样品,通过质谱方法检测到了其中含有牛酪蛋白,但是因为当时的情况特殊,我们对此结果存疑,想进一步验证其中是否含有牛奶,所以想通过ELISA的方法定性检测其中的牛酪蛋白。大家知道,哪里做ELISA实验,能给我们代测牛酪蛋白吗(优先考虑北京的机构)?谢谢了!

  • ICPMS检测蛋白溶液中的Fe的含量

    如何用[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICPMS[/color][/url]检测蛋白中离子含量。还需要加HNO3消解定容吗?还是说过滤直接上机测?我的标液和内标都是2%HNO3介质的

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制