当前位置: 仪器信息网 > 行业主题 > >

质谱肽段带电荷量

仪器信息网质谱肽段带电荷量专题为您提供2024年最新质谱肽段带电荷量价格报价、厂家品牌的相关信息, 包括质谱肽段带电荷量参数、型号等,不管是国产,还是进口品牌的质谱肽段带电荷量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱肽段带电荷量相关的耗材配件、试剂标物,还有质谱肽段带电荷量相关的最新资讯、资料,以及质谱肽段带电荷量相关的解决方案。

质谱肽段带电荷量相关的论坛

  • 未带电荷的物质可以被质谱检测到吗?

    未带电荷的物质可以被质谱检测到吗?

    如题,用三重四极杆建盐酸异丙嗪杂质A的方法,杂质A结构如图所示,精确分子量为199.04557,质谱模式为正离子模型,流动相为0.1甲酸-60mm乙酸铵(PH为4.8),理论上讲正离子模式下物质应该加氢带正电荷,那么杂质A扫描所得M/Z应该是200才对,可是现在SCAN模式下只能找到199,这是正常的吗?没有带电荷的物质能被质谱检测到吗?[img=,171,262]https://ng1.17img.cn/bbsfiles/images/2021/12/202112051016350372_684_5176699_3.png!w171x262.jpg[/img]

  • 求助,怎么计算平面表面摩擦电压及摩擦带电荷量

    有没有这方面的物理牛人,指导下怎么计算平面表面摩擦电压及摩擦带电荷量,或者给推介基本相关理论分析的书籍。因为接触测试比较多,但是测试都是从实验角度,实际测试值是多少就多少,但是我想对这个做理论分析,想在测试前从理论上预测大概到什么级别。

  • 质谱多电荷问题

    各位老师,若果一个物质带有多电荷,有没有办法降低物质的带电荷的数目,因为电荷太多有时候识别比较困难。

  • 多电荷分子 质谱解析求助

    多电荷分子 质谱解析求助

    [img=,690,55]http://ng1.17img.cn/bbsfiles/images/2018/03/201803021524542180_6133_1811858_3.png!w690x55.jpg[/img]小弟是新手,请各位大神帮忙解析下,母离子 M+H 是 1066.52 (二级质谱如图), 其2M+H 的分子量是 533.77和 534.27 (无二级质谱), 带两个电荷,可能的化合物类型(会不会是多肽?)[img=,690,70]http://ng1.17img.cn/bbsfiles/images/2018/03/201803021533353671_5495_1811858_3.png!w690x70.jpg[/img]母离子 M+H 是 938.47(二级质谱如图), 其2M+H 的分子量是 469.73 和 470.22 (二级质谱如下图), 带两个电荷[img=,690,75]http://ng1.17img.cn/bbsfiles/images/2018/03/201803021536089241_4585_1811858_3.png!w690x75.jpg[/img]类似的化合物还有很多,但分子量均很大,有带6-7个电荷的,分子量达到7000的,就不一一列举,但是他们一般带有特定的离子碎片峰,包括226.11或354.17或372.18,附件是质谱原始数据,以上的出峰时间在4.15min。

  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?

    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。[img=mega创始人.png]https://img1.17img.cn/17img/images/202202/uepic/6936b2e1-2955-452e-9eb5-9ca539fb600a.png[/img][font=&][size=16px][color=#333333]笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge [/color][/size][/font][font=&][size=16px][color=#333333]Accuracy”相关文章。(DOI:[url]https://doi.org/10.1021/acs.analchem.5b02324[/url])。[/color][/size][/font][font=&][size=16px][color=#333333]2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:[url]https://doi.org/10.1021/acs.chemrev.1c00377[/url])[/color][/size][/font]2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。[align=center][img=2018 ASMS杰出共享奖.png,600,259]https://img1.17img.cn/17img/images/202202/uepic/1967a9e8-bc50-4b33-80f6-46585d05a407.png[/img][/align][align=center]2018年ASMS质谱杰出贡献奖[/align]可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。[url=https://www.instrument.com.cn/news/20220207/605434.shtml][color=#ff0000](相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)[/color][/url]此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。[align=center][img=True.png]https://img1.17img.cn/17img/images/202202/uepic/1513aab2-aa16-408e-914a-00cdf762c4ca.png[/img][/align][align=center][/align]TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。[align=center][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/a9414deb-6b4c-4547-93b0-af042aab0c2c.png[/img][/align][align=center][img]https://img1.17img.cn/17img/images/202202/uepic/000b48b0-acd8-4420-98f4-9ffe3137fc02.png[/img][/align][align=center][/align]笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。[align=center][img=john Hoyes.png,600,373]https://img1.17img.cn/17img/images/202202/uepic/efa105d1-a0e5-40b4-acf2-5dd6eabfce69.png[/img][/align][align=center]TrueMass创始人 John Hoyes博士[/align]TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。

  • 做的低分辨质谱,多电荷的误差可以这么大吗

    做的低分辨质谱,单电荷峰和精确分子量能对上,比如342.29打出来是341.3。三电荷峰和计算的精确分子量差了0.5,有的还差了1-2,导致我不确定是不是我的物质,我的东西带上两个电荷后是415.48,打质谱却出现了416.3,请问多电荷的误差可以这么大吗

  • 是二聚体还是带了两个电荷

    在解析ESI低分辨时,如何区分有二倍关系的是二具体,还是因为出现了多点带电,比如说,我打了个ESI+低分辨300-500有个离子峰M/Z=415.2,响应强度为2.40e3。而600-1000范围有两个较强的离子峰M/Z=785.4,M/Z=807.4,响应强度为681。从785.4和807.4可判断出807.4为加Na,785.4为加H,415.2也是加Na。那么分子量到底是多少,按二聚体算的话,分子量应该为392,。如果说是415.2带了两个电荷,那么分子量是不是应该就是784。(请高手给讲讲,这ESI源打质谱如何判断分子量)图上传不上

  • 多电荷物质做质谱时,如何准确判断分子离子峰

    大家好,小女接触质谱时间不长,有些问题不太懂,还请大家指教。我现在在用标准品做二级质谱图,标准品纯度不是很高,做的过程中,遇到的问题是:遇到多电荷的物质时,我不知道如何判断哪一个离子峰才是我要找的分子离子峰(即母离子)(一级全扫图中有3个峰是我要找的可能的分子离子峰,分别称A,B,C吧),我用的是高分辨质谱,但是我用高分辨质谱算精确分子质量的时候,得到的理论值与一级全扫图中峰A的值会有0.5的差值,而另一个分子离子峰B与这一个离子峰A会有一个相同的碎片,不知道A是不是我要找的分子离子峰?如果不是,为什么呢?

  • 防静电服带电电荷量的测量不确定度评定研究

    [b]【序号】:1【作者】:【题名】:[b][color=#333333][b][font=微软雅黑, &][size=24px]防静电服带电电荷量的测量不确定度评定研究[/size][/font][/b][/color][b][/b][/b]【期刊】:【年、卷、期、起止页码】:【全文链接】:[/b][font=&]https://wenku.baidu.com/view/42718eb2e63a580216fc700abb68a98271feacf1.html?_wkts_=1683524105413&bdQuery=%E9%98%B2%E9%9D%99%E7%94%B5%E6%9C%8D%E5%B8%A6%E7%94%B5%E7%94%B5%E8%8D%B7%E9%87%8F%E7%9A%84%E6%B5%8B%E9%87%8F%E4%B8%8D%E7%A1%AE%E5%AE%9A%E5%BA%A6%E8%AF%84%E5%AE%9A%E7%A0%94%E7%A9%B6[/font]

  • 质谱技术原理与方法简介

    质谱方法(Mass Spectroscope,MS)是通过正确测定蛋白质分子的质量而进行蛋白质分子鉴定、蛋白质分子的修饰和蛋白质分子相互作用的研究。质谱仪通过测定离子化生物分子的质荷比便可得到相关分子的质量。但长期以来,质谱方法仅限于小分子和中等分子的研究,因为要将质谱应用于生物大分子需要将之制备成气相带电分子,然后在真空中物理分解成离子。但如何使蛋白分子经受住离子化过程转成气相带电的离子而又不丧失其结构形状是个难题。20世纪70年代,解吸技术的出现成功地将蛋白分子转化成气相离子。尔后快原子轰击与其紧密相关的溶液基质二次离子质谱法使得具有极性的、热不稳定的蛋白分子可经受住电离过程。但这些方法仅限于10kD以下蛋白分子的研究。80年代电喷雾电离(ESI)和软激光解吸(SLD)电离技术的发展则使得质谱方法应用于高分子量蛋白分子的研究。 电喷雾电离(ESI)原理可按电荷残留模型予以描述,带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子。针对电喷雾电离所产生的多电荷状态,Fenn将多电荷状态理解为对分子质量进行多次独立的测量,并基于联立方程解的平均方法,获得对分子质量的正确估量,解决了多电荷离子信息的问题,使蛋白分子质量测量精度获得极大的提高,并于1988年首次成功地测量了分子量为40 kD的蛋白质分子,精确度达到99.99%。

  • 一级质谱图和二级质谱图的区别是什么

    质谱分析是一种测量离子质荷比的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场发生相反的速度色散,将其分别聚焦而得到质谱图,而确定其质量。[align=center][url=https://www.antpedia.com/batch.download.php?aid=282840][img]https://i3.antpedia.com/attachments/2020/12/105659_202012281619111.jpg[/img][/url][/align]  质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。  质谱中一级质谱,二级质谱的区别:  1、显示目标不同。  一级质谱主要是给出目标物的分子量,二级质谱可以看出目标物的部分碎片,可以对目标物的结构进行分析。  2、等级不同。  一级质谱为一级,二级质谱为二级。  作用:  一级质谱:检测所有带电离子的质荷比和强度,形成一级谱图。一级质谱中的信号为母离子肽段信号。  二级质谱:按照一定方式选择母离子肽段,将其进一步解离,分析所形成的子离子的质荷比和强度。

  • 台湾教授发明便携式大气压质谱仪,可用于进行农残速测

    感觉它的检测结果要比速测卡准确得多,就是不知道检测范围有多大?检验人员可携带该行动大气压力质谱仪,到现场即时检测各种食品中所含的不法化学添加物,改变传统化学分析流程,化被动为主动。  研究人员称,质谱仪具有高灵敏度及监定结构能力,因此已成为科学界分析化学分子不可缺少的仪器,但必须先进行样品前处理,才能以质谱仪进行分析,可能要长达数小时。  行动大气压力质谱仪的操作原理,是利用细微金属探针取样,以加热等施加能量方式将分析物气化,导入游离区,并使其与游离区内的带电荷物质反应后,使分析物带电荷,再进入质谱仪内被侦测;整个过程仅需数秒钟的极短时间。  目前仪器可应用的范围包括各式物件及食品中环境荷尔蒙及如三聚氰胺等有害物质分析及蔬果表面及内部所含残留农药等,同时还可检测毒品与禁药。http://www.instrument.com.cn/news/20130905/106811.shtml

  • 质谱ESI离子源小知识

    质谱ESI离子源小知识

    电喷雾离子化过程在几千伏高压电源的作用下,液体溶液从喷口喷出并雾化,由于电场作用,雾化的液体带电,这种带电液滴在飞行过程中,干燥气体作用下,溶剂不断被蒸发,液滴体积逐渐变小,电荷数量不变,在体积缩小到一定程度,电荷密度太大,静电排斥力大于表面张力,液滴就发生爆炸了,这个过程继续进行下去,最后就解析出离子进入质谱的真空区。整个过程很快,只有几个微秒(μs)。http://ng1.17img.cn/bbsfiles/images/2012/08/201208081100_382423_1978482_3.jpg具体如何解析出离子,有两种理论第一种机理:离子蒸发Ion Evaporation Model (IEM)认为,当液滴到达一定直径时(溶剂并没有完全蒸发),由于液滴表面的电荷密度太高,电场力足够大、从而解吸出离子。第二种机理:电荷残留Charge Residue Model (CRM)认为,溶剂全部蒸发完了,剩下的分析物(溶质)和电荷最后形成了气相离子。  (1)ESI是“软”电离。传统的方法是用高能电子或原子直接轰击分子的“硬”电离,分子会被打碎,分析的不是物质的原来的东西。而从ESI的原理可知,液滴里面有样品和电荷,溶剂挥发,最后只剩下分析物质和电荷。ESI“软“电离保证:你要测的样品是什么,你测出来就是什么。  (2)第二点关键技术是ESI可产生多电荷。质谱仪测定的是质荷比m/z,同样是得到m/z=100,但如其分别带1个电荷、10个电荷、100个电荷,那么实际测的分子量就是100、1,000、10,000。80年代时最先进的质谱,分子量m/z范围最宽为1000-2000,没人可以测到上万的大分子。而利用电喷雾原理,使分子带上多电荷,拓宽了质谱仪可测定的分子量范围,现在最高可到几亿道尔顿。但是,ESI的灵敏度还有提高的空间,形成离子的过程虽没有浪费,液滴中的溶剂慢慢走掉,剩下溶质和电荷,溶质一点没有浪费;但只有不到百分之一的气化离子进入了质谱。来自一个资料,更多详细内容却无法上传上来,哎!

  • 【分享】质谱分析技术原理与方法简介

    质谱方法(Mass Spectroscope,MS)是通过正确测定蛋白质分子的质量而进行蛋白质分子鉴定、蛋白质分子的修饰和蛋白质分子相互作用的研究。质谱仪通过测定离子化生物分子的质荷比便可得到相关分子的质量。但长期以来,质谱方法仅限于小分子和中等分子的研究,因为要将质谱应用于生物大分子需要将之制备成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]带电分子,然后在真空中物理分解成离子。但如何使蛋白分子经受住离子化过程转成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]带电的离子而又不丧失其结构形状是个难题。20世纪70年代,解吸技术的出现成功地将蛋白分子转化成[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子。尔后快原子轰击与其紧密相关的溶液基质二次离子质谱法使得具有极性的、热不稳定的蛋白分子可经受住电离过程。但这些方法仅限于10kD以下蛋白分子的研究。80年代电喷雾电离(ESI)和软激光解吸(SLD)电离技术的发展则使得质谱方法应用于高分子量蛋白分子的研究。 GtqA@&5& ueJ_F#y 电喷雾电离(ESI)原理可按电荷残留模型予以描述,带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子。针对电喷雾电离所产生的多电荷状态,Fenn将多电荷状态理解为对分子质量进行多次独立的测量,并基于联立方程解的平均方法,获得对分子质量的正确估量,解决了多电荷离子信息的问题,使蛋白分子质量测量精度获得极大的提高,并于1988年首次成功地测量了分子量为40 kD的蛋白质分子,精确度达到99.99%。 {0} Q5 p@=B\A] 软激光解吸(SLD)是指从激光脉冲中获得能量后,样品分子以完整的低电荷分子离子释放,然后由电场加速。运用激光解吸电离蛋白分子时,激光的能量和波长、化学/物理基质的吸收和热传递特性,与基质中分析物的分子结构之间需要作合理的选择调配。Tanaka选用了低能量氮激光和含有胶状颗粒的甘油作基质,成功地测定了高分子量的糜蛋白酶原、梭肤酶-A以及细胞色素。由于Tanaka成功的开创性工作,SLD技术迅速发展。目前占主导的方法是基质辅助激光解吸电离(MALDI)。这一方法是将样品掺入一种低分子量的结晶基质,基质的最大吸收与激光脉冲波长匹配。由于MALDI产生的是低电荷的完整[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]大分子,可用于检测纯度不高的生物分子。MALDI与飞行时间(TOF)联合已经成为鉴别大分子的重要方法,成为鉴定细胞内蛋白组分不可或缺的研究手段。

  • 【原创大赛】质谱应用之分子量的测量

    【原创大赛】质谱应用之分子量的测量

    质谱应用之分子量测量 最近10年质谱技术的飞速发展,耐用的离子源,高性能的质量分析器和多种有效的扫描方式推动了质谱仪器走进各个单位,质谱成为功能强大的生物化学分析平台。目前基于质谱的物质定量定性实验应用广泛,从普通色谱-质谱(GC-LC&LC-MS)连用技术的定量分析实验(药理药代、农残筛查、环境污染物分析……),到大规模发现鉴定的组学实验(蛋白质组学和代谢组学)。抛开这些酷炫的方法和技术,我们今天讨论一下质谱的基本应用——测定分子量,通过一些测定分子量的实验我们可以看到分子量代表的更多意义。 质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,质谱法(Mass Spectrometry, MS)即用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片,有分子离子、同位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子)按它们的质荷比分离后进行检测的方法。测出离子准确质量即可确定离子的化合物组成。这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。分析这些离子可获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息(以上内容来自百度百科和高中教科书)。从定义我们看出,测定分子量是质谱的基本技能,一台质谱仪我们首先问的是它测量的分子量范围是多少,测量的准确度怎么样。1小分子的测定 质谱的首先发展是测定元素的相对分子量,比如我们一般说到元素C的分子量是12,其实说的是C在自然界的最高丰度12C的相对原子量,考虑自然界只有12C相对含量1.082%的13C,C准确平均分子量是12.011。化合物一般有C、H、O……多种元素组成,这些元素的同位素互相组合,如果我们的质谱可以区分相邻的同位素的相对分子量,质谱图上会显示的一簇峰,每个质谱峰对应相同的分子式下不同的同位素组成的化合物响应。因为化合物组形成元素的不同,他们的质谱簇峰分子量(momoisotopic mass)组成独特的质谱峰模式(pattern),如果质谱区分不了相邻的同位素峰,这一簇峰变成一个质谱峰所对应的是平均分子量(average mass)。 如果我们测定一个化合物分子量,如果通过质谱可以得到精细的元素分子量(momoisotopicmass)及其相对丰强度(在质谱上表现为簇峰的强度)的信息,可以通过谱图推测化合物的组成写出分子式。图1 A是测的城市污水提取物的分子量,三个主要质谱峰为同一个化合物的同位素质谱峰,推测分子式为C2HO2Br2,采用软件(很多软件都可以进行,最简单的是chem office)模拟此分子式的精确分子量,图2 B即为模拟所得的质谱图。可以看出所测得的质量偏差很小,最高元素峰216.8331-216.8328=0.0003Da,质谱峰分布模式(分子量和相对强度)实际测量图和模拟图几乎一致,可以确定该化合物的分子式是C2HO2Br2。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131121_526995_2265735_3.jpg图1 污水提取物质谱图。A测量图,B模拟图。质谱Thermo LTQ-orbit,HESI源。 对于有特殊的元素的化合物,测量准确的分子量及其同位素质谱模式可以准确的判定特殊元素的存在,图2是测得某配位化合物的质谱图,通过其特殊的质谱图可以确定此化合物为Os金属配合物。http://ng1.17img.cn/bbsfiles/images/2014/12/201412131125_526996_2265735_3.jpg图2 Os配合物质谱图。质谱Thermo LTQ-orbit,HESI源。 上述测量过程简单实用,但是这个实验要求质谱有足够的质量准确度,所测的分子量与实际值最好在小数点最后一位有波动,不然预测分子式会有很大的偏差。2更高分子量的测量 对于同位素峰的测量,需要质谱区分相邻的同位素峰。在图1中两个同位素峰相差越2个道尔顿,在测量217分子量时候,只要质谱可以区分2个道尔顿的质谱峰就可以了,在图2中,同位素峰相差1道尔顿,区分度只有1个道尔顿。当分子量达到5K以上的时候,如果化合物仅仅由CHON等简单同位素组成,因为组成原子个数的增多,同位素峰越来越复杂,两个同位素峰之间的区分度越来越小,当质谱区分不开这些同位素峰的时候,测得是平均分子量(average mass)。图3 A测量的是一个分子量为10380Da的多肽,B和C是带10个电荷和11电荷同位素峰的局部方法图。在B中,同位素质谱峰间距(区分度)为0.1001Da。随着分子量的增加,需要质谱对相近同位素峰区分能力更强。评价质谱这种能力的指标是分辨率,我们一般用单位分辨率R=m/Δm来表示(该论述与严格定义有区别),图1需要的分辨率217/2=108,图2的分辨率780/1=780,而图三需要的分辨率1100/0.1=11000。所以说准确测分子量尤其是大分子量需要质谱具有高的分辨率。http://ng1.17img.cn/bbsfiles/images/2014/12/201412051959_526030_2265735_3.jpg图3多肽质谱测定。 A,质谱图B,,+10电荷质谱放大图C,+11电荷质谱放大图。Thermo LTQ-orbit,HESI源。3不同离子源的测定大分子的策略 目前测定大分子的主要离子源有基质辅助激光解吸(MALDI)和电喷雾(ESI)。图4是采用不同离子源测定聚乙二醇修饰药物分子量,A是MALDI质谱测得,几乎为所有分子的都带一个电荷,质谱间距为聚乙二醇重复单元-CH2-CH2-O-44Da;B为ESI质谱所测谱图,Z为分子所带电荷数,z=4质谱间距为44/4=11,z=3质谱间距为44/3=14.67。http://ng1.17img.cn/bbsfiles/images/2014/12/201412052001_526031_2265735_3.jpg图4聚乙二醇化药物质谱图。A AB MALDI-TOF谱图,基质DHB反射模式;B Thermo ESI-LTQ-Orbit谱图。 MALDI电离的离子一般带一个电荷(随着分子量增加,会出现带多个电荷的情况),图5是测得8478和11675多肽质谱图,5737为11675多肽带双电荷所得。采用MALDI测量分子量谱图测量结果直观方便,图6是测量分子

  • 安捷伦MS/MS模式下 AUTO MS/MS电荷选择

    安捷伦MS/MS模式下 AUTO MS/MS电荷选择

    最近刚接触安捷伦的LC-MS/MS,在进行母离子选择时,软件提供AUTO MS/MS模式会根据电荷数和丰度进行筛选,我不明白的是仪器是如何知道母离子是两个电荷,单电荷还是多电荷呢,好像质谱只能根据质量荷比进行分离http://ng1.17img.cn/bbsfiles/images/2013/07/201307091047_450326_2150903_3.jpg

  • 电荷转移吸收光谱

    当外来辐射照射某些有机或无机化合物时,可能发生一个电子从该化合物具有电子给予体特性部分(称为给体,donor)转移到该化合物的另一具有电子接受体特性的部分(称为受体,acceptor),这种电子转移产生的吸收光谱,称为电荷转移吸收光谱。电荷转移吸收光谱涉及的是给体的一个电子向受体的一个电子轨道上的跃迁,激发态是这一内氧化还原过程的产物。如金属配合物吸收光能时,跃迁包括电子从配体中的π能级或者σ能级激发到金属离子的空轨道,或者金属离子的电子激发到配体的空π轨道。电荷转移跃迁是极其强烈的,摩尔吸光系数ε一般在104-105,光谱在紫外或可见区。电荷转移的容易程度随配体共轭程度增大而增大。电荷转移吸收光谱很适于痕量金属离子的高灵敏度测定。

  • 【求助】求助 电荷转移

    我在做实验的时候碰到一个问题,荧光试剂的荧光被猝灭剂猝灭,猝灭的原因可能是能量转移,也可能是电荷转移,那我怎么才能判断是或者不是电荷转移呢?所以我想知道有关电荷转移反应的一些特点,激态,比方说给体和受体的距离,反应速率常数等。哪位老大了解,请指点

  • 质谱仪小知识——离子源

    http://simg.instrument.com.cn/bbs/images/brow/em09502.gif以前还真没接触过质谱,只是因为最近公司进了各种各样的质谱,看看各种牌子的,慢慢的就知道了什么ab的,bruke,micromass等等各家的质谱,也知道版友们说的QQQ,tof,traq等等是神马东西。呵呵,当然,在大虾门面前都是小菜了。 学习总是个循序渐进的过程,因为公司本身的业务要求,比较注重维修维护方面,所以先从仪器的部件下手,先了解一下各式各样的质谱的离子源啦,下面是一些离子源的小资料,供像我们这样的小菜了解了解。 液质联用和气质联用气质联用仪(GC-MS):适宜分析小分子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)得到的谱图,可与标准谱库对比。 GC-MS一般采用EI和CI离子源。EI:电子电离源,最常用的气相离子源,有标准谱库CI:化学电离源,可获得准分子离子。PCI,NCI液质联用(LC-MS):不挥发性化合物分析测定,极性化合物的分析测定,热不稳定化合物的分析测定,大分子量化合物(包括蛋白、多肽、多聚物等)的分析测定;液质的离子源种类比较多,这里只列主要的几个。大气压电离(API)(包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)ESI 为电喷雾,即样品先带电再喷雾,带电液滴在去溶剂化过程中形成样品离子,从而被检测,对于极性大的样品效果好一些;APCI 为大气压力化学电离源,样品先形成雾,然后电晕放电针对其放电,在高压电弧中,样品被电离,然后去溶剂化形成离子,最后检测,对极性小的样品效果较好。APPI:大气压光电离源,适用于弱极性的化合物,如多环芳烃等ESI 的软电离程度较APCI 的还小,但其应用范围较APCI 的大,只有少部分ESI 做不出,可以用APCI 辅助解决问题,但是APCI还是不能解决所有ESI 解决不了的问题,一般用ESI 和 APPI 搭配使用比 ESI 和APCI 的应用范围更广一些。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,进入了一般质谱仪可以分析的范围之内。根据这一特点,目前采用电喷雾电离,可以测量分子量在300000Da以上的蛋白质。电喷雾电离源是一种软电离方式,即便是分子量大,稳定性差的化合物,也不会在电离过程中发生分解,它适合于分析极性强的大分子有机化合物,如蛋白质、肽、糖等。电喷雾电离源的最大特点是容易形成多电荷离子。这样,一个分子量为10000Da的分子若带有10个电荷,则其质荷比只有1000Da,

  • 质谱 带电离子的产生、传输和检测

    [font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]

  • 【资料】电喷雾电离质谱及其在蛋白质化学研究中的应用

    【资料】电喷雾电离质谱及其在蛋白质化学研究中的应用

    电喷雾电离质谱及其在蛋白质化学研究中的应用 桑志红综述 杨松成审校 (国家生物医学分析中心 北京 100850) 摘要 本文综述了电喷雾电离质谱及其在蛋白质化学研究中的应用。由于电喷雾电离质谱可产生多电荷峰,因此大大扩大了检测的分子质量范围,同时灵敏度高,另外它可与HPLC及高效毛细管电泳分离技术联用,扩大了质谱在蛋白质化学研究中的应用。关键词 电喷雾电离;质谱;蛋白质化学 在有机化合物结构的鉴定中,质谱、核磁、红外及紫外等分析手段,从不同的侧面提供了化合物的结构信息。质谱以质量分析为基础,灵敏度高,可提供化合物的分子量、分子式(高分辨质谱)以及一些有关的结构信息。经典的有机质谱要求待测物能气化,有一定纯度,热稳定性好等条件,因此,极性高,不易气化,热不稳定以及不纯的化合物难以用经典质谱测定。近年来随着有机质谱在质谱硬件、软件、电离技术的发展,以及与各种分离方法相联(如色质联用技术)的接口的不断完善,扩大了化合物的检测范围,在分子量测定方面,已从化学小分子扩展到生物大分子,可测定的分子量达到几十万道尔顿。质谱有多种电离方法,包括场解吸、等离子体解吸、激光解吸、快速粒子轰击、热喷雾电离和大气压电离等。每一种电离方法都有一定的分子量检测范围,一般认为热喷雾的分子量检测最大范围约8ku,快原子轰击为25ku。但是随着分子质量的增加,所有分析方法的灵敏度均有所下降。电喷雾电离质谱(ESI-MS)由于可以产生多电荷峰,与传统的质谱相比扩大了检测的分子质量范围,同时提高了灵敏度,使一种M/Z限制在一定范围的四极质谱,就可以分析分子质量超过200ku的蛋白质[1]。另外ESI-MS方法产生一系列的多电荷峰,可以得到准确的分子量,它还可与HPLC和高效毛细管电泳(CE)分离方法相连接,扩大了质谱在生物领域的应用。电喷雾现象的出现可以追溯到两个世纪之前,但真正把电喷雾作为一种电离方法的创新性的研究是由Dole等在大约30前开始的,他们研究的目的是用电喷雾来产生气态大离子。1984年Yamashita等把大气压电喷雾电离技术与四极质谱结合起来,同年,Alexandror把它和磁质谱结合起来。1988年Fenn研究小组报道了用ESI-MS得到了带有45个正电荷分子量为40ku的蛋白质,随后ESI-MS在生物大分子的研究领域进入了一个全新的发展阶段。到目前为止,该法已经能够分析质量范围大约在200ku的蛋白质。1.电喷雾电离过程[img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608250906_24655_1237095_3.jpg[/img]附图 电喷雾质谱的电离接口示意图 如附图所示,在毛细管管口加一高电压,作用于经喷雾头进入离子化室的溶液,再将3~6kV的电压加到毛细管和相对的电极之间,电压导致毛细管末端的液滴表面的电荷增强,高电压导致液体表面分裂和多电荷液滴的形成,与毛细管子相对的电极携带的正或负电荷以产生正或负电荷液滴。对于电喷雾的整体而言,带电液滴的形成是整个电喷雾过程的第一步,而接下来的离子化是进行电喷雾分析的关键。而带电液滴形成分子离子的机制还不清楚。Iribane和Thomson提出场辅助离子蒸发假设。在这种模型中,处于液滴表面的离子是由于带电液滴的溶剂在空气中蒸发,当场力在液滴表面达到临界点时由液相直接进入[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]完成离子化的过程。而Rollgen等提出了不同的假设机理,他认为当液滴在大气压下蒸发时,随着溶剂的蒸发,由于液滴直径变小,液滴表面电荷密度增加,当液滴表面电荷达到雷利极限(Raleigh limit),液滴进一步裂变,再次达到雷利极限,再一次“爆炸”,如此循环,当溶剂从小液滴中完全蒸发后形成分子离子。Abbas和Latham的实验证实了从液滴生成分子离子的这一假设。 对于大分子化合物离子化过程的形成可用带电残渣模型理论加以解释,该理论认为大分子[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子的形成是基于溶剂蒸发,由库仑爆裂辅助及较小液滴的相互排斥而导致液滴形成仅含有一个分子离子的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子,此过程所需能量很低,不会导致分子裂解。但是通过离子源内离子传输区的碰撞诱导解离(CID)电压设置可得到一些有效的碎片离子,但这只对一些不稳定结构有效,并且ESI-MS的CID质谱与电子轰击质谱(EI)及快原子轰击质谱(FAB)有一定的不同,可能是由于前者的开裂环境比EI及FAB源更为复杂,因此在对化合物结构的获得上有一定的制约。随着现代技术的发展,电喷雾与串联质谱(MS-MS)相连,即能为化合物提供很多结构信息。 2.电喷雾电离质谱的分子质量的检测 由于ESI-MS的分子离子状态不是由于裂解(除非在高能量下发生碰撞诱导解离进入真空系统)而得到,因此对于生物大分子的分子量测定变得比较容易。ESI-MS得到的是一簇多电荷的质谱峰群,它的分子质量的测定可从以下假设中得出:(1)两相邻峰相差一个电荷;(2)电荷是由于分子离子质子化形成的。任何两个峰都可有效地测定分子质量。方程式(1),(2)描述了分子质量Mr和多电荷离子(P1,P2)以及它们各自所带电荷(Z1,Z2)之间的关系。P1Z1=Mr+MaZ1=Mr+1.0079Z1 (1) P2Z2=Mr+1.0079Z2 (2)当P2P1时解(1)、(2)方程,得 Z1=J(P2-1.0079)/(P2-P1) (3)通过Z1可得到准确的分子质量。于是可将一簇多电荷峰的质谱图转化成化合物[M+H]+或[M+H]-的质谱图。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制