当前位置: 仪器信息网 > 行业主题 > >

无机化工用催化剂

仪器信息网无机化工用催化剂专题为您提供2024年最新无机化工用催化剂价格报价、厂家品牌的相关信息, 包括无机化工用催化剂参数、型号等,不管是国产,还是进口品牌的无机化工用催化剂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无机化工用催化剂相关的耗材配件、试剂标物,还有无机化工用催化剂相关的最新资讯、资料,以及无机化工用催化剂相关的解决方案。

无机化工用催化剂相关的论坛

  • 催化剂的分类

    催化剂的分类方式有很多种:按聚集状态分类、按化学键分类、按催化剂组成及使用功能分类以及按催化剂工艺和工程特点分类。目前,国内外均以功能划分为主,兼顾市场类型及应用产业。我国尚无统一的工业催化剂分类法,参考一些大型书目和国外分类方法可将工业催化剂分成:石油炼制、无机化工、有机化工、环境保护和其他催化剂5大类。细分情况见图。http://ng1.17img.cn/bbsfiles/images/2017/02/201702061522_01_1241901_3.jpg

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 化工催化剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38856.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]随着负载型双组份催化剂的发展,催化剂表征方法的建立使人们对催化剂中组分、活性以及存在状态具备综合分析的依据,能够对于所制备的催化剂的反应行为给予更合理的解释。如应用TPR及H2和O2化学吸附等方法对PtSn/Al2O3催化剂中的锡组分存在状态的表征,应用电镜和XRD对催化剂结构进行表征,通过ICP及XRF对催化剂进行定性及定量分析,另外对催化剂的积碳失活的检测有助于催化剂表面再生行为的研究,运用TPO、TG及STA等手段对催化剂表面积碳行为。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]平台基础配套设施齐全,配备催化剂表征所具备的材料物化分析检测仪器设备,主要包括STA、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、FT-IR、ICP、XRD、XRF等以及催化剂原位表征,包括化学吸附-质谱联用、吡啶透射红外、原位XRD、原位漫反射红外等。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]化工产品/催化剂[/td][td]比表面积[/td][td]GB/T 19587-2017[/td][/tr][/table]

  • 请问催化去除甲烷的催化剂或催化炉的成分和原理是什么?

    首先说明:这里讨论的是催化方法[b] 除掉样气中的甲烷[/b],催化生成H2O和CO2。 而不是加氢催化无机碳生成CH4市场上有测量非甲烷总烃的FID设备,原理是使用催化炉除掉样气中的CH4,至于其他如乙烷、乙烯、甲醇等其他 有机成分都保留,送到FID测量,得到非甲烷总烃。请问这种催化剂的原理和成分是什么?

  • 色谱法化学吸附仪在催化剂行业

    色谱法化学吸附仪在催化剂行业2013无机及同位素质谱会2014环境监测仪器形势大好第我国研制超分辨显微镜打破国际技食药总局发布组织申报国家科技计划欧盟成功研制出低成本便携式石棉检广东H7N9禽流感卷土重来疾控整站优化:最给力的优化编者按:在多相催化中,由于反应体系的复杂性,使得再解释催化活性及其机理上遇到了困难,因而妨碍了对特定化学过程最佳催化剂的选择。在以往工作的基础上,研究人员提出了用气象色谱(GC)对催化反应、化学吸附和气体扩散进行联合研究的设计,建立了相应的装置,并拟投入定型化仪器生产。

  • 北化院BHL催化剂完成首次工业应用试验

    [color=#000000]近日,[b]北京化工研究院自主研发的新型BHL催化剂[/b]在中科炼化道达尔ADL环管聚乙烯工艺装置成功完成首次工业应用试验,综合性能全面超越进口同类催化剂。[/color][color=#000000]道达尔ADL工艺对催化剂性能要求高,此前均使用进口专利商催化剂。北化院针对道达尔ADL工艺,历时多年开发新型高性能钛系催化剂——BHL催化剂。试验过程中,中科炼化和北化院团队紧密合作,催化剂切换顺畅,生产过程平稳,以创纪录的16.5小时将各项产品参数调整合格。相对于进口催化剂,BHL催化剂活性提高10%~20%,氢调性能平稳,共聚性能提升10%以上,制得的聚合物颗粒形态良好、细粉更少,树脂产品达到优级标准。[/color][color=#000000]BHL催化剂工业应用试验的成功,标志着北化院研发的催化剂技术在国内淤浆聚乙烯工艺领域实现全覆盖。下一步,北化院将与中科炼化进一步深化产销研用合作,提升树脂产品质量,开发新型树脂产品,助力中科炼化降本增效,实现高质量发展。[/color][来源:中国石化报][align=right][/align]

  • 【分享】一种以铁为主的新制药催化剂问世

    加拿大一研究小组找到了一种以铁为基础原料制造催化剂的新方法。这种新型催化剂与目前通常使用的铂等金属催化剂相比,毒性小且成本低,有望作为制药和芳香剂生产工艺中的催化剂。   药物合成中通常都需要催化剂,这对药物成本的影响很大。而且,如使用毒性大的钌、铑、钯等铂系金属作为催化剂,最后的合成产品就需要先经过昂贵的净化技术来消除毒素。   多伦多大学化学系罗伯特-莫里斯教授相信,使用他们研制的新型催化剂,不仅价廉而且毒性低,可以免除铂系金属催化剂带来的上述两种缺陷。   莫里斯教授在新一期《化学》杂志上发表论文说,铁一般被认为是催化活性很低的“贱金属”,使其能够成功用于替换通常使用的铂系金属作为催化剂,秘诀在于将铁的结构通过一定的手段转换成与铂系金属相似的结构。他们所研制的催化剂是一种包含碳、氢、磷及氮的有机分子,科学家们将各原子排列成一种独特的右旋结构,依附于铁上,使其处于一种亚铁状态。   化学催化剂的作用是加快化学反应过程,但同时,它们也会对反应过程中的化学物结构产生影响。用于药物合成过程中的催化剂,其最有价值之处在于它们可以将药物化学品的产品限定在一种特定的结构形式,而不会使其产生另一种镜像结构形式。   目前,多伦多大学研究人员已通过使用少量的这种催化剂,并运用对称转移氢化法工艺,成功将价廉的酮转化成了结构为左旋形式的酒精。

  • 【求助】请教:关于Pd催化剂的浸渍法制备

    非人非化工专业,但现在需要制备整体式催化剂:第一载体为FeCrAl金属,上面涂覆一层γAl2O3,然后再通过Pd(NO3)2溶液浸渍,将Pd分担到氧化铝上,分担量为0.5%左右,现在的问题就是我所要用到的硝酸钯溶液浓度如何确定。有没有做过催化剂的兄弟姐妹,麻烦指点一下,感激不尽!

  • 【资料】试剂介绍-催化剂

    [size=4]定义  [/size][b][size=4] [/size][/b][size=4] [/size][size=4]又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为[/size][size=4]催化作用[/size][size=4]。涉及催化剂的反应为催化反应。[/size][size=4][/size][size=4]  催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为[/size][size=4]触媒[/size][size=4]。[/size][size=4]  催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在[/size][size=4]氯酸钾[/size][size=4]受热分解中起催化作用,加快[/size][size=4]化学反应速率[/size][size=4],但对其他的化学反应就不一定有催化作用。某些化学反应并非只有唯一的催化剂,例如氯酸钾受热分解中能起催化作用的还有[/size][size=4]氧化镁[/size][size=4]、[/size][size=4]氧化铁[/size][size=4]和氧化铜等等。[/size][size=4]  初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。[/size][size=4]  也有一种说法,催化剂先与反应物中的一种反应,然后两者的生成物继续在原有条件下进行新的化学反应,而催化剂反应的生成物的反应条件较原有反应物的反应条件有所改变。催化剂原先因发生化学反应而生成的物质会在之后进一步的反应中重新生成原有催化剂,即上面提到的质量和化学性质在反应前后都没有发生变化。[/size]

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 三元催化剂的制备和原料选择

    [align=center][b]三元催化剂的制备和原料选择[/b][/align]稀土催化材料在汽车尾气净化中的作用 目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的, 目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NOx 。该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。 人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意的净化效果。 稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。二氧化铈还在贵金属气氛中起稳定作用,以保持催化剂较高的催化活性。所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。 稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。 稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。 稀土在TWC中的应用 稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。稀土在催化剂中的作用主要有以下几方面。 1.汽车尾气净化催化剂活性成分 汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。 Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。因此,可用稀土氧化物完全或部分代替贵金属来担当催化剂的活性组分,催化还原Co、HC和No。2提高催化剂的抗中毒能力机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。 稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。 研究表明Ce02对尾气中S02组分有一定的储硫作用。汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。 3提高催化剂的热稳定和机械强度 通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。 加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60 m2g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。 4. 自动调节空气燃料比(储氧能力提高催化剂的活性) (围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。) 许多研究发现,氧化铈等稀土氧化物具有储放氧能力。Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。 Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。 (当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。 其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.) 5.助催剂的作用 汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。CO+H2O- -CO2+H2 为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。 6.提高活性涂层的催化活性 加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化格点减少, 使活性受损。在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]eO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。CeO2 的分散阈值即为它的最佳添加用量。Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3形成固溶体而失去活化作用。CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh的活化作用。La2O3也能防止Pt 超微细粒长大。将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。 CeO2 还是一种有效的烃类氧化催化剂。在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。CeO2 在氢作用下易产生低价铈和氧空位。Pt/ CeO2 可吸收[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]氢并再释放出来。在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧 。另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用。催化剂的制备工艺非常复杂,从配方的粉体原材料选择:催化剂粉体主要的材料是三氧化二铝、铝胶、稀土材料(氧化镧、氧化铈、氧化锆等)进行工艺混合,再由不同比例的贵金属活性组分添加,通过800度的高温制备而成。整个制备的工艺是一个科技含量非常高和严谨的流程。三元催化转化器的结构三元催化转化器主要由外壳、隔热保护罩、中间段、入口和出口锥段、弹性夹紧材料、防直通密封催化剂等几部份组成, 其中催化剂作为三元催化转化器的技术核心包括载体、涂层两部分。2.1 载体 基本材料为陶瓷(MgO2, Al2O3,SiO2)。目的是提供承载催化剂涂层的惰性物理结构。为了在较小的体积内有较大的催化表面,载体表面制成为蜂窝状。2.2 涂层在载体表面涂敷有一层极松散的活性层,它以金属氧化物γ-AL2O3 为主。由于表面十分粗糙,这使壁面的实际面积增大了约7000 倍,大大的增加了三元催化转化器的活性表面和储存氧的能力。在活性层外部涂敷有含锆Zr 和铈Ce 等元素的助催剂,含有铑Rh、钯Pd、铂Pt 等贵金属的主催化剂。市场现状(2)— 国内催化剂生产量估算[table][tr][td][b]厂 家[/b][/td][td][b]年产量(万升)[/b][/td][/tr][tr][td]昆明贵研催化剂有限责任公司[/td][td]300[/td][/tr][tr][td]无锡威孚力达[/td][td]60(剂)+20(封装)[/td][/tr][tr][td]天津化工研究设计院[/td][td]50[/td][/tr][tr][td]天津卡达克[/td][td]50(封装)[/td][/tr][tr][td]其他[/td][td]30[/td][/tr][tr][td]合计:[/td][td]500[/td][/tr][/table][img=,499,267]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD7D.tmp.jpg[/img][img=,480,361]file:///C:\Users\dell\AppData\Local\Temp\ksohtml\wpsAD8E.tmp.jpg[/img]三元催化剂的制备过程,提高催化效率,关键在于选用合适的催化剂。催化剂要求粒径小,大比表面积,同时要求高分散性,要求分散吸附性能强。市场上主流的效果最好的纳米氧化铈生产厂家有:杭州九朋新材料有限责任公司,其生产的纳米氧化铈比表高达200-300平,且分散性好,价格合理,同时还生产纳米氧化铝,纳米氧化铝溶胶,铂铑钯催化剂。另一家是山东加华,外资企业,主要生产氧化铈,出口为主,价格较高。要更换新的三元催化如何选择呢? 1、原厂件:4s如果你依然信任他,而且你也能够承担高出好几倍的价格,那么可以选择,关键是三元催化原厂件厂家一般都没有质保,原因很简单,因为新车的时候都很难质保。 2、品牌件:这个选择的难度就比较大了,因为今天中国的三元催化市场太吓人,从100元的三元催化到1万元的都有,一家三口人都可以在家里生产三元催化,这个市场是乱的把外星人都吓跑了,这么一个高科技含量的配件今天在中国变成家庭作坊都可以生产,这也难怪为什么主机厂基本在中国放弃了在用车市场,因为实在无法竞争。那我们消费者选择起来可就更难了,外行根本看不懂啊。其实方法还是有的。再乱的市场也有正规做事情的企业。

  • 分子筛填料和催化剂

    常见分子筛3A分子筛4A分子筛5A分子筛10X分子筛13X分子筛13XAPG分子筛富氧分子筛XH系列制冷剂专用分子筛中空玻璃专用分子筛 分子筛催化剂SAPO-11: 芳烃和异构化芳烃的烷基化,二甲苯异构化,石油炼油,石油化工。ZSM-5: 甲醇转化,低碳烷烃脱氢。高硅ZSM-5为疏水性的。磷酸铝分子筛:电中性,气体干燥,裂解反应,脱氢反应,水合反应,酯化反应。TS:氧化还原性能,弱Lewis酸性,环烯烃、环烷烃以及不饱和醇的催化氧化。MCM:苯和丙烯烷基化,甲烷无氧芳构化,催化裂化,烯烃芳构化,甲苯歧化。SBA:催化氧化,催化加氢、聚合、缩合反应,烷基化反应,异构化反应,催化裂化,光催化,热分解。不知道有老师用过没有,能不能提供下供货信息啊

  • 含硅催化剂溶解

    我想测一催化剂中硅,铝,钴的含量,催化剂载体为氧化铝和氧化硅复合物,浸渍负载钴,请问大家怎么溶解样品效果好?

  • 蛋白测定的催化剂

    请问大家做蛋白时用什么做催化剂硒片还是用硫酸铜硫酸钾,还有用其他的吗用不同的催化剂消化时间和结果有差异吗还有硒片在哪买的到啊

  • 催化剂手册

    催化剂手册 按元素分类[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15009]催化剂手册 按元素分类[/url]

  • 【求助】求助:催化剂的前处理方法

    求助各位有经验的老师:现有样品催化剂,用ICP测贵金属含量。催化剂基体:三氧化二铝和二氧化硅 2:5组成前处理一直做不好,都有不溶物,碱融法也试过,还是有大量沉淀。各位是否有好的办法? 先谢谢了!

  • 催化剂的结构与分子设计

    催化剂的结构与分子设计[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15008]催化剂的结构与分子设计[/url]

  • 【原创大赛】(官人按)电感耦合等离子体原子发射光谱法测定石油化工废催化剂中铂的含量

    【原创大赛】(官人按)电感耦合等离子体原子发射光谱法测定石油化工废催化剂中铂的含量

    [align=center][b]电感耦合等离子体原子发射光谱法测定石油化工废催化剂中铂的含量[/b] [/align][align=center]郁丰善[/align][align=center](江西省汉氏贵金属有限公司,江西省万年县335500)[/align][b]摘要:[/b]本文研究了石油化工铝硅载体废催化剂中铂含量的电感耦合等离子体原子发射光谱测定方法。样品以硫酸溶解石油化工铝硅载体废催化剂,用氯气氧化络合铂进入溶液,在2%(v/v)硫酸条件下,用标准曲线法对废催化剂中的Pt进行测定,可精确测定0.100~0.800%含量的铂,常见的杂质元素不干扰测定。结果表明:以低浓度硫酸为介质,用标准曲线法进行样品分析,方法的检出限为0.010μg/mL,样品的加标回收率为97.2—101.8%。通过试验结果可知该方法准确性好、精密度高,方法准确快速,操作简单。[b]关键词:[/b]石油化工铝硅载体废催化剂;铂;ICP-AES;标准曲线法。[align=center][b]Determination ofplatinum in waste catalyst of petrochemical industry by inductively coupledplasma atomic emission spectrometry[/b][/align][align=center](Yu Fengshan)[/align][align=center](JiangxiProvince Han's Precious Metals Co.,Ltd. Jiangxi Province 335500)[/align][b]Abstract: [/b]Themethod od inductively coupled plasma atomic emission spectrometry for thedetermination of platinum content in waste catalyst of aluminium siliconsupports in petrochemical industry was studied. Samples with sulfuric aciddissolved petroleum chemical waste aluminum silicon carrier catalyst into thesolution by chlorine oxidation and complexation of platinum,in 2% (v/v)under theconditions of sulfuric acid,waste catalyst in Pt was determined by standardcurve method, accurate determination of 0.100~0.800%content of platinum, common impurity elements do not interfere with thedetermination. The results showed that the low concentration of sulfuric acidas meduim, method of sample analysisi using standard curve method, thedetection limit was 0.01g/mL, the recoveries ranged from 97.2% to 101.8%. Thetest result shows that this method has the advantages of high accuracy, highprecision, accuracy, speed and simple operation.[b]Keywords: [/b]Petrochemicalaluminum-silicon carrier waste catalyst platinum atandard curvemethod ICP-AES.[b]1 前言[/b] 石油化工含铂催化剂即石油化工行业生产过程中广泛使用的含铂催化触媒,主要应用于连续重整,半再生重整,芳烃异构化,加氢催化等有机溶剂的工业生产过程。其载体为纯氧化铝,部分加入氧化硅,活性物质为铂,含贵金属铂0.100~0.800%。使用一定时间后铂的催化活性减弱以致失效,但成分状态不变,价值犹存。 随着国民经济的飞速发展,石油化工行业对含铂催化剂的用量越来越大。据统计,石化行业成千上万种产品中,85%以上的产品生产过程依靠催化反应,而使用的催化剂中又有约50%以上与铂族金属有关。我国贵金属资源贫乏,主要依赖国际市场,对含贵金属二次资源的回收利用是我国资源再生的大事,铂族金属二次资源的综合利用越来越受到重视。 微量铂的测定方法很多,有氯化亚锡分光光度法、DDO分光光度法、催化动力学法、电位滴定法、[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法和电感耦合等离子发射光谱法等,电感耦合等离子发射光谱法是一种简单、准确、快速的方法。对于氧化铝中Pt的测定则需考虑基体及无机酸存在对测定的影响。本文研究了含铂废催化剂中Pt的ICP-AES测定方法,进行了仪器参数的选择,样品的分解、无机酸的影响、基体及杂质元素的影响、样品的加标回收和样品分析的误差统计。结果表明:以低浓度硫酸为介质,用标准曲线法进行样品分析,方法的检出限为0.010μg/mL,样品的加标回收率为97.2—101.8%。[b]2 试剂和材料2.1 试剂[/b]除非另有说明,在分析中仅使用确认为分析纯的试剂和二级水。2.1.1 氢氧化钠2.1.2 盐酸(ρ1.19g/mL)2.1.3 硝酸(ρ1.42 g/mL)2.1.4 硫酸(1+1)2.1.5 盐酸(1+1)2.1.6 铂标准溶液: 称取1.0000克海绵铂(纯度99.99%以上)于250mL烧杯中,加入20mL盐酸(2.1.2)和10mL硝酸(2.1.3),盖上表面皿低温加热至溶解完全并蒸至近干。以10mL盐酸(2.1.2)蒸发近干,驱赶硝酸,重复此操作三次,加40mL盐酸(2.1.5)低温溶解盐类,取下烧杯冷至室温,以水稀释至刻度,混匀。此标准溶液1mL含1.0mg铂。2.1.7 干扰元素标准溶液(100mg/L ICP专用国家标准溶液,北京有色金属研究总院)2.1.8 氩气(w≥99.99%)2.1.9 氯气(w≥99.9%)[b]2.2 仪器[/b] Optima 8000型电感耦合等离子体原子发射光谱仪2.2.1 光源:氩气等离子体光源,发生器最大输出功率不小于1.3KW。2.2.2 分辨率:200nm左右时的光学分辨率优于0.010nm;400nm左右时的光学分辨率优于0.020nm。2.2.3 仪器精密度及稳定性:精密度(RSD)≤0.5%;仪器4h内稳定性(RSD)≤2.0%。[b]3 分析步骤3.1 样品预处理[/b] 取100±20克样品转入瓷蒸发皿中,将瓷蒸发皿置于高温炉中,升温至600℃恒温煅烧3h(其间取出搅动一次使其煅烧充分),取出于干燥器中冷至室温,将煅烧冷却的催化剂于固体密封制样机中研磨至粒度小于0.149mm (全部通过100目标准筛),缩分成不少于30g的化学分析样,于105℃烘箱中保温干燥2小时,干燥冷却至室温后密封保存于干燥器中备用。[b]3.2 试验步骤[/b]3.2.1 称取2g试料(精确至0.0001g)置于250mL烧杯中,加入40mL硫酸(2.1.4),盖上表面皿,于电炉或电热板上加热使试料溶解完全。3.2.2 取下冷至室温,加水至约100mL,将溶液加热至近沸,保温通入氯气(2.1.8)0.5小时,加热浓缩至约40mL,取下冷却后过滤转入200mL容量瓶中。3.2.3 若试样未能完全溶解则过滤后,不溶试料连同滤纸置镍坩埚中于电炉灰化,转入高温炉中在550℃条件下保温1小时,取出冷至室温,向灰化后的坩埚中加入6g氢氧化钠(2.1.1)于800℃马弗炉中保温碱解45分钟,取出坩埚冷至室温,于烧杯中用50mL水溶出后加入40mL盐酸(2.1.5)酸化,加水至约150mL,升温至近沸,保温通入氯气(3.8)0.5小时,加热浓缩至约80mL,合并入原溶液。3.2.4 以水稀释至约170mL,冷至室温后以水稀释至刻度,混匀。3.2.5 移取10mL上述溶液于50mL容量瓶中,以水稀释至刻度,混匀。3.2.6 将制备的试料溶液于电感耦合等离子体原子发射光谱仪进行测定。铂的分析线为265.945nm。[b]4 结果与讨论4.1 测量参数的优化[/b]使用仪器标准调试溶液,经实际调试确定最佳工作参数如表1所示:[align=center]表1仪器工作参数[/align][table][tr][td] [align=center]观察[/align] [align=center]方式[/align] [/td][td] [align=center]高频发生器[/align] [align=center]功率(W)[/align] [/td][td] [align=center]载气流速[/align] [align=center](L/min)[/align] [/td][td] [align=center]雾化气流速[/align] [align=center](L/min)[/align] [/td][td] [align=center]辅助气流速[/align] [align=center](L/min)[/align] [/td][td] [align=center]进样泵流速[/align] [align=center](mL/min)[/align] [/td][/tr][tr][td]轴向[/td][td]1300[/td][td]1.50[/td][td]0.80[/td][td]0.20[/td][td]1.50[/td][/tr][/table]4.2 铝质量浓度对Pt测定的影响 配制Pt质量浓度为5mg/L的2% (v/v)盐酸溶液,Al质量浓度不同的系列标准溶液, 用ICP-AES 法测定, 测定结果见图1。[img=,610,237]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051530_01_2984502_3.jpg[/img] 由图1可见, 随着Al质量浓度的增加, Pt 在203.646nm及204.937nm、214.423nm波长处的测定强度显著降低, 基体Al对Pt 的测定存在明显的负干扰;在265.945nm和299.797nm波长处没有铝的干扰峰出现,0.50mg/mL的Al不干扰Pt的测定。[b]4.3 硫酸对Pt测定的影响[/b] 一定浓度铂离子(5 μg/mL)和酸度(2%v/v盐酸)条件下,考察了0-5%v/v硫酸体积对铂测定的影响,用ICP-AES 法测定, 测定结果见图2。[img=,547,294]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051530_02_2984502_3.jpg[/img] 由图2 可见, 在选定的265.945nm和299.797nm波长处对铂进行检测,发现2%体积浓度的硫酸未对Pt产生显著影响。故可选择2%v/v硫酸为溶解样品和减少无机酸物理干扰的条件。[b]4.4 钠离子浓度对Pt测定的影响[/b]一定浓度铂离子(5 μg/mL)和酸度(2%v/v盐酸)条件下,考察了0-2500μg/mL钠离子浓度对铂测定的影响,用ICP-AES 法测定, 测定结果见图3。[img=,526,295]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051531_01_2984502_3.jpg[/img]由图3 可见, 在选定的265.945nm和299.797nm波长处检测溶液中,2500μg/mL钠离子浓度未对Pt得测定产生显著影响。[b]4.5 钾浓度对Pt测定的影响[/b]一定浓度铂离子(5 μg/mL)和酸度(2%v/v盐酸)条件下,考察了0-2500μg/mL钾离子浓度对铂测定的影响,用ICP-AES 法测定, 测定结果见图4。[img=,585,309]http://ng1.17img.cn/bbsfiles/images/2017/09/201709051531_02_2984502_3.jpg[/img] 由图4 可见, 在选定的265.945nm和299.797nm波长处测定铂的原子发射强度,随着钾离子质量浓度的增加,Pt 在265.945nm和299.797nm波长处的测定强度几乎不变, 故2500μg/mL浓度的钾离子浓度未对铂的测定产生影响。[b]4.6 分析波长的选择[/b] 由于在265.945nm和299.797nm两个波长处均未发现载体和考察离子的影响,265.945nm波长处出现的铝的发射峰与铂峰完全分离未形成干扰,且此波长的灵敏度比299.797nm波长处高,故选择265.945nm为最佳检测波长。[b]5检出限实验[/b] 根据已选择的优化条件,配制铂浓度为0.00﹑4.00﹑8.00﹑12.00﹑16.00﹑20.00mg/L匹配2%v/v硫酸的标准系列溶液,测量工作曲线后将空白溶液作为样品,测量11次,统计其标准偏差为0.0033μg/mL, 样品检出限为0.010 μg/mL。[b]6共存离子的影响[/b] 由含铂催化剂的种类可知,其原始载体为氧化铝(部分含少量氧化硅),除去活性物质铂以外另有Cl[sup]-[/sup]、SO[sub]4[/sub][sup]2-[/sup]、HF、Fe、Ti、Ir、Sn、Re、Ni等微量成分,在使用失效后将夹带大量有机物(主要为碳氢氧硫)以及微量环境污染元素Fe、Ca、Mg、Na、K等微量成分,在高温煅烧和化学分解处理后主要考察催化剂载体杂质的影响。 当Pt浓度为10μg/mL,相对误差在±3.0%以内时,测得共存元素的允许量(μg/mL):As、Pb、Pd、Sn、Sb、Se、Ti、Re、Bi、Fe、Ir、Mo (50,未做上限);Cu、Si、Ni、Mo、Ca、W、Co(100,未做上限),均不影响其测定。[b]7试样的加标回收试验[/b]取3 个样品按(2.3,2.4) 处理后分别进行加标回收试验,结果列于表2 。[align=center]表2加标回收试验[/align] [table][tr][td] [align=center]样品号[/align] [/td][td] [align=center]加入的Pt 质量浓度[/align] [align=center](μg/mL)[/align] [/td][td] [align=center]测得的Pt 质量浓度[/align] [align=center](μg/mL)[/align] [/td][td] [align=center]Pt的回收率[/align] [align=center](%)[/align] [/td][/tr][tr][td=1,3] [align=center]1#[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]10.68[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]5.00[/align] [/td][td] [align=center]15.75[/align] [/td][td] [align=center]101.4[/align] [/td][/tr][tr][td] [align=center]10.00[/align] [/td][td] [align=center]20.49[/align] [/td][td] [align=center]98.1[/align] [/td][/tr][tr][td=1,3] [align=center]2#[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]28.54[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]5.00[/align] [/td][td] [align=center]33.43[/align] [/td][td] [align=center]97.8[/align] [/td][/tr][tr][td] [align=center]10.00[/align] [/td][td] [align=center]38.49[/align] [/td][td] [align=center]99.5[/align] [/td][/tr][tr][td=1,3] [align=center]3#[/align] [/td][td] [align=center]0[/align] [/td][td] [align=center]37.08[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]5.00[/align] [/td][td] [align=center]42.17[/align] [/td][td] [align=center]101.8[/align] [/td][/tr][tr][td] [align=center]10.00[/align] [/td][td] [align=center]46.80[/align] [/td][td] [align=center]97.2[/align] [/td][/tr][/table]由表2可知,Pt的加标回收率在97.2-101.8%,表明该方法达到分析精度要求。[b]8试样分析[/b]按(3)进行样品处理后,用ICP-AES 仪进行多次测定,结果列于表3 。[align=center]表3 试样分析及误差统计结果[/align] [table][tr][td] [align=center]样品号[/align] [/td][td] [align=center]Pt 的质量分数测定值(%)[/align] [/td][td] [align=center]平均值(%)[/align] [/td][td] [align=center]相对标准偏差 (%)[/align] [/td][td] [align=center]光度法[sup][/sup]测定含量 (%)[/align] [/td][/tr][tr][td] [align=center]1#[/align] [/td][td]0.111,0.108,0.107,0.108,0.111,0.106,0.107,0.110,0.109,0.108,0.107,[/td][td] [align=center]0.108[/align] [/td][td] [align=center]1.56[/align] [/td][td] [align=center]0.107[/align] [/td][/tr][tr][td] [align=center]2#[/align] [/td][td]0.271,0.262,0.273,0.265,0.274,0.270,0.269,0.272,0.273,0.266,0.273[/td][td] [align=center]0.270[/align] [/td][td] [align=center]1.45[/align] [/td][td] [align=center]0.275[/align] [/td][/tr][tr][td] [align=center]3#[/align] [/td][td]0.399,0.397,0.392,0.391,0.385,0.391,0.393,0.393,0.398,0.392,0.387[/td][td] [align=center]0.394[/align] [/td][td] [align=center]1.09[/align] [/td][td] [align=center]0.389[/align] [/td][/tr][/table]由表3可见, ICP-AES 法与比色法测定结果吻合[b]9结论[/b] 用该分析方法测定废催化剂中铂含量与实际回收的金属量吻合,方法适用、分析速度快,适用于石油化工铝硅载体废催化剂样品分析。

  • 如何配制催化剂使用液

    我的化学需氧量测定仪说明书上说:自随机附带专用催化剂中准确移取25ml置于250ml容量瓶中,用浓硫酸定容至标线,摇匀备用。如果按照说明书这样说,250ml的催化剂使用液,其中有225ml是浓硫酸,我这样理解对吗?

  • 【转帖】邓景发:生活需要催化剂

    邓景发:生活需要催化剂邓景发物理化学家。1955年上海复旦大学化学系毕业。现为复旦大学化学系教授、博士生导师。中国科学院院士(化学部)。首先在国内研制成电解银催化剂用于甲醇制甲醛的工业生产。自行设计、组装了多种近代能谱仪,在国内较早建成了一个从分子水平研究表面吸附和催化过程的表面催化实验室,系统开展了银系列催化剂的基础理论研究。研究出环戊烯一步催化合成戊二醛,突破了国外专利必须用无水体系的限制,为碳五馏分的利用开拓了新的领域,已获国家专利。 不是一家人 院士邓景发是研究催化剂的,那些催化剂通常作用于各种化学反应之间。而在生活中,他自己则成了一道笑声“催化剂”,作用在周围的人群之间。在他的身边,聚集了一群有追求并快乐的人们。他的家庭就是这样一个奇特的组合。 邓景发的老伴九年前过世了,女儿已出嫁,我想象一个人的家也许会冷清而寂寞。然而当我刚踏进邓景发家门的时候,我便听见了屋里不时传出的小男孩欢快的叫声和七嘴八舌的说话声。邓景发说,这是女儿、外孙及他学生胡建国一家在玩。 这是个欢乐的大家庭,共六口人,虽然没有血缘关系,但他们一起共同生活了11年。 11年前,老家在绍兴农村、单身住在学校宿舍的胡建国之子患了肾病,到上海治疗,生活极为困难。邓景发闻讯后对他说,你和我们一起住吧,这样你可以省点开支,而且还可以给孩子烧点好吃的。这一住就是11年,期间胡建国的妻子常往返老家和上海之间照顾孩子,每次都住在邓家。 邓景发的房子变动过几次,每次邓景发都对建国说,我家房子大,人又少,大家就住在一起吧。分两处住,大家都一样要开伙,还不如合在一块吃,省事省力。 推开书房门,迎面是两张面对面的书桌。邓景发指着那张略小的书桌说,这是孩子(学生之女)用的,暑假她住在这里和我合用一个书房,我们是面对面办公。说着,邓景发又转身指着书架说,这些书是孩子们看的,虽然我很喜欢看小说,但现在实在太忙,没办法一口气看完一本长篇小说了,一些短篇的看看还行。以前我读书的时候,还曾是复旦大学话剧团团长呢。我喜欢表演话剧,比如《雷雨》什么的。 胡建国的女儿剪着一个男孩头,在一边腼腆地笑着,穿着“华东理工大学”的T恤衫。邓景发慈爱地拍拍她的脑袋说,明天你要回校住了,我要少一个伴了。我爱实验室 邓景发的家里有一间“绿色会客厅”,窗台上十几盆绿色植物排成了一道绿墙,一边靠墙放着一大缸热带鱼,几十条大小不一、色彩斑斓的热带鱼在水中彩灯的照耀下欢快地游着。邓景发说,这些花花草草都是女儿和胡建国的儿子胡学迅专为他种养的,让他累了的时候看看它们休息放松。“眼睛不停地跟着鱼转,可以防止老年痴呆症。”邓景发很开心地笑,对女儿和学生的孝心,全盘接收。 随和的老邓不是一个传统封建的家长,他把家交给了女儿打理,从摆设到布置,他都听女儿的,因为对于他来说,时间呆得最长的那个家是在复旦大学的化学楼里。那里有他花费了多年心血建立起的表面化学和催化实验室。暑假里,邓景发每天都去实验室工地转,现场指挥装修工人,大到实验室内部的整体安排、实验仪器的摆放,小到每张实验桌的式样。凡是与实验室有关的一切,他都事无巨细地过问。而三年前,家里装修时,每个房间的家具样式、布置都是女儿说了算的。 站在初具规模、宽敞明亮的新实验室里,邓景发自豪地说:“我们这个实验室投资了近千万元,可以说比国外一些实验室毫不逊色。”现在每个实验室均由4名学生共用,每人都有单独的实验桌。同时实验室还配备了几台目前世界上最先进的表面分析仪。这些仪器的大部分零件是由实验室自行设计后委托国内相关厂家加工制造的。邓景发为了这个面貌焕然一新的实验室,累得躺倒了。 催化的路还很长邓景发说起自己从事催化剂领域的研究,还有一个小故事。70年代,他带着学生在工厂边劳动边进行教学时,工人对他说,我们现在生产甲醛用的浮石银催化剂不仅甲醛的产率不高,而且在用硝酸处理浮石时易被灼伤,而国外是用电解银催化剂生产甲醛的,你能替我们研究电解银吗? 邓景发看到了实际工作对催化剂的需求,开始了催化化学的研究。通过廿余年的努力,邓景发领导的小组在国内最早研制成电解银催化剂,并用于甲醇制甲醛、乙醇制乙醛、丁醇制丁醛、乙二醇制乙二醛等工业生产,达到国际先进水平,其中仅甲醇制甲醛一项,年赢利就达数千万元,用电解银催化剂生产乙二醛,具有自主知识产权,是首创性的工作。 最近,邓景发的研究室与上海焦化公司成立了催化研究中心,专门研究处理炼焦过程产生的煤气。因为到2004年时,因“西气东输”工程的完工,上海将全面使用天然气,原来炼焦产生的煤气和氢气将不再需要而成为“废物”。这个研究中心的工作就是希望能将这些“废物”用作原料,制成国家急需的产品。

  • 【讨论】催化剂的选用

    我现在正做一个实验,就是用硫化钠和硫磺、氯代环己烷反应生成二硫化物。这个反应很慢,需要十多个小时。大家讨论下,看用什么催化剂好

  • 【转帖】相转移催化剂效率大小规律

    相转移催化剂效率大小规律1 较大的季铵离子比较小的季铵离子有效。2 催化剂的效率随季铵离子中最长链的长度增加而增强。3 比较对称的离子比只含一个长链的离子有效。要使催化剂溶于有机介质中并发挥作用,对季铵离子烃基的碳原子数有一个最低要求。较好的催化剂应具备最基本的亲脂性,而且在代正电的季杂原子周围具有较大的基团。四丁基铵的催化作用比十六烷基三甲铵强得多,虽然后者的碳原子总数比前者多三个。当季原子所受的位阻比其电荷所遭的掩盖少时,相关联的阴离子或许与季阳离子形成比较紧密的离子对。4 季膦离子比相应的季铵离子催化剂更有效,热力学上也更稳定。5 较有效的催化剂是被烷基取代而不是被芳基取代的季离子。

  • 【求助】到底是均相还是非均相催化剂?

    如果一个催化剂溶于反应体系并成一相,就叫均相催化剂,若不溶成不了一相,就叫非均相催化剂,那么,如果催化剂微溶呢?叫均相还是非均相呢?有没有界限?比如溶解多少?谢谢!

  • [资料] 离子选择电极法测定催化剂中氟

    离子选择电极法测定催化剂中氟[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=21541]离子选择电极法测定催化剂中氟[/url]  在催化剂的研制过程中,氟元素的加入可以增强载体或催化剂的表面酸性,防止Ni2Al 、Al2W、Al2Mo 等尖晶石的形成,延长催化剂的使用寿命[1 ] 。研究表明[2 ] ,载氟量对催化剂晶体结构、活性、选择性都有很大的影响。对于催化剂中氟含量测定,光度法[3 ]需要用浓高氯酸蒸馏以绘制标准曲线 间接络合滴定法[4 ] 对酸度、共存元素要求严格,且操作繁琐。离子选择电极法具有测量准确、重复性好、分析速度快、操作简便等优点,是分析催化剂中氟含量的极为有效的手段。[em17]

  • 【求助】催化剂的检测项目

    最近公司新上一项目,需要检测催化剂方面的东西,但是还不知道要检测什么。领导只是说按照催化裂化装置的检验项目进行检测就行。那请问一下大家,都需要检测什么项目,需要什么仪器啊。

  • 甲烷化催化剂的样品前处理!(急)

    请教各位:甲烷化催化剂化学成分分析(HG2511-2005),步骤为:甲烷化催化剂0.5g,加10ml(1+1)硫酸,2ml盐酸羟胺,加热至样品完全溶解,问题:(1)怎么样为完全溶解啊?而且,溶样的程度直接影响了后面化学成分的结果,比如,镍的含量测定就相差比较大,当样品溶解至冒白烟和冒大量白烟,这俩种情况结果就相差比较大,请问,怎样才算是溶解完全啊?(2)此标准中氧化镁的测定一种方法是用原子吸收分光光度法,方法是用氯化锶掩蔽铝,在标准溶液中加入氯化锶,硫酸溶液,实际上的现象是形成了沉淀(估计是硫酸锶),请问,这种催化剂中氧化镁的测定还有其他的比较好的方法吗?(3)此标准中稀土氧化物的测定,在测定时,终点颜色变化是由暗绿色变成紫红色,实际操作中,颜色就是紫色,根本不是暗绿色,颜色突变非常不明显,无法准确判断终点!希望有分析过此类催化剂的同行们介绍点经验!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制