当前位置: 仪器信息网 > 行业主题 > >

导电聚合物和单体

仪器信息网导电聚合物和单体专题为您提供2024年最新导电聚合物和单体价格报价、厂家品牌的相关信息, 包括导电聚合物和单体参数、型号等,不管是国产,还是进口品牌的导电聚合物和单体您都可以在这里找到。 除此之外,仪器信息网还免费为您整合导电聚合物和单体相关的耗材配件、试剂标物,还有导电聚合物和单体相关的最新资讯、资料,以及导电聚合物和单体相关的解决方案。

导电聚合物和单体相关的论坛

  • 聚合物中单体含量检测

    REACH法规中有针对聚合物单体注册的相关内容。请问聚合物中单体含量怎么检测?包括已反应单体和残留单体。我要检测的聚合物包含好几种聚合物成分,假设没有残余单体,是不是每种聚合物的成分含量就是构成该聚合物的单体单元含量?举例ABS树脂,其中A,B,S各个组分的单体含量如何检测?

  • 辨别单体和聚合物

    请问,核磁共振氢谱仪能不能辨别出单体和聚合物?或者说有什么仪器可以辨别?

  • 【求助】测定高分子聚合物中单体的样品前处理

    我要分析丁基橡胶(由大量异丁烯和少量异戊二烯在一氯甲烷系统中合成的一种高分子聚合物)中残留的单体的含量,由于异丁烯和一氯甲烷在常温常压下是气态、异戊二烯沸点34.7度,所以含量应该很小,我该如何处理样品才能用气相测定单体的含量

  • 【转帖】欧盟颁布聚合物及单体注册、评估及许可指引

    来源:中国纺织品进出口商会 2007-11-22   近日,欧洲化学品管理局颁布指引文件,阐释含单体或聚合物的化学物质的注册、评估及许可的规定。规定各项内容如下:  定义:根据《化学品注册、评估及许可规例》(简称REACH),单体是“一种可与一连串同类或相异分子组成共价键的物质”,大多应用于聚合作用。  聚合物是由一连串一种或多种单体单元组成的物质,用途广泛,可应用于电气及电子设备、包装、建筑、运输、农业、医疗及运动等领域。  注册:聚合物(不论是独自存在或含于物品中)豁免注册。不过,REACH规定,欧盟的单体生产商和进口商须为其单体产品向欧洲化学品管理局注册。再者,假若供应链的参与者并未就聚合物所含的单体或任何其他物质注册,在符合以下两项条件下,聚合物生产商或进口商须就该等物质向欧洲化学品管理局注册:  (1)按重量计,聚合物中的单体物质或其他以单体单元形式存在的物质含量为2%或以上;  (2)该等单体物质或其他物质的总产量或进口量为每年1吨以上。  豁免:欧盟境外的聚合物生产商毋须承担任何注册责任,但须依赖欧盟进口商或于欧盟境内委托一名“全权代表”履行注册责任。此外,指引文件亦列明多个豁免单体和聚合物注册的情况。  第一:指引文件规定,从废料中回收聚合物的企业,假若所回收的聚合物所含的物质已经注册,有关企业获豁免注册。  第二:热稳定剂、光稳定剂或抗氧化剂等添加剂常常加入聚合物中,以调整或改善其外观或物理化学特性。假若该等添加剂是维持聚合物稳定性所必需的,则毋须注册。  第三:指引文件向两类生产商和进口商提供多项特殊豁免。一类是天然聚合物的生产商或进口商;另一类是已按照有关危险物质分类、包装及标签的欧盟理事会第67/548/EEC号指令,就其聚合物或单体向当局作出申报的生产商或进口商。  许可:根据REACH,聚合物可能须申请许可,有关程序将另行颁布指引文件阐释。  分类、标签及申报:根据REACH,单体和聚合物均受一般物质分类及标签规例约束。假若某聚合物被列为欧盟理事会第67/548/EEC号指令下的危险物质,目前正于欧盟市场销售,该聚合物生产商或进口商须于2010年11月30日或以前向欧洲化学品管理局作出申报;由2010年12月1日起,假若被列为危险物质的聚合物在市场销售,有关生产商或进口商须即时向欧洲化学品管理局申报。  此外,假若聚合物被列为危险物质、可于生物体内累积的持久性有毒物质、持久性高和于生物体内累积性强的物质,或受制于许可规定或受到限制,其生产商或进口商必须向客户提供聚合物的安全数据表。

  • 是否可用顶空气相色谱仪测含氟聚合物乳液残余单体含量

    各位大侠,我有个很棘手的问题想请教:我们正在做一种含氟聚合物,包括几种气相单体和一种种液相单体的乳液聚合,现在我们想测试聚合前后气相和液相空间的单体组成,以及聚合物乳液中溶剂的残余量。其中,液相单体沸点35℃,溶剂沸点47℃左右,顶空气相色谱法是否能适用呢?我现在正在寻找合适的色谱柱,打算如果能找到合适的色谱柱就买一台顶空气相色谱,请各位指导指导我,因为我不是专业做分析的,真的不是特别懂补充:我们要求的检出限为0.01%,即100ppm

  • 聚合物用儀器定性?

    各位朋友,下午好,有两个关于关聚合物测试问题想请教:1. 是否有相关化学仪器可以给聚合物定性?比如供应商给我一包PC料,用什么仪器可以测试出此物料就是PC料呢?2. PC料是由单体双酚A(bisphenol A)和单体光气(碳酰氯)聚合而成,是否可以測試出此PC料中是否還有未反應的殘留單體?用什麼儀器測呢?謝謝!

  • 聚合物刷及其接枝方法

    [align=center][font='times new roman'][size=16px]聚合物刷[/size][/font][font='times new roman'][size=16px]及其[/size][/font][font='times new roman'][size=16px]接枝方法[/size][/font][/align] 聚合物刷是由聚合物链组成的超薄聚合物涂层,其一端拴在材料基底上,具有较高的接枝密度和厚度,呈现刷型构象。聚合物刷修饰改性是当前最有效的材料改性技术之一。其优势在于既可以保留材料的原有理化性质,同时由于聚合物刷自身可控的化学结构、密度和厚度,又可以赋予材料其它优异的性能,比如摩擦力、粘附力、生物相容性、润湿性和亲疏水性等。根据聚合物刷链所连接的基底类型,聚合物刷可形成一维(1D)、二维(2D)和三维(3D)聚合物刷(图1)。目前,聚合物刷型材料已大量应用于组织工程、生物医学、分离科学等领域。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733098007_7856_5389809_3.jpeg[/img][/align][align=center][size=13px]图[/size][size=13px]1 [/size][size=13px]聚合物刷的类型[/size][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]1 Types[/size][size=13px] of polymer brushes[/size][/align][align=center] [/align][align=center][font='times new roman'][size=16px]聚合物刷的接枝方法[/size][/font][/align] 聚合物刷的接枝方法主要包括“Grafting to”、“Grafting through”和“Grafting from”法(图2)。 [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408191733099453_2127_5389809_3.png[/img][/align][align=center][size=13px]图[/size][size=13px]2[/size][size=13px] [/size][size=13px]聚合物刷的接枝策略[/size][size=13px]:[/size][size=13px]([/size][size=13px]A[/size][size=13px])[/size][size=13px]“grafting-to”[/size][size=13px] [/size][size=13px]([/size][size=13px]B[/size][size=13px])[/size][size=13px]“grafting-from”[/size][size=13px] [/size][size=13px]([/size][size=13px]C[/size][size=13px])[/size][size=13px]“grafting-[/size][/align][align=center][size=13px]through”[/size][font='times new roman'][sup][size=13px][54][/size][/sup][/font][/align][align=center][size=13px]Fig.[/size][size=13px] [/size][size=13px]2[/size][size=13px] The grafting strategy of polymer brushes[/size][size=13px]:[/size][size=13px] [/size][size=13px](A) “grafting-to”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]B) “grafting-from”[/size][size=13px] [/size][size=13px] [/size][size=13px]([/size][size=13px]C) “grafting-through”[/size][/align]“Grafting to”是通过将已合成的聚合物与材料表面互补基团进行反应进而得到聚合物刷材料的接枝方法,这种方法的优点是可以在反应之前对所合成的聚合物进行全面精确的表征,可以制备具有明确分子量和分子量分布的聚合物,是制备聚合物刷的传统方法,但是该法的缺点是随着反应的进行,由于聚合物自身空间位阻的影响,会导致接枝率降低以及聚合物刷层的密度和厚度不均匀等问题。虽然通过加大聚合物的投料量可以提高接枝率,但是这也会导致反应后处理变得困难,因此“Grafting to”法应用相对较少。 “Grafting through”是基于材料表面附着的单体基团,与溶液中生成的聚合链进行共聚合的一种接枝方法,通常是溶液中的聚合物链先开始生长,然后在此过程中,表面附着单体基团也参与聚合,最终形成聚合物刷层。该方法的优点在于改变了聚合反应期间溶液中单体浓度总是大于材料表面附近单体浓度的问题,一定程度上解决了长链更长、短链更短的问题,从而可获得低分散性和高接枝密度的聚合物刷。其缺点在于该法的接枝机理尚未完全明确,有待进一步的研究。 “Grafting from”是将引发剂固定于材料表面,之后原位生成聚合物刷的方法,也叫做表面引发聚合法。该方法的优点在于可以很好地控制聚合物刷的密度、厚度和结构,缺点在于需要先将引发剂固定于材料表面以及表征存在一定的难度。“Grafting from”法克服了“Grafting to”和“Grafting through”法共同的空间位阻问题,因此当前材料表面接枝聚合物刷应用最为广泛的是“Grafting from”法。

  • 【原创大赛】pH 响应聚合物研究进展

    【原创大赛】pH 响应聚合物研究进展

    [font=宋体] pH [/font][font=宋体]响应聚合物研究进展[/font][font=宋体]1. pH [/font][font=宋体]响应聚合物概述[/font][font=宋体]一般而言,外界 pH 值的变化会导致生物大分子的水溶性或构象发生变化,因此具有类似结构的聚合物也能对环境的 pH 值变化做出相应的响应。该类聚合物具有 pH 响应的关键因素是一般主链上都含有大量对 pH 敏感的基团(弱电解质基团)如羧酸基、氨基、吡啶、咪唑基等。当外界环境的 pH 或离子浓度发生变化时,这些基团可以接受或释放质子来响应外界环境中 pH 的变化[76]。聚合物通过接受或给予质子导致其分子解离程度发生改变,造成聚合物分子的质子化或去质子化平衡发生移动,从而影响聚合物链的溶解性[77-78]。[/font][font=宋体]按照 pH 响应聚合物分子链中含有基团的性质 pH 响应聚合物可分为两大类:弱有机酸类和弱有机碱类[79]。弱有机酸类聚合物(如羧酸基)能在较低的 pH 值时接收质子呈正电性,而 pH 值较高时变成负电性,因为同种电荷间存在相互排斥作用使水与分子链之间的相互作用加强,进而提高了聚合物的亲水性,呈聚电解质状态,如聚甲基丙烯酸(PMAA)等[80-81];弱有机碱类聚合物则一般带有弱有机碱取代基,它能在低 pH 值件下得到质子变成亲水性基团,聚合物链之间因库仑排斥力而展开,而高 pH 条件下则是亲油性的,如聚甲基丙烯酸二甲氨基乙酯(PDMAEMA)、聚乙烯基吡啶等[82-84]。[/font][font=宋体]目前关于 pH 响应聚合物合成的研究不断被报道,其中大部分是利用含有乙烯基的单体为原料进行聚合。常见的聚合方法主要包括:自由基聚合、原子转移自由基聚合(ATRP)、基团转移聚合(GTP)、可逆加成-断裂链转移聚合(RAFT)等。自由基聚合是最常见的聚合方法,聚合产物通常为线性的高分子聚合物,相较于其它方法其合成条件相对简单,通常为一步反应,所得产物多为无规则共聚物。例如,Fan 等人[85]通过自由基聚合制备了一系列具有良好 pH 响应特性的聚合物,在低 pH 条件下,由于质子化叔胺单元的静电相互作用和亲水性,共聚物在水溶液中表现为溶解状态。而在高 pH 条件下,由于烷基上去质子化胺具有较强的疏水性,导致共聚物在水溶液中聚集沉淀。[/font][font=宋体]2 [/font][font=宋体]、pH 响应聚合物在分离富集领域的应用[/font][font=宋体]近年来,pH 响应聚合物在分离富集领域的应用潜力开始被众多研究者关注。基于pH 响应聚合物具有的溶解-沉淀 pH 响应特性,可以将目标物固定或吸附在 pH 响应聚合物上,通过调节环境的 pH 值使其形成共沉淀,实现对目标物的分离纯化。[/font][font=宋体]Bai [/font][font=宋体]等[86]开发了一种具有 pH 响应特性的聚合物,该聚合物是由 pH 反应型单体与糖基反应型单体共聚而成。所得的线性共聚物链与糖蛋白/糖肽样品在弱酸性 pH 条件下在水溶液中形成均相反应混合物,促进了聚合物基体与目标糖蛋白质/糖肽之间的偶联。只需降低体系 pH 值,即可使聚合物糖蛋白质/糖肽迅速自组装从溶液中析出大颗粒的团聚体,从而实现快速高效的样品回收。[/font][font=宋体]Ding[/font][font=宋体]等[87]以丙烯酸类化合物为功能单体通过自由基聚合制备了具有pH响应特性的聚合物,进一步将染料配基 Cibacron Blue 固定到聚合物上,利用 Cibacron Blue 和纤维素酶的亲和性使 pH 响应聚合物与纤维素酶共沉淀,实现了对纤维素酶的分离[/font]

  • 【资料】一种可用于农残检测和分离的新技术---分子印迹聚合物(MIP)

    前两天有人发了关于分子印迹的问题,因此想把有关分子印迹的知识和应用发一下,有兴趣的朋友可以学习交流一下。同时把word版本作为附件上传。------------------绪论1.引言分子印迹也叫分子模板技术,是一种模拟抗体—抗原相互作用的人工生物模板技术。最初出现源于20世纪40年代的免疫学,当时的诺贝尔奖获得者Pauling[7]在研究抗原和抗体的相互作用时,首次提出了抗体形成学说,要点是抗体在形成时其三维结构会尽可能地同抗原体形成多重作用点,抗原作为一种模板就会“铸造”在抗体地结合部位。虽然这一设想并不可行,却是对分子印迹最初的描述,为分子印迹理论的产生奠定了基础。到20世纪70年代,Wulff[8]等人利用新的方法合出了几种高分子,对糖类和氨基酸衍生物具有较高的选择性,被用作高效液相色谱(HPLC)的固相填充物[10],这种新的方法,被称为分子印迹。但由于他的研究主要集中在共价型模板聚合物上,动力学过程较慢,其应用仅限于催化领域,而在分子识别领域的应用没有展开。80年代后非共价型模板聚合物的出现,尤其是1993年Mosbach[2]等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到世界注目并迅速发展。欧洲委员会并于1998年启动了一项科研发展计划,资助分子印迹聚合物(MIPs)的制备、结构表征以及将MIPs用于临床分析、环境分析和生物分析等方面的研究。目前,全世界至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的10多个国家、100个以上的学术机构和企事业团体在从事MIPs的研究和开发[1]。短短的二十多年,分子印迹由于其卓越的分子识别性能已经得到了广泛的发展,成为化学工作者的热门研究课题。分子印迹(MIPs)之所以发展如此迅速,主要是因为它有三大优点:即预定性(predetermination)、识别性(recognition)和实用性(practicability)[1]。由于MIPs具有抗恶劣环境的能力,表现出高度的选择性、稳定性和长的使用寿命等优点,因此,在许多领域,如色谱中对映体和异构体的分离、固相萃取、化学仿生传感器、模拟酶催化、临床药物分析、膜分离技术等领域展现了良好的应用前景。2.分子印迹聚合物的原理和作用方式MIPs是以某种化合物的分子结构为模板合成的聚合物。在印迹分子存在的条件下,将带有特殊官能团的单体与大量的基质单体在适当的介质中进行模板聚合反应,两者之间发生相互作用,如共价和分子间作用力。由于印迹分子的存在,因此在聚合过程中,单体分子本身所带的官能团会根据与印迹分子相互作用的需要, 在分子印迹分子周围按一定的取向和排列形成分子聚合物,形成特定的空间构象,得到高度交联的聚合物。聚合结束后通过洗脱等方法除去聚合物上结合的印迹分子,聚合物主体上就形成了与印迹分子空间结构匹配的具有多重作用位点的“空穴”结构。这种具有“记忆”效应的印迹聚合物对印迹分子及其它与印迹分子结构相似的客体分子具有较高的特异性结合能力,类似于酶-底物的“钥匙-锁”相互作用,依赖于印迹聚合物和客体分子大小及形状的匹配。如图1所示:根据模板分子和功能单体形成复合物时作用力的性质,分子印迹可分为共价型和非共价型两种。两种印迹类型的印迹过程如图2所示。共价键法 在共价型印迹过程中,印迹分子与官能团单体以共价键形式结合而形成印迹分子的衍生物,该衍生物在交联剂的存在下连接到聚合物的基质上。在印迹聚合物形成后,再将与印迹分子连接的这些共价键打断,并将印迹分子洗脱出来,从而形成具有吸附活性的印迹聚合物。在共价键法中,所采用的单体通常为低分子化合物,在选择时应考虑该单体与印迹分子形成的共价键键能要适当,达到在聚合时能牢固结合,在聚合后又能完全脱除的目的;另外还要考虑该单体与客体印迹分子有良好的相互作用。目前,共价键结合作用包括硼酸酯、西佛碱、缩醛(酮)、酯、螯合键作用等。非共价键法 把适当比例的印迹分子与官能团单体和交联剂混合,通过非共价键结合在一起制成非共价键印迹分子聚合物。这些非共价键包括离子键、氢键、偶极作用、疏水作用、静电作用以及范德华力等。由于这种方法与溶剂的极性密切有关,所以印迹高聚物的形成是在有机溶剂中完成的。在溶液中官能团单体与印迹分子的比例至少为4:1,以便尽可能多的非共价作用形成。这些与印迹分子相配位的官能团单体在溶液中与交联剂达到快速平衡,形成印迹聚合物将印迹分子包围,产生与印迹分子在形状、功能上互补的识别位点。在聚合物形成后再将印迹分子洗脱掉,所得的印迹聚合物就具有吸附活性。 共价型分子印迹中,单体与模板分子之间是通过化学键连在一起的,印迹过程复杂,形成的复合物也很稳定,必须采用化学方法除去模板分子。有限的可逆化学反应,限制了此法的应用性。与共价型印迹相比,非共价型印迹简单易行,模板分子易于除去,是目前广为流行的方法,其分子识别过程也更接近于那些天然的分子识别系统,如“抗体-抗原”和“酶-底物”等。在印迹过程中还可以同时采用多种单体,以提供给模板分子更多的相互作用,产生更好的印迹效果。[/color][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=65867]分子印迹MIP论文[/url]

  • 废气中的聚合物监测

    如果排气筒废气中的污染物有聚合物,例如氯化聚烯烃、丙烯酸酯聚合物等,该如何监测?能测试单体的排放浓度代替聚合物的浓度吗?

  • 【原创大赛】聚合物整体柱的制备及其在蛋白质分离中的应用

    [align=center]聚合物整体柱的制备及其在蛋白质分离中的应用[/align][align=center]摘 要[/align][align=center][color=black] [/color][/align][align=left][color=black]整体柱作为第四代分离介质,具有制备简单、通透性好、传质快等优点,在生物分离分析中发挥的作用日益增加。多孔聚合物整体柱具有高通透性和高柱空间利用率,与填充柱相比优势明显。至今已成功地用于分离科学,特别是用于分离型生物分子。本文简要综述了聚合物整体柱的制备及其在蛋白质分离中的应用,并对其应用做了展望。[/color]关键词:[color=black]聚合物整体柱;蛋白质分离;综述[/color][b]1 引言[/b]蛋白质在人体生命过程中发挥着极其重要的作用,某些蛋白质在体内的含量水平严重影响着生命的质量,这就要求对其进行定量研究,而对其实现分离分析成为首要任务。对蛋白质进行分离鉴定通常使用电泳[color=black]—[/color][color=black]质谱、液相色谱[/color][color=black]—[/color][color=black]质谱联用技术,但这些方法并不能完全满足蛋白质分子对操作环境和分析方法要求较高的要求,并且费用较高。而聚合物单体种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用,从而对其实现快速分离。[/color]色谱柱是色谱分离的核心,整体柱代表了色谱柱技术发展的方向[sup][color=black][/color][/sup][color=black]。整体柱[/color][color=black]( Monolithiccolumn) [/color]又称连续床层( Continuous bed) [color=black],是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相[/color][sup][color=black][/color][/sup][color=black]。[/color][color=black]整体柱具有独特的双孔结构,具有灌注色谱的特点,比填充柱的通透性更好,可实现快速分离[/color][sup][color=black][/color][/sup][color=black]。根据整体材料基质的不同,整体柱分为硅胶整体柱、有机聚合物整体柱、有机[/color][color=black]-[/color][color=black]硅胶杂化整体柱。硅胶整体柱具有良好的稳定性和机械强度,通透性好,但制备周期长,需要柱后衍生[/color][sup][color=black][/color][/sup][color=black]。有机聚合物整体柱则制备简单、[/color][color=black]pH [/color][color=black]值适用范围广,具有良好的通透性、独特的比表面积和较好的化学稳定性,并且能在玻璃毛细管、不锈钢柱管、[/color][color=black]tip [/color][color=black]头甚至是微流控芯片的通道等多种模具中制备[/color][sup][color=black][/color][/sup][color=black]。[/color][b]2 聚合物整体柱的制备[/b]多孔聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup]。与采用溶胶凝胶技术制备的无机硅胶整体柱相比,通过自由基聚合方式制备的聚合物整体柱更容易制备。除了传统的自由基聚合,其他方法预期制备一种具有均匀结构的新型聚合物整体柱。2006年,Hosoya等人报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm[sup][/sup]。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱有完全不同的形态。[b]3 聚合物整体柱的分类[/b]多种多样的功能单体使整体柱设计变得更容易,按单体不同,聚合物整体柱可分为聚丙烯酰胺类,聚甲基丙烯酸酯类和聚苯乙烯类[sup][/sup]。单体决定其适用范围,整体柱已被广泛用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。而[color=black]从制备工艺上,聚合物整体柱可分为三类:后修饰整体柱、原位合成整体柱和结合微加工技术的整体柱。[/color]原位合成整体柱是一定温度或紫外光条件下,将交联剂、单体、引发剂、致孔剂,在不锈钢色谱柱管中充分反应,再冲洗除去致孔剂和残余未反应物得到。除研究可用单体外,新的制备方法和制备工艺和的研究也取得了很好发展。通过调节交联剂、单体、致孔剂之间的比例,可以较好地控制制备的整体柱的柱效和通透性[sup][color=black][/color][/sup][color=black]。原位聚合制备的整体柱并不能满足某些特定的分离需求。原位聚合时,很多功能团被包埋在颗粒内部,暴露在表面上的并不多,这导致聚合物整体柱的性能明显下降。后修饰整体柱则会改善这一问题。聚合物整体柱的后修饰方法使用最多的是在聚合物表面接枝[/color][sup][color=black][/color][/sup][color=black]。近年来,利用甲基丙烯酸缩水甘油酯[/color][color=black]( GMA) [/color][color=black]的环氧基团的接枝方法较为流行,并成功运用到离子交换色谱、亲和色谱等色谱柱的制备中[/color][sup][color=black][/color][/sup][color=black]。相对于接枝的方法,将功能化的纳米颗粒包被在聚合物的表面的方法较为简单,也常用于制备功能化的聚合物柱。作为固定相载体,微加工整体柱是芯片色谱柱所独有的。[/color]原位合成聚合物整体柱最为便捷,根据分离要求的不同,已经开发了各种各样的单体材料和制备工艺。对于一般分离需求,是很好的选择。采用后修饰的方法在固定相表面连接功能基团可以提高柱效,而微加工整体柱仅适用于芯片色谱。[b]4 聚合物整体柱的应用[/b]一般来说,多孔聚合物整体柱具有典型球状结构,其通孔之间的聚合微球显著有利于提高聚合物整体柱的通透性,并且使其在高流速下能够有效地分离蛋白质分子。然而,聚合物整体柱对小分子的分离通常表现为低的柱效,据研究是由于表面积较硅胶整体柱小造成的。为了解决这个问题,研究者提出了几种试图增加表面积的方法,如将纳米粒子引入聚合物整体柱和制备超交联整体柱[sup][/sup],分离能力在一定程度上得到了提高。此外,斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup]。例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等合成的聚合物(二乙烯基苯)单体具有明确的连续形态,高的比表面积[sup][/sup]。[b]5 展望[/b][color=black]实际有机分子样品结构复杂、种类众多,而且对操作环境和分析方法要求较高。不同色谱模式的液相色谱方法不仅对特定的生物分子具有较好的选择性,且制备方法简单易得,结构可控。此外,聚合物单体的种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用。因此,随着液相色谱固定相的发展,聚合物整体柱以其独有的优势也会在生物分子的分离与分析中得到越来越广泛的应用。[/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][b]参考文献[/b] 杨帆, 毛劼, 何锡文. 基于巯基-烯点击反应制备有机-无机杂化硼酸亲和整体柱用于糖蛋白的选择性富集. 色谱, 2013, 31(6): 531-536. 平贵臣, 袁湘林, 张维冰等. 整体柱的制备方法及其应用.分析化学,2001,29(12):464-469. Jing Liu, Fangjun Wang, Zhenbin Zhang. Reversed phasemonolithic column based enzymereactor for proteinanalysis. Chinese Journal of Analytical Chemistry,2013, 41(1):10-14. Motokawa M, Ohira M, Minakuchi H [i]et al[/i]. Performance ofoctadecylsilylated monolithic silica capillary columns of 530μm innerdiameterin HPLC. J.Sep Sci,2006, 29(9): 2471-2477. 王超然, 王彦, 高也等. 聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用. 分析化学研究报告,2012, 40(8):1207-1212. 李晶, 周琰春, 张嘉捷等. 阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报,2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等. 有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013,34(9):2011-2019. 刘婵, 江茜, 陈蕾等. 金纳米粒子修饰的氨基硅胶整体柱的制备及超灵敏表面增强拉曼散射检测.高等学院化学学报,2013,34(11):2488-2492. Yongqin Lv, Zhixing Lin, Frantisek Svec. Thiol-ene clickchemistry: a facile and versatile route for the functionalization of porouspolymer monoliths.Analyst,2012,137(9):4114-4118. 吕仁江, 丁会敏, 李英杰. 丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012,29,(5):604-607. Frantisek Svec, Yongqin Lv. Advances and recent trends in thefield of monolithic columns for chromatography. Analytical Chemistry,2014,87(9):250-273. Zhongshan Liu, Junjie Ou, Hui Lin. Preparation of monolithic polymercolumnswithhomogeneousstructure viaphotoinitiated thiol-yne click polymerization and their application inseparation of small molecules.Analytical Chemistry,2014,86,(105):12334-12340. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases forbiopolymer separation.J. Chromatogr. A, 2006, 1117(1): 56-66. Luo Q Z, Zou H F, Xiao X Z [i]et al[/i]. Chromatographic separation of proteins on metal immobilizediminodiacetic acid-bound molded monolithic rods of macroporous poly( glycidylmethacrylate-co-ethylene dimethacrylate) . J. Chromatogr. A,2001,926(2):255-264. 郑晖, 李秋顺, 马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013,26(1):16-21. J. Zhang, HL. Zou, Q. Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes. J. Phy. Chem. B, 2003, 107(16):3712-3718. Junjie Ou, Zhongshan Liu, Hongwei Wang. Recent development ofhybrid organic-silica monolithic columns in CEC and capillary LC.Electrophoresis ,2015, 36(9):62-75. 王玺, 何健, 季一兵. 聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科学学报,2012, 67(7):78-85.[/align]

  • 高分子聚合物的峰谷比计算

    按药典方法检测头孢类药物中高分子聚合物,系统性试验要求中有一项:高聚体峰高与高聚体与单体之间的谷高比应大于2.不知这个图谱怎么样积分比较合适,求图。

  • 【分享】重要违禁兽药红霉素和氯丙嗪的分子印迹聚合物的制备、表征及在食品安全检测中的应用

    如何开发高效的前处理的材料和方法,提高样品前处理水平,已经成为目前食品分析化学的研究热点之一,由于分子印迹聚合物具有功能预定性、选择特异性、适用范围广等特点,基于分子印迹聚合物(Molecularly imprinted polymers, MIPs)的分子印迹固相萃取技术(Molecularly imprinted solid phase extraction, MISPE)已经成为食品安全检测技术发展的新趋势。本论文针对肉用家畜和水产品中应用广泛且危害严重的红霉素和氯丙嗪兽药制备了特异的分子印迹聚合物,对制备的聚合物的结合机理和识别特性进行了深入分析,并最终制备了这两类兽药的分子印迹固相萃取小柱,应用于实际样品中红霉素和氯丙嗪的残留分析。研究获得的主要结果如下:本课题采用本体聚合的分子印迹方法从制备的 6 组红霉素分子印迹聚合物中选取一组特异性较强的聚合物用于后续研究。该组合模板红霉素和单体 MAA(methacrylic acid)的比例为(1:2),交联剂为 EGDMA(ethylene glycol dimethacrylate),采用甲醇/乙腈(2:3, v/v)作为致孔剂,热聚合温度为 60℃。利用扫描电镜观察、孔径分析、热重分析、紫外光谱和红外光谱分析等方法对聚合物的物理特征进行了评价。同时通过对聚合物吸附能力的热力学和动力学特性以及高效液相色谱分析,对聚合物与红霉素之间可能的印迹机理和识别能力进行了研究,证明了制备的聚合物对模板的吸附能力主要来自于低亲和力和高亲和力两类结合位点,并计算出两个结合位点的最大结合量分别为 12.30 mg g1-和 72.09 mg g1-。课题以分子印迹聚合物为固相萃取的填料,制备了红霉素分子印迹固相萃取小柱并对小柱的萃取条件进行了优化。当红霉素分子印迹聚合物固相萃取条件采用的上样缓冲液为 40%甲醇,淋洗液为 2.5 mL80%甲醇,洗脱液为 3mL 的甲醇/PBS (0.5 M) (80:20, v/v)时,固相萃取柱对红霉素的回收率超过 80%,非印迹聚合物固相萃取小柱的回收率则小于 30%。采用优化后的固相萃取的方法,研究了聚合物的选择性,结果显示红霉素分子印迹聚合物对大环内酯类药物具有一定的交叉反应性。说明在印迹反应过程中模板的立体构型对特异性识别的建立起主要作用。试验中将制备的红霉素分子印迹固相萃取小柱用于猪肉样品中红霉素残留的前处理,结果显示经过 MIPs 净化的样品,基质对检测的干扰大大降低,同时极大提高了检测器的灵敏度。在选用的三个加标浓度下,红霉素的回收率都大于 79%。采用红霉素分子印迹固相萃取小柱从水中富集红霉素的实验,同时证明制备的聚合物在自来水中可以高效的富集红霉素。另外,我们制备了氯丙嗪的 MIPs,摸索了不同的合成方法和不同组成成分对产物的选择能力的影响。结果证明,通过本体法制备的聚合物,当使用 MAA 做为单体,模板单体的比例为 1:4,选用 TRIM(Trimethylolpropane trimethacrylate)作为交联剂时,得到的聚合物的选择性最高。试验通过色谱分析试验、红外光谱试验等研究了氯丙嗪与功能单体之间的自组装过程。选择性分析和容量分析的结果表明制备的氯丙嗪分子印迹聚合物相对于非印迹聚合物具有明显的选择性和吸附容量。当使用水溶液作为溶剂时,氯丙嗪分子印迹聚合物的最大特异吸附容量为 10mg mL1-。使用氯丙嗪分子印迹聚合物固相萃取柱对猪尿样品中该药残留的富集和净化相对于商业化的 C18 小柱的效果更明显。

  • 【求助】检测聚合物 出峰相关问题?

    【求助】检测聚合物 出峰相关问题?

    大家做头孢聚合物的时候遇到过这种情况没有G10柱子,蓝色葡聚糖在水中和缓冲盐中12分钟出峰,正常;头孢地尼原料在水中12分钟出峰,正常;头孢地尼原料在缓冲盐中出峰出峰如图,在30分钟和120分钟分别有个峰,不知道为何。理论上应该30分钟是单体峰吧,120分钟的峰是什么峰啊?色谱图见附件http://ng1.17img.cn/bbsfiles/images/2010/10/201010261417_254127_2163535_3.jpg

  • 【天瑞论文奖】+【第三届原创】烟嘧磺隆分子印迹聚合物识别特性的光谱研究

    维权声明:本文为sibianjing原创作品,本作者与仪器信息网是该作品合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现均属侵权违法行为,我们将追究法律责任。摘要:用紫外及红外分光光度法研究了印迹分子和单体之间的作用力, 结果表明随着甲基丙烯酸浓度的增加, 紫外吸收曲线的最大吸收波长发生红移, 说明两者之间存在氢键作用力; 经红外光谱分析进一步表明烟嘧磺隆的—NH、-S=O 和C=O 可以氢键和甲基丙烯酸的—COOH 之间有氢键作用。采用原位聚合法制备烟嘧磺隆分子印迹棒状聚合物, 除去印迹分子的聚合物留下了对印迹分子特异识别的结合位点。此聚合物可用来做吸附填料, 固相微萃取涂层材料,用以分离富集环境样品中的烟嘧磺隆。关键词:分子印迹;烟嘧磺隆;分子识别

  • 关于聚合物中胺基的问题,谢谢

    关于聚合物中胺基的问题,谢谢

    我的实验是这样的,我们在模仿国外一个丙烯酸酯聚合物的产品,从热裂解-GCMS的结果来看,里面还有丙烯酸丁酯,乙烯基吡啶等主要单体,但经过化学测试,里面胺基含量比较高,但图谱结果中却怎么也找不到含有胺基的化学物,所以一直很头疼,我想知道通过什么其他办法可以尝试知道里面的胺基到底是什么物质?谢谢!附件是该物质的红外!!http://ng1.17img.cn/bbsfiles/images/2013/11/201311181049_477794_2113729_3.jpg

  • 聚合物红外光谱分析和鉴定

    [em07]聚合物红外光谱分析和鉴定 从实用的角度出发介绍了聚合物的初步鉴定、聚合物分析中常用的分离方法、红外光谱基本原理和实验技术、各类聚合物及添加剂的红外光谱分析和鉴定。 汇集了典型实用的聚合物和添加剂的红外光谱300余幅。这些光谱图可用于未知聚合物和添加剂的分析和鉴定。 需要的朋友请到资料中心下载! http://www.instrument.com.cn/download/shtml/028017.shtml

  • 聚合物分析

    求专门的聚合物分析的样品前处理技术和分析方法我要分析的是聚合物的小分子添加剂,残单,和一些低聚物的杂质。目前不会配置裂解色谱,只有Agilent6890和1100

  • 【求助】聚合物核磁

    见有的师兄做聚合物的氢谱,用末端的基团和聚合物的特征基团的积分比算聚合物的分子量。感觉理论上可以,但是聚合物的分子量高,而末端基团积分值有比较小,在图上基本上看不出来,请问这样做的准确率有多高?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制