当前位置: 仪器信息网 > 行业主题 > >

色谱技术分离系统

仪器信息网色谱技术分离系统专题为您提供2024年最新色谱技术分离系统价格报价、厂家品牌的相关信息, 包括色谱技术分离系统参数、型号等,不管是国产,还是进口品牌的色谱技术分离系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱技术分离系统相关的耗材配件、试剂标物,还有色谱技术分离系统相关的最新资讯、资料,以及色谱技术分离系统相关的解决方案。

色谱技术分离系统相关的论坛

  • 欧洲药典2.2.46色谱分离技术中,系统适用性的%RSD的要求如何理解

    [color=#444444]各位大神,欧洲药典2.2.46色谱分离技术中,系统适用性的%RSD的要求列了表(如图),表格中的B(%)指的是什么,该怎么理解这个表格中RSD的要求?个=各位大神,帮帮忙。[/color][color=#444444][img]http://muchongimg.xmcimg.com/oss2/img/2018/0816/w91h1336024_1534380504_753.png[/img][/color]

  • 液相色谱新技术场流分离技术

    [align=center][size=21px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url][/size][size=21px]新技术场流分离[/size][size=21px]技术[/size][/align][size=16px] 场流分离[/size][size=16px]([/size][size=16px]FFF[/size][size=16px])[/size][size=16px]技术是[/size][size=16px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url][/size][size=16px]色谱发展的新技术,德国和美国在[/size][size=16px]这方面已做了好多年的研究,[/size][size=16px]现在已有新产品[/size][size=16px]上市,我[/size][size=16px]国现在[/size][size=16px]也已[/size][size=16px]开始[/size][size=16px]投入这方面的研究。[/size][size=16px] 场流分离技术[/size][size=16px]无需[/size][size=16px]色谱柱,分离是靠一种或几种场作用力[/size][size=16px]来实现[/size][size=16px]。典型的[/size][size=16px]几种场[/size][size=16px]有[/size][size=16px]流体场、[/size][size=16px]重力场、电场、磁场、热场、光场、离心力[/size][size=16px]场[/size][size=16px]、[/size][size=16px]压力场[/size][size=16px]等,[/size][size=16px]也有在某种场中叠加[/size][size=16px]半透膜、分散膜、其它流体[/size][size=16px]等[/size][size=16px]。[/size][size=16px]场流分离[/size][size=16px]技术[/size][size=16px]是一种有效分离大分子化合物、胶体[/size][size=16px]、[/size][size=16px]颗粒的[/size][size=16px]新兴[/size][size=16px]技术,[/size][size=16px]在[/size][size=16px]生物[/size][size=16px]、药物、[/size][size=16px]医学、材料、化工[/size][size=16px]等流域等有应用空间[/size][size=16px]。[/size][size=16px] 场流分离[/size][size=16px]技术[/size][size=16px]主要用来分离大分子或粒子[/size][size=16px]物质[/size][size=16px](目前技术是这样,以后随着技术的发展也可能会分离其它类型物质),[/size][size=16px]有[/size][size=16px]人[/size][size=16px]称[/size][size=16px]之[/size][size=16px]为[/size][size=16px]粒子色谱[/size][size=16px]。[/size][size=16px]场流分离[/size][size=16px]分析系统包括输液[/size][size=16px]系统(输液泵,[/size][size=16px]由于系统没有色谱柱,压力不高,输液泵一般需要[/size][size=16px]中压泵即可[/size][size=16px])、进样[/size][size=16px]系统(进样器)[/size][size=16px]、场分离系统(场分离器)、[/size][size=16px]检测系统(检测器)[/size][size=16px]、数据采用与处理[/size][size=16px]系统[/size][size=16px]等,[/size][size=16px]和[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]系[/size][size=16px]统类似度[/size][size=16px]很高,[/size][size=16px]有[/size][size=16px]人[/size][size=16px]称之为场流色谱[/size][size=16px](以下我们[/size][size=16px]称场流[/size][size=16px]色谱)。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191759544595_2705_2369266_3.jpeg[/img][/align][size=16px] 场流分离[/size][size=16px]技术有的采用一种场,有的同时采用多种场叠加,场作用力有的是水平的,有[/size][size=16px]的是垂直的,有的是有角度直线型的,也有是弧线或特定曲线的等。由于样品本身特性[/size][size=16px]差异[/size][size=16px],[/size][size=16px]流经[/size][size=16px]场[/size][size=16px]分离器所受到的作用力[/size][size=16px]不同[/size][size=16px](不管采用的是[/size][size=16px]那种场[/size][size=16px]或那些叠加场)[/size][size=16px],[/size][size=16px]在场分离器中流动的速度就不同,[/size][size=16px]从而达到分离目的。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210191759546728_6036_2369266_3.jpeg[/img][/align][size=16px] 场流分离[/size][size=16px]技术可以与色谱等其它分离技术联用,一般场分离在系统最后端([/size][size=16px]目前场分离器[/size][size=16px]耐不了高压),比如分离系统[/size][size=16px]C18[/size][size=16px][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]柱[/size][size=16px]+[/size][size=16px]场分离器,分离效果更佳。[/size][size=16px] 场[/size][size=16px]流[/size][size=16px]分离[/size][size=16px]系统[/size][size=16px]能够[/size][size=16px]和[/size][size=16px]多种[/size][size=16px]检测器,[/size][size=16px]如[/size][size=16px]紫外[/size][size=16px]检测器[/size][size=16px]、[/size][size=16px]红外检测器、[/size][size=16px]荧光[/size][size=16px]检测器[/size][size=16px]、质谱[/size][size=16px]检测器[/size][size=16px]等[/size][size=16px]连接,[/size][size=16px]检测范围[/size][size=16px]较广[/size][size=16px]。[/size][size=16px] 场流色谱[/size][size=16px]的优点:选择性强;分离速度快[/size][size=16px](一般一分钟或几分钟)[/size][size=16px];[/size][size=16px]适用[/size][size=16px]范围[/size][size=16px]宽[/size][size=16px](分子[/size][size=16px]粒径[/size][size=16px]在[/size][font='times new roman'][size=16px]1nm~100[/size][/font][font='times new roman'][size=16px]μ[/size][/font][font='times new roman'][size=16px]m[/size][/font][size=16px])[/size][size=16px];前处理简单[/size][size=16px](有些样品无需处理,可直接进样)[/size][size=16px]等。[/size][size=16px] 场流[/size][size=16px]分离[/size][size=16px]技术现在还是起步或发展阶段,[/size][size=16px]已[/size][size=16px]在蛋白质[/size][size=16px]、病毒、糖类物质[/size][size=16px]等[/size][size=16px]分离方面发挥[/size][size=16px]很大[/size][size=16px]作用[/size][size=16px]。随着技术的发展,科技的进步,自动化程度的进一步提高[/size][size=16px],[/size][size=16px]该技术[/size][size=16px]还有[/size][size=16px]很大的提升与[/size][size=16px]完善[/size][size=16px]空间[/size][size=16px],有望发展成[/size][size=16px]为[/size][size=16px]最具潜力的分离[/size][size=16px]应用[/size][size=16px]技术之一。[/size]

  • 【转帖】第五课 气相色谱仪-分离系统

    第五课 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]-分离系统 色谱柱是色谱仪的分离系统。试样中各组分的分离在色谱 柱中进行,因此,色 谱柱是色谱仪的核心部分。色谱往 主要有两类:填充柱和毛细管柱,现分别叙述如下: 1.填充柱 填充柱由柱管和固定相组成,柱管材料为不锈钢或玻璃, 内径为2—4毫米,长为1—3米。往内装有固定相,固定相 又包括固体固定相和液体固定相两种。 2.毛细管往 毛细管柱又叫空心柱,空心柱分涂壁空心柱,多孔层空 心柱和涂载体空心柱。 涂壁空心柱是将固定液均匀地涂 在内径0.1—0.5毫米的毛钢管内壁而成。毛细管的材 料可以是不锈钢、玻璃或石英。这种色谱柱具有渗透性 好、传质阻力小等特点,因此柱子可以做得很长(一般 几十米,最长可到三百米)。和填充柱相比,其分离效率 高,分析速度快,样品用量小。其缺点是样品负荷量小, 因此经常需要采用分流技术。柱的制备方法也比较复杂; 多孔层空心柱是在毛细管内壁适当沉积上一层多孔性物 质,然后涂上固定液。这种柱容量比较大,渗透性好, 故有稳定、高效、决速等优点。

  • 【资料】逆流色谱技术在抗生素分离纯化中的应用

    一. 逆流色谱技术简介现代逆流色谱技术起源于上世纪50年代的逆流分溶法(Counter Current Distribution, CCD),它利用不同物质在所选择的两相溶剂中的分配系数不同而通过多次逆流分溶对物质进行分离。它采用数百个分离管进行操作,每一次操作后,上层液体被转移至盛有新的下层溶剂的分离管中,而往原分离管中加入新的上层溶剂,看起来好似两相的液体以相反的方向流动,故称为逆流分溶法。逆流分溶法存在许多缺点,如使用易破碎的玻璃仪器,分离时间长,需要连续稀释样品等。但与液相色谱相比,它无需固体作固定相,从而避免了因此而带来的一系列问题。因此,在CCD基础上发展起来的逆流色谱(Counter Current Chromatography, CCC)在采用了与液相色谱相似的连续洗脱、检测和分布收集技术后从上世纪70年代开始得到迅速的发展,并在天然和合成化合物的分离纯化中发挥了日益重要的作用。上世纪70年代出现的液滴逆流色谱(Droplet Counter Current Chromatography, DCCC)使流动相形成液滴,通过作为固定相的液柱而达到分离纯化的目的。其装置主要由输液部分、检测收集部分和玻璃管液柱部分(300-500根60cm X 1.8mm的玻璃管)组成。由于流动相形成液滴,在细的玻璃管中与液体固定相有效地接触,摩擦不断形成新的表面,促进溶质在两相溶剂中的分配,所以分离效果好,而且不产生乳化现象。对于易氧化的物质,还可用氮气驱动流动相。采用DCCC分离纯化了许多包括中草药和抗生素在内的天然产物如柴胡皂甙和短杆菌肽, 短杆菌酪素和四环素等。液滴逆流色谱解决了操作自动化的问题,但仍存在分离时间长,使用易破碎的玻璃管,分离度还不高等问题。逆流色谱技术的重大突破出现在上世纪80年代,根据被分离混合物的理化特性,选择二元或多元的两相溶剂体系,以上相或下相为固定相,将其注满色谱柱后使色谱柱作特定的高速旋转运动,并用由此产生的离心力场支撑柱内的液体固定相,然后以另相为流动相,携带溶解的混合物由输入泵推入色谱柱,穿过两个液相对流的管柱,各组分根据在两相中的分配系数不同而得到分离。根据离心力场的不同可将现代逆流色谱分为离心分配色谱(Centrifugal Partition Chromatography, CPC),也称盘管行星离心色谱(Coil Planet Centrifuge, CPC)和高速逆流色谱(High Speed Counter Current Chromatography, HSCCC),前者属流体静力平衡系统,色谱柱由一系列刻在圆盘或圆筒内的导管相联的柱体组成,通过单轴旋转产生恒定的重力场,两个旋转密封的接口分别连接流动相的进口和出口;后者属流体动力平衡系统,由聚四氟乙烯软管绕制成的色谱柱除绕离心轴旋转外,还围绕自轴旋转,产生变化的重力场,并采用无旋转密封的连接方式。分离时两相液体被剧烈振动的离心力场依其界面特征被甩成极细的微粒,样品各组分在两相微粒的表面上分配并在微粒振荡与对流的环境中有效传递,相当于把通常的溶剂萃取高效(13次/秒以上)、自动、连续地予以完成。泡沫逆流色谱(Foam Counter Current Chromatography, Foam CCC)技术是在HSCCC的基础上发展起来的。使用时,氮气和流动相同时从相反方向注入管柱中形成气体和流动相的逆流,然后从盘管中部注入的混合物根据形成泡沫的能力得到分离,易形成泡沫的的组分随[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]被洗脱收集在泡沫流出部分,而其它组分则随流动相流出。在盘管行星离心色谱基础上还发展了交叉轴盘管行星离心色谱(Cross-axis Coil Planet Centrifuge, X-axis CPC),这种仪器在使用中产生一种行星式运动,使得盘管支架在围绕离心中轴转动(公转)的同时还沿着自己的水平方向轴旋转(自转),使得部分的离心力矢量作用于盘管的半径方向,以防止因两相乳化而降低固定相保留率的现象出现。因此,X-axis CPC大大稳定了固定相的保留率,特别适用于大量制备性分离纯化。现代逆流色谱技术为化合物的分离纯化提供了一个新的手段,与HPLC等液-固色谱技术比较,由于分离原理不同,二者间存在很强的互补性。它无需固体作固定相,不存在固体对样品组分的吸附、玷污、变性、失活、拖尾等现象,能实现很高的回收率,节省昂贵的材料消耗和溶剂消耗(HPLC的1/10以下),运行使用的后续投入较低。逆流色谱在无需更换不同极性的色谱柱情况下,通过提高极性溶剂或非极性溶剂比例的方法,可以实现流动相从弱极性到强极性或相反的转化。由于色谱柱容积大,无填料,柱内空间全部是有效空间,因此,样品负载能力强,制备量大,重现性好。实验室规模的盘管总体积为100mL的逆流色谱仪一次可分离0.5-2克的粗品,而3000mL容量的制备型逆流色谱仪一次可分离15-60克的粗品。但是,与[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和高效液相色谱等相比,逆流色谱的分离效率即理论塔板数还不高(一般在1000以下),一次分离所需时间还较长(以小时计),因此,还不宜用于组成复杂的混合物的全谱分离分析。逆流色谱技术在基本原理以及溶剂系统选择等方面还有待于进一步的普及、研究、开发与应用。目前,HSCCC等技术在生物化学、医药学、农业、环境、材料、化工、海洋生物以及无机离子等众多领域已得到成功应用,1996年美国出版的《High-Speed Countercurrent Chromatography》一书被选编为著名的分析化学丛书第132卷,2000年9月在英国Brunel大学召开了逆流色谱技术第一届国际学术会议,每年一度的国际分析化学与应用光谱学学术会议上,都设有CCC的专题组,“Journal of Chromatography” ,“Journal of Liquid Chromatography” 等重要学术刊物都有这一技术的论文发表。我国在CCC技术及其应用研究方面与国际发展同步,1980年研制出了我国第一台逆流色谱仪,并用于国产抗敌素成分的分离与分析检定,发表了一大批用HSCCC等分离制备中草药和茶叶等天然产物活性成分的论文,引起国际同行的瞩目,2002年在北京召开了逆流色谱技术的第二届国际学术会议。但是,在逆流色谱技术应用于抗生素的分离纯化方面,我国与国际上发展趋势相比还存在很大差距,相关论文甚少,因此,在我国开展高速逆流色谱技术分离纯化抗生素的工作有着广阔的应用和发展前景。二. 溶剂选择无论是用HPLC或CCC技术分离混合物,分离度(Rs)是一个很重要的参数,如下图所示,在HPLC中,提高分离度是通过使峰形变窄的方法达到的,而在CCC或CPC中,则是通过改进选择性来实现的,这种选择性主要取决于样品在两相溶剂中的分配系数。因此,溶剂系统的选择在CCC技术中尤为重要。 选择溶剂时要考虑到样品的极性、溶解度、电荷态和形成复合物的能力等,溶剂体系的沉降时间应小于30秒,以得到满意的固定相保留率。测定方法如下,各取2毫升平衡后的上相和下相液体移入一个5毫升的刻度玻璃管中,密封上下摇动5次后静置于水平面上并测定两相分层的时间即沉降时间。样品的分配系数K值(K=上相中样品浓度/下相中样品浓度,可由HPLC方法得出)最好在1左右,一般在0.2到2之间。以上相作固定相时为例,若K《《1,样品很快随流动相流出,达不到分离效果;若K》》1,样品出峰时间拉长,形成宽峰。由于CCC的理论塔板数在800左右,因此要得到高的分离度,样品各组分间的分离因子( , 各组分的K值之比)应大于1.5。此外,两相溶剂的体积应尽量相同以避免溶剂的浪费,溶剂最好挥发性强,这样完成操作后只要将洗脱液浓缩即可得到纯样品。 选择溶剂体系时,首先选出一个能使样品全部溶解的溶剂体系,然后调整各溶剂的比例使得被分离各组分满足K值和 值的要求,以提高分离度。可以采用相图来研究改变某一相的组成对另一相组成的影响,Sø rensen等人对近百种三元溶剂相图研究后,总结归纳出三类溶剂体系:乙酸乙酯—正丁醇—水(EtOAc—BuOH—H2O),适用于极性弱的样品;水—二甲亚砜—四氢呋喃(H2O—DMSO—THF),适用于极性强的难溶性样品如两性霉素B;氯仿—甲醇—水(CHCl3—MeOH—H2O),适用于大部分样品。此后又发展了其它通用的多元溶剂体系如正戊烷—乙酸乙酯—甲醇—水(Heptane—EtOAc—MeOH—H2O)体系和正戊烷—甲醇—甲基叔丁基醚—甘醇二甲醚—水(Heptane—MeOH—MtBE—Glyme—水)体系等。常用溶剂体系的选择可参考表1,首先根据样品的理化特性选出最佳溶剂,然后在左右两栏中再选择相应的数种溶剂,以组成选择性最好的多元溶剂体系。

  • 多维液相色谱分离系统的最新进展

    多维液相色谱分离系统一般采用定量环(loop)或富集柱(trap )作为中转环节,按照用途可分为分析型和制备型,按照运行原理可分为并行系统和串行系统。分析型一般采用并行模式,分离速度快,国外产品占用优势。制备型一般采用串行模式,国内产品具有领先优势。

  • 【求助】采用气相色谱分离技术制氮气的原理

    各位大侠好!今天在百度上搜到 采用气相色谱分离技术(无需“加液” )制氮:内容如下 这是一种新型的空气分离方法,它以压缩空气为原料,合成分子筛为吸附剂,采用气相色谱柱吸附流程,在常温压力下,利用空气中的氧和氮在分子筛中的扩散速度不同,把氧和氮加以分离,氮气的纯度和产气量可按客户需要调节。所产生气体流速稳定,氮气纯化彻底,产出的氮气纯度高,最高可得到99.9995%的纯氮,适用于各种气相色谱检测器。该系列高纯发生器只要一按开关,便可以源源不绝的生产出高质量和高纯度的氮气,运行稳定可靠,最重要的是它不需要任何化学消耗品。 操作方便,可24小时无人值守。且它可以在不需任何监管和最低保养的情况下无故障地运行。 其中有2个问题不明白1、合成分子筛为吸附剂,这是什么牌号的分子筛? 2、既然是通过分离技术,怎样确定在什么时间内取到比较纯的氮气?我对这个不了解,期待高手指教。

  • 【转帖】第九课 液相色谱仪-进样系统,分离系统

    第九课 液相色谱仪-进样系统,分离系统 进样系统一般高效液相色谱多采用六通阀进样。先由注射器将样 品常压下注入样品环。然后 切换阀门到进样位置,由 高压泵输送的流动相将样品送人色谱柱。样品环的容积 是固定的,因此进样重复性好。 分离系统 分离系统包括色谱柱、连接管、恒温器等。色谱柱是高 效液相色谱仪的心脏。它是 由内部抛光的不锈钢管制成 ,一般长10—50cm,内径2—5mm,柱内装有固定相。液 相色谱的固定相是将固定该涂在担体上而成。担体有两 类:一类是表面多孔型担体;另一类是全多孔型担体。 近年来又出现了全多孔型微粒担体。这种担体检度为5 —10 um,是由nm级的硅胶微粒堆积而成,又叫堆积硅 珠。由于颗粒小,所以柱效高,是目前最广泛使用的一 种担体。 在高效液相色谱分析中,适当提高柱温可改善 传质,提高桂效,缩短分析时间。因 此,在分析时可以 采用带有恒温加热系统的金属夹套来保持色谱拄的温度。 温度可以在室温到60℃间调节。

  • 【转帖】色谱分离技术

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=156148]色谱分离技术[/url]

  • 色谱技术:分离与分析的神奇科学

    [b]色谱技术:分离与分析的神奇科学[/b] [color=initial]一、引言[/color] 色谱技术,在现代化学分析领域中占据着至关重要的地位,宛如一位技艺高超的神奇魔法师,能够巧妙地将繁杂的混合物拆解为清晰可辨的组分,为科学研究、工业生产以及质量控制等众多领域赋予了强大的支撑力量。 [color=initial]二、色谱的基本原理[/color] 色谱的原理立足于不同物质在固定相和流动相之间的分配差异。通俗来讲,当混合物中的各组分穿过填充有固定相的色谱柱时,鉴于它们与固定相和流动相的相互作用存在差别,致使其在柱内的迁移速率出现差异,进而达成分离的目的。 例如,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]当中,气体充当流动相,携带样品穿梭于涂有固定液的柱子;而在[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]里,液体流动相推动着样品在固体或液体固定相的柱子里移动。 [color=initial]三、色谱的分类[/color] 色谱技术种类丰富多样,常见的包括[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url](GC)、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url](LC)、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url](IC)等等。 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]适宜用于剖析易挥发、热稳定性良好的化合物,像是石油化工产品里的烃类。[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]则在分析难挥发、热不稳定以及大分子化合物方面表现出色,比如生物样品中的蛋白质和药物。[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]主要针对离子型化合物进行分离与检测,诸如环境水样中的阴离子和阳离子。 [color=initial]四、色谱的应用领域[/color] [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]医药行业[/color][/list] 色谱技术在药物研发、质量把控和药代动力学研究中扮演着关键角色。它能够助力确定药物的纯度、杂质含量,还能对药物在体内的代谢过程进行监测。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]环境监测[/color][/list] 用于侦测空气、水和土壤中的污染物,例如农药残留、重金属离子等,为环境保护提供了有力的数据支撑。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]食品安全[/color][/list] 检测食品中的添加剂、农药残留、真菌毒素等,为公众的饮食安全保驾护航。 [list=1][*][color=var(--md-box-samantha-deep-text-color) !important]石油化工[/color][/list] 对石油产品的组成和纯度加以分析,优化生产工艺,提升产品质量。 [color=initial]五、色谱技术的发展趋势[/color] 伴随科技的持续进步,色谱技术也在不断演进与创新。未来,色谱技术将朝着更高的灵敏度、更快的分析速度、更小的样品量需求,以及与其他分析技术联合运用的方向发展。 举例来说,微流控芯片色谱的诞生,使得色谱分析能够在微小的芯片上进行,极大地减少了样品和试剂的消耗,同时显著提高了分析效率。 [color=initial]六、结论[/color] 色谱技术作为一种威力强大的分析工具,已经深深融入我们生活的各个角落。它不但为科学研究提供了精准的数据,还在保障我们的健康和环境安全方面发挥着无可替代的作用。坚信在未来,随着技术的持续发展,色谱技术将继续展露其神奇的魅力,为人类创造更多的福祉和价值。

  • 【资料】快速色谱技术

    快速色谱法(Flash chromatography)是制备液相色谱中法中的一种,通常用于有机化合物的分离。快速色谱法具有操作容易、价格便宜、分析快速的优点,在纯化有机化合物应用方面,几乎没有其它技术可以和快速色谱法相媲美。快速色谱法已成为通过纯化进行正相分离的通用方法。快速色谱法是一项典型的低压技术,科学家们正在使用真空或泵技术在中压条件下加速快速色谱的分离过程。色谱柱内填充粒径为40~60 mm的硅胶吸附剂。低粘度的流动相需选用较小的粒径。传统的快速色谱则需要科学家们根据测试需要填充色谱柱,因而许多色谱柱变成了一次性的预制快速柱。  快速色谱经常用于规模放大从薄层色谱分离后的正相化学物质。。快速色谱的需求主要来自制药业(51%)、生物技术(25%)和学术机构(8%),这三个行业占据了快速色谱84%的市场份额。在制药业,快速色谱应用广泛,包括少量化合物、多肽的纯化以及天然产物的纯化。  快速色谱的总体市场行情处于持续上升趋势,特别是在生命科学领域。有机化合物及多肽的合成方面的应用持续拉动快速色谱系统市场的增长。事实上,快速色谱系统有望在接下来的5年中实现两位数增长。

  • 【网络会议】:2015年12月22日 10:00 分离新趋势之多维液相色谱技术的创新应用

    【网络会议】:2015年12月22日 10:00 分离新趋势之多维液相色谱技术的创新应用

    【网络会议】:分离新趋势:多维液相色谱技术的创新应用【讲座时间】:2015年12月22日 10:00【主讲人】:肖尧安捷伦液相色谱应用支持工程师,负责二维液相色谱方法及应用的开发与研究。【会议介绍】 介绍液相色谱分离中峰容量的概念及意义,从原理和应用的角度解释如何使用二维色谱方法提升峰容量,并且介绍二维色谱系统发展历程及几种主流工作模式以及相应的软硬件要求及构成,最后使用应用实例说明通过二维液相提高峰容量可以解决的一些实际问题。定义: 二维液相色谱(2D-LC):将分离机理不同而又相互独立的两根色谱柱联合使用构成的分离系统,样品经过第一维的色谱柱进行分离,再将第一维的全部或部分馏分以一定方式引入到第二维色谱柱上再次分析,并以一定的数据处理方式对两次分析的结果进行整合。特点: 二维液相色谱通常采用两种不同的分离机理分析样品,所用的两根色谱柱的分离行为是正交的,且正交性越强,分离效果越好-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年12月22日 9:004、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/17485、报名及参会咨询:QQ群—171692483 快速报名,请扫描或长按下方二维码!http://ng1.17img.cn/bbsfiles/images/2015/11/201511131415_573423_2507958_3.png

  • GC各功能部分维护保养经验(3)-----分离系统(色谱柱)

    质中,质谱选择离子位置重要性。如果有重叠,将导致定量错误。俗话说得好:没有不好骑的马,只有骑不好马的骑师。只有把GC当朋友,好好了解它的习性、掌握维护保养要领并坚持保养它才能服服帖帖听你的话。GC主要有载气系统、进样系统、分离系统、检测系统、记录系统共五个主要组成部分,要做好保养首先得先了解GC各部分构造以及可更换或清洁的零部件,这部分知识可参考各种GC产品使用说明书。下面主要就GC各功能部分维护保养经验、要领一一列举:(续)三、分离系统(色谱柱):色谱柱在色谱系统中主要起到分离的作用。气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。这里我主要就填充柱和毛细管柱的常规保养维护讲述。1、老化:1)填充柱:新制备的填充柱在使用前必须经过老化处理,以便把柱内的残存溶剂、低分子量固定液以及低沸点杂质除去,使固定液在载体表面涂得更均匀牢固。老化的方法比较简单:在室温下将色谱柱的入口端与进样器相连结。为了避免污染,出口端与检测器断开。然后接通载气,调节载气流速10~20毫升/分,再以程序升温的方式缓慢将柱温升至比使用温度高20℃,并在此温度下老化4~8 h。注意,老化温度不能高于固定液允许的最高使用温度。如果使用氢气作载气,还应注意将出口端流出的氢气引出室外。老化处理后,将柱温降至室温,把色谱柱出口端与检测器相连结,在分析条件下观察基线。若能获得平稳的基线,说明色谱柱已经老化合格,一般即可进行正式分析试验。日常老化可不必断开检测器,老化时间也可酌情减少。2)毛细管柱:通用老化程序可在比最高分析温度高20℃或最高柱温(温度更低者)的条件下老化柱子2h,如果在高温10min后背景不下降,立即将柱子降温并检查柱子是否有泄漏;如果用Vespel密封垫圈的话,老化完后重新检查密封程度;注射非保留物质以确定合适的平均线速度。也可采用程升温度老化,一般可用慢升快降原则,50度下以5度/分钟升到最高限温下20度,恒温30分钟,20度/分钟下降到50度,如此循环3个来回即可。2、清洗:通常情况下不建议清洗色谱柱,除非严重污染,经老化效果不明显情况下可以对键合交联固定相的毛细管色谱柱进行。清洗色谱柱可采用色谱柱冲洗装置把溶剂注入色谱柱,该装置接有一个有压力的气源上(氦气或氮气),并把色谱柱插到冲洗装置中,把溶剂加入样品瓶里,往溶剂瓶中施加压力,把溶剂压到毛细管色谱柱里,残留物溶解到溶剂中,然后用溶剂把它反吹出色谱柱,再用容积吹扫色谱柱,并把色谱柱进行适当的老化处理。在冲洗色谱柱之前,把它切去半米(即靠近进样口一端),把连接检测器的一端插入溶剂冲洗装置,常使用多种溶剂冲洗色谱柱,后面继续使用的溶剂必须要和前一种溶剂互溶,一定不要使用高沸点溶剂,特别是最后使用的溶剂,溶解样品的溶剂常常是最佳的选择。决多数情况下建议使用甲醇、二氯甲烷和己烷。丙酮是二氯甲烷的代替品(在避免使用含氯溶剂时),但是二氯甲烷是一种最好的冲洗溶剂,如果注射的是水性样品(如生物液体和组织),在使用甲醇以前要用水来冲洗,一些源于水性样品的残留物只能溶解在水中而不溶于有机溶剂,应当使用水和醇类(如甲醇、乙醇和异丙醇)冲洗键和聚乙二醇为基的固定相(如DM-WAX、DM-Innowax),只作为最后使用的溶剂。

  • 《分析样品预处理及分离技术》(第2版)

    1.系统全面介绍了样品预处理和分析方法;2.本次修订增加了实际样品处理技术、生物样品的沉淀技术、溶剂萃取新技术、微萃取技术等内容;3.适合从事分析检测的初学者阅读.内容简介:全书对样品的预处理和分离方法作了比较系统的讲述,主要内容有分析样品的准备与预处理、沉淀分离技术、萃取分离技术、离子交换分离技术、液相色谱分离技术、电泳分离技术、膜分离技术、泡沫浮选分离技术。此次修订增加了实际样品处理技术、生物样品的沉淀分离技术、溶剂萃取新技术、微萃取技术与加压及旋转薄层色谱分离技术等内容,也对第一版中部分内容作了适当的修订。但由于书中篇幅有限,书中只原则性介绍了相关内容,具体样品的处置还需进一步参考相关文献或技术手册。本书适用于各层次的分析测试工作者,也可供从事其他有关专业的工程技术人员和科研人员参考。目录:第一章 分析样品的准备与预处理/001第一节概述001一、样品采集与处理的基本原则001二、样品制备与处理的注意事项004第二节试样的处理005一、无机样品的处理005二、有机样品的处理009三、生物样品的处理010第三节微波及超声波在样品处理中的应用012一、微波在样品处理中的应用012二、超声波在样品处理中的应用015第四节实际样品处理技术018一、大气样品处理技术018二、水样品处理技术019三、土壤样品处理技术020四、有机及生物样品处理技术021第二章 沉淀分离技术/027第一节沉淀分离技术概述027第二节无机沉淀分离法028一、氢氧化物沉淀分离法028二、硫化物沉淀分离法032三、其他沉淀分离法033第三节有机沉淀分离法033一、生成螯合物的沉淀分离体系034二、生成缔合物的沉淀分离体系036三、生成三元配合物的沉淀分离体系036第四节均相沉淀及共沉淀分离法037一、均相沉淀分离法037二、共沉淀分离法039第五节生物样品的沉淀分离技术043一、等电点沉析044二、盐析沉淀045三、有机溶剂沉析049四、有机聚合物沉析051五、其他沉析技术052第三章 萃取分离技术/055第一节溶剂萃取分离技术055一、溶剂萃取分离基本原理056二、重要的萃取体系060三、有机物的萃取077四、萃取方式与装置079第二节溶剂萃取新技术083一、快速萃取技术083二、反胶团溶剂萃取技术085三、离子液体萃取技术088四、双水相萃取技术090五、微波萃取及超声萃取技术092六、电泳萃取技术097第三节固相萃取技术098一、固相萃取基本原理098二、固相萃取的吸附剂099三、固相萃取装置100四、固相萃取的操作程序100五、固相萃取技术的应用101第四节微萃取技术102一、分散液相微萃取技术102二、分子印迹微萃取技术105三、固相微萃取技术107第五节萃取分离的实际应用110一、应用溶剂萃取分离干扰物质110二、萃取联用分析111三、萃取分离其他示例111第四章 离子交换分离技术/116第一节概述116第二节离子交换剂的结构、性质和分类117一、离子交换剂的结构和性质117二、离子交换树脂的分类与用途120第三节离子交换的基本理论124一、Donnan理论124二、交换反应过程及离子交换选择系数125第四节离子交换的分离操作方法128一、离子交换树脂的选择及预处理128二、离子交换分离操作方法131第五节离子交换分离的实际应用135一、去离子水的制备135二、痕量元素的预富集136三、性质相似离子间的彼此分离137四、生物大分子分离137第五章 液相色谱分离技术/139第一节概述139第二节常压柱色谱分离法140一、吸附柱色谱分离140二、分配柱色谱分离144三、柱色谱分离的操作145第三节平面色谱分离技术146一、纸色谱分离技术146二、薄层色谱分离技术150三、加压及旋转薄层色谱分离技术174第四节柱液相色谱分离技术177一、高效液相色谱分离技术177二、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]分离技术185三、离子对色谱分离技术189四、凝胶色谱分离技术191五、亲和色谱分离技术192六、超临界流体色谱分离技术194第六章 电泳分离技术/197第一节电泳的基本原理197一、电泳迁移率197二、影响迁移率的因素198第二节常用电泳分离技术199一、区带电泳200二、等电聚焦电泳205三、等速电泳206四、毛细管电泳207第三节电泳分析应用210一、在药物分离分析中的应用210二、在生命科学中的应用211三、在临床医学中的应用211四、在环境分析中的应用211五、在作物品种鉴定中的应用212六、在动物和植物科学研究中的应用212第七章 膜分离技术/213第一节概述213第二节膜分离的基本原理214一、反渗透分离法基本原理214二、纳滤分离的基本原理215三、微孔过滤基本原理215四、透析分离基本原理216五、电渗析分离基本原理216六、液膜分离法基本原理217第三节膜材料和膜组件220一、板框式膜组件220二、圆管式膜组件222三、螺旋卷式膜组件223四、中空纤维式膜组件225第四节膜分离技术及应用226一、膜分离的基本流程226二、膜分离的应用227第八章泡沫浮选分离技术/233第一节概述233第二节浮选装置和操作235第三节离子浮选法236第四节沉淀浮选法238一、氢氧化物沉淀浮选238二、有机试剂沉淀浮选239第五节溶剂浮选法240

  • 【原创大赛】拉考沙胺系统杂质分离——多个厂家色谱柱的比较

    【原创大赛】拉考沙胺系统杂质分离——多个厂家色谱柱的比较

    [align=left][font=宋体][size=10.5pt]我知道纳谱分析这个品牌有一年多的时间,听销售介绍是用了世界顶端填料[/size][/font][font=宋体][size=10.5pt]-[/size][/font][font=宋体][size=10.5pt]纳微科技的单分散硅胶,在前赛默飞世尔色谱工作者刘晓东博士和前月旭科技创始人姚立新先生的创立下成立的,结合了国内外先进的键合和封端技术,技术领先而成熟,色谱柱优异而稳定,产品上市就有很好的体验。[/size][/font][/align][font=宋体][size=10.5pt]一直没有合适的项目和时间去体验,近期才初步体验了下纳谱分析的色谱柱,具体请了解文中[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]拉考沙胺系统杂质分离[/font][/size][/font][font=宋体][size=10.5pt]。[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]本次拉考沙胺系统杂质分离采用纳谱分析[/font]ChromCore 120 C18(250×4.6mm,5μm)[font=宋体]色谱柱分别和[/font][font=Times New Roman]Boschron ODS((250×4.6mm,5μm) [/font][font=宋体]色谱柱,[/font][font=Times New Roman]Inertsil ODS-2((250×4.6mm,5μm) [/font][font=宋体]色谱柱,[/font][font=Times New Roman]AmrritechAccurasil C18[/font][font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][font=宋体]色谱柱,岛津[/font][font=Times New Roman]Wondasil C18[/font][font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][font=宋体]色谱柱[/font][/size][/font][font=宋体][size=10.5pt],[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore C18(250×4.6mm,5μm)[font=宋体]色谱柱比较杂质[/font][font=Times New Roman]1[/font][font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体],杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质[/font][/size][/font][font=宋体][size=10.5pt]4[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]的分离效果。[/font][/size][/font][font=宋体][size=10.5pt][font=宋体]共采用了[/font]6[font=宋体]款不同的色谱柱进行分离。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体][b]色谱条件:[/b][/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]流动相:[/font]A[/size][/font][font=宋体][size=10.5pt])[/size][/font][font='Times New Roman'][size=10.5pt]0.02mol/L[font=宋体]磷酸二氢铵(磷酸调节[/font][font=Times New Roman]pH=2.5[/font][font=宋体]);[/font][/size][/font][font='Times New Roman'][size=10.5pt]B[/size][/font][font=宋体][size=10.5pt])[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]乙腈,梯度洗脱:[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]波长:[/font]210nm[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]流速:[/font]1.0ml/min[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]柱温:[/font]35℃[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]进样体积:[/font]10μl[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]进样浓度:[/font]2mg/ml[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]稀释剂:[/font]A[/size][/font][font=宋体][size=10.5pt]:[/size][/font][font='Times New Roman'][size=10.5pt]B=85[/size][/font][font=宋体][size=10.5pt]:[/size][/font][font='Times New Roman'][size=10.5pt]15[font=宋体];[/font][/size][/font][font='Times New Roman'][size=10.5pt]1. [/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore 120 C18(250×4.6mm,5μm)[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2 [/font][font=宋体]分离[/font][/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]度:[/font]1.6[/size][/font][font=宋体][size=10.5000pt]88[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体],杂质[/font][/size][/font][font=宋体][size=10.5000pt]3[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]与杂质[/font][/size][/font][font=宋体][size=10.5000pt]4[/size][/font][font='Times New Roman'][size=10.5000pt][font=宋体]分离度:[/font]2.[/size][/font][font=宋体][size=10.5000pt]302[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]1[font=宋体]、[/font][font=Times New Roman]2[/font][font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231159354626_4657_3527267_3.png!w690x351.jpg[/img][/font][/size][/font][img=,552,282]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231200257429_8238_3527267_3.png!w552x282.jpg[/img][b][font='Times New Roman'][size=10.5pt]2[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt]Boschron ODS((250×4.6mm,5μm) [/size][/font][/b][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:1.500[/font][/size][/font][font=宋体][size=10.5pt],[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]杂质[/font]3[font=宋体]与杂质[/font][font=Times New Roman]4[/font][font=宋体]分离度[/font][font=Times New Roman]:1.648[/font][font=宋体]。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]3[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt] [img=,690,346]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231200579112_656_3527267_3.png!w690x346.jpg[/img][/size][/font][font='Times New Roman'][size=10.5pt][b]3[font=宋体].[/font][font=Times New Roman]Inertsil ODS-2((250×4.6mm,5μm) [/font][/b][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:1.489[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]4[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt][img=,690,346]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201131214_9504_3527267_3.png!w690x346.jpg[/img] [/size][/font][font='Times New Roman'][size=10.5pt]4[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt]AmrritechAccurasil C18[font=宋体]柱[/font][font=Times New Roman]((250×4.6mm,5μm) [/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:0.408[/font][/size][/font][size=10.5pt][font=宋体]如图[/font][font=Times New Roman]5[/font][font=宋体]:[/font][/size][size=10.5pt][font=宋体][img=,690,351]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201286206_8976_3527267_3.png!w690x351.jpg[/img][/font][/size][font='Times New Roman'][size=10.5pt]5[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]岛津[/font]Wondasil C18[font=宋体]柱[/font][font=Times New Roman](250×4.6mm,5μm) [/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:0.700[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]6[font=宋体]:[/font][/size][/font][font='Times New Roman'][size=10.5000pt][img=,690,345]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201437477_9002_3527267_3.png!w690x345.jpg[/img] [/size][/font][font='Times New Roman'][size=10.5pt]6[/size][/font][font=宋体][size=10.5pt].[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]纳谱分析[/font]ChromCore C18(250×4.6mm,5μm)[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]结果:杂质[/font]1[font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体]分离度[/font][font=Times New Roman]:2.342[/font][font=宋体];杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质[/font][font=Times New Roman]4[/font][font=宋体]分离度:[/font][font=Times New Roman]1.124[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]如图[/font]7[font=宋体]:[/font][/size][/font][img=,690,338]https://ng1.17img.cn/bbsfiles/images/2020/06/202006231201564199_3900_3527267_3.png!w690x338.jpg[/img][font='Times New Roman'][size=10.5000pt][color=#0000ff]结论:[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]杂质1与2的分离效果最好的是纳谱分析ChromCore C18,分离度2.342;[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第二为纳谱分析ChromCore 120 C18,分离度1.6[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]88[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff];[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第三为Boschron ODS。[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]杂质3与4的分离效果最好的是纳谱分析ChromCore120 C18,分离度2.[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]302[/color][/size][/font][font=宋体][size=10.5000pt][color=#0000ff]第二为[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]Boschron ODS,分离度1.648;[/color][/size][/font][font='Times New Roman'][size=10.5000pt][color=#0000ff]第三为纳谱分析ChromCore C18,分离度1.124。[/color][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]综上所述,在拉考沙胺系统杂质分离上,选择纳谱分析[/font]ChromCore120 C18[font=宋体]对杂质[/font][font=Times New Roman]1[/font][font=宋体]与杂质[/font][font=Times New Roman]2[/font][font=宋体],杂质[/font][font=Times New Roman]3[/font][font=宋体]与杂质的分离上,综合最优。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]除此项目,我这边还[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]用了[/font]ChromCore120 C8[/size][/font][font='Times New Roman'][size=10.5pt](250×4.6mm,5μm) [font=宋体],[/font][/size][/font][font='Times New Roman'][size=10.5pt]ChromCore120 C18[/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]([/font]3μm, 4.6×150mm[font=宋体]),体验了下不同规格的[/font][/size][/font][font=宋体][size=10.5pt]C[/size][/font][font='Times New Roman'][size=10.5pt]18[font=宋体]和[/font][/size][/font][font=宋体][size=10.5pt]C[/size][/font][font='Times New Roman'][size=10.5pt]8[font=宋体]的效果,初步感觉很好,国产的价格,进口色谱柱的品质。希望质量一直稳定,价格完美。[/font][/size][/font][font='Times New Roman'][size=10.5pt][font=宋体]感谢纳谱分析技术(苏州)有限公司提供的分享机会,感谢阅读和投票的读者。[/font][/size][/font][color=#000099]本文为【纳谱分析第一届征文活动】获奖作品,原作者信息:[/color][color=#000099][font=宋体][size=12.0000pt]合肥信风科技开发有限公司 [/size][/font][font=宋体][size=12.0000pt]张**[/size][/font][/color]

  • 〈高速逆流分离技术及应用〉

    [em01] 书 名 高速逆流色谱分离技术及应用 定 价 48元 作 者 曹学丽 开 本 16开 出 版 社 化工出版社 总 页 数 I S B N 7-5025-6518-3 加入日期 2005-4-28 高速逆流色谱(HSCCC)技术正在发展成为一种备受关注的新型分离纯化技术,已经广泛应用于生物医药、天然产物、食品和化妆品等领域。本书详细介绍了HSCCC的理论、技术与应用,全书共分15章,第1~4章着重阐述逆流色谱(CCC)基础知识以及HSCCC分离机理、工作方法及溶剂选择策略;第5~8章主要介绍近年来HSCCC发展过程中形成的新技术、新方法,包括分析型高速逆流色谱、双向逆流色谱、pH区带精制逆流色谱、正交轴逆流色谱;第9~15章对逆流色谱技术(主要是HSCCC技术)在各个领域的应用研究成果进行了报道,包括HSCCC在天然植物有效成分、海洋生物活性成分、抗生素的分离中的应用,双水相逆流色谱、离心沉淀色谱在蛋白质等分离中的应用,逆流色谱在手性分离和天然药物工业中的应用。 可供天然产物、中药、药品、食品、化妆品及生物工程等领域的研发人员、技术(分析、分离等)人员使用,也可供高等院校相关专业师生参考。" "第1章逆流色谱基础 11逆流色谱的概念 12逆流色谱的发展 121逆流分溶法 122液滴逆流色谱 123离心分配色谱和螺旋管式逆流色谱 124高速逆流色谱和正交轴逆流色谱 125pH区带精制逆流色谱 126离心沉淀色谱 127螺线形圆盘柱式高速逆流色谱 128逆流色谱的发展趋势 13现代逆流色谱仪器体系 131流体静力学平衡体系 132流体动力学平衡体系 133两种体系的逆流色谱仪的比较 14逆流色谱的基本色谱理论 141溶质的保留 142保留因子和选择性 143分离度 15逆流色谱和液相色谱的比较 151理论塔板数的工作范围 152逆流色谱的制备性分离 153逆流色谱和液相色谱的互补性 参考文献 第2章高速逆流色谱分离机理 21重力场中旋转螺旋管内流体动力分布 22不用旋转密封接头的流通式离心分离仪 23同步行星式运动旋转螺旋管内流体动力分布 24高速逆流色谱的单向流体动力平衡机理 25高速逆流色谱仪器系统 26相分布图 27影响相分布的物理参数 271β值的影响 272溶剂体系的物理特性和分层时间 273温度对分层时间的影响 参考文献 第3章高速逆流色谱工作方法 31溶剂体系的准备 311溶剂体系的选择原则 312几种常用的溶剂体系选择方法 313溶剂体系的平衡 314温度的影响 32柱系统的准备 33样品溶液的准备和进样 34洗脱方式 341梯度洗脱 342双向洗脱 343清空柱子 35检测 351紫外可见光检测器 352蒸发光散射检测器 353傅里叶红外光谱检测器 354薄层色谱检测器 36高速逆流色谱的优点 参考文献 第4章溶剂体系的选择策略 41溶剂体系的物理参数 411Hildebrand溶解度参数 412Snyder吸附溶剂强度参数 413Rohrschneider和Snyder极性参数 414Reichardt极性指数 415HSCCC中应采用的极性指数 42三元溶剂体系 421三元相图 422三元相图的类型 423三元溶剂体系的选择策略 43多元溶剂体系 431Ito方法 432Oka方法 433HBAW方法 434ARIZONA方法 435扩展的“ARIZONA”方法 436乙基乙二醇二甲基醚体系 437丙酮溶剂系列 438Abbott方法 44一种实用性的溶剂选择思路 参考文献

  • 【资料】Agilent 1200系列快速高分离液相色谱系统培训文档

    Agilent 1200系列快速高分离液相色谱系统培训文档安捷伦1200系列快速高分离 LC 系统,与常规 HPLC 相比,在没有牺牲分辨率、精密度和灵敏度的前提下,分析速度提高20倍,高分辨率提高60%。安捷伦1200系列快速高分离液相系统可提供最快分析速度、最高分辨率,同时最大限度地保持系统低压力而设计的。因此,它保留了常规 HPLC 仪器和方法的耐用性和工作原理。这种独特的设计使1200 RRLC成为了一种通用的液相分析流速范围适合的柱尺寸从1 到4.6-mm ID, 10 到 300-mm 柱长,粒度1.5到 10 µ m。 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67227]安捷伦1200系列快速高分离系统[/url]

  • 【转帖】HPLC 系统:样品鉴定和分离的工具

    HPLC 系统:样品鉴定和分离的工具高效液相色谱法(HPLC)已经从早期的色谱技术发展成为一种具有许多专门用途的精调处理方法了。这种技术可以广泛地用于分离混合物样品中的溶质——这对于辨认混合物样品中的成分来说意义重大。例如,HPLC经常用于鉴定组织匀浆中出现的多肽的丰度。另外HPLC对少量样品来说也十分有用,因为这种技术十分灵敏,而且不会破坏样品,所以对于热不稳定样品来说比较安全。和其他类型的液相色谱一样,HPLC操作流程首先是将样品注入到装有小颗粒填料的色谱柱(固相色谱柱)中。色谱柱的长度一般为5-30 cm(近期更多的倾向于小型化) ,内直径一般为1-9 mm,内部填料颗粒的直径为3-10 mm。样品在流动的液相中移动,液相可以根据样品和分离物的性质来选择不同的溶剂混合物。当液相流过柱子之后,样品中的每一种成份会被分别洗脱;液流检测器记录下每一种洗脱的成分,从而能够测量单个成分特有的保留时间。样品中与固相相互作用较强的成分具有较长的保留时间,并且洗脱较迟;而与固相相互作用较弱的成分则保留时间较短,在色谱柱内流动更快,洗脱较早。如果要选择HPLC系统,个人觉得必须首先了解你所需要的色谱柱的特性,这是由样品的性质决定的。目前有许多种色谱柱:利用离子交换、分子筛、生物亲和、和样品的手性等等。同时也要根据所需的色谱层析规模来选择合适的HPLC系统。总的来说,分析型色谱适合用于样品中成分的鉴定和定量,通常在皮克到毫克的水平;而制备型色谱的则适合于获得纯化的分离样品,通常在毫克到千克的水平。选择时同样也需要考虑选择一种合适的检测器,如紫外光,折射率、荧光和质谱检测器等。以下是根据Biocompare网站选择的目前市场上提供的HPLC系统的不同特点。

  • 色谱实验,系统适应性无法通过主要由哪些原因导致?

    [font=&][size=15px][color=#2f3034]1.仪器因素1.1仪器状态不佳色谱仪的某些部件如检测器、泵、进样器等可能处于非正常工作状态,影响系统性能。1.2色谱柱问题色谱柱型号不匹配:色谱柱的选择应根据分析物的性质进行优化,不合适的色谱柱可能导致分离度不佳。1.3色谱柱污染或损坏长时间使用或不当操作可能导致色谱柱污染或损坏,影响分离效果和峰形。1.4气体供应问题载气或辅助气体的纯度不足、压力不稳或流量设置不当,都可能影响色谱分离效果。2.样品因素2.1样品处理不当样品前处理步骤中的任何失误,如提取、净化、浓缩等,都可能导致样品组成发生变化,进而影响系统适用性。2.2样品浓度或体积不合适样品浓度过高或过低,以及进样体积不准确,都可能影响峰面积、峰高和分离度等参数。3.实验条件因素3.1流动相条件不合适流动相的组成、pH值、流速等条件设置不当,可能导致分离度下降、峰形拖尾等问题。3.2温度设置不当柱温、检测器温度等设置不合理,可能影响样品的汽化、分离和检测效果。3.3分流比设置不当在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中,分流比设置过大或过小都可能导致灵敏度下降或峰形失真。4.操作因素4.1进样技术不佳进样量不准确、进样速度过快或过慢,以及进样针头的污染或损坏,都可能影响峰面积和峰形的重复性。4.2系统维护不当定期对色谱系统进行清洗、维护和校准是确保系统适用性的关键。忽视这些维护工作可能导致系统性能下降。5.其他因素5.1环境干扰实验室环境中的温度、湿度、电磁干扰等因素也可能对色谱系统产生一定影响。5.2软件或硬件故障色谱仪的数据处理软件或硬件出现故障,可能导致数据不准确或无法处理。[/color][/size][/font]

  • 常用的色谱分离方法

    在生物大分子纯化分析特别是蛋白质纯化分析中,色谱是非常重要而且常用的一种技术。 一、凝胶过滤  凝胶过滤又叫分子筛色谱,其原因是凝胶具有网状结构,小分子物质能进入其内部,而大分子物质却被排除在外部。当一混合溶液通过凝胶过滤色谱柱时,溶液中的物质就按不同分子量筛分开了。 二、离子交换色谱  离子交换色谱是在以离子交换剂为固定相,液体为流动相的系统中进行的。离子交换剂是由基质、电荷基团和反离子构成的。离子交换剂与水溶液中离子或离子化合物的反应主要以离子交换方式进行,或借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。 三、吸附色谱  1、 吸附柱色谱  吸附柱色谱是以固体吸附剂为固定相,以有机溶剂或缓冲液为流动相构成柱的一种色谱方法。 2、 薄层色谱  薄层色谱是以涂布于玻板或涤纶片等载体上的基质为固定相,以液体为流动相的一种色谱方法。这种色谱方法是把吸附剂等物质涂布于载体上形成薄层,然后按纸色谱操作进行展层。 3、 聚酰胺薄膜色谱  聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小。色谱时,展层剂与被分离物在聚酰胺膜表面竞争形成氢键。因此选择适当的展层剂使分离在聚酰胺膜表面发生吸附、解吸附、再吸附、再解吸附的连续过程,就能导致分离物质达到分离目的。  四、 亲和色谱   亲和色谱是根据生物大分子和配体之间的特异性亲和力,将某种配体连接在载体上作为固定相,而对能与配体特异性结合的生物大分子进行分离的一种色谱技术。亲和色谱是分离生物大分子最为有效的色谱技术,分辨率很高。 亲和色谱的原理与众所周知的抗原一抗体、激素一受体和酶一底物等特异性反应的机理相类似,每对反应物之间都有一定的亲和力。正如在酶与底物的反应中,特异的废物(S'')才能和一定的酶(E)结合,产生复合物(E-S'')一样。在亲和色谱中是特异的配体才能和一定的生命大分子之间具有亲和力,并产生复合物。而亲和色谱与酶一底物反应不同的是,前者进行反应时,配体(类似底物)是固相存在;后者进行反应时,底物呈液相存在。实质上亲和色谱是把具有识别能力的配体L(对酶的配体可以是类似底物、抑制剂或辅基等)以共价键的方式固化到含有活化基团的基质M(如活化琼脂糖等)上,制成亲和吸附剂M-L,或者叫做固相载体。而固化后的配体仍保持束缚特异物质的能力。 因此,当把围相载体装人小色谱柱(几毫升到几十毫升床体积)后,让欲分离的样品液通过该柱。这时样品中对配体有亲和力的物质S就可借助静电引力、范德瓦尔力,以及结构互补效应等作用吸附到固相载体上,而无亲和力或非特异吸附的物质则被起始缓冲液洗涤出来,并形成了第一个色谱峰。然后,恰当地改变起始缓冲 液的PH值、或增加离子强度、或加人抑③剂等因子,即可把物质S从固相载体上解离下来,并形成了第M个色谱峰(见图6-2)。显然,通过这一操作程序就可把有效成分与杂质满意地分离开。如果样品液中存在两个以上的物质与固相载体具有亲和力(其大小有差异)时,采用选择性缓冲液进行洗脱,也可以将它们分离开。用过的固相载体经再生处理后,可以重复使用。  上面介绍的亲和色谱法也是特异性配体亲和色谱法。另外还有通用性配体亲和色谱法。这两种亲和色谱法相比,前者的配体一般为复杂的生命大分子物质(如抗体、受体和酶的类似底物等),它具有较强的吸附选择性和较大的结合力。而后者的配体则一般为简单的小分子物质(如金属、染料,以及氨基酸等),它成本低廉、具有较高的吸附容量,通过改善吸附和脱附条件可提高色谱的分辨率。  五、聚焦色谱  聚焦色谱也是一种柱色谱。因此,它和另外的色谱一样,照例具有流动相,其流动相为 多缓冲剂,固定相为多缓冲交换剂。  聚焦色谱原理可以尝试从PH梯度溶液的形成、蛋白质的行为和聚焦效应三方面来阐述。 1、PH梯度溶液的形成  在离子交换色谱中,PH梯度溶液的形成是靠梯度混合仪实现的。例如,当使用阴离子 剂进行色谱时,制备PH由高到低呈线性变化的梯度溶液的方法是,在梯度仪的混合室(这色谱柱者)中装高PH溶液,而在另一室装低PH极限溶液,然后打开色谱柱的下端出口,让洗脱液连续不断地流过柱体。这时从柱的上部到下部溶液的PH值是由高到低变化的。而在聚焦色谱中,当洗脱液流进多缓冲交换剂时,由于交换剂带具有缓冲能力的电荷基团,故PH梯度溶液可以自动形成。   2.蛋白质的行为  蛋白质所带电荷取决于它的等电点(PI)和色谱柱中的PH值。当柱中的PH低于蛋白质的PI时,蛋白质带正电荷,且不与阴离于交换剂结合。而随着洗脱剂向前移动,固定相中的PH值是随着淋洗时间延长而变化的。当蛋白质移动至环境PH高于其PI时,蛋白质由带正电行变为带负电荷,并与阴离子交换剂结合。由于洗脱剂的通过,蛋白质周围的环境PH 再次低于PI时,它又带正电荷,并从交换剂解吸下来。随着洗脱液向柱底的迁移,上述过程将反复进行,于是各种蛋白质就在各自的等电点被洗下来,从而达到了分离的目的。   不同蛋白质具有不同的等电点,它们在被离子交换剂结合以前,移动之距离是不同的,洗脱出来的先后次序是按等电点排列的。

  • 【资料】高速逆流色谱介绍---天然产物资源分离纯化和制备中的应用(引言)

    随着全球“回归自然”的热潮,对天然植物活性成分的研究开发也就成了当前医药、食品、化妆品等领域的热点,基于天然产物资源开发的产业已被认为是世界上最有前途、最具生机的行业之一。从天然植物资源中分离天然活性成分具有很多的困难和问题,因为大多数植物资源中所含有的活性成分含量低,且存在于复杂的介质中,色谱分离法一直是天然产物成分分离的常用的方法,例如有柱色谱法和制备型高效液相色谱法等,但是,物质在固态填充物的不可逆吸附和变性是固相色谱所遇到的共同问题。另外,从分析到制备规模的放大,所需费用也相当昂贵。逆流色谱是一种无需任何固定相支撑体的液-液分配色谱分离技术,不存在对样品组分的吸附、变性、失活、拖尾等不良影响,节省填充材料和溶剂消耗;它的操作简便,重现性好,分离量较大,粗提物样品可以直接进样分离。目前已有许多成功应用的实例作为参考,所以在操作时溶剂系统的变换更为方便、快捷。对天然产物的分离纯化,是高速逆流色谱非常适合的应用领域。我国是世界上最早将逆流色谱技术应用于天然植物和中草药成分分离纯化的国家。早在1980年,张天佑教授就自行研制出了国产的逆流色谱仪,并开创了在天然植物和中草药领域的应用研究工作 。此后的20多年中,越来越多的中国科技工作者利用我国的资源优势和技术优势,在这一技术领域和应用领域做出了成绩和贡献。 不同种类天然产物的分离虽然已有文献总结,但系统性和更新程度还有待完善。山东省科学院分析测试中心王晓研究员的研究团队以在天然产物分离方面取得的优异成绩为基础,对不同种类的天然产物分离正在进行全面的最新的总结。不日,最新的不同种类天然产物的分离总结及独有的相关见解将面世。

  • 【分享】专家评测:中国分离技术的市场概览

    【分享】专家评测:中国分离技术的市场概览

    中国的迅速发展不断地促进分离科学[color=#515151]技术[/color]的快速增长。分离科学这一市场包括的技术有高效液相色谱(HPLC)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]([url=https://insevent.instrument.com.cn/t/Mp]gc[/url])、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url](IC)、低压液相色谱(LPLC)、快速色谱(Flash)、薄层色谱(TLC)、化学传感(chemical sensing)、毛细管电泳(CE)以及不连续流或连续流分析仪(discrete and continuous flow analyzers)。上述仪器分类有[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相分离技术,主要为色谱技术。2009年,中国分离技术的[color=#515151]销售[/color]额达到5.52亿美元,而从2004到2009年,平均增长率是14%。所有的分离仪器均包含以下部分:某种类型的进样器、样本从中流过的流动相传输系统、填装某种固定相的色谱柱、毛细管、一个或两个检测器,用来检测从色谱柱中流出物质的性质或数量的变化。流动相根据采用的技术存在不同的类型,如液体、气体或超临界流体等等。除此之外,还有一些高端的检测器,如质谱或红外也可以与分离技术联用,比如:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS,LC/MS和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/FT-IR。 [font=Arial]  超临界流体色谱(SFC)是一种杂合了[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]和HPLC的技术,它的流动相是一种超临界流体,兼有气体和液体的性质,仪器的参数和检测器可采用标准的技术。在所有的分析型色谱技术中,色谱过程最终的结果是混合物在分离材料(如色谱柱)中被按照不同的时间分离开。一个或多个检测器必须被放在柱子的出口处去在线检测,大多数情况下,能够在给定的条件下鉴定流出的组分。[/font][font=Arial]  最简单的色谱检测器是非选择性的。测量的是流体的参数,比如[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的热导检测器或液相中的示差检测,当流动相中存在除载体外的某些物质时,流体参数就会发生变化。这类检测器可以检测出正在流出的物质,并且大概地估计出总流动相除载体外还有哪些馏分组成,但这类检测器无法告知所分析材料到底是何种物质。对于一种给定的流动相,在一定的流速/压力/温度条件下,一种特定的物质将在一个特定的时间从柱中流出。留出时间的间隔——即保留时间——是色谱的基本参数。[/font][font=Arial]  然而,许多物质的保留时间是相近的或者会受系统中不确定参数的影响。因此,可以鉴定流出物质的检测器是很有用的。通用的检测器有紫外-可见吸收检测器和质谱,紫外-可见吸收检测器可以测定某种物质或某组物质在特定波长的光吸收特性,而质谱则可以对混合物组分进行详细的定性和定量分析。[/font][font=Arial]  毛细管电泳是将传统电泳的分离特性和HPLC快速方便的特点结合的一种技术。其分离机理与在色谱柱中发生的过程存在很大的不同,但最终结果相似,在线检测器检测到的是对应于各个样本的一系列峰。但是,毛细管电泳使用的溶剂量极少且使用的毛细管非常短,因此,得到分析结果更加快速。[/font][font=Arial]  分离制备技术显得越来越重要。严格地说,制备色谱并不是真正的[color=#515151]分析仪器[/color],而是实验室色谱的放大版本,制备色谱用于分离出复杂混合物可用量级的馏分,这些混合物通常是经合成步骤产生的。制备色谱可有效地简化合成,合成过程只需产生一系列混合产物而不是单一的纯物质。此外,制备色谱在生产和制造中也发挥着作用。[/font][font=Arial]  分离技术包括各种类型的色谱和如毛细管电泳这样的相关技术。在中国,分离市场主要被标准[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相色谱占据。其中HPLC占据的份额最大,预计今后5年由于[url=http://www.pharmacy.hc360.com/][color=#515151]制药[/color][/url]工业、公共部门和[url=http://www.food.hc360.com/][color=#515151]食品[/color][/url]分析领域的需求,中国市场对HPLC的需求会增长近14%。[/font][font=Arial]  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]市场是第二大分离市场,但由于[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的主要应用领域[color=#515151]石油[/color]和天然气工业的需求非常稳定,增长要慢得多。食品工业对[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的需求量很大,但在新兴的食品安全应用领域LC似乎更加受到青睐。[/font][font=Arial]  一些较小的独立技术目前正在兴起,增长率达20%,在短期内还会增长。售后是分离市场非常重要的部分,对色谱柱和其它[color=#515151]耗材[/color]需求的增长,将会在2010年使售后市场份额首次超过整机系统。[/font][font=Arial]  2009年,HPLC在分离市场占的份额最大,整机系统销售额大于1亿美元 如包括售后和服务在内,这个数字达2.6亿美元,在中国分离市场中占据半壁江山。HPLC作为最重要的分离技术,其应用领域涉及环境测试、食品和制药,而这三个领域在中国增长迅猛,预计将使HPLC在未来5年保持13.6%的年增长率,预计到2014年,HPLC整机系统年销售额将破2亿美元。[/font][align=center][img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006042014_222353_1643632_3.jpg[/img][/align]整体看来,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]占37%的分离市场份额。但与HPLC相比,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]整机系统增长缓慢得多,约为4.3%。相对缓慢的增长主要是因为这两项主要技术应用的工业领域不同,同时也是因为中国国内[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]生产商的价格竞争影响。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]在生命科学领域的应用较少,而[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]占据份额最大的化学领域市场在今后几年预计发展尤其困难。尽管如此,中国在全球[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]市场中占有13% 的份额,是最重要的市场之一。[font=Arial]  [url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]在中国的环境和食品领域应用十分广泛,成为了第二大分离技术,占中国分离市场份额的8%。预计今后几年IC的增长将会超过15%。低压液相色谱 (Low-pressure liquid chromatography,LPLC)和毛细管电泳 (capillary electrophoresis,CE)系统,仍在市场中保持重要地位。其它分离技术均占不到1% 的中国分离市场份额 不过这些其它分离技术的增长预计将会超过10%,特别是对于连续流/非连续流分析仪分析仪,估计增长率将达18%。这些其它技术的销售额在2014年预计将达到四百万美元。[/font][font=Arial]  售后通常占有较大的市场份额,今后几年同样会迅猛增长。到2014年,售后市场(包括再配置的检测器、[color=#515151]试剂[/color]、溶剂和其它消耗品)将占据分离市场的一半份额。售后市场增长的驱动力来自于整机系统的销售和趋向于更加完善的工作流程。[/font][font=Arial]  平均起来,全球近9% 的分离技术需求均来自中国。目前,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]在中国的影响最大,每项技术均占据了10% 以上的全球市场份额。中国占全球HPLC、LPLC和毛细管电泳市场的5%。目前为止,尽管中国制药实验室对快速色谱的需求增加,但其在中国分离市场的影响力是减弱的。综合所有上述技术,2009年在中国销售的初始系统达九千余套,其中一半是[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],HPLC两千多套,IC近千套。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]的价格将持续下降,而相对来说,进口HPLC的价格尚能保持较高,因为中国产HPLC的技术还不够可靠。 [img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006081430_222972_1622715_3.jpg[/img][/font][align=center][font=黑体]图2 2009年中国分离技术的市场分布(按行业划分)[/font][/align]  中国制药实验室是目前分离技术最大的消费群,占据了24%的分离技术市场需求份额,且分离技术在制药实验室的增长会略微超过平均值,有助于增加其主导地位,并且在2012年达到2亿美元。科研领域是分离技术的第二大消费群,占13%的市场份额。政府在教育和高校建设方面的支出增加促进了分离技术在科研领域的增长。食品和农业领域的增长最快。对安全问题的关注正在驱动这一市场在分离测试仪器中发挥更大的作用。长期来看,食品工业的其它应用将有助于推动分离仪器在质量监控领域的增长,同时会促进新食品产品和配方的研究。  石油和天然气实验室对分离技术的需求增长将不会太迅速,但是这一工业仍会占据12% 的市场份额。其中一部分的增长来自对新燃料和生物燃料的研究。中国政府实验室的需求大致划分为检测实验室(环境检测和食品安全检测)和主要从事研究的实验室。对食品安全的关注将会推动政府检测的增长。  化学领域也是分离技术的一大消费群,今后几年的增长将会比较温和。生命科学相关的行业,如生物技术和CRO企业对分离技术的需求预计将会迅速增长,但这些行业只占市场总额的9%。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006081431_222973_1622715_3.jpg[/img][align=center][font=黑体]图3 2009年中国分离技术的市场分布(按用途划分)[/font][/align]  中国的质量保证/质量控制(QA/QC)实验室是分离仪器的最大消费群,占37%,应用研发实验室,包括许多制药实验室,占19%。分析服务和基础研究实验室分别占16%和15%,紧随其后。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制