当前位置: 仪器信息网 > 行业主题 > >

质谱碰撞电压能量

仪器信息网质谱碰撞电压能量专题为您提供2024年最新质谱碰撞电压能量价格报价、厂家品牌的相关信息, 包括质谱碰撞电压能量参数、型号等,不管是国产,还是进口品牌的质谱碰撞电压能量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱碰撞电压能量相关的耗材配件、试剂标物,还有质谱碰撞电压能量相关的最新资讯、资料,以及质谱碰撞电压能量相关的解决方案。

质谱碰撞电压能量相关的资讯

  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 基于碰撞反应池多接收等离子体质谱的K-Ca-Fe同位素高精度分析
    以Nu Sapphire为代表的最新一代含碰撞池CC-MC-ICP-MS,配有传统MC-ICP-MS的高能通道(6kV加速电压)和基于碰撞池技术的低能通道(4kV加速电压),其中六级杆碰撞反应池使用氢气和氦气,能够有效去除各种含氩基团对41K+、40Ca+和56Fe+等造成的干扰(图1),因此可以在低分辨模式下对K、Ca及Fe同位素开展高精度分析,可有效降低样品测试含量,有利于珍贵样品和低含量样品分析。   中国科学院地质与地球物理研究所成矿元素与同位素分析实验室于2021年4月安装了Nu Sapphire,实验室人员李文君、高炳宇、王静和苏本勋等通过系统优化新一代碰撞反应池(CC)-MC-ICP-MS(Nu Sapphire)的低能路径参数,使用低分辨+碰撞反应池技术,相继建立K、Ca及Fe同位素分析测试方法。 图1 碰撞反应池多接收等离子体质谱工作原理(以K为例)   K同位素:K溶液上机浓度降低至200 ng/g,δ41K的长期精度小于0.04‰ (2SD);在标样-样品间插法的测试分析中,样品和标样的K浓度匹配可扩大至20%,大大提高分析效率;10种地质标样的K同位素分析结果与文献报导一致(图2),并首次报道了锰结核(NOD-P-1)和铁建造(FeR-2,FeR-4)的K同位素组成,为铁、锰样品的实验室数据比对提供新的依据。 图2 地质标样与文献中δ41K值的比对   Ca同位素:实现了40Ca、42Ca和44Ca的同时测定,将Ca测试浓度降低至100 ng g-1,δ44/40Ca的长期精度与TIMS相似(2SD 图4 地质标样与文献中δ56Fe的比对   以上研究成果发表于Science China Earth Sciences和Journal of Analytical Atomic Spectrometry上。本研究受中国科学院地质与地球物理研究所实验技术创新基金(批准号:TEC 202103)和中国科学院青年创新促进会共同资助。   1. Li W, Cui M, Pan Q, et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Science China Earth Sciences, 2022, 65(8): 1510-1521. DOI: 10.1007/s11430-022-9948-6. [李文君*, 崔梦萌, 潘旗旗, 王静, 高炳宇, 刘善科, 袁梦, 苏本勋*, 赵野, 滕方振, 韩贵琳. 碰撞反应池MC-ICP-MS(Nu Sapphire)高精度钾同位素分析. 中国科学: 地球科学, 2022, 52(9): 1800-1812.]   2. 高炳宇*, 苏本勋*, 李文君, 袁梦, 孙剑, 赵野, 刘霞. High-precision analysis of calcium isotopes using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA 00150k.   3. 王静*, 唐冬梅, 苏本勋*, 袁庆晗, 李文君, 高炳宇, 陈开运, 包志安, 赵野. High-precision iron isotopic measurements in low resolution using collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1869-1875. DOI: 10.1039/D2JA00084A.
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 中国科学院大连化学物理研究所开发新型多重碎片化碰撞诱导解离技术
    近日,中国科学院大连化学物理研究所所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队在现场检测微型质谱及应用方面取得新进展,基于自主研发的现场快速检测微型质谱(Anal. Chem.,2022),开发了简单易控、高碎片化效率的新型多重碎片化碰撞诱导解离技术,可实现单次进样条件下获得丰富碎片离子信息,对于化学战剂、D品的准确识别,以及新型合成D品的结构解析具有重要意义。  新型D品层出不穷、种类繁多,成为当前D品犯罪案件的突出特点。此外,D品的种类不断翻新,更具伪装性、隐蔽性和迷惑性,使得检测难度大。因此,开发便携式仪器用于新型D品的及早发现,以及传统D品的现场快速准确识别对禁D工作具有重要意义。李海洋团队前期基于微型质谱关键技术,实现了传统D品和新型芬太尼类D品的定性检测(Anal. Chem.,2021;Anal. Chem.,2021;Anal. Chem.,2019;Anal. Chem.,2019),并在云南边境多个检查站开展了推广应用。  传统共振碰撞解离技术需要多次进样才可以获得多重碎片离子信息。本工作中,基于此前构建的现场检测微型质谱,该团队开发了一种简单易控的新型碰撞诱导解离方式技术,可实现单次进样条件下获取多重离子碎片信息。基于对离子阱内微区电场分布的研究,团队还揭示了该技术的微观本质,即增大离子阱质量分析器的直流偏置电压有利于增强径向电场强度,从而驱动离子进入强射频场获得能量、发生碰撞诱导解离。通过调控电场、离子的初始动能和气压等,该碰撞诱导解离技术可实现100%的碎片化率。该技术还可同时获得多个碎片离子,有利于提升识别准确性,实现痕量D品同分异构体的区分、化学战剂的准确识别等。此外,该技术通过分析母离子以及不同碎片离子之间的质量数差异,可实现对D品的结构解析与分类,适用于新型合成D品早期发现预警,在D品稽查、公共安全等领域具有广阔应用前景。  相关研究以“Radial Electric Field Driven Collision-Induced Dissociation in a Miniature Continuous Atmospheric Pressure Interfaced Ion Trap Mass Spectrometer”为题,于近日发表在《美国质谱学会杂志》(Journal of the American Society for Mass Spectrometry)上,并被选为封面文章。该工作的第一作者是我所102组博士研究生阮慧文。上述工作得到国家自然科学基金、我所创新基金等项目的支持。(文/图 王卫国、阮慧文)  文章链接:https://pubs.acs.org/doi/full/10.1021/jasms.3c00324
  • 岛津应用:红外显微光谱法分析车辆碰撞现场微量油漆物证
    汽车油漆是道路交通事故逃逸案中重要的物证信息之一,现场采集油漆样本的光谱特征对于缩小嫌疑车辆范围,同一性认定并确定逃逸车辆有重要意义。 汽车车身油漆由底漆层、中涂层、面漆层、清漆层等组成,不同厂家和车型对应不同的车身油漆。所以汽车油漆隐含着汽车车型的重要信息,是道路交通事故逃逸案中重要的物证信息之一。了解汽车油漆的光谱特征,对于进行同一性认定,缩小嫌疑车辆范围,查找逃逸车辆有重要意义。汽车油漆信息的检测主要由傅立叶红外显微光谱法、扫描电镜/能谱分析法、质谱法、裂解气相色谱法及各种检测方法的联用等。其中红外显微光谱法具有快速、无损、量少、可视化等优点,能够精确测量和分析油漆的成分信息,是目前汽车油漆物证检测中最常用的方法。本文利用红外显微光谱法对车辆碰撞现场采集的微量油漆碎片与肇事嫌疑车辆油漆样本进行红外光谱比对分析,为交通肇事事故分析提供了强有力的技术依据。 本文利用岛津 IRTracer-100 和 AIM-9000 红外显微镜分析某肇事故现场碎片与两辆嫌疑车取样样本进行对比分析,结果表明:嫌疑车 1#取样样本与事故现场发现油漆碎片在 1300 cm-1~1600 cm-1 区间差异性比较明显;而嫌疑车 2#取样样本与事故现场发现油漆碎片结果一致,所以其作为肇事车辆可能性更大。红外显微光谱法具有快速、无损、量少、可视化等优点,能够精确测量和分析油漆的成分信息,为交管部门快速、准确判断肇事事故案件提供了技术依据。 岛津 IRTracer-100 和 AIM-9000 红外显微镜 了解详情,敬请《红外显微光谱法分析车辆碰撞现场微量油漆物证》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 基于高光谱成像技术的青香蕉碰撞损伤检测
    香蕉是中国岭南特色水果之一,香蕉在采收和运送过程中往往处于绿硬期(青香蕉),在此过程中易受到各种碰撞损伤。不同类型碰伤均可加速香蕉果皮活性氧的积累进而导致香蕉果实的衰老腐败 青香蕉受到碰撞损伤后,微生物容易侵染损伤部位,经过催熟过程中的乙烯释放和果实软化后,造成於伤腐烂或黑斑花脸,严重影响其色泽品质和销售价格。因此,亟待寻找一种快速无损检测青香蕉碰撞损伤的方法。为探究有效检测青香蕉早期轻微碰撞损伤的方法,本文结合青香蕉的结构特点利用高光谱技术找出青香蕉关于碰撞损伤特性的特征波长段,实现碰伤程度的区分与可视化。研究为开发青香蕉表面碰伤快速无损检测系统,提高香蕉经济效益具有重要意义。1.材料与方法1.1青香蕉碰撞损伤程度分类青香蕉的品质分级标准14中,果身表面的机械类损伤面积是一个重要指标。标准规定,果身表面无碰压伤的青香蕉属于优等品;碰压伤面积小于1cm² 的属于一等品;碰压伤面积为1~2 cm² 的属于二等品;碰压伤面积大于2cm² ,属于劣等品将不进入市场。将碰伤的香蕉置于温度15℃、相对湿度88%的恒温恒湿环境中保存48 h取出切开,损伤面积如表所示。1.2 高光谱图像采集系统试验可采用彩谱科技有限公司的高光谱成像仪,主要包括高光谱相机、光源、载物台、滑轨、计算机控制硬件和软件系统。光源采用仪器自带的卤素灯,光谱仪的光谱范围为400~1000 nm,采样间隔为2.39 nm,将光谱范围分为256个频带范围。仪器扫描的具体参数设置:曝光时间20 ms,移动台前进速度1.4 cm/s,回退速度2cm/s,镜头与样本距离42 cm。本研究使用的光谱数据由256维图像组成。区别于三维的RGB图像,高光谱图像的数据信息高维且冗余,如果对每份样品的所有图像进行处理,不仅工作量庞大且后续的建模效果不佳。如图所示是同一份样品在不同波段下(500、600、700、800nm)的图像,对比可知:不同波段下的图像其呈现出的碰伤情况存在差异。因此探究青香蕉关于碰撞损伤的特征波段,利用特征波段下的图像提取碰伤部位的光谱数据,可为后续的检测模型提供可靠且精准的数据集。2结果与分析2.1 原始光谱数据预处理结果使用软件进行预处理,首先对原始光谱进行多项式平滑法处理,再采用多元散射校正法对光谱进行预处理,以降低极限漂移和散射效应。对原始样本数据集如图a先进行SG处理,将处理后的光谱曲线再进行多元散射校正法处理。处理后的效果如图b所示。可以看出,预处理后的光谱曲线修正了部分反射率为1的数据,总体曲线更加归一且平滑,噪音点减少,曲线的凹凸处变少。说明该预处理方法效果较好,后续研究所用的光谱数据皆为经过SG和MSC方法预处理后的数据。2.2基于BP神经网络的检测模型和可视化碰伤等级图像通过图像分割流程,将918张灰度图像进图像分割,提取香蕉碰伤部位的轮廓区域,同时利用图像全像素点下的反射率数据,用光谱反射率数据去表示碰伤轮廓区域的每个像素点所代表的信息。对健康样品、轻度碰撞伤样品、中度碰撞伤样品、重度碰撞伤样品的测试集的识别准确率分别为97.53%、92.59%、93.82%和96.29%,平均碰伤程度的判断准确率为95.06%。为了更好地展示分类结果,同时考虑检测的可视化,对每一个像素点用“00”代表健康,标记为黄色RGB(255,255,0) “01”代表轻度碰撞伤,标记为蓝色RGB(67,142,219) “10”代表中度碰撞伤,标记为紫色RGB(128,0,128) “11”代表重度碰撞伤,标记为红色RGB(255,0,0)的方式进行最后的输出显示。其中区域的总体识别结果若有85%以上的相同数值和颜色,那么本区域都用此数值和颜色进行归一显示,最后的可视化图像如图所示。3.结 论本文以青香蕉为研究对象,利用高光谱成像仪采集青香蕉健康表面和不同碰伤程度香蕉的光谱反射率数据和不同波段下的图像信息,结合特征变量筛选对青香蕉的碰撞损伤程度进行了研究,主要结论如下:1)采用3种类型的支持向量机算法,验证了青香蕉碰撞损伤的识别机理以及采用光谱数据和图像信息结合进行无损检测的合理性。2)对通过预处理和异常样本剔除后的数据进行特征波长提取和验证,得到9段特征波长。3)通过获取特征波长段下的图像,提取碰撞损伤区域的轮廓分布边界数据以及该区域的每个像素点对应的光谱反射率数据。将此数据作为BP神经网络的输入层进行训练,最后得到的模型对健康样品、轻度碰撞伤样品、中度碰撞伤样品、重度碰撞伤样品的测试集识别准确率为97.53%、92.59%、93.82%和96.29%。
  • 质检总局采购39台质谱等120万元以上仪器
    2013年5月2日,中国政府采购网发布了4条“国家质检总局2013年120万元以上专用仪器设备采购项目招标公告”,共涉及质谱仪器23台,仪器采购清单如下:   招标编号:13CNIC01-1020 包号 品目号 货物名称 数量(套) 简要技术要求 用户单位 1 1 ICP-MS 1 接口锥的材料不能出现在背景谱图中,对于镍锥,检出限应优于1 ng/L 河北局秦皇岛局 2 电感耦合等离子体质谱仪 1 长期稳定性 (RSD): 100 M cps/ppm 新疆局技术中心 5 电感耦合等离子体质谱仪 1 仪器必须具备碰撞池/反应池技术。碰撞池/反应池所使用的气体必须对仪器没有腐蚀等伤害 浙江局 2 1 气相色谱-串联质谱仪 1 MRM最小驻留时间:1ms 江苏局徐州局 2 GPC-GC-MS 1 控制方式:同时具有软件控制和面板控制两种方式 青海局 3 气相色谱-质谱联用仪 1 分辨率:0.7amu 山东局技术中心 3 1 LNG检测确正专用气相色谱仪 1 满足对C1-C5,C6+烃类化合物,氮气、氧气、氦气、二氧化碳、一氧化碳的检测。 福建局莆田局 2 天然气专用气相色谱仪 1 流量设定范围:0~100mL/min 天津局 3 天然气(含微量形态硫)分析仪 1 温度范围:室温以上4℃~450℃ 山东局技术中心4 1 液相色谱/质谱/质谱仪 1 质量准确度: <0.01% amu(全质量数范围) 山东局技术中心 2 三重四极杆结合线性离子阱质谱仪 1 质量数范围:50~2000amu 云南局技术中心 5 1 液相色谱质谱联用仪(LC/MS) 1 二元泵必须为二元高压混合梯度泵 广东局汕头局 6 1 钨灯丝扫描电子显微镜 1 样品台旋转角度:T≥-10°~+80°;R(旋转)=360°连续 山东局技术中心   招标编号:0773-1341GNZJ13349 包号 品目号 货物名称 数量(套) 简要技术要求 用户单位 1 1 烟草有害物四级杆-线性离子阱分析仪 1 在洗脱剂为高pH或低pH时或需要溶剂强度匹配时,能通过T环等峰聚焦方式在线调节洗脱剂pH值或溶剂强度; 检科院 2 超流体合相色谱高分辨四级杆飞行时间质谱仪 1 仪器分辨率要求1:分辨率最低不小于40,000 FWHM(质量范围m/z :600-1000之间); 检科院 3 痕量添加剂精确鉴定筛查仪 1 APCI正离子50fg利血平(Reserpine) 2000:1(P/P), m/z 609>195。 检科院   招标编号: GXTC-1355008 包号 品目号 货物名称 数量(套) 简要技术要求 用户单位 1 1-1 便携式气质联用仪 1 温度范围覆盖45℃至190℃;质量范围:45~300AMU;质量分析器:四级杆或离子阱;检科院 2 2-1 毫米波实验系统 1 频率范围:10MHz ~ 67GHz;系统测试动态范围(10Hz IFBW)500MHz~26.5GHz:≥123dB,26.5GHz~40GHz:≥107dB,40GHz~67GHz:≥103dB 检科院 3 3-1 转盘型吸烟机 1 抽吸口量在1 – 70ml范围内以0.1ml可调;抽吸口量精确到+/-0.2ml或+/-0.6%的口量(取大值) 检科院 4 4-1 稳定同位素质谱仪 1 绝对灵敏度:不高于1200个分子/Ion(连续流模式);加速电压:3KV 标准院 5 5-1 埋地钢质管道腐蚀防护系统与管体腐蚀检验位置定位测量系统 1 能够实现管道材质硬度测量;能够实现缺陷位置的三维测量;能够测量温度为340℃的管道的剩余壁厚 特检院 6 6-1 阵列涡流检测系统 1 频率数量:不少于8个频率;频率范围:不少于20Hz~4MHz,可调;驱动线圈数量:不少于2个 特检院 7 7-1 断裂力学测试设备 1 断裂力学测试模块:可实现测量温度范围不小于-100℃至300℃,温度控制精度不小于2℃,相关软件模块可以直接计算得出K1C与J1C 特检院 8 8-1 动力电池充放电测试机 1 设备应至少包含2个以上可同时独立使用的通道,同时允许将独立通道串或并联使用;充放电电压范围30-750V(及750V以上);充放电电流范围20-1000A(及1000A以上);最大输出功率不小于240KW 江苏局吴江局 9 9-1 轮胎高速耐久试验机 1 工位数:双工位;转鼓直径:不小于1707.6 mm;转鼓宽度:表面宽度不小于500mm 标准院 10 10-1 循环疲劳试验机 2 采用PLC进行安全逻辑控制,采集卡作为压力采集,保证系统安全及数据采集及时性;脉冲频率:5-12次/分钟 特检院 11 11-1 车辆放射性物质监测系统 2 伽玛能量响应范围:50keV~3MeV;中子能量响应范围:热中子~14MeV;相对湿度:0~ 95%,不结露 江苏局镇江局、泰州局 12 12-1 VOC释放试验箱 1 温度: +60°C~ +85°C,湿度5%RH;不低于+240°C,可调,温差≤±5°C 江苏局   招标编号: 0773-1341GNZJ13272 包号 品目号 货物名称 数量(套) 简要技术要求 用户单位 1 1 超高效液相色谱-串联四极杆质谱联用仪 1 泵耐压力范围:大于等于18000psi 河南-漯河局 2 液相色谱三重四极杆质谱联用仪 1 灵敏度指标:ESI正离子:50fg利血平,m/z609-195, 信噪比≥500:1(p/p),同时满足6针重现性RSD 山西局 2 1 高分辨液质联用系统 1 定量方式:高分辨MS和高分辨MS/MS定量,MS和MS/MS分辨率≥25000 吉林局 2 三重四极杆质谱联用仪 1 可配样品直接进样离子源:样品无需前处理,无需色谱分离,可进行固体,液体样品表面直接离子化进样 吉林局 3 1 液相色谱-四极杆飞行时间串联质 1 仪器分辨率要求1:分辨率最低不小于40,000 FWHM(质量范围m/z 600~1000) 陕西局 2 四极杆串联质谱仪 1 流速范围: 0.010-4.000ml/min,0.001mL/min增量 上海局 4 1 全二维气相色谱-四极杆飞行时间质谱仪 1 质谱分析器:能独立温控四极杆,四极杆温度可控制到200 ˚ C。 上海局
  • 聚浪成潮 以待花开|质谱国产替代之路有多长?——皖仪分析事业部总经理程小卫
    1.质谱应用广泛成长性高 科研分析仪器是生命科学及医药医疗产业的重要基石,其中质谱仪是市场占比最大,均价最贵,技术壁垒最高的主要领域之一。质谱仪作为高端的检测仪器,在环境监测、食品安全、工业过程分析等领域有着广泛的应用,同时这些下游应用需求带动上游质谱仪市场迅速成长。2021 年全球质谱市场大约450 亿元,预计 2026 年全球质谱仪市场规模可达700亿元。2021年国内质谱仪市场大约150 亿元,占全球市场的30%,年复合增长率高达 20%左右,国产化率大约10%。 2.质谱成为国产替代的首要阵地 在精准医学发展的大趋势下,质谱检验以其高通量、高灵敏度、高精度、高分辨率等诸多优势,在生命科学、生物医药、临床诊断、半导体、环保、食品安全等多领域的检测应用中发挥着越来越重要的作用,但目前国内的市场被赛默飞、SCIEX(丹纳赫)、布鲁克、安捷伦、沃特世、岛津等国外巨头垄断,2020年我国进口质谱规模为105.3亿元,国外厂商在中国质谱市场占有率为74.05%。中美贸易冲突以来,进口质谱的技术限制风险加大,国家陆续出台多项政策支持高端科学仪器的国产化,“十四五”、科技部、工信部相关政策均指出供应链设备需要稳定可控的重要方针,并明确仪器的硬性国产采购比例,同时随着一批国内企业在某些质谱仪产品性能上逐渐达到国际水平,加速了开启国产质谱进口替代的进程。根据海关进口数据,我国质谱的进口依赖度由2014年的94.7%降至2020年的74.05%。 3.质谱应用多元渗透,市场空间可观 美国科研端和生物医药医疗端质谱市场占比约70%,国内对标领域由于下游行业标准及市场空间存在客观差距,应用端渗透仍有较大空间,叠加半导体、环保领域的存量市场,未来国产质谱的市场份额可期。随着生物制药、医疗检测、临床诊断、科研院所的质谱应用多元化渗透,2026年对应质谱仪市场有望达到135亿元,叠加其它赛道国内质谱市场有望达到240亿元。质谱流式细胞仪等新兴领域有望带来质谱市场更大增量空间。表 1:质谱的应用领域广阔 4.质谱仪技术原理介绍 质谱仪是一种通过分析待测物质量获取其结构信息的仪器,基本原理为将分析 样品(气体、液体、固相)电离为带电离子,这些离子被检测器检测后即可得到质荷比与相对强度的质谱图,进而推算出分析物中分子的质量。通过质谱图及分子量测量可以对分析物进行定性分析,利用检测到的离子强度可以进行精确的定量分析。质谱仪器主要由五部分组成:样品导入系统、离子源、质量分析器、检测器、数据处理系统。样品导入系统通过合适的进样装置将样品引入并气化,气化后的样品引入到离子源,在离子源的作用下被转换为气态的阳离子(带正电)或阴离子(带负电),电离后的离子通过适量的加速后进入质量分析器,在质量分析器里磁场与电场的共同作用下,会产生不同的运动轨迹,按不同的质荷比分离,到达检测器上,进而由检测器将其转换为不同的电信号,再由计算机将信号转换为质谱图,质谱图为离子信号与质荷比的函数曲线图,对其进行分析,获得结果。质谱仪器中重要的两个部分是离子源和质量分析器。图 1:质谱仪系统结构示意图4.1离子源随着各种离子化方法不断发展,质谱分析技术广泛地应用于许多领域。多种离子化方法在分析应用价值上各具独特之处,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光致电离(APPI),以及基质辅助光解吸离子化(MALDI)等等技术,还包括新型的这些技术除了有宽广的样品适用范围与高灵敏度,还可与色谱仪联用以降低干扰。使用者可根据样品与被分析物的物理化学特性选用适当的离子化方法。表 2:不同离子源原理对比4.2质量分析器不同的质量分析器均有其不同特性,质量分析器分为磁场式与电场式。磁场式分析器有扇形磁场质量分析器与傅里叶变换离子回旋共振质量分析器,电场式分析器有飞行时间、四极杆、轨道阱等质量分析器,每种质量分析器都具有不同的特性与功能。表 3:不同质量分析器原理对比 5.质谱组合方式——串联质谱 串联质谱(MS/MS)通常是指两个以上的质谱分析器借由空间或时间上联结在 一起所组成的分析方式,常以英文缩写 MS/MS 表示。在常见的串联质谱技术 中,第一个质量分析器的功能通常为选择与分离前体离子,分离出的前体离子 碎裂可产生离子群,传送至串接的第二个质量分析器中进行分析,这些产物离子的质荷比信号在第二个质量分析器中被扫描检测后,即可获得串联质谱图以进一步分析。目前串联质谱技术有两大主流应用,其一为应用于蛋白质组学中以自下而上的方式对酶水解后的多肽进行氨基酸的序列分析。另一主要应用在于对特定化合物进行定量分析。 一般而言,串联质谱分析法有两种不同的串联方式:一种为连接两个实体的不同的质量分析器,为空间上的串联方式,另一种则是在同一子储存装置内进行一系列的离子选择、裂解与质量分析步骤,依时间先后顺序进行不同分析步骤,为时间上的串联。• 空间串联质谱:三重四极杆质谱仪(QqQ)是目前最广泛使用的空间串联质谱仪,由三重四极杆质量分析器组成。其中第一与第三重四极杆质量分析器具有质量分析功能, 第二重四极杆作为碰撞室,仅以射频电位方式操作。 由于三重四极杆的碰撞室中的气体压力十倍高于磁场分析器的碰撞室中的气体压力,在三重四极杆中离子束与中性气体分子具有较高的碰撞次数,用于定量分析具有较高灵敏度,因此这是目前串联质谱最广泛使用的形式。另一种常用的是飞行时间串联质谱仪(TOF/TOF),具有为高能量碰撞解离的优点。• 时间串联质谱:串联质谱法也能在某些具离子储存功能的质量分析器上进行时间串联,其离子在不同时间点可分别进行前体离子选择后储存、离子活化、产物离子分离、扫描后排出等模式,反复进行离子选择、储存与解离的步骤,即可在此类具有离子储存功能的串联质谱仪上得到不同阶段的MS结果。目前具有离子储存及活化解离功能的质谱仪,以傅里叶变换离子回旋共振分析器与离子阱为主。• 杂合质谱仪:在串联质谱仪中,如果不同种类的质量分析器串接,则称为杂合质谱仪。杂合的主要目的是撷取各式不同质量分析器的特点,经组合后可获得更佳的串联质 谱分析结果。 四极杆飞行时间杂合质谱仪(Q-TOF)是杂合质谱仪的主流形式,因为其结合了四极杆分析器具有较高碰撞裂解效率的特点,以及飞行时间分析器具有高质荷比分辨率、非扫描式及高灵敏等优势,具有高解析与高灵敏度的优点,被广 泛应用于蛋白质组定性分析。此外还有离子阱飞行时间(IT-TOF)杂合质谱仪等各类杂合类型。 6.三重四极杆质谱仪(QqQ)知多少?目前主流质谱仪品类已实现商业化,包括单四极杆、离子阱、飞行时间质谱,并能实现三重四极杆的自主可控生产,对应市场端覆盖率超过80%。2019年7月,国家重大科学仪器设备开发专项 2011年首批启动项目——“三重四极杆串联质谱系统的研制及其在痕量有机物分析中的应用(2011YQ060084)”完成综合 验收。该专项围绕国家“十二五”科学和技术发展规划,针对复杂体系中痕量有 机物高通量、高灵敏度和自动化检测需求,研制三重四极杆串联质谱系统产品和配套自动化前处理装置及其它关键部件,开发基于三重四极杆串联质谱系统的痕 量有机物分析平台,在蛋白组学、代谢组学、环境及生态毒理学、食品安全等领域开展分析技术研究与应用示范,实现三重四极杆串联质谱系统的国产化和产业化。当前中国每年10,000台的质谱销量中,无论是台套数还是金额,占比最大的就是液相色谱串联四极杆联用仪(LC-QqQ),每年销量达3000台。随着农兽药残留、药典等新国标的出台,气质联用仪也将会更多地被GC-QqQ取代。LC-QqQ同样也是临床质谱最受关注的技术。据预测,2030年,我国的质谱年市场销量将达到20,000台,LC-QqQ将达到6000-8000台,随着优秀的国产厂商加入,未来将有2000台的新增国产LC-QqQ。这其中包括两大利好因素,首先是政策释放老市场:随着国产设备的稳定性和可用性提高, 2~3年内会出现市场选择和政府扶植的双重增长,年增长率约50%。其次是专用设备的新市场:低竞争、高毛利,配合国内高检测量、实时在线、政府监管的需求,将产生一批过亿的细分市场。因此,国产质谱的未来都是光明的。6.1四极杆质谱仪的几个关键指标解读• 分辨率是指分开两个峰的能力,刚刚分开时两峰之间的质量距离是DM,分辨率英文的原义是Resolution,常用简写R表示,计算公式:R=M/DM,M可理解为两个刚刚分开的峰的平均质量。最严格的分辨率定义是磁质谱的,要求相邻两峰10%峰谷分开才算真正分开,磁质谱的分辨率(即M/DM)不随质量变化,所以磁质谱都用R=M/DM来表示分辨率,磁质谱中,R不变,DM是变化的,质量M越大,DM越大。所以,磁质谱表示分辨率都用R,常常可以见到R=10,000的说法。今天我们讨论的四极杆质谱,都是要求50%峰谷刚刚分开就算分开,这个定义没有磁质谱严格。同时,这个分辨率R随质量变化,而DM不变,即M越小,R越大。所以有机质谱并不用R来表示分辨率,而用DM表示。因为实际工作中很难找到恰好在50%峰谷分开的峰,所以又简化为用单峰法表示,即测定一个峰的半峰高处的全峰宽Full width half Maximum(简写为FWHM),FWHM应近似等于DM。由于采用原始定义,即R=M/DM,DM 不变,M在变,所以R在变,为方便起见还可以用R表示,所以又简化为用FWHM的倒数表示R,R=1/DM。若采用单峰法,则认为R=1/FWHM。这个值也不变化。我们一般称FWHM=0.5为单位质量分辨率;定义宽松一点时,认为FWHM=0.7称单位分辨率;严格一些时,说FWHM=0.4为单位分辨率。反正,不管是0.7、0.5、0.4,一般都认为是指单位质量分辨率。换算下来,R=2M或R=2.5M也都指单位质量分辨率。这些都是我们常见的分辨率的表示方法。所以,我们又常常看到有机质谱用FWHM来表示,比如FWHM=0.25。• 质量准确度是非常重要的指标,代表质量是否准确称量,测定值和理论值之间的误差。随着质谱的长期使用,室温的变化、灰尘的累积、电子元件的老化……这些因素均会导致电学参数发生变化,进而影响到仪器正常运行。四极杆质谱因为其独有的筛选机制 — 固定的RF与DC电压能允许固定质荷比的离子通过,故微小的电压偏差就可能造成质量轴的偏移。由于质荷比大的离子需要较高的RF与DC电压方可通过四极杆,会将漂移的结果放大。同为0.1%的漂移,可能只会造成100 Da的离子峰出现在99.9 Da处,但2000 Da的离子峰则可能会出现在1998 Da处。因此对于大分子分析来说,保证质量准确性就变得更加重要。当质量轴发生明显漂移时,对于使用Scan模式的定性分析,会出现目标峰与理论值偏差增大;对于使用SIR/MRM的定量分析,则是MS1/MS2放行的质荷比与实际离子的质荷比不匹配,导致离子通过率减小,灵敏度下降。所以,我们建议您每隔3~6个月使用已知的标准品进样,质谱通过Scan模式采集信号,检查标准品m/z与实际采集到质谱峰的峰顶处m/z的偏差,如果超过0.2 Da,就需要考虑进行质量轴校正了。如果仪器使用的环境发生较大变化,如一场秋雨让室温从夏天的25度降到秋天的18度,最好立刻检查质量轴漂移情况。• 灵敏度/信噪比。常用的信噪比计算方法有两种:均方根(RMS),峰峰比(S/N)。均方根(RMS)计算方法信噪比最高,峰峰比方法信噪比最低。均方根(RMS)计算方法信噪比最高,对质谱公司的宣传有利;峰峰比方法信噪比最低,对满足用户的要求不利• 滞留时间。Duty Cycle中的两部分Scan1和ISD(恢复原有状态)两部分组成;Dwell time滞留时间,指Scan 1和ISD两部分时间。Dwell Time越长,Duty Cycle越少,扫描越慢,灵敏度越高,数据点越少,分辨率越低!反之依然!• 扫描型仪器(QqQ/Ion Trap)性能制约的黄金三角规则:提高分辨率就会降低扫描速度和灵敏度;提高灵敏度就会降低分辨率和扫描速度;提高扫描速度就会降低灵敏度和分辨率。但,非扫描型仪器(TOF)性能不受黄金三角规则制约,可以同时提高分辨率、扫描速度、灵敏度。6.2三重四极杆质谱仪的几种工作模式解读三重四极杆质谱仪作为目前最灵敏的MS定量技术,可用结构标志物进行选择性测定 ,比如母离子扫描、子离子扫描、中性丢失扫描等。• Q1 MS 全扫描Q1 全扫描 (开始 – 停止),Q1 永远 作为单级 MS 分析器,主要用来鉴定母离子 ,Q1 采用RF-only模式。Q1 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses• Q3 MS 全扫描Q3 全扫描 (开始 – 停止):Q3 永远 作为单级 MS 分析器,主要用来鉴定母离子或用做IDA, Q3 采用RF-only模式。Q3 SIM - Selected Ion Monitoring (or multiple ions): Used to optimize analyzer for specific ions for MS/MS,SIM used for quantitative analyses。• MS/MS – 子离子扫描: 选择特定化合物鉴定碎片离子。Q-1设定 , Q-2碰撞活化 , Q-3扫描• MS/MS – 母离子扫描: 发现能产生特定子离子的所有母离子。Q-1扫描 ,Q-2碰撞活化 , Q-3设定(寻找特征离子的来源),应用于化合物筛选,代谢产物鉴定,蛋白质修饰分析。• MS/MS – 中性丢失扫描:发现能丢失中性分子的所有母离子。Q-1扫描,Q-2碰撞活化, Q-3扫描,同时保持Q-1和 Q-3的差值不变 (丢失同一质量的中性碎片),应用于检测失去H2O,H3PO4,HCl,NO2,CO2,SO3,糖分子等的离子。• MS/MS – MRM多反应监测:快速筛查(定性)和定量。Q-1设定,Q-2碰撞活化, Q-3设定(常用于定量)综上所述,三重四极杆质量仪具有超高的 NCI灵敏度;超高的MRM MS/MS 灵敏度;同时检测更多的 MRM离子对(100);工作模式丰富包括SIM、NCI/SIM、NCI/MS/MS、LC/MS/MS、PI,PR,NL,MRM。(未完待续)
  • 赛默飞世尔推出ICP-MS与最新碰撞池技术结合的方法
    不来梅,德国,2008年7月28日,赛默飞世尔科技公司公布了一份技术报告,使用基于碰撞反应池技术的电感耦合等离子体质谱(ICP-MS)完成环境和地质样品中所有多元素的分析。此海报可以从www.thermo.com/cct-poster免费下载。 由于具有元素覆盖范围广,高灵敏度和快速样品分析,ICP-MS已成为常规环境实验室的首选分析方法。功能强大的碰撞池技术与ICP-MS配合使用,使得质谱的干扰降到了最低,并提高了样品分析速度。Thermo Scientific XSERIES 2是基于碰撞反应池技术的ICP-MS,对所有样品均采用通用的混合气,在分析各种常规环境和地质的样品时,可以提供最佳的灵活性和无与伦比的性能。 技术海报论证了向雾化气中加入甲烷如何显著地提高了具有高电离能分析元素(如铍,砷和硒)的灵敏度,这些元素在环境样品中的浓度通常很低。此外,利用一种可加速提升和清洗时间的分流进样系统(FAST,Elemental Scientific Inc.),在增加样品分析速度的同时,显著降低了基体在ICP-MS接口的沉积。这样可以提高在质量控制分析时的一次通过率,并并保证了仪器长时间连续操作的实用能力。 赛默飞世尔科技在最近的一次网络会议中也介绍了这方面的内容,证明了利用ICP-MS与最新的碰撞池技术结合的方法,可以解决在多元素分析环境和地质样品时所遇到的主要问题。这次网络会议由Thermo Fisher Scientific XSERIES 2, ELEMENT 2 和 ELEMENT XR的资深应用专家Julian Wills和Elemental Scientific Inc. (ESI) 欧洲应用支持专家Paul Watson发起。限期版网络讲座请访问www.spectroscopynow.com/thermowebinars。 若需要关于Thermo Scientific XSERIES 2基于碰撞池技术的ICP-MS的详细资料,请致电+1 800-532-4752,发电子邮件至analyze@thermofisher.com,或访问www.thermo.com/cct-poster。 Thermo Scientific是Thermo Fisher Scientific旗下品牌之一。 关于Thermo Fisher Scientific(赛默飞世尔科技) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览公司的网站:www.thermo.com.cn
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
  • 离子阱还是四极杆?便携质谱究竟如何选
    十年一届的“全国生态环境监测专业技术人员大比武”正在如火如荼的进行,其现场操作部分中,各家的便携式气相色谱-质谱联用仪各显神通,帮助环境监测者检测空气中的挥发性有机物。目前市场中的便携式气质联用仪五花八门,原理也不尽相同。本文将对质谱进行简单介绍,并对不同家便携式气质联用仪在原理、和使用上的区别简要分析。 一、质谱的简介与分类质谱,是根据质量的差异对物质进行分析的设备。其具体的分析过程包括1分子的离子化、2离子质量分析、3离子检测三个过程。据此,质谱的分类也就可以根据不同的“离子化的方法”和“离子质量分析方式”两种思路来分类。 目前市售的便携气质均采用相同的离子化方式。按照质量分析器的不同可以分为以下两大类:四极杆质谱、离子阱质谱,如图1。对于不同种类的质谱,我们一般通过对比1质量范围、2检出限、3分辨率、4扫描速度、5最大工作真空度五个维度[1]对其进行评价。 图1 市场中主流便携式气相色谱-质谱联用仪 二、不同类型质谱的原理 不论是四极杆质谱,还是离子阱质谱,其分析原理是相似的,其差别在于具体的分离过程。在离子化的过程中,待测的物质被一定能量的电子束撞击,解离成离子,并碎裂成一系列能反映其物质性质信息的碎片离子。接下来,这些碎片离子被离子阱或四极杆分离并检测,按照质荷比m/z的大小绘制成一张可以体现物质定性信息的质谱图,如图2。图2 有机氯农药DDT的质谱图 四极杆分析不同离子的过程类似于原始的筛选稻谷的过程,如图3。不符合条件的稻谷(如空壳稻谷)会在筛选的过程中被风吹走,所以不会落入最终收集优质稻谷的篮子里。同理,在四极杆质谱仪中,离子化后的离子沿图3中z轴通过四极杆,在离子的飞行过程中,我们通过射频电压RF和直流电压DC产生的四极电场对离子进行操控,使得只有符合一定质荷比条件(如m/z=a)的离子才能到达四极杆另一端的检测器,给出在该质荷比下离子的数量的检测结果。此时如果我们按一定规则持续改变该筛选离子的条件,使得符合其他的质荷比(如m/z=b、m/z = c… … )的离子可以通过,那么我们就就可以根据每一个质荷比离子数量的多少,绘制出该待测物质的特征质谱图。 图3 四极杆的结构和其分离的过程 离子阱质谱分离的过程类似于喝鸡尾酒的过程,如图4。喝鸡尾酒时,如果我们正常的将鸡尾酒从酒杯中倒出,则不同颜色的酒会依次的流出。与此类似,在离子阱质谱的分析过程中,先操控离子阱的电极电压,将离子储存在离子阱中心的区域中,之后改变该四极场,使离子按照一定的顺序依次从离子阱中弹出。弹出的离子依次到达检测器后被检测器记录,根据不同时刻不同离子弹出数量的多少,我们也就可以绘制一张代表物质定性信息的质谱图。 图4 离子阱的结构和分离过程 以上两种不同的原理,使得两种质谱各自有其各自的特点和适用的领域,如表1。虽然以上的方式筛选离子制作质谱图的原理不同,但是同种物在这两种质谱中离子化后所产生的碎片是相同的,故其质谱图也是相似的。在得到质谱图后,电脑会自动将得到的质谱图与电脑中存储的标准质谱图谱库进行比对,给出物质的定性信息。以上两种质谱均配备了NIST库(美国国家标准与技术研究院National Institute of Standards and Technology) 、NIOSH库(美国国家职业安全卫生研究所National Institute for Occupational Safety and Health)并配备AMDIS解卷积软件(Automated Mass Spectral Deconvolution and Identification System),均可以可靠的给出物质鉴定的结果。表1 台式四极杆质谱与台式离子阱质谱各自的优势 三、两种质谱小型化后的区别 使用不同的技术路线,两种质谱在使用过程中的多个方面有所不同。 除了上文提到过的5个质谱核心参数的差异之外(见表2),不同的便携式质谱在使用过程中还有一些其他的区别。表2 两种便携式质谱仪在核心参数上的对比 两种质谱对真空的不同需求,会带来使用成本的差异。不同类型的质谱有其不同的适宜工作的真空度,使得使用成本上有近百倍的区别。一般而言,四极杆质谱一般需要10^(-6)的高真空,若真空度没有达到该值,会使得设备无法做到单位质量分辨。而离子阱质谱仅需要10^(-3)的真空[2],在该条件下其分辨率就可以超过单位质量分辨的需求。由于对真空度需求存在巨大的差异,不同质谱采用了不同的真空泵系统。目前四极杆质谱采用非蒸发吸气剂泵(NEG)和小型溅射离子泵,分别对设备内的活性气体、和非活性气体进行吸附。由于吸附存在饱和,故吸附泵寿命远低于机械泵:NEG泵仅有150小时的使用寿命,到达150小时使用时间后需更换,更换成本接近10万元。与此同时,目前市售的离子阱质谱一般采用涡轮分子泵、隔膜泵的组合。得益于技术的进步,以上两种真空泵不但使用寿命是NEG泵的100倍以上,也不会因现场的震动、跌落而损坏。如果将更换真空泵的成本均摊至每次检测中,便携四极杆质谱的样品检测成本,仅在更换新泵方面就需要200元/每个样品。 离子阱强大的定性能力,在现场分析中仍待进一步挖掘。由于离子阱质谱具备储存离子的能力,故其可以将目标离子存储,碰撞,并再次检测,这就使得了单一的离子阱具有等同于三重四级杆的定性能力。由于目前还没有便携式的三重四级杆气质联用仪,故离子阱在定性方面的优势可谓是一枝独秀。如果能将离子阱质谱的这一优势充分利用,可以帮助应急监测工作者在现场处理更为复杂、棘手的检测难题。 台式四极杆较宽的动态范围,在便携四极杆质谱上并未实现。对便携式气质联用仪而言,线性范围的大小主要依赖于检测方法的多样性。受制于色谱柱容量、真空泵抽速等多个条件制约,目前便携式四极杆质谱、以及离子阱质谱的检测的线性范围都在三个数量级左右,故谁的进样方式更丰富,谁就能能将检测浓度范围进一步扩大。得益于丰富的进样方式(直接进样/定量环进样、吸附-热脱附进样),Mars-400系列的便携式气质联用仪可以在不更换仪器组件的情况下于0.1-1000mL的数量级范围内调整进样量,使得仪器动态范围达到7个数量级。想要达到类似的动态范围,四极杆质谱需手动更换吸附管或定量环。综合使用不同的进样方式后,两种便携式质谱在动态范围上并没有显著差异。图5 Mars-400 Plus线性范围可达7个数量级 参考文献[1] Fitzgerald, Robert L., et al. "Comparison of an ion-trap and a quadrupole mass spectrometer using diazepam as a model compound." Journal of analytical toxicology 21.6 (1997): 445-450.[2] Encyclopedia of Spectroscopy and Spectrometry (Third Edition)
  • 质谱国产替代之路是否存在换道超车?——皖仪分析事业部总经理程小卫
    “或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。”——程小卫 皖仪分析事业部 总经理继上期《聚浪成潮 以待花开|质谱国产替代之路有多长?》(点击查看),本文皖仪分析事业部总经理程小卫将围绕质谱流式技术展开阐述。 7. Q-TOF了解一下 7.1 基本原理和结构TOF飞行时间质谱,是原理最简单的质谱。就是施加到离子的电势能转化为动能,基本公式就是m为离子的质量;z为离子所带的电荷数目;V为施加到离子的电势,脉冲电压,它对于所有质量的离子是相同的;v为离子的飞行线速度,离子质量越大,飞行速度就越慢。离子飞行的线速度v等于飞行距离L除以飞行时间tL为由仪器的飞行管所决定的常数。所以,上述基本公式可以转化为m/z=2Vt2/L2因而离子质荷比正比于飞行时间的平方。比如,m/z为3000的分子,飞行时间才1微秒。图:系统结构图示意图(资料来源:安捷伦用户培训资料)离子源:产生离子化,并将产生的离子在电场的作用下进入毛细管。毛细管/锥孔:离子导入通道,将离子源产生的离子传输进入质谱。同时,隔离外部的常压与质谱内部的高真空。离子光学组件:包括Skimmer 1,八极杆以及Lens 1 和Lens 2。进一步除去溶剂和中性分子,高效的离子传输组件,并聚焦随机运动的离子进入四极杆。四极杆:质量过滤器,双曲线的四极杆优化离子传输和质谱分辨率。可以选择让某些质荷比的离子依次通过或者所有的离子全通过。碰撞池:线性加速的高压碰撞池。优化质谱/质谱分裂,从而在一个短的停留时间仍可消除交叉干扰。六极杆设计有助于捕获碎片离子。离子束整形器:将随机运动的离子压缩为一个薄层,进入脉冲发生器。减少离子在纵向的扩散,提高分辨率。脉冲发生器:以一定的频率在纵向施加高压,将从离子束整形器过来的离子快速抛入飞行管。飞行管:离子在飞行管内纵向飞行,不同质荷比的离子通过飞行管的时间不同。检测器:包括微通路板、闪烁器和光电倍增器。高增益,寿命长,线性范围宽。Q-TOF 的真空系统由一个前级真空泵(机械油泵)和两个分子涡轮泵组成。前级真空一般在 1.8-2.5 Torr 之间,不同型号的 Q-TOF,高真空的范围不同。 7.2 Q-TOF的工作方式 Q-TOF 有三种不同的工作方式:• TOF 模式:这种模式下,可以得到离子的一级质谱图。四极杆处于离子全通过状态(TTI, Total Transmission Ion),所有的带电离子都会通过四极杆,碰撞池不施加碰撞能量,带电离子不会裂解,TOF 工作在扫描模式下,直接检测得到一级质谱图。这种操作模式下Q-TOF 的行为与单TOF 类似。• 自动 MS/MS (Auto MS/MS) 模式:这种模式下,根据用户设定的条件,对符合条件的离子自动做二级质谱。当某个或某些离子满足用户的预设条件时,四极杆处于 SIM(选择离子监测)模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到符合设定条件的离子的二级谱图。当没有离子满足用户预设的条件时,Q-TOF 仍工作在TOF 模式下。这种工作模式比较常用于方法开发,未知物质鉴定以及结构解析。在自动 MS/MS 模式中,仪器根据操作者设定的规则自动决定哪些质荷比的母离子通过四极杆,在碰撞池中被打碎然后由 TOF 进行全扫描分析。Q-TOF 首先进行 TOF 模式扫描出一级质谱,然后根据离子的强度和设置的其他规则参数来选择母离子,进行MS/MS 分析。对于自动MS/MS 模式,仪器用下列的逻辑程序判断是否对某离子进行MS/MS 分析。• 目标 MS/MS (Targeted MS/MS)模式: 在这种操作模式下,只有用户指定的离子,可以得到二级质谱图。仪器只对操作者输入的目标离子进行MS/MS分析。对于用户选定的目标离子,四极杆进行选择离子监测,运行 SIM 模式,碰撞池施加碰撞能量将离子撞碎,而 TOF 仍然工作在扫描模式,得到选定离子的二级质谱图。这种工作模式比较常用于定量分析,已知物质的鉴定和结构阐明。目标 MS/MS 模式通常用于已知物的分析。操作者需要预先知道它们的母离子以及各自的保留时间 。对于目标 MS/MS 模式,仪器使用以下程序来判断是否对离子进行 MS/MS 分析。• 软件的重要性前面提及Q-TOF是原理最简单的质谱,受限于计算机的发展,言即表达的是软件的重要性。QqQ和Q-TOF质谱软件除了基本的数据采集、控制仪器、定性分析、定量分析,还有锦上添花的小工具软件为的是更友好更方便更智能。比如:安捷伦的Optimizer 标配给QqQ,优化质谱参数,优化好的参数放在一个dMRM database里;Study Manager for QqQ and TOF/Q-TOF 小工具,编样品信息和序列,适用于大批量样品处理;Dynamic MRM database Kit wl method for QQQ;Easy-Access 软件(岛津公司称为Open Solution软件),用于插队样品,合成实验室的样品多的情况;个性化定制化合物库软件personal compound database library(e.g. PCDL) 作为高分辨定性质谱Q-TOF在定性相关的软件需求上更加突出:比如:分子特征提取软件(MFE, Molecular Feature Extractor) 外源代谢物鉴别软件(Metabolite ID)用于药物代谢物鉴定 蛋白质分析软件,用于大分子,计算分子量和序列匹配;代谢组学软件,区别于外源性代谢物,鉴定内源性代谢变化;数学统计学软件,比如PCA主成分分析,方差分析等等。以及各种数据库软件,比如毒物、滥用药物数据库;农药、兽药数据库;内源/外源代谢物数据库等等。• 不得不提到的OrbitrapOrbitrap(静电场轨道阱)是一种拥有超高分辨率的质量分析器,由俄罗斯科学家 Makarov 于 2000 年发明。该发明专利被赛默飞公司收购,目前是赛默飞专利独有的高分辨质谱技术。Orbitrap 是继磁质谱质量分析器、飞行时间质量分析器(TOF)、傅里叶变换离子回旋共振质量分析器(FT-ICR)这些高分辨质谱技术之后,发明原理完全创新的高分辨质谱技术,克服了既往高分辨质谱技术的诸多不足,是具有划时代意义的新一代高分辨质谱技术。从 2005 年 LTQ Orbitrap 推出以来,随着 Makarov 团队不断优化,Orbitrap 系列产品凭借其卓越的分辨率、灵敏度、多项创新技术,逐渐成为高端质谱领域的代表者。图:Orbitrap 系列产品的核心优势图(资料来源:赛默飞世尔官网)因为Orbitrap是赛默飞的独家技术且因作者水平有限,所以不做过多阐述。 8. 流式质谱要知道 无论称作流式质谱,还是叫作质谱流式,其中质谱是检测手段,流式是方法学,一种细胞定量分析和分选技术。无论是低分辨的离子阱、四极杆质谱,还是Q-TOF、IM-QTOF、Orbitrap等高分辨质谱技术上,无论是无机质谱还是有机质谱,要想突破质谱的卡脖子技术,都有很大挑战和难度。但,或许流式质谱是一个独特的赛道,其技术和应用都在同一起跑线上,或者说我们并没有被拉下很长的距离,就类似传统汽油轿车和电动轿车一样。8.1 传统流式和流式质谱的区别在学习了解流式质谱前,简单温习一下流式荧光技术和光谱流式的概念。流式荧光技术:是基于编码微球和流式技术的一种临床应用型的高通量发光检测技术。相较于传统化学发光法,流式荧光技术能够支持多指标检测,具有通量高、速度快、操作简便等特点,但存在荧光标签的串色问题、受限于稀有荧光素的供应。光谱流式:每个荧光染料的发射光谱在定义的波长范围内被一组检测器所捕获,这样每个荧光染料的流式荧光光谱都可以被识别、记录其光谱特征,并在多色实验中充分使用。流式细胞仪的检测器可以检测到每个细胞或颗粒的散射光信息和多个荧光信号,最终分析细胞或颗粒上的信息。光谱流式通过光谱拆分技术部分解决了荧光补偿问题,但需要难度较大的配色方案,试剂成本高,通道数量较流式质谱相比较少。鉴于此,流式质谱应需而生。流式质谱:是结合传统流式和质谱两个平台的技术,能够同时获得单个细胞的多种参数。流式质谱作为定量手段的优势在于其高分辨率,并且克服了传统流式荧光发射基团光谱重叠的问题。流式质谱仪可提供过百个检测通道,可以同时对更多的细胞特征进行分析。通过标记稳定的金属标签,流式质谱仪可以在不同的通道生成信号,识别不同靶向蛋白的标记,并且各参数之间几乎没有重叠。相较于传统流式,流式质谱是采用金属元素对抗体进行标记,因此通道数量会受限于金属标签的供应;另一方面,受采样速度的影响,流式质谱对样本的处理速度相较于传统流式而言较慢。图源:宸安生物包括经典流式和光谱流式在内的荧光流式利用荧光基团标记抗体,再利用抗体结合抗原的方法标记细胞,用激光激发荧光基团,通过检测发射出的荧光信号的波长和强弱实现参数的定量检测。而质量流式用稳定的金属标签代替荧光基团来标记抗体,通过质谱检测细胞上金属元素的含量实现参数的定量检测。这也是质谱流式的这个名称的由来。图源:宸安生物我们可以看到在荧光流式中,不同荧光素的发射光谱存在大量重叠,不仅限制了检测通道的数量,而且为配色和后续的数据分析带来了困难,不同荧光信号之间的串扰,必须在数据分析过程中调补偿的方式来消除,这样的操作非常依赖于操作人员的经验,也为不同的设备、实验室数据之间的标准化带来了很大的难度。另外,一些生物样本中的自发荧光作为背景也会干扰数据的分析。而质谱流式极大程度地解决了这些问题,在质谱流式检测范围内的金属元素信号几乎没有重叠,不需要为此调补偿,并且这些金属元素正常情况下在生物体内极少存在,因此质谱流式信号几乎没有背景。这些特点带来的直接优势是检测通道数量的提升和数据分析上的便捷,更多参数的同时检测也可以为我们提供更高维度的数据结构和信息。8.2流式质谱的基本原理流式质谱技术 (Cytometry Mass)结合了传统流式技术高效的单细胞研究能力和飞行时间质谱的全谱高分辨率优势,采用金属标记抗体与待测抗原结合,理论上可提供140个检测通道,并且克服了传统流式荧光发射基团光谱重叠的问题,实现了单细胞水平的高通量分析。图源:宸安生物质谱流式技术采用金属标记的抗体识别细胞表面或胞內的抗原,标记后的细胞经雾化后进入电感耦合等离子体矩管中进行离子化,离子云随后被传输至飞行时间质量分析器中,在飞行时间质谱分析器中,金属离子质量越大,飞行时间越长,检测器依次记录各种金属离子到达的时间,检测出细胞中各种标签金属的含量,最终形成不同的金属离子信号峰。检测产生的高维数据通过分类、聚类和降维算法进行处理,结果可以反映基于靶蛋白丰度的各种细胞群体的表型和功能。金属离子的信号强度可以代表蛋白分子的表达丰度。可以实现对目标蛋白的全面覆盖和批量分析。单个样本中可以实现细胞表面蛋白,胞内蛋白,和分泌型分子的同步检测。对样本单细胞水平的深度解析可以提供从未被挖掘的信息,作为伴随诊断参考,揭示新的分子机制。图源:宸安生物这张图描述了质谱流式的样本从金属抗体染色到上机检测的流程。细胞被染上金属抗体后会经历雾化、电离形成一团离子云、离子云在经过过滤和筛选之后只剩下抗体上的金属离子,随后这些离子通过飞行时间质谱依据质荷比不同形成分散的离子峰,结合金属元素和抗体及抗原一一对应的信息,我们最终得到不同抗原在细胞上的丰度。这些数据会经过处理转化成荧光流式通用的FCS格式的流式标准文件,可以使用一些熟悉的流式数据分析软件,比如FCS express, Flowjo等对数据进行传统的圈门分析,或者使用聚类降维等高维数据分析方法挖掘更多的信息。图源:宸安生物质谱流式的上样形式与荧光流式一样,都是处理好的单细胞悬液。在开始检测后,质谱流式首先通过雾化将样本转换为大量的微小液滴,细胞悬液以30uL每分钟左右的速度被压入如图所示的雾化器中,雾化器中央是一根水平悬空的毛细管,毛细管外是用于辅助雾化的氩气,当样本流出右侧毛细管末端时,会被周围喷出的雾化气散成大量呈雾状的小液滴,细胞被包裹在这些小液滴当中。图源:宸安生物接下来这些小液滴会被180℃的雾化室中,随后液滴蒸发,尺寸缩小,被氩气携带进入离子源进行电离,在离子源位置氩气在高频切换电磁场作用下被加热产生温度极高的等离子体火焰,而细胞在等离子体中经历去溶剂、解离、原子化和电离等一系列变化,最终变成一团离子云。图源:宸安生物这些在等离子体外生成的离子云通过金属锥,从低真空度进入高真空度的环境,随后在四极杆质量选择器中经历引导和筛选,排除低质量的背景离子,只留下抗体上高质量金属离子进入后续的检测器。图源:宸安生物质谱流式使用TOF作为检测器。检测离子云时,所有离子被正交加速电场施加一个相同的初始动能,随后在反射场中作回返运动,由于不同离子的质荷比不同,在加速之后获得的初速度不同,这导致不同离子回返到达检测器的时间不同,检测器通过到达的时间差别区分不同的离子,在这里有两个质谱流式中很重要的概念:Push和Event Length。Push是指每次正交加速电场将离子加速进入回返场的时间间隔,即TOF的检测周期。Event Length是指一个细胞产生的完整离子云被检测完所需要的Push个数。可以表达成“检测一个细胞经历的Push数量=Event Length”这也是一个在之后的圈门过程中很重要的一个参数。 8.3 流式质谱的主要应用领域 新药开发是一项复杂、昂贵、耗时的工作,需要解决来自各领域的技术难题。流式质谱技术可以在管线的各个阶段协助做出以数据为导向的决策,从而将安全有效的疗法成功地推向市场。药物发现阶段:提供免疫分型深度分析,信号通路检测、细胞因子检测、T细胞激活\耗竭分析和新生抗原筛选。临床前开发阶段:提供免疫分型、细胞因子、PK/PD动态分析。临床试验阶段:单细胞水平的蛋白组学可对患者精准分群,进行免疫治疗反应的监测。批准和上市后:作为辅助诊断的工具,实现高效快速检测、指导治疗方案的选择和进行疗效监测。在血液系统疾病、基于高维免疫评估的感染性疾病、自身免疫性疾病、肿瘤免疫、基于高维免疫评估的细胞治疗等皆是流式质谱的用武之地。
  • 助力科研,浦江论剑——思想碰撞深度交流会
    助力科研,浦江论剑 ——思想碰撞深度交流会于2024年7月27日,在浦江举办的第一期新诺伙伴深度交流会取得圆满成功!此次交流会意指促进行业发展,&zwnj 思想交流。其关键在于全面推进经济、&zwnj 环境、&zwnj 社会和文化的多方面发展,&zwnj 通过科技创新、&zwnj 政策扶持、&zwnj 人才培养和国际合作等措施,&zwnj 实现协调可持续的发展目标。&zwnj &zwnj 只有全面推进这些方面的发展,&zwnj 才能实现协调可持续的发展目标。有效促进发展的策略包括:&zwnj &zwnj &bull &zwnj 个人和组织的参与至关重要,&zwnj 企业家应积极投身于实业发展,&zwnj 不断创新,&zwnj 在市场竞争中取得成功。&zwnj 普通员工应努力学习,&zwnj 提升专业素质,&zwnj 为企业的发展贡献力量。&zwnj 充分发挥本地高等院校人才的优势,&zwnj 建立院校与企业之间的沟通、&zwnj 交流和合作平台。&zwnj &bull 提高企业自主创新意识,&zwnj 构建“产政学研”合作研发体系,&zwnj 加强“产政学”科研开发体制。&zwnj &bull 推进制造业智能化改造,&zwnj 构建或借助工业互联网平台,&zwnj 促进产业链发展,&zwnj 打造行业新型生态圈。&zwnj 通过上述措施,&zwnj 可以有效地促进行业发展,&zwnj 加强思想交流,&zwnj 为实现全面发展和进步奠定坚实的基础。&zwnj
  • 基于超高效液相色谱-质谱法的肽段分析中非特异性吸附评估及通用型最小化策略
    近年来,蛋白质组学技术在肽和蛋白质类新型治疗药物的蓬勃发展以及临床新型大分子生物标志物的深入发掘中被日益广泛应用。应用方式的迭代对生物大分子的分析技术提出了更高的要求。基于蛋白质特征肽段检测的自下而上的蛋白质组学技术(bottom up proteomics)是现有研究中具有较高灵敏度与分辨率的蛋白质定性定量方法。开发多肽的生物分析方法是极具挑战的,除了所需的低检出限外,多肽的非特异性吸附性质,使其极易在接触到的材料表面发生吸附,进而导致分析全流程中待测物的丢失或干扰,给定性和定量分析引入巨大风险。例如在蛋白组学研究的质谱数据库搜索中,即使系统中微量肽段的损失或残留亦可能导致假阳性或假阴性结果。而在高灵敏度的多肽定量方法的开发中,肽段的非特异吸附对定量分析的线性、准确度和精密度均有负面影响。低浓度肽段溶液的吸附性质会更加明显,表现形式为标准曲线的非线性,最终导致定量限的不必要升高以及方法的重复性差。已有一些研究在分子水平上解释这种吸附行为,然而目前对其潜在的机制和相互作用仍然知之甚少。Eeltink等基于分子动力学模拟,提出了一种三相分子机制解释肽段从溶液吸附到强相互作用不带电固定相上的原理。Kristensen等研究了样品容器对阳离子多肽吸附的影响,当1 μmoL/L肽溶液在硼硅酸盐或聚丙烯瓶中存储1 h后,肽段的回收率仅有10%~20%。也有研究通过在溶剂中添加有机试剂、酸/碱性溶液、表面活性剂、吸附竞争剂或调整流动相组成等方法减少这类吸附。这些研究论文大多对一组特定的多肽和/或表面材料进行研究,但均未给出可用来预测多肽吸附特性的规律,也未给出通用的解决吸附的方法。本研究选择牛血清白蛋白(BSA)作为模型蛋白质,以其酶解后的肽段作为包含亲水性和疏水性多肽的“典型”多肽组样本。首先通过超高效液相色谱-高分辨质谱(UPLC-HRMS)的测定,分析常见多肽理化参数与上述多肽组的非特异吸附程度的关联性。然后基于超高效液相色谱-三重四极杆质谱(UPLC-QQQ-MS/MS)建立对强吸附肽段吸附程度的评估方法,从样品制备至分析测定建立全过程试验设计,考察不同材质的制备、储存耗材对肽段吸附的影响,以及考察不同色谱条件对肽段残留的影响,最终提出多肽全流程分析中减少非特异性吸附的通用型策略。01样品制备方法取10 mg BSA溶于10 mL水中,制得1 mg/mL蛋白储备液,进一步以水稀释为100 μg/mL的工作液。取200 μL上述工作液于蛋白质低吸附离心管中 加入65 μL 500 mmol/L碳酸氢铵和60 μL 50 mmol/L二硫苏糖醇,于60 ℃水浴加热60 min对蛋白质进行还原 放冷至室温后加入120 μL 50 mmol/L碘代乙酰胺,于暗处反应30 min进行烷基化 加入100 μg/mL的胰蛋白酶5 μL,于37 ℃水浴中酶解8 h,加入甲酸20 μL终止反应,12000 g离心15 min后,取200 μL上清置于蛋白质低吸附的进样瓶中作为混合肽段溶液待测。02超高效液相色谱-高分辨质谱方法参数色谱条件:色谱柱采用Waters Acquity Premier Peptide CSH C18(100 mm×2.1 mm, 1.7 μm) 柱温为40 ℃ 流速为0.25 mL/min 流动相A、B两相分别为0.1%甲酸水溶液和0.1%甲酸乙腈溶液。洗脱梯度为0~1 min, 1%B 1~13 min, 1%B~40%B 13~13.1 min, 40%B~90%B 13.1~16 min, 90%B 16~16.1 min, 90%B~1%B 16.1~20 min, 1%B。进样器温度10 ℃ 进样量5 μL。质谱条件:毛细管电压3 kV,锥孔电压30 V,离子源温度120 ℃,脱溶剂气温度450 ℃,锥孔气流速25 L/h,脱溶剂气流速800 L/h。电喷雾电离(ESI)源、正离子模式下测定,MSE模式采集,扫描范围m/z 50~2000 数据采集时使用亮氨酸脑啡肽校正液进行实时质量校正,以保证采集质量数的准确性与重复性。采集后的数据使用Unifi软件处理。03相对残留量的测定和肽段分级策略将上述混合肽段溶液经上述条件采集、Unifi软件分析后,可得BSA酶解后肽段组的实际肽段组成和每个肽段的响应值Area(供试品溶液)。在进样上述供试品溶液后连续进样3针空白溶剂,以3针空白溶剂中检测到的对应肽段响应之和Area(Blank 1+Blank 2+Blank 3)计为该肽段的残留总量,该肽段的相对残留量为肽段的残留总量与肽段响应值的比值。基于肽段的响应与相对残留量,可将BSA酶解后的肽段组分为如下四类:Class Ⅰ,响应高且无残留的肽段 Class Ⅱ,响应高但有残留的肽段 Class Ⅲ、Class Ⅳ分别为响应低,无吸附和有吸附的肽段。响应的高低以是否大于中位数计,有无残留以Area(Blank 1+Blank 2+Blank 3)是否有检出判断。04超高效液相色谱-三重四极杆质谱方法参数色谱条件:色谱柱采用Waters ACQUITY UPLC BEH C8(100 mm×2.1 mm, 1.7 μm) 柱温30 ℃ 流速0.4 mL/min 流动相A、B两相分别为0.2%甲酸水溶液和0.2%甲酸乙腈溶液。洗脱梯度为0~2 min, 2%B 2~5 min, 2%B~60%B 5~5.1 min, 60%B~90%B 5.1~8 min, 90%B 8~8.1 min, 90%B~2%B 8.1~11 min, 2%B。进样器温度10 ℃ 进样量5 μL。洗针液为90%乙腈水溶液(含0.2%甲酸)。质谱条件:离子化电压5500 V 气帘气压力0.14 MPa 离子源温度500 ℃ 喷雾气、辅助加热气压力0.38 MPa。ESI源正离子模式下测定,多反应监测(MRM)模式采集,12条Class Ⅱ类肽段的离子对、碰撞能量(CE)、去簇电压(DP)值经Skyline软件协助优化后结果如原文表1所示。文章信息色谱, 2022, 40(7): 616-624 DOI: 10.3724/SP.J.1123.2021.12012张莹1,2, 杨静1,2, 马跃新1,2, 曹玲2*, 黄青2*1.南京中医药大学药学院, 江苏 南京 2100232.江苏省食品药品监督检验研究院, 国家药品监督管理局化学药杂质谱研究重点实验室, 江苏 南京 210019
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 当拉曼光谱携手人工智能,会碰撞出怎样的火花?
    仪器信息网讯 为推动生物医学及相关研究领域持续向前发展,加强学术交流,由中国物理学会光散射专业委员会主办,上海交通大学、武汉大学、上海师范大学和华中农业大学联合承办的第三届全国生物医学拉曼光谱学术会议于3月29日在上海召开。会议期间,近60位报告嘉宾在线分享,内容涵盖了拉曼光谱与单细胞分析、人工智能与拉曼光谱、拉曼光谱与生化传感分析、拉曼与生物医学其他相关、拉曼相关显微技术及生物成像、拉曼光谱与疾病诊断、等离激元纳米结构与新型SERS基底等相关内容。29日下午,会议安排了人工智能与拉曼光谱、拉曼光谱与生化传感分析两个主题,14位报告嘉宾现场分享。特别值得一提的是,“人工智能与拉曼光谱”成为本次会议的热议话题之一,吸引了各位专家、学者和厂商交流成果经验,引发热烈讨论。“人工智能”(Artificial intelligence, AI)自1956年正式命名,经过数十年的发展过程中,已经渗透到各个学科领域,成为引领科技发展的重要力量,并已在各行各业得到了广泛的应用。特别是近年来,国家对人工智能越来越重视,2024年政府工作报告指出,“深化大数据、人工智能等研发应用,开展‘人工智能+’行动,打造具有国际竞争力的数字产业集群”;不仅如此,国务院印发的《推动大规模设备更新和消费品以旧换新行动方案》中,也指出要建立激励和约束相结合的长效机制,加快淘汰落后产品设备,提升安全可靠水平,促进产业高端化、智能化、绿色化发展。那么当拉曼光谱携手人工智能,会碰撞出什么样的火花?又会给学科发展带来怎样的助力呢?厦门大学 任斌教授报告题目:《人工智能助力的拉曼光谱》厦门大学任斌教授在报告中介绍了课题组近年在利用人工智能方法提升拉曼光谱数据采集与分析能力方面所开展的研究。在数据采集阶段,他们提出一种学习仪器固有噪声的方法,以提高拉曼光谱的信噪比与时空分辨率。为了降低数据采集与训练成本,其课题组发展了只需输入单张谱图或者高光谱图像即可实现轻量去噪,无需额外准备训练集,使得深度学习的实时降噪成为可能。此外,为了提升拉曼光谱对复杂样本的识别能力,他们还发展了可同时提取光谱全局和局部特征的分类算法,能够实现对光谱细微差异的病原体囊泡的鉴定,为拉曼光谱用于快速诊断细菌感染奠定了基础。厦门大学 刘国坤教授报告题目:《人工智能+SERS快检》厦门大学刘国坤教授在报告中也分享了人工智能+SERS快检的相关工作。课题组开展了面向 SERS 快检的相关研究,提出了基于酸度系数的样品前处理方法。考虑到实际样品基质对目标分子的 SERS信号识别的严重干扰,他们提出了基于CNN 的深度学习算法。该方法与简单前处理方法结合,可以实现多种复杂基质中的痕量目标分子SERS信号的快速准确识别,检测灵敏度达到专家级用户水平,该工作将进有力推动 SERS快检实用化和智能化。中国科学院微生物研究所 傅钰研究员报告题目:《机器学习辅助拉曼光谱技术单细胞水平表征微生物》中国科学院微生物研究所傅钰研究员也在报告中谈到机器学习辅助拉曼光谱技术单细胞水平表征微生物方面开展的工作。他们通过逐一遮蔽光谱的理念建立了新型的微生物拉曼光谱特征峰提取算法(ORSFE),可视化呈现了人工智能分析微生物拉曼光谱的关键位移峰,打破了人工智能鉴定过程的黑箱。中国科学院长春光学精密机械与物理研究所 李备研究员报告题目:《先进拉曼技术在生物医学领域的应用》中科院城市环境研究所 崔丽研究员报告题目:《基于单细胞拉曼的环境抗生素抗性及进化研究》中国科学院长春光学精密机械与物理研究所李备研究员在报告中也讲到基于人工智能与深度学习算法的拉曼光谱分析方法。中科院城市环境研究所崔丽研究员分享了该课题组发展的单细胞拉曼-统计算法连用新方法,以及拉曼结合深度学习高灵敏快速识别病原菌及囊泡等相关工作。除此以上报告之外,大会第一天下午还有多位报告嘉宾从不同角度分享了创新的工作,由武汉纺织大学沈爱国教授和中国科学院合肥物质科学研究院杨良保研究员分别主持。武汉纺织大学 沈爱国教授主持中国科学院合肥物质科学研究院 杨良保研究员主持华中农业大学 韩鹤友教授报告题目:《药物的纳米传递及其精准治疗应用》江南大学 谢云飞教授报告题目:《拉曼光谱在食品安全与质量控制中的应用》陕西师范大学 张正龙教授报告题目:《近场调控稀土发光》南京大学 龙亿涛教授报告题目:《纳米孔道限域增强的单分子测量》雅盖隆大学 Malgorzata Baranska教授报告题目:《SRS:Sensitive, Rapid and Specific Raman imaging of cells》吉林大学 徐抒平教授报告题目:《细胞膜蛋白相关的SERS分析技术》科研的进步,离不开仪器技术的助力。在下午的报告环节,多位仪器厂商的代表也在现场分享了最新的技术、仪器及解决方案。HORIBA中国 周磊博士报告题目:《守护美好生活-HORIBA生命科学解决方案》雷尼绍(上海)贸易有限公司 李兆芬报告题目:《雷尼绍拉曼光谱技术在生命科学领域最新进展》牛津仪器WITec 苏虹羊报告题目:《WITec高分辨快速拉曼成像赋能生医前沿科学研究》第一天的报告内容丰富多彩,各位报告嘉宾不仅给大家展示了最新的研究成果,更是从不同角度给大家提供了创新的科研思路。精彩还在继续,敬请期待……为了展现光谱产业化的最新成果,探讨人工智能对光谱新产业的影响,第十七届科学仪器发展年会(ACCSI2024,苏州,2024年4月17-19日)特别开设“人工智能赋能光谱仪器新产业”专题论坛。本次论坛将邀请行业知名专家及企业代表现场分享,欢迎各位领导、专家学者、用户、仪器企业管理及研发负责人、投融资机构代表等共聚一堂,为产业发展献计献策。本次论坛由中国仪器仪表学会近红外光谱分会、仪器信息网共同主办;会议时间:2024年4月19日 ;会议地点:苏州狮山国际会议中心。详细信息请查看ACCSI2024会议官网:https://www.instrument.com.cn/accsi/2024/index
  • 2012全国有机质谱学术交流会厂商报告
    仪器信息网讯“2012全国有机质谱学术交流会”于10月11日-16日在云南西双版纳召开,质谱相关的新技术、新应用在这里进行了广泛交流,大会吸引了主流国外质谱厂商“悉数到场”。质谱技术的每一次革新定会带动相关应用领域的巨大发展,应用领域的新需求不断促进质谱技术的发展 因此,科研工作者与仪器厂商共同推动了质谱技术向前发展。在此次有机质谱交流会上,在大会组委会的精心组织下,各个厂商通过一天的时间集中展示近期推出的最新技术、产品和应用报告,如下将做一简要介绍。   报告内容涉及最多的当数三重四极杆质谱技术。三重四极杆质谱因其准确的定量能力被业内认为是定量分析的标准,市场需求呈现爆炸式增长,其占有率在在各类质谱仪中遥遥领先,是各大公司的必争之地。仅在2012年,AB SCIEX、岛津、布鲁克、赛默飞世尔就通过媒体发布会,向外界发布了最新推出三重四极杆质谱。岛津公司在2010年后相继推出了LCMS8030、GCMS8030、LCMS8040、LCMS8080四款三重四极杆质谱之后,产品线覆盖了飞行时间、离子阱、四极杆等重要领域,称“已成为了一个真正的质谱公司”。布鲁克今年推出了公司首款三重四极杆液质联用仪EVOQ LC-TQ,使其产品线进一步扩大,为“全方位的质谱公司”再添一笔。熟悉AB SCIEX质谱的都知道,其每次推出三重四极杆质谱都是双胞胎系列(QQQ和QTRAP),AB SCIEX在2012年推出了6500高端三重四极杆质谱,同时推出了针对中端用户的4500三重四极杆质谱,市场划分更加细致。赛默飞世尔TSQ 8000三重四极杆气质联用仪器一如既往地提升TSQ系列质谱的高通量和高效率性能。   高通量、直接分析以及获得准确的结果是质谱技术追求的目标,但是这些目标往往不能够同时达到。有很多机构从事原位大气压直接电离技术的研发,但是真正商业化的产品并不多,DART是成功商业化的直接质谱分析技术之一,在全球已经有350多个用户,在国内由华质泰科代理,其代理的另一款TriVersa NanoMate高通量ESI离子源,目前还只适用于特定的高端用户。近期另一款直接分析技术是PerkinElmer近期推出的基于APCI技术的DSA直接样品分析系统,可以将液体、固体和气体样品可以直接引入到质谱仪,而且安装拆卸极其方便。   在飞行时间质谱方面,力可与日本电子突破了传统的一次或者二次反射方式,发展了另一种独特的飞行时间质谱,其共同之处是极大地加长了离子的飞行路径,力可HRT质谱在超高分辨模式下,其离子飞行路程达40米,分辨率创纪录地达到了10万。   色谱和质谱的联用是仪器领域最成功的联用案例,虽然现在不同公司之间的色谱和质谱的连接接口已经很好地解决了,但是如果同时拥有色谱和质谱两种仪器设备无疑会在市场上占得先机,安捷伦、沃特世、岛津和PerkinElmer都同时有自己相互匹配的色谱仪和质谱仪,赛默飞世尔收购戴安公司并经过一系列的整合,大大加强了在色谱方面的能力 2011年,AB SCIEX和布鲁克也推出了自有的高性能纳升液相色谱系统;自此,知名质谱供应商安捷伦、AB SCIEX、沃特世、赛默飞世尔、岛津、PerkinElmer、力可都拥有了自己的色谱、质谱系统。   国内聚光、天瑞、禾信等质谱厂商也有新产品和新技术推出,由于未参加该会议,本文不再涉及。   各个仪器厂商不仅展示了最新的质谱技术,还提供了详细的应用报告,部分报告内容摘录如下。    张志杰,刘凌燕:新型多反射飞行时间质谱及全二维气相在代谢组学中的应用   对于飞行时间质谱,加长离子的飞行距离可以显著提高分辨率,力可公司FFP多级反射技术将这一理念发挥到了极致,多级反射通道使离子的飞行距离达40米,分辨率达100000FWHM。力可HRT高分辨质谱有三种工作模式:普通模式用于快速筛查,分辨率1000FWHM,m/z=10-1500 高分辨模式用于化学式搜索,分辨率达25000-50000FWHM,m/z=10-1500,离子飞行距离达20米 超高分辨模式用于化学式验证,分辨率达50000-100000FWHM,离子飞行距离达40米。刘凌燕在应用报告中展示了HRT飞行时间质谱在肥胖症大鼠的代谢组学以及人体直结肠癌的代谢组学中的应用。    王克非:布鲁克-EVOQ LC-TQ液质联用三重四极杆质谱仪   布鲁克-EVOQ LC-TQ三重四极杆液质联用仪采用内嵌四极杆双重离子漏斗设计,提高了小分子和生物分子的灵敏度。现有的离子漏斗设计采纳了多重高压和直流电交变设计,使仪器调谐耗时复杂,进而让同一方法在不同仪器上的重复性变差。内嵌四极杆双重离子漏斗不同于常规的离子漏斗,不再采用叠加环设计,创新的对称线性设计有效去除了相同的分析方法在不同质谱仪的灵敏度差异,内嵌四极杆双重离子漏斗不再采用直流电流,无需频繁进行仪器调谐来调整因大量注射富含高浓度底物样品造成的背景差异。    沈飞翔:PerkinElmer质谱技术进展   APCI源的增强设计是由Victor Laiko提出,并在ASMS 2008表,在电晕针内含有一个接地的探头从而可以屏蔽毛细管端口的电场,这种电场的屏蔽设计使得电晕针放电和分析物之间的相互作用得以增强,提高灵敏度6倍。PerkinElmer DSA采用这个设计思想,利用APCI电离模式从而直接分析固体、液体和气体样品,无需复杂的样品前处理,该离子源可以用程序控制离子数量、气体种类、热量转移和离子化区域的电压。    赵贵平:AB SCIEX公司新产品——6500系统   AB SCIEX 6500最新的IonDrive Turbo V离子源,其加热器直径从4毫米增加到11毫米,增加离子化效率,加热雾化区域增大 最新的IonDrive QJet离子引入技术,采用更大的锥孔直径,提高了离子的利用效率,通过二级QJet聚焦传输,可以更有效地将更多的离子传输到Q0 IonDrive高能量检测器,离子流强度最高可以达到108cps,并没有信号饱和现象,离子信号的动态范围更宽。AB SCIEX 6500系统可以有两种质量数范围可以选择:5-1250,5-2000,相对于AB SCIEX 5500系统,AB SCIEX 6500的质量数范围更大。    Zhan Zhaoqi:新型超快速高灵敏度三重四极杆质谱技术及应用——岛津LCMS-8040/LCMS-8080介绍   岛津LCMS-8080是唯一一款采用立式设计的三重四极杆质谱,节省了大量空间。LCMS-8080采用第二代UF Sweeper技术,增加了灵敏度。多正交离子源技术,离子通过两次90度转向平稳地到达检测器,使其损失量达到最小。岛津LCMS-8030/LCMS-8040定位于超快速,每秒达500/555MRM,LCMS-8080定位于高灵敏度检测,较LCMS-TQ8030灵敏度提升了约30倍。LCMS-8080高灵敏度得益于同轴热气离子化技术(HSID)和UF技术,通过加速离子聚焦,并对离子探针喷雾进行加热,能够实现高灵敏度分析。    贾伟:质谱分析的新视野   Waters公司离子淌度技术为质谱中不同形态结构分子离子进行分离提供了一个新的维度。与其它离子淌度用于质谱的技术不同的是,Waters公司SYNAPT质谱有两个碰撞池,离子淌度单元位于两个碰撞池的中间。在用质谱进行组学研究中,二级质谱环节往往是很多离子的混合物,离子淌度可以对这些离子混合物进行分离,然后进入下一个碰撞室。   另外,Waters公司今年又推出了一款革命性产品UPC2合相色谱,将超临界流体技术(SFC)与超高效液相色谱相结合,由于SFC具有较小的粘度,可以减小过程阻力,在相同条件下,压力降比液相色谱的低,SFC具有较高的扩散系数和传质速率,单位时间内分离效率高。UPC2合相色谱拓展了反相色谱(LC)技术和气相色谱(GC)技术的局限,能完全替代正相色谱技术,为分析实验室解决不同类型的分析难题包括如疏水化合物、手性化合物、脂类、热不稳定样品以及聚合物等提供了强有力的不可缺少的工具。另外,SFC的引入,大大减少了有毒溶剂的使用。    刘春胜:原位电离质谱与实时直接分析   减少样品制备过程和时间一直是科学家和仪器研发人员努力追求的方向。自从Cooks教授发明了DESI电离源之后,目前已经发展了数十种原位电离技术,其中DART(华质泰科代理)是目前商业化最成功的原位电离分析技术,已经有350套设备被客户使用。DART除了具有原位分析的技术优势之外,还具有无离子抑制和无溶剂效应的特点。刘春胜通过实际应用案例,展示了DART在测定苹果汁中的残留乐果和识别真假鱼油方面实际应用。TriVersa NanoMate是华质泰科代理的另一款高通量电喷雾离子源,在微流控芯片上加工出400个喷针,极大地发挥了质谱或者多级质谱拥有的快速扫描、高分辨率、高质量精度的潜能,以充裕的时间、通过信号累加而获得的高灵敏度来获取更多化合物的信息。    王宏:Markes最新高性能GC-TOFMS(磐和科技代理)   主要介绍了最新上市BenchTOF飞行时间质谱,该产品在稳定方面采用了坚固的设计、惰性的内部触点,离子源加热范围80-400摄氏度,传输线温度到480摄氏度;BenchTOF的全扫描灵敏度达到四极杆质谱选择离子扫描的灵敏度。在应用报告中详细汇报了BenchTOF飞行时间质谱在猪骚臭分析的应用。    芦苓:TSQ8000 GC-Triple Quadrupole三重四极杆GC-MS/MS   赛默飞世尔科技TSQ 8000是第一台、也是唯一可以在真空下切换离子源的GC三重四极杆质谱,TSQ 8000是一款高通量,低成本并且具有超高灵敏度的气质联用仪器。TSQ 8000对多项目标化合物的Timed-SRM分析方法极大地提高了分析工作者的分析效率,无需分组,所有的目标化合物全部一起分析,按RT采集数据,400多种农药分析,一次进样,一组全部测定 一次进样可以分析超过11000个SRM。    张利红:北京博赛德科技相关质谱产品介绍   主要介绍了博赛德科技代理的INFICON 便携式质谱技术优势。目前市场上同类产品大部分使用的分子涡轮泵,但是分子涡轮泵的基本特征决定了其便携性、移动性不足,INFICON HAPSITE便携式气质联用仪器显著的特点是其专利的内置真空系统。    余翀天:安捷伦7200 GC/QTOF气相色谱四极杆串联飞行时间联用技术特点及最新应用   安捷伦7200 GC/QTOF气相色谱四极杆串联飞行时间质谱是业内唯一一款QTOF气质联用仪,具有独立的EI和CI源,可以在30分钟内不卸真空进行快速切换。7200 GC/QTOF适合于快速一次性进行多目标化合物筛查,已经建立了187个农残准确质量数据库,一分钟内自动输出筛查结果。    Carlos Chiu:JEOL最新高分辨质谱技术   日本电子SpiralTOF模式离子光学系统采用大阪大学开发的 “Perfect focusing(完全聚焦)”和”Multi-turn(多向转动)”技术,每隔一定距离能将离子包汇聚,因此即使延长飞行时间(离子轨道在有限的空间内达到了17米长),离子包在检测面上也不会扩散,从而同时实现了极高的质量准确度和极大的离子透射率。   在为期三天的质谱交流会,岛津、AB SCIEX和赛默飞世尔分别赞助了晚宴,并举行了精彩的节目表演。
  • 2008年全国有机质谱学术交流会(二)
    四级杆是质谱仪器的“心脏”,对于离子的分离起关键性的作用,单四级杆在一些领域已经不能很好的满足测试要求,因此“三重串联四级杆质谱仪”是兵家必争之地;通过子离子扫描(PROS)、母离子扫描(PRES) 和中性丢失扫描 (NLS)使三重四级杆在有机化合物结构分析、蛋白质组学、药物代谢产物的筛选方面大显身手,并且奠定了三重四级杆质量分析器是目前最好的质谱定量工具的地位。2008年全国有机质谱学术交流会上,各大质谱公司的学者、工程师各自做了约30分钟的“质谱新技术、新方法及其应用”的报告,与会人员与各位专家进行了热烈的讨论;其中赛默飞世尔科技公司、ABI美国应用生物系统公司、安捷伦科技公司、Waters等介绍了自己的最新推出的三重四级杆质谱仪器,在这里我们进行简单介绍,以飨读者。 赛默飞世尔科技,TSQ Quantum GC三重串联四级杆 赛默飞世尔科技公司汉友金先生介绍质谱解决方案 双曲面三重串联四级杆 灵敏度方面的突破 特殊的四级杆长约达到了25cm,专利的双曲面四极杆技术,使离子传输非常有效,在灵敏度和分辨率方面都有突破,能够进行+/-5ppm内的精确质量测量,并且能获得比四极杆-飞行时间质谱(TOF)更宽的线性范围。广泛应用于兴奋剂及滥用药物检测、生化及临床检测、食品安全中含有复杂基质的残留物的分析与确认、环境监测及药物代谢物的分析与研究等多个领域中。 美国应用生物系统公司:API 5500三重四极杆及5500Qtrap质谱仪 美国应用生物系统公司赵贵平先生介绍刚推出的5500三重串联四级杆及5500Qtrap质谱仪 新的离子路径 弯曲180度的线性加速碰撞池,非均匀半圆弧设计 5500型三重四极杆质谱仪中采用弯曲180度的线性加速碰撞池(Qurved LINAC Collision Cell)和eQ 电子学技术,Q2的最大电压可以加到500V,四极杆质弯曲部位采用非均匀设计,极大的提高了离子的传输效率,加大了离子的容量和传输速度;采用了新型的脉冲计数探测器AcQuRate,确保系统的重现性和精确性。从一次简单的实验中可以获得大量的数据,更加适合于复杂样品的检测。 安捷伦科技公司:6400系列三重串联四级杆 安捷伦科技公司薄涛先生介绍安捷伦的质谱解决方案 对喷射流进行加热聚焦,调节端口电压可以极大的提高灵敏度 加热双曲面四极杆分析器,离子传输效率高、免维护 6460建立在喷射流离子聚焦技术基础之上;对于喷射流的加热加速去溶剂化,还有端口电压等,可以极大的提高检测灵敏度(fg级灵敏度 );加热双曲面四极杆分析器,离子传输效率高、免维护。这些突破性质谱技术将被广泛应用于基因组学、代谢组学、蛋白质组学、药物杂质鉴定、环境污染物筛查和食品分析等领域。 沃特世科技:Xevo™ TQ 三重串联四级杆质谱仪 Waters公司Henry Shion先生介绍Xevo™ TQ 三重四极杆质谱仪 Xevo™ TQ MS配备了新系列的大气压离子源使样品直接离子化,包括优化气流动态特性和一种极大增强了离子化效率的脱溶剂加热器,碰撞池技术采用了创新的T-Wave™ 和ScanWave技术。为蛋白质组学研究提供新的分离平台,还可以适用于食品和饮料、法医鉴定、药品和石油样品等。 相关新品发布会新闻 突破与超越——AB公司推出QTrap 5500和三重四极5500型质谱仪 11/12 安捷伦科技亮相2008慕尼黑上海分析生化展 9/23 全球第一台Thermo Scientific TSQ Vantage质谱在华安装 9/24
  • 谱育科技发布谱育科技EXPEC 5210三重四极杆串联质谱仪新品
    EXPEC 5210 是谱育科技在“国家重大科学仪器设备开发专项”支持下,历经多年的研发投入,采用一系列创新的质谱技术,研制的具有自主知识产权的三重四极杆串联质谱仪。针对三重四极杆串联质谱核心技术,攻克了高稳定度电喷雾离子源、高效去溶剂离子接口、三重四极杆高效离子传输、三重四极杆质量分析器、高速碰撞反应池、射频电路驱动等核心技术,打造了性能优越的三重四极杆串联质谱新产品。EXPEC 5210 具有卓越的灵敏度,优异的稳定性,突出的可扩展性和极佳的性价比,适应于环境检测、医学检测和食品安全等广泛的应用领域。产品特点独特的双正交离子源和双3Q离子光学设计采用ESpray双正交电喷雾离子源技术,具有极佳的离子产率和抗基体能力;采用独特的三四极杆离子导引技术和三重四极杆质量分析器技术,保证了EXPEC 5210的分析性能和长期稳定性。出色的灵敏度采用全新设计的Step Scan离子传输技术,有效提升了离子传输效率;创新的轴向加速碰撞池技术,大大提升碰撞效率;专利的脉冲计数检测技术,无损失的检测离子信号,有效过滤噪声干扰。优异的稳定性高效去溶剂的离子源和离子接口,增加系统耐受性;专利的双路射频电源闭环自适应调整技术,提高四极杆射频电源的稳定性;专利的抗温湿度交变技术适应更大的温湿度使用范围。全中文的Mass Expert质谱工作站全新的Mass Expert全中文质谱控制软件和分析软件操作简单,一键自动调谐和质量校准功能降低了仪器控制的复杂度,降低了仪器使用门槛。质谱分析软件和报告模板可根据不用应用领域、不同用户进行个性化的定制,满足各个应用领域的使用需求。应用案例猪肉中磺胺类药物检测定量限优于国家标准GB/T 20759-2006检出限2个数量级,满足肉类16种磺胺类药物检测应用需求。 水体中氨基甲酸酯类农药检测 具备环境水体复杂基质中痕量多组分农药残留分析的强大能力。 环境介质中全氟化合物检测采用EXPEC 5210 LC-MS/MS定量评估普通地区(A市)和生产地区(B市)环境介质中的全氟化合物污染水平,为环境监测和治理决策提供参考依据。新生儿遗传代谢疾病筛查利用EXPEC 5210定量分析新生儿干血点中的60余种氨基酸和酰基肉碱,每次仅需2min即可筛查30余种遗传代谢疾病信息。 血清中维生素D含量检测采用EXPEC 5210测定血清中25-羟基维生素D浓度,评价人体维生素D营养状况,可满足临床检测需求。 创新点:国内首创的三重四极杆串联质谱仪,性能指标达到了国际同类先进水平,并且在质谱核心技术上拥有自主知识产权: 1.四极杆混频共振质量筛选技术。 在四极杆质量分析器的其中一对相对电极上施加混频信号,通过混频共振隔离和四极杆本身工作模式具备的质量筛选双重机制,使待隔离离子剔除更为彻底,从而提高了四极杆质量分析器的丰度灵敏度,确保分析数据的准确性; 2.中性粒子剔除技术。 利用偏置电压的差别,实现了离子从第一组多极传输杆内运动到第二组多极传输杆内,中性粒子由于惯性而飞出第一组多极传输杆,排除了中性粒子的影响。 3.四极杆电压控制技术 利用独创的四极杆智能电压控制技术,通过对RF+和RF-以及DC+和DC-独立控制,控制四极杆射频电压和直流电压的对称,确保四级电场的对称性,使得四级杆质量分析器具有更佳的离子帅选性能。 谱育科技EXPEC 5210三重四极杆串联质谱仪
  • 岛津超快速质谱助力靶向代谢组学研究
    靶向代谢组学中,通常需要同时检测多个目标组分,这对质谱数据的采集速度提出了很高的要求。 岛津超快速质谱(UFMS)拥有业内首屈一指采集速度。以LCMS-8050为例,其驻留时间(Dwell time≥0.8 ms)、切换时间(Pause time≥1 ms)、扫描速度(Scan speed≤30000 u/sec)、正负极切换速度(Polarity switching time=5 ms);并且具有触发子离子扫描功能,可以实现MRM定量的同时对目标组分进行子离子扫描定性分析。 以下图为例,假设一个峰宽6秒的UHPLC色谱峰用于定量分析,必须有20个采集点左右,峰型才足够平滑,峰面积和出峰时间的重复性才能达标。如此算来,每个采集点的循环时间(loop time)只有300 ms。在300ms的时间段内,需要进行所有目标组分的采集,如下AB正离子,CD负离子: 1.采集循环开始,切换时间内对质谱通道电压进行调整(为A离子对“铺路”);2.A母离子通过四级杆Q1、碰撞池内进行碰撞、四级杆Q3筛选子离子、最终到达检测器进行离子计数,这段时间总和即为驻留时间;3.为B离子重复以上过程,到此正离子采集完成;4.接着切换从离子源到质谱通道到检测器的电压为负,此为正负极切换时间;5.进入到C、D的采集过程,过程与AB一样;6.最后将电压切换为正,到此结束整个循环时间,开始下个采集点的循环时间。 这只是两个正离子和两个负离子的采集例子,如果采集目标组分数量急剧增加,在峰宽不变的情况下(即循环时间loop time不变),分到每个离子的驻留时间和切换时间将急剧减少,因此最小驻留时间和切换时间,直接决定了该质谱在所能同时采集的离子对数量,这对于靶向代谢组学或其他需要进行多目标物同时筛查的项目,至关重要! 图2. 质谱采集信号的过程,以及频率和点数的关系最后,举例说明岛津UFMS在靶向代谢组学中的一个应用实例:脂质组学属于代谢组学的一个分支。为进行靶向脂质组学研究,岛津公司利用超快速质谱适于多化合物同时检测的特性,推出了第三版脂质介质方法包:包含了主要脂类化合物如类花生酸、二十二碳六烯酸(DHA)和二十碳五烯酸(EPA)等多价不饱和脂肪酸代谢物,花生四烯酸乙醇胺(AEA)、血小板活化因子(PAF)等196种主要脂质介质及其相关物质的色谱、质谱条件(MRM通道)。 该方法只需20分钟的色谱分析便能获得这196种化合物的脂质介质的分析结果。此外,方法包中还根据出峰时间和结构特性,准备了18种氘代内标化合物的MRM通道。另外,该方法包可进行保留时间校正,可使用内标法进行半定量,所以可用于检索多变量解析时的标记物。下图显示了超快速质谱MRM模式中,196种脂质和18种内标同时分离所采集得到的色谱图。 图3. 脂质介质方法包用于196种脂质,18种内标的分离 撰稿人:钟启升
  • 安益谱发布首款气质三重 ——2021质谱新品大探秘
    随着质谱技术的发展和应用逐渐成熟,全球范围内质谱仪器销售增速迅猛,进入快速发展期。2021年,中国市场各厂商的质谱产品推陈出新,为更全面展现2021年中国市场推出的质谱新产品、新技术,仪器信息网特别策划MS GO:2021质谱新品大探秘的系列视频采访,向广大用户带来最新最前沿的质谱新产品速报。跟随仪器信息网的镜头,可以看到2021年多家国产厂商的质谱产品扎堆发布,品类囊括了ICP-MS、ICP-TOFMS、GC-MS、GCMS/MS、小型质谱以及核酸质谱等,可以说是你方唱罢我登场,好不热闹。苏州安益谱精密仪器有限公司在其总经理张小华博士的带领下,从2004年起开始气相色谱质谱技术的自主研发,经过十多年的技术积累与沉淀。近年安益谱推出了7600、7700等数款实验室台式GC-MS,以及MATE 11便携气质等设备,并收获了第三方检测行业等用户的认可。2021年,安益谱推出了首款气相色谱串联三重四极杆质谱仪,系统使用了双涡轮分子泵真空结构,最大载气流速可达10ml/min,支持0.53mm大内径色谱柱。不仅如此,新产品搭载了轴向线性加速电压高效碰撞池,保留更短的驻留时间,实现更好的碰撞效果。此外,新产品拥有的非共轴双预四极离子导引,可有效降低中性粒子噪声。张小华也表示,从分析仪器的未来发展趋势来看,气相色谱质谱以及液相色谱质谱技术都必将过渡到中高端的三重四极杆串联质谱技术,当前LC-MS/MS不仅在当前食药环境等领域,而且在临床质谱的赛道上,是被最广泛使用、增速最快的质谱产品,因此GC-MS/MS和LC-MS/MS还有很大的市场空间。基于此,安益谱也采取了相应的战略措施,公司也在积极研发LC-MS系列产品,并关注生物医药及生命科学领域的应用。点击收看完整采访视频:
  • 质谱成像:MALDI技术在质谱成像中的应用
    p style=" text-align: left "    strong 一、质谱成像技术简介 /strong /p p   成像质谱(IMS)是一种非常灵敏的分子成像技术,可提供组合的分子信息和空间分辨率。它允许从组织切片、单细胞或其他物质表面直接鉴定和定位化合物分子。成像质谱研究的核心特点是质谱仪的高灵敏度、技术的无标签性、对肽和蛋白质的成像能力,以及从个体水平(几百微米)到细胞水平(几十纳米)空间分辨率。成像质谱允许在单个实验中同时检测数千个不同分子的图像。因此,它是一种有效的多组分分子成像技术。科学家们已经开发了许多不同的成像质谱方案和仪器来研究生物内源性化合物,如脂质、肽和蛋白质,以及外源化合物,如聚合物,或者用于研究组织处理药物的分布。这些研究提供了从亚细胞层次到有机体层次生物过程的详细情况。 /p p style=" text-align: center " img title=" 00.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/023209d6-c059-4300-b7e9-75b5d86cff30.jpg" /    /p p & nbsp & nbsp & nbsp 当今,成像质谱主要是用于病理学离体组织研究的技术,并不具备MRI(磁共振成像)或PET(正电子发射断层摄影)扫描的体内诊断能力。然而,它可以作为体内成像的补充技术来验证生物分子的分布代谢规律或不同疾病阶段药物的递送方式。许多研究人员正在探究用这种补充成像方式来解决分子分布的具体问题。这种做法的理由很明显。没有其他单一的成像技术能够以适当的空间分辨率、时间分辨率及生物学状态提供分子结构和解剖信息的适当组合。与其他分子成像方法相比,如MRI,PET或免疫组织化学(IHC),成像质谱有一个独特的特征:它可以使化合物分子可视化而又无需标记,这可以实现其他技术所不能实现的对新化合物分布规律的研究。通常,它是在使用影响色差的常规染色剂(例如通常用于组织染色的苏木精和曙红(H& amp E)情况下,可以做化合物分子鉴定的唯一工具。它可以用于常规组织学染色剂不可实现的化合物分子分布规律的研究。这是因为在病理学中使用的常规染色剂只提供一般组织分型,而不识别特定分子,不提供分子修饰及其组合信息等。不能被常见组织染色剂染色的几种药物和代谢物如表1所列。 /p p style=" text-align: center " img title=" (MS@0{[%]6Q49XJ@3VDOVZA.png" src=" http://img1.17img.cn/17img/images/201708/insimg/4e4940a0-12c9-4169-b75e-f37f5d2ef818.jpg" / /p p    strong 二、质谱成像的解吸和电离技术 /strong /p p   IMS需要从被研究物质的表面解离和离子化化合物分子。主要有两种物理方法:(1)用载能带电粒子碰撞分析物表面,(2)用来自脉冲相干光源的光子照射表面。 /p p   1. 带电粒子的解吸和电离 /p p   带电粒子主要用于二次离子质谱(SIMS)成像。在这种方法中,分析物表面暴露于高能聚焦的一次离子束下。离子撞击会导致表面上下分子的级联碰撞,从而引起表面分子的移动和电离。随后,碰撞产生的二次离子可以进入质量分析器分析以确定其性质。碰撞能量通常会保持较低,以确保一次离子可以与不同区域表面分子相作用,并且确保已碰撞区域不再进行二次碰撞分析。低于表面层分析碰撞能量的实验被称为静态SIMS实验。高于该碰撞能量的实验,被称为动态SIMS实验。在动态SIMS实验过程中,分析物表面会发生持续的变化。在静态SIMS实验中,被分析的表面通常在1%以内。 /p p   在SIMS实验过程中,大量的内部能量被转移到表面分子中。这会导致表层化合物分子产生大量的碎裂。这使得该方法不适合直接研究大分子物质,如肽和蛋白质等。该方法可以较好地观测待测物表面元素和小分子化合物分布规律。化合物碎裂模式与电子碰撞电离中观察到的碎裂模式相似。 /p p   最常用的一次离子种类是铟和镓。它们主要应用于半导体表面上的元素和有机杂质研究,以及薄层表面涂层的研究。受益于较大簇离子或分子离子的应用,切片组织等生物表面也可以被分析。较大的一次离子有Aun+、Binm+、C60+等。这些离子可以使完整次级分子离子的产率更高,并且减少了分子离子碎裂。此外,这些离子的应用还可以显著降低对表面下层分子的破坏,从而增加三维成像实验成功的可能性。 /p p   所有的SIMS实验与以上所述的离子光束均需要保持真空环境,否则初级离子会因为平均自由程太短而不能到达分析物表面。解吸电喷雾电离(DESI)是大气压下的解吸和电离技术。它会产生电喷雾液滴,然后在大气条件下被传送到待分析物表面。溶剂液滴吸附到表面分子上,从而产生与常规电喷雾质谱电离相似的二次离子。这种方式可以产生带多电荷的准分子离子。据报道,该方法适用于多种待测物的表面分析,包括药物片剂、血迹和组织切片等。研究显示,DESI技术用于组织成像可以可视化观察脑和肿瘤组织切片中的磷脂和脂质。 /p p   2. 光子解吸、电离 /p p   2.1 LDI和MALDI /p p   能够从表面解离和电离分子的第二种方法是光子与表面分子产生相互作用。通常,脉冲激光束聚焦在分析物表面上。由表面层吸收的光子能量会导致表面材料的爆炸性去除或消融。 /p p   当使用红外(IR)或可见光时,光子能量主要转化为表面振转能量。在紫外线或真空紫外线(VUV)光下,光子能量增加可以引发大量的电子激发。如果积累在待分析化合物分子中的内部能量足以引起直接电离,该过程被称为激光解吸和电离(LDI),如图1(a)所示。在激光解吸过程中积累的内部能量通常比较高,表面分子可以发生大量的碎裂。此外,有机化合物的低电离效率使得该技术不太适合于大分子质谱分析。这些情况下,可以应用激光解吸后电离(LDPI)策略来电离解吸过程中产生的中性粒子(图1(b))。后电离策略可以在真空条件下通过UV或VUV波长范围内的二次能量激光束照射实现。最近研究表明,激光解吸可以有效地与ESI离子源联用,从而在大气压力条件下可以进行激光烧蚀电喷雾电离(LAESI)(图1(c))。这种组合增加了可以用激光解吸策略分析的化合物类别,并能减少化合物碎裂。当与电感耦合等离子体质谱(ICP-MS)组合时,激光烧蚀可以成功地用于待测品表面元素的定量分析。烧蚀的组分被等离子体源雾化并离子化成构成元素和同位素离子,随后通过质谱仪进行分析。当与光发射光谱法结合时,使用从ICP发射的光可以获得更多定量基本信息。 /p p   由于存在大量碎裂,直接LDI策略不适用于分子量超过500Da的生物大分子分析。这时可以选择使用能量调节基质。分析物混合或被涂布在待分析物表面上(参见图1(d))可以克服这个限制。在20世纪80年代晚期,由Karas和Hillenkamp构想的这种技术被称为基质辅助激光解吸和电离(MALDI)。它是现代蛋白质组学研究中的关键技术,可以应用于生物大分子,如蛋白质和DNA分子的解吸和电离。在复杂待测物表面的MALDI分析中,基质辅助方案有更多的用途。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201708/insimg/44bc0e85-da34-4110-9c06-ae524e9d48ad.jpg" / /p p   首先,应用基质后,它可以将复合物样品中的待测分子重构在基质晶体中间或者表面。这些分析物掺杂基质晶体的形成,可以将待分析物与其他辅助因子如盐等分离,并可以将大分子分散在基质中。用脉冲激光对晶体表面的后续照射能够快速地使样品过热。这是作为激光能量强吸收体的基体受到电子激发(UV-MALDI)或振动激发(IR-MALDI)作用的直接结果。协同运动的过热基质与其夹带的分析物可以被引导到的真空中。这有助于分析物分子气相化的非破坏性转变。基质的最后一个目的是通过电荷转移促进分析物分子的电离。该方法通常会使[M+X]+型的阳离子转化成完整的准分子离子,其中X表示产生的阳离子的类型。最常见的阳离子是氢、钠和钾。为保证分析成功,分析物分子必须与固体基质材料共结晶,并且这些基质应该是过量的。最常用的基质与分子的比例在103:1至105:1的范围内。根据经验,研究的分析物的质量越高,完全解吸所需的基质剩余越多。 /p p   2.2 MALDI在敞开环境中的应用 /p p   近来敞开式解吸策略的发展已经产生了一些进步,该策略也需要使用基质。类似于LAESI方法,其基质、分析物混合物需要在基材上共结晶,这样可以有更多完整样品从表面移除。 MALDI离子会受质谱入口和样品表面之间电场的作用而发生偏转。从MALDI基质上产生的中性粒子含有大量在真空MALDI实验中丢失的分析物分子。它们可以被吸附在尚未完全雾化的电喷雾液滴表面。接下来是常规的产生多电荷离子的电喷雾电离过程。该过程又缩写MALDESI(基质辅助激光解吸电喷雾电离),它可以将MALDI在敞开环境中的优点以及电喷雾电离的灵敏性结合起来。 /p p   2.3 MALDI和液相色谱 /p p   MALDI技术和液相色谱(LC)分离技术的成功联用,提高了复杂混合物的分离检测效率。分析复杂混合物时,MALDI会受到显著的离子抑制。不同物化性质的化合物分子共存通常会导致一种或几种组分优先于其他组分离子化。离子抑制效应是许多分析学科量化研究的主要障碍。对MALDI质谱强度差异的解释本质上是定性的。克服该问题的一个方法是进行色谱分离以降低混合物的复杂性。许多nano-LC-MALDI方法已经实现了将分离时间尺度转换为空间分布尺度。自动点样技术可以将一系列二维纳升液相洗脱液滴(通常每滴为150纳升)沉积到MALDI基质预涂层上。也可以采用其他方法将基质溶液与LC洗脱液混合,并将该混合物液滴有序沉积在干净的基质靶板上用于质谱分析。 /p p   3. SIMS中基质的使用 /p p   使用能量调节基质材料的优点并非仅限于光子解吸和电离技术。MALDI质谱技术的成功使MALDI基质在SIMS(二次粒子质谱分析法)样品制备中的应用成为可能。分析物与MALDI基质(2,5-二羟基苯甲酸/DHB)的共结晶,更加方便了采用基质增强型SIMS(ME-SIMS)方法对质量超过10kDa的大分子离子进行检测。因此,这种仅基于SIMS电离方法产生完整大分子离子(肽,蛋白质,寡核苷酸)的技术是成功的。有人提出,基质在ME-SIMS中的作用与在MALDI中的作用相似:都是为分析物分子提供了一个嵌套环境,并提供了质子来增强电离。以DHB为基质可以获得最佳结果,可能解释是DHB提高了样品表面区域中分析物的浓度。由于ME-SIMS(与MALDI相比)仅检测表面50nm之内,所以分析物的定位在样品制备中至关重要。分析物分子必须存在于晶体的表面,因为在静态SIMS条件下不能检测到基质共结晶的较深层次。 /p p    strong 三、成像质谱的空间分辨率 /strong /p p   IMS的一个关键参数是可实现的空间分辨率。空间分辨率决定细胞和组织表面可观察到的细节。获得质量分辨率图像的最常见方法是使用微探针或扫描模式。微探针模式质谱成像通过SIMS扫描样品上的电离探针束或移动样品通过MALDI对焦进行。对于每个特定位置,带电离子束与样品相互作用,存储坐标,并获得位置相关离子产生的质谱数据。以这种方式构建光栅,光栅中的每个点都具有与其相关联的质谱数据。使用专用软件,可以从这些数据集中构建质量分辨的离子图像。微探针成像实验中最大的可实现空间分辨率由微探针的尺寸决定。在技术上,光栅中每个点的精度是控制分辨率的另一个因素,但是对于SIMS和MALDI成像,通常这不是一个问题。此外,实验实现的空间分辨率受样品制备(基质)和灵敏度(信噪比)相关因素的影响。 /p p   1. 二次离子质谱(SIMS)和解吸电喷雾电离质谱(DESI)成像质谱的空间分辨率 /p p   SIMS使用离子源的大多是由液体金属离子枪构成。 Ga +和In +主要用于表面元素和小分子分析。使用这些枪可以获得的空间分辨率由发射器的大小,离子柱中的静电光学元件和主光束电流决定。后者通常保持较低以防止光束的空间电荷膨胀和分辨率损失。当在低电流下进行调谐时,这两支枪可以提供50nm的焦点。金属簇光束Aun+、Bin+以及C60+可以在非常低的光束电流下提供100-200nm的光斑尺寸。低光束电流通常需要更长的实验时间。因此,为了应用更大的束电流增加分析速度,空间分辨率通常会受到一定损失并减小到大约1μm。 DESI使用指向表面的带电溶剂液滴喷射流。喷射流与表面的润湿相互作用中,作用区域大小决定了空间分辨率。研究表明,DESI成像的常规空间分辨率为1mm左右。 /p p   2. 激光直接成像(LDI)和基质辅助激光解析电离(MALDI)成像质谱的空间分辨率 /p p   聚焦激光束的分辨率是波长决定的,并受阿贝衍射极限的限制。长波长的红外激光器难以聚焦在50μm以下。商业仪器中的UV激光光斑的物理尺寸限制在约10μm。在商业仪器上,大多数实验用激光光斑尺寸在50和250μm之间。这个选择是由灵敏度和完成实验所需的时间决定的。特殊的共焦目标可以将斑点尺寸减小到1μm,但是使用MALDI的这些小斑点所需的激光阈值通量对于组织中化合物的无损分析是不是太高仍存在实质性的争论。初步实验显示了其从分析物获取高分辨率图像的能力。替代方法是使用常规MALDI-ToF仪器的过采样方法增加空间分辨率。在这种方法中,激光探针点的移动增量小于光点直径。所有样品在第一个采样点完成后,每个采样增量都会从比激光焦点尺寸小得多的区域采集信息,从而达到增加空间分辨率的目的。这种方法的两个缺点是有限的质谱串联可能性和较大的总样品消耗量。 /p p    strong 四、成像质谱仪:发展和改进领域 /strong /p p   使用上一节描述的解吸和电离技术,可以在复杂表面产生原子和分子离子。质谱图像的产生需要对这些产生的离子进行后续质量分析。现代质谱方法提供了一系列质量分析仪器来达到此目的。本文介绍三种类型的质量分析仪器,为生物表面的MALDI或SIMS质谱成像提供独特的分析能力。 /p p   1. 飞行时间成像质谱法 /p p   IMS中最常用的质量分析器是飞行时间分析仪。它需要产生脉冲离子,这一要求理想地与MALDI和SIMS要求兼容。所有离子都具有相同的加速电位。相同质荷比的离子将在其解吸过程产生的初始动能之上获得相同的动能。因此,它们的速度取决于它们的质荷比,并且离子可以通过在无场区域中的漂移而分离。离子检测是通过多通道板(MCP)类的粒子检测器实现的。ToF分析提供了非常宽的质量范围,该范围仅受大分子物质检测灵敏度的限制。MALDI-ToF-MS最多可以对数百万道尔顿的分子进行分析。微秒范围内的高传输效率和总飞行时间,为使用高重复率激光器进行高灵敏度表面检测提供了可能性。这使得高通量分析成为可能,而高通量分析正是大表面积样品分析的关键要求。分辨能力的提高可以通过补偿解吸过程产生的初始动能来实现。使用延迟提取,半球形静电扇形器件和反射镜等技术可以在m/z 1000下将半峰宽(FWHM)质量分辨率增加到m/△m = 30 000。用于化合物鉴定的串联质谱通常通过碰撞诱导解离(CID)或通过观察电离后亚稳离子的衰变实现。为此,两个独立的ToF系统可以以所谓的ToF / ToF配置串联。第一个ToF用于前体选择,第二个ToF用于产物离子分析。 /p p   2. 傅里叶变换离子回旋共振质谱法 /p p   傅里叶变换离子回旋共振质谱(FT-ICR-MS)是一种离子捕获技术,它决定了强磁场中潘宁离子阱中捕获离子的回旋加速频率。在外部离子源产生离子后,离子被转移到潘宁离子阱中,直到进一步分析。使用宽带射频电激发,所有离子被激发到大的回旋加速轨道。它们的轨道半径不仅增加,而在潘宁离子阱中,相同质荷比的离子也相互连贯地在轨道绕行。在绕行期间,它们可以在一组双检测电极中引起振荡图像电荷。该时域信号被数字化并进行傅里叶变换以产生回旋加速频谱。质谱图可以通过对回旋加速器方程w=qB/m校准产生。 /p p   FT-ICR-MS的主要优点是具有无与伦比的质量分辨率和质量测量精度,可用于从MALDI图像分析中发现新的结构细节。此外,使用捕获离子技术不仅允许CID,而且允许红外多光子解离(IRMPD)和电子捕获解离用于串联质谱的结构测定。分析速度受观测时域信号的长度和相关质量分辨率的限制。质量分辨率取决于轨道离子的相干时间。典型的分析时间是每像素1 s,与所用的离子源无关。可以通过增加磁场强度来降低相同分辨率下的瞬态长度。MALDI组织成像实验可以在FT-ICR-MS系统上进行,FWHM分辨率范围从40000到400000。(图2)。 /p p style=" text-align: center " img width=" 450" height=" 616" title=" 3.png" style=" width: 450px height: 616px " src=" http://img1.17img.cn/17img/images/201708/insimg/91f3b7ae-f7c9-4edd-81d2-1fe8a264e388.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   3. MALDI离子迁移成像质谱法 /p p   通过MALDI生成离子的迁移分离,质谱图中可以得到更多附加信息。离子迁移谱是基于离子通过碰撞横截面面积的分离技术。在离子迁移质谱中,有充气的漂移池用于质谱分析之前的离子分离,这些离子由于构象或组成变化而具有不同碰撞截面。当用于质谱成像时,除了空间维度和质谱维度之外,还增加了时间漂移的气相分离维度。离子迁移光谱法在两个主要方面有利于MALDI成像质谱的研究。首先,增加额外的分离维度能够检测到更多的质谱峰。离子迁移有利于减小质谱分析复杂度,并有助于不同种类化合物的分离,例如肽和磷脂。第二,质量与漂移时间选择结合使得等压肽或其它类似物分解为分裂谱。 /p p   离子迁移、MALDI与用于IMS的ToF-MS组合,能够通过其相关的消化肽片段定位和鉴定蛋白质。离子迁移分离可以鉴定通过常规MALDI-ToF-MS无法鉴定的等压离子。与传统的MALDI-ToF相比,该方法每次测量的观察峰数量增加,能够产生质量和时间选择的离子图像,同时可以对单个离子进行鉴定。图3所示结果证明了离子迁移飞行时间成像质谱(IM-ToF-IMS)对来自组织的蛋白质鉴定的可行性。 /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201708/insimg/bfc037cb-3061-4ea0-b5a6-6c3b3bf23e09.jpg" / /p p   组织消化与MALDI-IM-ToF-IMS方法相结合,可以对不同种类组织蛋白质鉴定实行“自下向上”的策略。 /p p    strong 五、MALDI成像策略 /strong /p p   1. 质谱成像流程 /p p   不同解吸电离方法与不同质量分析器组合,为在单个组织样品上进行互补实验提供了可能性。 /p p   需要仔细的实验设计来确保获得相关的互补分子图像信息。图4中显示的实验工作流程提供了从单个组织生成六个补充图像数据集的示例。在该示例中,通过外科手术获得一块组织。组织中的细胞表达荧光标记的蛋白质,因此成像工作流程中的步骤是产生荧光图像。这提供了一种特定蛋白质的详细位置。在将衬底表面上的10-20μm薄片进行组织切片和安装之后,进行SIMS分析。这提供了在高空间分辨率下的低分子量成像MS数据。静态SIMS除去表面材料的不到1%,因此残留的表面仍然可以进一步分析。SIMS研究完成后,可以用基质涂层覆盖组织表面(参见“基质涂层”一节)。根据感兴趣的分析物,表面可以或不能被洗涤。洗涤方案对所得结果有重要影响。在图4的实验工作流程中,在基质沉积之前不进行洗涤以允许小的水溶性分子成像。在基质沉积后,进行的第一次分析是ME-SIMS。再次只有少量化合物分子从表面去除,晶体表面保持可用于后续的MALDI分析。ME-SIMS数据集提供了更大的完整有机分子(如脂质和分子量小于2000 Da的小信号分子)的信息。进行的下一个分析是具有略高于解吸阈值的激光注量的MALDI-ToF分析。 MALDI-ToF数据集包含有关内源性肽和完整蛋白的信息(取决于使用的洗涤方案和基质)。可以获得的最后一个MS成像数据集是MALDI-FTICR-MS数据集(或离子迁移率图像数据集)。这些技术需要去除大多数基质材料。它们可以提供高质量分辨率和质量精度信息,有助于识别构成图像的分子。任何残留的基质材料都可以从多次分析的表面上洗去,以便进行最终的H& amp E染色。这提供了其他的组织学信息,可以与成像质谱数据集结合来鉴定特定区域或组织类型。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201708/insimg/6e50bb6c-daeb-4a23-895c-3da7452a8caa.jpg" / /p p   2. 基体涂层 /p p   在MALDI和ME-SIMS分析之前,必须将基质溶液涂布于组织表面。基质溶液由有机溶剂如甲醇或乙腈组成,添加剂为弱有机酸如芥子酸(SA)或2,5-二羟基苯甲酸(DHB)和三氟乙酸(TFA)。加入TFA可增加分子的离子化质子的量。基质应用方法将强烈影响成像MS结果。应用方法将对灵敏度,表面扩散与空间完整性,空间分辨率,表面平坦度和分析速度产生影响。组织性质和环境参数影响组织中蛋白质的提取效率和基质的结晶。因此,控制基质沉积环境也是很重要。有几个实验室正在考虑创新的沉积方法,如基质升华。对于一般实验室,一般有两种基质沉积方法:点样和喷涂。 /p p   2.1基质点样 /p p   将基质溶液点样到组织部分时需要将分析物的扩散限制在斑点大小范围。已经开发了两种基质检测方法:手动或自动检测。手动点样产生微滴液滴,经常用于不需要生成图像的MALDI组织分析。自动点样使用更小的体积(pl)液滴,并产生约120-150μm的点样尺寸和约200μm的最小分辨率。两种不同类型的自动识别器用于基质沉积:喷墨式压电喷嘴和使用聚焦声波的液滴分配器。两个喷射器都可以释放100μl在组织上干燥成150μm直径的液滴。在这种情况下,成像MS分析的分辨率通常会受到大于分析光束直径的基质点样点的限制。 /p p   2.2 基质喷涂 /p p   基质喷涂使均匀小滴的基质溶液覆盖了样品的整个表面。气动、振动喷头或电喷雾可以使基质溶液变生液滴喷雾。喷涂可以手动和自动化的方式进行。手动喷涂采用手持气动喷枪或TLC喷雾器。通过喷雾装置与x-y机器人联用可以实现自动喷雾应用,也可以在较大的区域上进行基质沉积。使用振动喷雾器在较小的区域也可实现自动喷涂,其小型腔室主要控制湿度。喷涂后形成的晶体通常为10-20μm。为了获得更小的晶体,可以使用电喷雾,减小敏感度产生甚至小于1μm的晶体。当使用喷雾沉积时,激光束的直径限制了MALDI成像质谱的空间分辨率。 /p p   3. 鉴定策略 /p p   用于产生分子图像的质谱峰的识别是所有质谱图像策略中的关键步骤。选择时候,可以使用高质量分辨率以及准确的质量进行测量。通常需要结合其他策略,如使用MALDI串联质谱或其他分析策略来识别表面化合物种类。 /p p   3.1 MALDI串联质谱法 /p p   串联质谱使用是识别表面产生的不同化合物离子的合理选择。限制因素是前体离子选择的分辨率、裂解效率和方法灵敏度。在相同的位置,通常只能进行几个质谱实验。可以在单个位置进行的实验数量仍然取决于提供信号的激光照射的数量。在相邻位置执行串联实验的隔行扫描成像方法可部分克服此问题。一旦裂解模式已知,可以应用多重反应监测来确定化合物分布。 /p p   4. LC-MS / MS鉴定 /p p   研究可以使用互补组织匀浆和提取来产生组织成分的信息库。也可以使用LC-MALDI来解决混合物复杂性的问题,增加灵敏度,以及降低离子抑制效应。 /p p   在直接MALDI成像实验中观察到的MALDI图谱比较分析可以用作识别策略的一部分。在这些研究中,串联MS可用于识别在LC-MALDI靶上发现的各个化合物成分。 /p p 参考文献: /p p a title=" " href=" http://sci-hub.cc/10.1016/B978-0-08-043848-1.00028-6" target=" _self" The Development of Imaging Mass Spectrometry. /a /p p a title=" " href=" http://www.sciencedirect.com/science/article/pii/B9780123744135000087" target=" _self" MALDI Techniques in Mass Spectrometry Imaging. /a /p p & nbsp /p
  • 质谱这件“小”事儿
    当仪器出现问题时,我们需要对仪器进行哪些检查呢?我们可以又通过那些小检查来快速解决问题呢?01喷雾呈伞状的喷雾是良好的信号的前提。可以通过源上的窗口对喷雾状态进行检查,可借助手电筒放大镜等工具以利于观察。当喷雾针倾斜以及堵塞都会导致喷雾状态的良好性。02真空度仪器的正常运转离不开真空度。当真空度“太好”时需要注意仪器的碰撞气是否足量以及毛细管是否堵塞。毛细管是前级电压和大气压的通路,是确保真空度的重要组件。当毛细管中间出现了污染或锈着造成毛细管堵塞。又或者当仪器无法达到原有的真空度时有可能是机械泵的泵油泄露导致泵油不足、真空腔泄露,严重的则有可能是分子涡轮泵损坏。03电流电流可分为腔电流和毛细管电流。腔电流反映的是离子生成的效率,而毛细管电流反映的是离子传输的效率。电流反映了离子迁移的情况,应保持持续稳定。对仪器进行调谐时建议在做检验调谐或者自动调谐的时候记录每一次调谐的腔电流和毛细管电流,电流值维持稳定则说明离子源状态良好。需要注意的是电流值不应出现数量级上的变化或成倍的衰减。04日志文件在质谱故障的检查前,需要去系统中生成的日志文件去查看具体的故障信息,来判断需要对仪器进行哪些操作。05昨日重现质谱故障排查前需要回忆。曾经仪器做过哪些修改,而在修改后仪器出现了什么样的现象。仪器在长时间的使用过程中,需要对某些具体的参数做以留意。例如:在每次调谐报告中的背景污染以及各离子的响应、配置流动相、更换色谱柱等等都会对质谱造成影响。
  • 比亚迪在深圳建碰撞实验室 投资上亿
    上周,记者从比亚迪获悉,比亚迪正在深圳建设第二个碰撞实验室,目前部分工程已经完成并可使用,预计到明年8月份整个碰撞实验室可完全投入使用。   据了解,比亚迪深圳碰撞实验室占地面积达2.2万平方米,总投入上亿元资金,包括整车碰撞实验室、模拟碰撞实验室、行人保护实验室,是完全按照欧美的碰撞标准建设的实验室。   深圳第二个碰撞实验室建成后,比亚迪就将拥有深圳和比亚迪两个碰撞实验室,这在国内车企中并不多见。据比亚迪相关人士表示,上海的碰撞实验室已可以实现几乎所有国内所需的相关测试,之所以斥资上亿元建设深圳碰撞实验室,是出于长远发展的考虑,希望凭借自主力量在安全技术领域不断提高,能更好地对新车型进行研发测试。
  • 再破质谱极限,岛津三重四极杆型质谱仪LCMS-8050问世
    ― 兼备领先世界水平的高速性能与出类拔萃的高灵敏度, 以保证所有高灵敏度定量试验数据可靠性为前提缩短分析时间 ― 岛津公司现隆重推出兼备领先世界水平的高速性能与出类拔萃的高灵敏度的三重四极杆型质谱仪LCMS-8050以及与其对应的工作站软件LabSolutions LCMS Version 5.60。 超快速液相色谱仪Nexera MP(左)与三重四极杆型质谱仪LCMS-8050 【开发背景】 在保证数据可靠性的前提下缩短分析时间,是应用LC/MS/MS从事定量试验、筛查以及解析工作的研究人员共同的需求。岛津公司于2010年9月推出了高速性能领先世界的LCMS-8030,又于2012年5月推出了保持高速性能的同时,灵敏度较LCMS-8030显著提升的LCMS-8040。随着医药研发、临床领域对LC/MS/MS的需求不断高涨,缩短高灵敏度定量分析时间的呼声越来越高。为回应用户的需求,岛津公司向市场投放了再度进化高速性能且灵敏度领先同档次仪器的LCMS-8050,LCMS-8050成为岛津UFMS(超高速质谱仪)系列中的旗舰产品。 【产品特点】 1.具有ag水平的灵敏度和无与伦比的耐用性 LCMS-8050采用全新设计的加热ESI源,通过增加雾化气周围的加热气来促进脱除溶剂,并采用新型碰撞池UFsweeper® Ⅲ,优化碰撞池压力提高CID效率,从而大幅提高了灵敏度。通常情况下增加质谱灵敏度的方法是扩大离子入口,使更多离子进入仪器。但由此带来的真空系统的承受力就会增加,仪器被污染的可能性也相应增加。岛津LCMS-8050保持了较小的离子入口,避免了上述可能存在的风险。另外,仪器采用加热离子源和最新研发的UFsweeperⅢ专利技术,增加系统耐用性,大幅提升仪器的灵敏度和稳定性。 2.先进的UF技术 LCMS-8050采用全新开发的高压电源,实现30,000u/s的扫描速度和5mses正负极性切换时间。 LCMS-8050与Nexera UHPLC的组合是为用户提升效率的理想平台。单次分析的事件数可达1000个,每个事件可设置32个MRM通道,即可在单次运行中同时分析32,000个MRM通道。 最大扫描速度:30,000u/s 正负极性切换速度:5 msec 3.用户界面友好,操作、维护简单 全新设计的离子源 新设计的离子化单元实现无电缆配置,大幅提高了ESI/DUIS、APCI离子源更换、拆装、日常维护的操作简便性。 与MRM (Multiple Reaction Monitoring)相关的仪器参数 (预杆电压・ 碰撞能)和 LCMS-8030/8040相同, 因此,可以直接使用在LCMS-8030/8040上开发的方法以及各种方法包。 LC与LC/MS软件整合一致 LCMS-8030/8040/8050软件与岛津LC产品线(Nexera系列和Prominence系列)以及单四极杆型LC/MS (LCMS-2020)整合一致,实现易于使用的统一操作,减轻了使用者培训负担。 MRM优化程序实现自动化 即使定量目标成分增加,也可自动优化每一成分的MRM条件,非熟练者也可以充分利用装置性能, 实现高灵敏度分析。 最小的停机时间和方便的维护程序 无需停机卸除真空即可快速更换除溶剂单元等便捷维护设计,大量减少待机时间,为用户提供了友好的仪器操作 与维护的环境。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳及成都5个分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站http://www.shimadzu.com.cn/an/。
  • 全信息串联质谱
    全信息串联质谱&mdash &mdash MSE简介 贾伟 沃特世科技(上海)有限公司实验中心 未知物的(一级)母离子与(二级)碎片离子数据是对其进行质谱分析所必须的信息。除了具备DDA串联质谱采集方法外,沃特世质谱更提供了独有的全信息串联质谱(MSE)技术。那么MSE技术是如何获得串联信息,并做到信息收集的最优化与最大化呢? 全信息串联质谱(MSE)能提供什么样的信息? 1. 未知分析物的定性与定量在同一次分析中完成。 2. 同时获得母离子及碎片离子的高分辨、高质量精确数据。 3. MSE普遍适用于各种未知物分析,而且方法设置非常简便。 4. 充分发挥UPLC-MS液质联用的卓越性能。 什么是全信息串联质谱(MSE)? 1. MSE是在一次液质分析中同时获得高精确的母离子及碎片离子信息的串联质谱方法。 2. MSE由&ldquo 无碰撞能&rdquo 与&ldquo 高碰撞能&rdquo 两种扫描交替构成,分别记录母离子及碎片信息。 3. MSE通过母离子与其碎片离子具有相同色谱行为的特性进行母-子离子的关联归属。 全信息串联质谱(MSE)有哪些特点? 1. 全面:所有的离子信息都被记录,定量、定性更加准确。 2. 精准:全部母离子与碎片离子信息都是高精度、高分辨的质谱数据。 3. 简单:方法设置仅需:质量范围、采集时间、碰撞能量三个参数。 4. 灵活:碰撞能量为线性升高的方式,因此不同分析物可在其最佳碰撞能下实现碎裂。 与常规的DDA串联质谱法比较,MSE的优点是什么? 数据依赖型串联质谱法(DDA. Data Dependent Acquisition)是通过选择特定母离子进入碰撞池,从而采集相应的碎片离子。而MSE并不选择特定母离子进行单独碎裂,而是同时采集了所有母离子的碎片离子。这样MSE就避免了由于DDA采集速率的限制而造成的信息采集不全的问题。此外,MSE这种匀速高频的数据采集模式,对每个离子都可以得到其&ldquo 完美&rdquo 色谱图,而用以精准定量。相较之下,DDA由于采集的偶然性问题,其色谱峰往往存在缺陷,而影响定量准确度。 为什么说MSE与UPLC是最佳搭档? UPLC® 在色谱分辨率(选择性)、峰高(灵敏度)和运行时间(速度)方面都较HPLC有了质的飞越。但是UPLC短暂而修长的色谱峰也给质谱分析提出了更高的要求。一方面,MSE质谱方法巧妙地解决了DDA采集频率的限制问题;另一方面,UPLC也为MSE方法实现高准确的母子离子归属提供了坚实的基础。 MSE技术在生物制药分析、蛋白质组学、代谢物鉴定、代谢组学、脂质组学、杂质鉴定、法医毒理学、环境分析、食品检测、化学材料分析等不同的领域已经得到了广泛的应用。 参考文献 (1) Bateman, Carruthers, Hoyes, Jones, Langridge, Millar, Vissers Anovel precursor ion discovery method on a hybrid quadrupoleorthogonal acceleration time-of-flight (Q-TOF) mass spectrometer for studying protein phosphorylation, J. Am. Soc. Mass Spectrom., 2002 13, 792-803. (2) Silva, Denny, Dorschel, Gorenstein, Kass, Li, McKenna, Nold, Ric hardson, Young, Geromanos Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem. 2005 Apr 1 77(7):2187-200. (3) Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 2010 Jul 2 9(7):3621-37. (4) C ha kra borty AB, Berger SJ, Gebler JC. Use of an integrated MS-multiplexed MS/MS data acquisition strategy for highcoverage peptide mapping studies. Rapid Commun. Mass Spectrom. 2007 21(5):730-44. (5) Tiller PR, Yu S, Castro-Perez J, Fillgrove KL, Baillie TA. Hight hroughput, accurate mass liquid c hromatography/tandem mass spectrometry on a quadrupole time-of-flight system as a &lsquo first-line&rsquo approach for metabolite identification studies. Rapid Commun. Mass Spectrom. 2008 Apr 22(7):1053-61. (6) Simplified approac hes to impurity identification using accurate mass UPLC/MS Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720 03850en.pdf (7) T he utility of MSE for toxicological screening Waters Technology Brief, http://www.waters.com/webassets/cms/library/docs/toxicology_brief_8_2010.pdf (8) A case of pesticide poisoning: T he use of a broad-scope Tof screening approach in wildlife protection Waters Application Note, http://www.waters.com/webassets/cms/library/docs/720003470en.pdf (9) Addressing c hemical diversity and expanding analytical capabilities with APGC Waters White Paper, http://www.waters.com/webassets/cms/library/docs/72003292en.pdf (10) McEwen, McKay A combination atmospheric pressure LC/MS:GC/MS ion source: Advantages of dual AP-LC/MS:GC/MS instrumentation, J. Am. Soc. Mass Spectrom., 2007 16, 1730-1738.
  • ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必
    ICP-MS技术漫谈系列前篇回顾ICP-MS技术漫谈I: CeO+/Ce+ 和 BaO+/Ba+分不清楚?ICP-MS技术漫谈II icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术ICP-MS技术漫谈III ICP-MS 谱图多原子离子干扰区分所需质量分辨率ICP-MS技术漫谈IV 无海平面,何来山峰海拔高度:论icpTOF全谱原始数据(包含基线信号)记录之重要性ICP-MS技术漫谈V 本文CCT模式TOFWERK ICPTOF 自1980年首次推出以来,电感耦合等离子体质谱ICP-MS技术已在多个领域(如地质学、环境科学、材料科学、法医学、考古学、生物学及医学等),成为一种成熟且广泛应用的多元素及同位素分析方法。ICP-MS以其卓越的灵敏度、低检出限、宽线性动态范围和多同位素检测能力而著称,同时还能与多种样品处理/进样技术(如色谱、电热蒸发、(单)微液滴生成和激光剥蚀等)耦合使用。同有机质谱类似,质谱干扰也是影响ICP-MS准确测量多种元素的主要挑战。这些干扰主要来源于单价或双价的原子及分子离子,其产生与等离子体、样品组成、ICP操作条件及相关样品的物理化学特性有关。目前,处理这些干扰的策略包括利用多极离子导引器与上游质量分析器内通入气体进行的离子-分子反应或产生动能差异,以及采用超高分辨率磁扇区ICP-MS技术以区分多原子干扰物。 使用有选择性的化学反应来减少对目标元素的干扰并将产生的附加干扰物的离子转移到未被占用的质荷比(m/z)通道,是一种有效的解决质谱干扰问题的方法。例如,引入氢气H₂ 作为反应气体能显著减弱由氩离子(Ar⁺ )及基于氩的多原子离子所引起的背景干扰,使得能够在其丰度最高的同位素峰上检测到钙(Ca)、铁(Fe)或硒(Se)。此过程中主要的反应产物为H₃ ⁺ ,不会引入额外的干扰信号,从而提高了分析的准确性和灵敏度。这种方法通过改变干扰物质的质荷比来“清理”分析信号,使得原本由于干扰而无法检测的元素或同位素得以准确测定。 本文中,研究人员探讨了电感耦合等离子体-飞行时间质谱(ICP-TOF-MS)结合碰撞/反应池技术(CCT)在高时间分辨率分析中的应用优势,特别是在使用多样的样品引入技术,包括高速激光剥蚀和微液滴生成。通过在CCT中采用氢气(H₂ )作为反应气和氦气(He)作为碰撞气,研究着重于多元素测定的能力,特别是在抑制基于氩的背景离子、提高多同位素灵敏度和优化激光剥蚀定量分析方面。这些CCT中的气体分子和离子束发生化学反应或者物理碰撞,从而实现清除某些特定的同位素,或者将多原子离子解离。 使用H₂ 作为反应气体时,能够显著降低氩离子(Ar⁺ )和氩分子离子(Ar₂ ⁺ )的信号,使得钙(Ca)和硒(Se)的丰度最高的同位素得以检测。此外,降低Ar⁺ 信号时还允许在进行飞行时间分析前,无需陷波技术(notch filter)来选择性减弱特定质荷比(m/z)信号值,从而改善了质荷比40和80附近同位素的传输效率。 研究发现,以不超过4mL/min的流量引入氢气、氦气或两者混合气体,可以通过碰撞诱导聚焦机制将离子检测灵敏度提升1.5至2倍,并且质量分辨率也提高了16%。使用CCT后,钙(40Ca)的检出限(LOD)提高了超过三个数量级,硒(80Se)的检出限(LOD)提高了一个数量级。对于NIST SRM610标准中的多种元素,检出限均提高了2到4倍,同时在大多数元素上保持了定量准确性(小编注:如果应用偏重于轻质量数元素分析,可以通过关闭CCT模式来达到最优效果)。 实验还表明,当采用微液滴样品引入技术时,碰撞池中的He缓冲气体量会导致单个微液滴信号的宽度增加至数十至数百微秒。但是,高速激光剥蚀产生的单气溶胶羽流事件的持续时间未受碰撞效应影响,表明在100 Hz的激光剥蚀频率下,即使开启CCT,也不会对成像效果产生显著影响。这些发现强调了CCT在提高ICP-TOF-MS性能和分析精度方面的潜力,尤其是对于高时间分辨率的多元素分析。01实验参数和设置 实验是在瑞士TOFWERK AG公司生产的icpTOF仪器上进行的,该仪器与多种样品引入系统相结合使用。icpTOF装备有陷波滤波器,位于碰撞/反应单元(CCT)下游,用于精确调控飞行时间(TOF)谱图中多达四个特定质荷比(m/z)的高信号强度。通过调整频率和振幅,可以选择性地衰减特定m/z离子信号,同时这也会影响到相邻的m/z。在进行激光剥蚀(LA)实验时,通常只需衰减氩离子(Ar+)的信号,以避免信号饱和导致探测器损坏。表1:在不同实验设置的情况下,ICP-TOFMS的运行参数和碰撞/反应池的设置。碰撞/反应单元操作:碰撞/反应单元使用的氦气(99.999%纯度,由瑞士Dagmersellen的PanGas AG提供)和氢气(99.9999%纯度,同样由PanGas AG提供)或这些气体的混合物进行加压。气体的流量通过质量流量控制器进行精确控制,使用Micro Torr气体净化器(由加利福尼亚的SAES Pure Gas, Inc.提供)来去除气体中的杂质。在需要进行离子束衰减的实验中,调整陷波滤波器的操作参数以确保背景信号的总强度维持在500 kcps以下。激光剥蚀导入:激光剥蚀实验在NIST SRM610、NIST SRM612和USGS BCR-2G标准样品上进行。使用的是193nm ArF准分子激光剥蚀系统(GeoLasC,由德国哥廷根的Lambda Physik提供)。高分散LA实验在一个充满氦气的单体积圆柱形剥蚀室中进行,使用44μm直径的圆形激光光斑和10Hz的激光剥蚀频率,单脉冲信号的持续清洗时间为1.5-2秒(FW0.01M)。低分散LA实验在一个双体积管状样品池中进行,使用5μm直径的圆形光斑和100Hz的激光频率,单脉冲信号的持续清洗时间小于10毫秒(FW0.01M)。所有实验都采用线扫描模式,扫描速度分别为5μm/s(高分散)和50μm/s(低分散)。通过调节操作参数,实验每天都能在保持相近的铀(238U)和钍(232Th)的灵敏度以及低氧化物生成率的同时,获得最高的238U+灵敏度。高分散LA-ICP-TOFMS数据的采集时间分辨率为1秒,而低分散LA-ICP-TOFMS数据的采集时间分辨率为1毫秒。在后处理中,对TOF质谱进行了重新校准和基线去除。微液滴导入:微液滴导入实验使用的是德国Microdrop Technologies GmbH公司的商用微滴生成器(MD-K-150-020和MDE-3001,配备30微米直径喷头)。在50Hz的条件下产生直径为25到30微米不等的液滴,并通过氦气和氩气传输到ICP。多元素标准溶液由单元素标准溶液制备而成(由德国达姆施塔特的Merck AG和美国弗吉尼亚克里斯琴斯堡的Inorganic Ventures提供),每个元素的最终浓度通常为100 ng/g。02实验结果使用氢气作为反应气体以衰减背景信号:本研究的激光剥蚀NIST SRM610实验是在仪器参数优化后进行的。实验使用高色散LA-ICPTOFMS装置,并在反应池中通入不同流量的氢气。除了氢气流量和陷波滤波器的设置外,三个实验中的ICP-TOFMS操作参数和碰撞/反应池设置保持恒定。图1报告了气体背景信号强度的平均值。当通入氢气流量大于1.5mL/min以上,m/z=40的信号是无需使用陷波滤波器进行衰减的。气体背景信号分析虽然仅反映了仪器在不引入样品时的背景信号情况,但这种分析并不完全代表分析特定样品时的背景信号水平,因为样品基质可能会提升基线信号。尽管存在这一局限性,此类测量对于估计激光剥蚀实验中的背景信号强度仍然非常有用,特别是低背景信号对于实现更佳的检出限(LOD)至关重要。在不引入氢气的条件下,背景信号主要由Ar+离子及其相关的氩基分子离子(例如Ar2+、ArN+和ArO+)贡献,同时H2O+、N2+和O2+也展现出显著的峰值。ICP-TOFMS的丰度灵敏度特性导致这些背景离子增加了质谱的基线水平。通过向CCT中增加氢气流量,Ar+信号可以显著衰减至每秒几百次的强度水平。特别是当氢气流量达到5 mL/min时,Ar2+的信号可以降低超过四个数量级,达到每秒几个的强度水平。这一衰减效果涉及到的反应主要是氢原子的转移,例如Ar+转变为ArH+,使得在质谱中m/z=37和m/z=41位置的信号变得占主导地位。在更高的氢气流量下,ArH+通过质子转移的方式进一步减少。图1:分析m/z小于100的范围内的平均背景信号强度与通入氢气流量的关系。左右两图为同样的数据但被绘制在线性y轴(a)和对数y轴(b)上。当没有氢气流过反应池时,使用陷波滤波器来衰减m/z=40处的信号强度。当H2气体以2.5mL/min和5mL/min则不需要信号衰减。 图2a和c展现了在高色散LA-ICP-TOFMS条件下,特定同位素(27Al、55Mn、89Y、141Pr、238U)的灵敏度与氢气和氦气流量之间的关系。这些同位素覆盖了广泛的m/z范围。对于氢气和氦气,灵敏度随气体流量增加先升高后降低,显示出相似的趋势。特别是,对于55Mn,在气体流量为1 mL/min时,其灵敏度达到最大值,与不通气的标准条件相比,分别增加了28%(氢气)和84%(氦气)。对于27Al,在氢气流量为0.5 mL/min时灵敏度最高,而对于238U,在氢气流量为1.5 mL/min时灵敏度最高,相较于不通气的标准条件,它们的灵敏度分别提高了11%(27Al)和2%(238U)。在通入氦气时,27Al和238U的灵敏度分别在氦气流量为0.5 mL/min和3.5 mL/min时达到峰值,相比不通气的标准条件,它们分别提高了3%(27Al)和73%(238U)。灵敏度的提升主要归因于碰撞聚焦效应。随着m/z增大,较高的气体浓度下灵敏度的下降趋势减缓,这与低质量离子的速度减慢和散射过程加快有关。 同位素238U+/232Th+的信号强度比随气体流量的增加而稳步上升,在通入氢气和氦气时分别从1.25增加到1.36和从1.31增加到1.47。这表明在通入气体时,Th+的减少速度超过U+。这可能是由于Th+与气体中的杂质反应或散射过程。然而,鉴于U和Th的碰撞截面和动能相似,散射过程的影响可能较小。Th+相对于U+更快的减少可能与其与气体中水分子的反应有关。 同时,137Ba++/137Ba+的信号强度比随着气体流量的增加先上升后下降,这一趋势在通入氢气和氦气时均被观察到。这表明Ba++的透射率最初随气体流量的增加而提高,可能是由于双电荷离子在进入碰撞/反应池前在静电离子光学器件中获得较高的动能。然而,随着气体流量的进一步增加,Ba++离子的反应速率可能超过了Ba+,导致其离子信号强度的连续下降。图2:灵敏度和选定的离子强度比与通入反应池的氢气H2流量的关系(a)。钙的同位素的检出限与通入反应池的氢气流量的关系(b)。在低于1.5mL/min的氢气流量设置时,每种氢气流量设置都会相应调整陷波滤波器上的设置,以保持尽可能高的灵敏度,同时防止检测器饱和。对于H2气体流量大于1.5mL/min,则未启用陷波滤波器。灵敏度和选定的离子强度比与通过碰撞池的氦气He流量的关系(c)。质量分辨率和灵敏度与通过碰撞池的氦气流量的函数关系(d)。在此实验期间,陷波滤波器设置保持不变,m/z=40处的信号强度必须始终衰减。所有实验均在NIST SRM610上进行,使用直径44微米的圆形光斑和10Hz的激光频率。实验采用线扫描模式进行,扫描速度为5µ m/s。03检出限和氢气气体流量的关系及同位素的选择 图2b展示了多个Ca同位素(40Ca, 42Ca, 43Ca和44Ca)的检出限随着通过反应池的氢气流量变化的情况。在氢气流量为3mL/min时,40Ca的检出限数值最佳,达到0.33mg/kg,这一检出限比CCT模式下其他Ca同位素的检出限好一个数量级以上。与无氢气流的标准条件相比,检出限提升超过了三个数量级,这主要归因于氢气对Ar+信号的选择性衰减,从而显著提升了检出限。随着氢气流量的进一步增加,检出限的上升归结于灵敏度降低。 此外,研究中还观察到Se同位素(特别是80Se)在氢气流量为3.5mL/min时达到了最佳检出限0.95mg/kg,相比于标准条件下可获得的检出限(针对77Se为4.1mg/kg)提高了约四倍。对于238U和89Y,当氢气流量分别达到5mL/min和3.5mL/min时,观察到检出限降低了四倍,这表明通过调整氢气流量,可以显著改善某些特定元素的检出限。 对于27Al,在无氢气通入的条件下其检出限数值最低,但即使在低氢气流量下,27Al的信号也可能因碰撞而衰减。当通入3.5mL/min的氢气时,27Al的检出限恶化了两倍,这表明氢气流量的增加对某些元素的检测性能有负面影响。 这些观察结果说明,在通过反应池的氢气流量对检出限有着显著的影响,不同元素和同位素受氢气流量影响的程度各不相同。通过优化氢气流量,可以在不牺牲其他性能的前提下,针对特定元素达到更低的检出限。对于更多细节和氢气流量与灵敏度及背景信号之间的相关性分析,建议参考原始研究的辅助材料。04质量分辨率和丰度灵敏度与He气体流量的函数关系 图2d的结果表明,通过向碰撞池中添加氦气(He)作为碰撞气体,可以略微提高特定同位素的质量分辨率。这一发现对于改善质谱分析的准确性和分辨能力具有重要意义。质量分辨率的提高允许更好地区分质量相近的同位素,从而降低了分析中的误差和不确定性。例如,141Pr和238U的质量分辨率分别在氦气流量为5mL/min和6mL/min时提高了16%和13%。这种效果是由于碰撞导致离子动能的离散度减小,从而使得同位素峰更加尖锐。 与使用氦气相似,实验中也观察到使用氢气(H2)作为反应气体时,同样可以提高质量分辨率。例如,在氢气流量为2.5mL/min时,238U的质量分辨率提高了4%。这进一步证明了通过调整碰撞/反应池中的气体种类和流量,可以有效地优化质谱分析的性能。 在进行了ICP-TOFMS操作参数和碰撞/反应池设置的优化后,特别是在优先考虑峰形而非灵敏度的情况下,238U的质量分辨率可以超过4000。尽管这种优化导致238U的灵敏度降低了7%,但显著提高的质量分辨率对于解决复杂样品分析中的同位素重叠问题至关重要。 此外,通过监测209Bi+在m/z=209和m/z=210处的强度,研究人员还探讨了丰度灵敏度的变化。发现通过将氦气流量提高至3mL/min,可以提高丰度灵敏度。这是因为增加的氦气流量导致重质量侧的质谱峰底部变宽,尽管这种效果在质量分辨率的测定中未能得到充分体现。这一发现强调了在实际应用中,对碰撞/反应池中气体流量和种类的精细调节对于优化质谱分析性能的重要性。 钙的定量与氢气气体流量和同位素选择的关系:图3a和b的研究报告通过使用高色散LA-ICP-TOFMS技术在NIST SRM612和USGS BCR-2G样品中测定钙(Ca)元素含量,并探讨了通过反应池的氢气(H2)流量对测定结果的影响。这项研究选择NIST SRM610和29Si+作为参考样品和内标,因为NIST SRM610与NIST SRM612成分相似,适用于校准,而对于USGS BCR-2G的定量,使用NIST SRM610进行校准则被视为非基质匹配的方法。 研究发现,在没有氢气流的标准条件下,能够测定的Ca浓度主要基于44Ca+的强度,而40Ca+、42Ca+和43Ca+的信号未能检测到高于背景水平。当在NIST SRM612中测定Ca时,发现无论选择哪种同位素,准确度和精确度都遵循相似的趋势,并且在氢气流量低于2.5mL/min时得到提升。这表明低氢气流量有助于提高钙定量的准确度和精确度,而较高的氢气流量则因碰撞引起的信号损失而导致逆向趋势。 此外,2.5mL/min的氢气流量被发现能够实现最准确的Ca测量,基于40Ca强度测得的Ca浓度与GeoReM数据库中的参考值相比,偏差仅为1.3%。在USGS BCR-2G标准样品中,较小的氢气流量同样能够提高Ca定量的准确度和精确度。 然而,Ca离子的强度可能会受到MgO+、MgOH+、AlO+和AlOH+等多原子离子的干扰,尤其是在USGS BCR-2G样品中钙浓度高的情况下。这些干扰主要影响低丰度同位素42Ca+、43Ca+和44Ca+,并且随着H2气体流量增加,其影响也随之增大。研究指出,在NIST SRM和USGS BCR-2G样品中,较高的氢气流量可能有助于减少Ca+/Ar+比率的差异和K+信号的拖尾现象, 但为何在较高H2气体流量下基于40Ca+的定量结果更为准确仍然不明确, 这项研究不仅展示了LA-ICP-TOFMS技术在测定特定元素含量时的应用潜力,也强调了优化氢气流量在提高测定准确度和精确度中的重要性。通过调整反应池中的氢气流量,可以有效地减少多原子离子的干扰,从而实现更准确和精确的元素定量分析。 在2.5mL/min的氢气流量下,研究对NIST SRM612和USGS BCR-2G样品中多种元素的定量能力进行了测试。选择这一氢气流量是基于它能够有效平衡背景信号的衰减和由于碰撞引起的信号损失。结果表明,在没有氢气流量的标准条件下与2.5mL/min氢气流量条件下,大多数元素的定量结果之间没有显著差异。实验数据显示,在无氢气和2.5mL/min氢气条件下,分别有43%和36%的测试元素的浓度落在NIST SRM612的首选值不确定度范围内。同时,大约70%的元素在两种条件下与NIST SRM612的首选值相对偏差小于5%。对于USGS BCR-2G样品,62%(无氢气流)和69%(2.5mL/min氢气流)的元素浓度落在首选值的不确定度范围内,且在这两种实验条件下,大约62%的元素与USGS BCR-2G首选值的相对偏差小于5%。 然而,对于磷(P)、钾(K)和钪(Sc)等某些元素,随着氢气流量的增加,其定量准确性有所降低。这一趋势在两种标准参考材料中均被观察到。分析光谱数据时发现,31P、39K和
  • icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术
    电感耦合等离子体质谱仪(ICP-MS)被广泛应用于固态和液态样品的微量元素分析,在学术界和工业界均有着较多应用。随着对微观尺度(纳米级)分布和瞬时短信号(微秒级)事件的关注逐渐增加,越来越多的元素分析工作选择使用飞行时间质谱仪(Time-Of-Flight,TOF)作为ICP-MS的检测器。相比市场上的四极杆质谱仪和磁扇区质谱仪,飞行时间质谱仪具有极高的检测速度,即可在几十微秒内检测到元素周期表内几乎所有的元素(从锂Li到铀U),以及与单四极杆相似的检测下限(TOF与生俱来的高分辨率可更好分辨干扰信号)。 然而,由于飞行时间质谱仪能够检测到广谱的离子范围,其中包括形成电感耦合等离子体的氩以及氧、氮、硅等元素形成的背景离子,因此高信号强度的离子对飞行时间质谱仪的影响是普遍的 。如上所述,它们可能来自等离子体电离过程的背景离子(氩相关离子),也可能来自样品中的主量元素,因此需要“免疫系统”适当地降低(不是完全去除,详见下文)这些离子的信号强度,这样可以更好地保护检测器并减少空间电荷效应对谱图的影响。ICP-TOF陷波技术及其优势 TOFWERK icpTOF 系列飞行时间质谱仪中,我们采用独有的“陷波技术”(notch filter)来降低背景离子和主量元素离子对测量结果的影响[1]。这项专利技术采用简单四极杆设计(见图1左图),外观上也与四极杆相似,但其功能却截然不同。四极杆质量分离器通过在四根金属杆上加不同的直流和交流电,使得同一时间内仅有特定质荷比的离子可以高效通过四极杆,而其他质荷比离子被散射即无法通过。而 icpTOF 的陷波四极杆则是通过在四极杆上添加不同的电信号,使得仅有特定质荷比的离子被散射,而其他质荷比离子均可正常不受阻力的通过然后到达TOF腔进行分析。 陷波四极杆可以同时影响几种不同质荷比的高强度离子信号,既可以降低氩离子的基质元素,也可以对待测样品中的主量元素进行类似的处理,例如降低锆石(ZrSiO4)定年测试中的锆和铪信号(图1右)。测试验证,陷波四极杆并非“完全清除”离子,而是减弱离子的通过量。被减弱的离子信号强度与陷波四极杆的振幅呈固定线性关系,因此在这些信号被削减的情况下,仍然可以进行定量分析或作为内标记物。这是陷波器的一个重要优势,并在许多复杂样品测量上发挥不可或缺的作用。图片1:左图:icpTOF中的陷波四极杆(Notch Filter)照片;右图:激光剥蚀测试锆石定年的实验中,锆和铪对应信号峰可同时被陷波四极杆降低强度。PTR-TOF其他仪器厂商的解决方式 对于同样的问题,不同的仪器生产商有不同的应对策略。有的厂商的飞行时间质谱仪选择完全摒弃掉低质量范围内元素测量,针对中高质荷比的离子测量。这虽然有效减低背景离子集中的低质量区域,但同时也舍弃了某些重要元素的测量能力,比如锂、钠、铁等等。 有的仪器则采用在通入氢气的碰撞反应池去除氩等基质离子。但这种方法必须一直开启碰撞反应池,而且其对主量元素离子并不会产生作用。同时,氢气是易燃易爆气体,其存在的安全隐患会让实验室建设更多的检测和防护设备,这无疑会增加实验室的运行成本。 离子门技术也可以用来清除背景离子或强信号的主量元素。离子门可以理解为离子闸门或离子快门,一般安装在飞行时间腔体内用于控制离子释放到飞行路径中。它由两个平行排列的细丝阵列组成,且垂直于离子飞行路径,即离子需要穿过阵列(见图2)。当两个阵列上的电压相等且相反时,阵列之间会产生电场,有效地阻止离子穿过闸门,即 “闭合”状态。当两个阵列上的电压瞬间设为零或相等值时,阵列之间的电场消失,允许离子自由穿过闸门,即“打开”状态。离子门可以通过“剪切”质谱中的某一段并舍弃其他部分的方式增加飞行时间腔的占空比(duty cycle),从而实现增强待测离子灵敏度的效果。虽然,使用离子门技术确实能够提升质荷比测试的占空比,然而即使在离子门开启的状态中,高强度离子也会进入飞行时间腔体,且类似漫散射,这会对全质谱的基线(baseline)产生影响。所以在使用离子门技术的同时,需要关注仪器的质谱谱线的基线的变化,会相应提升峰高,这将会对定量分析的准确性产生极大的影响。图2 一个排列着平行细丝的离子门阵列[2]ICP-TOF结论 综上所述,TOFWERK icpTOF采用的陷波技术(notch filter)可以减弱高信号强度离子的影响,但并不清除这些离子。这意味着主量元素离子仍可以被定量分析或选作内标记物。同时,icpTOF可以在关闭碰撞反应池的情况下正常运行,且具有与相似类型仪器在开启碰撞反应池时才能达到的性能。关闭碰撞反应池意味着在icpTOF运行中不必使用氢气气体,这既节约了实验室成本,也提高了安全性。 另外,陷波四极杆被设计在飞行时间腔体之前,这有效地控制了飞行时间质谱的基线信号强度,并且可以通过后期数据处理进行修正。因此,陷波技术作为icpTOF的“免疫系统”,可以有效地减弱有害离子对原始谱图的影响,从而为更准确的定量分析结果保驾护航。参考文献1. Borovinskaya, Olga, Bodo Hattendorf, Martin Tanner, Sabrina Gschwind, and Detlef Günther. “A Prototype of a New Inductively Coupled Plasma Time-of-Flight Mass Spectrometer Providing Temporally Resolved, Multi-Element Detection of Short Signals Generated by Single Particles and Droplets.” J. Anal. At. Spectrom. 28, no. 2 (2013): 226–33. https://doi.org/10.1039/C2JA30227F.2. Kai et al, 2014, A simple template-based transfer method to fabricate Bradbury–Nielsen gates with uniform tension for ion mobility spectrometry, Rev Sci Instrum 85, 085107. https://doi.org/10.1063/1.4891617
  • 赛默飞世尔在京发布三大质谱新品
    仪器信息网讯 2011年7月19日,赛默飞世尔科技在北京国际饭店国际会议中心隆重举办了质谱新品发布会。此次发布的是赛默飞世尔科技在美国质谱学术交流(ASMS 2010)上推出的三款最新质谱产品:Velos Pro双压线性离子阱质谱仪、Orbitrap Elite组合式质谱仪和Q Exactive高性能台式四极杆—轨道阱LC-MS/MS系统。 新闻发布会现场   新闻发布会由赛默飞世尔科技色谱质谱市场部经理王勇为博士主持。大约有100多位来自科研院所的专家和用户参加了此次新闻发布会。 赛默飞世尔科技色谱质谱中国商务运营总监裴立文先生致辞   赛默飞世尔科技色谱质谱中国商务运营总监裴立文先生首先绍了赛默飞世尔科技在全球和中国的发展情况。赛默飞世尔科技2010年全球销售额达110亿美元、拥有37,000名员工、服务于150个国家350,000名客户 目前拥有六大业务平台:分析仪器、专业诊断产品、生物科学、实验室产品、客户渠道、生物医药服务。   据裴立文先生介绍,赛默飞世尔科技在中国拥有超过1,400名员工。在北京、上海、兰州、广州、成都、香港等地都分别有分支机构,目前正在组建西安分公司。   赛默飞世尔科技科学仪器部的销售收入达23亿美元。随着中国经济的发展,赛默飞世尔科技在中国的业务也在逐步增加,科学仪器部门300多位员工将继续为大家提供一流的服务。裴立文先生还特别提到赛默飞世尔科技质谱部门(原菲尼根)与中国众多的科研院所有着非常悠久的历史渊源和良好的合作关系,经过6年的快速发展,业务增长了近8倍。裴立文先生还向与会者介绍了赛默飞世尔科技科学仪器部各大区经理。 赛默飞世尔科技市场专员 Tim Stratton博士讲解Velos Pro双压线性离子阱质谱和Orbitrap Elite   来自赛默飞世尔科技美国圣何塞工厂的市场专员 Tim Stratton博士详细讲解了最新推出的Velos Pro双压线性离子阱质谱和Orbitrap Elite。   1、Velos Pro双压线性离子阱质谱,可以同时做定性分析和定量分析   典型的离子阱质谱是在单压条件下操作的,折中了压力和离子控制。双压阱质谱是赛默飞世尔科技的首创,并于2009年推出了该类型的商业化质谱,其特点第一个离子阱的压力比以前线性离子阱的压力要高,能够将离子捕获能力提高90%,它同时还能够提高碎裂能力,将碎裂时间缩短到原来的1/4。低压单元能够提高扫描速度达2倍。 Velos Pro双压线性离子阱质谱   定性分析是离子阱的强项,但是现在越来越多的实验室希望在做定性分析的同时也能够做定量分析 因此,赛默飞世尔科技新一代Velos Pro 在定量方面有很大提高,动态范围达6个数量级,扫描速度高达66,000 Da/sec,同时兼容最快速的U-HPLC系统,其主要特点如下:   (1)新的检测电子设备使系统的线性定量能力可达6个数量级的动态范围,提高结果的重复性和可靠性。  (2)高达66,000 Da/sec的扫描速度可实现高通量分析,同时兼容最快速的U-HPLC系统,无需牺牲数据品质。   (3)最新阱-HCD 裂解提供补充性的类似三重四极杆的裂解,有助于结构解析、序列归属以及同位素标记的肽定量。   (4)最新设计的离子光学系统具有创新的“neutral-blocking(中性阻挡)”技术,可减少停机   在应用方面,对于蛋白质组学等大分子的定性分析,阱-HCD裂解提供了更高的序列覆盖率以及更可靠的序列归属和翻译后修饰(PTM)识别。阱-HCD的快速扫描能力可执行其他裂解方法,包括碰撞诱导解离(CID)、脉冲碰撞能量诱导解离(PQD)和电子转移解离(ETD),每次分析生成更多MS/MS质谱数据,从而识别更多蛋白质和肽。   在小分子方面,比如代谢组学研究,Velos Pro快速扫描和最新检测能力显著提高了定量性能,并能提供更为丰富的补充性MSn信息。   另外,LTQ Velos™ 和LTQ Orbitrap Velos™ 系统可以升级为最新Velos Pro系统,帮助客户扩展最初投资以涵盖最新的离子阱技术。   2、Orbitrap Elite,分辨率达240,000 FWHM   Orbitrap Elite   Orbitrap Elite组合式质谱仪整合了赛默飞世尔科技更快更灵敏的离子阱系统Velos Pro,能提供高达240,000的杰出的分辨能力,为客户探索和解决蛋白质组学、代谢组学、脂类组学和代谢领域最为复杂和挑战性的应用研究提供帮助。   Orbitrap Elite 综合了多种先进的技术,包括它的质量分析器几何学、独特的信号处理技术、改善离子束到Orbitrap 质量分析器传输效率的全新离子转移光学系统,以及新的镜像电流前置放大器。Orbitrap Elite主要性能如下。   (1)最大化的分辨能力,在m/z为400时高于240,000 FWHM   (2)扫描速度增加了四倍,提高了定量结果的精度度和可信度,而且增强了与UHPLC的兼容能力。   (3)高品质的更高能量碰撞诱导解离(HCD)质谱图和FTMSn谱图裂解树能得到可靠的结构鉴定结果。   (4)超高的灵敏度能检测极低丰度的蛋白质、肽和代谢物。   对于自上而下的蛋白质鉴定,Orbitrap Elite超高的分辨率和灵敏度能帮助实验室提高完整蛋白质分子量的测量水平。采用互补的碎裂技术,如碰撞诱导解离(CID)、电子转移解离(ETD)和HCD时,该系统还可以获得更高的蛋白质序列覆盖率。   对于代谢组学、脂类组学和代谢的研究,Orbitrap Elite能提供超高质量的HCD和MSn谱图,为可靠的代谢物鉴定提供更丰富的结构信息。相较于以前的系统,其超高的灵敏度能检测到更多的代谢物和其它重要的样品组分。   3、Q Excative, 灵敏度提高达五倍   Q Exactive是由赛默飞世尔科技首次将四极杆和Orbitra相结合的商业化仪器,旨在提供高度可靠的定量和定性(quan/qual)工作流程 这也是在今年ASMS 2011上革新力度最大、各位专家讨论最多的仪器。在此次新闻发布会上赛默飞世尔科技色谱质谱市场部经理王勇为博士向大会详细介绍了该仪器。 赛默飞世尔科技色谱质谱市场部经理王勇为博士讲解最新推出的Q Excative   Q Exactive质谱仪能够在单次分析中鉴定、定量和确认复杂混合物中更多痕量级的代谢物、污染物、肽类和蛋白质。与其它技术不同的是,该系统能够在不影响MS/MS灵敏度、质量分辨率或定量重现性的情况下,获得极其可靠的分析结果。   Q Excative   Q Exactive高性能台式四极杆—轨道阱LC-MS/MS系统大大扩展了赛默飞世尔科技Exactive家族Orbitrap系统的功能,主要表现如下:   (1)新型离子源光学系统将灵敏度提高达五倍。   (2)集成式四极杆质量过滤器实现前体离子选择性。在Orbitrap HR/AM检测之前,MS/MS(3)碎裂过程发生在能量更高的碰撞诱导解离(HCD)池中。   (4)先进的信号处理技术能够在全扫描模式和最大扫描速度下将系统分辨率提高至140,000 FWHM。   (5)新型C-Trap离子光学系统和HCD碰撞池提供了快速HCD MS/MS扫描,改善了低质量数离子的传递,从而提高灵敏度和定量性能,尤其适用于使用同位素标签的实验。   多重检测提高了整体系统工作周期的效率,能够更好的与UHPLC兼容,并在Orbitrap进行同时检测之前收集并保存多达10种母离子。   所有这些功能使Q Excative 系统成为准确定量确认的理想选择,通过单次分析能够对复杂基质中成百上千种痕量组分进行鉴定、定量和确认。此外,该系统还为诸如食品安全和法医毒物学等新兴应用领域提供省时的工作流程。这些工作流程通常采用常规提取方法,导致随后的LC-MS分析面临极其复杂的样品基质。   最后,王勇为博士对于今天发布的三大质谱新品进行了总结,然后留出30分钟的时间和各位专家进行交流 对于各位专家提出的很多问题,Tim Stratton博士和王勇为博士都一一进行了详细解答。   新品发布会结束后,赛默飞世尔科技举办了盛大的招待晚宴,来自中国计量科学院陈大舟研究员,复旦大学的杨芃原教授受邀发表讲话,畅谈了对于赛默飞世尔科技新技术新产品的感受。 招待晚宴
  • 厦门大学5525万招标采购质谱、透射电镜等5台仪器设备
    仪器信息网讯 近日,厦门大学在5日内发布五项仪器招标公告,采购串联三重四级杆质谱、电化学球差原位透射电镜、超高分辨质谱仪等5台/套仪器设备。公告显示,招标预算总金额达5525.2万元,五项招标项目将于2月下旬陆续开标。  招标项目明细及采购仪器要求如下两个表格及附件所示。仪器招标项目明细采购仪器明细 附件1: 串联三重四级杆质谱  一、主要技术参数:  1 液相色谱部分:  1.1 二元高压泵系统  1.1.1 流速范围:0.001-5.0 mL/min,0.001 mL/min步进  1.1.2 流速精度:≤ 0.070%  1.1.3 操作压力:0-18000 psi  1.1.4 流速准确度:± 1.0%  1.1.5 梯度准确度:± 0.4%  1.1.6 梯度精确度:± 0.2%  1.2 自动进样器  1.2.1 样品数量:≥ 100瓶  1.2.2 进样精度:≤ 0.5% RSD  1.2.3 进样线性度:0.999  1.2.4 交叉污染:0.005%  1.3 智能化半导体控温柱温箱  1.3.1 柱温范围:室温以下10℃~80℃  1.3.2 温度稳定性:± 0.1℃  2 质谱仪部分:三重四极杆质谱仪  2.1 质谱仪包括以下完整组件:ESI,APCI离子源、离子导入系统、三重四极杆质量-线性离子阱分析器、电子倍增器检测器系统、数据采集处理系统各一套。  2.2 质量范围(m/z):5-2000amu  2.3 灵敏度:ESI正离子灵敏度:1pg 利血平柱上上样, MRM分析测量m/z195(子离子)、m/z609(母离子), 信噪比≥ 510000:1 ,C.V.5%  2.4 正负离子切换速率:≤ 5ms  2.5 质量稳定性:≤ 0.1amu (48hr)  2.6 离子驻留时间:≤ 1ms  2.7 电喷雾离子源:流速 5uL/min—3000uL/min以上 APCI 大气压化学离子源流速范围:流速 50uL/min-3000uL/min以上。  2.8 同时具备串联四极杆、线性离子阱扫描模式及MRM3扫描功能  2.9 半峰宽0.7amu下,线性离子阱扫描速度:≥ 20000 amu/s  2.10 线性离子阱分辨率:≥ 10000(在250amu/s)  2.12 具有以下扫描模式:全扫描(Full Scan)、子离子扫描( Product Ion Scan)、母离子扫描(Precursor Ion Scan)、中性丢失扫描(Neutral Loss Scan)、选择离子扫描(SIM)、选择反应扫描(SRM)、多反应监测扫描(MRM)、混合扫描(Mixed Scan Mode) 、增强全扫描(EMS)、增强子离子扫描(EPI)、增强多电荷扫描(EMC)、增强分辨率扫描(ER)、时间延迟碎裂功能(TDF)。  2.13 线性离子阱MS/MS 全扫描灵敏度 1pg 利血平直接进样,信噪比100:1(峰峰比)  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为36个月原厂质保,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  6.供应商需提供相关配件,例如UPS/ 2小时、相关代谢组学软件和数据库。  附件2: 分析型流式细胞仪  一、技术参数  1. 光学系统:整合了最新的激光和光学技术,最多可配置5根激光器,检测20个参数变化,进行18色分析,且具备升级更多激光器空间。  1.1 配置5根固体激光器的型号及功率:355nm: 15mW, 405nm: 50mW, 488nm: 50mW, 561nm: 50mW,640nm: 40mW 激光功率损失低于20%。  1.2 检测器:18个荧光检测器,1个前向散射角检测器,1个侧向散射角检测器。  1.3 所有光学通道配插拔式滤光片,每个光学通道组可自由升级或更换接收器及滤光片。使用者可自行更换滤片,更换滤片后无需任何光路校准或校正。  1.4 光路激发系统:包括一个激光阵列,由多达五种固定波长的激光、光束形成器和单个独立小孔共同组成,可形成空间上隔离的独立的光斑,避免不同激光器之间的干扰。激光光束与样本在石英杯流动室准确聚焦,产生荧光信号。  1.5 光路收集系统:采用专利的光胶耦合石英流动池(光圈≥ 1.2NA)以及多角形光路收集系统,连续八角形全反射接收光路能够最大化地收集检测信号,其中PMT通过前置带通滤片收集特定波长范围的荧光。这种构造可以使得光路系统中滤光片与光镜能够根据需要轻易更换而无需额外调整光路。  1.6 荧光检测灵敏度:FITC≤ 80MESF, PE≤ 30MESF。  1.7 荧光检测分辨率 PI染色CEN样本,G0/G1期全峰宽PI-Area CV 3.0% (488 nm) 2um的荧光小球散射光全峰宽CV 2.0%。  2. 液流系统:采用保持真正固定角度的石英杯流动室的设计。  2.1 液流系统由气压泵正压力驱动。通过流体动力学聚焦,使样本通过石英杯流动室,并在流动室被激光照射。流动室与激光成固定角度并与收集光路胶耦合。这种设计确保激光器精准聚焦在样本流上,同时能够最大程度减少启动时间,优化不同实验间数据重现性并能够实现日常自动质控。  2.2 外置鞘液桶(8升)与废液桶(10升)可置于地面,方便使用。  2.3 液流传感器维持恒压,当鞘液不足、用尽或废液桶满时,液流监测系统都会发出警报。  2.4 样品分析速度可连续调节,并预设低速(12μ L/min),中速(35μ L /min),高速(60μ L /min)。  2.5 样品最大分析速度可达40,000细胞/秒。  3. 数据获取、分析:软件能够高效设置、获取并分析流式细胞实验数据。本软件集成了强大的功能,如快速分层设门、多种图形格式及批处理。  4. 仪器性能质控:仪器全息跟踪(CS&T)全自动质控系统能够建立设定基线并调整仪器变量。CS&T最大程度的减小了操作误差,并通过设定多个激光器信号时间延迟和最优化PMT电压确保结果的一致性。保证每一个数据的准确性。  5. 脉冲处理信号:可同时分析脉冲高度、宽度、面积和时间4种参数。  6. 荧光补偿:18*18全矩阵荧光补偿,可脱机补偿,离线分析。  7. 电脑工作站:Intel Xeon E3-1240v3 CPU 3.4GHz,内存4G,硬盘≥ 1TB,独立显卡1G,2个21寸LCD,DVD/RW,Windows 7操作系统 彩色激光打印机一台 5Kv稳压电源一台。  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件3: 高端分选型流式细胞仪  整体要求:全新原装产品,模块化设计,全自动设置时间延迟,在任意数量的荧光和补偿下达到≥ 70,000细胞/秒的高速分选功能。  一、光路系统  1. 激光器配置:5根激光器,不少与5个Pinhole,可激发≥ 15色荧光:高功率355nm固体激光器,高功率405nm 固体激光器,高功率488nm 固体激光器,高功率561nm 固体激光器,高功率640nm 固体激光器。  2. 系统具备≥ 7个独立光斑,采用独立光纤引导,不同波长的激光光路相互独立,对样品进行激发  3. 检测通道:≥ 15个荧光通道,≥ 2个散色光通道,包括前向角和侧向角,PMT检测器不少于17个。  4. 配置≥ 1个前向PMT检测器,前向散射光可以配备≥ 3种不同的Masks,可以检测200nm和区分100nm差异的颗粒。配置≥ 1个侧向PMT检测器,并且任意≥ 405nm激光器都可选装侧向散射光   5. 激光光路固化,无需荧光微球反复调试,开机即可使用。  6. 升级能力:开放光学平台,7个Pinhole,最高可升级至7根激光,并可同时激发。  7. 激发方式:合理的激发模式,保障高回收率和细胞活性。  二、液流及分析系统  1. 系统压力:4-100 PSI ,可调。保证系统的高速分选和稳定。  2. 液滴振荡频率:≥ 200KHz(每秒20万颗液滴/秒)   3. 检测速度:≥ 100,000个细胞/秒   4. 检测灵敏度:FITC≤ 125MESF,PE≤ 125MESF   5. 可在同一时间检测并分析小至200nm至30um的三个数量级以上的生物样本   6. 鞘液桶、废液桶、喷嘴可高压灭菌 液流管道及喷嘴可更换:完全消除不同样本间的交叉污染,适应干细胞检测、干细胞分选、细胞治疗或酵母等高污染样本等等特殊应用的实现   三、分选性能  1. 分选速度:≥ 70,000个细胞/秒   2. 分选纯度:≥ 99%,在≥ 70,000个细胞/秒分选速度下   3. 分选设置:配备全自动智能分选设置,自动设置液体延迟,无需微球设置分选条件   4. 分选收集通道:能进行≥ 4路分选,能够进行单细胞分选、自定义分选和玻片分选 分选模式:可实现2路、4路等多路细胞分选及成份分选,单克隆分选,以及成份分选、定位分选 可选择纯度模式、富集模式、混合模式,并可将三种模式在一份样本中同时使用   5.支持“无电”式分选方法,最大限度保证样本细胞活性   6. 智能进样系统:可使用如下规格样本管:0.5ml,1.0ml,1.5ml,5ml,7ml,15ml,50ml,可进行自动混匀振荡、排气泡、反冲、自动清洗等功能   7. 标准喷嘴规格:70um、100um。并可根据需求添置喷嘴   8. 可快速连同喷嘴及流动室一起更换,不影响光路,节省操作时间   9. 无菌保障:分选收集仓内置紫外灯,保证收集细胞无菌性   四、数字化信息处理系统  1. 数字化脉冲原始信息量:≥ 32bit   2. 数字化信号采集频率:≥ 100 MHz   3. 单次检测细胞数收集能力:≥ 10亿   4. ≥ 4,294,967,296 通道   五、软件以及控制系统  1. 分选控制系统:触屏式控制软件系统,能对所有分选分析结果进行统计   2. 数据获取和分析软件,无加密限制,可方便用户安装于多台电脑,便于数据分析,具备数据叠加等功能   3. 颜色补偿:支持全矩阵补偿,支持脱机补偿,自动补偿   4. 支持在分选期间可阻止电脑进入睡眠状态,可阻止电脑自动重启   二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件4: 超高分辨质谱仪  一、主要技术参数:  1 工作条件:  1.1. 工作电压:230V± 10%,15Amps,50Hz  1.2. 温度:16-260C  1.3. 湿度:50-80%  1.4. 长时间连续运行  2 功能要求:  2.1 蛋白质组学:蛋白质组学研究中的蛋白质鉴定、翻译后修饰、生物大分子相互作用、多肽和蛋白质的定量分析。  2.2 药物代谢:新药研发,代谢物鉴定,研究与疾病有关的标记物和代谢组学、脂质组学,小分子和生物大分子的相互作用。  2.3 食品安全、环境分析、毒理及临床研究:高通量农药、兽药、毒物及非法添加物等目标化合物和未知物的筛选、定量、确证。  2.4 操作过程由计算机控制。  3 技术要求:  3.1超高压纳流液相  3.1.1 压力范围:0~ 1200 Bar  3.1.2不分流一体化设计和防脉冲泵,能实现智能流速控制及上样和柱平衡,确保梯度的重现性。  3.1.3 防脉冲泵:使用蓝宝石活塞的单作用式注射无脉冲泵保证密封圈和阀门更换频率最低化。  3.1.4 内置自动化的维护步骤,具有定期提醒功能,可进行自动检漏测试,系统反压测试。可实现进样前流路自动气泡检测。  3.1.5 内置式电脑设计,可通过触摸屏直接控制,使得系统设置,方法配置和日常维护最简单。  3.1.6 梯度流速:20-2,000 nL/min 推荐流速:100-1,000 nL/min,实现稳定的、无脉冲梯度  3.1.7 上样和再平衡速度:最快25µL/min.(反压限制)  3.1.8 保留时间重现性:典型 0.1- 0.4% RSD (在推荐流速下)  3.1.9 样品瓶位数:48位HPLC进样小瓶,兼容96孔板384孔板。  3.1.10样品室控温:最低5℃。  3.1.11进样范围:0.1-18µL (20µL 进样环),0.01µL递增  3.1.12 进样重现性:≤ 0.2% RSD at 5µL ≤ 3.0% RSD at 100Nl  3.1.13 上样速度:0~40µL/min  3.1.14 梯度延迟体积:1µL  3.1.15可定制特定清洗程序,可设置三路不同溶剂清洗,交叉污染:0.05%(咖啡因)  3.1.16阀:4个6通阀(免维护),3个位置微量阀  3.1.17 上样环体积标配20µL,可选5µL和50µL.  3.1.18 上样线性:BSA 0.999 at 0.5-10µL(进样体积) Caffeine 0.999 at 0.3-1.6µL (进样体积)  3.1.19 可与纳喷源和质谱的无缝连接,集成化单一LC-MS软件控制,具有远程诊断功能。  3.1.20 可实现进样前流路自动气泡检测  3.2 四极杆-线性离子阱-高分辨轨道阱三合一质谱:四极杆-双压线性离子阱-静电场轨道阱傅里叶转换三合一超高分辨质谱  3.2.1 硬件部分:  3.2.1.1 离子源:  3.2.1.1.1 简便新一代离子源可使所有气体和电路连接自动安装 增强型的排气口能够除去更多的雾化溶剂,进而降低基线噪音,吹扫气设计降低化学噪音,延长仪器运行时间  3.2.1.1.2 加热的电喷雾离子源,流速:1-2000ul/min(不分流)  3.2.1.2 纳喷源:适合所有Nano流速,蛋白质组学用  3.2.1.3 离子光学部分:  3.2.1.3.1 高容量离子传输管:增加更多的离子流进入真空系统,从而提高灵敏度 无须卸真空就可维护。  3.2.1.3.2电动离子漏斗:高效捕获离子传输管中存在的每个离子,并将其有效转移到主动离子束传导组件,从而提高灵敏度  3.2.1.3.2 主动离子束传导组件:具有轴向场的主动离子束传导组件阻挡了中性粒子和高速簇粒子进入四极杆,从而降低噪音  3.2.1.3.3 尖端四极杆质量过滤器:分段四极杆设计,用于母离子选择,能够使离子阱和Orbitrap质量分析器并列运行。在最低可达0.4 amu的选择窗口下具有高效的离子传输能力,提高了灵敏度和选择性。  3.2.1.3.4 多极离子通道:实现高能碰撞裂解(HCD) 同时由动态扫描管理控制的多极离子通道,使离子阱和轨道阱质量分析器的有效扫描速率得到提高、易于实现并列检测 用于母离子选择,能够使离子阱和轨道阱质量分析器并列运行。  3.2.1.3.5 轨道阱质量分析器:≥ 500,000FWHM的分辨率第二代超高场轨道阱,大大提高对同重干扰物的分离效果 扫描速率≥ 20HZ。  3.2.1.3.6 双压线性离子阱质量分析器:双压结构可使扫描速率最高达20 Hz。在诸如基于MS3的多通道肽段定量实验中,同步母离子选择(Synchronous Precursor Selection, SPS)提高了信噪比,在最低可达0.2 amu。双打拿极大表面积的检测器,具有宽线性范围,并延长了寿命和抗污染性  3.2.1.4 真空系统:差分泵,真空2 × 10-10 Torr  3.2.2 性能指标:  3.2.2.1 质量范围:50-6000 m/z  3.2.2.2 最大分辨率: ≥ 500,000 FWHM (at m/z200)  3.2.2.3 扫描速率:轨道阱MSn ≥ 20Hz 离子阱MSn ≥ 20Hz  3.2.2.4 质量准确度(MS和MS/MS):1ppm(内标) 3ppm(外标)  3.2.2.5 离子阱灵敏度:ESI:100 fg利血平,MS/MS 信噪比200:1  3.2.2.6 线性动态范围:5000:1  3.2.2.7 自动MS/MS(MSn)级数:n=1-10级  3.2.2.8 同步母离子选择: 基于MS3的多通道分析,一次MS2扫描可以选择20个母离子  3.2.2.9 使用多极离子通道并列运行:利用四极杆质量过滤器,一次扫描可以选择10个母离子  3.2.2.10 正负离子切换速度:1.1秒(完成1次正离子模式全扫描和1次负离子模式全扫描,分辨率30000)  3.2.2.11 多种碰撞模式:具有高能碰撞裂解(HCD)、脉冲Q值诱导解析(PQD)、碰撞诱导解析(CID),去除1/3低质量数Cut Off效应  3.2.2.12 电子转移解离(Electron Transfer Dissociation)  ETD效率:1pmol/ul 血管紧缩素以3ul/min流速直接进样,能保证ETD碎裂效率 15%  3.2.3 傅里叶转换FT类质谱,但无需液氦和液氮的消耗,维护容易并且成本低廉。尤其高分辨质谱不需要额外检测器,轨道阱本身即是分析器又是检测器。  3.3 软件系统:  3.3.1 仪器自动操作软件,自动调节记录仪器参数,数据采集和处理软件,控制液相色谱进样。  3.3.2 蛋白质组学应用软件:用于蛋白定性定量分析  3.4 计算机 (Computer):  3.4.1 硬件:不低于:Intel酷睿i7 CPU 3.4G Hz以上,16G内存,2T 硬盘,22〞液晶显示器  3.4.2 Windows 7 操作系统  4. 仪器配置要求  4.1四极杆-双压线性离子阱-静电场轨道阱傅里叶转换三合一质谱仪主机  4.2加热的电喷雾源(H-ESI)和纳喷源  4.3 ETD装置  4.4 超高压纳流液相色谱仪  4.5 仪器控制和数据处理  4.5 蛋白质组学应用软件  4.6 计算机、10KV不间断电源(1H)和氮气钢瓶及减压阀等辅助设备  4.7 肽分析柱3根和预柱3根 离子源喷针12根 备用泵油一瓶等耗材一批。  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件5:电化学球差原位透射电镜技术指标及配置要求  一、 整套设备配置要求:  1. 双球差透射电镜1台  2. 场发射透射电镜 1台  3. 等离子清洗机 1台  4. 聚焦离子束双束电子显微镜 1台(选配,投标人需单独列明价格,以及技术参数等,用户有权选择采购或不采购配置)  二、各部分具体参数要求:  1. 电子光学系统  1.1. 加速电压:30kV – 300kV(or 200kV)   1.2. 合轴文件:30kV(or 40kV),60kV,80kV,120kv,300kV(or 200kV)   1.3. 加速电压稳定度:≤ 0.8 ppm/10min   1.4. 物镜电流稳定度: 0.2 ppm/min   1.5. 束斑漂移 Maximum spot drift: ≤ 0.5nm/min   1.6. 束流/束斑尺寸:≥ 2.5nA @ 1nm, ≥ 0.25nA @ 0.2nm (all @ 300 kV)   2. 分辨率  2.1. *TEM信息分辨率:≤ 60pm@300kV (or 200kV) ≤ 100pm@60kV (or 40kV)   2.2. *STEM分辨率:≤ 60pm@300kV (or 200 kV) ≤ 100pm@60kV (or 40kV)   3. 物镜  3.1. *物镜极靴间距 (Pole Piece Gap) :≥ 4 mm   4. Image球差矫正器,Probe球差矫正器  5. *CMOS相机(16M)+直接电子相机  5.1. 像素≥ 4096 x 4096   5.2. 高速拍照:CMOS≥ 25 fps 直接电子相机(4096 x 4096≥ 300fps)  6. *能谱仪技术要求  高灵敏快速能谱技术   7. *EELS-GIF  7.1. 一体化EELS-GIF   GIF System (Model 965),dualEELS,能量分辨率 0.1eV  7.2. GIF合轴文件:60kV,80kV,120kV,200kV(or 300kV)   7.3. 束斑漂移:≤ 1nm/min   7.4. 在同一用户界面下,能谱、EELS可以和STEM配合工作,同时连续采集数据,快速完成线扫描、面扫描和定性/定量分析   8. *原位样品台及附件  8.1三维移动+加热+电场+微环境控制(可分别组合)  8.2真空度检测,渗漏检测  9. 等离子清洗装置:  9.1. 配备等离子清洗装置,用于清洁样品和样品杆   9.2. 配备样品杆真空存放装置   10. 远程控制软件和控制面板  10.1. 远程控制软件   10.2. 在同一用户界面下,能谱、EELS可以和STEM配合工作,同时连续采集数据,完成线扫描、面扫描和定性/定量分析   11. *TEM备用场发射灯丝   12.* 场发射透射电镜  12.1. *加速电压:30kV – 300kV(or 200kV)   12.2. 合轴文件:30kV(or 40kV),60kV,120kV,300kV(or 200kV)   12.3. *物镜极靴间距 (Pole Piece Gap) :≥ 4 mm   12.4. 高速CMOS相机,(4096 x 4096≥ 25fps)  12.5. 高灵敏快速能谱技术  12.6.备用场发射灯丝   13. 聚焦离子束双束电子显微镜(FIB-SEM)性能指标(选配优先)  13.1. 离子束系统:  离子源种类:液态Ga离子源 离子源分辨率:≤ 5.0nm@30kV 加速电压:0.5kV - 30 kV 束流强度:0.6pA - 65nA (15孔光阑条) 离子源寿命:不低于1000小时   13.2. 辅助气体注入系统:  拥有独立的分离式气体注入系统,可重新配置 具备金属沉积系统,可在离子束、电子束诱导下进行Pt、C等沉积 可增加至4种气体注入系统,拥有10种以上备选过程方案 每种气体配备独立的气体注入器,防止不同气体交叉污染   14. *投标产品必需在国内有应用实例(提供中标通知书或合同复印件,原件备查),产品性能经过广泛验证,稳定可靠。  15、技术文件  15.1 设备制造厂商提供销售、售后服务授权书、质量认证书,有完善的售后服务团队和零配件仓库。(提供相关认证资格证书复印件)  15.2 提供中文版和英文版的仪器设备样本简介、产品技术性能说明,以及系统软件操作简介。  15.3 仪器设备详细清单、各项技术参数,以及具体参数的测试条件。  15.4 仪器硬件操作手册和软件使用手册,系统各种设备的维修、保养手册。  15.5 仪器验收标准。  15.6 技术服务条款、技术培训条款,以及售后服务承诺。  15.7 仪器设备装箱清单。  16、技术服务条款  16.1开箱验收:供方应在合同生效后30天内向用户提供详细的安装准备条件及安装计划。仪器到达用户所在地后, 在接到用户通知后1周内,由设备管理部门,合同购置单位,销售单位共同进行开箱验收,检查设备在运输过程中有无损坏、丢失,附件、随机备件、专用工具、技术资料等是否与合同、装箱单相符,并填写设备开箱验收单,存入设备档案,若有缺损及不合格现象应立即向有关单位交涉处理,索取或索赔。  16.2 设备安装调试:透射电镜室外部整体环境改造,由供应方在设备到达前完成,设备开箱验收后执行安装调试直至达到验收指标(该指标应不低于招标标书所要求的指标)。任何虚假指标响应一经发现即作废标,投标商必须承担由此给用户带来的一切经济损失和其它相关责任。透射电镜室外部环境改造,  16.3 安装调试及应用培训:由专业工程师负责安装、调试。培训内容包括:基本原理、结构、操作、软件使用、数据处理、维护保养及简单故障排除等。仪器正常使用一年后再免费培训一次。即卖方为用户提供两次免费(每次不低于2人)国内技术培训,对于设备使用,直到教会为止。  16.4 保修期:至少提供三年全机免费保修,保修期自验收合格,双方签字之日起计算。在保修期内属产品质量问题所发生的一切费用由供方负担。保修期满前1个月内供方应负责对用户的仪器进行一次免费的,全面的检查,并写出正式报告,如发现问题或潜在问题,应在保修期内将问题解决。保修期内出现因质量故障而导致仪器停用的时间应从保修期内扣除。所有修理或更换的部件均顺延享受两年保修期。在质量保修期外,免费提供技术支持 如果设备需要返厂修理或校准,保证在3个月内返回。  16.5 维修响应时间:针对设备故障,接到用户通知后4小时内响应,确定解决方案后,48小时内到现场维修。重大问题或其它无法迅速解决的问题应在一周内解决或提出明确解决方案,得到用户的认可后,在预定的期限内解决问题。否则,供方应赔偿由此而造成的损失。终生免费技术服务咨询。  16.6 软、硬件升级:供方应负责仪器操作软件终身免费升级,并优惠提供与之相关的硬件升级。  17. 以上标注“*”条款为强制性要求,投标供应商必须达到这些要求,否则将被视为未实质性响应招标文件要求,为无效投标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制