当前位置: 仪器信息网 > 行业主题 > >

寡核苷酸和共聚物

仪器信息网寡核苷酸和共聚物专题为您提供2024年最新寡核苷酸和共聚物价格报价、厂家品牌的相关信息, 包括寡核苷酸和共聚物参数、型号等,不管是国产,还是进口品牌的寡核苷酸和共聚物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合寡核苷酸和共聚物相关的耗材配件、试剂标物,还有寡核苷酸和共聚物相关的最新资讯、资料,以及寡核苷酸和共聚物相关的解决方案。

寡核苷酸和共聚物相关的论坛

  • 寡核苷酸

    做寡核苷酸合成,50个碱基,部分硫代。用HPLC纯化制备,做了[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]结果是好的。然后做了乙醇沉淀。再做[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url],发现样品脱硫了。不知道是哪里出现了问题。哪位大佬知道吗?

  • 核苷酸红外分析

    大家有做过核酸的红外吗,我做的寡核苷酸药物,需要买仪器建分析方法,在网上查不到相关资料,不知道核酸类药物和普通化药对仪器要求一样吗,还有仪器设置和样品配置啥的,最关键的是谱图怎么分析,有没有做过的大神支支招,或者手里有相关文献,谢谢啦

  • 苯乙烯-马来酸共聚物及其应用

    [align=center][font='times new roman'][size=16px]苯乙烯[/size][/font][font='times new roman'][size=16px]-[/size][/font][font='times new roman'][size=16px]马来酸共聚物[/size][/font][font='times new roman'][size=16px]及其应用[/size][/font][/align] 苯乙烯与马来酸酐的[back=#ffffff]共聚物[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]-[/back][back=#ffffff]马来酸([/back][back=#ffffff]SMA[/back][back=#ffffff])[/back][back=#ffffff]首先由[/back][back=#ffffff]Alfred[/back][back=#ffffff]和[/back][back=#ffffff]Lavin[/back][back=#ffffff]在[/back][back=#ffffff]1945[/back][back=#ffffff]年制[/back][back=#ffffff]备。[/back][back=#ffffff]之后[/back][back=#ffffff],[/back][back=#ffffff]Mayo[/back][back=#ffffff]等提出[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚体系是典型的交替共聚模型[/back][back=#ffffff],[/back][back=#ffffff]具有强吸电子基团的马来酸酐与具有给电子基团[/back][back=#ffffff]的[/back][back=#ffffff]苯乙烯是一对电荷转移复合物,在自由基引发体系中具有很好的交替共聚特征,但是传统的自由基聚合会导致[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的聚合不可控且分子量分布较宽等问题,限制了[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]共聚物[/back][back=#ffffff]的应用,“活性”[/back][back=#ffffff]/[/back][back=#ffffff]可控自由基聚合法为[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的合成提供了解决方案,[/back][back=#ffffff]但是也有着显著区别。[/back][back=#ffffff]对于[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法,马来酸酐会与催化剂中金属离子发生反应,导致催化剂失效,因此只能采取光引发等无金属[/back][back=#ffffff]A[/back][back=#ffffff]TRP[/back][back=#ffffff]法合成。对于[/back][back=#ffffff]N[/back][back=#ffffff]MP[/back][back=#ffffff]法,由于聚合所需的温度较高,只能得到[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的无规[/back][back=#ffffff]则[/back][back=#ffffff]共聚物。利用[/back][back=#ffffff]R[/back][back=#ffffff]AFT[/back][back=#ffffff]法可以较好地进行共聚,并且可以得到交替共聚物。在实际的聚合反应体系中,苯乙烯与马来酸酐的交替共聚速率远大于苯乙烯的自聚速率,并且马来酸酐的自聚能力很低,因此在苯乙烯过量的情况下,会首先形成[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替共聚物,此后再是苯乙烯的自聚,最终可形成具有[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]交替和[/back][back=#ffffff]苯乙烯[/back][back=#ffffff]自聚的嵌段共聚物[/back][back=#ffffff]。[/back] [back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]的一个重要优势在于马来酸酐中酸酐基团的高反应活性,可以在较温和的条件下发生酯化、酰胺化等反应,因此可以引入新的功能性基团,得到改性的[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]衍生物,这大大拓展了其应用范围[/back][back=#ffffff]。[/back][back=#ffffff]由于[/back][back=#ffffff]S[/back][back=#ffffff]MA[/back][back=#ffffff]及其衍生物具有独特的两亲性和生物相容性,已经被大量应用于膜蛋白增溶提取、药物递送和新材料合成等领域。[/back] [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜蛋白质[/size][/font][/align] 在多细胞生物中,膜蛋白约占总蛋白质的三分之一。它们在细胞间信号传导和跨细胞膜转运中发挥着重要作用。2009年Knowles等首次报道了SMA共聚物可以直接将生物膜溶解成脂质纳米圆盘(SMALPs),既保留了圆盘内的蛋白质,又确保了膜蛋白稳定的天然脂质环境。此后,使用SMA共聚物的无去污剂增溶方法被大量应用于从生物膜中直接提取蛋白质和脂质。 目前为止,研究人员发现对于苯乙烯与马来酸组成比为3:1或2:1的共聚物结构对于膜的溶解最有效。以3:1的SMA为例简要描述其增溶机制,首先在阶段1中,苯乙烯单元穿透到磷脂双分子层的疏水部分且马来酸酐与亲水性头基结合,此时SMA从一开始紧凑且聚集的构象转变为解聚、延伸的构象,SMA已经插入到磷脂双分子层中。在阶段2中,SMA在磷脂双层中达到饱和状态,此时SMALPs形成,并与SMA饱和的磷脂双层共存。在第3阶段,SMA饱和的磷脂双层完全转化为SMALPs,磷脂双层全部溶解,SMA分布在磷脂双层中,过量的SMA附着在双层周围,生物膜实现增溶。 [align=center] [/align][align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]衍生物[/size][/font][/align] 随着对SMA增溶机制的深入研究发现,SMA的分子量、化学组成与衍生基团的类型等会影响膜蛋白的提取效率与选择性。此外,由于SMA中马来酸的存在,酸的质子化或者与金属阳离子的络合会导致SMA变得过于疏水而无法维持纳米圆盘的结构,比如Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]的浓度高于10 mM或pH低于6时通常会导致SMA沉淀,从而导致SMALPs分解。为了解决上述问题,研究人员开发了大量SMA衍生物,增加了对于pH与金属阳离子(Cu[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Mg[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font]、Ca[font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][sup][size=16px]+[/size][/sup][/font])的耐受性,为膜蛋白与膜脂的研究提供了更多的选择。例如,Brady等发现2-丁氧基乙醇功能化的SMA衍生物可以促进膜蛋白从蓝藻类囊体膜的提取,而未功能化的SMA基本上是无效的,且较长的疏水性烷氧基乙氧基化物侧链可以提高增溶效率。Burridge等同时合成了SMA-Glu/AE/Neut/Pos四种衍生物,所有的SMA衍生物都能够与以棕榈酰油酰磷脂酰胆碱制备的脂质体反应,形成不同尺寸的SMALPs,都显示出稳定的物理特性,在较宽pH范围和高达100 mM Mg[font='times new roman'][sup][size=16px]2+[/size][/sup][/font]下也可以发挥作用。Lindhoud等通过2-氨基乙硫醇对SMA的部分衍生化,合成了SMA-SH,其可以溶解生物膜,同时SMA-SH中的巯基基团可以与其它活性基团进行衍生化得到新的功能化SMA衍生物,进而实现膜蛋白的选择性提取与纯化,为SMA的应用提供了新思路。 除了对SMA进行衍生化用于提高对膜蛋白的提取效率与选择性之外,部分研究人员也探索了SMA共聚物本身的性质,比如苯乙烯与马来酸酐的比例、链的长度与化学组成分布等,以提高形成SMALPs的能力与稳定性。例如,Cunningham等报道了一种迭代RAFT聚合法合成了具有窄分子量分布与化学组成分布的SMA共聚物。在深入研究之后发现分子量分布与化学组成是影响膜增溶的两个主要因素,宽分子量分布的SMA共聚物,往往具有较高的链长,影响SMA的活性。事实上,较短链长的SMA更有利于SMALPs的形成,因为长链SMA会导致聚合物自身的缠绕,此外长链会同时参与多个SMALPs的形成,进一步影响增溶效率。 [align=center][font='times new roman'][size=16px]S[/size][/font][font='times new roman'][size=16px]MA[/size][/font][font='times new roman'][size=16px]与膜脂[/size][/font][/align] SMA及其衍生物已经广泛应用于膜蛋白的提取与研究。事实上,SMALPs也是用于研究蛋白质周围局部脂质环境的优良体系,但是相关的报道较膜蛋白要少。 Juarez等[font='times new roman'][sup][size=16px][95][/size][/sup][/font]用SMA从两种菌株(野生型N2和细菌抗性菌株agmo-1)中提取脂质,然后通过薄层色谱法和质谱法进行表征,发现从细菌抗性菌株agmo-1中提取的脂质含有醚连接的(O-烷基链)脂质,与仅含有酯连接的(O-酰基)脂质的野生型N2菌株相反。这与细菌抗性菌株agmo-1中功能性烷基甘油单加氧酶(AGMO)的丧失保持一致。此外,与传统的脂质提取方法(需要有机溶剂的方法)相比,SMA可用于生物活体中脂质的提取而不影响其活性,证明了SMA在脂质组学的研究中具有良好潜力。 Rehan等采用电喷雾离子化质谱(ESI-MS)法分析了由SMA提取的人体平衡核苷转运蛋白-1(hENT1)中的脂质组成,因为hENT1是一种需要脂质膜来维持其结构和功能的蛋白质,其周围脂质双层的组成对其活性和稳定性至关重要。分析结果发现,每个hENT1-SMALPs中含有16个磷脂酰胆碱(PC)和2个磷脂酰乙醇胺(PE)脂质分子。除此之外,研究发现使用SMA比使用洗涤剂溶解的hENT1更加稳定。

  • 【分享】一起分享核苷酸

    【分享】一起分享核苷酸

    [img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910241555_177765_1610969_3.jpg[/img][color=#DC143C]核苷酸 [/color]   一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。又称核甙酸。戊糖与有机碱合成核苷,核苷与磷酸合成核苷酸,4种核苷酸组成核酸。核苷酸主要参与构成核酸,许多单核苷酸也具有多种重要的生物学功能,如与能量代谢有关的三磷酸腺苷(ATP)、脱氢辅酶等。某些核苷酸的类似物能干扰核苷酸代谢,可作为抗癌药物。根据糖的不同,核苷酸有核糖核苷酸及脱氧核苷酸两类。根据碱基的不同,又有腺嘌呤核苷酸(腺苷酸,AMP)、鸟嘌呤核苷酸(鸟苷酸,GMP)、胞嘧啶核苷酸(胞苷酸, CMP)、尿嘧啶核苷酸(尿苷酸,UMP)、胸腺嘧啶核苷酸(胸苷酸,TMP)及次黄嘌呤核苷酸(肌苷酸,IMP)等。核苷酸中的磷酸又有一分子、两分子及三分子几种形式。此外,核苷酸分子内部还可脱水缩合成为环核苷酸。   核苷酸是核糖核酸及脱氧核糖核酸的基本组成单位,是体内合成核酸的前身物。核苷酸随着核酸分布于生物体内各器官、组织、细胞的核及胞质中,并作为核酸的组成成分参与生物的遗传、发育、生长等基本生命活动。生物体内还有相当数量以游离形式存在的核苷酸。三磷酸腺苷在细胞能量代谢中起着主要的作用。体内的能量释放及吸收主要是以产生及消耗三磷酸腺苷来体现的。此外,三磷酸尿苷、三磷酸胞苷及三磷酸鸟苷也是有些物质合成代谢中能量的来源。腺苷酸还是某些辅酶,如辅酶Ⅰ、Ⅱ及辅酶A等的组成成分。   在生物体内,核苷酸可由一些简单的化合物合成。这些合成原料有天门冬氨酸、甘氨酸、谷氨酰胺、一碳单位及 CO2等。嘌呤核苷酸在体内分解代谢可产生尿酸,嘧啶核苷酸分解生成CO2、β-丙氨酸及β-氨基异丁酸等。嘌呤核苷酸及嘧啶核苷酸的代谢紊乱可引起临床症状(见嘌呤代谢紊乱、嘧啶代谢紊乱)。   核苷酸类化合物也有作为药物用于临床治疗者,例如肿瘤化学治疗中常用的5-氟尿嘧啶及6-巯基嘌呤等。   有些核苷酸分子中只有一个磷酸基,所以可称为一磷酸核苷(NMP)。5''-核苷酸的磷酸基还可进一步磷酸化生成二磷酸核苷(NDP)及三磷酸核苷(NTP),其中磷酸之间是以高能键相连。脱氧核苷酸的情况也是如此。   体内还有一类环化核苷酸,即单核苷酸中磷酸部分与核糖中第三位和第五位碳原子同时脱水缩合形成一个环状二酯、即3'',5''-环化核苷酸,重要的有3'',5''-环腺苷酸(cAMP)和3'',5''-环鸟苷酸(cGMP)。

  • 多聚核苷酸的分子量和分子量分布的检测方法的建立

    本人最近准备做“一种多聚核苷酸的分子量和分子量分布的检测方法”的建立研究工作,由于本人在此方面没有经验,希望大家帮帮小弟。分子量主要分布在20000-240000(30-400bp)(1)凝胶色谱柱的如何选择?(2)标准物质(DNA marker)的选择(3)紫外检测器和示差检测器是否均可使用?(4)流动相如何选择?(5)凝胶色谱仪型号的选购?

  • 【求助】关于检测核苷酸的难题

    [size=4]请教各位,近期俺要设计一个实验,但经过4、5天反复思考和查资料都没有找到太好的方案,遂进来赐教!是这样的,有一个混合样品,已知里面含有蛋白质(少量)、多肽和游离氨基酸(占绝大部分≥50%)、核苷酸(可能有三种存在形式:核苷、核苷酸、碱基)、还有其他可溶性化合物质。要求:检测样品当中核苷酸的含量。疑难:由于样品中多肽和游离氨基酸含量较多,遂不能用紫外分光光度计法测量(蛋白质和核苷酸的吸光峰值很相近,只有在蛋白质含量(包括蛋白质、多肽和游离氨基酸)较少的情况下用此法才准确)。 我的思路是,先把多肽和游离氨基酸与核苷酸分离开,然后再用紫外分光光度计法测量核苷酸含量。但本人才疏学浅,不知用什么方法才能把两者分离开。请各位赐教~~[/size]

  • 【求助】丙烯酸共聚物分子量的测试

    [em0706] 请教熟手:我是新手,想学习凝胶色谱,请指点。1目前单位分析的对象是一系列丙烯酸共聚物(分子量6000左右),制作样品的方案是:第一步:0.1克左右,用丁酮溶解,电热板烘干(不明白这一步的意义);第二步,用流动相(四氢呋喃)按100倍稀释,然后进样60UL.请说明,谢谢。1如果测试笨乙烯试样应该怎样配置样品。谢谢。(窄分布标样是苯乙烯)

  • GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定

    [align=left][color=black]核苷酸是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。根据碱基的不同,分别有胞嘧啶核苷酸(CMP)、腺嘌呤核苷酸(AMP)、尿嘧啶核苷酸(UMP)、[/color]鸟嘌呤核苷酸(GMP)及次黄嘌呤核苷酸(IMP)等。由于核苷酸类化合物的极性较强,在常规反相C18色谱柱上难以保留,通常通过添加离子对试剂等方式增强保留。[/align][align=left][b]第一部分[color=red]CAPCELL PAK C18 AQ[/color]检测方法[/b][/align][align=left][/align][align=left][b]C[color=black]APCELL PAK C18 AQ[/color][/b][color=black]色谱柱可耐受纯水条件,适用于极性较大物质的高水相条件下的分析,因此也非常适合《GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定》。[/color][color=black]按照国标方法,对核苷酸标准品以及样品进行分析,可得到良好线性以及定量分析结果;对30个样品进行前处理后进行分析,样品中各核苷酸与其前后杂质分离良好,且不同样品之间各核苷酸的保留时间相一致。[/color][/align][align=left][b][color=red] [/color][/b][/align][align=left][b]《GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定》方法微调[/b][/align][align=left][img=,600,248]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051502543279_7587_2222981_3.jpg!w813x337.jpg[/img][/align][align=left][img=,600,174]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051503129151_4402_2222981_3.jpg!w776x226.jpg[/img][/align][align=left][/align][align=left] 下表为样品定量浓度结果[/align][align=left][img=,600,126]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051455159701_7741_2222981_3.jpg!w900x190.jpg[/img][/align][align=left][img=,600,221]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456000129_1190_2222981_3.jpg!w844x311.jpg[/img] 上图为核苷酸样品与标准品的对比谱图[/align][align=left][/align][align=left]基于个别样品分析时遇到的CMP与其前杂质未得到良好分离的情况,通过对洗脱条件进行调整,可实现CMP与其前杂之间的良好分离。[/align][align=left][img=,600,215]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456501881_4082_2222981_3.jpg!w843x303.jpg[/img][img=,600,175]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456507871_7358_2222981_3.jpg!w900x263.jpg[/img][/align][align=left][/align][align=left][b]第二部分[color=red]CAPCELL PAK ADME[/color]色谱柱的分析[/b][/align][align=left][color=black]CAPCELLPAK ADME[/color][color=black]键合了笼状金刚烷基团,兼具高极性和疏水性特点,对高极性化合物有出色的保持和分离效果。[/color]在国标原条件下,不论是标准品还是样品均可使用CAPCELL PAK ADME得到5种核苷酸的良好保留与分离结果。[/align][align=left]值得注意的是,ADME色谱柱的溶出顺序与常规反相C18色谱柱不尽相同,再次印证了其独特的保留分离模式。对于不局限于C18色谱柱的老师来说,具有独特溶出模式的CAPCELL PAK ADME色谱柱是分析强极性化合物的不二之选。[/align][align=left][img=,500,346]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051457304991_1509_2222981_3.jpg!w758x525.jpg[/img][/align][align=left][color=black] 上图为CAPCELL PAK ADME对5种核苷酸标准品的分析结果[/color][/align][align=left][/align][align=left][img=,500,347]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051458490969_9562_2222981_3.jpg!w758x527.jpg[/img][/align][align=left][color=black] 上图为CAPCELL PAK ADME对5种核苷酸实际样品的分析结果[/color][/align]

  • GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定

    GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定

    [align=left][/align][align=left][color=black]核苷酸是一类由嘌呤碱或嘧啶碱、核糖或脱氧核糖以及磷酸三种物质组成的化合物。根据碱基的不同,分别有胞嘧啶核苷酸(CMP)、腺嘌呤核苷酸(AMP)、尿嘧啶核苷酸(UMP)、[/color]鸟嘌呤核苷酸(GMP)及次黄嘌呤核苷酸(IMP)等。由于核苷酸类化合物的极性较强,在常规反相C18色谱柱上难以保留,通常通过添加离子对试剂等方式增强保留。[/align][align=left][b]第一部分[color=red]CAPCELL PAK C18 AQ[/color]检测方法[/b][/align][align=left][/align][align=left][b]C[color=black]APCELL PAK C18 AQ[/color][/b][color=black]色谱柱可耐受纯水条件,适用于极性较大物质的高水相条件下的分析,因此也非常适合《GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定》。[/color][color=black]按照国标方法,对核苷酸标准品以及样品进行分析,可得到良好线性以及定量分析结果;对30个样品进行前处理后进行分析,样品中各核苷酸与其前后杂质分离良好,且不同样品之间各核苷酸的保留时间相一致。[/color][/align][align=left][b][color=red] [/color][/b][/align][align=left][b]《GB 5413.40-2016 婴幼儿食品和乳品中核苷酸的测定》方法微调[/b][/align][align=left][img=,600,248]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051502543279_7587_2222981_3.jpg!w813x337.jpg[/img][/align][align=left][img=,600,174]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051503129151_4402_2222981_3.jpg!w776x226.jpg[/img][/align][align=left][/align][align=left]下表为样品定量浓度结果[/align][align=left][img=,600,126]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051455159701_7741_2222981_3.jpg!w900x190.jpg[/img][/align][align=left][img=,600,221]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456000129_1190_2222981_3.jpg!w844x311.jpg[/img]上图为核苷酸样品与标准品的对比谱图[/align][align=left][/align][align=left]基于个别样品分析时遇到的CMP与其前杂质未得到良好分离的情况,通过对洗脱条件进行调整,可实现CMP与其前杂之间的良好分离。[/align][align=left][img=,600,215]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456501881_4082_2222981_3.jpg!w843x303.jpg[/img][img=,600,175]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051456507871_7358_2222981_3.jpg!w900x263.jpg[/img][/align][align=left][/align][align=left][b]第二部分[color=red]CAPCELL PAK ADME[/color]色谱柱的分析[/b][/align][align=left][color=black]CAPCELLPAK ADME[/color][color=black]键合了笼状金刚烷基团,兼具高极性和疏水性特点,对高极性化合物有出色的保持和分离效果。[/color]在国标原条件下,不论是标准品还是样品均可使用CAPCELL PAK ADME得到5种核苷酸的良好保留与分离结果。[/align][align=left]值得注意的是,ADME色谱柱的溶出顺序与常规反相C18色谱柱不尽相同,再次印证了其独特的保留分离模式。对于不局限于C18色谱柱的老师来说,具有独特溶出模式的CAPCELL PAK ADME色谱柱是分析强极性化合物的不二之选。[/align][align=left][img=,500,346]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051457304991_1509_2222981_3.jpg!w758x525.jpg[/img][/align][align=left][color=black] 上图为CAPCELL PAK ADME对5种核苷酸标准品的分析结果[/color][/align][align=left][/align][align=left][img=,500,347]https://ng1.17img.cn/bbsfiles/images/2019/03/201903051458490969_9562_2222981_3.jpg!w758x527.jpg[/img][/align][align=left][color=black] 上图为CAPCELL PAK ADME对5种核苷酸实际样品的分析结果[/color][/align][align=left][color=black][/color][/align][align=left][color=black][/color][/align][align=left][/align]

  • 【求助】如何通过红外判断是否是共聚物

    共聚时应该会有新的吸收峰出现,那么原有的吸收峰的位置是否会发生移动?比如丙烯酰胺和丙烯酸共聚物的红外光谱中属于丙烯酰胺单元的吸收峰和丙烯酰胺均聚物的红外光谱中的相应吸收峰位置是否重合? 如果不重合,那么是否可以通过吸收峰位置的改变说明原有的聚合物链上出现了别的基团? 不好意思!我是个外行,问的问题可能有点幼稚,希望大家多多指点。

  • GB5413.40 核苷酸标准品

    求助:GB5413.40 核苷酸标准品中有5种核苷酸的标准品要购买,不知道应该买哪里的。请教各位,能具体告知下购买的品牌和货号吗?胞嘧啶核苷酸 CMP:标准品,C9H14N3O8P,纯度≥99%次黄嘌呤核苷酸 IMP:标准品,C10H13N4O8P,纯度≥99%鸟嘌呤核苷酸 GMP:标准品,C10H14N5O8P,纯度≥99%尿嘧啶核苷酸 UMP:标准品,C9H13N2O9P,纯度≥99%腺嘌呤核苷酸 AMP:标准品,C10H14N5O7P,纯度≥99%

  • 【转帖】预聚物、调聚物、齐聚物、缩聚物、共聚物、均聚物的概念

    预聚物、调聚物、齐聚物、缩聚物、共聚物、均聚物的概念 1、预聚物聚合度介于单体与最终聚合物之间的一种分子量较低的聚合物,通常指制备最终聚合物前一阶段的聚合物。2、调聚物在聚合反应中,如ktr(链转移速率常数) kp(再引发速率常数),则形成聚合度很小的低聚物,这类反应称做调聚反应,因此这种调聚反应得到的聚合物也称为调聚物。其分子量较低,一般只有二到十个链节,分子的两端是与调聚剂分子分裂部分结合的。如果新自由基活性减弱,则再引发相应减慢,会出现缓聚现象,聚合速率和聚合度都将显著降低。极端的情况是新自由基稳定,难以继续再引发增长,就成为阻聚作用。3、齐聚物又称低聚物。高分子与低分子的区别在于前者分子量很高,通常将分子量高于约1万的称为高分子(polymer),分子量低于约1000的称为低分子。分子量介于高分子和低分子之间的称为低聚物(oligomer,又称齐聚物)。一般高聚物的分子量为104~106,分子量大于这个范围的又称为超高分子量聚合物。但是在行业中,比如PAM,分子量在1500~1800万以上的才称为超高分子量PAM。4、缩聚物生成聚合物时有水或其他简单分子放出的聚合称为缩聚,用这种方法合成的聚合物称为缩聚物。5、共聚物两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。6、均聚物由一种单体聚合而成的聚合物称为均聚物。P.S:英文的“高分子”主要有两个词,即polymer和macromolecule。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指分子量很大的一类化合物,包括天然和合成高分子,也包括无一定重复单元的复杂大分子。

  • 没有内标,做单,二,三磷酸的核苷酸分析,可以定量吗?

    目前想用Thermo Fisher的四级杆-静电轨道离子阱质谱做一个药物单,二,三磷酸核苷酸分析。文献报道是用同位素做内标,是他们实验室自己合成的,买不到现成的。用阴离子,MRM模式来做。想问,如果没有内标的话,只有该药物的单,二,三磷酸核苷酸的标准品的话,能够定量吗?第一次发帖求助,先谢谢大家的热心帮助!

  • 寡核苷酸合成

    谁有Dr.oligo 192合成仪的标准合成方法吗?或者说明说,发一下

  • 【转帖】预聚物、调聚物、齐聚物、缩聚物、共聚物、均聚物的概念!

    1、预聚物聚合度介于单体与最终聚合物之间的一种分子量较低的聚合物,通常指制备最终聚合物前一阶段的聚合物。2、调聚物在聚合反应中,如ktr(链转移速率常数) kp(再引发速率常数),则形成聚合度很小的低聚物,这类反应称做调聚反应,因此这种调聚反应得到的聚合物也称为调聚物。其分子量较低,一般只有二到十个链节,分子的两端是与调聚剂分子分裂部分结合的。如果新自由基活性减弱,则再引发相应减慢,会出现缓聚现象,聚合速率和聚合度都将显著降低。极端的情况是新自由基稳定,难以继续再引发增长,就成为阻聚作用。3、齐聚物又称低聚物。高分子与低分子的区别在于前者分子量很高,通常将分子量高于约1万的称为高分子(polymer),分子量低于约1000的称为低分子。分子量介于高分子和低分子之间的称为低聚物 (oligomer,又称齐聚物)。一般高聚物的分子量为104~106,分子量大于这个范围的又称为超高分子量聚合物。但是在行业中,比如PAM,分子量在1500~1800万以上的才称为超高分子量PAM。4、缩聚物生成聚合物时有水或其他简单分子放出的聚合称为缩聚,用这种方法合成的聚合物称为缩聚物。5、共聚物两种或两种以上的单体或单体与聚合物间进行的聚合称为共聚,共聚得到的产物即为共聚物。分嵌段共聚物、接枝共聚物、无规共聚物、有规共聚物等。6、均聚物由一种单体聚合而成的聚合物称为均聚物。P.S:英文的 “高分子”主要有两个词,即polymer和macromolecule。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指分子量很大的一类化合物,包括天然和合成高分子,也包括无一定重复单元的复杂大分子。

  • 人类基因组单核苷酸多态性的研究进展与动态 【转贴】

    人类基因组单核苷酸多态性的研究进展与动态The research development of single nucleotide polymorphisms in human genome 摘要:第一张人类基因组序列草图已经公布,正式图预计也将于2003年4月完成。但序列图只基于少数个体,它反映了基因组稳定的一面,并未反映其变异或多态的一面,而正是这种多态性,即基因组序列的差异构成了不同个体与群体对疾病的易感性、对药物与环境因子不同反应的遗传学基础。人类基因组中存在广泛的多态性,最简单的多态形式是发生在基因组中的单个核苷酸的替代,即单核苷酸多态性(single nucleotide polymorphisms, SNPs)。SNP通常是一种二等位基因的(biallelic),即二态的遗传变异,在CG序列上出现最为频繁。在转录序列上的SNP称为cSNP。SNP的数量大、分布广。按照1%的频率估计,在人类基因组中每100~300个核苷酸就有一个SNP。因此,整个人类基因组(3.2 X 109bp)中至少有1,100万以上的SNPs,在任何已知或未知基因内和附近都可能找到数量不等的SNP 目前普遍认为,作为数量最多且易于批量检测的多态标记,SNP在连锁分析与基因定位,包括复杂疾病的基因定位、关联分析、个体和群体对环境致病因子与药物的易感性研究中将发挥愈来愈重要的作用。迄今,对多基因疾病候选基因的SNPs研究已积累了丰富的数据,基于这些SNPs的关联分析也正方兴未艾。本文阐述了SNP的特征、不同研究者对基于SNP进行关联分析的观点以及SNP的研究进展与动态。 关键词: SNP;遗传标记;关联研究 中图分类号:Q75 随着分子遗传学的进展,疾病遗传学研究从简单的单基因疾病转向于复杂的多基因疾病(如骨质疏松症、糖尿病、心血管疾病、精神性紊乱、各种肿瘤等)与药物基因组学的研究中。与前者相比,多基因性状或遗传病的形成,受许多对微效加性基因作用,即其中每种基因的作用相对较微弱。这些不同基因构成的遗传背景中,可能有易感性主基因(major gene)起着重要作用。它们同时还受环境因素的制约,彼此间相互作用错综复杂,所以任一基因的多态性对疾病发生仅起微弱的作用。鉴于此,需要在人类基因组中找到一种数目多、分布广泛且相对稳定的遗传标记,单核苷酸多态性(single nucleotide polymorphisms, SNPs)正是代表了这样一种标记,所以它成为继第一代限制性片段长度的多态性标记、第二代微卫星即简单的串联重复标记后,第三代基因遗传标记。 1. SNP作为遗传标记的优势 SNP自身的特性决定了它比其它两类多态标记更适合于对复杂性状与疾病的遗传解剖以及基于群体的基因识别等方面的研究。 (1)SNP数量多,分布广泛。据估计,人类基因组中每1000个核苷酸就有一个SNP,人类30亿碱基中共有300万以上的SNPs。SNP 遍布于整个人类基因组中,根据SNP在基因中的位置,可分为基因编码区SNPs(Coding-region SNPs,cSNPs)、基因周边SNPs(Perigenic SNPs,pSNPs)以及基因间SNPs(Intergenic SNPs,iSNPs)等三类。 (2)SNP适于快速、规模化筛查。组成DNA的碱基虽然有4种,但SNP一般只有两种碱基组成,所以它是一种二态的标记,即二等位基因(biallelic)。 由于SNP的二态性,非此即彼,在基因组筛选中SNPs往往只需+/-的分析,而不用分析片段的长度,这就利于发展自动化技术筛选或检测SNPs。主要的技术方法包括单链构象多态性(single strand conformation polymorphisms, SSCPs)法、异源双链分析(heteroduplex analysis, HA)、DNA直接测序分析、变异检测阵列(variant detector arrays, VDA)法以及基质辅助激光解吸附电离飞行时间(MALDI-TOF)质谱法等。 (3)SNP等位基因频率的容易估计。采用混和样本估算等位基因的频率是种高效快速的策略。该策略的原理是:首先选择参考样本制作标准曲线,然后将待测的混和样本与标准曲线进行比较,根据所得信号的比例确定混和样本中各种等位基因的频率。 (4)易于基因分型。SNPs 的二态性,也有利于对其进行基因分型。对SNP进行基因分型包括三方面的内容:(1)鉴别基因型所采用的化学反应,常用的技术手段包括:DNA分子杂交、引物延伸、等位基因特异的寡核苷酸连接反应、侧翼探针切割反应以及基于这些方法的变通技术;(2)完成这些化学反应所采用的模式,包括液相反应、固相支持物上进行的反应以及二者皆有的反应。(3)化学反应结束后,需要应用生物技术系统检测反应结果。目前许多生物技术公司发展出高通量检测SNP的技术系统,如荧光微阵列系统(Affymetrix)、荧光磁珠技术(Luminex,Illumina, Q-dot)、自动酶联免疫(ELISA)试验(Orchid Biocomputer)、焦磷酸的荧光检测(Pyrosequencing)、荧光共振能量转移(FRET)(Third Wave Technologies)以及质谱检测技术(Rapigene, Sequenom)。 2. 基于SNP的关联研究 如果某一因素可增加某种疾病的发生风险,即与正常对照人群相比,该因素在疾病人群中的频率较高,此时就认为该因素与疾病相关联。如非遗传因素吸烟与肺癌相关;在遗传因素中,如APOE4与Alzheimer`s相关。对疾病进行关联分析需要在年龄与种族相匹配的患者和对照人群中确定待测因素(环境的或遗传的)的频率分布,患者和对照人群的选择是否恰当直接影响结果的可靠性。对常见的由高频率、低风险等位基因导致的疾病,采用致病等位基因的关联分析比连锁分析更有效。 应用SNP进行关联研究,首先需明确多少SNPs才可满足在全基因组范围内的分析。Kruglyak应用计算机模拟法预测人类基因组中超过3Kb就不存在连锁不平衡,据此推出完成全基因组扫描将需要500,000个SNPs。而Collins等收集通过家系研究得到的常染色体单倍型的信息发现,在染色体上相距0.2cM到0.4cM(约200-400kb)之间的标记仍存在连锁不平衡,如按每100kb需要一个SNP计算,那么完成全基因组扫描仅需约30,000个SNPs,平均每3-4个基因用一个SNP就可识别出整个基因组内任何位置上的具表型活性的变异。最近发现SNP与SNP之间的连锁不平衡甚至可延伸到更远的区域(0.35cM-0.45cM),那么进行基因组扫描需要的SNP数量就更少。导致上述估算SNP 数量差异的主要原因是Kruglyak进行模拟计算时,假设现在的人群在5000年前起源于共同的祖先,且人群规模的有效大小保持在10,000左右,然后经过连续的指数扩增,直至达到现在的50亿左右。Collins认为这种假设是不现实的,在人类发展的历史过程中,人群数目的增长是迂回曲折的,经历扩张与萎缩的周期性变化。 Weiss等认为Collins及其同事的结果可能低估了问题的复杂性。因为他们的结果或是基于小样本资料推断出来的,就会使连锁不平衡(LD)程度的估算偏高;或是从理论上预测LD的水平,而忽略了基因组中大量的随机变异。如大多数位点的信息是来源于小样本中测序得到的资料,据此得到的单倍型结构不可靠。目前的研究集中于基因组中LD相对广泛存在的区域,在此区域内,基因相对容易作图。如基于这些经验来进行基因组其它区域的LD分析,就可能发生偏离。如两个相距较远的SNPs 之间具有强的LD性质,就认为它们之间的SNPs及该SNP侧翼的SNPs也存在强烈的LD,这种假设仅适合于其中一些多态位点,但它并不是通则。当然,在一些罕见人群中,如Saami,在较长的区域内广泛存在大量的LD,但对Fihland人群,则在较长区域内几乎不存在LD,对全球整个复杂人群而言,LD肯定变得更复杂一些。 Gray等认为随着人类基因组测序计划的进展,人类基因组的结构逐渐被阐明,因此就可在那些富含基因的区域选择SNP进行全基因组扫描,这样所需的SNP数量还会减少。Halushka等根据他们对75个基因检测的实验结果推测,SNPs在单个基因或整个基因组中的分布是不均匀的,在非转录序列中要多于转录序列,而且在转录区也是非同义突变的频率比其它方式突变的频率低得多。Templeton 等对LPL基因突变与重组热点的研究结果提示,SNP集中分布于基因组的CG二核苷酸处或单核苷酸重复区或αDNA聚合酶的识别位点(TGGA)处。将人类基因组不同区域物理图谱与遗传图谱的进行比较,发现遗传距离和物理距离的比值有很大的差异,提示基因组不同区域的重组水平存在差异。如Dunham等将22号染色体STR的物理位置与遗传位置进行了对比,发现该染色体的重组率差异很大,提示存在重组热点。根据基因组内不同区域重组频率的高低可进一步选择SNP的数量,重组热点需要的标记数量就多,相反就少。这种设计也可能会进一步减少基因组扫描所需的SNP标记。 使用SNP进行关联分析面临的另一个问题是如何选择SNP。如果对每一个SNP都进行独立研究,那么对几百万SNPs 的研究就会导致成千上万次的假关联,结果就掩盖真实的关联性,所以,进行关联分析前,一定要对所研究的SNP进行选

  • 【求助】奶粉中核苷酸检测的相关问题

    请做过核苷酸的老师们给予帮助,标准中说核苷酸的标准品(每个组分称取的质量都要校正水分和钠盐含量,以酸型计)是什么意思,应该怎么处理呀,很急,请大家帮助!

  • 核苷酸基准试剂烘干时发黄结块

    我最近用液相测定核苷酸,国标用的核苷酸基准试剂要在120度烘4h,但是我烘IMP和CMP后均发黄和结块,而GMP和UMP正常。我又在103度烘IMP和CMP,大概半小时又出现发黄和结块的现象,上网都没有找到相关的资料,不知道该在多少度烘才适合,求帮手

  • 【讨论】GPC表征接枝共聚物的优劣?

    表征共聚物的分子量及分子量分布通常要用到GPC,但是我是做接枝共聚物的,聚合物的结构与PS标样相差很大。因此导致做出来的数据很难说清楚其物理意义。因此恳请大家来谈一谈GPC表征接枝共聚物的优劣,改进方法以及替代方法等。热切期待中.......................

  • 求助核苷酸检测

    各位老师好,[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测核苷酸,新换的柱子,第一针峰型还行,第二针就开始飘了,流动相配制有什么注意事项吗,求帮忙

  • 各个领域的“基因芯片”

    基因芯片及其在病原微生物检测中的应用基因芯片是近年来迅速发展的一门生物高新技术,它以其能够快速、高效、大规模地同步检测生物遗传信息的卓越功能而得到发展。在基因测序、基因表达分析、药物筛选、基因诊断等领域显示出重要的理论和实用价值。基因芯片是指应用大规模集成电路的微阵列技术。在固相支持物表面(常用的固相支持物有玻璃、硅片、尼龙膜等载体)有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点样器有规律地点样于固相支持物表面;然后将要研究的目的材料中的DNA、RNA或用cDNA同位素或荧光物标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,对这些杂交图谱进行检测;再利用计算机对每一个探针上的杂交信号作分析处理,便可得到目的材料中有关基因表达信息。该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析。基因芯片分类基因芯片按其片基不同可分为无机片基芯片和有机合成片基芯片:如果按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片;如果按其结构不同可分为DNA阵列和寡核苷酸芯片;如果按其制备方法不同可分为原位合成芯片和合成后交联芯片。目前,常用于基因芯片制作的固相支持物主要包括半导体硅片、普通玻璃片、尼龙膜等基质。它们各有优缺点,可根据不同的用途和目的选择使用。用硅片制作的芯片,其DNA探针排列的密度高,在1.28cm芯片上,可达40万点阵。检测灵敏度高但专一性差。用玻璃制作的芯片,可用于双色荧光标记杂交,便于杂交信号的检测,但其灵敏度低,而且对玻璃片的处理要求高。尼龙膜主要用于制作eDNA芯片,即将不同的eDNA片断点阵于尼龙膜上,它可用同位素标记检测,灵敏度高,专一性好,但是DNA阵列的密度低。DNA探针的制备及固化探针的制备及固化有2种方法:①在片基上原位合成寡核苷酸;②在片基以外制备DNA探针,并以显微打印等手段将其固化于片基上。作者介绍了待测DNA样品的制备、标记样品与基因芯片杂交、杂交信息的检测与分析、操作过程中存在的问题及解决办法。基因芯片可以对病原细菌检测、病毒的检测及其他方面如支原体检测等。问题和展望基因芯片在病原微生物检测中具有快速、灵敏、高通量、自动化等特点。但目前仍面临一些问题有待解决,这些问题主要体现在硬件和软件2个方面。在硬件方面,DNA芯片技术需要昂贵的尖端仪器,如生产原位合成芯片需要光刻机器和寡核苷酸合成仪;构建DNA微集阵列的自动仪器约需8万美元以上,而检测芯片则要激光共聚焦显微镜、落射荧光显微镜等设备,费用较高。在软件(即技术)上也存在一些问题。首先,探针制备的环节上,原位合成寡核苷酸技术复杂,且有专利保护,合成过程中有可能插入错误核苷酸或混入杂质,降低了特异性和信噪比;显微打印技术较灵活,易实现,但需收集或合成大量探针,且阵列的集成度不高。其次,在样品和芯片杂交的环节上 ,因为杂交在固相上进行,空间因素会对杂交造成不利影响;还有,在一个芯片上存在多种探针,这对杂交条件是个挑战,因为这种探针的最适条件未必适合另一种探针;而且,复杂的探针如长寡核苷酸容易自身形成二 、三级结构,影响与靶序列的杂交或给出错误的阴性信号,当然在其它技术环节上也存在着一些难题,如样品准备复杂、检测的灵敏度低等。虽然基因芯片技术在多个环节上有待提高,但它在生命科学及相关领域中已呈现出广阔的应用前景,相信随着研究的不断深入和技术的更加完善,基因芯片会成为基础研究和临床应用的强有力工具。

  • 求助 急急。。。。核苷酸标准品怎么校正钠盐含量

    婴幼儿配方食品和乳粉 核苷酸检测中,配制核苷酸标准品时要求每个组分的浓度都要校正水分和钠盐含量,采用酸型表示,校正水分这个没问题,就是纯品的含量,这个校正钠盐含量并采用酸型表示,这个是什么意思?不太明白,请知道的大侠详细解释一下,谢谢!

  • 寡核苷酸纯化

    做一个普通的引物,发现[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]峰分叉了,但是分叉的两个峰,分子量一样。谁知道为什么

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制