当前位置: 仪器信息网 > 行业主题 > >

质谱裂解规律推测

仪器信息网质谱裂解规律推测专题为您提供2024年最新质谱裂解规律推测价格报价、厂家品牌的相关信息, 包括质谱裂解规律推测参数、型号等,不管是国产,还是进口品牌的质谱裂解规律推测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱裂解规律推测相关的耗材配件、试剂标物,还有质谱裂解规律推测相关的最新资讯、资料,以及质谱裂解规律推测相关的解决方案。

质谱裂解规律推测相关的论坛

  • 磷脂的质谱裂解规律是怎样的呢

    磷脂的质谱裂解规律是怎样的呢

    磷脂的质谱裂解规律是怎样的呢 比如PC、PE等 在二级质谱中能识别到哪些结构基团呢[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/04/201904150911186193_1062_3886281_3.png[/img]

  • 【原创大赛】秋水仙碱类生物碱的质谱裂解规律探究

    【原创大赛】秋水仙碱类生物碱的质谱裂解规律探究

    秋水仙碱类生物碱的质谱裂解规律探究摘要:采用气相色谱质谱(GC/MS)研究了八种秋水仙碱类生物碱化合物的质谱裂解途径和机理。发现部分碎片离子一致,其主要的裂解途径是通过四元环过渡态氢重排失去侧链生成离子m/z340,由于结构中的七元环上有羰基,而七元环相对来讲没有六元环稳定,所以其会进一步失去羰基的CO生成离子m/z 312,保持了较高的稳定性,所以在质谱图上表现出较高的丰度,同时化合物还通过失去甲氧基自由基及甲基自由基得到其他对应的碎片离子峰。关键词:秋水仙碱;裂解规律;气质联用;生物碱秋水仙碱类生物碱是一类很重要的有机化合物,秋水仙碱是1820年于百合科植物秋水仙中发现的一种重要的卓酚酮类生物碱(1)。由于秋水仙碱及其类似物的特殊生理活性和药用价值,它们一直受到广泛的关注。因其特殊的结构和强抗癌活性,近几年有关秋水仙碱作用机制的研究异常活跃。临床上常作为痛风性关节炎急性发作和某些癌症治疗的首选药(2-5)。当秋水仙碱的摄入量过多将会导致死亡,所以也受到司法鉴定的关注。同时秋水仙碱在生物学上更重要的用途是作为多倍体诱导剂诱导多倍体的发生(6-10)。目前关于秋水仙碱的检测方法已有较多报道(11-14)。色谱质谱法由于其特异性,具有较好的分离度以及较高的灵敏度且能提供更多的样品信息而被广泛应用,对于生物碱类化合物的质谱裂解规律及机理已有较多的文献报道(15-21)。而关于秋水仙碱类生物碱的质谱裂解机理和规律还未见相关报道,电子轰击离子源由于具有较高的电离能,能够获得更加丰富的质谱信息而被广泛应用,所以本文通过气相色谱质谱联用法对多种秋水仙碱类化合物在电子轰击离子源下的质谱裂解途径和规律做以阐释总结,旨在为此类化合物的组分鉴定,结构确认提供理论指导依据。1试验部分1.1 仪器与试剂GCMS-QP2010UItra(日本Shimadzu公司);Demecolcine、Deacetylcolchicine、2-Demethylthiodemecolcine、N-Butoxycarbonyldemecolcine、N-Deacetylisocolchicine、N-Acetylcolchamine、N-Trifluoroacetyldemecolcine标准品2.2 仪器条件1.2.1 色谱条件 色谱柱:Agilent DB-1MS弹性石英毛细管柱(30m*0.32mm*0.25um);载气:He(纯度99.999%);恒压模式:48.0kPa;初始温度100℃,以10℃/min的速率升至300℃恒温10min;分流进样,分流比10:1;进样量0.2ul,进样口温度300℃,接口温度300℃。1.2.2 质谱条件 离子化方式:EI(电子轰击离子源),离子化电压70ev,离子源温度250℃,离子扫描范围:m/z 32~600。1.2 实验方法称取0.25mg标准品用1ml甲苯溶解,分别进行GC/MS全扫描,获得八种化合物EI离子源下的质谱图。八种化合物及其对应的质谱图如下:http://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562003_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562004_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562005_2359621_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508211541_562006_2359621_3.jpg2 结果与讨论2.1 Deacetylcolchicine的质谱裂解途径去乙酰秋水仙碱Deacetylcolchicine的质谱图见图Fig.i,谱图中基峰为分子离子峰m/z 357,表明其分子结构具有较高的稳定性。谱图中有明显的m/z 340碎片离子,其生成是由于氨基具有较强的质子亲合能,β位的氢通过四元环过渡态重排到氨基上,然后脱去中性分子NH3,两个孤电子成对生成烯键得到碎片离子m/z 340。由于分子结构中具有环庚三烯酮结构,所以其可以发生进一步的裂解失去CO中性分子,而形成六元环稳定结构,得到碎片离子m/z 312,为奇电子离子,具有较高的丰度。由分子离子峰可直接失去CO中性分子得到碎片离子m/z 329,当苯环上的一对π电子被电离后,离子m/z 329可以发生α断裂,失去甲基自由基,得到离子m/z 314,该离子通过氢过渡态重排失去NH3得到离子m/z 297(其生成也有可能是m/z 312失去甲基自由基)。该离子失去中性分子CO后生成离子m/z 269,该离子再失去甲基自由基后得到碎片离子m/z 254,该离子可进一步失去甲基自由基生成离子m/z 239,后失去一分子CO得到离子m/z 211,再失去一分子CO得到离子m/z 183。游离基中心定域在氨基上,游离基中心孤电子强的配对倾向诱导发生α断裂失去氢自由基得到碎片离子m/z 328。由分子离子峰可以失去甲氧基得到碎片离子m/z 326,该离子进一步失去CO得到离子m/z 298具有较高的丰度,后失去甲基自由基生成离子m/z 281。可能的质谱裂解途径见Fig. 1http://ng1.17img.cn/bbsfiles/images/2015/08/201508211451_561952_2359621_3.jpg图1 Deacetylcolchicine的质谱裂解可能的质谱裂解途径Fig. 1 Possible cleavage pathways of Deacetylcolchicine2.2 N-Deacetylisocolchicine的质谱裂解途径去乙酰异秋水仙碱N-Deacetylisocolchicine的质谱图见图Fig.ii,其结构上与去乙酰秋水仙碱有细微的差异,仅是甲氧基取代基与羰基的位置发生了互换,其质谱图中基峰为分子离子峰m/z 357,分子离子峰失去甲基自由基,生成碎片离子m/z 342,该碎片离子失去中性分子CO后生成离子m/z 314,后通过四元环过渡态β位氢重排失去小分子NH3生成离子m/z 297,由分子离子失去中性分子CO后生成离子m/z 329,当游离基中心定域在氨基上自由基强烈的配对倾向诱导发生α断裂失去氢自由基生成碎片离子m/z 328。由分子离子还可直接失去甲氧基自由基生成碎片离子m/z 326,其可以失去CO得到离子m/z 298,具有较高丰度,分子内氢重排失去甲醛后生成离子m/z 268。当分子离子经过四元环过渡态氢重排后失去NH3可生成离子m/z340,该离子进一步裂解失去CO中性分子得到离子m/z 312,稳定的六元环结构提高了离子的稳定性,所以具有较高的丰度,该离子失去甲氧基后生成离子m/z 281,可进一步裂解得到离子m/z 266,或者通过氢重排失去甲醛生成离子m/z 282,可进一步裂解生成离子m/z 267。m/z 312亦可失去甲基自由基得到离子m/z

  • 【求助】请教:质谱 裂解规律是什么?

    [size=3][b]粮食中常见真菌毒素的裂解规律[/b][/size]粮食中常见的真菌毒素,如黄曲霉毒素(B1,B2,G1,G2,M1,M2),玉米赤霉烯酮(ZON),赭曲霉素A(OTA),单端孢霉烯醇(T-2毒素),脱氧雪腐镰刀菌烯醇(DON),它们的裂解规律是什么?如何查到啊?谢谢啊

  • ESI(正离子模式)裂解规律

    学习的质谱书上主要讲的是EI裂解规律,目前使用的是ESI离子源,有没有讲ESI裂解规律的相关书籍或文献报导呢?求推荐实验中遇到一个化合物,在好几处断裂碎片离子m/z都是一样的,不知道在哪个位置断裂是正确的

  • 求帮忙分析一个化合物的质谱裂解过程

    求帮忙分析一个化合物的质谱裂解过程

    求各位帮忙分析一个化合物的质谱裂解规律,化学式和质谱图都有,但是本人在这方面是菜鸟,希望各位能帮忙分析一下裂解规律,就是给出主要的几个峰是怎么来的就可以了,谢谢各位了!http://ng1.17img.cn/bbsfiles/images/2016/04/201604241629_591307_3061797_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/04/201604241629_591308_3061797_3.jpg

  • 多肽质谱裂解符合氮律吗?

    现做多肽的裂解,请问多肽质谱裂解符合氮律吗?因为我看是针对分子离子峰所说的,我不知道如果多肽带多电荷的话,算不算是分子离子峰??

  • 求助-化合物质谱裂解规律请教

    求助-化合物质谱裂解规律请教

    有一个化合物:分子量320.38,分子[img=,614,189]https://ng1.17img.cn/bbsfiles/images/2023/06/202306041257147562_3064_5566006_3.png!w614x189.jpg[/img]式[font=Arial]C[/font][font=Arial][sub]14[/sub][/font][font=Arial]H[/font][font=Arial][sub]28[/sub][/font][font=Arial]N[/font][font=Arial][sub]2[/sub][/font][font=Arial]O[/font][font=Arial][sub]6,[sup]?[/sup][size=12px]?结构如图所示:其质谱碎片中,有281.1532和256.1194的峰,不知如何裂解出来,请高手指点迷津,谢谢![/size][/sub][/font]

  • 化合物裂解规律

    请教各位大侠,怎么才能知道已知化合物的二级质谱碎片离子和裂解方式,有地方可以查询吗?

  • 【分享】杠柳苷类化合物电喷雾多级质谱裂解行为研究

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=152825]杠柳苷类化合物电喷雾多级质谱裂解行为研究[/url]摘要:采用电喷雾多级质谱技术研究了杠柳苷A和E的质谱裂解行为。在源内诱导碰撞解离谱图中发现,从准分子离子中脱去二取代吡喃酮是杠柳苷A的主要断裂形式之一。从分子中失去不同长度的糖链以及杠柳甙元D环开裂重排失去甲醛(一30 Da)是识别该类化合物的重要依据。通过对杠柳苷A和E的质谱裂解机制和特征碎片进行研究,总结了鉴别该类化合物的方法,并对杠柳根皮中的一个未报道化合物杠柳苷x的结构进行了推测,该方法对研究杠柳中杠柳苷类化合物的分布及结构具有重要参考价值。

  • 求质谱裂解图

    [color=#444444]有两个分子A和B,现有其质谱裂解方式,但是不知道具体裂解是怎样的,希望哪位高手给分析一下[/color][color=#444444]A:182(M+),167,139,153,124,108,91,77,63,43,29;[/color][color=#444444]B: 234 (M+),203,162,133,115,91,65,43[/color][color=#444444][img=,440,116]https://ng1.17img.cn/bbsfiles/images/2019/08/201908281456525354_7912_1827556_3.gif!w440x116.jpg[/img][/color]

  • 【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    基于密度泛函理论研究四环素的电喷雾质谱裂解机理摘要: 基于密度泛函理论(Densityfunctional theory,DFT)方法,考察四环素的优势构像极其在电喷雾正离子模式下准分子离子峰处于基态的最优构型,结合构形参数及质谱测定对准分子离子的最优构型进行了确认,并通过全几何结构优化,对四环素的优势构像及其在电喷雾质谱(LC-ESI-Q-Orbitrap-MS)正离子模式下准分子离子的二级谱中碎片离子的最优构型进行研究。结合高分辨率质谱数据对其质谱裂解机理进行解释。该研究可以为进一步探索四环素类化合物及其衍生物ESI-MS正离子模式下的质谱裂解规律提供参考和理论指导依据。关键词:密度泛函理论(DFT);静电轨道离子阱(Orbitrap);四环素(Tetracycline)1 实验部分1.1 仪器与试剂Thermo Scientific:Q Exactive Orbitrap ,Merck:CH3OH,Standard: Tetracycline(上海士锋生物科技有限公司)1.2 分析条件质谱(Mass Spectrometry):Ion Source:ESI, MS Type:MS2,Ion Mode:Positive(+),Fragmentation Mode:HCD,Collsion Energy:30ev色谱(Chromatography):Column Name:WatersXBridge TM(Waters,C18)3.5um,2.1*50mmFlow Gradient:90A(0min)-50A(5min)-5A(25min)-90A(30min),FlowRate:200ul/minSolvent A:H2O+0.1%Acid,Solvent B:CH3OH+0.1%Acid1.3 量子化学计算 使用密度泛函的B3LYP方法,以6-311+G*为基组,对反应势能面上的各驻点的构型进行了全几何参数优化,并由频率分析确认了稳定点的正确性,为了得到更精确的能量信息,又在B3LYP//6-311++G(3df,3pd)水平上计算了各驻点的单点能,所有计算采用Gaussian 03程序包完成。前言 四环素类(Tetracyclines,TCs)是由链霉菌产生的一类广谱抗生素(1),在化学结构上都属于多环并四苯羧基酰胺母核的衍生物。四环素类可分为天然品和半合成品两大类。天然品为从放线菌金色链丛菌的培养液等分离出来的抗菌物质,四环素类药物为广谱抗生素,广泛用于临床治疗,并常被用做动物促生长剂,但耐药性的出现限制了该类药物的使用。目前关于四环素类抗生素的分析大多采用液相色谱质谱联用技术分析(2-9),并多数是采用电喷雾离子源。随着串联质谱技术的不断发展,采用量子化学方法及理论计算从分子水平研究化合物的质谱裂解规律及机理受到广泛而长期的关注。采用量子化学理论在质谱的裂解机理计算中,准分子离子几何构型的可靠性直接影响后续更加深层次的分析,而确定准分子离子最可能的最优构型是解析谱裂解机理的首要解决问题,本研究采用量子化学计算方法,依据密度泛函理论,并借助高斯软件Gaussian 03计算分析,计算了四环素正离子模式下准分子离子的最优构型,并且结合高分辨率质谱静电轨道离子阱质谱(Q-Orbitrap-MS)给出的可靠数据,对特征离子的裂解做以归属,为此类化合的鉴定解析提供理论依据。四环素的结构及其空间三维立体模型见图1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221738_567179_2359621_3.bmp图1 Tetracycline结构及其空间立体构型2 结果分析2.1 量子化学计算各质子化位点的质子亲和势能 由于化合物结构有多个质子化位点,所以需通过计算确定其最稳定构型及最大可能质子化位点,质子化反应方程为:RX+H+→RH+分子的气相碱性由其质子化方程的焓变ΔrH来确定,即质子亲和能EPA=-ΔrH,质子亲和能较大的化合物,其气相碱性较强,按照分子轨道理论,质子化方程的气相质子亲和能WPA与分子RX的最高占据道HOMO和质子H+的最低未占据轨道LUMO的差值有关,由于H+的LUMO是一个定值,所以可以认定WPA只与RX的HOMO相关并呈线性关系,原则上RX分子的HOMO能级值可以由量子计算得到。在B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p),B3LYP/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p)和B3P86/6-311++G(3df,2p)//B3P86/6-311++G(3df,2p)基础下,计算了各质子化位点的平衡几何构型,优化得到的分子平衡几何构型都经频率计算证明是势能面上的极小点(无虚频),获得各质子化位点的质子亲和能(E),各质子结合位点的质子亲和能计算结果见表1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221752_567196_2359621_3.bmp表1 四环素各质子结合位点的质子亲和能EPATabel 1 Protonaffinity for proton binding sites of Tetracycline(EPA)通过表1可以看出质子结合位点位于氨基上具有较高的质子亲和能,表明N上孤对电子可能占据HOMO轨道,所以质子化位点极可能位于氨基上。2.2 四环素在LC-ESI-Q-Orbitrap-MS下的质谱裂解途分析通过以上计算,以质子化位点位于氨基上为起点,并结合高分辨率质谱数据对其质谱裂解途径和机理进行分析,使用(LC-Q-Orbitrap-MS)获得准分子离子峰m/z 445.1594的二级谱,质谱碎片离子及相对丰度见表2http://ng1.17img.cn/bbsfiles/images/2015/09/201509221750_567191_2359621_3.bmp表2 四环素电喷雾离子源下准分子离子(MS2)的碎片离子及其相对丰度Tabel 2 Relative abundancesof characteristic ions in the ESI(MS2) mass spectra of Tetracycline依据表1计算结果,对比质子亲和能,质子最可能的结合位点为氨基上氮原子,氮原子的一对未成键电子最可能占据HOMO轨道,所以以质子结合到氨基上所形成的准分子离子峰为起始点(备注:只是最可能概率最大的,但是不排除其他小概率的质子结合位点所引发的裂解),对其可能的质谱裂解途径做以下分析。准分子离子峰失去H2O中性分子后得到碎片离子m/z427.1500,与理论误差为-2.61ppm。而失去H2O中性分子可能有多个不同位点,1.2-消除脱水和-2.4消除脱水,从空间立体构型中可以看到氢和羟基均位于一侧,所以有利于发生1.2-消除和2.4-消除,如此就有了三种可能的脱水方式,所以通过计算得到不同三种方式下脱水后生成离子的稳定构型及其能量,见表3。由表3可以看出第一种模式下生成的离子能量最低,表明此方式为主要途径,更容易进行。准分子离子通过正电荷转移失去NH3可以生成离子m/z 428.1340,与理论误差为0.02ppm,β为的氢重排到侧链氮原子上可以脱去侧链CH3NHCH3得到碎片离子m/z 383.0761,与理论值误差为1.01ppm。该离子进一步通过1.2-消除脱H2O后生成离子m/z 365.0656,与理论值误差为0.19ppm。后通过2.4-消除脱水生成离子m/z 347.0550,与理论值误差为-1.91ppm。,由于2.4-消除相比1.2-消除难所以生成的离子丰度相对较低,离子m/z

  • 【求助】二氢黄酮的质谱裂解

    有关二氢黄酮的质谱裂解问题,数据如下: MS: 316(100) 298(9) 283(10) 269(3) 255(3) 196(34) 181(25) 170(34) 153(10) 这是全部的裂解数据。 化合物的结构式在附件里面,希望谁能帮我分析下怎么脱去一分子水和一个甲基,谢谢啦!

  • 怎么确定裂解色谱的裂解温度

    各位色谱达人: 我需要用Pygcms分析聚合物的可能组成。我做过聚合物的TGA分析,初始分解温度是320度,20%失重温度是400度,完全失重温度是568度。请问怎么确定裂解温度和裂解时间,以达到一个比较合理的裂解效果,可以更容易帮助我推测聚合物的组成。谢谢大家!

  • 【讨论】裂解色谱与质谱的区别

    爱心捐助 小弟新进,请教大佬们一个弱智的问题[em0808] :1裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]色谱有哪些区别:A,分解样品的方式不一样(自己认为)b后者多了一个质谱做检测器;2,是否有了[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]色谱,裂解色谱就没有存在的意义了。3两者在哪些地方可以互换。

  • 娃儿藤碱的质谱裂解途径

    娃儿藤碱的质谱裂解途径

    今天分享下娃儿藤碱(Tylophorine)中的一种化合物的质谱裂解途径,发现用CAS模板画出来的结构还是看起来比较舒服的,这类化合物具有菲并吲哚结构,所以其比较重要的裂解方式的RDA裂解方式,也表现出了很高的丰度。质谱图及结构式:http://ng1.17img.cn/bbsfiles/images/2014/04/201404281859_497669_2359621_3.jpg分子离子峰M/Z-421很弱,可以看到Base Peak为M/Z=361,相差60,这是由McL重排后得到的,该离子再经过α断裂失去氢自由基可以得到M/Z=360的碎片离子,丰度较高,而通过分子离子的RDA反应失去中性分子后将得到M/Z=352的碎片离子,该离子失去乙烯酮可以得到M/Z=310的碎片离子,同时由于邻位效应 氢重排会失去乙酰基得到M/Z=309的碎片离子,接着失去菲环上的甲基自由基得到M/Z=294的碎片离子,该离子失去CO得到M/Z=266的碎片离子(未看到),该离子失去甲基自由基得到M/Z=251的碎片离子。该碎片离子会再失去一份子CO而得到M/Z=223的碎片。质谱图上可以看到具有较强丰度的M/Z=333碎片离子,该离子的生成是电荷中心定域到氮原子上由其诱导的电子成对会使吲哚环失去乙烯自由基而生成。可能的质谱裂解途径:http://ng1.17img.cn/bbsfiles/images/2014/04/201404281859_497670_2359621_3.pngfile:///c:/DOCUME~1/ADMINI~1/APPLIC~1/360se6/USERDA~1/Temp/DDEMQ~1.M1B

  • 【我们不一YOUNG】飞行时间质谱仪的源后裂解

    [size=15px][b]飞行时间质谱仪的源后裂解[/b][/size][font=&][size=15px]离子在飞行过程中如果发生裂解,新产生的离子仍然以母离子速度飞行。因此在直线型漂移管中观测不到新生成的离子。如果采用带有反射器的漂移管,因为新生成的离子与其母离子动能不同,可在反射器中被分开。这种操作方式称为源后裂解(Post source decomposition ,PSD)。通过PSD操作可以得到结构信息。因此,可以认为反射型TOFMS也具有MS-MS功能。[/size][/font][font=&][size=15px][/size][/font][font=&][size=15px]另外TOF-TOF串联质谱仪已经出现。关于磁式质谱仪串联和混合型串联,小析姐后续也会进行相应的介绍。[/size][/font]

  • 【求助】高分子材料热裂解质谱分析

    各位:你们有高分子材料热裂解质谱分析的资料吗?我在这方面是个新手,不知道这方面的书籍文献有哪些,请各位指指方向!另外,请教:“杂原子外层未成键电子被电离的容易程度,按周期表至上而下,由右向左方向增大”?请各位帮助解答!

  • 请问为什么裂解色谱质谱联用没检测到氨气呢

    请问为什么裂解色谱质谱联用没检测到氨气呢

    [color=#444444]我用TG-FTIR联用,有很明显的氨气吸收峰(966和930,吸收峰很特征,应该不是其他产物),吸收峰也比较强,说明产生的氨气应该不少啊,为什么用热裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用分析产物时,没有检测到氨气呢?没做过热裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用,求大神给分析分析啊[/color][color=#444444][img=,162,426]https://ng1.17img.cn/bbsfiles/images/2019/07/201907241004448837_3987_1752342_3.png!w162x426.jpg[/img][/color]

  • 【讨论】有机物质在质谱中键断裂规律

    我一直做色谱质谱分析工作,上学的时候学过基础的无机化学,有机化学,分析化学。但是因为不是化学专业的,所以对有些化学问题有些许茫然。工作中,一直想弄明白,有机物质在质谱中键断裂规律。比如哪些化学键容易断裂,哪些难断裂,有没有个大概的断裂顺序??大家能不能各抒己见,给些建议,给些启示,或者大家一起讨论讨论……

  • 质谱裂解规律

    [table=100%][tr][td]各位大神,请教一下,用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测定邻硝基苯甲醛,离子对反应是什么,着急,跪求[img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/hand.gif[/img][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/hand.gif[/img][/td][/tr][/table]

  • 裂解气相色谱法

    方法原理是:当样品在严格控制的操作条件下迅速加热时,它遵循一定的规律裂解,得到可挥发的小分子产物,然后进入色谱柱和检测器进行分离、检测和谱图记录。每种物质的裂解色谱图都具有各自的特征性,称为指纹裂解谱图。由于裂解产物的组成和相对含量与被测物质的结构,组成有一定的对应关系,因此,指纹裂解谱图可作为定性和定量的依据。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制