当前位置: 仪器信息网 > 行业主题 > >

气相色谱确定方法

仪器信息网气相色谱确定方法专题为您提供2024年最新气相色谱确定方法价格报价、厂家品牌的相关信息, 包括气相色谱确定方法参数、型号等,不管是国产,还是进口品牌的气相色谱确定方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱确定方法相关的耗材配件、试剂标物,还有气相色谱确定方法相关的最新资讯、资料,以及气相色谱确定方法相关的解决方案。

气相色谱确定方法相关的资讯

  • 盘点!常用气相色谱分析方法
    1.归一化法  把所有出峰的组分含量之和按100%计的定量方法,称为归一化法。  各成分校正因子一致时可用该法,该法简便、准确,特别是进样量不容易准确控制时,进样浓度及进样量的变化的影响很小。  其他操作条件,如流速、柱温等变化对定量结果的影响也很小。GC应用广于HPLC。2.外标法(标准曲线法、直接比较法)  首先用欲测组分的标准样品绘制标准工作曲线。具体作法是:用标准样品配制成不同浓度的标准系列,在与欲测组分相同的色谱条件下,等体积准确量进样,测量各峰的峰面积或峰高,用峰面积或峰高对样品浓度绘制标准工作曲线,此标准工作曲线应是通过原点的直线。若标准工作曲线不通过原点,说明测定方法存在系统误差。标准工作曲线的斜率即为绝对校正因子。  当欲测组分含量变化不大,并已知这一组分的大概含量时,也可以不必绘制标准工作曲线,而用单点校正法,即直接比较法定量。单点校正法实际上是利用原点作为标准工作曲线上的另一个点。因此,当方法存在系统误差时(即标准工作曲线不通过原点),单点校正法的误差较大。因此规定,y=ax+b 。b的绝对值应不大于100%响应值是y的2%。  标准曲线法的优点:绘制好标准工作曲线后测定工作就很简单了,计算时可直接从标准工作曲线上读出含量,这对大量样品分析十分合适。特别是标准工作曲线绘制后可以使用一段时间,在此段时间内可经常用一个标准样品对标准工作曲线进行单点校正,以确定该标准工作曲线是否还可使用.  标准曲线法的缺点:每次样品分析的色谱条件(检测器的响应性能,柱温度,流动相流速及组成,进样量,柱效等)很难完全相同,因此容易出现较大误差。另外,标准工作曲线绘制时,一般使用欲测组分的标准样品(或已知准确含量的样品),因此对样品前处理过程中欲测组分的变化无法进行补偿。3.内标法  选择适宜的物质作为欲测组分的参比物,定量加到样品中去,依据欲测组分和参比物在检测器上的响应值(峰面积或峰高)之比和参比物加入的量进行定量分析的方法称为内标法。  内标法的关键是选择合适的内标物。内标物应是原样品中不存在的纯物质,该物质的性质应尽可能与欲测组分相近,不与被测样品起化学反应,同时要能完全溶于被测样品中。内标物的峰应尽可能接近欲测组分的峰,或位于几个欲测组分的峰中间,但必须与样品中的所有峰不重叠,即完全分开。一般会选择标准物质的同位素物质作为内标物。  内标法的优点:进样量的变化,色谱条件的微小变化对内标法定量结果的影响不大,特别是在样品前处理(如浓缩、萃取,衍生化等)前加入内标物,然后再进行前处理时,可部分补偿欲测组分在样品前处理时的损失。若要获得很高精度的结果时,可以加入数种内标物,以提高定量分析的精度。  内标法的缺点:选择合适的内标物比较困难,内标物的称量要准确,操作较麻烦。使用内标法定量时要测量欲测组分和内标物的两个峰的峰面积(或峰高),根据误差叠加原理,内标法定量的误差中,由于峰面积测量引起的误差是标准曲线法定量,但是由于进样量的变化和色谱条件变化引起的误差,内标法比标准曲线法要小很多,所以总的来说,内标法定量比标准曲线法定量的准确度和精密度都要好。4.标准加入法  标准加入法实质上是一种特殊的内标法,是在选择不到合适的内标物时,以欲测组分的纯物质为内标物,加入到待测样品中,然后在相同的色谱条件下,测定加入欲测组分纯物质前后欲测组分的峰面积(或峰高),从而计算欲测组分在样品中的含量的方法。  标准加入法的优点:不需要另外的标准物质作内标物,只需欲测组分的纯物质,进样量不必十分准确,操作简单。若在样品的前处理之前就加入已知准确量的欲测组分,则可以完全补偿欲测组分在前处理过程中的损失,是色谱分析中较常用的定量分析方法。  标准加入法的缺点:要求加入欲测组分前后两次色谱测定的色谱条件完全相同,以保证两次测定时的校正因子完全相等,否则将引起分析测定的误差。
  • 用户成就丨一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法
    见证用户成就灭多威肟是氨基甲酸酯类杀虫剂灭多威的合成中间体,具有一定毒性。目前针对水体中灭多威肟的研究较为普遍而土壤中灭多威肟的检测方法的研究较少,因此有必要建立一种气相色谱质谱联用仪检测土壤中灭多威肟的检测方法。为解决这一问题,广电计量检测(合肥)有限公司及安徽建筑大学有关研究人员提出了《一种气相色谱质谱联用仪测定土壤中灭多威肟的分析方法》并将相关研究成果发布在Hans Journal of Agricultural Sciences 农业科学, 2022, 12(4), 237-245。本方法通过实验条件的探究,确定萃取溶剂为二氯甲烷–丙酮混合溶剂(1+1)、加压流体萃取温度为 70℃,压力为12 Mpa,选择了C18柱作为净化柱,8mL二氯甲烷–丙酮混合溶剂(1+1)进行洗脱,20℃减压旋蒸作为收集液的浓缩方式,最终建立了一种以加压流体萃取–气相色谱质谱联用仪测定土壤中灭多威肟的定性定量方法。该方法自动化程度高,可进行批量的土壤分析,操作简便,精密度和准确度高,方法检出限为:1.17 µg/kg。该方法的建立填补了测定土壤中灭多威肟的方法空白,为场地新型环境污染调查提供必要技术支持。在样品萃取环节,此次实验采用睿科 HPFE 06S 加压流体萃取仪。在高温环境下,睿科HPFE高通量加压流体萃取仪可使萃取时间由索式抽提的十几个小时降低至15~30分钟,溶剂耗量由原来的200mL降低至20 ~ 50mL,有了它,土壤“把脉”更轻松!
  • 第11期线上讲座:气相色谱定量方法
    答疑解惑时间:2009年4月3日---4月18日 热烈欢迎yuen72先生再次光临仪器论坛进行讲座!   自2008年以来我们已经举办了10期线上讲座,线上讲座用户参与度越来越高。线上讲座的第一期是从气相色谱开始,而我们的第十一期的线上讲座又回到气相色谱版面。本期讲座我们邀请了GC版面的专家yuen72先生就气相色谱定量方法进行了一期专题讲座。本期讲座共分两章,第一章是针对检测器的响应来进行详细阐述,第二章就对色谱定量方法来进行详细的解剖。   再次感谢气相色谱版面的专家yuen72先生提供的丰富的讲座,也感谢yuen72先生与大家一起交流心得和经验。yuen72先生,高级工程师,有15年以上石化行业色谱分析经历,拥有安捷伦、岛津等公司多种色谱仪的操作经验,国家一级化工分析竞赛命题专家,从事气相色谱讲授多年,在多本化工分析工教材中主笔色谱部分。   欢迎大家就气相色谱定量方法方面的问题前来提问,也欢迎高手前来与yuen72先生交流切磋~   参与本期活动的地址:http://www.instrument.com.cn/bbs/shtml/20090403/1819316/   相关地址:   论坛线上活动导览:http://www.instrument.com.cn/bbs/shtml/20081203/1618059/
  • 气相色谱常见故障及解决方法
    气相色谱仪常见故障分析与解决方法气相色谱仪由六大单元组成,任一单元出现问题都会反映到色谱图上。这里介绍前三个单元。现代的气相色谱仪很多都具备故障诊断功能,不同程度地给出仪器故障的判断。尽管如此,许多的问题像是操作失误的问题仍须靠工作人员的努力。故障和失误可以采用逐个单元检查排法,这里从分析人员的角度来讨论仪器故障的排和分析人员操作失误或操作不当引起问题的排。气相色谱仪是利用色谱分离和检测,对多组分的复杂混合物进行定性和定量分析的仪器。通常可用于分析土壤中热稳定且沸点不过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。一、气路气路的检查在故障的排中往往是有果,主要是检查:(1)气源是否足(一般要求气瓶压力须≥3MPa,以瓶底残留物对气路的污染);(2)阀件是否有堵塞、气路是否有泄漏(采用分段憋压试漏或用皂液试漏);(3)净化器是否失效(看净化剂的颜色及色谱基流稳定情况);(4)阀件是否失效或堵塞(看压力表及阀出口流量);(5)气化室内衬管是否有样品残留物及隔垫和密封圈的颗粒物(看色谱基流稳定情况);(6)喷口是否堵塞(看点火是否正常);(7)对化合物的分析,气化室的衬管和石英玻璃毛还须经过失活处理。二、色谱柱系统色谱柱是分析的心脏部分,往往色谱图上的许多问题都与色谱柱系统密切相关,为此按以下步骤检查柱系统:1.色谱柱的连接检查柱后是否有载气;柱子连接是否有问题;毛细管柱的柱头是否堵塞;切割是否平整;是否有聚酰亚胺涂层伸过柱端;毛细管柱两头插入气化室和检测器的位置是否正确;柱子是否过温运行或未老化好;密封圈选择是否合理。毛细管柱在选用密封圈时须考虑;石墨垫易变形,有好的再密封性,其上限温度是450℃;Vespe TM很坚硬,再密封性受影响,其上限温度为350℃,VG1和VG2是由石墨和 VeseyTM组成,再密封性好,可重复使用,上限温度为400℃。不锈钢填充柱在高于200℃时,可选用石墨、不锈钢或紫铜作密封圈:在低于200℃时,可选用硅橡胶或聚四氟乙烯作密封圈。玻璃填充柱可根据使用温度分别选用石墨、硅橡胶或聚四氟乙烯做密封圈。2.色谱柱的柱容量柱容量在柱分析中是很重要的影响因素。柱容量的定义:在色谱峰不发生畸变的条件下,允许注入色谱柱的单个组分的大量(以ng计)。当注入色谱柱的单个组分的量出柱容量,则出现前伸峰。柱容量与单位柱长内所存在的固定相数量有关典型的例子是采用0.25mm内径、液膜厚度为0.25m的毛细管柱,分析组分浓度为1~2,进样1L时,其分流比就须控制在1/100,这时被分析组分的量为125~175n,若分析组分浓度高于1~2,就须减少进样量或增加分流比,否则就会出现前沿峰,其他类推。3.载气的线速载气在气相色谱分析中的影响表现在载气速度影响溶质分子沿柱的移动速度,而且溶质扩散会通过载气影响色谱峰的扩,通常表现在对理论塔板高的影响上。在维持柱效低不大于20的情况下,氢气、氦气、氮气的线速分别可采用35~120cm/s、20~60cm/s、10~30cm/s,从而可以看出采用不同的载气,可适用的线速范围有很大的不同。相同载气在不同管径的气相色谱毛细管柱上的佳线速和流量也略有不同,如He可参考表15-1进行调节以获取佳分离果。内径/mm 0.10 0.25 0.32 0.53线速/(cm/s) 40~50 25-35 20-35 18-27流量/(mL/min) 0.2~0.3 0.7~1 1-1.7 2.4~3.5表1毛细管柱佳线速和流量(He)4.色谱柱的流失柱流失一直是色谱工作者关心的课题,当系统泄漏进入氧气或有样品污染,都会导致色谱柱内固定相分解,后表现在基线上,其现象与处理分别如下:①基线急上升,形成峰后呈下降趋势,这可能是因为系统曾泄漏进入氧气,这时色谱柱需老化至基线正常。②基线急上升,伴有假峰持续出现,基线到达高处后成持续下降趋势,这可能是有非挥发性样品污染色谱柱,导致过量柱流失,解决的方法是先截取色谱柱柱头0.5m,而后在高温下老化色谱柱至基线正常。③基线急上升,一直维持在某一水平,这可能是一个未知因素未被排,须想法排。5.溶剂样晶的分析许多样品分析时会出现异常现象,常见的是溶剂样品的分析,其特例为水样的分析。从气相色谱的角度来看,众所周知水不是一种理想的溶剂,主要由于以下几方面原因:①它有很大的蒸发膨胀体积;②在许多固定相中水的润湿性和溶解性较差;③水会影响某些检测器的正常检测和会对色谱柱的固定相造成化学损。在常用的色谱溶剂中,水具有大的气化膨胀体积。通常色谱仪的进样器的衬管体积200~900μL,当进1μL水样时,其气化后的蒸汽体积(大约1010μL)会膨胀溢出衬管,称为倒灌。其将导致气化的样品返入载气和吹扫气路,由于载气和吹扫气路的温度较气化室低许多,样品会凝结在这儿,在后来的分析中被气体吹入分析系统形成鬼峰。解决方法可采用加衬管体积、减小进样体积、降进样器温度、提进样器压力或增加载气流速以减少倒灌现象。水进入色谱柱,水的形态对色谱柱的固定相具有破坏性。因为水的表面能很高,而大部分毛细管柱固定相的表面能都较低,这导致水对固定相的湿润性很差,不能在色谱柱壁上形成光滑的溶剂膜均匀地流过色谱柱,而形成液滴,导致色谱柱性能变差。由于水的这种很差的润湿性和相对其他溶剂较高的沸点,通常在较低柱温的情况下,一部分水以液体状态流过色谱柱,使在水中具有良好溶解性的溶质也会表现出谱带展宽,在特的情况,表现色谱峰分裂。在柱上进样时,不挥发的化合物,如水溶性的盐类,也会被液态水带入色谱柱,污染色谱柱和分析系统。水也会引起检测器出问题:例如水会使FID和FPD灭火;当进较大水样时,为了避检测器灭火,可以加氢气流量以损失敏度为代价助于稳定火焰;水也会降ECD的敏度,为避水的影响,可采用厚液膜柱,使被分析组分保留够长时间,以保出峰时,ECD的性能可以在水流过检测器后得以恢复。严重的问题是水会引起许多固定相的降解,直接破坏色谱柱的性能。在色谱分析时,反映色谱峰分离性能下降、基流不稳、噪声。所以进水样分析及含水量较大的样品时小心。这在溶剂分析的情况也会出现。典型的是微量有机萃取物的分析,无论用二氯甲烷还是二硫化碳做溶剂,进样1μL时,体积膨胀大约为300L,当进样插管体积小于300μL时,就很容易形成倒灌。所以无论什么样品,其进样量的大小都须与进样器内插管的体积相适应,这方面多种型号的仪器都配有多种不同形式的进样插管以供选用;同时大量溶剂也会对固定相形成洗涤作用,直接破坏色谱柱的性能,在色谱分析时,反映出保留时间提前、色谱峰分离性能下降、基流不稳、噪声。所以在分析稀溶液样品时须注意溶剂和进样量的选择。三、各系统的加热控制各系统加热控制的检查多的是属于仪器上的问题,检查各系统的加热控制是否正常,一般可先用手感,后用测温计测量温度,看是否与显示。有问题先看加热元件和测温元件是否正常,然后检查温控板。常见的是加热元件和测温元件出问题,可以换相应元件。检查温控板是否有问题,可以采用换温控板后重新测试的办法,温控板有问题一般采用换板。
  • 国标《气相色谱单四极质谱性能测定方法》意见稿发布
    附件1:国检标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》征求意见稿草案.doc   附件2:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》编制说明草案.doc   附件3:国家标准《气相色谱&mdash &mdash 单四极质谱仪性能测定方法》(征求意见稿)意见反馈表.doc
  • 《血中1,2-二氯乙烷的气相色谱-质谱测定方法》解读
    12月13日,中华人民共和国国家卫生和计划生育委员会官网对《血中1,2-二氯乙烷的气相色谱-质谱测定方法》进行了解读,对1,2-二氯乙烷GC-MS检测进行了介绍。 1,2-二氯乙烷是广泛使用的有机溶剂,目前主要用作化学合成的原料、工业溶剂和粘合剂。1,2-二氯乙烷对眼睛及呼吸道有刺激作用,吸入可引起肺水肿,抑制中枢神经系统、刺激胃肠道,引起肝、肾和肾上腺损害。由于目前仍无1,2-二氯乙烷的生物监测指标, 1,2-二氯乙烷的职业中毒诊断缺乏具有代表性的指标,曾有病例被误诊为急性有机磷中毒或癫痫。我国迫切需要制定1,2-二氯乙烷的生物监测指标,建立生物材料中1,2-二氯乙烷的标准检测方法。  气相色谱-质谱联用仪(GC-MS)在国内实验室已越来越普及,方法可以得到较好的推广应用。本标准依据职业卫生标准制定指南第5部分:生物材料中化学物质测定方法( GBZ/T210. 5-2008)进行研究,建立了既适合于实验室普遍应用,又具有特异性的、准确、可靠、灵敏的血样中1,2-二氯乙烷检测方法。
  • 国标委第一批国标计划涉多类仪器分析方法 气相色谱-质谱法“大行其道”
    p   3月25日,国家标准化管理委员会,下达2019年第一批推荐性国家标准计划。本批计划共计507项,其中制定294项、修订213项,推荐性标准506项、指导性技术文件1项。 /p p   值得注意的是,本次标准计划中,数十项与仪器及分析技术紧密相关。从仪器分析方法来说,涉及了气相色谱-质谱法、气相色谱法、分光光度法、波长色散X射线荧光光谱法、近红外法等。 /p p   仪器信息网摘录部分如下: /p table width=" 600" border=" 1" cellpadding=" 0" cellspacing=" 0" align=" center" colgroup col width=" 162" / col width=" 175" / col width=" 72" span=" 2" / col width=" 260" / /colgroup tbody tr class=" firstRow" td width=" 162" 计划编号 /td td width=" 175" 项目名称 /td td width=" 72" 标准性质 /td td width=" 72" 制修订 /td td width=" 260" 起草单位 /td /tr tr td width=" 162" 20191007-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第2部分:吗啡 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191016-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第4部分:可卡因 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191014-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第6部分:美沙酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191010-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第10部分:地西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190734-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 硅含量的测定 钼蓝分光光度法、氟硅酸钾滴定法和高氯酸重量法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190798-T-469 /td td width=" 175" 柴油十六烷值测定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油化工股份有限公司石油化工科学研究院 /td /tr tr td width=" 162" 20190893-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第8部分:用紫外荧光光度法测定总硫含量 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190890-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 气相色谱法测定组成和计算相关不确定度第2部分:不确定度计算 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190891-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 在一定不确定度下用气相色谱法测定组成 第1部分:分析导则 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190992-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第4部分:多菌灵含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20190892-T-469 /td td width=" 175" 天然气 & nbsp & nbsp 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国石油西南油气田分公司天然气研究院 /td /tr tr td width=" 162" 20190988-T-607 /td td width=" 175" 家具产品及其材料中邻苯二甲酸酯增塑剂的测定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家家具产品质量监督检验中心(广东) /td /tr tr td width=" 162" 20190950-T-469 /td td width=" 175" 化妆品中地索奈德等十一种糖皮质激素的测定 液相色谱/串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 广州质量监督检测研究院 br/ & nbsp & nbsp & nbsp 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190998-T-606 /td td width=" 175" 硫化橡胶中多环芳烃含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 上海市质量监督检验技术 br/ & nbsp & nbsp & nbsp 研究院、山东玲珑轮胎有 br/ & nbsp & nbsp & nbsp 限公司、北京橡胶工业研 br/ & nbsp & nbsp & nbsp 究设计院有限公司等。 /td /tr tr td width=" 162" 20191012-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第8部分:三唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190733-T-605 /td td width=" 175" 锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝分光光度法和铋磷钼蓝分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 四川川投峨眉铁合金(集团)有限责任公司 /td /tr tr td width=" 162" 20190732-T-605 /td td width=" 175" 钒铁 & nbsp & nbsp 钒、硅、磷、锰、铝、铁含量的测定 波长色散X射线荧光光谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 攀钢集团有限公司、冶金工业信息标准研究院 /td /tr tr td width=" 162" 20190796-T-469 /td td width=" 175" 硅片表面薄膜厚度的测试 光学反射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 有研半导体材料有限公司 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190658-T-604 /td td width=" 175" 真空计 & nbsp & nbsp 四极质谱仪的定义与规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 兰州空间技术物理研究所 /td /tr tr td width=" 162" 20191011-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第9部分:艾司唑仑 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191050-T-326 br/ /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 水分、蛋白质、挥发性盐基氮含量的测定近红外法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国肉类食品综合研究中心、江苏大学、中国农业科学院农产品加工研究所 /td /tr tr td width=" 162" 20191054-T-326 /td td width=" 175" 畜禽肉品质检测 & nbsp & nbsp 近红外法通则 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国农业科学院北京畜牧兽医研究所、中国农科院科学院农科院质量标准与 br/ & nbsp & nbsp & nbsp 检测技术研究所、中国农业科学院农产品加工研究所等 /td /tr tr td width=" 162" 20190854-T-469 /td td width=" 175" 钢中低含量SiMn的电子探针定量分析方法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中国科学院金属研究所 /td /tr tr td width=" 162" 20191017-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第3部分:大麻中三种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20191009-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第11部分:溴西泮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 0191008-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第12部分:氯氮卓 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190978-T-607 /td td width=" 175" 化妆品中二乙二醇单乙醚的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国检验检疫科学研究院、上海市日用化学工业研究所(国家香料香精化妆 br/ & nbsp & nbsp & nbsp 品质量监督检验中心) /td /tr tr td width=" 162" 20190977-T-607 /td td width=" 175" 化妆品中林可霉素和克林霉素的测定 液相色谱-串联质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 江苏省产品质量监督检验研究院、苏州质量检测科学研究院、上海市日用化 br/ & nbsp & nbsp & nbsp 学工业研究所(国家香料香精化妆品质量监督检验中心)、河北省食品质量 br/ & nbsp & nbsp & nbsp 监督检验研究院 /td /tr tr td width=" 162" 20190991-T-606 /td td width=" 175" 涂料中生物杀伤剂含量的测定 第3部分:三氯生含量的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中海油常州涂料化工研究院有限公司 /td /tr tr td width=" 162" 20191013-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第7部分:安眠酮 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190997-T-606 /td td width=" 175" 橡胶 & nbsp & nbsp 氮、硫含量的测定 自动分析仪法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 双钱轮胎有限公司、怡维怡橡胶研究院有限公司、北京市理化分析测试中心 br/ & nbsp & nbsp & nbsp 、北京橡胶工业研究设计院有限公司等。 /td /tr tr td width=" 162" 20190949-T-469 /td td width=" 175" 化妆品中禁用物质三氯乙酸的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190948-T-469 /td td width=" 175" 化妆品中壬二酸的检测 气相色谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院 、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190947-T-469 /td td width=" 175" 化妆品中人工合成麝香的测定 气相色谱-质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190945-T-469 /td td width=" 175" 化妆品中塑料微珠的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 深圳市计量质量检测研究院、中检华纳质量技术中心 /td /tr tr td width=" 162" 20190976-T-607 /td td width=" 175" 染发剂中5-氨基-6-氯-邻甲酚等11种限用染料的检测 液相色谱质谱法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市质量监督检验技术研究院(国家保洁产品质量监督检验中心),上海 br/ & nbsp & nbsp & nbsp 市日用化学工业研究所(国家香料香精化妆品质量监督检验中心) /td /tr tr td width=" 162" 20191051-T-326 /td td width=" 175" 农畜产品动物源性成分定性定量检测方法高通量测序(NGS)法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 国家乳制品及肉类产品质量监督检验中心、中科通标检验检测技术服务有限 br/ & nbsp & nbsp & nbsp 公司、通标标准技术服务有限公司 /td /tr tr td width=" 162" 20191015-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第5部分:二亚甲基双氧安非他明 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190735-T-605 /td td width=" 175" 铁矿石 & nbsp & nbsp 全铁含量测定 三氯化钛还原后滴定法 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 中钢集团马鞍山矿山研究院有限公司、国家冶金工业铁精矿质量监督检测中 br/ & nbsp & nbsp & nbsp 心、金属矿产资源高效循环利用国家工程研究中心 /td /tr tr td width=" 162" 20190757-T-610 /td td width=" 175" 硬质合金 & nbsp & nbsp 钴粉中硅量的测定 分光光度法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 自贡硬质合金有限责任公司 /td /tr tr td width=" 162" 20190752-T-610 /td td width=" 175" 钼及钼合金金相检验方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 金堆城钼业股份有限公司 /td /tr tr td width=" 162" 20191018-T-312 /td td width=" 175" 常见毒品的气相色谱、气相色谱-质谱检验方法 第1部分:鸦片中五种成分 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 公安部物证鉴定中心 /td /tr tr td width=" 162" 20190817-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第3-1部分:使用X射线荧光光谱仪筛选测试铅、汞、镉、总铬和总溴 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190816-T-469 /td td width=" 175" 电子电气产品中某些物质的测定 第6部分:使用气相色谱质谱联用仪(GC-MS)测定聚合物中的多溴联苯和多溴二苯醚 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国电子技术标准化研究 br/ & nbsp & nbsp & nbsp 院 /td /tr tr td width=" 162" 20190596-T-432 /td td width=" 175" 人造板饰面材料中铅、隔、铬、汞重金属元素含量测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国林业科学研究院木材工业研究所,江苏海田技术有限公司,浙江升华云 br/ & nbsp & nbsp & nbsp 峰新材股份有限公司等 /td /tr tr td width=" 162" 20190936-T-469 /td td width=" 175" 进境牧草种子细菌的高通量检测技术规范 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 北京出入境检验检疫局 /td /tr tr td width=" 162" 20190935-T-469 /td td width=" 175" 轮枝菌属特异性引物筛查检疫鉴定方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国宁波出入境检验检疫局、中国科学院微生物研究所、中国检 br/ & nbsp & nbsp & nbsp 验检疫科学研究院、中华人民共和国新疆出入境检验检疫局 /td /tr tr td width=" 162" 20190937-T-469 /td td width=" 175" 美澳型核果褐腐病菌活性检测方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中华人民共和国深圳出入境检验检疫局、深圳市检验检疫科学研究院、华南农业大学 /td /tr tr td width=" 162" 20190642-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第6部分:气态污染物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190641-T-604 /td td width=" 175" 压缩空气 & nbsp & nbsp 第7部分:活性微生物含量测量方法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 合肥通用机械研究院 /td /tr tr td width=" 162" 20190674-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 布氏硬度试验 第2部分:硬度计的检验与校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 昆山市创新科技检测仪器有限公司、长春机械科学研究院有限公司 /td /tr tr td width=" 162" 20190677-T-604 /td td width=" 175" 金属材料 & nbsp & nbsp 硬度和材料参数的仪器化压痕 试验 第2部分:试验机的检验和校准 /td td width=" 72" 推荐 /td td width=" 72" 修订 /td td width=" 260" 长春机械科学研究院有限公司、上海材料研究所、吉林大学等。 /td /tr tr td width=" 162" 20190853-T-469 /td td width=" 175" 表面化学分析 & nbsp & nbsp 术语第2部分 扫描探针显微术 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海市计量测试技术研究院,上海交通大学,北京大学,中国科学院上海应 br/ & nbsp & nbsp & nbsp 用物理研究所 /td /tr tr td width=" 162" 20190780-T-469 /td td width=" 175" 表面化学分析& nbsp & nbsp 扫描探针显微术 悬臂法向弹性常数的测定 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 上海交通大学 /td /tr tr td width=" 162" 20191096-T-416 /td td width=" 175" 气溶胶PM10、PM2.5质量浓度观测 光散射法 /td td width=" 72" 推荐 /td td width=" 72" 制定 /td td width=" 260" 中国气象局气象探测中心 /td /tr tr td width=" 162" 20190884-T-469 /td td width=" 175" 稀土金属及其氧化物中非稀土杂质化学分析方法 第8部分:钠量的测定 /td td width=" 72"   /td td width=" 72" 修订 /td td width=" 260" 国合通用测试评价认证股份公司、国标(北京)检验认证有限公司 /td /tr /tbody /table p br/ /p
  • 气相色谱VS液相色谱
    什么是气相色谱、液相色谱?气相色谱法是一种以气相为流动相的色谱方法。样品流经气体系统并被气化,最后进入充满填充物的色谱柱以实现有效分离。气相色谱法具有高灵敏度、样品用量少、分离能力强、选择性好、应用范围广、分析速度快等优点。液相色谱法使用填充层、纸和薄板作为固定相。液相色谱在室温下操作,不需要考虑在物质分离过程中样品挥发性和热稳定性的影响。因此,液相色谱可用于分离和分析高热敏性、难汽化和非挥发性物质。根据其分离原理,液相色谱可分为四种类型:吸附色谱、分配色谱、离子交换色谱和凝胶色谱。液相色谱法的工作原理与经典液相色谱法类似,主要区别在于填充颗粒的大小。液相色谱法主要用于分离分子量大、沸点高和不同极性的有机化合物。由于运输流动相需要高压,因此液相色谱也被称为高压液相色谱。怎么读取气相色谱谱图和液相色谱谱图?气相色谱谱图和液相色谱谱图可以用相同的方法解析。检测器输出的数据为线形图,检测到的化合物数随时间不同而变化。挥发性的化合物的峰首先出现在图表上。图中随后出现的峰表示混合物的挥发性逐渐降低。研究人员可以使用这些色谱图进一步分解样品中混合物的化学性质。峰尺寸的比例与样品中物质的含量有关。峰下的面积用于确定样本大小。例如,要确定样品中的成分,首先需要分析已知浓度的标准样品,将标准品色谱图上的保留时间和峰面积与测试样品进行比较,获得样品中的目标化合物浓度。气相色谱和液相色谱工作流程在气相色谱中,样品溶液进入蒸发室后,由载气(载气通常为氮气或氦气)输送进入色谱柱。在色谱柱中分离出不同的成分,最后流出色谱柱。柱中的活动由检测器进行检测。每个成分逐一检测之后,记录器、积分器或数据处理系统会记录下这些色谱信号。在液相色谱中,液相流动相流经输液泵,与样品溶液混合,最后流出色谱柱。吸附分离在柱中进行。在色谱检测站,检测器最终将所有成分转换成电信号,或相应的样品峰。气相色谱和液相色谱的应用气相色谱可用于手性化合物的化学分离实验、对羟基苯甲酸酯食品防腐剂中对羟基苯甲酸酯的分离与测定、各种农药的分离、血浆中掺杂的检测以及环境污染物化学成分的检测等多方面研究。液相色谱法在食品检测,例如食品中有毒有害物质、微生物产品、营养物和添加剂的检测、环境中农药污染的潜在生物标志物的研究以及血浆和尿液中毒素的测定等。
  • 新方法来了!喷气燃料中芳烃总量的测定 气相色谱法
    引言:芳烃含量是航空燃料重要的质量指标,以往的方法是使用《GB/T 11132-2008液体石油产品烃类的测定.荧光指示剂吸附法》,在实际使用操作过程中存在诸多问题。《GB/T 40500-2021 喷气燃料中芳烃总量的测定 气相色谱法》结合我国炼化工艺和组成的特点以及国外分析技术的发展趋势,提出并建立一个准确、快速、精密度好、分析成本低、环境友好、便于操作的测定芳烃组成的新方法,这对航空喷气燃料的生产质量控制及产品质量的监督检测具有重要意义。 岛津解决方案岛津可根据不同的用户提供适合的配置,为用户量身定制可提高仪器的利用率。1、方法分离模式的设计原理图2、系统构成3、典型色谱图 方法特点总结 ★准确性好、精密度高;★方法适用范围广;★操作方便、分析周期短;★试验消耗少、成本低;★试验环境友好。 本文内容非商业广告,仅供专业人士参考。
  • 色谱检测方法新标准来啦(十一)——GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法
    近年来,消费者对功效化妆品的需求与日俱增,庞大的需求吸引着越来越多的企业布局相关领域。但是,随之而来的夸大功效等乱象,严重侵害了消费者权益。为规范和指导化妆品功效宣称评价工作,2021年4月9日国家药监局网站发布了《化妆品功效宣称评价规范》,中国化妆品行业正式迈入功效评价时代。按照要求:2021年5月1日-2021年12月31日期间注册备案的化妆品,应当于2022年5月1日前按照《化妆品功效宣称评价规范》要求,上传产品功效宣称依据的摘要。 同时,《化妆品标签管理办法》也将正式施行,对标签的要求做了更进一步的释义和规范。按照要求,自2022年5月1日起,申请注册备案的化妆品,必须符合《化妆品标签管理办法》的规定和要求。此前申请注册备案的化妆品,未按照本《办法》规定进行标签标识的,应在2023年5月1日前完成产品标签的更新。中国化妆品标签监管也将迈入新台阶。 壬二酸结构 壬二酸(Azelaic acid,CAS 123-99-9),又名杜鹃花酸,是一种天然存在的直链饱和二羧酸,分子式为C9H16O4。壬二酸在医学临床上常用来治疗玫瑰痤疮及寻常型痤疮,同时可以用于美白类和祛痘类化妆品,能有效抑制皮肤上的痤疮杆菌和租房阻断脂肪酸的生成,防止黑色素的形成,可预防斑点形成,减少黑色素沉着。近年来由于其疗效显著以及相对安全性,壬二酸在皮肤保护和皮肤病治疗类化妆品中得到越来越多的使用。科学的检测方法对于目前市场上化妆品标签准确标注壬二酸成分的含量具有非常重要的意义。为此,国家市场监督管理总局和中国国家标准化管理委员会正式发布了《GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法》。 检测方法 方法原理试样在浓硫酸和乙醇条件下衍生,用正己烷萃取,浓缩后经气相色谱分离检测,根据保留时间定性,外标法定量。 气相色谱法仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.25mm x 0.25um 方法参数初始温度60℃(保持2min),以10℃/min升到150℃(保持1min),以5℃/min升温至165℃(保持2min),以25℃/min升温至250℃;SPL进样口温度:260℃;FID检测器温度:280℃;分流比:5:1;进样量:1微升;标准曲线浓度:10mg/L,20mg/L,50mg/L,100mg/L,200mg/L,500mg/L,1000mg/L 壬二酸衍生物气相色谱图(壬二酸二乙酯) 灵敏度要求:本方法检出限15mg/KG,定量限50mg/kg。 岛津推荐仪器 气相色谱仪: GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息 气相色谱仪: Nexis GC-2030 / AOC-30系列Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。 扫码了解更多信息参考资料:1、GB/T 40845-2021 化妆品中壬二酸的检测 气相色谱法2、https://pubchem.ncbi.nlm.nih.gov/compound/Azelaic-acid3、国家药监局关于发布《化妆品功效宣称评价规范》的公告(2021年 第50号) 本文内容非商业广告,仅供专业人士参考。
  • PerkinElmer获得保证自动热脱附气相色谱准确性的方法专利
    自动验证 ATD 的填充完整性,既节省时间,又提供可靠的分析结果 马萨诸塞沃尔瑟姆 – 专注于提高人类及其生存环境的健康和安全的全球领先公司 PerkinElmer, Inc.,今天宣布美国专利商标局 (USPTO) 已针对气相色谱 (GC) 方面的先进方法授予其 7,422,625 B2 号专利。 这个专利名为“定性吸附剂採樣管的方法和系统”,可以保护公司特有的方法,该方法有助于在使用自动化热脱附 (ATD) 气相色谱 (GC) 时增加其结果的准确性。 专利中描述的 PerkinElmer 自动验证方法使用公司气相色谱系统的 TurboMatrix™ 热脱附仪产品线開發而來,帮助用户避免在 ATD 测量中出现人为错误,这些错误可能导致结果的不一致和样品完整性的下降。 该方法由 PerkinElmer 气相色谱资深科学家 Andrew Tipler 与英国 Buxton 健康与安全实验室资深科学家 Neil Plant 共同开发出来的。 “过去,分析人员担心其结果可能会因 ATD 管和捕集阱中填充物质的不完整而受到影响,”Tipler 说。“我们检查填充完整性的自动方法,可以帮助客户高度信任其分析结果,最终帮助他们节省时间,提高实验室生产效率。 该方法已集成到我们的 TurboMatrix 热脱附仪生产线,而该系列产品可用于各种行业和应用。” PerkinElmer 于 1982 年首次推出 ATD,它是一种有效的方法,可以从各种挥发性气体基质中分离挥发性化合物,之后将它们作为样品引入气相色谱仪。 它是室内外空气监控最常用的技术,还可用于分析土壤、水、生物柴油、聚合物、包装材料、香料和香气、化妆品、药品和许多其它应用。 ATD 的工作原理是,通过填充了一种或多种吸附剂的热脱附管,吸附蒸汽样品。热脱附管加热后挥发性气体会从填充物中释放出來,这些气体随后会被吹入冷却的辅助捕集阱中。然后快速加热此捕集阱,将收集的成分脱附到气相色谱柱进行分离和鉴定。热脱附管和捕集阱需要填充相同的填充物需要穩定一致,以保证为每次运行的分析提供相同的进样、热脱附流速和流路。如果填充材料中存在空隙或吸收剂变脆和破碎,气流可能形成管流或堵塞,那么分析结果就会不一致。 过去,分析人员有时会手动测量热脱附管的流阻抗来验证其性能,但是此过程比较耗费时间,并且捕集阱的拆装也比较费事。Tipler 和 Plant 提出的热脱附管和捕集阱的流抗阻自动化监控方法,可以缓解这一问题。使用该方法时,如果热阻超出预设限制,则将会向用户发出警告,通常可以采用重新填充或替换热脱附管或捕集阱来解决这个问题。 有关 PerkinElmer 的 TurboMatrix 热脱附仪产品线的详细信息,请访问 www.perkinelmer.com/turbomatrix。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及其生存环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com 或致电 1-877-PKI-NYSE。 关于健康与安全实验室 (HSL) 健康与安全实验室 (HSL) 是英国领先的工业健康和安全研究机构,在各个领域均具有 30 多年的研究经验。 HSL 的性质是健康与安全执行局 (HSE) 的代理机构,除了向 HSE 负责外,还为 400 多家组织客户提供独立公正的科学建议和研究结果。有关其它信息,请访问 www.hsl.gov.uk 媒体联系人:PerkinElmer: Stephanie R. Wasco,781-663-5701 Stephanie.wasco@perkinelmer.com # # # 或 Sandra Schiller,203-402-7105 Sandra.schiller@perkinelmer.com 或 Porter Novelli: Kate Weiss,617-897-8255 Kate.Weiss@porternovelli.com
  • 色谱检测方法新国标来啦——GB/T 40460-2021 肥料中植物生长调节剂的测定 气相色谱法
    检测方法 气相色谱仪仪器配置:GC主机+SPL+FID,可选配液体自动进样器色 谱 柱:SH-5 Cap. Column 30m x 0.32mm x 0.25μm柱温程序:初始温度60℃,保持1min,以20℃/min升到300℃,保持3min;进样口温度:250℃;检测器温度:300℃;分流比:2:1;进样量:1μL;标准曲线浓度:5mg/L,25mg/L,50mg/L,75mg/L,100mg/L胺鲜酯、多效唑-色谱图 标准灵敏度要求是:测定水溶性肥料时,胺鲜酯和多效唑的检出限是10mg/kg,定量限是30mg/kg;测定有机肥等直接施用肥料产品时,胺鲜酯和多效唑的检出限是2.5mg/kg,定量限是7.5mg/kg。 岛津推荐仪器 气相色谱仪:Nexis GC-2030 / AOC-30系列 Nexis GC-2030加强版气相色谱仪配备了全新智能交互界面,仅需触屏即可完成仪器操作并可以实时了解仪器运行状态。创新ClickTek技术全面提升用户分析体验,使色谱柱的安装和仪器维护进入徒手时代。通过不断强化Analytical Intelligence功能,优化人机交互体验,为实验室赋能。预老化功能、基线检查和系统适应性测试、远程控制和监视以及LabSolutions平台可形成从仪器启动到完成分析的全自动化工作流程。扫码了解更多信息 气相色谱仪:GC-2010 Pro / AOC-20系列 GC-2010 Pro继承了高性能毛细柱气相色谱仪GC-2010Plus的基本性能。其良好的重现性确保其具备高可靠性。配备了高性能检测器使高灵敏度分析得以实现。同时,高速柱温箱冷却技术可大幅缩短分析时间,是一款高性价比气相色谱仪产品。扫码了解更多信息
  • TSQ Quantum GC气相色谱质谱仪新到货及实验应用
    2021年7月23日,谱标实验室新到货TSQ Quantum GC气相色谱质谱仪,品牌:Fhermofisher,安装完好,成色9成新(见下图),TSQ Quantum GC气相色谱质谱仪器兼有色谱对混合物的快速分离,又有质谱对分子结构的鉴定功能,采用不同的扫描方式,可有效的去除干扰。关键价格优惠,欢迎来电咨询。TSQ Quantum GC气相色谱质谱仪,对于台式GC/MS联用仪系统一般由五个部分组成,分别为:1.进样部分 2.离子源(对样品进行离子化,使其能被质量分析器所检测到) 3.质量分析器: 4.质量检测器 5.数据分析系统。实验应用:1)TSQ Quantum GC气质联用仪结合负化学电离源GC-MS/MS技术测定血浆中雌二醇雌二醇是一种内源性的激素,已被发现影响男女的许多生理功能。在疾病诊断以及监控病情发展的过程中,检测血浆和尿液等生物体液中的雌二醇,具有重要的临床应用价值。LC-MS/MS液质联用和GC-MS气质联用这两种方法已经被广泛应用于测定生物体液中的雌二醇,但内源性基质的干扰经常对测量结果有影响,二者各有利弊。LC-MS/MS液质联用的方法,避免了柱上衍生,可测定至 pg 级;GC-MS/MS气质联用的方法,灵敏度更高,可测定至 fg 级。GC-MS/MS气质联用技术的三重四极杆质谱 TSQ QuantumGC,并在负化学电离源(NCI)模式下测定了血浆样品中的雌二醇。雌二醇从血浆中提取出后,用五氟代苯甲酰氯和MSTFA(N甲基-N-三甲基硅烷基三氟乙酰胺)进行衍生。结果在柱上能够检测到55 fg的量(相当于血浆中2.5 pg/mL的浓度)。2)气相色谱/三重四极杆质谱(TSQ Quantum GC)用于18种有机磷杀虫剂的快速检测分析20世纪30年代,德国G.Schradev首先发现有机磷杀虫剂。此类化合物具有药效较高、使用方便等特点,但同时也存在高毒、高残留等缺点。有机磷多为极性较大的农药,易受到基质的影响,检测灵敏度较差。采用三重四极杆质谱的选择性反应监测技术(SRM)对复杂基质(韭菜)中的18种农药同时进行了分析。通过SRM扫描排除基质的干扰,同时凭借三重四极杆质谱高灵敏度的特点,大多数有机磷农药的检测下限可低于1 ppb。3)气相色谱/三重四极杆质谱TSQ Quantum GC用于复杂基质中154种农药残留量的分析目前用于农药残留分析的主要技术为气相色谱/单四杆质谱的选择离子扫描技术( SIM) 离子阱质谱多选择反应监测技术( MRM ) 和全扫描的计算机辅助技术。单四极杆的选择离子技术采集的质谱信息少,选择性较差,结果存在很大的不确定性。离子阱质谱二级质谱技术为时间上的串联,因此对于多组份化合物同时分析存在扫描速度受限的问题。采用Thermo推出的zui新一代气相色谱/三重四极杆串接质谱( TSQ Quantum GC),通过其高通量 离子传输的性能, 碰撞室零串扰技术和高选择性反应监测技术( H-SRM),实现了一针进样对154种化合物的同时分析,整个分析过程可在在22分钟内完成,保证结果准确的同时大幅度提高了分析效率。4)TSQ Quantum GC串联气质在 EI源模式分析亚硝胺类化合物亚硝胺是一类强致癌化合物,例如N-亚硝基二甲胺(NDMA)是其中一种极具代表性的物质,其是水处理领域新近发现的一种氯化消毒副产物。亚硝胺可以通过亚硝酸盐与仲胺类反应生成。近年来这类物质在水环境中的检出率较高,因为其的强致癌性,对水体中的亚硝胺物质进行检测就显得尤为必要。美国环境保护署在2004年出台了亚硝胺的检测方法:USEPAMETHOD 521, 该方法是结合固相微萃取,大体积进样和正化学源进行样品检测。方法中我们开发了在串联气质上用EI源和常规进样体积进行亚硝胺的分析方法,该方法的进样体积是EPA521中的1/10, 低进样量可以避免了在进行大通量样品分析中引入了过多的背景介质,提高仪器的耐脏性。同时EI源是一般实验室中常用的离子源,大部分的分析都是在EI源上完成,这样用EI源分析亚硝胺,可以避免EI和CI的频繁切换,便有利于实验室的整体工作安排。5)TSQ Quantum GC用于甲胺磷,氧乐果和久效磷三种农药分析有机磷农药是农药残留分析中的重点,此类农药药效高,使用方便,被广泛的应用于农业生产中。相比于有机氯类农药的分析,有机磷农药由于极性大,分解较快,分析难度相对较大,尤其是其中的甲胺磷,氧乐果,久效磷等农药,其色谱行为较差,在新的柱效情况下,峰型较好。但是,一旦进过实际基质样品后,其峰型就变的极差,出现严重的拖尾,使得低浓度得样品分析变得非常困难。因此,很多实验室把这类的有机磷农药归类到LC/MS/MS上进行分析,但是,在液质联用上这类农药的出峰往往很早,这对分析也并不有利。实验用TSQ Quantum GC结合带有预柱的TR-Pesticide II气相色谱柱分析甲胺磷,氧乐果,久效磷,得到了非常出色的结果,1pg/ul样品有很好的色谱分离,在1pg/ul-200pg/ul的范围有良好的线性,且在1pg/ul低浓度下连续6针进样的RSD%在1.96%-3.07%。
  • 速看!两项气相色谱检测国家标准正在公示
    2024年01月22日,国家标准计划《天然气 用气相色谱法测定组成和计算相关不确定度 第7部分:用两根填充柱快速测定氦气含量》和《天然气 用气相色谱法测定组成和计算相关不确定度 第8部分:用微型热导测定氢、氧、氮、一氧化碳、二氧化碳和C1至C5和C6+的烃类》两项标准进行公示。(点击查看气相色谱专场)《天然气 用气相色谱法测定组成和计算相关不确定度 第7部分:用两根填充柱快速测定氦气含量》主要起草单位中国石油天然气股份有限公司勘探开发研究院 、中国石油天然气股份有限公司西南油气田分公司天然气研究院 、中国石油天然气股份有限公司西南油气田分公司勘探开发研究院 、中国石油天然气股份有限公司西南油气田公司成化总厂 、中国石油化工股份有限公司西南油气分公司勘探开发研究院 、中国测试技术研究院化学研究所 、中国石油大学(北京) 、陕西延长石油(集团)有限责任公司研究院 。背景氦气是航空航天、原子能、低温超导等尖端科技发展不可替代的关键资源,也是我国“卡脖子”战略稀缺资源;氦气含量准确分析关系到氦气资源评价结果准确性,当前国内氦气检测技术参差不齐、分析结果差异大,现有国家或行业标准天然气中氦气组分含量分析范围较窄、分析条件宽泛,缺少专门针对氦气含量的快速分析标准,给准确评价氦气资源潜力和工艺升级等带来挑战。因此,制定氦气含量快速分析标准,使不同部门间数据可以相互比对和共享,无论对氦气资源潜力评价还是对氦气生产技术水平的提高都有重要的意义。现行的天然气和稀有气体分析国家和石油行业标准中有氦气分析的条款,但因其分析范围小,不能满足高含量氦气如温泉气、地层流体脱附气、氦气富集过程中含量变化等的监测,分析条件限制较少,使各实验室之间的数据可比性较差。因此,制定能够满足任何含量范围、各实验室再现性好的氦气快速分析标准非常必要的,它将使更多单位具备快速、规范、准确的氦气定量分析技术,更好地服务国家核心技术攻关。适用范围适用于天然气或者其他各类气体样品中氦气的定量分析。主要技术内容本标准拟设置8个章节,包括:范围、 规范性引用文件、术语与定义、 实验原理、设备和材料、 样品分析、质量要求和分析报告。在设备与材料一章,较为详细说明了材料的规格和型号,规定了标准气体的制备。在样品分析一章,从样品的准备到仪器的连接和准备都有相对统一的指令,使实验室分析人员很容易上手操作。标准曲线的制作,规定了合格和置信区间以外数据的取舍,充分保证了分析结果的可靠性。质量要求是多个实验室比对分析结果的结晶,进一步保证了氦气的定量分析结果的准确性。分析报告规范了分析结果的表达形式和样品相关信息。《天然气 用气相色谱法测定组成和计算相关不确定度 第8部分:用微型热导测定氢、氧、氮、一氧化碳、二氧化碳和C1至C5和C6+的烃类》主要起草单位国家管网集团联合管道有限责任公司西气东输分公司 、中国测试技术研究院化学研究所 、中国计量科学研究院 、中国石油天然气股份有限公司西南油气田分公司天然气研究院 、广东大鹏液化天然气有限公司 、中国石油化工股份有限公司天然气榆济管道分公司 、成都思创睿智科技有限公司 、艾默生过程控制有限公司 。背景热导气相色谱仪已广泛应用于天然气组分分析,随着微机电加工工艺等技术发展,微型热导气相色谱仪逐渐走向市场,微型气相色谱继承了传统气相色谱的所有优点,同时还具有分析速度快,灵敏度高,能耗低,耗气量小,体积小可随身携带等诸多优势,目前利用微型热导气相色谱替代传统气相色谱进行常见气体的快速分析在欧美发达国家已经成熟并得到广泛应用,近年来该方法在我国的应用领域也在稳步扩展,天然气管网中,具有微型化特性的色谱仪(AGILENT、ELSTER、ABB等)应用比例已超过半,小型化、智能化、绿色环保的色谱仪已逐渐成为主流。目前基于气相色谱法的天然气分析标准(GB/T 13610、 GB/T 27894系列、GB/T17281等)内容主要对应到传统气相色谱仪制定,微型气象色谱仪的分析原理和分析方法符合现有标准规定,但存在若干特殊性内容有必要进一步规范: 1、在传统分析标准中,色谱仪采用六通阀、十通阀等进行进样控制以及流程切换,而微型色谱仪采用微型阀控结构进行流程控制,分为独立的2~3个检测单元完成气质分析,针对这种新型阀控结构的分析流程有必要重新规范。2、应用微机电加工技术制作的微型色谱具有死体积小、耗气量少、灵敏度和线性度水平高,结构小型化等优点,有必要对产品关键参数进行广泛测试,明确相关指标。3、微型色谱进气量小,流量低,特别对于在线分析应用场景,有必要规范其旁通气路设置,以使分析结果具有实时代表性,避免分析样气与采样点间实际组分实际存在较大滞后。基于以上需求,有必要制定微型气象色谱仪的分析方法标准,明确其核心部件参数及控制方法,选择适宜的分析方法,对微型气象色谱仪应用给出具体指导。适用范围规定用微型热导气相色谱法在线测定天然气及类似气体混合物的化学组成的分析方法,分析气体范围包括C1~C6+、CO2、N2、H2、O2、CO、He。 主要技术内容 1、研究明确微型气象色谱仪进样模块、色谱柱、检测器及温控等核心组件技术要求,以及对灵敏度、线性度等技术参数进行研究及确认; 2、微型气象色谱仪典型进样和分析流程技术要求及示例; 3、在线微型气象色谱仪满足取样代表性需满足的技术要求; 4、微型气象色谱仪适用分析方法选择及其不确定度评估。
  • 中心切割气相色谱法通过验收 补国标不足
    2014年3月31日,福建省质量技术监督局组织专家对国家化学工业气体产品质量监督检验中心承担的福建省质量技术监督局科技项目《乙烯、丙烯中微量烃类杂质的中心切割气相色谱分析方法研究》进行了项目评审。评审专家组认真听取了项目实施情况的汇报,审查了相关文件资料,认为该项目组全面完成了合同书规定的任务,一致同意该项目通过验收。   乙烯、丙烯是工业的基础,是生产有机化工、合成纤维、塑料、合成橡胶、医药、日用化学品等化工产品的最广泛的基本有机原料。乙烯、丙烯中杂质含量的高低影响着生产企业的社会和经济效益而且对下游生产装置的工艺操作设备运行乃至产品质量都将产生重要的影响和制约作用。   由于国家标准GB/T 3391-2002《工业用乙烯中烃类杂质的测定气相色谱法》和GB/T 3392-2003《工业用丙烯中烃类杂质的测定气相色谱法》两项标准中规定的方法存在较大缺陷,乙烯、丙烯色谱峰会覆盖与之相邻的乙烷、丙烷、丙烯等杂质峰,严重影响了烃类杂质的准确定性和定量。   此次验收通过的课题针对国家标准的不足,采用中心切割气相色谱法测定工业用乙烯、丙烯中微量烃类杂质的含量,利用多维色谱对乙烯、丙烯峰进行中心切割,使杂质能得到分离,实现定性与定量。本课题成果能有效检测工业用乙烯和丙烯的纯度,对于化工产业的良性发展具有重要意义。   本项目制定了一份地方标准《工业用乙烯丙烯中烃类杂质的测定气相色谱法》,研制出具有中心切割功能的多维气相色谱1台。研究成果在国内处于领先水平。
  • 气相色谱仪检测器的常见问题,有没有戳到你?
    在气相色谱分析中,待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后采集记录数据得到色谱图,然后根据色谱图中出峰时间、峰面积或峰高,对待测组分进行定性和定量分析。因此,检测器是检测样品中待测组分含量的部件,是气相色谱的重要组成部分。如何选择合适的检测器?气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于zui佳状态。①检测器的正确选择和使用建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于zui佳状态。通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到zui佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。②其他条件的优化一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。如何提高FID的灵敏度?因为FID硬件方面对灵敏度的影响,在色谱仪出厂时已经基本确定,对于操作者而言,已经不能改变。下面主要从操作方面介绍如何提高FID检测器的灵敏度。①氮气/氢气(N2/H2)流量比N2/H2流量比将明显影响灵敏度,各生产厂家的结构设计不同,N2/H2比zui佳值也不同,可用实验来确定,一般情况下,N2流量比H2流量大些,一般N2∶H2是1∶1.5或1∶1为宜。若喷嘴孔径为φ0.4mm的,载气流量可在20-30mL/min之间;若喷嘴孔径为φ0.6mm以上的,流量可在40-50 mL/min左右为佳。其中,毛细管色谱的尾吹气,除了减少组分的柱后扩散效应外,另一个主要作用是保证zui佳N2/H2比,用来保证zui佳灵敏度。②空气流量空气流量小于200mL/min时,流量大小对灵敏度有一定影响,一般大于250mL/min条件下,空气流量对检测器灵敏度太大的影响。③放大器输入电阻与输出电路衰减值放大器输入电阻与输出电路衰减示意图,见下图。放大器输入电阻的大小决定放大器的电流放大倍数,影响FID灵敏度,输入电阻大,灵敏度高,但噪音会增大,在调节放大器输入电阻大小时,要兼顾仪器的信噪比。放大器的输出电路衰减值,有1/10、1/25、1/50,各生产厂家不同,内衰减比例也不同,改变或调节内衰减,也可改变FID灵敏度。如瓦里安公司的FID检测器的灵敏度,可设定为9、10、11、12。数字愈大代表灵敏度愈佳,数值差1代表讯号以10倍增减。当然,前提是要保证放大器基线稳定。④进样口、色谱柱、气路和FID喷嘴的清洁度进样口、气路或FID喷嘴污染,都会导致FID检测器的灵敏度下降,因此在使用过程中需要保持进样口、色谱柱、FID 喷嘴和气路的清洁,定期更换进样垫,衬管和石英棉,同时对FID检测器进行清洗。当FID被污染了应如何清洗?下面提供四种清洗FID检测器的方法,但在清洗检测器前,需仔细阅读所用气相色谱对应的说明书,以确保不会造成检测器损坏:①当喷嘴只是轻微被污染时,可以略微加大载气流量,同时增大检测器的温度,点火后,走基线,此时不要进样。因为FID检测器所检测的对象,大多为有机化合物,喷嘴上的残留以有机物为主,有机物可以通过燃烧生成水(气态)和二氧化碳(气体)被赶走。② 若喷嘴污染较严重,但还未完全堵住时,可以用专用工具小心拆下,置于预先盛有乙醇或丙酮的玻璃烧杯中(溶剂需浸没喷嘴),于超声波中超声清洗。如果超声清洗后还不行,可以用通针小心插入喷嘴孔中,轻轻抽拉,再用洗耳球将乙醇或丙酮从喷嘴的底座挤进去,让溶剂从喷嘴喷出(这会形成一定的压力,可以将喷嘴孔壁的附着物清除)。然后,再次重复上述超声波清洗操作,用超声波清洗。③当喷嘴表面积碳(一层黑色物质),这也会影响灵敏度。可用细砂纸轻轻打磨表面除去。然后按照上述②的方法将喷嘴进行清洗。④如果检测器是因为积水造成的污染,先升高检测器的温度,运行一段时间,看能否恢复正常;如果积水过多,则需要将检测器拆下,先用脱脂棉擦干,然后按照上述②的方法将检测器处理一边即可恢复使用。⑤清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气半小时,再点火升高检测室温度,zui好先在120℃保持几小时之后,再升至工作温度。TCD,如何确定物质相对校正因子?采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:①从文献上查找相对校正因子对于常规组分,通常可以在色谱相关书籍或文献上查到,如李浩春编写的《分析化学手册(第5分册)气相色谱分析》。对热导检测器(TCD)而言,常用的标准物为苯,所用载气为氦气。②实验测定相对校正因子对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。③利用规律对校正因子进行估算目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。采用TCD,产生负峰的原因有哪些?采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。FPD运行中出现熄火?信号异常?当出现FPD检测器在运行过程中出现火焰熄灭、信号过高或过低等异常现象时,应以检测样品、气路系统、检测器温度控制系统、仪器设置、FPD检测器为主要检查对象,逐步排查可能存在的问题24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 生态环境部发布4项国家生态环境标准 涉气相色谱等方法
    为支撑相关生态环境质量标准和污染物排放标准实施,近日,生态环境部发布《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)、《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)、《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)和《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)等4项国家生态环境标准。  《固定污染源废气 苯系物的测定 气袋采样/直接进样-气相色谱法》(HJ 1261-2022)为首次发布,适用于固定污染源废气中苯、甲苯、乙苯、邻二甲苯、间二甲苯、对二甲苯、异丙苯和苯乙烯的测定,支撑《大气污染物综合排放标准》(GB 16297-1996)等13项污染物排放标准实施。采用直接进样测定的方法,无需前处理,所用仪器设备普及性高,方法易于掌握,具有较好的通用性和可操作性。  《环境空气和废气 臭气的测定 三点比较式臭袋法》(HJ 1262-2022)适用于环境空气、无组织排放监控点空气和固定污染源废气中臭气的测定,支撑《恶臭污染物排放标准》(GB 14554-1993)等8项污染物排放标准实施。与《空气质量 恶臭的测定 三点比较式臭袋法》(GB/T 14675-1993)相比,增加材料和仪器设备、实验人员、溶液配制、质量保证和质量控制等要求,完善样品分类、分析步骤和结果计算等内容,可有效提升方法的准确性、一致性和可比性,具有设备简单、易推广的特点。  《环境空气 总悬浮颗粒物的测定 重量法》(HJ 1263-2022)适用于环境空气和无组织排放监控点空气中总悬浮颗粒物的手工测定,支撑《环境空气质量标准》(GB 3095-2012)实施。与《环境空气 总悬浮颗粒物的测定 重量法》(GB/T 15432-1995)相比,增加规范性引用文件、术语和定义、样品保存、质量保证与质量控制和注意事项等要求,细化样品、分析步骤、结果与计算等内容,加严天平精度要求,进一步提高环境空气总悬浮颗粒物监测数据的准确性,为颗粒物来源解析和空气质量预报提供必要依据。  《卫星遥感细颗粒物(PM2.5)监测技术指南》(HJ 1264-2022)为首次发布,适用于陆地区域卫星遥感细颗粒物监测,作为地面监测手段的补充,用于掌握大范围细颗粒物空间分布规律及变化趋势,为大气污染防控工作提供有力的技术支撑。  上述4项标准的发布实施,对于进一步完善生态环境监测标准体系,规范生态环境监测行为,提高生态环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康具有重要意义。
  • 岛津云学院丨课后答疑系列 气相色谱仪篇
    “岛津云学院”系列开播以来,得到了众多用户的观看和支持。在直播互动交流中,收到了很多提问,岛津十分重视各位用户提出的问题,今天的岛津云学院答疑系列,为大家作气相色谱仪的详细解答! ★毛细管气相色谱柱老化温度和程序怎么确定?答:新毛细管色谱柱或长时间未使用的色谱柱可能含有溶剂和高沸点物质,所以可能会出现基线不稳,出现鬼峰;长期使用时样品量非常大,可能会有部分高沸点化合物残留在毛细管色谱柱中,导致色谱柱污染。以上两种情况均需要进行色谱柱老化。 毛细管气相色谱柱老化的温度和程序确定原则是: 1、一般采用程序升温老化,即接近室温保持约半个小时赶走柱子中的空气,然后缓慢程序升温(5℃/min)到老化温度,并在高温段保持数小时(一般两个小时),然后降至接近室温。必要时可重复以上过程。2、推荐的老化温度为:T(老化温度)=【T(极限使用温度)-T(最高使用温度)】/2 + T(最高使用温度)。或者可以设置为平时使用的最高温度+10℃。3、最初老化温度 ≥4 小时,后期根据使用情况,可以是1-2小时,也可以更长时间。4、新色谱柱老化时或色谱柱污染严重时一般不要连接检测器,色谱柱放空,检测器用堵头堵上。其他情况监测时最好使用FID检测器监测(检测器的温度高于老化温度)。 ★气相色谱谱图出现拖尾可能是什么原因? 答:气相色谱谱图出现拖尾的原因很多,需要具体情况具体分析,一般常见的原因如下表所示:★ECD检测器污染怎么清洁?答:当ECD检测池内部有样品成分附着等污染时,其可能出现的现象有:基线噪声明显增大,背景会上升,基线水平会变高,线性范围明显降低等。一般来说,此时最常见和最有效的ECD清洁方法就是检测器老化。 以Nexis GC-2030的ECD为例,一般建议按照如下程序进行老化:注意: ECD检测器内含有Ni63放射源,非专业人员不能自行拆分。关于ECD检测器的安全检修,请与您所在区域内的岛津分公司联系。 ★现在气相色谱方法的很多老标准中是使用填充柱,我可以使用毛细管柱吗?答:这是现在很多用户都在询问的问题,需要根据具体应用领域和分析的对象来具体讨论。 以前的很多老标准都是采用填充柱,现在更新的标准大都更换为毛细管色谱柱了,但是不完全绝对,比如很多气体的分析还是更适合使用填充柱。 在除了气体分析之外的在大多数领域,一般来说毛细管气相色谱柱的灵敏度、分离度、基线稳定性等都要优于填充柱。因此很多用户在使用这些老标准时,实际工作中也都更换为毛细管色谱柱来分析了,当然此时,所用的方法参数也与填充柱完全不同(流量、温度、压力等),需要重新摸索和设定,同时也需要做详细且充分的方法学验证(检出限,精密度,准确度,分离度,回收率等)。
  • 气相色谱-串联质谱法测定葡萄中78种农药残留的定量校准方法评估
    以柠檬酸盐缓冲体系的QuEChERS方法为前处理方法,气相色谱-串联质谱联用仪为检测仪器,建立了葡萄中78种农药残留的检测方法。以添加回收法评估了葡萄中4种基质匹配校准方法的定量结果,评估了4种校准方法的线性回归系数,回收率和精密度。结果表明:在添加回收试验中,添加水平为0.01 mg/kg时,4种校准方法在0.005~0.1 mg/L范围内,78种农药的质量浓度与对应的峰面积间线性关系良好,R2均大于0.99,大部分农药的精密度均可满足农药残留检测的要求。然而,在使用空白基质溶液配制的标准工作溶液进行校准时,无论是外标法还是内标法,回收率均无法兼顾所有分析对象。使用基质匹配标准溶液得到的基质标准曲线表现更好,其外标法和内标法的回收率范围分别为82%~114%和81%~110%,相对标准偏差范围分别为2.3%~18%和1.2%~17%,符合食品理化检测的质量控制要求,适合实验室日常监测采用。 气相色谱_串联质谱法测定葡萄中78种农药残留的定量校准方法评估_余巍.pdf
  • 生态环境部征求五项标准意见 涉及气相色谱、液相色谱等方法
    p   近日,生态环境部发布了关于征求《污水监测技术规范》等五项国家环境保护标准意见的函,五项标准分别为《污水监测技术规范(征求意见稿)》、《水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》、《水质 联苯胺的测定 高效液相色谱法(征求意见稿)》、《水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿)》、《水质 氯代除草剂的测定 气相色谱法(征求意见稿)》。 /p p   其中,《污水监测技术规范(征求意见稿)》是对《 地表水和污水监测技术规范》 ( HJ/T 91-2002) 中污水监测技术规范部分的修订。标准中规定了污水手工监测的监测方案制定、监测准备、监测采样、样品保存、运输和交接、监测分析、监测数据处理、质量保证与质量控制等技术要求。 /p p   《水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》标准中规定了测定水中苯胺类化合物的液液萃取/液相色谱法 《水质 联苯胺的测定 高效液相色谱法(征求意见稿)》标准规定了测定地表水、地下水、生活污水和工业废水中联苯胺的高效液相色谱法 《水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿)》标准中规定了测定水中磺酰脲类农药的高效液相色谱法 《水质 氯代除草剂的测定 气相色谱法(征求意见稿)》标准规定了测定水中氯代除草剂的气相色谱法,这四项标准均为首次发布。 /p p   附件为标准详细内容: /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/a00ae09c-cf1a-4a7c-b67e-4a6f4f2e3683.pdf" target=" _self" title=" " textvalue=" 污水监测技术规范(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 污水监测技术规范(征求意见稿).pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/f3b9014a-7643-49d1-be29-3edbcd0c92f6.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《污水监测技术规范征求意见稿编制说明》.pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/af19d5bb-a949-4ca6-ae15-fba14c1d8a94.pdf" target=" _self" title=" " textvalue=" 水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿).pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/32ab144c-7fff-4b8b-aa44-3f4b3d827e90.pdf" target=" _self" title=" " textvalue=" 《水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《水质 苯胺类化合物的测定 液液萃取/液相色谱法(征求意见稿)》编制说明.pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/6c5cfca4-6ea6-4936-8672-19c4698038ac.pdf" target=" _self" title=" " textvalue=" 水质 联苯胺的测定 高效液相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 水质 联苯胺的测定 高效液相色谱法(征求意见稿).pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/b7568332-8680-4295-8547-7b9572c2aa1c.pdf" target=" _self" title=" " textvalue=" 《水质 联苯胺的测定 高效液相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《水质 联苯胺的测定 高效液相色谱法(征求意见稿)》编制说明.pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/a4efce66-08e5-4e71-8978-d6553929eb0e.pdf" target=" _self" title=" " textvalue=" 水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿).pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/6ee79984-ea8f-4980-aa1e-5612454adec5.pdf" target=" _self" title=" " textvalue=" 《水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《水质 磺酰脲类农药的测定 高效液相色谱法(征求意见稿)》编制说明.pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" http://img1.17img.cn/17img/files/201806/ueattachment/24e30e8a-2bbb-466d-801f-921deb97b942.pdf" target=" _self" title=" " textvalue=" 水质 氯代除草剂的测定 气相色谱法(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 水质 氯代除草剂的测定 气相色谱法(征求意见稿).pdf /span /a /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201806/ueattachment/889c3e96-7f86-4d01-86ae-1c08e0301ae8.pdf" target=" _self" title=" " textvalue=" 《水质 氯代除草剂的测定 气相色谱法(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " 《水质 氯代除草剂的测定 气相色谱法(征求意见稿)》编制说明.pdf /a /span /p
  • 气相色谱仪的常用操作小技巧
    气相色谱仪是一种多组份混合物的分离、分析工具,它是以气体为流动相,采用冲洗法的柱色谱技术。当多组份的分析物质进入到色谱柱时,由于各组分在色谱柱中的气相和固定液液相间的分配系数不同,因此各组份在色谱柱的运行速度也就不同,经过一定的柱长后,顺序离开色谱柱进入检测器,经检测后转换为电信号送至数据处理工作站,从而完成了对被测物质的定性定量分析。 Gas-PC20气相色谱仪  气相色谱仪的常用操作小技巧  1 加热  由于气相色谱仪的生产厂家和质量的不同,蛤定温度的方式也不相同 对于用微机设数法或拨轮选择法给定温度,一般是直接设数或选择合适给定温度值加以升温,而如果是采用旋钮定位法,则有技巧可言:  1.1 过温定位法  将温控旋钮调至低于操作温度约30℃处 给气相色谱仪升温 当过温至约为操作温度时,配台温度指示和加热指示灯,再逐渐将温控旋钮调至台适位置。  1.2 分步递进定位法  将温控旋钮朝升温方向转动一个角度,升温开始,指示灯亮:当温度基本稳定时,再同向转动温控旋钮。开始继续升温:如此递进调节、直至恒温在工作温度上。  2 调池平衡  调池平衡 实际是调热导电桥平衡.使之有较为台适的输出 讲调节技巧.其实是对具有池平衡、调零和记录调零等调珊能的气相色谱仪而言  3 点火  氢焰气相色谱仪 开机时需要点火,有时因各种原因致使熄火后,也需要点火 。然而,我们经常会遇到点火不着的情况 ,下面介绍两种点火技巧,供同行们相试。  3.1 加大氢气流量法  先加大氢气流量,点着火后,再缓慢调回工作状况 此法通用。  3.2 减少尾吹气流量法  先减少尾吹气流量,点着火后,再调回工作状况 此法适用于用氢气怍载气,用空气作助燃气和尾畋气情况。  4 气比的调节  氢焰气相色谱仪三气的流量比.有关资料均建议为:氮气:氢气:空气=l:l:10 但由于转子流量计指示流量的不准确性.事实上谁会去苛求这个配比呢?本人认为 为各气旌以良好匹配。目的是既有高的检测器灵敏度又能有较好的分离效果。还不致于容易熄火。本着上述原则 气比应按下法调节:  (1)氮气流量的调节  在色谱柱条件确定后、样品组分分离效果的好坏、氮气的流量大小是决定因素 调节氮气流量时.要进样观察组分分离情况.直至氮气流量尽可能大且样品组分有较好分离为止  (2)氢气和空气流量的调节  氢气和空气流量的调节效果,可以用基流的大小来检验 先调节氢气流量 使之约等于氮气 的流量。再调节空气流量 在调节空气流量时,要观察基流的改变情况 只要基流在增加,仍应相向调节,直至基流不再增加不止 最后,再将氢气流量上调少许。  5 进样技术  在定量分析中,应注意进样量读数准确在气相色谱分析中,一般是采用注射器或六通阀门进样 在考虑进样技术的时候,主要是以注射器进样为对象。  5.1 进样量  进样量与气化温度、柱容量和仪器的线性响应范围等因素有关,也即进样量应控制在能瞬间气化。达到规定分离要求和线性响应的允许范围之内 ,填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~ 10微升,气体样品一般为0.1~ 10毫升 。  (1)排除注射器里所有的空气  用微量注射器抽取液体样品时,只要重复地把液体抽凡注射器又迅速把其排回样品瓶,就可做到遗一点。  还有一种更好的方法,可以排除注射器里所有的空气 那就是用计划注射量的约2倍的样品置换注射器3~5次。每扶取到样品后,垂直拿起注射器,针尖朝上 任何依然留在注射器里的空气都应当跑到针管顶部 推进注射器塞子,空气就会被排掉。  (2)保证进样量的准确  用经换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体 推进注射器塞子。直到读出所需要的数值用纱布擦干针尖 ,至此准确的液体体积已经测得。需要再抽若干空气到注射器里,如果不慎推动柱塞,空气可以保护液体使之不被排走。  5.2 进样方法  双手章注射器 用一只手(通常是左手)把针插入垫片,洼射大体积样品(即气体样品)或输入压力很高时,要防止从气相色谱仪来的压力把柱塞弹出(用右手的大拇指)让针尖穿过垫片尽可能踩的进入进样口,压下柱塞停留1~ 2秒钟,然后尽可能快而稳地抽出针尖(继续压住柱塞)。  5.3 进样时间  进样时间长短对柱效率影响很大,若进样时间过长,遇使色谱区域加宽而降低柱效率 。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
  • 进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法—气相色谱串联质谱法
    &ldquo 奶粉疑致婴儿性早熟事件&rdquo 引起众多消费者的关注,据有关专家介绍,现代牛奶中的雌激素包括内源性雌激素(即奶牛本身产生的雌激素)和外源性雌激素(即应用于奶牛发情和泌乳的雌激素),但目前普遍认为在规范用药的前提下雌激素药物残留量可忽略不计。&ldquo 所谓的不允许检出雌激素是指不能检出人为添加的合成雌激素物质。&rdquo 上海安谱公司根据SN/T1744-2006《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》,对动物饲料中的人工合成激素己烷雌酚、己烯雌酚、双烯雌酚残留进行检测以降低外源性雌激素污染的风险。 产品信息请下载: 《进出口动物饲料中己烷雌酚、己烯雌酚、双烯雌酚残留量的检验方法&mdash &mdash 气相色谱串联质谱法》相关耗材 如需咨询、订购以及查询更多产品,请联系:上海安谱 021-54890099 了解详情请进入安谱公司网站 http://www.anpel.com.cn/
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。
  • 气相色谱仪维修手册(堪称最全,没有之一!)
    哎呀,我的气相色谱进样后咋不出色谱峰?咦,怎么气相色谱基线又出现漂移问题了?气相色谱出了小故障,维修工程师不愿来,我这实验数据得马上出,咋办?   &hellip &hellip   各位是不是快被各种莫名其妙的气相色谱故障逼疯了?别发愁了,快来看看这篇《气相色谱仪维修手册》吧。它几乎囊括了气相色谱所有的常见故障,每种故障还列出了5种以上的排除方法;同时还包括N多种图谱分析方法,这可是从事色谱实验室分析工作的同学们必看的&ldquo 红宝书&rdquo 啊! &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析方法(一)   ▲故障分析的基础:   组成:由哪些部分组成?   作用:各部分起什么作用?   原理:各部分的工作原理是怎样的?   判别:如何判别工作正常与否?   注意事项:检修过程中哪些方面必须注意? 故障分析方法(二)   ▲故障分析的思路:   注意事项:   1.保护人体,安全第一,防止事故发生。   2.保护设备,避免故障扩大、转移。   确定范围:   确定与该故障有关的部分和相关因素。   故障检查:   1.顺序推理法:根据工作原理顺序推理,检查、寻找故障原因。   2.分段排除法:逐个排除,缩小范围,检查、寻找故障原因。   3.经验推断法:根据经验积累,检查、寻找故障原因。   4.比较检查法:参照工作正常的仪器,检查、寻找故障原因。   5.综合法:综合使用上述各种方法,检查、寻找故障原因。 故障分析方法(三)   ▲GC故障的种类:   气路部分故障:气体输入不正常、气体品种不对或纯度不够、气路泄漏、气路堵塞、气路污染、气路部件故障、流量设置不正常、色谱柱问题、等等。   主机电路部分故障:启动或初始化不正常、温度控制部分故障、键盘或显示部分故障、开关门不正常、点火不正常、电流设置不正常、量程或衰减设置不正常、其他功能性故障、等等。   检测器输出信号不正常:无信号输出、输出信号零点偏离、输出信号不稳定、输出信号数值不对、等等。   其他故障:气源不正常、电网电压不正常、二次仪表不正常、机械类故障、等等。 故障分析方法(四)   ▲故障的判别:   基础:检查、寻找故障原因的基础是掌握故障判别的方法。掌握故障判别方法的基础是熟悉和了解仪器各部分的组成、作用、工作原理。   输入与输出:通常仪器的每个部分、部件、甚至零件都有它的输入和输出,输入一般是指该部分正常工作的前提,输出一般是指该部分所起的作用或功能。   举例:例如FID放大器,它的输入是FID检测器通过离子信号线传送过来的微电流信号、放大器的工作电源、以及放大器的调零电位器,它的输出是经过放大并送到二次仪表的电信号。判别FID放大器是否工作正常的方法是:A.如果输入正常而输出不正常,则放大器故障。B. 如果输入输出均正常,则放大器正常。C.如果输入不正常,则放大器是否正常无法判定。   收集与积累:积极收集、认真记录、不断积累仪器各个部分工作正常与否的各种判别方法,并了解、熟悉、掌握、牢记这些故障判别方法。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 故障分析举例(一)   ▲气路部分不正常。   ⊙指气路系统出现堵塞、泄漏、无压力指示、无气体输出等故障。   A.检查气源部分(气瓶、气体发生器等)是否正常。   B.利用输入气体压力表检查气体输入是否正常,否则检查净化器等外部气路及稳压阀等是否正常。   C.如果是载气流路,则可在色谱柱前后检查进样器的气体输出是否正常,否则检查稳压阀至色谱柱这一段。   D.如果是氢气或空气流路,则可利用仪器顶部的气路转接架检查气体输出是否正常,否则检查稳压阀至气路转接架这一段。   E.检查检测器的气体输入、输出是否正常。   F.在气路系统的适当地方进行封堵,并观察相应压力表的指示变化,是检查漏气的常用方法。   G.安全起见,可以利用氮气对氢气流路进行检查。 故障分析举例(二)   ▲仪器启动不正常。   ⊙指接通电源后,仪器无反应或初始化不正常。   A.关机并拔下电源插头,检查电网电压以及接地线是否正常。   B.利用万用表检查主机保险丝、变压器及其连接件、电源开关及其连接件、以及其他连接线是否正常。   C.插上电源插头并重新开机,观察仪器是否已经正常。   D.如果启动正常,而初始化不正常,则根据提示进行相应的检查。   E.如果马达运转正常,而显示不正常,则检查键盘/显示部分是否正常。   F.如果显示正常,而马达运转不正常,则检查马达及其变压器、保险丝等是否正常。   G.必要时可拔去一些与初始化无关的部件插头,并进行观察。   H.如果初始化仍不正常,则基本上可确定是微机板故障。 故障分析举例(三)   ▲温度控制不正常。   ⊙指不升温或温度不稳定。   A.所有温度均不正常时,先检查电网电压及接地线是否正常。   B.所有温度均不稳定时,可降低柱箱温度,观察进样器和检测器的温度,如果正常,则是电网电压或接地线引起的故障。   C.如果电网电压和接地线正常,则通常是微机板故障,一般来说各路温控的铂电阻或加热丝同时损坏的可能性极下。   D.如果是某一路温控不正常,则检查该路温控的铂电阻、加热丝是否正常。   E.如果是柱箱温控不正常,还要检查相应的继电器、可控硅是否正常。   F.如果铂电阻、加热丝等均正常,则是微机板故障。   G.在上述检查过程中,要注意各零部件的接插件、连接线是否存在断路、短路、以及接触不良的现象。 故障分析举例(四)   ▲点火不正常。   ⊙指FID、NPD、FPD检测器不能点火或点火困难。   A.检查载气、氢气、空气是否进入检测器,否则检查气路部分。   B.检查各种气体的流量设置是否正确,否则重新设置。   C.观察点火丝是否发红,否则检查点火丝是否断路或短路、接触不良,以及检查点火丝形状是否正常。   D.点火丝正常的情况下,FID、FPD检测器观察点火继电器吸合是否正常,点火电流是否加到点火丝上,否则检查相应的电路部分。   E.NPD检测器在确认铷珠正常的前提下,观察电流调节是否正常,否则检查相应的电路部分。   F.检查检测器是否存在污染、堵塞现象。   H.检查检测器内部是否存在漏气现象。 故障分析举例(五)   ▲出部分反峰:   ⊙指大部分峰为正向出峰,但一部分峰为反向出峰,或基线往负方向偏移。   A.使用空气压缩机时,检查确认反向出峰或基线往负方向偏移是否与空气压缩机的动作(空气压力不足时空气压缩机自动动作)在时间上是否同步。   B.较多水份进入离子化检测器时,火焰的燃烧状态短时间会起变化,伴随出现反峰(这不是异常)。   C.检查各种气体的流量设置是否正常,以及是否存在漏气现象。   D.检查载气的纯度,如果载气里面有微量不纯物,而样品的纯度如果比载气的纯度高,就会出反峰。   E.气路切换时有压力冲击,也会出现反峰,此时气路中应加接稳压装置。   F.使用TCD时,如果载气和样品的热导系数过于接近,也会出现一部分或全部的反峰。 故障分析举例(六)   ▲出峰后零点偏移:   ⊙指样品出完溶剂峰等平顶峰后基线不能回到原来的零点。   A.各气体流量是否正常(数值、稳定)。   B.柱箱、检测器的温度是否正常(数值、稳定)。   C.检测器是否被污染,如果污染进行清洗或更换零件   D.必要时在通入载气的情况下,将检测器的温度设置在200℃以上进行数小时的老化。   E.色谱柱是否老化不足,必要时在载气进入色谱柱的情况下,将色谱柱箱的温度设置在色谱柱的最高使用温度下30度左右进行10小时以上的老化,或用程序升温方式进行老化。   F.减少进样量。   G.使用TCD时,如果大量的氧成分注入TCD,会引起TCD钨丝的阻值发生变化,使得基线无法回零,钨丝的寿命也会减短。 故障分析举例(七)   ▲基流过大、无法调零(1):   ⊙指对基线进行调零时,发现基流增大,零点与平时相比有偏离或无法调零。   A.将火焰熄灭或关闭电流之后基线还是无法回零时,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:   1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查检测器温度是否正常,必要时对检测器进行老化。   4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   5).使用TCD时,检查TCD钨丝电流的设定是否太大。   B.色谱柱箱温度冷却到室温,调零还是不正常时,要考虑检测器自身的原因:   1).检查各种气体是否污染或流量不正常、漏气。   2).检查检测器是否被污染,如果污染请进行清洗。 故障分析举例(八)   ▲基流过大、无法调零(2):   C.降低进样口温度后基始电流也不减少时:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。   3).检讨是否色谱柱老化不足,比要时在载气进入色谱柱的情况下对色谱柱进行老化。   D.降低进样器温度后基始电流有缩减少时,可以判定是进样口、进样垫或进样衬管等有污染现象,应对进样器部分进行清洗。 故障分析举例(九)   ▲基线扭动(1):   ⊙指基线上下扭摆不停超出标准范围、无法走直稳定。   注意:发现基线扭动时,请先检查电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。同时检查仪器的接地是否正确并且良好。   A.将火焰熄灭之后基线如果还是扭动:   1).检查检测器是否被污染,如果污染请进行清洗。   2).检查检测器的温度是否正常,必要时检测器进行老化。   3).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   B.将火焰熄灭之后基线停止扭动,降低色谱柱箱的温度扭动幅度却不变小:   1).检查使用的空气是否有污染现象,注意更换气体过滤器的过滤剂,及对空气压缩机进行放水。   2).检查空气压缩机的起动与基线扭动有没有关系,否则维修空气压缩机。   3).检查检测器是否被污染,如果污染请进行清洗。   4).检查检测器的温度是否正常,必要时检测器进行老化。 故障分析举例(十)   ▲基线扭动(2):   C.降低色谱柱温度后基线扭动减少,但降低进样器温度扭动幅度却不变小,则基线扭动的原因与色谱柱或载气有关:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。  3).检讨是否色谱柱老化不足,必要时对色谱柱进行老化。   D.降低进样口温度之后基线扭动减少,要考虑是否进样口有污染现象:   1).如果确认进样器污染,请进行清洗。   2).更换新的进样垫。   3).检查进样器温度是否波动。 故障分析举例(十一)   ▲基线漂移过大(1):   ⊙仪器刚启动、色谱柱更换后不久,基线的漂移是正常现象。基线漂移过大是指基线的漂移比正常的标准高很多,并且始终无法稳定下来。   A.将火焰熄灭之后如果基线还是漂移很大,要考虑是否电路系统的故障或接触不良、绝缘退化等因素:   1).检查检测器和离子信号线是否有接触不良、绝缘退化等现象。使用TCD时,检查TCD的钨丝及引线是否接触不良。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查检测器的温度是否正常,必要时对检测器进行老化。   4).检查是否离子信号线故障、放大器电路板故障、输出信号线故障、积分仪/工作站故障。   B.将火焰熄灭之后基线不再漂移,降低色谱柱箱的温度漂移幅度却不变小,这种情况是色谱柱之后的部分有问题:   1).检查各种气体是否污染或流量不正常。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检测器的使用温度在350℃以上时,某些毛细管色谱柱外侧的树脂成分可能受热分解引起基线漂移,这种情况请把FID温度降到350℃以下。   4).检查检测器温度是否波动。   5).使用TCD时,检查TCD钨丝电流的设定是否太大。 故障分析举例(十二)   ▲基线漂移过大(2):   C.降低色谱柱温度后基线漂移减少,但降低进样口温度漂移幅度却不变小,这种情况基线漂移的原因与色谱柱或载气有关:   1).检查载气是否污染或流量不正常。   2).检查色谱柱安装连接部分或进样垫部分是否有漏气现象。   3).是否色谱柱老化不足,必要时对色谱柱进行老化。   4.检查检测器温度是否波动。   D.降低进样口温度之后如果基线漂移减少,要考虑是否进样口有污染现象,请进行下列项目的检查:   1).如果确认进样器污染,请进行清洗。   2).更换新的进样垫。   3).检查进样器温度是否波动。 故障分析举例(十三)   ▲进样不出峰(1):   ⊙指进样后没有峰被检测出来,基线只画一条直线。   注意:发现进样不出峰时,首先要考虑载气是否进入仪器(包括色谱柱、检测器),否则可能会造成色谱柱的损伤或检测器的污染。因此发现进样不出峰时,应立即降低色谱柱恒温槽的温度让色谱柱冷却。使用TCD时,必须先将钨丝电流关闭。在确定载气系统正常之后方能进行其他项目的检查。   A.检查检测器的火焰是否熄灭,如果熄灭请重新点火 如果点不着火或者点着后又很容易熄灭时,请进行下列项目的检查:   1).检查点火线圈是否发红,如果不发红应该是点火极部分故障。   2).检查各种气体的流量是否正常,适当加大氢气流量试试。   3).使用TCD时,检查TCD钨丝及钨丝电流的设置是否正常。  B.检查离子信号线与检测器、放大器电路板的连接,以及输出信号线与仪器、积分仪/工作站的连接是否正常可靠。 故障分析举例(十四)   ▲进样不出峰(2):   C.调零也不正常时,要考虑是否电路系统的故障,请检查是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。   D.如果进甲烷等常规溶剂还是不出峰或保留时间变慢时,在确认了色谱柱箱的温度降到了室温左右后,请进行下列项目的检查:   1).检查色谱柱是否存在折断现象。   2).检查载气流量是否正常,并进入色谱柱、FID检测器等部分。   E.其他不出峰的原因,请按照下列项目进行检查:   1).注射器不正常。   2).检查色谱柱温度、进样器温度、检测器温度、量程设定等分析条件是否合适。   3).检查样品浓度、样品进样量是否正确。   4).检查样品的取用、色谱柱的选择有没有错误。 故障分析举例(十五)   ▲噪声过大(1):   ⊙气相色谱仪启动后不久或色谱柱更换后不久,噪声是不可避免的,这是正常现象。噪声过大是指比正常的标准高得多的噪声或某些不正常的突变。   注意:发现噪声过大时,请先检查气相色谱仪和积分仪使用的电网电源是否有异常波动或突变,特别是在同一电网电源上接有大功率装置时,更要注意。此外,请检查仪器的接地是否正确并且良好。   A.改变量程范围,噪声的大小还是基本不变时,要考虑是否信号线的故障、放大器电路板的故障、输出信号线的故障、积分仪的故障。   B.将火焰熄灭之后噪声如果还是很大,要考虑从检测器到放大器电路板这一段是否存在问题,请进行下列项目的检查:   1).检查检测器的喷嘴、收集极、离子信号线插座、点火线等部分是否固定可靠,请排除接触不良的可能。   2).检查检测器是否被污染,如果污染请进行清洗。   3).要考虑是极化电压、放大器电路板、工作电源的故障。 故障分析举例(十六)   ▲噪声过大(2):   C.将火焰熄灭之后噪声如果降低或消失,要考虑是否检测器本身产生过大噪声:   1).检查是否使用的气体纯度太低,请更换气体或使用气体过滤器去除气体中的杂质。   2).检查检测器是否被污染,如果污染请进行清洗。   3).检查空调器等冷暖设备的排风是否正对着气相色谱仪,请改变风向或更换仪器的位置。   D.降低进样口温度后如果噪声变小,要考虑是否进样口有污染现象。   E.降低色谱柱温度后如果噪声变小,要考虑是否载气纯度不够或色谱柱的老化不足,请更换载气或使用气体过滤器去除载气体中的杂质,并对色谱柱进行老化。 故障分析举例(十七)   ▲全部出反峰   ⊙指所有样品均反向出峰。   A.检查气相色谱仪相应检测器的信号输出线与积分仪或记录仪、色谱工作站的信号输入端的连接是否正确,将信号输出线的正负两端对换即可。   B.对于具有极性切换功能的检测器,检查其输出信号的正负极性设置是否正确,必要时更改正负极性的设置即可。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 维修注意事项(一)   ▲关于人体安全与环境保护:   ⊙在维修仪器的过程中,首先一定要注意安全和注意保护环境。GC维修中可能造成安全事故与环境污染的因素大致如下所述:   A.氢气泄漏造成爆炸、燃烧等安全事故。   B.电子捕获放射源造成人体伤害、环境污染事故。   C.易燃易爆、有毒、腐蚀性等危险性样品造成安全事故、人体伤害、环境污染事故。   D.高电压、大电流造成触电事故。   E.高温造成的烫伤事故。   F.其他说明书上已有描述的相关注意事项。   上述各项在维修仪器的过程中必须认真对待,例如严密仔细地进行氢气的漏气检查;热导检测器用氢气做载气的情况下,未安装色谱柱或未使用热导检测器时必须关闭气源;避免打开电子捕获检测器 按规范取用危险性样品;可以断电检修的部分尽量断电检修,并在检修时将电源插头拔掉;必须通电时应避开高电压、大电流部分;避免接触高温部分或先将温度降低,等等。 维修注意事项(二)   ▲关于仪器的保护:   ⊙在维修仪器的过程中,还要注意按规范认真仔细地操作,避免损坏仪器,造成新的故障或将故障扩大。应该注意的内容如下所述:   A.已安装色谱柱的仪器,在通电之前应先通入载气,一般来说,载气对保护仪器是有利的。   B.热导检测器必须先通载气,然后才能加电流,否则可能烧断钨丝。热导检测器还必须防止氧气、空气进入,否则可能造成钨丝氧化。   C.电子捕获检测器必须防止氧气、空气、杂质进入,否则极易污染。   D.热导检测器和氮磷检测器的电流不能加得太大,否则可能烧断钨丝和铷珠。氮磷检测器的氢气也不能开得太大,否则也会烧断铷珠。   E.火焰光度检测器的光电倍增管必须避免长时间的强光照射。   E.检修时,在仪器通电之前,必须仔细确认各个接插件已正确地插好。   F.任何时候都要避免污染仪器的气路系统、进样及检测系统、色谱柱。   G.柱箱温度的设置不得大于色谱柱允许的最高温度。   H.其他说明书上已有描述的相关注意事项。 维修注意事项(三)   ▲关于老化。   ⊙在很多情况下,所谓的故障是由于老化不充分引起的,所以在必要的时候(例如一段时间未用或更换色谱柱后)应该进行老化,避免出现不必要的所谓故障。各种老化的方法如下所述:(注:老化时应适当增加载气流量)   A.色谱柱的老化:在载气进入色谱柱的情况下,将柱箱温度设置在色谱柱允许的最高温度以下30℃,或正常使用温度以上30℃,进行十小时以上的恒温老化;或设置3-5℃/min的升温速率, 40~60℃ 的起始温度,色谱柱允许的最高温度以下30℃的终止温度,进行一阶程序升温老化。   B.进样器/检测器的老化:在载气进入进样器/检测器的情况下,将进样器/检测器温度设置在200℃以上进行数小时的老化。   C.电子捕获检测器的老化:在载气进入电子捕获检测器的情况下,将电子捕获检测器温度设置在200℃以上进行十小时以上的老化。   D.热导钨丝的老化:在载气进入热导检测器的情况下,将热导电流设置在使用值以上10-20mA,进行数小时的老化。   E.氮磷检测器铷珠的老化:在载气进入氮磷检测器的情况下,将铷珠电流设置在使用值以下0.4A和0.2A,各进行二十分钟左右的老化。 &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr &hArr 谱图分析(一)   ▲保留时间重现性差:   ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,保留时间变化较大、重现性较差。   A.色谱柱的一部分是否与柱箱内壁的金属面存在接触现象。   B.进样垫、色谱柱、过渡衬管的安装连接处是否存在漏气现象。   C.载气的输入压力是否正常。   D.载气流量是否正常或出现变化。   E.进样器、柱箱、检测器等的温度是否稳定。   F.如果保留时间与峰高/峰面积的重现性同时变差,则进行了上述检查后再参照[峰高/峰面积重现性差]中的各项进行检查。   注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。 谱图分析(二)   ▲峰高/峰面积重现性差:   ⊙指仪器工作条件和样品分析条件等均没有变化的情况下,峰高/峰面积变化较大、重现性较差。   A.注射器的性能是否正常以及进样时是否存在操作失误。   B.样品浓度(特别是挥发性样品)是否因放置时间过长而起变化。   C.各种气体的输入压力是否正常。   D.各种气体的流量是否正常或出现变化。   E.进样器、柱箱、检测器等的温度是否稳定。   F.如果峰高/峰面积与保留时间的重现性同时变差,在进行了上述检查后再参照[保留时间重现性差]中的各项进行检查   注意:如果载气的流量、分流比、色谱柱温度等有变动时,保留时间或峰高/峰面积一定会起变化。 谱图分析(三)   ▲出刀形峰:   ⊙指样品出峰时上升缓慢而下降迅速,形如刀状。   A.减少样品的进样量。   B.提高色谱柱箱的温度。   C.改用较大内径的色谱柱。   D.增加固定液的涂层的厚度。   E.选用样品的溶解度较高的固定液。   F.尝试提高进样器的温度,改善峰的形状。
  • 聚光科技GC-2000气相色谱仪实现出口
    2014年4月,随着搭载GC-2000气相色谱仪的航班离开杭州萧山国际机场,聚光科技(杭州)股份有限公司生产气相色谱仪实现了首次出口销售。 聚光科技自主研发生产的GC-2000型气相色谱仪,采用全电子气路控制技术,仪器自带大屏幕彩色液晶显示屏,触屏控制,可进行方法编辑和仪器运行状态监控等操作。 时间回到2013年,2013年10月第十五届北京分析测试学术报告会及展览会(BCEIA)在北京展览馆召开。聚光科技(杭州)股份有限公司携GC-2000气相色谱仪、Mars-6100气质联用仪、ICP-5000电感耦合等离子体发射光谱仪、Mars-400便携式气质联用仪、SupNIR系列近红外分析仪、三重四极杆液质联用仪参展。此次展览会上,多家海外经销商来公司展台进行合作洽谈。其中伊朗经销商经过比对展会上其他国内厂家气相色谱仪产品后,初步确定了合作意向。 事业部总监与经销商洽谈 2013年12月,伊朗经销商的技术团队按计划来公司总部(杭州)进行产品知识、产品安装售后等培训。经过系统培训之后,该技术团队能够独立进行产品的安装、调试及维护等工作。并将于在2014年年中将安排进一步的高级培训,保证该技术团队能够很好的服务于该区域内用户。 聚光科技实验室产品之所以能够快速的得到国内外客户的青睐,并形成订单,是基于公司优秀的研发及技术支持团队、差异化的产品设计思路、精益化生产管理。相信在用户的信任和支持下,聚光科技的实验室产品会在应用支持等方面有更快更好的提高!
  • 中国气相色谱质谱联用仪市场调研报告(2016版)“新鲜出炉”
    为了解近年来气相色谱质谱联用仪的技术发展趋势、市场发展行情、气相色谱质谱联用仪各品牌在市场中的占有率以及重点应用领域等内容,同时,为各气相色谱质谱联用仪厂商在制定仪器销售和市场推广策略时提供参考,仪器信息网特组织了“中国气相色谱质谱联用仪市场调研”活动。此次调研,面对的调研对象包括仪器信息网相关注册用户、气相色谱质谱联用仪制造、应用领域专家以及部分气相色谱质谱联用仪生产厂商等。  在此基础上完成的《中国气相色谱质谱联用仪市场调研报告》内容包含了气相色谱质谱联用仪产业概述、气相色谱质谱联用仪器新品盘点、近些年技术发展回顾与主要制造商地区分布、销量与份额分析(地区、品牌)、价格分析、营销渠道分析、市场发展趋势、产业研究总结等。  《中国气相色谱质谱联用仪市场调研报告》的完成得到了广大用户、企业以及业内专家的大力支持。在前期调研过程中,咨询了业内相关专家20余位,近2500家实验室用户参与了此次气相色谱质谱联用仪调研。  由于2016年度刚刚结束,相关数据尚不完整,故本报告中所引数据主要为2015年度的数据。  报告链接:中国气质联用仪市场调研报告(2016版)  节选第一章 气相色谱质谱联用仪产业概述  1.1 气相色谱质谱联用仪定义  气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。GC/MS已经成为分析复杂混合物最为有效的手段之一。  气质联用法是将气相色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。气相色谱和质谱由接口相连。气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。  本报告仅包含单四极杆、三重四极杆、单TOF、QTOF和离子阱类型的实验室气质联用仪。 第二章 气相色谱质谱联用仪新品盘点  小结:2015年至2016年这两年,中国市场上的主流企业共推出了12款实验室用气质联用仪产品:5款单四极杆,3款三重四极杆,1款orbitrap,3款飞行时间。总体的发展趋势包括:进一步提高离子化和离子传输效率 进一步提高检测器灵敏度 在保证仪器性能的同时,实现节能、降耗、减排 使操作维护更加简便 开发专属性谱图的数据库,以提供有针对性的解决方案 进一步提高质谱扫描及数据采集处理的能力等等。 第五章 气相色谱质谱联用仪销量与份额分析(品牌)  5.1主要品牌气相色谱质谱联用仪销量及市场份额    图5.1 2015年主流企业销量市场份额(台)  来源:抽样统计,2016年12月  2015年中国气相色谱质谱联用仪市场规模**~**台,销售总额为20亿人民币左右。总的来说,国内气相色谱质谱联用仪市场现在的格局是完全被国外厂商垄断,并且从长期来看,这种局面很难打破。  2015年中国市场上的主流气相色谱质谱联用仪厂商包括安捷伦、岛津、赛默飞、珀金埃尔默、布鲁克、天瑞仪器、东西分析、天美、普析通用、舜宇恒平、力可、日本电子等。 第七章 气相色谱质谱联用仪市场发展趋势    图7.1 2014-2016年质谱联用仪进口量(台)及增长趋势  来源:中国海关,2016年12月  图7.1显示的进口量包括气质和液质,液质商品化时间相对较短,且价格是气质的2~3倍,所以占比非常小,大约占到1/4。所以总体上看气质联用仪市场增长迅速,2012~2016年复合增长率约*.*%。   正文目录  第一章 气相色谱质谱联用仪产业概述... 1  1.1 气相色谱质谱联用仪定义... 1  1.2 气相色谱质谱联用仪使用单位分布... 3  1.3 气相色谱质谱联用仪产业链结构... 5  1.4 气相色谱质谱联用仪产业概述... 5  第二章 气相色谱质谱联用仪新品盘点... 7  2.1 安捷伦... 7  2.2 岛津... 11  2.3 赛默飞... 14  2.4 力可... 15  2.5 日本电子... 17  2.6 天瑞... 20  2.7 东西分析... 21  2.8 舜宇恒平... 22  第三章 气相色谱质谱联用仪产品发展回顾和主要制造商地区分布及技术进展... 24  3.1主要生产企业气相色谱质谱联用仪生产基地分布... 24  3.2主要生产企业气相色谱质谱联用仪技术进展... 25  3.2.1 近些年国外气质联用仪技术进展... 25  3.2.2 近些年国内气质联用仪技术进展... 26  第四章 气相色谱质谱联用仪销量与份额分析(地区)... 28  4.1 2015分地区销量分析(台)... 28  4.2 2010-2015售价分析... 29  第五章 气相色谱质谱联用仪销量与份额分析(品牌)... 31  5.1主要品牌气相色谱质谱联用仪销量及市场份额... 31  第六章 气相色谱质谱联用仪营销渠道分析... 33  6.1 气相色谱质谱联用仪营销渠道现状分析... 33  6.2 气相色谱质谱联用仪营销渠道特点及其发展趋势... 34  第七章 气相色谱质谱联用仪市场发展趋势... 35  7.1 2014-2016年质谱联用仪进口量及增长趋势... 35  7.2 气相色谱质谱联用仪未来市场预测... 36  第八章 气相色谱质谱联用仪产业研究总结... 39
  • 用标准引领气相色谱技术发展 ——访实验室气相色谱仪企业标准“领跑者”北京北分瑞利分析仪器(集团)有限责任公司
    2023年仪器信息网作为首家分析仪器行业评估机构,组织业内多家实验室气相色谱仪相关厂商参与企业标准“领跑者”评选工作。历经调研确定品类名称、组织企业及相关专家团体、召开启动大会、制定评估方案、组织起草相应团标,组织评选一直到最后评选出最终的结果。北京北分瑞利分析仪器(集团)有限责任公司(以下简称“北分瑞利”)的SP-5000系列气相色谱仪企业标准(Q/YGBFY 0132-2022)在众多气相色谱企业标准中脱颖而出,荣获企业标准“领跑者”称号。这一荣誉彰显了北分瑞利在气相色谱仪领域的技术实力和标准化能力,也是其多年来坚持技术创新、品质至上的有力证明。近期,仪器信息网特别采访了北分瑞利相关负责人,深入了解了北分瑞利参与本次气相色谱仪企业标准“领跑者”评选的幕后故事以及其在气相色谱技术应用创新、标准提高等方面所做的大量工作。仪器信息网:请简单介绍一下北分瑞利参与这次气相色谱仪企业标准“领跑者”评选的缘由和过程?北分瑞利:北分瑞利是京仪智能科技所属科学仪器业务核心企业之一。作为中国分析仪器行业的先驱,由1959年建厂的北京分析仪器厂和1968年建厂的北京第二光学仪器厂,于1997年合并组建而成,是一家从事成分分析仪器研发、生产、销售的综合性科学仪器厂商。北分瑞利拥有北京市工程技术研究中心、北京市企业技术中心,是国家级专精特新“小巨人”企业、北京市“专精特新”企业、国家高新技术企业、双自主企业,公司主持或参与制定的国家标准、行业标准超过60项。公司以科技创新为引领、以市场为导向,聚焦实验室分析仪器领域,坚持以“工匠精神”推进“高质量发展”战略,致力于为客户提供专业精准的分析检测应用解决方案,成为中国分析仪器行业的领导者。作为行业先驱,北分瑞利始终以分析仪器行业先行者和领路人的标准要求自身,砥砺奋斗六十载,专注于核心技术自主开发,潜心于国产分析仪器制造,我们一直在不断追求标准化和仪器质量的卓越,这并非只是一种品牌承诺,更是我们对行业和客户的责任担当。建立和坚守高标准,也是我们选择参加这次气相色谱仪企业标准“领跑者”评选的缘由。仪器信息网:北分瑞利的SP-5220Plus气相色谱仪企业标准成功入选企标“领跑者”榜单,SP-5220Plus气相色谱仪有哪些技术优势?北分瑞利:稳定可靠、精准卓越、智能互联,这是SP-5000系列气相色谱仪的三大特点。该系列产品经过了多轮次专业的可靠性验证,并且每次验证后都会进行归零整改,产品参照T/CIS 03001.1-2020《科学仪器设备可靠性整机平均故障间隔时间验证方法》进行整机平均故障间隔时间(MTBF)测试达到5000小时的可靠性要求,这些工作确保了SP-5000系列气相色谱仪在各类工作环境下都能表现出卓越的稳定性和可靠性。基于CAE仿真流体分析实现对流动与传热过程模拟,我们设计制造了全新一代的柱温箱系统,为分析过程提供了精确的温度控制;采用高精度传感器与智能算法相结合的方法,产品实现了高度精准的气体流量和压力控制。而智能诊断与硬件维护等功能,则可以实时监测仪器的运行状态,监控并提示需要维护的耗材。北分瑞利始终坚持着继承、发展和迭代的研发思路,秉承着前辈们的智慧和经验,将他们优秀的设计理念和先进的技术加以传承,并在此基础上不断进行改进和创新。北分瑞利SP-5220Plus气相色谱仪是北分瑞利技术实力的生动体现,也是在标准化和质量把控的坚定承诺。仪器信息网:分析仪器产品企业标准制定的意义?产品企业标准对提升产品质量的作用主要有哪些?在产品质量管理方面还有哪些工作和经验可以分享? 北分瑞利也参与制定了多个国家、行业标准等,您觉得参与标准制定对于企业有什么意义?北分瑞利:制定一个优秀的产品企业标准是确保产品性能和质量的关键。通过制定企业标准,公司能够更好地规范产品一致性,提升产品质量。在质量管理方面,北分瑞利注重全员参与,建立了全面的培训计划,以确保每位员工都了解并执行标准操作程序。此外,公司还不断改进质量检测流程,引入先进的检测设备,以保证产品质量的稳定性。只有在高标准要求下才能形成高质量的产品,制定高水平标准,并严格的遵守此标准,才能生产出质量过硬的仪器产品。北分瑞利不仅在产品上有所突破,在标准制定方面也有着一定的引领作用。公司累计参与起草标准60余项,其中GB/T 30431-2020实验室气相色谱仪标准作为企业中第一起草单位参与该标准的修订。长期参与国家标准的起草工作,也使得北分瑞利在企业标准撰写方面犹如一位熟练的匠人,精雕细刻着标准体系;对产品严格要求使得北分瑞利对企业标准中的每一项技术参数的确定都进行了多轮次的试验论证。仪器信息网:这次评选活动,北分瑞利还参与制定了第一个气相色谱仪“领跑者”团体标准,您觉得该标准的制定对行业发展有哪些积极意义?北分瑞利:首个气相色谱仪“领跑者”团体标准的制定,不仅对行业发展起到了积极的推动作用,也为未来的探索打下了坚实基础。参与标准制定有助于企业深入了解行业发展趋势,保持技术创新的敏感性。通过此次的企业标准“领跑者”评选活动,我们将与同行们共同打造更加完善的标准体系,为整个气相色谱仪行业的可持续发展贡献力量。仪器信息网:这次评选结果对北分瑞利来说意味着什么?将如何推动北分瑞利产品的市场推广和销售?未来北分瑞利将如何进一步完善产品技术、提升产品质量,以保持和提升在行业中的竞争力?北分瑞利:获得“领跑者”荣誉,意味着北分瑞利的技术实力和标准制定能力得到了业界认可。公司一直致力于服务各行业实验人员解决他们在仪器分析中的问题,推动SP-5000系列气相色谱仪在市场的广泛应用,巩固和拓展产品在市场中的地位。北分瑞利未来将继续投入更多研发资源,提升产品技术水平、智能化程度,并强化质量管理体系,以确保产品始终符合最高的标准,发挥“领跑者”的行业作用,以迎接行业的挑战与机遇。在未来发展中,我们将继续以技术创新为引领,以高标准为底线,助力气相色谱仪行业进入更加辉煌的新时代,做国产科学仪器领域的“领跑者”。相关新闻:分析仪器行业首个 :《质量分级及“领跑者”评价要求 实验室气相色谱仪》团标正式发布!2023年度实验室气相色谱仪企业标准“领跑者”名单公布
  • 傅若农:酒驾判官—顶空气相色谱的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   第五讲:傅若农:气-固色谱的魅力   第六讲:傅若农:PLOT气相色谱柱的诱惑力   很多人是通过酒驾司机血液中酒精含量检测知道&ldquo 顶空进样气相色谱&rdquo 这一名称的。可能顶空进样气相色谱这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。   其实顶空进样气相色谱现在是应用非常广泛的一种分析方法,如果你用&ldquo 顶空进样&rdquo 这一关键词检索&ldquo 知网&rdquo 就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空气相色谱文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。 图 1 1990-2001年顶空进样气相色谱文献增长趋势 HS-GC 全部顶空气相色谱 Dynamic 动态顶空气相色谱,SPME 固相微萃取顶空气相色谱 ( TrAC 2002, 21:608)   1 顶空进样气相色谱的起源   这里我简要地讲述一些顶空进样气相色谱的故事。   其实顶空进样气相色谱由来已久,先給大家讲一个故事:在1958&ndash 1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 GC 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5&ndash 1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5&ndash 1 mL 气体,注射到气相色谱仪中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空气相色谱的方法了。据 Ettre 称 GC 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14&ndash 16 ),文章的标题是&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 。   第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii&ndash xxxix )中叙述的,他们叫做&ldquo 气体测量法&rdquo (aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0&ndash 40 ° C 的温度范围内的分配系数。   把顶空进样和气相色谱结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的气相样品到气相色谱仪中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。   Stahl 等人发表的标题为&ldquo 罐头顶空气体(主要是氧气)的测定&rdquo 文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5&ndash 1 mL 顶空的气体注入气相色谱仪进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(&ldquo Beckman Headspace Sampler, bulletin number 7012,&rdquo Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。   这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于气相色谱分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。 图 2 顶空取样容器照片   2 顶空进样气相色谱的基本原理和类型   顶空气相色谱(GC headspace Analysis,GC-HS analysis ) 是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸气相中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从气相色谱仪角度讲,是一种进样系统,即&ldquo 顶空进样系统&rdquo 。有不少仪器公司有商品的顶空进样系统。有关顶空气相色谱分析的名称,美国称为:GC headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空气相色谱分析,但早期有人称为: &ldquo 液上气相色谱分析&rdquo ,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用&ldquo 顶空气相色谱分析&rdquo 。   有关顶空进样气相色谱原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样气相色谱分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis(气相色谱顶空分析),翻译本为&ldquo 液上气相色谱分析&rdquo (见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的&ldquo 气相色谱中的顶空分析及相关方法&rdquo 和1997年出版(修订版是2006年)的Kolb 等撰写的&ldquo 静态顶空气相色谱分析&rdquo 封面,。 图3 1977年(中译本1981年)出版的顶空气相色谱书 图4气相色谱中的顶空分析及相关方法(Ioffe等)和 静态顶空气相色谱(B. Kolb 等)   顶空进样气相色谱的类型有:   (1)静态顶空气相色谱:所谓静态顶空气相色谱是在一个密闭恒温体系中,液汽或固汽达到平衡时用气相色谱法分析蒸气相中的被测组分 。如下图5 图5 静态顶空气相色谱示意图 1&mdash 注射器 2&mdash 密封隔垫 3&mdash 螺帽 4&mdash 容器 5&mdash 样品 6&mdash 恒温浴 7&mdash 温度计   (2)动态顶空气相色谱:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到气相色谱仪中进行分析。如图6的示意图。 图 6 动态顶空气相色谱示意图 1&mdash 捕集管 2&mdash 冷却水 3&mdash 样品管 4&mdash 水浴 5&mdash 洗气瓶   (3)固相微萃取(SPME)顶空气相色谱:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入气相色谱仪的进样口中,进行气相色谱分析。如下图7所示: 图7 固相微萃取(SPME)顶空气相色谱示意图 (Forensic Sci Intern 2000,107:129) 左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。 中间图:顶空吸附30min。右图:在气相色谱仪进样口脱附。   固相微萃取(SPME)装置如下图8所示: 图8 固相微萃取装置示意图   (4)一滴溶剂顶空进样气相色谱:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示: 图 9 一滴溶剂顶空萃取示意图 (J Chromatgr A 2007,1152:184)   3 静态顶空气相色谱的方法   静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入气相色谱仪进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在气相色谱仪上,通过保温管线转移到气相色谱仪中。   顶空气相色谱进样必须从密闭的样品瓶的顶空取样到气相色谱仪中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做&ldquo 平衡压力进样&rdquo ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。 图 10 平衡压力进样的过程   根据上述原理P-E公司开发了顶空气相色谱自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。 图 11 F-40自动顶空进样器 (L.S. Ettre, LC-GC,2002, 20(12), 1121)   4 静态顶空进样方法的应用   静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空气相色谱进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。   自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样气相色谱文章。从表中可以看出顶空进样气相色谱用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000气相色谱-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。 表 1 顶空进样气相色谱论文所使用的顶空进样器 序号 题名 使用顶空进样器 文献 1 测定尿中三氯乙酸的自动顶空气相色谱法 Agilent 7694E 自动顶空进样器 李添娣等,职业与健康,2012,28(6):1982-1983 2 顶空-毛细管气相色谱法测定葡萄酒中的甲醇 TurboMatrix 40自动顶空进样器 曾游等,现代食品科技,2013,29(2):405-408 3 顶空-气相色谱法测定水产品中一氧化碳 TurboMatrix HS 40 Trap 顶空自动进样器 王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,535 4 顶空- 气相色谱同时测定比卡鲁胺原料药中6 种有机溶剂残留量 HP7694E 顶空进样器 许瑞征等,现代仪器,2004,(3):15-16 5 顶空萃取-气相色谱-质谱法分析芝麻油中的挥发性成分 Agilent 7694E 自动顶空进样器 陈俊卿等,质谱学报,2005,26(1):49-51 6 顶空进样一毛细管气相色谱法侧定啤酒的香味组分 Agilent 7694E 自动顶空进样器 王莉娜等,啤酒科技,2001,(1):9-11 7 顶空进样-气相色谱法测定大气中吡啶的研究 DANI HSS 86.50 顶空进样器 王艳丽等,中国环境监测,2013,29(2):62-64 8 顶空进样器在快速检测食品美拉德反应风味物质中的新应用 TurboMatrix HS 40 Trap 顶空自动进样器 钟罗宝等,现代食品科技,2009,25(9):1091-1095 9 顶空气相色谱-质谱联用法分析粪便中挥发性脂肪酸 瑞士CTC CombiPAL 顶空进样器 江振作等,分析化学,2014,42(3):429-435 10 顶空气相色谱法测定生物柴油中的微量甲醇 Agilent 7694E 自动顶空进样器 李长秀等,石油化工,2012,41(10):1196-1200 11 顶空气相色谱法测定食品包装中残留乙烯 TurboMatrix HS 40 Trap 顶空自动进样器 周相娟等,食品工程,2012,(6):128-129 12 顶空气相色谱法测定药品中残留溶剂的影响因素考察 Agilent 7694E 自动顶空进样器 秦立等,药物分析杂志,2005,25(7):823-826 13 顶空气相色谱法快速检测卫生纸中的细菌含量 Agilent 7694E 自动顶空进样器 田迎新等,造纸科学与技术,2012,31 (2):59-62 14 顶空气相色谱内标法测定血液中乙醇含量Agilent 7694E 自动顶空进样器 邹黎,检验医学与临床,2011,8(2):2761-2762 15 顶空气相色谱.质谱法测定玩具中的10种挥发性有机物 Agilent 7694E 自动顶空进样器 吕庆等,色谱,2010,28(8):800-804 16 顶空气相色谱一质谱法测定婴幼儿食品中的呋喃 Agilent 7694E 自动顶空进样器 刘平等,色谱,2008,26(1):35-38 17 纺织品中挥发性有机物(VOCs) 的检测- 静态顶空气相色谱质谱法 Agilent G1888自动顶空进样器: 涂貌贞,中国纤检,2009,(9):66-68 19 基于HS-GC-MS 的棉织物鱼腥味检测 Agilent 7694E 自动顶空进样器 王晓宁等,纺织学报,2011,32(2):68-72 20 利用气相色谱顶空装置测定红磷储存过程中生成的磷化氢 Agilent 7694E 自动顶空进样器 陈海群等,色谱,2004,22(4):442- 444 21 两种轻烃分析方法(&ldquo PTV切割反吹&rdquo 和&ldquo 顶空&rdquo )的对比研究 意大利 FISONS 8500 气相色谱仪, HS800 顶空自动进样装置 肖廷荣等,色谱,2001,19(4):304-308 22 啤酒中挥发性风味物质的分析及风味评价 TurboMatrix 40自动顶空进样器 王志沛等,酿酒科技,2001,21,(4):59-61 23 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法 HT2000 自动顶空进样器(意大利) 聂春林等,精细化工中间体,2010,40(6):63-66 24 水中12种卤代有机物的自动顶空- 气相色谱测定方法研究 Agilent 7694E 自动顶空进样器 张燕等,中国卫生检验杂志,2010,20(11):2716-2718 25 水中54种挥发性有机物的顶空- 气相色谱法研究 自动顶空进样器, 成都科林公司 高玲等,中国卫生检验杂志,2010,20(7):1645-1648 26 水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶 空气相色谱测定法 QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH) 罗黎明,职业与健康,2012,28(14): 1722-1723 27 血中乙醇的顶空气相色谱分析 安捷伦1888型自动顶空进样器 刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-19 28 衍生- 顶空气相色谱法测定化妆品中游离甲醛 Agilent 7694E 自动顶空进样器 环境与职业医学,2012,29(7):459-461 29 液液萃取- 顶空气相色谱法测定饮用水中卤乙酸 Tekmar7000自动顶空进样器 中国卫生检验杂志,2011,21(6):1338-1340 30 乙基纤维素乙氧基含量的顶空气相色谱法测定 HS86-50型自动顶空进样器,意大利DANI公司 付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-21 31 用顶空进样法分析烯烃废碱液中硫化物 TurboMatrix HS 40 Trap 顶空自动进样器 高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 254 32 蒸气顶空富集装置- 自动顶空气相色谱法在海水中痕量苯系物检测中的应用 顶空自动进样器( 瑞士CTC Analysis AG 公司) 孙秀梅等,山东化工,2014,43(7):73-76 33 柱前衍生化顶空气相色谱法同时检测非布司他原料药中3 种微量有机酸 G1888 型自动顶空进样 器(美国安捷伦科技公司 朱圣亮等,中国药房,2012,23(25) :2372-2373 34 自动顶空-毛细管气相色谱法测定水中苯系物 德国MS6多功能自动进样器 刘俩燕,中国卫生检验杂志,2010,20 (8):1918-1920 35 自动顶空-毛细管气相色谱法测定饮用水中11 种挥发性有机物 Agilent G1888 顶空自动进样器、 刘兰侠等,上海预防医学,2014,26(1):27-28,48 36 自动顶空-气相色谱法测定地表水中乙醛的方法研究 Agilent 7694E 自动顶空进样器 邢志贤等,河北工业科技,2010,27(3):143-145,173 37 自动顶空- 气相色谱法测定食品包装材料中残留氯乙烯单体 Agilent G1888 顶空自动进样器、 戴华等,中国卫生检验杂志,2011,21(1):36-37 38 自动顶空- 气相色谱法测定水质中苯系物的研究 Agilent G1888 顶空自动进样器 刘保献等,现代仪器,201,18(3):30-33 39 自动顶空- 气相色谱法测定水中甲醇的方法优化 Agilent G1888 顶空自动进样器 付翠轻等,中国环境监测,2012,28(4):61-64 40 自动顶空- 气相色谱法测定水中四乙基铅方法研究 DANI HSS 86.50 顶空进样器 王玲玲等,环境科学与技术,2014,37(5):99-101 41 自动顶空-气相色谱法检测食品包装材料中挥发性有机物 TurboMatrix HS 40 Trap 顶空自动进样器 方 益等,食品科技,2013,38(2):291-29542 自动顶空-气相色谱法同时测定水中7种挥发性卤代烃 TurboMatrix HS 40 Trap 顶空自动进样器 王建蓉等,供水技术,2012,6(4):62-64 43 自动顶空- 气相色谱质谱联用技术测定化工原料中1,2 -二氯乙烷 TurboMatrix HS 40 Trap 顶空自动 蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,627 44 自动顶空GC /MS测定血液中乙醇含量不确定度评定 DANI HSS 86.50 顶空进样器 周枝凤,中国法医学杂志,2010,25(1):43-46 45 自动顶空进样-气相色谱法测定柠檬酸中溶剂残留 AutoHS自动顶空进样器(成都科林) 李锋格,检验检疫学刊,2011,21(1):6-10 46 自动顶空毛细管柱气相色谱法测定食品包装中残留丙烯腈单体 PE Turbo Matrix 40 Trap 自动顶空进样器 周相娟等,食品科技,2008,(10):240-242 47 自动顶空毛细管柱气相色谱法同时检测生活饮用水中7 种挥发性卤代烃 Tekmar 7000 自动顶空进样器 周闰等,中国卫生检验杂志,2013,23(6):1417-1419 48 自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53 48 自动顶空气相色谱法测定番茄酱中二硫代氨基甲酸酯的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53 49 自动顶空气相色谱法测定番茄酱中乙烯利的残留量 AutoHS自动顶空进样器(成都科林) 姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 1538 50 自动顶空气相色谱法测定化妆品中的甲醇 Agilent 7694E 自动顶空进样器 高建民等, 化学分析计量,2003,12(3):7-10 51 自动顶空气相色谱法测定食品包装材料中残留丙烯腈单体 AutoHS自动顶空进样器(成都科林) 刘俊等,中国卫生检验杂志,2008,18(10):2021-2022 52 自动顶空气相色谱法测定水中苯系物的研究 AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器 王臻等,中国热带医学2008,8(1):128-129 53 自动顶空气相色谱法测定血液中的乙醇 Tekmar 7000 自动顶空进样器 刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,1506 54 图 14 PE Turbo Matrix 40 Trap 自动顶空进样器   由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。
  • 气相色谱仪进样口压力超压检测方法与解决方案
    导 语进样口是气相分析中必不可少的模块之一,而分流/不分流进样口(简称SPL进样口)是目前气相色谱分析系统中广泛使用的进样口。跟填充柱进样口相比,SPL进样口的气路控制相对更复杂,所以在使用过程中遇到的问题也自然多一些。在日常使用过程中,遇到最多的可能就是进样口漏气报警,不管是真漏还是假漏,根本原因都是实际流量没有达到设定值(详解请点击参考往期文章《CAR1 LEAKS、PURGE LEAKS是真的吗?》)。现在我们来谈论一下气相使用过程中进样口很少出现的另外一种情况~压力超过设定值。SPL进样口的结构和各气路的功能图一01C路(英文全称:CARRIER中文,载气流路):作用是为气相系统提供载气,载气经过分子筛过滤后进入进样口。02P路(英文全称:PURGE中文,吹扫气流路):吹扫流量设定值范围为1-6ml/min,我们通常设定为3ml/min,作用是避免进样隔垫挥发物的干扰,将进样针刺穿进样隔垫时产生的碎屑横向吹出,防止掉落到玻璃衬管中造成色谱柱的堵塞。03S路(英文全称:SPLIT中文,分流流路):调整进样口压力,进而满足仪器参数中设定的色谱柱流量或者线速度等实验条件,同时排掉多余的溶剂和样品。故障判断从图一中我们可以看出SPL进样口的气路走向为载气通过C路流入进样口后再通过P路(隔垫吹扫),S路(分流)和L路(色谱柱)流出,也就是我们简称的一进三出。所以进样口的压力稳定需要四个气路都工作正常,但是当发生压力超出设定值的故障时是否和其他三路有关呢?01载气流路气流过大:C路有流量传感器可以实时显示流量数值,由于传感器故障导致气流控制异常的情况很少发生。02吹扫流路和色谱柱堵塞:吹扫流量通常设定为3ml/min;内径0.25mm或者0.32mm的色谱柱流量一般设定为1-2ml/min, 内径0.53mm的色谱柱流量可以设置到10-20ml/min。因为吹扫流路和色谱柱流路的流量设定值都比较小,所以这两个流路即便完全堵塞也不会导致分流电磁阀对进样口压力无法调节的情况发生。03分流流路堵塞:在分流模式下,大多数的样品是经过分流流路排出的,所以为了保护分流电磁阀不会被样品堵塞,在分流气路中电磁阀前串联了过滤器对样品进行吸附(通常情况下过滤器6个月需要更换,做高沸点及室温下结晶样品时建议3个月更换),因为分流流路是在仪器的顶部,温度和室温相近,液化或者凝固的样品就会保留在分流气路中。所以分流流路是最容易堵塞的,当管路堵塞到一定程度,电磁阀的开合大小就起不到调节进样口压力的作用了,会出现如下的故障现象,如图二。故障排除既然判断出故障根源在分流流路,那么分流流路中的所有气体通道都可能是故障点,进样口适配器、管路、缓冲管、过滤器以及AFC整体。01更换缓冲管和过滤器,更换步骤可以参考岛津气相软件(Labsolution)中的维护向导。02检查清洗进样口适配器,确保分流通道畅通,如图三。03确认图四所示部位的管路是否有堵塞现象,如果出现堵塞可以在通气状态下高温加热堵塞部位,使附着的高沸点杂质高温气化后被载气带出(推荐使用高温喷枪或酒精喷灯,不推荐使用打火机加热,一是加热温度不够,二是长时间按着打火机,很容易烫伤)。如果没有酒精喷灯,也可以使用坚硬的金属丝进行物理疏通。疏通前先拆下衬管避免被损坏;将进样口端色谱柱取下,拆卸掉进样口适配器,让脱落的杂质掉入柱温箱内。疏通结束后可用丙酮擦拭进样口内壁,消除污染物的附着。图三 图四04如果上述排查结束后,进样口压力仍然不能回落到设定值,则大概率是AFC故障,就需要岛津工程师上门服务。
  • 关注|药典委发布《关于0521 气相色谱法标准草案的公示》
    近日,国家药典委发布《关于0521 气相色谱法标准草案的公示》(以下简称“草案”)通知,草案表示拟修订0521气相色谱法,并将拟修订的标准草案公示征求社会各界意见,公示期自发布之日起3个月(截止到12月7日)。点击原文链接进行公示反馈。据介绍,《中国药典》通则 0521 气相色谱法中规定除检测器种类、固定液品种及特殊指定的色谱柱材料不得改变外, 其余色谱参数如色谱柱内径、长度、载体牌号、粒度、 固定液涂布浓度、载气流速、柱温、进样量、检测器的 灵敏度等均可适当改变,其中色谱参数可调整具体范围并不明确。为了提高气相色谱法的可操作性,保证药品检验结果准确可靠,本次修订参照美国药典和欧洲药典,对原方 法中的色谱参数调整范围进行研究,明确规定色谱参数允许调整的范围,在此基础上对通则 0521 气相色谱法进 行修订完善,使其更加科学、合理、可操作,并与国际通用技术要求接轨。本次起草过程,通过对比国内外药典气相色谱法相关通则的异同,经过对企业、行业协会以及仪器公司的调研,确定修订方向并起草该草案。主要的修订内容包括: 1. 在“1.对仪器的一般要求”中增列“(7)色谱参数调整”,将原 1(6)中有关表述完善后放入该部分,并增订“色谱参数允许调整的范围”表。 2. 明确参数调整后出峰顺序、检测限等相关要求,必要时进行方法确认。 3. 明确调整色谱条件后测定结果产生异议时的处理规则。 4. 明确在品种项下一般不宜指定或推荐色谱柱品牌的要求,并明确哪些参数可在品种项下规定,何时可在品种项下注明色谱柱品牌。以下为具体修订内容: 附件1 0521气相色谱法公示稿(第一次).pdf附件2 0521气相色谱法修订说明.pdf2022年12月19日,药典委发布《中国药典》(2025年版)编制大纲。《大纲》指出, 到2025年,全面完成新版《中国药典》编制工作。符合中医药特点的中药标准进一步完善,化学药品、生物制品、药用辅料和药包材标准达到或基本达到国际先进水平,药品质量控制和安全保障水平明显提升。今年上半年,国家药典委员会曾发布了一系列的方法通则的修订草案,公开征求意见。近期,药典委再次集中发布一批标准草案,涉及多个方法通则。关于《中国药典》修订相关新闻可点击下方专栏关注,仪器信息网将持续更新
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制