当前位置: 仪器信息网 > 行业主题 > >

气相色谱三比值法

仪器信息网气相色谱三比值法专题为您提供2024年最新气相色谱三比值法价格报价、厂家品牌的相关信息, 包括气相色谱三比值法参数、型号等,不管是国产,还是进口品牌的气相色谱三比值法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气相色谱三比值法相关的耗材配件、试剂标物,还有气相色谱三比值法相关的最新资讯、资料,以及气相色谱三比值法相关的解决方案。

气相色谱三比值法相关的论坛

  • 【资料】气相色谱-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素

    气相色谱-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素组成的测定。这一功能已成功解决了特殊化合物(如甲烷、PCB等)燃烧不完全和燃烧反应器的有效维护等实际问题,实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于2ng(与具体化合物含C量有关),实验结果的精确度为0.5‰(与实际样品状况有关)。数据的准确度由CO2标准参考气系统(见下文)和两个下线燃烧法标定的日常工作标准物质来控制。这一功能已广泛用于石油天然气、各种有机天然提取物以及顶空和固相微萃取(SPME)等样品的测定。国家海洋局第三海洋研究所电话:0592-2195878

  • 气相色谱法—内标法

    什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。

  • 【共享】气相色谱法—内标法

    什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。

  • 三丁酯及磷酸三乙酯的气相色谱分析法

    请问磷酸三丁酯及磷酸三乙酯的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析法?谢谢!我现由仪器为SP6800型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],毛细管柱,热导和氢火焰检测器。

  • 增塑剂偏苯三酸三辛酯TOTM气相色谱法测试方法

    各位大侠,请问哪位做过 增塑剂 偏苯三酸三辛酯TOTM气相色谱法测试其纯度,小弟刚接触该产品,其沸点较高 260度(15kpa),见有做的用 FID检测器,只是不知道柱子是什么?最好可以告知色谱条件,感激不尽!

  • 气相色谱-质谱联用仪内标法分析多环芳烃

    [font=宋体][size=10.5pt]HJ 805-2016 [font=宋体]土壤和沉积物 多环芳烃的测定 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/font][font=Times New Roman]-[/font][font=宋体]质谱法。分析定量时,标准曲线的绘制时,标准上说以目标化合物和内标物浓度的比值为横坐标;以目标化合物定量离子响应值和内标化合物定量离子响应值的比值与内标化合物质量浓度的乘积为纵坐标。绘制标准曲线。这样是不是就不能像外标法一样,仪器的数据处理软边可以直接给出标曲,需要自己手动算了?谢谢各位![/font][/size][/font][font=宋体][size=10.5pt]还有就是如果按照以上说的方法绘制曲线,十几种目标物只有5种内标物,没有相对应的内标物的目标化合物应该怎么绘制标准曲线?[/size][/font][font=宋体][size=10.5pt]内标法实在是小白一个?希望大家多多解惑,非常感谢[/size][/font]

  • 【求助】气相色谱如何做内标法

    常规的气相色谱能否做内标法定量,如何做呢,能否提供一个具体的步骤?自己摸索了一下,感到峰面积很不稳定,比值相差也大,什么原因呢?

  • 三氯蔗糖中的甲醇气相色谱法

    有人做过GB 25531-2010 三氯蔗糖中的甲醇吗,求[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]法的色谱条件

  • 顶空气相色谱法检测三甲胺

    请问谁有用GB5009.179-2016顶空气相色谱法检测肉制品中的三甲胺的,我今天完全按GB5009.179-2016做,可是没有做出来,工作曲线都没有做出来,4.5min出了一个峰,可是所有浓度的峰面积差不多是一样的啊?

  • 【转帖】气相色谱法测定化妆品中六氯酚、二氯酚、三溴水杨酰替苯胺的含量

    1 适用范围本方法适用于化妆品中六氯酚、二氯酚、三溴水杨酰替苯胺的定量。2 原理样品经预处理后以[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行定性定量。3 试剂3.1卤代酚类防腐剂标准溶液:同(一)的3.6~3.9(1)。3.2内标溶液:称取2,4,5,4′-四氯二苯矶10.0mg,用丙酮溶解稀释至10.0m1(2)。4 仪器4.1[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]:具氢火焰离子化检测器或Ni63电子捕获检测器。5 分析步骤5.1样品预处理同薄层色谱法,取处理后的样品溶液1.0ml,在水浴上蒸干,用FID检测器测定时,加内标溶液0.5ml(3.2)作待测溶液.用ECD检测器时,加入经2500倍稀释的内标溶液0.5ml(2)作为待测溶液。5.2 色谱条件5.2.1 色谱柱:内径4mm、长1m的玻璃柱,内填充涂有1.5%SE30(3)的60~80目的酸洗硅烷化的红色硅藻土。柱温:250℃。检测器温度:250℃。进样品温度:260℃。载气流速:N2,40ml/min。5.3 定性取标准溶液1~2.5μl,分别加等体积的内标溶液混合,取2~5μl注入GC-FID或GC-ECD,测定各种卤代酚的相对保留时间.取待测样品溶液1~5μl注入GC-FID或GC-ECD,求出相对保留时间,与标准保留时间比较进行定性(4)。5.4定量5.4.1 标准曲线FID检测器:移取0.5ml内标溶液(3.2),加不同浓度的卤代酚标准溶液0.5ml,配制1ml相当于0.25、0.50、1.00、1.50、2.00、2.50mg(5)的标准系列。取5μl注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],测定标准系列的峰高,求出与内标溶液的比值。以横坐标为浓度,纵坐标为峰高比值,制作标准曲线。ECD检测器:移取0.5ml每毫升含0.4μg的内标溶液(2),加入不同浓度的卤化酚标准溶液0.5ml,配制成1ml相当于0.0、0.10、2.0、3.0、4.0、5.0μg的标准系列(5),分别取5μl注入色谱仪,以下步骤同FID。5.4.2 测定取样品溶液1~5μl注入色谱议,记录峰高.计算出和内标之间的比值,从标准曲线上查出样品液中卤代酚的浓度A(μg/ml)。6 计算c=A×V/m×1/1000式中:c――各卤代酚的含量,%。A――样品液中各卤代酚的浓度,μg/ml;V――样品溶液总体积,ml;M――样品质量,g;注解:(1)用电子捕获检测器(ECD)时,各卤代酚的响应高,标准溶液需再稀释500倍,配成2μg/ml的溶液。(2)用电子捕获检测器(ECD)时,内标溶液应稀释2500倍,配成0.4μg/ml的溶液。(3)固定液用General Electrie公司产的SE30时,拖尾大、寿命短。(4)六氯酚及其它防腐剂与内标溶液的分离情况见图2-3-20、图2-3-21。保留时间见表2-3-19。表2-3-19 各卤代酚的内标物质的保留时间及相对保留时间物质名称FIDECD 保留时间相对保留时间保留时间相对保留时间(min)(min) G4 3.6 0.72 3.4 0.81 BIT 6.2 1.24 4.3 1.10 BCP 7.5 1.50 5.4 1.38 DBS 8.1 1.62 6.0 1.54 G-11 11.8 2.36 9.4 2.41 TBS 19.5 3.90 15.2 3.90 内标物 5.0 1.00 3.9 1.00 * 物质名称见图2-3-20。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法没有测出BA、SA、TBOC、Zn—PS。这是由于柱温相当高,注入后立即出峰和溶剂峰重叠无法分离所致。本方法灵敏度:氢火焰离子化检测器是0.1mg/m1。电子捕获检测器是0.1μg/m1。(5)六氯酚的线性范围;氢焰离子检测器是0.25~3mg/m1,电子捕获检测器为l~5μg/ml。各种化妆品的回收率是95~100%,变异系数:0.7~1.7%。

  • 【分享】甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法

    甲基环戊二烯三羰基锰(MMT)气相色谱法检测方法本标准规定了甲基环戊二烯三羰基锰的分类、要求、试验方法、检验规则、标志、包装、运输、贮 存和安全。本标准适用于用作汽油抗爆剂的甲基环戊二烯三羰基锰。 分子式:C9H7MnO3 相对分子质量:218.09(根据2007年国际相对原子质量) 甲基环戊二烯三羰基锰含量的测定:在选定的工作条件下,样品经气化通过毛细管色谱柱,使其中各组分得到分离,用氢火焰离子化检 测器检测,用面积归一化法或内标法计算甲基环戊二烯三羰基锰的含量。 试剂:二乙二醇二甲醚。 无水乙醇。氢气:体积分数不低于 99.99%。 空气:经活性炭和分子筛净化。氦气:体积分数不低于 99.999%。仪器设备 :GC5890气相色谱仪,配氢火焰离子化检测器(FID),灵敏度和稳定性符合 GB/T9722 中的有关规定, 可进行毛细管色谱分析。N2000色谱工作站。色谱仪器型号GC5890型色谱仪 配有FID检测器毛细管色谱柱HP-5 30*0.32*0.25专用毛细管柱色谱工作站N2000 (电脑1台自备)气体装置氮氢空发生器 HGT300E1台或高纯氮、氢气、空气钢瓶各一瓶分析天平:感量 0.0001g。 5.8.3.4 进样器:5μL [font=

  • 【分享】气相色谱法对维生素E的原料三甲基氢醌的检测

    【分享】气相色谱法对维生素E的原料三甲基氢醌的检测

    气相色谱法对维生素E的原料三甲基氢醌的检测摘要 三甲基氢醌即2,3,5-三甲基氢醌,又名2,3,5-三甲基对苯二酚,是生产维生素E的中间体,其主要用途是用作生产维生素E的主要原料。目前,维生素E已成为国际市场上用途广泛、产销量极大的主要维生素品种,国内外市场前景广阔。目前全国生产能力不能满足国内市场供应不足,部分依赖进口。因此对三甲基氢醌的需求日益增加。而对于三甲基氢醌检测目前国家和行业都没有一个统一的检测标准。为此南京科捷分析仪器应用研究所根据客户的要求应用GC5890C气相色谱仪对2,3,5-三甲基氢醌进行方法研究。实验结果表明:本方法简便,分析速度快。能满足生产质量控制的要求,从而降价低生产成本。关键词 2.3.5- 三甲基氢醌 2,3,5-三甲基对苯二酚 维生素E中间体 气相色谱法一.2.3.5三甲基氢醌气相色谱图 http://ng1.17img.cn/bbsfiles/images/2011/06/201106171053_300271_2242538_3.jpg三、仪器配置 检测项目2,3,5-三甲基氢醌及其杂质色谱仪器型号GC5890C型色谱仪 配有FID检测器毛细管色谱柱0.32*30*0.25专用柱色谱工作站N2000(电脑1台自备)氮氢空发生器 HGT300E 1台或高纯氮、氢气、空气钢瓶各一瓶

  • 【资料】气相色谱中的内标法与外标法

    内标法与外标法一、内标法 什么叫内标法?怎样选择内标物? 内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。 内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。 在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值? 影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。 由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括: 1、内标物在样品里混合不好; 2、内标物和样品组分之间发生反应, 3、内标物纯度可变等。 对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在制作内标标准曲线时应注意什么? 在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。 二、外标法 用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的方法称为外标法。此法可分为工作曲线法及外标一点法等。工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。   外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量:      W=A(W)/(A)          式中W与A分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。(W)及(A)分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。外标法方法简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。但此法的准确性受进样重复性和实验条件稳定性的影响。此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。 外标法 external standard method 色谱分析中的一种定量方法,它不是把标准物质加入到被测样品中,而是在与被测样品相同的色谱条件下单独测定,把得到的色谱峰面积与被测组分的色谱峰面积进行比较求得被测组分的含量。外标物与被测组分同为一种物质但要求它有一定的纯度,分析时外标物的浓度应与被测物浓度相接近,以利于定量分析的准确性。 三、定量分析中怎样选择内标法或外标法(来源:药物分析网) 选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数。用内标法公式计算即可。 内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。 选择内标物有4个要求:1.内标物应是该试样中不存在的纯物质;2.它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离;3.加入内标物的量应接近于被测组分;4.色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。 内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。 外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。 内标与外标都是定量的一种方法而已,至于哪一种方法好与不好不能一概而论,做不同的分析,面对着不同的要求,再加上分析成本分析效率等等问题,我想简单而有效进行定量分析来满足要求才是最重要的。

  • 续气相色谱使用注意事项(转帖8)

    [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]内标法的建立什么叫内标法?怎样选择内标物?内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。内标法在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]定量分析中是一种重要的技术。使用内标法时,在样品中加入一定量的标准物质,它可被色谱拄所分离,又不受试样中其它组分峰的干扰,只要测定内标物和待测组分的峰面积与相对响应值,即可求出待测组分在样品中的百分含量。采用内标法定量时,内标物的选择是一项十分重要的工作。理想地说,内标物应当是一个能得到纯样的己知化合物,这样它能以准确、已知的量加到样品中去,它应当和被分析的样品组分有基本相同或尽可能一致的物理化学性质(如化学结构、极性、挥发度及在溶剂中的溶解度等)、色谱行为和响应特征,最好是被分析物质的一个同系物。当然,在色谱分析条什下,内标物必须能与样品中各组分充分分离。需要指出的是,在少数情况下,分析人员可能比较关心化台物在一个复杂过程中所得到的回收率,此时,他可以使用一种在这种过程中很容易被完全回收的化台物作内标,来测定感兴趣化合物的百分回收率,而不必遵循以上所说的选择原则。在使用内标法定量时,有哪些因素会影响内标和被测组分的峰高或峰面积的比值?影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。化学方面的因素包括:内标物在样品里混合不好,内标物和样品组分之间发生反应,以及内标物纯度可变等。对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定,在制作内标标准曲线时应注意什么?在用内标法做色话定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。- --------------------------------------------------------------------------------

  • 顶空毛细管柱气相色谱法分离三氯甲烷与四氯化碳

    用顶空法气相色谱分离三氯甲烷和四氯化碳,ECD检测器,色谱仪是Claurs 580,毛细管柱是elite-5(30m*0.25mm*0.25μm),所用的条件如下:色谱分析条件:气化室温度200℃,柱温60℃,检测器温度200℃,载气流量 1mL/min,分流比20:1为什么不能把三氯甲烷和四氯化碳分离开来呢?问题可能会出现在哪里?求指教。谢谢。

  • 【分享】空气中三氯乙烷的测定方法 气相色谱法

    【分享】空气中三氯乙烷的测定方法 气相色谱法

    空气中三氯乙烷的测定方法 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法 1 原理空气中的1,1,1-三氯乙烷被活性炭吸附,用二硫化碳解吸,解吸液经FFAP柱分离后,氢焰离子化检测器检测,以保留时间定性,峰高定量。2 仪器2.1 活性炭管长7cm、内径4mm的硬质玻璃管,内装20~40目经活化处理过的椰子壳活性炭共150mg,前段100mg,后段50mg。管的进、出气口分别用玻璃棉与聚氨酯泡沫塑料垫衬托(中间用玻璃棉隔开),再熔封二头,塑料帽套紧,备用。2.2 采样泵,0~1L/min。2.3 微量注射器,100微升,10微升,1微升。2.4 具塞试管,5ml。2.5 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],氢焰离子化检测器。560ng 1,1,1-三氯乙烷给出的信噪比不低于3∶1。色谱柱:柱长2m、内径4mm不锈钢柱。FFAP柱:6201红色担体=10∶100柱温:70℃汽化室温度:150℃检测室温度:150℃载气(氮气):25ml/min3 试剂3.1 1,1,1-三氯乙烷,色谱纯。3.2 FFAP,色谱固定液。3.3 6201红色担体,60~80目。3.4 二硫化碳,分析纯,色谱鉴定无杂质峰。4 采样在采样地点用砂轮轻轻割开炭管二端,将出气口与采样泵连接,并垂直放置,以0.2L/min的速度抽取空气6L,然后套上原帽,带回实验室分析。5 分析步骤5.1 对照试验:另取1支未采样的活性炭管与样品同时分析,作为对照。5.2 样品处理:将前、后两段活性炭分别倒入具塞试管中,各加1ml二硫化碳,立即加塞振摇1min,放置30min后分析。5.3 标准曲线绘制:于25ml量瓶中,加少量二硫化碳,称量。再用微量注射器抽取适量的1,1,1-三氯乙烷(于20℃时,1微升1,1,1-三氯乙烷质量为1.018mg)注入量瓶中,经第二次称量后,加二硫化碳至刻度,使配制成1,1,1-三氯乙烷标准贮备液。临用时用二硫化碳稀释成1,1,1-三氯乙烷含量分别为1.43、2.85和5.70mg/ml的标准应用液,取2?l进样。每个浓度重复3次,取峰高的平均值,以1,1,1-三氯乙烷含量对峰高作图,绘制标准曲线,保留时间为定性指标。5.4 测定:抽取5.2处理后的解吸液各2?l进样,以峰高定量。6 计算X=C/(V0*D)×500式中:X——空气中1,1,1-三氯乙烷的浓度,mg/m3;V0——标准状况下的样品体积,L;C——由标准曲线上查出的所取解吸液中1,1,1-三氯乙烷含量,微克;D——解吸效率。7 说明7.1 本法可测定车间空气中1,1,1-三氯乙烷的平均浓度。方法的检测限为5.6×10-2微克,当1,1,1-三氯乙烷浓度为950、1900和3000mg/m3时,其变异系数分别为4.8%、4.4%和3.9%。7.2 本法的穿透容量为31.9mg。7.3 以二硫化碳作解吸剂,其平均解吸效率为99.2%。7.4 采样后的活性炭管,于室温下垂直放置,可保存2周,其平均回收率不低于99.1%。7.5 当现场可能存在的其它干扰物与1,1,1-三氯乙烷具有相同的保留时间时,干扰1,1,1-三氯乙烷的测定,此时,可改变色谱等操作条件予以排除。 [img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705201459_52385_1625938_3.jpg[/img]

  • 【分享】DELTA plus 同位素比值质谱仪的功能应用

    [size=4][color=#DC143C][font=黑体]DELTA plus 同位素比值质谱仪的功能应用[/font][/color][/size]===================================================DELTA plus 同位素比值质谱配备有经典的双路进样系统(Dual Inlet)和元素分析仪(EA)、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)等多种样品前处理设备。 (1) 双路进样系统-同位素比值质谱(DI-IRMS)用于多种气体的C、H、O、N同位素组成的测定。这些气体包括CO2、H2、CO、N2等。使用双路进样系统进行CO2中C、O同位素组成的测定,其精度可分别达到0.006‰和0.012‰;H2则可以达到0.25‰。此功能可以用于标准气体的标定、各类样品下线处理富集所获得如上气体的相关同位素组成的测定等。(2) 元素分析仪-持续流接口-同位素比值质谱(EA-ConF-IRMS)用于固体、液体和气体有机样品的平均C、N同位素组成的测定。固体和粘稠液体(如稠油)可以选择常规的自动进样器的进样方式;对于一般液体和气体则需对进样口进行改造,以使其适合液体与气体进样器的进样。对于在高C低N样品N同位素组成测定中出现的样品燃烧不完全和高C燃烧所产生的大量CO2严重干扰m/z 28(CO造成)等实际问题已得到解决。目前,对于单次测量样品中C、N绝对量的要求是大于10μg,其测量精度均为0.2‰。实验结果的准确度由标准参考气系统(见下文)和日常工作标准物质(C使用国家一级标准物质碳黑;N使用自制的由国际标准物质IAEA-N-1和IAEA-N-2间接标定N同位素组成的元素分析标准物质)控制。这一功能已广泛用于各种有机物质的平均C、N同位素的测量,如干酪根、腐殖质、动植物组织等;此外,这一功能还可用于标准气体的标定、对某单一纯化合物在GC-C-IRMS(见下文)测定结果验证手段等。(3) [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-燃烧接口-同位素比值质谱(GC-Combustion III-IRMS)用于液体和气体样品中单个化合物的C同位素组成的测定。这一功能已成功解决了特殊化合物(如甲烷、PCB等)燃烧不完全和燃烧反应器的有效维护等实际问题,实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于2ng(与具体化合物含C量有关),实验结果的精确度为0.5‰(与实际样品状况有关)。数据的准确度由CO2标准参考气系统(见下文)和两个下线燃烧法标定的日常工作标准物质NORWAYSTD和INDIANASTD来控制。这一功能已广泛用于石油天然气、各种有机天然提取物以及顶空和固相微萃取(SPME)等样品的测定。(4) [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-高温热转变-同位素比值质谱(GC-TC-IRMS)用于液体和气体样品中单个化合物的H同位素组成的测定。这一功能已成功解决了质谱H3-因子的调协、灵敏度与线性范围调协、TC反应器预条件化等众多实际问题,也已实现了高效稳定的运行。实验对单个化合物单次进样的绝对量的大致要求为大于150ng(与具体化合物含H量有关),实验结果的精确度可达到3‰(与实际样品状况有关)。数据的准确度由H2标准参考气系统(见下文)和购自美国Indiana大学的由下线燃烧法标定的日常工作标准物质INDIANASTD来控制。该功能与测定单体C同位素功能具有相同的样品适应范围和进样方式。图1是该功能应用的一个例子。 以上所有的功能所使用的标准参考气真实值的标定均使用了国际公认的标准物质:CO2为NBS-22,N2为IAEA-N-1 和IAEA-N-2,H2的标定则使用了VSMOW、SLAP和GISP标准水。

  • 气相色谱法

    气相色谱仪是用于分离复杂样品中的化合物的化学分析仪器。气相色谱仪中有一根流通型的狭长管道,这就是色谱柱。在色谱柱中,不同的样品因为具有不同的物理和化学性质,与特定的柱填充物(固定相)有着不同的相互作用而被气流(载气,流动相)以不同的速率带动。当化合物从柱的末端流出时,它们被检测器检测到,产生相应的信号,并被转化为电信号输出。在色谱柱中固定相的作用是分离不同的组分,使得不同的组分在不同的时间(保留时间)从柱的末端流出。其它影响物质流出柱的顺序及保留时间的因素包括载气的流速,温度等。  在气相色谱分析法中,一定量(已知量)的气体或液体分析物被注入到柱一端的进样口中(通常使用微量进样器,也可以使用固相微萃取纤维(solid phase microextraction fibres)或气源切换装置)。当分析物在载气带动下通过色谱柱时,分析物的分子会受到柱壁或柱中填料的吸附,使通过柱的速度降低。分子通过色谱柱的速率取决于吸附的强度,它由被分析物分子的种类与固定相的类型决定。由于每一种类型的分子都有自己的通过速率,分析物中的各种不同组分就会在不同的时间(保留时间)到达柱的末端,从而得到分离。检测器用于检测柱的流出流,从而确定每一个组分到达色谱柱末端的时间以及每一个组分的含量。通常来说,人们通过物质流出柱(被洗脱)的顺序和它们在柱中的保留时间来表征不同的物质。  4检测器编辑气相色谱法中可以使用的检测器有很多种,最常用的有火焰电离检测器(FID)与热导检测器(TCD)。这两种检测器都对很多种分析成分有灵敏的响应,同时可以测定一个很大的范围内的浓度。TCD从本质上来说是通用性的,可以用于检测除了载气之外的任何物质(只要它们的热导性能在检测器检测的温度下与载气不同),而FID则主要对烃类响应灵敏。FID对烃类的检测比TCD更灵敏,但却不能用来检测水。两种检测器都很强大。由于TCD的检测是非破坏性的,它可以与破坏性的FID串联使用(连接在FID之前),从而对同一分析物给出两个相互补充的分析信息。  其它的检测器要么只能检测出个别的被测物,要么可以测定的浓度范围很窄。  常见的检测器包括:  放电离子化检测器(DID),它通过高压放电来产生离子。  电子俘获检测器,它使用β放射线源(电子流)来测量样品对电子的俘获能力。  火焰光度检测器(FPD)  火焰电离检测器(FID)  霍尔电导检测器(ElCD)  氦离子化检测器(HID)  氮磷检测器(NPD)  质谱检测器(MSD)  光离子化检测器(PID)  脉冲放电检测器(PDD)  热能(热导)分析器/检测器(TEA/TCD)  有一些气相色谱仪与质谱仪相连接而以质谱仪作为它的检测器,这种组合的仪器称为气相色谱-质谱联用(GC-MS,简称气质联用),有一些气质联用仪还与核磁共振波谱仪相连接,后者作为辅助的检测器,这种仪器称为气相色谱-质谱-核磁共振联用(GC-MS-NMR)。有一些GC-MS-NMR仪器还与红外光谱仪相连接,后者作为辅助的检测器,这种组合叫做气相色谱-质谱-核磁共振-红外联用(GC-MS-NMR-IR)。但是必须指出,这种情况是很少见的,大部分的分析物用单纯的气质联用仪就可以解决问题。  5通俗文化中的气相色谱编辑电影,书籍与电视节目经常歪曲气相色谱法的能力以及运用气相色谱法完成的工作。  例如,在美国的电视节目《鉴证行动组》中,人们用气相色谱来快速地识别未知样品。分析员在取得样品之后十五分钟之后就会说:“这是在过去两个星期中在雪佛龙公司(Chevron)的油站里购买的汽油。”  事实上,一个典型的气相色谱分析所用的时间要长得多。有时依照选定的程序,一个样品就要进行一个多小时的分析。对色谱柱进行“清理”以便接受下一个样品还需要额外的时间。同时,为了验证一个结论,分析员往往需要进行多次平行的分析,因为单次分析的结果很可能具有偶然性(参见显著性差异)。  同时,气相色谱并不能识别大部分的样品,而且并非样品中的所有物质都可以通过气相色谱检测出来。气相色谱真正能告诉分析者的,只是在某个时间有一种物质从色谱柱中被洗脱出来,而且检测器对它有响应。为了使结果变得更有意义,分析人员需要知道样品中可能含有什么成分,以及它们可能有怎么样的浓度。还有,一些低含量的物质可能因为与另一种高含量的物质同时被洗脱而无法在色谱图中表现出来。最后,分析人员还经常需要将未知样品的气相色谱结果与可能存在的物质的标准样品的分析结果进行比较。  气相色谱-质谱联用仪可以很好地改善这种混淆不清的状况,因为质谱仪可以识别出各组分的相对分子质量。不过,要很好地完成这些工作,同样需要时间与技巧。  类似地,绝大部分的气相色谱分析并不是简单的按键操作。你不能简单地将样品瓶放在自动采样器的托盘上,然后按一个按钮,让计算机告诉你关于样品的所有信息。根据被分析的物质,分析人员需要小心选择一套合适的操作程序。  不过也要承认,在对相似样品的大量重复性分析之中,简单的按键操作是存在的。这包括化工生产中的分析,也包括为了确定样品中被测物的平均含量而对同一实验获得的20个样品的分析等等。不过,那些书籍,电影与电视节目中的研究性工作绝对不属于这种情况。  6原理编辑气相色谱系统由盛在管柱内的吸附剂(表1) 或惰性固体上涂着液体的固定相和不  气相色谱法断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出。以各组分从柱末端流出的浓度 c对进样后的时间t作图,得到的图称为色谱图。当色谱过程为冲洗法方式时,色谱图如图1所示。从色谱图可知,组分在进样后至其最大浓度流出色谱柱时所需的保留时间tR,与组分通过色谱柱空间的时间tM,及组分在柱中被滞留的调整保留时间t'R之间的关系是:  气相色谱法式中t'R与tM的比值表示组分在固定相比在移动相中滞留时间长多少倍,称为容量因子k。  从色谱图还可以看到从柱后流出的色谱峰不是矩形,而是一条近似高斯分布的曲线,这是由于组分在色谱柱中移动时,存在着涡流扩散、纵向扩散和传质阻力等因素,因而造成区域扩张。在色谱柱内固定相有两种存放方式,一种是柱内盛放颗粒状吸附剂,或盛放涂敷有固定液的惰性固体颗粒〔载体或称担体(表2)〕;另一种是把固定液涂敷或化学交联于毛细管柱的内壁。用前一种方法制备的色谱柱称为填充色谱柱,后一种方法制备的色谱柱称为毛细管色谱柱(或称开管柱)。  通常借用蒸馏法的塔片概念来表示色谱柱的效能,例如使用“相当于一个理论塔片的高度“H或“塔片数”n来表示柱效。  式中λ是与填充均匀性有关的因素称为填充不规则因子; γ是柱内填充物使得气体扩散路径弯曲的因素,称为弯曲因子;dp是填充物平均颗粒直径(即粒度);u是载气在柱温、柱压下的线速;Dg是组分在气相中的分子扩散系数;Dl是组分在液相的扩散系数;df是固定液的液膜厚度;dc是开管柱的  气相色谱法内径。所以色谱柱的塔片数n=L/H,式中L为色谱柱长;n的数值可用给定的物质作实验由实验所得到的色谱图(图1)计算得到  式中ω┩为色谱峰的半高宽,由于气相色谱的组分在固定液中的分配等温线多为线性,如果进样量很小,得到的色谱峰流出曲线最初是用高斯正态分布来描述的,其数学表示式为:  实验和理论上都证明了物质的色谱峰形状是不对称的和曳尾的,若用指数衰减修正的高斯分布作为描述色谱峰形状的分布函数,则更为确切(公式1)  式中A表示峰面积;tG表示高斯峰的中心位置;σ表示高斯峰的标  公式1准方差;τ表示指数衰减函数的时间常数;t′为积分变量。  上面曾经指出,两组分的分配系数必须有差异,其色谱峰才能被分开。有了差异,分离时所需的柱效n也就不相同  公式2所以要判别两色谱峰分离的情况(图2),气相色谱法还需要采用色谱柱总分离效能指标R(公式2)  n与R的关系为(公式3)  式中α′是组分相对保留值;α是组分校正相对保留值。  公式3从上式可知,选择适宜固定液和具有给定塔片数的色谱柱后,应该通过改变色谱柱温来调节α′值,从而满足将两组分分离至给定R值的分离程度。  7仪器要求编辑所用的仪器为气相色谱仪。除另有规定外,载气为氮气;色谱柱为填充柱或毛细管柱,填充柱的材质为不锈钢或玻璃,载体用直径为0.25~0.18mm 、0.18~0.15mm或0.15~0.125mm经酸洗并硅烷化处理的硅藻土或高分子多孔小球;常用玻璃或弹性石英毛细管柱的内径为0.20或0.32mm。进样口温度应高于柱温30~50℃;进样量一般不超过数微升;柱径越细进样量应越少。检测器为氢火焰离子化检测器,检测温度一般高于柱温,并不得低于100℃,以免水气凝结,通常为250~350℃。  正文中各品种项下规定的条件,除检测器种类、固定液品种及特殊指定的色谱柱材料不得任意改变外,其余如色谱柱内径、长度、载体牌号、粒度、

  • 三重四级杆气相色谱质谱法测水中农残有什么参考的标准文件吗

    三重四级杆[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法测水中农残有什么溯源的标准文件吗?实验室要验证,需要有权威性的参考标准文件才可以,但是我只是找到单四级杆的参考标准,水质相关标准比较滞后而三重四级杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]相对是较新技术,所以哪位大侠能提供一些环境相关的有三重四级杆[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]检测农残的标准文件,谢谢!

  • 【原创】各位大侠教我用气相色谱吧

    小弟我从未用过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],由于工作需要,老板入手一台岛津的老古董gc-8a,色谱柱是silica column,配的数据处理是岛津的r-c8a。小弟主要是分析co2, ch4, n2的混合气,请问大侠们injector temp. 还有column temp 该怎么设定。小弟瞎设的是入口200度, colume恒温150度. 结果测出来的就是一条直线,但是计算结果却显示了3个峰,请问大侠,这是因为我的温度设置的不好,还是我的数据处理参数设计的不好?另外计算结果显示的三个峰的面积,他们的比值是不是就应该是混合气的组分?小弟公司里面没人懂gc,叫岛津过来教,又要花钱,请大侠们帮帮忙吧。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制