当前位置: 仪器信息网 > 行业主题 > >

恒谱德拉伯分类法

仪器信息网恒谱德拉伯分类法专题为您提供2024年最新恒谱德拉伯分类法价格报价、厂家品牌的相关信息, 包括恒谱德拉伯分类法参数、型号等,不管是国产,还是进口品牌的恒谱德拉伯分类法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合恒谱德拉伯分类法相关的耗材配件、试剂标物,还有恒谱德拉伯分类法相关的最新资讯、资料,以及恒谱德拉伯分类法相关的解决方案。

恒谱德拉伯分类法相关的资讯

  • 质谱分类里程碑!中国分析测试协会《质谱仪器分类与代码》团标发布!
    由中国分析测试协会和中关村材料试验技术联盟发布的团体标准《质谱仪器分类与代码》于于2024年1月5日发布,标准将于4月5日开始实施。  质谱仪器作为质谱技术作为一种高灵敏、高分辨的分析技术,越来越受到关注和重视,其在食品、环境、制药、医疗以及学术研究等行业的应用也日益广泛。而在中国质谱界,对于日渐丰富的质谱仪器品类,如何更好的分类质谱仪器势在必行,于是本标准也在业内专家大力支持下应运而生。  《质谱仪器分类与代码》标准的分类原是按仪器结构和原理对质谱仪器进行分类,具体按照联用技术、离子化技术、质量分析器三个维度划分。分类方法采用分面分类法,包括按照联用技术划分、按照离子化技术划分、按照质量分析器类型划分。  分类方法  采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。  分面一:按照联用技术划分  根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳 6 个类目 各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀 3 个类目。  1) 直接离子化分析   2) 色谱联用划分为:  a) 液相色谱包括:  —液相色谱   —高效液相色谱   —超高效液相色谱   —多维液相色谱   b) 气相色谱包括:  —气相色谱   —全二维气相色谱   c) 离子色谱   d) 超临界流体色谱   e) 薄层色谱   f) 毛细管电泳   3) 常见非色谱联用划分为:  a) 热解吸   b) 流式细胞术   c) 激光烧蚀。  4) 其他。  分面二:按照离子化技术划分  根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。  1)轰击离子化包括:  a) 电子轰击离子化   10T/CAIA/YQ 008—2024/T/CSTM 01082—2024  b) 快速原子轰击离子化   c) 二次离子化   2) 电喷雾离子化包括:  a) 电喷雾离子化   b) 解吸附电喷雾离子化   c) 纳升电喷雾离子化   d) 脉冲直流电喷雾离子化   e) 电喷雾萃取离子化   f) 电喷雾辅助激光解吸离子化   g) 极性反转电喷雾离子化   3) 化学离子化包括:  a) 化学离子化   b) 大气压化学离子化   c) 质子转移反应   4) 光致离子化包括:  a) 基质辅助激光解吸离子化   b) 单光子离子化   c) 多光子离子化   d) 激光解吸离子化   5) 放电离子化包括:  a) 介质阻挡放电离子化   b) 辉光放电离子化   c) 低温等离子体离子化   d) 电晕放电离子化   e) 解吸电晕束离子化   f) 火花放电离子化   g) 电感耦合等离子体离子化   6) 热离子化   7) 场致离子化包括:  a) 场解吸离子化   b) 场离子化   8) 其他。  分面三:按照质量分析器类型划分  根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。  1) 四极杆质量分析器   2) 飞行时间质量分析器包括:  a) 直线飞行时间质量分析器   b) 单次反射飞行时间质量分析器   c) 多次反射飞行时间质量分析器   3) 离子阱质量分析器包括:  11T/CAIA/YQ 008—2024/T/CSTM 01082—2024  a) 二维离子阱质量分析器   b) 三维离子阱质量分析器   4) 磁质量分析器包括:  a) 单聚焦质量分析器   b) 双聚焦质量分析器   5) 傅里叶变换质量分析器包括:  a) 静电阱质量分析器   b) 离子回旋共振质量分析器   6) 其他。  本文件起草单位:广东省麦思科学仪器创新研究院、广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院。本文件主要起草人:朱芷欣、刘丹、周振、黄正旭、罗德耀、周志恒、丁传凡、丁力、黄泽建、陈江韩、徐牛生、俞晓峰、姚继军、闻路红、周向东、程文播、王世立、韩娜、刘召贵、沈学静、张小华、高俊海、景叶松、朱颖新、王海鉴、朱敏、潘晨松、洪义、李磊、陈政阁、黎彦、刘虎威、李志明、沈小攀。附件:TCAIAYQ 008—2024TCSTM 01082—2024《质谱仪器分类与代码》.pdf
  • 中关村材料试验技术联盟 重磅!团体标准《质谱仪器分类与代码》正式发布!
    创新引领,有标可依2024年1月5日,团体标准《质谱仪器分类与代码》(T/CSTM 01082—2024 /T/CAIA/YQ 008—2023(IDT))中文版正式发布!该标准由中关村材料试验技术联盟和中国分析测试协会联合发布,将于2024年4月5日起正式实施。英文版标准于2024年3月5日发布,将于2024年6月5日起开始实施。 标准适用性该标准适用于质谱仪器的分类、编码、命名、统计、管理等;但不适用于氦质谱检漏仪、离子迁移谱。 标准意义质谱仪器是一类非常重要的科学仪器,其结构复杂,技术路线及技术组合多样,而规范的分类标准是数据有效统计和分析基础。《质谱仪器分类与代码》标准发布实施后,可规范质谱行业统计标准,实现行业经济、技术等信息互认与共享,做到数据可汇总、可比较、可分析;为政府、行业协会、社会组织等对质谱行业统计调查提供重要依据和支撑;同时为厂家的仪器名称命名提供规范参考。标准内容 l 质谱仪器分类原则:按照仪器结构和原理对质谱仪器进行分类,具体采用联用技术、离子化技术、质量分析器三个维度划分。l 分类方法:采用分面分类法,按“分面—亚面—类目”建立类表结构体系。根据质谱仪器的结构组成分为三个分面,每一分面根据对应的原理逐次分为若干亚面或若干类目。l 具体分类如下:分面一:按照联用技术划分根据质谱仪器联用技术分为直接离子化分析、色谱联用以及常用非色谱联用三个亚面。根据不同的色谱类型分为液相色谱、气相色谱、离子色谱、薄层色谱、超临界流体色谱、毛细管电泳6个类目;各类目再根据该色谱原理不同,再逐一划分。常用非色谱联用分为热解吸、流式细胞术、激光烧蚀3个类目。1) 直接离子化分析;2) 色谱联用划分为:a) 液相色谱包括:—液相色谱;—高效液相色谱;—超高效液相色谱;—多维液相色谱;b) 气相色谱包括:—气相色谱;—全二维气相色谱;c) 离子色谱;d) 超临界流体色谱;e) 薄层色谱;f) 毛细管电泳;3) 常见非色谱联用划分为:a) 热解吸;b) 流式细胞术;c) 激光烧蚀。4) 其他。分面二:按照离子化技术划分根据离子化原理不同,对常用的离子化技术进行分类。分为轰击离子化、电喷雾离子化、化学离子化、光致离子化、放电离子化、热离子化、场致离子化七个亚面。各亚面根据该种离子化原理是否有不同细分,再逐一划分若干类目。1)轰击离子化包括:a) 电子轰击离子化;b) 快速原子轰击离子化;c) 二次离子化;2) 电喷雾离子化包括:a) 电喷雾离子化;b) 解吸附电喷雾离子化;c) 纳升电喷雾离子化;d) 脉冲直流电喷雾离子化;e) 电喷雾萃取离子化;f) 电喷雾辅助激光解吸离子化;g) 极性反转电喷雾离子化;3) 化学离子化包括:a) 化学离子化;b) 大气压化学离子化;c) 质子转移反应;4) 光致离子化包括:a) 基质辅助激光解吸离子化;b) 单光子离子化;c) 多光子离子化;d) 激光解吸离子化;5) 放电离子化包括:a) 介质阻挡放电离子化;b) 辉光放电离子化;c) 低温等离子体离子化;d) 电晕放电离子化;e) 解吸电晕束离子化;f) 火花放电离子化;g) 电感耦合等离子体离子化;6) 热离子化;7) 场致离子化包括:a) 场解吸离子化;b) 场离子化;8) 其他。分面三:按照质量分析器类型划分根据质谱仪器的主质量分析器(输出最终分析结果的质量分析器)的不同原理,划分为五个亚面,分别为四极杆质量分析器、飞行时间质量分析器、离子阱质量分析器、磁质量分析器、傅里叶变换质量分析器。各亚面根据该种质量分析器原理不同,再逐一划分若干类目。1) 四极杆质量分析器;2) 飞行时间质量分析器包括:a) 直线飞行时间质量分析器;b) 单次反射飞行时间质量分析器;c) 多次反射飞行时间质量分析器;3) 离子阱质量分析器包括:a) 二维离子阱质量分析器;b) 三维离子阱质量分析器;4) 磁质量分析器包括:a) 单聚焦质量分析器;b) 双聚焦质量分析器;5) 傅里叶变换质量分析器包括:a) 静电阱质量分析器;b) 离子回旋共振质量分析器;6) 其他。l 质谱仪器代码:分为英文代码和数字代码两种方式;英文代码以质谱仪器主要结构的英文简称组合表示,数字代码以纯数字组合表示。起草单位标准由广东省麦思科学仪器创新研究院牵头编制,广州禾信仪器股份有限公司、暨南大学、宁波大学、中国计量科学研究院、中国广州分析测试中心、赛默飞世尔科技(中国)有限公司、杭州谱育科技发展有限公司、宁波华仪宁创智能科技有限公司、常州磐诺仪器有限公司、中国科学院苏州生物医学工程技术研究所、上海质谱仪器工程技术研究中心、北京东西分析仪器有限公司、江苏天瑞仪器股份有限公司、钢研纳克检测技术股份有限公司、苏州安益谱精密仪器有限公司、北京清谱科技有限公司、山东英盛生物技术有限公司、安捷伦科技(中国)有限公司、珀金埃尔默企业管理(上海)有限公司、岛津企业管理(中国)有限公司、西北核技术研究院共同参与完成。标准起草单位涵盖了国内外质谱厂商、高校和研究机构等22家单位,具有广泛代表性。
  • 新规丨《检验机构认可领域分类》征求意见
    关于CNAS-AI03:20XXXXXX《检验机构认可领域分类》网上征求意见的通知各相关机构及人员:为适应我国检验机构认可的发展需要,中国合格评定国家认可委员会(CNAS)组织开展了CNAS-AI03《检验机构认可领域分类》修订工作。现就文件征求意见稿网上公示征求意见。如对该文件有任何修改建议或意见,请填写附件中意见征询表,并于2021年12月25日前反馈CNAS秘书处。联系人:殷建武电话:010-67105395Email:yinjw@cnas.org.cn附件1:CNAS-AI03 检验机构认可领域分类修订稿(征求意见稿)附件2:AI03检验机构认可领域分类修订说明附件3:CNAS文件意见征询表附件1:CNAS-AI03 检验机构认可领域分类修订稿(征求意见稿)附件2:AI03检验机构认可领域分类修订说明一、文件修订背景及必要性现行有效的CNAS-AI03《检验机构认可领域分类》中的领域分类早期参照澳大利亚认可组织NATA的领域分类编制,已延用十余年。该检验机构认可领域分类代码由检验类别和检验领域两级4位代码组成,共13个检验类别,分别为01(农业和农产品)、02(工业机械设备)、03(制成品)、04(天然资源和精加工产品)、05(工商业建筑及维护)、06(建筑物的建造和维护)、07(运输)、08(旅游设施)、09(工厂检验)、10(健康检验)、11(技术法规检验)、12(信息技术)、13(环境及环保产品)。近年来,随着检验机构认可规模的不断扩大,认可领域范围也在不断拓宽,原有的领域分类已不能适应我国检验机构认可的发展需要,同时为更好地指导检验机构及相关方正确识别和规范描述检验能力,中国合格评定国家认可委员会(CNAS)立项“检验机构认可领域分类的研究与应用”等科研项目,组织研究修订CNAS-AI03《检验机构认可领域分类》。二、文件修订原则1. 继承和发展相结合原则新的分类结合CNAS已开展认可的检验机构能力范围和今后一段时期的认可需求制定。充分考虑CNAS在商品检验、建设工程、特种设备、交通运输、网络安全、节能与环保、公共服务等领域已认可检验能力,同时关注近年来相关行业发展动态及其带来的认可需求。2.科学性原则文件修订参考《国民经济行业分类》(GB/T 4754-2017)、中国标准文献分类法、《商品名称及编码协调制度的国际公约》等相关分类方法,结合ILAC指南文件ILAC-G28:07/2018《Guideline for the Formulation of Scopes of Accreditation forInspection Bodies》、ILAC-G27:07/2019《Guidance on measurements performed as part of an inspection process》的相关内容,以检验对象(产品、过程、服务和安装)的生命周期为主线,梳理和细化了检验对象的检验领域和检验子领域以及检验对象在生命周期不同阶段的检验活动,更系统全面地反映了检验机构认可领域在我国国民经济活动中的分布现状和检验机构认可工作涉及的领域,具有科学性和合理性。3.可行性原则与现行版本相比,修订后的分类更加细化,检验机构认可领域采用检验领域、检验子领域、检验项目结合的结构模式,6位编码方式,同时在检验领域、检验子领域和检验项目中合理增加99其他(其他检验)代码,使分类代码具有可扩充性。其中,检验领域分为01~13(商品检验相关检验领域)、20(建设工程)、30(特种设备)、40(交通运输)、50(网络安全)、60(节能与环境保护)、70(公共服务)。在检验子领域中,根据建设工程的认可需要,02(建设工程)的检验子领域中设立了2100(地基基础、地下空间工程及岩土工程)~2700(电力、通讯建设工程)并各自细分,如2101(地基)、2102(基础)等。表格中检验项目与检验领域(子领域)对应,考虑到表格的实用性、避免重复性,尽量将同一检验对象的检验项目集中排列编码。在文件修订过程中,邀请了相关检验机构代表试填技术能力,进一步完善了分类的可行性。三、修订方式本次修订后的文件与现行有效的版本CNAS-AI03:20200831《检验机构认可领域分类》在结构和内容方面存在较大差异,为换版修订。附件3:CNAS文件意见征询表
  • 拉曼光谱赋能智能手机,实现精准药物分类
    光谱信息可视为材料的独特“指纹”,利用无处不在的智能手机,实现检测、记录、分析材料的光谱信息,一直是科学家和消费者所期待的。由于线上药店和药品供应链的不断增加,假药甚至已逐渐威胁到了公共健康安全。而拉曼光谱可以为药物分类识别提供有价值的信息。据麦姆斯咨询报道,近日,韩国三星综合技术院(Samsung Advanced Institute of Technology)、忠南大学(Chungnam National University)、成均馆大学(Sungkyunkwan University)和韩国中央大学(Chung-Ang University)组成的科研团队在Nature Communications期刊上发表了以“Drug classification with a spectral barcode obtained with a smartphone Raman spectrometer”为主题的论文。三星综合技术院的Un Jeong Kim和Suyeon Lee为该论文的共同第一作者,通讯作者为三星综合技术院的Hyuck Choo。这项研究重点展示了基于智能手机的拉曼光谱仪,该设备足以用于药物分类。该拉曼光谱仪是由三星Galaxy Note 9智能手机图像传感器上的二维(2D)带通滤波器周期阵列与紧凑型外置拉曼模块组成。该图像传感器所捕获的拉曼强度图被定义为类似于传统条形码的拉曼光谱条形码,即能够进行定位、识别和/或跟踪功能的机器可读光学标签。研究中,利用卷积神经网络(CNN)对药物的11种主要成分进行分类,准确率高达99.0%。光谱条形码的优势在于:它可以识别药物的品牌名称和未知药物的主要成分。将光谱条形码与红绿蓝(RGB)成像系统所获信息相结合,或直接应用图像识别技术,这种基于材料固有特性的标签系统将促进基础研究的进步并有望获得更多商业机遇。图1为基于智能手机的拉曼光谱仪和光谱条形码示意图。光谱条形码即通过智能手机拉曼光谱仪获取的2D拉曼强度图,智能手机内嵌了用于分类的人工智能(AI)算法。拉曼信号由一个集成了785 nm激光二极管的紧凑型外置模块来产生和收集。小型化的外置拉曼模块安装于Galaxy Note 9的后置摄像头上。图1 基于智能手机的拉曼光谱仪和数据处理分析的示意图研究人员演示了使用智能手机拉曼光谱仪进行药物分类的实验。该研究选择了三种常见疾病(高血压、糖尿病和高脂血症)最常用的处方药和三种非处方药(维生素B6、维生素C和对乙酰氨基酚)来进行药物分类实验。图2显示了在高血压、糖尿病、高脂血症和其他非处方药中发现的11种主要成分的代表性光谱条形码。图2 11种主要药物成分的代表性光谱条形码图3呈现了基于光谱条形码技术的药物分类数据处理示意图。当与CNN相结合时,拉曼光谱可成为预测药物主要成分甚至药物品牌的强大工具。图3 光谱条形码编码及数据处理分析的示意图图4展现了用于对药物主要化学成分进行分类的混淆矩阵。混淆矩阵主要用于评估药物分类的准确性、比较药物实际类别,并利用分类算法预测药物类别。图4 54种药物主要成分分类的混淆矩阵有时可能需要识别同一药物组中药物的名称和品牌,这是因为不同药物品牌特定的添加剂或涂层会影响药物在体内的作用过程,例如吸收速度或过敏反应。图5显示了三种品牌二甲双胍药物(Diabex 1000mg、Dybis、Glu-M SR)的光谱条形码及其光谱。图5 具有相同主成分的药物的光谱条形码比较综上所述,该研究介绍了利用基于智能手机的拉曼光谱仪获得光谱条形码的构想和实验。与安装光栅和CCD的市售光谱仪相比,尽管由于带通滤波器阵列和CMOS图像传感器的固有特性,智能手机拉曼光谱仪仍获得了相对较低的光谱分辨率和信噪比(SNR);但作为便携式光谱仪,其品质因数(Q因数)仍足够高,而且功耗低。只需要外部光源和收集光学元件就可以从药物样品中激发并收集其拉曼信号,无需额外将电路板连接到智能手机。这使得这款智能手机光谱仪更为紧凑(外置模块最小化),用途更广泛。在智能手机光谱仪中集成人工智能功能,可使开发的光谱仪功能更加强大。实验结果表明:(1)利用包含弱拉曼信号的光谱条形码进行药物分类,对药物主要成分识别和药物品牌识别的准确率分别为99.0%和79.5%。(2)通过结合CNN处理药物的RGB图像,可将药物品牌识别的准确率提高到83.2%。未来,通过减小通道(CH)尺寸到像素级并增加通道阵列密度,利用智能手机摄像头有望同时测量目标的光谱和形态信息,即实现高光谱成像。这将大大提高光谱仪的便携性和可用性,在智能手机领域开辟新的应用。这项研究获得了韩国国家研究基金(NRF-2021R1F1A1062182、NRF- 2020R1A6A1A03047771、NRF-2021R1A2C1010747)和韩国卫生福利部(HR21C0885)的资助和支持。论文链接:https://doi.org/10.1038/s41467-023-40925-3
  • 《绿色低碳技术专利分类体系》印发
    近日,国家知识产权局办公室印发了《绿色低碳技术专利分类体系》国知办函规字〔2022〕1044号。绿色低碳技术专利分类体系一、制定目的为深入贯彻党的二十大关于加快发展方式绿色转型、积极稳妥推进碳达峰碳中和的精神,落实《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《国务院关于印发 2030 年前碳达峰行动方案的通知》等重大战略决策,按照《国务院关于印发“十四五”国家知识产权保护和运用规划的通知》(国发〔2021〕20 号)部署要求,围绕“双碳”目标,明确绿色低碳技术专利统计监测依据,促进绿色低碳技术专利国际交流和转移转化,推进绿色低碳技术创新和专利产业化,特制定本分类体系。二、定义和范围绿色低碳技术包括主要通过传统能源清洁利用、节能增效、新能源利用和温室气体捕集利用封存等实现减碳、零碳和负碳效果的有关技术,不包括减污、资源循环利用等起到降碳协同效果的绿色技术。绿色低碳技术专利,是指以绿色低碳技术为发明主题的专利,与现有技术相比,应当具有降低碳排放的技术效果。三、编制原则(一)以党中央、国务院重要部署为指导。本分类以《中共中央 国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》《国务院关于印发 2030 年前碳达峰行动方案的通知》等有关重要政策文件为指导。(二)以推动绿色低碳技术创新为导向。本分类聚焦低碳零碳负碳关键核心技术,结合绿色产业指导目录、国家工业节能技术推荐目录、节能环保清洁产业统计分类等,重点选取与碳排放直接相关的技术,构建与专利衔接的分类体系,支撑绿色低碳技术知识产权保护和转化。(三)以突出国情和发展阶段为特征。本分类立足我国富煤贫油少气能源资源禀赋,坚持先立后破,有计划分步骤实施碳达峰行动,突出传统化石能源特别是煤炭清洁高效利用技术创新,关注节能降耗和替代能源技术的发展,促进生产方式和生活方式绿色化转型。(四)以国际专利分类体系为基础。本分类体系构建上采用国际专利分类与绿色低碳技术对照的架构,借鉴世界知识产权组织绿色技术清单和日本特许厅的绿色转型技术清单等,实现分类体系国际可比,支撑全球绿色低碳技术数据库的构建,助力绿色低碳技术专利国际交流和转移转化。四、结构和编码本分类体系为独立的分类体系,采用线分类法,将绿色低碳技术划分为四级技术分支。一级技术分支包括化石能源降碳技术、节能与能量回收利用、清洁能源、储能技术、温室气体捕集利用封存等 5 个技术分支。其中,化石能源降碳技术包括煤炭清洁高效利用、石油及天然气清洁化等 2 个二级技术分支,下设 7 个三级技术分支、32 个四级技术分支;节能与能量回收利用包括节油技术、节气技术、节电技术、能量回收利用等 4 个二级技术分支,下设 14 个三级技术分支;清洁能源包括水能、太阳能、风能、海洋能、地热能、氢能,生物质能、核能等 8 个二级技术分支,下设 22 个三级技术分支、14 个四级技术分支;储能技术包括机械储能、热储能、电化学储能等 3 个二级技术分支,下设 7 个三级技术分支;温室气体捕集利用封存包括 CO2 的捕集利用封存、其它温室气体减排等 2 个二级技术分支,下设 6 个三级技术分支、16 个四级技术分支。将上述绿色低碳技术建立与国际专利分类的参照关系,经合并去重,共涉及国际专利分类表 8 个部、47 个大类、108 个小类、1090 个大组、9934 个小组。五、有关说明1. 本分类体系建立了绿色低碳技术与《国际专利分类表》的参照关系。绿色低碳技术对应一个或多个国际专利分类,表示该国际专利分类下专利与所述绿色低碳技术相关。2. 本分类体系“国际专利分类”列中“部分涉及”表示该国际专利分类层级及以下分类号的部分专利涉及绿色低碳技术;“全部涉及”表示该国际专利分类层级及以下分类号的所有专利都涉及绿色低碳技术。3. 本分类体系使用《国际专利分类表(IPC 2022)》为参照基础。六、绿色低碳技术专利分类体系表本分类体系表包含一级技术分支(5 个)、二级技术分支(19 个)、三级技术分支(56 个)、四级技术分支(62 个)共 142 个。七、绿色低碳技术专利分类体系参考检索式
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
  • 医疗垃圾易外泄?奥豪斯台秤协助上海医疗垃圾收集分类!
    2019年1月31日,上海市第十五届人民代表大会通过《上海市生活垃圾管理条例》,成为第一个中国垃圾分类试点城市。一时间,垃圾分类成为了大家热议的话题。其实,垃圾分类举措由来已久,特别是一些非生活垃圾如:工业垃圾、医疗垃圾等的分类回收政策颁布的更早、更严格。特别是医疗垃圾,从产生到处理,都必须遵照相关规定。如果医疗垃圾混入生活垃圾中,很可能造成医疗污染。但即使如此,仍然有许多人铤而走险,非法获取医疗垃圾进行再加工,用以制作日用品、甚至是儿童玩具。今年3.15晚会,就曝光了多地医疗垃圾黑色产业链。根据前瞻产业研究的研究报告显示,中国2018年的医疗废物总产量已突破200万吨,医疗废物市场规模将达到76亿元多。预计到2023年,医疗废物处理市场规模将达到107.37亿元,同时产量达到249.56万吨。这样巨大的医疗废物产量,如果管理不善、处理不严,纪录片《塑料王国》中幼童拿着未经过灭菌处理的废弃注射器做玩具的场景就不会减少。那么,到底什么是医疗垃圾,医疗垃圾又该如何处理,小奥带大家了解一下:1. 什么是医疗垃圾呢?医疗垃圾是指接触过病人血液、肉体等,而由医院生产出的污染性垃圾。如使用过的棉球、纱布、胶布、废水、一次性医疗器具、术后的废弃品、过期的药品等等。*据国家卫生部门的医疗检测报告表明,由于医疗垃圾具有空间污染,急性传染和潜伏性污染等特征,其病毒,病菌的危害性是普通生活垃圾的几十、几百甚至上千倍。其含有大量传染性病源体,危害性明显高于普通生活垃圾,若管理不严或处置不当,医疗废物极易造成对水体、土壤和空气的污染,极易成为传播病毒的源头,并造成疫情的扩散。2. 医疗垃圾怎么分类呢?(点击可看大图??)3. 医疗垃圾如何处理呢?世纪90年代中期,环卫部门在开展了医疗垃圾的管理与处理工作,成立专门机构并配备专职人员到医疗机构定时收集和集中处置医疗垃圾,逐步完善了医疗垃圾污染控制流程的管理制度,在整个处理医疗垃圾的过程中能够严格按照国家有关标准和技术规定执行。医疗垃圾(或称“医疗废物”)收集运送有着以下的严格流程:按类别分置于专用包装物或容器内,确保包装物或容器无破损、渗漏和其他缺陷,破损的包装应按治疗废物处理。废物盛放不能过满,大于3/4时就应封口,封口紧实严密,注明科室和数量。分类收集,禁混;禁漏;禁污(利器放入利器盒内,非利器放入包装袋内)。运送时防止流失、泄露、扩散和直接接触身体;运送医疗废物应使用防渗透、放遗撒、无锐利边角、易于装卸和清洁的专用运送工具,各种包装和运送工具应有专用医疗废物标识。建立医疗废物暂存处、设备,不得露天存放,并设专人负责管理。做好登记,内容包括来源、种类、重量和数量、交接时间、最终去向及经办人签名等,资料保存三年。对垃圾暂存处、设施及时清洁和消毒处理,禁止转让买卖医疗废物。医疗垃圾存放时间不得超过2天,每日工作结束后对运送工具进行清洁消毒。发生医疗废物流失、泄露、扩散和意外事故发生时,应在48小时内及时上报卫生行政主管部门;导致传染病发生时,按有关规定报告,并进行紧急处理。在此流程中,医疗废物从收集到离开医院,如果在垃圾收集称重时没有做好数据收集及上传,很容易出现纰漏,可能造成医疗废物外流。上海某家医院,为了保证医疗垃圾收集流程的严谨,购买了奥豪斯Defender台秤进行垃圾称重。奥豪斯Defender台秤可支持50000条物料数据及1000个用户配置信息的存储及上传下载,值得一提的是:其在支持常规格式存储的同时,还支持Alibi存储——该存储模式保证数据不可篡改,可保证每次称重的数据真实可靠。 同时,它还具备丰富的称重应用功能,设置简单,数据输出符合GMP/GLP时间日期要求,确保称重数据可追溯。 在数据传输时,丰富的通讯接口(可选配:RS232/485/USB)可为您提供多种便捷的数据传输方式。您既可存储在Micro SD卡中,也可以通过以太网、WiFi/蓝牙等多种方式进行数据传输,可以有效保证数据的安全性。 奥豪斯Defender台秤的仪表屏幕自带导航功能,超大字符配合背光显示,称量结果清晰可见,结合字母-数字键及功能键,操作很方便。 秤体采用不锈钢秤盘及全不锈钢架,防护等级高达IP67。仪表也配备了全不锈钢外壳,防护等级高达IP68。以上这些功能,保证了医院产生的每一批医疗垃圾在离开医院前都经过了严谨的称重管理,每袋垃圾都可追溯,责任到人。有效帮助医院进行医疗垃圾的收集与管理,降低医疗垃圾外流的风险。参考文献:1.百度百科-医疗垃圾2.AI医疗:一个垃圾桶背后的挑战》,严璇,2018.10.24 ,智能相对论 3.《2018年医疗废弃物处理市场现状与2019年发展趋势分析 设备供需缺口较大【组图】》孙世峰,2018.12.21前瞻经济学人4.《国家危险废物名录(2016版)》 关于奥豪斯你可能还想看(点击图片即可查看)如果您想了解更多关于奥豪斯工业衡器-Defender系列产品信息,请进入「阅读全文」或进入奥豪斯展台,留下您的信息,我们的专业工程师将竭诚为您服务! ▼
  • 联用“火眼金睛”,助力垃圾分类
    7月1日开始,上海将严格执行垃圾分类啦!扔错就要罚款!垃圾到底该怎么分类?上海市绿化市容局发布2019年版垃圾分类权威指南,垃圾分类,关键要掌握分类原则:可回收物:记材质,玻、金、塑、纸、衣;有害垃圾:非常少,主要是废电池、废灯管、废药品、废油漆及其容器;湿垃圾:看是否容易腐烂、粉碎;干垃圾:其余为干垃圾,当发现有混淆模糊不能准确判断类别的垃圾时,也可以归为干垃圾。为什么这么分类?这主要是依照后续垃圾处理方式的不同:可回收物:通常可以通过各种形式的回收利用,将可回收废弃物转变为再生资源重新使用;湿垃圾:国内易腐垃圾通常可以通过热水解预处理、压榨分离有机液体和无机残渣、厌氧处理有机液体这三步,充分分解易腐垃圾中的有机成分;有害垃圾和干垃圾:通常则是通过多种 “无害化” 手段处理后再采用分类拆解(例如电池中的汞可以通过加热富集方式加以回收、剩下的金属如铁、锌、锰等则可利用磁场等回收利用)、焚烧、深埋等方式加以循环利用处理。填埋需要占用大量土地资源,目前越来越多的地区都选择焚烧发电的方式来处理可燃性垃圾。焚烧垃圾成分分析,珀金埃尔默有妙招虽然垃圾分类已经把湿垃圾和可回收物分类处理减少了焚烧垃圾的量,然而这些焚烧的垃圾种类纷繁复杂,并非所有的固体废弃物都可直接进入焚烧炉进行能源回收处理。如果垃圾分类措施选择不当,混杂在一起的废弃物会产生次生反应,造成有毒有害物质的二次排放,因此非常有必要对主要固体废弃物的裂解成分及裂解机理等进行研究。珀金埃尔默的热重-气质联用技术不仅可完美模拟焚烧炉的处理工艺,而且还可详细研究不同种类固体废弃物的裂解逸出气体的成分,比如聚碳酸酯(如废弃的CD或DVD光盘)的裂解过程可能会产生双酚A等违禁物质、而聚氨酯(如废弃鞋底)的裂解则会产生异氰酸酯、增塑剂等物质。有了联用技术这双“眼睛”,可以协助建立各类主要垃圾废弃物的裂解“基因库”,助力垃圾分类处理的持续健康发展。珀金埃尔默基于热重-气质联用技术,对电子垃圾在不同氧化条件下燃烧过程释放的有毒化合物进行识别和定量:通过热重分析,获得了失重曲线(TG)和失重的倒数曲线(DTG),并对热解过程中的热降解特性进行了评估。电子垃圾的热解性质因样品采集位置不同而有很大差异。聚合物外壳材料的热降解通常很快,发生温度为320℃到340℃之间,其热重曲线平滑,只有一条导数热重曲线。600℃下聚合物失重接近100%,这表明聚合物组分热解后不会留下残余灰分。而印刷电路板样品的初始分解温度分别为362℃和413℃。印刷电路板样品的热解分为多个阶段,包括444℃下的挥发和炭化氧化。在快速失重和热解逸出物释放后,剩余质量保持在50%以上。TG-DTG热分析,有效地反映了电子垃圾样品的热降解特性及生成产物和副产物的总体反应程度。通过使用TGA/GC/MS 对印刷电路板(PCB)样品热解过程中释放的热解产物进行定性分析发现,印刷电路板的热解产物是芳烃、芳香族卤代芳烃,它们都是溴化阻燃剂和环氧树脂的副产物。各种聚酯的热裂解释则释放出多环芳烃(如苯并呋喃)等高毒性化合物。电子垃圾含有大量的卤素,例如电路板含有溴化阻燃剂,而电线则外部包裹着聚氯乙烯(PVC)塑料。电子垃圾的热解不仅有可能释放大量的半挥发性有毒元素,而且有可能产生有毒的含卤有机污染物,包括多氯代二苯-对-二恶英、溴代二恶英和呋喃。这些有机化合物难以降解,在环境具有生物积累性,对人体的生殖、发育和免疫功能有毒性作用。TG-GC/MS分析产生数据将用于更好地了解电子垃圾处理过程产生的排放物和危害,以及如何减少排放并降低危害。想要了解联用技术分析电子垃圾的详细方法吗?赶快来扫描下方二维码下载相关应用资料吧!关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 赛默飞收购Propel Labs新型光谱细胞分选技术 细胞分类速度提高10倍!
    Thermo Fisher Scientific周三宣布,已从生物技术仪器公司Propel Labs收购细胞分选技术。Propel Labs是Sidis的全资子公司,总部位于科罗拉多州的Fort Collins。根据协议,Propel Labs的Bigfoot光谱细胞分选技术将成为赛默飞世尔生命科学解决方案部门的生物科学业务的一部分。Thermo Fisher还将从Propel Labs招聘大约40名员工,而Propel Labs将继续作为一个独立的实体,仍然为现有客户服务。交易的财务条款没有披露。据Thermo Fisher 公司介绍,Bigfoot光谱细胞分选技术将通过提供更强大的分选能力、更快的吞吐量和新颖的安全特性来增强现有流式细胞仪的性能。具体来说,与其他技术相比,它在保持细胞活力和提高易用性的同时,将细胞分类速度提高了10倍,且拥有一个集成的II类生物密封系统。Thermo Fisher执行副总裁兼首席运营官Mark Stevenson在一份声明中表示:“我们期待着欢迎才华横溢的推动Propel Labs Bigfoot 的团队成员带来额外的流式细胞仪技术,研发能力,有助于进一步提升我们的细胞分析和细胞疗法研究业务。”
  • 东西分析Ebio Reader 3700 Plus飞行时间质谱仪通过NMPA认证
    重磅!近日,由北京东西分析仪器有限公司全资子公司东西分析仪器(天津)有限公司注册的Ebio Reader 3700 Plus飞行时间质谱仪通过NMPA认证,获得第二类医疗器械注册证(证书号:津械注准20222220402)。 飞行时间质谱仪为填补天津市此领域技术空白的医疗器械产品,落地伊始,天津市各级政府特别是东丽经济技术开发区管委会和东丽区科技局给予了高度重视并大力支持;同时东西分析(天津)做为被孵化企业,也受到了中科院苏州医工所下属天津国科医工科技发展有限公司全方位的精准对接和鼎力相助。 Ebio Reader 3700 Plus飞行时间质谱仪基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术原理,具有高灵敏度、高精度、检测时间短、应用范围广等特点,目前在临床上用于微生物的鉴定。 同时基于此多功能质谱技术平台,紧贴市场需求,东西分析又开发出多种疾病蛋白标志物和核酸基因分型检测的应用方案:如建立的蛋白指纹图谱模型,可用于对新冠肺炎病毒的早期和精准检测;对严重威胁人类健康的阿尔茨海默病(AD)&帕金森(PD)中相关蛋白组标志物进行检测,可用于AD及PD的早期和预后监测;采用核酸质谱技术实现了对混合致病菌的快速鉴定等。因此,东西分析拥有的多种应用方向的质谱技术,未来将为包括癌症、老年痴呆症、脑卒中等常见病和疑难病的精准检测提供坚实基础。Ebio Reader 3700 Plus飞行时间质谱仪操作简单无需复杂的样品前处理。性能稳定长寿命固体激光器,波长355nm,频率1-1000Hz可调;飞行管随环境温度、湿度的变化小,保证检测的稳定 ;高效网筛离子源,提高仪器的灵敏度 ;PIE高压脉冲电源控制,实现离子的延迟推斥,提高整体仪器的分辨能力。 仪器分辨率测试软件智能基于神经网络聚合分类法的人工智能软件;拥有强大数据库,实现对菌种的实时鉴定;具备聚类分析功能,可进行T-test等数据分析;具有自建库功能,可根据用户实际情况建立自有菌种库 ;可根据用户具体需求,进行相应升级,用于疾病蛋白标志物和核酸基因分型的检测。 难分辨菌群大肠埃希菌与福氏质贺菌分析 应用范围广广泛用于临床、疾控、食品安全、农业、工业、出入境检疫等领域。 东西分析仪器(天津)有限公司东西分析仪器(天津)有限公司坐落于天津东丽开发区国际医疗器械产业园,具有分析仪器研发、生产及销售一体化能力,为北京东西分析仪器有限公司全资子公司。东西分析仪器(天津)有限公司成立以来已成为天津市多个行业联盟成员天津市生命科学及医疗器械产业技术创新战略联盟天津市生物医药人才创新创业联盟天津市东丽区医疗器械产业知识产权联盟同时为:天津市分析测试协会共建合作单位天津市色谱协会理事单位东西分析仪器(天津)有限公司专注于医疗卫生、生命科学、食品安全等领域,不断推出高端精准医疗产品,为人类健康事业做出自己的贡献。完美分析,辉映东西!
  • 全球首个“藻类分类图谱专家系统”发布
    (2010年8月9日,杭州)--中国领先的微生物检测技术和设备供应商-杭州迅数科技有限公司-今天宣布&ldquo Algacount藻类分类图谱专家系统&rdquo 正式发布,这是中国科学家领导国际合作建立的全球首个藻类分类图谱专家系统,将极大的满足在我国大范围开展藻类监测工作在&ldquo 系统性专业藻类分类图谱&rdquo 和&ldquo 鉴定分析技术人员培训&rdquo 方面的迫切需要。 &ldquo 显微镜检观察技术&rdquo 是目前有害藻华(Harmful Algal Blooms,HABs)(包括海洋赤潮和淡水水华)生物定性及定量研究的主要技术手段。显微观察技术需要专业人员操作,对专业技术知识和经验要求非常高。然而,由于近10几年来对藻类监测工作的不够重视,目前中国藻类学基础科研与检测人才培养现状不容乐观:虽然经国家水利部水文局在全国举办过几次培训班,现有的藻类鉴定分析技术人员和技术手段仍然无法满足我国大范围开展藻类监测工作的迫切需求! &ldquo 显微镜检观察技术&rdquo 主要是对有害藻华生物的形态学特征或显微结构进行研究和分析,通过与专业图谱的比较来进行有害藻华生物的种类判别和统计。为保证能在尽可能短的时间内展开工作,我国的藻类监测人员急需能够满足系统性藻类研究需要的藻类分类图谱和专业研究设备! 杭州迅数科技有限公司响应国家需要,中国研发基地利用其全球研发网络,与已经开展国家藻华监测研究计划的美国、日本、澳大利亚等多个国家的浮游植物专业研究机构展开合作,历时2年获取了近4000幅华美的专业藻类图片的使用版权,研发出全球首个&ldquo Algacount 藻类分类图谱专家系统&rdquo ,并将其整合于受到广泛好评的&ldquo Algacount 藻类辅助鉴定计数仪&rdquo 。迅数科技建立了涵盖中国常见藻类的11个门、672属、3350种藻类形态数据库,分别涉及:蓝藻门、绿藻门、硅藻门、裸藻门、黄藻门、褐藻门、甲藻门、隐藻门、金藻门、红藻门、轮藻门。每种藻以中文,拉丁文双命名,辅以真实的显微照片、手绘结构图和详尽的形态文字描述。用户可以用中文名或拉丁文名搜索某个具体的藻类,或按门、属、种的分类学次序进行搜索。用户还可凭借自己的专业知识选择某个门,该门下所有属的典型种合成图以队列形式出现,与实际拍摄的未知藻类进行特征对比,即实现快速鉴别藻的种类。尤其适合水生生物鉴定分析技术人员的有效和快速培训。 据迅数科技的科学家介绍:&ldquo Algacount 藻类分类图谱专家系统&rdquo 除了&ldquo 专家辅助鉴定&rdquo 功能外的最大特色是根据当前中国&ldquo 水环境监测规范&rdquo 和&ldquo 近海污染生态调查和生物监测规范&rdquo 的规定所建立的 Algacount专业藻类图库。 Algacount专业藻类图库包含了中国几乎所有常见的淡水藻类和海洋藻类;而且其分类标准和规范符合中国科学出版社出版的《中国淡水藻志》、《中国淡水藻类》和《中国近海赤潮生物图谱》等权威藻类分类工具书的分类标准和规范。 Algacount专业藻类图库中的淡水藻类图库基本覆盖了中国七大水系、28个重点湖库的常见种属,尤其是富营养化较严重的湖泊,如太湖、滇池、巢湖等。建立了全国各地常见水华的藻种图库,如隠藻水华、微囊藻水华、鱼腥藻水华、硅藻水华、金藻水华、角藻水华等等。Algacount专业藻类图库中的海洋藻类图库以中国东海、渤海、黄海、南海常见浮游藻类为主,同时专门建立了中国近海常见赤潮微藻图库。 据悉:Algacount 藻类辅助鉴定计数仪作为首台可以精确到属和种的藻类分类计数仪,继在2009年中国藻类学会30周年庆典大会上获得肯定后,又于2010年5月在上海举办的中国环境科学年会获邀发表专题技术报告-&ldquo Algacount 藻类辅助鉴定计数仪技术及其在水质监测中的应用&rdquo 并受到国内外专家的高度评价。中国水产科学研究院,水利部太湖水环境监测中心,苏伊士环境-中法水务,法国威立雅水务等大型研究与检测机构已成为首批应用Algacount 藻类辅助鉴定计数仪的荣誉客户。 又讯:2010年6月25日,中国科学院国家生化工程重点实验室刘春朝课题组在国际权威刊物《Journal of Chemical Technology & Biotechnology》上发表了采用迅数Algacount藻类分析技术进行藻类定量实验的研究成果(《Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae》)。这是迅数科技多年来与国内外重要科研机构积极开展合作取得的又一成就。
  • 把上海人“逼疯”的垃圾分类,带来哪些仪器商机?
    p   “你是什么垃圾?” /p p   谁能想到,这直击灵魂深处的拷问,有一天竟成了上海朋友的日常。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/2dcec9ab-b297-4c0f-be97-9c270acd0849.jpg" title=" 1.png" alt=" 1.png" / /p p   2019年7月1日起(也就是今天),新的《上海市生活垃圾管理条例》将全面实施。该条例将垃圾分为了可回收物、有害垃圾、湿垃圾和干垃圾4类,要求上海市民对垃圾进行分类投放。个人如果混合投放垃圾最高可罚200元,单位混装混运最高可罚5万元。 /p p   于是,最近的上海人不谈股票和房价,甚至连朋友也不谈,一门心思统统扑在垃圾上& #8230 & #8230 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4922b804-0f56-4685-8c48-fc08c00a4c68.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p   每天下楼扔垃圾前,面对一堆剥过的小龙虾、啃过的胡萝卜、没喝完的奶茶、喵咪尿过的猫砂等等,上海人不禁扪心自问:这究竟是什么垃圾? /p p   而且据说这个问题的难度,不亚于高考数学。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ab35853f-7dfd-4cc3-8cb9-da07b106897b.jpg" title=" 3_副本.jpg" alt=" 3_副本.jpg" / /p p   庆幸的是,上海市绿化和市容管理局已经发布了官方“考试大纲”——《上海市生活垃圾分类投放指南》。 /p p   先来看看垃圾到底该怎么分类: /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/3b5331c3-5414-422b-a321-0ad50d7936ce.jpg" title=" 4_副本.jpg" alt=" 4_副本.jpg" / /p p   有了大纲,弄清楚垃圾分类标准,身为“实验猿”的你就能逃离被垃圾支配的恐怖吗? /p p   显然,事情没那么简单! /p p   身处实验室,生活垃圾的分析检测或许与我们的日常工作紧密相关。 /p p   其中,生活垃圾检测相关的国家标准就包括但不限于: /p section data-role=" paragraph" class=" _135editor" style=" border: 0px none " section style=" margin: 15px white-space: normal " section style=" line-height: 10px color: inherit border-top: 1px solid #c6c6c7 border-bottom: 1px solid #c6c6c7 margin-top: 10px " section style=" font-size: 40px color: inherit height: 8px margin-left: 35% width: 65% background-color: #fefefe margin-top: -1px " data-width=" 65%" span style=" color: #c6c6c7 " “ /span /section section style=" margin: 5px 15px 20px text-align:justify " section class=" 135brush" style=" line-height: 1.75em color: #595959 font-size: 14px letter-spacing: 1.5px " p GB 16889-2008 生活垃圾填埋场污染控制标准 /p p GB 18485-2014 生活垃圾焚烧污染控制标准 /p p GB/T 18750-2008 生活垃圾焚烧炉及余热锅炉 /p p GB/T 18772-2008 生活垃圾卫生填埋场环境监测技术要求 /p p GB/T 18772-2017 生活垃圾卫生填埋场环境监测技术要求 /p p GB/T 19095-2008 生活垃圾分类标志 /p p GB/T 23857-2009 生活垃圾填埋场降解治理的监测与检测 /p p GB/T 25032-2010 生活垃圾焚烧炉渣集料 /p p GB/T 25179-2010 生活垃圾填埋场稳定化场地利用技术要求 /p p GB/T 25180-2010 生活垃圾综合处理与资源利用技术要求 /p p GB/T 34552-2017 生活垃圾流化床焚烧锅炉 /p p GB/T 34615-2017 水泥窑协同处置的生活垃圾预处理可燃物燃烧特性检测方法 /p p GB/T 35170-2017 水泥窑协同处置的生活垃圾预处理可燃物 /p p GB/T 35171-2017 水泥窑协同处置的生活垃圾预处理可燃物取样和样品制备方法 /p p GB/T 35172-2017 水泥窑用耐火材料抗生活垃圾预处理可燃物侵蚀性试验方法 /p p GB 50869-2013 生活垃圾卫生填埋处理技术规范 /p p GB 51220-2017 生活垃圾卫生填埋场封场技术规范 /p /section /section section style=" font-size: 40px background-color: #fefefe color: inherit text-align: right height: 10px margin-bottom: -8px width: 65% " data-width=" 65%" span style=" color: #c6c6c7 " ” /span /section /section /section /section p   那么,实验猿该如何搞定生活垃圾的分析检测? /p p   仪器信息网整理了生活垃圾相关的检测项和检测方法,宝典奉上: /p p style=" text-align: left " span style=" color: rgb(227, 108, 9) " strong span    /span 1、生活垃圾化学特性分析 /strong /span /p p   想要摸清生活垃圾检测和处理的窍门,必须对其化学特性有所了解。依照标准,在分析生活垃圾的化学特性时,实验猿常要面对的检测项有水分、灰分、热值、pH值、有机质、重金属元素、氮素等。 /p p   天平、马弗炉、坩埚、氧弹量热仪等设备是检测垃圾中水分、灰分、热值的得力助手。但需要测定垃圾中铅、镉、铬、汞等重金属元素时,原子吸收分光光度计、电感耦合等离子体发射光谱仪、原子荧光光谱仪等光谱又能派上用场。 /p p style=" text-align: center " strong 生活垃圾化学特性通用检测方法 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 235" nowrap=" nowrap" p style=" text-align:center " strong 检测项 /strong /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " strong 分析方法 /strong /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 含水率 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 可燃分、灰分 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 灼烧法 /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 热值 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 氧弹量热法 /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 氯 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 艾氏卡混合剂熔样-硫氰酸钾滴定法 /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 有机质 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 灼烧法 /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " 重铬酸钾氧化法 /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 3" p style=" text-align:center " 总铬 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 二苯碳酰二肼比色法 /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 火焰原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 火焰原子吸收分光光度法 /span /a /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" title=" 电感耦合等离子体发射光谱法(ICP-AES)" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电感耦合等离子体发射光谱法(ICP-AES) /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 汞 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 冷原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 冷原子吸收分光光度法 /span /a /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/36.html" target=" _blank" title=" 原子荧光法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子荧光法 /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " PH值 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 电极法 /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 3" p style=" text-align:center " 镉 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 火焰原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 火焰原子吸收分光光度法 /span /a /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 石墨炉原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 石墨炉原子吸收分光光度法 /span /a /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/39.html" target=" _blank" title=" 电感耦合等离子体发射光谱法(ICP-AES)" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电感耦合等离子体发射光谱法(ICP-AES) /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 铅 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 火焰原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 火焰原子吸收分光光度法 /span /a /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 石墨炉原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 石墨炉原子吸收分光光度法 /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 砷 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 二乙基二硫代氨基-甲酸银分光光度法 /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/36.html" target=" _blank" title=" 原子荧光法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子荧光法 /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 全氮 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 半微量开氏法 /p /td /tr tr td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/439.html" target=" _blank" title=" 定氮仪法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 定氮仪法 /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 全磷 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " 偏钼氨酸分光光度法 /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 全钾 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " dir=" ltr" a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 火焰光度法(原子吸收分光光度计发射法)" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 火焰光度法(原子吸收分光光度计发射) /span /a /p /td /tr tr td width=" 235" nowrap=" nowrap" p style=" text-align:center " 碳、氢、氮、硫、氧 /p /td td width=" 311" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/406.html" target=" _blank" title=" 元素分析仪法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 元素分析仪法 /span /a /p /td /tr /tbody /table p   span style=" color: rgb(227, 108, 9) " strong  2、生活垃圾填埋监测 /strong /span /p p   一直以来,中国处理城市垃圾的方法主要是以填埋和焚烧为主。以垃圾填埋来说,其优点在于操作简单,可以处理所有种类的垃圾。但占地面积大,同时存在严重的二次污染,例如垃圾渗出液污染地下水及土壤,垃圾堆放产生的臭气影响周边空气质量,另外,垃圾发酵产生的甲烷气体既是火灾及爆炸隐患,排放到大气中又会产生温室效应。 /p p   因此对生活垃圾填埋场进行环境监测和污染控制时,大气污染物、填埋气体、渗沥液、填埋场外排水、地下水时是最主要的监测对象,涉及到的检测方法有: /p p style=" text-align: center " strong 生活垃圾填埋场监测项目及分析方法 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 189" nowrap=" nowrap" p style=" text-align:center " strong 监测内容 /strong /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " strong 监测项目 /strong /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " strong 分析方法 /strong /p /td /tr tr td width=" 189" nowrap=" nowrap" rowspan=" 7" p style=" text-align:center " 大气污染物监测项目及分析方法 /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " 臭气浓度 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 三点比较式臭袋法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 甲烷 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 总悬浮颗粒物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 硫化氢 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 氨 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 次氯酸钠-水杨酸分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 甲硫醇 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 氮氧化物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " Saltzman法 /p /td /tr tr td width=" 189" nowrap=" nowrap" rowspan=" 5" p style=" text-align:center " 填埋气体监测项目及分析方法 /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " 甲烷 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 二氧化碳 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 氧气 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 硫化氢 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/1.html" target=" _blank" title=" 气相色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 气相色谱法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 氨 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 次氯酸钠-水杨酸分光光度法 /p /td /tr tr td width=" 189" nowrap=" nowrap" rowspan=" 6" p style=" text-align:center " 渗沥液监测项目及分析方法 /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " 悬浮物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 化学需氧量 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重铬酸盐法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 五日生化需氧量 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 稀释与接种法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 氨氮 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 纳氏试剂比色法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 蒸馏和滴定法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 大肠菌值 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 多管发酵法 /p /td /tr tr td width=" 189" nowrap=" nowrap" rowspan=" 7" p style=" text-align:center " 填埋场外排水监测项目及分析方法 /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " PH /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 玻璃电极法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 悬浮物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 化学需氧量 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重铬酸盐法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 五日生化需氧量 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 稀释与接种法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 氨氮 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 纳氏试剂比色法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 蒸馏和滴定法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 粪大肠菌值 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 多管发酵法 /p /td /tr tr td width=" 189" nowrap=" nowrap" rowspan=" 27" p style=" text-align:center " 地下水监测项目及分析方法 /p /td td width=" 151" nowrap=" nowrap" p style=" text-align:center " PH /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 玻璃电极法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 浊度 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " — /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 肉眼可见物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " — /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 嗅、味 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " — /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 色度 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " — /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 高锰酸盐指数 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 酸性或碱性高锰酸钾氧化法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 硫酸盐 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 火焰原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 火焰原子吸收分光光度法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 溶解性总固体 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center "   /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 氯化物 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 硝酸银滴定法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 钙和镁总量 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " EDTA滴定法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 挥发酚 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 蒸馏后4-氨基安替比林分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 氨氮 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 纳氏试剂比色法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 蒸馏和滴定法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 硝酸盐氮 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 酚二磺酸分光光度法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 麝香草酚分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 亚硝酸盐氮 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" title=" 分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 分光光度法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 总大肠菌群 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 多管发酵法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 细菌总数 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 平皿计数法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 铅 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子吸收分光光度法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 双硫腙分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 铬(六价) /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 二苯碳酰二肼分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 镉 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子吸收分光光度法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 双硫腙分光光度法 /p /td /tr tr td width=" 151" nowrap=" nowrap" p style=" text-align:center " 总汞 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 冷原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 冷原子吸收分光光度法 /span /a /p /td /tr tr td width=" 151" nowrap=" nowrap" rowspan=" 2" p style=" text-align:center " 总砷 /p /td td width=" 227" nowrap=" nowrap" p style=" text-align:center " 二乙氨基二硫代甲酸银光度法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 氢化物发生原子吸收法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 氢化物发生原子吸收法 /span /a /p /td /tr /tbody /table p    span style=" color: rgb(227, 108, 9) " strong 3、生活垃圾焚烧监测 /strong /span /p p   垃圾焚烧的优点是处理快捷,可以把垃圾转化成了热能,实现了垃圾的局部资源化。但垃圾焚烧带来的二噁英污染问题引起了世界各国的普遍关注。据世界卫生组织介绍,二噁英排放后可远距离扩散,一旦进入人体,会长久驻留,破坏人类免疫系统、改变甲状腺激素和类固醇激素以及生殖功能,甚至是影响人体发育,导致胎儿畸形。因此加强垃圾焚烧中二噁英污染物的监控,对城市生活垃圾处理和环境保护至关重要,目前主流的分析方法是同位素稀释高分辨气相色谱-高分辨质谱法。 /p p style=" text-align: center " strong 生活垃圾焚烧炉大气污染物浓度测定方法 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 227" nowrap=" nowrap" p style=" text-align:center " strong 污染物项目 /strong /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " strong 分析方法 /strong /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 颗粒物 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " 重量法 /p /td /tr tr td width=" 227" nowrap=" nowrap" rowspan=" 3" p style=" text-align:center " 二氧化硫 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " 碘量法 /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " 定电位电解法 /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " 非分散红外吸收法 /p /td /tr tr td width=" 227" nowrap=" nowrap" rowspan=" 3" p style=" text-align:center " 氮氧化物 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/35.html" target=" _blank" title=" 紫外分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 紫外分光光度法 /span /a /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " 盐酸萘乙二胺分光光度法 /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " 定电位电解法 /p /td /tr tr td width=" 227" nowrap=" nowrap" rowspan=" 3" p style=" text-align:center " 氯化氢 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " 硫氰酸汞分光光度法 /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " 硝酸银容量法 /p /td /tr tr td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/24.html" target=" _blank" title=" 离子色谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 离子色谱法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 汞 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " 冷原子吸收分光光度法 /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 镉 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子吸收分光光度法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 铅 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/37.html" target=" _blank" title=" 原子吸收分光光度法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 原子吸收分光光度法 /span /a /p /td /tr tr td width=" 227" p style=" text-align:center " 铊、砷、铬、锰、镍 br/ & nbsp & nbsp & nbsp 锡、锑、铜、钴 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/293.html" target=" _blank" title=" 电感耦合等离子体质谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 电感耦合等离子体质谱法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 二噁英类 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " a href=" https://www.instrument.com.cn/zc/290.html" target=" _blank" title=" 同位素稀释高分辨气相色谱-高分辨质谱法" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 同位素稀释高分辨气相色谱-高分辨质谱法 /span /a /p /td /tr tr td width=" 227" nowrap=" nowrap" p style=" text-align:center " 一氧化碳 /p /td td width=" 319" nowrap=" nowrap" p style=" text-align:center " 非色散红外吸收法 /p /td /tr /tbody /table p   由于高分辨气相色谱-高分辨质谱不论在成本上还是使用的复杂程度上要求都太高,市场竞争力不如相对小型的三重四极杆气质设备。目前已有研究团队在着力推进三重四极杆气质在二噁英领域的应用,仪器厂商也纷纷推出了相应的工具包或整体解决方案。从长久看,更经济高效的新技术替代成本高、复杂程度高的老技术将成为趋势。 /p p   结合垃圾焚烧这一热点,仪器信息网将于2019年7月17日带来 strong “二噁英检测技术“专题网络研讨会 /strong ,邀科研院校和仪器企业的专家们对二噁英检测相关知识进行详解。更多会议信息,请点击链接查看: a href=" https://www.instrument.com.cn/webinar/meetings/ery/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " https://www.instrument.com.cn/webinar/meetings/ery/ /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/ery/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/84d7d0bf-98dd-4a33-aa6a-f3056db82f70.jpg" title=" 6_副本.jpg" alt=" 6_副本.jpg" / /a /p p   回到垃圾分类,这是一个全球性的难题。日本用了28年,才形成全民参与氛围,德国把垃圾分类当一项系统工程,大约40年才见效果。 /p p   而如今,上海已经勇敢迈出了第一步。 /p p   到2020年底,我国还将有46个重点城市要基本建成“垃圾分类”处理系统 2025年底前,全国地级及以上城市要基本建成“垃圾分类”处理系统。 /p p   所以在这一场垃圾攻坚战中,没人能置身事外。 /p p   与其等到任务找上门,不如把这份生活垃圾检测宝典保存下来,没准身为“实验猿”的你哪天就会用上了。 /p
  • 多家知名机构联合发表病毒基因组测序“通用语”
    美国军队传染性疾病医疗研究中心(USAMRIID)牵头多家知名机构,在美国微生物学会旗下的mBio杂志上发布了病毒基因组测序的一系列标准,为从事病毒基因组测序的研究者们提供了一个通用&ldquo 语言&rdquo 。   文章的资深作者,USAMRIID的Gustavo Palacios博士介绍道,这些标准是多家研究机构的科学家共同协作的结果,包括Broad研究所、J. Craig Venter研究所、Los Alamos国家实验室、国家过敏和传染病研究所、马里兰大学和Johns Hopkins大学。   &ldquo 我们让大家坐在一起,讨论出来一个有意义的结果,这是一个重要的成就,&rdquo 他解释道。   作者们指出,基因组是生物体内的遗传物质,以DNA或RNA的形式编码。病毒基因组包括基因和一些非编码的DNA或RNA序列,含有病毒复制和传播所必需的信息。因此,确定这些序列可以获得宝贵的信息,可以应用于各种医学和科研领域。   &ldquo 多亏了高通量测序技术的飞速发展,现在几乎所有的病毒研究方向都涉及了测序,包括分子流行病学、药物和疫苗开发、病毒的监控与诊断等等,&rdquo Palacios说。&ldquo 近来,不管是已测序的基因组还是正在投身测序的研究机构都在迅速增多。&rdquo   虽然有大量的病毒基因组正在被测序,但&ldquo 目前还没有一个统一的框架,也没有通用的词汇来描述特定病毒基因组的&lsquo 完成&rsquo 程度,&rdquo 文章的第一作者,USAMRIID的Jason Ladner博士说。测序的完成程度,决定着基因组的下游应用,包括设计诊断产品、反向遗传系统以及开发治疗对策等。   研究团队希望能够通过五条标准来填补这样的空白,这些标准涵盖了完成病毒基因组的整个阶段,使用不依赖测序技术的简单条件规定了五个类别。   &ldquo 不同的测序技术可能会很快淘汰更新,因此我们这些标准没有关联任何特定的测序平台,可以长时间的使用下去,&rdquo Ladner解释道。   研究人员指出,这些基因组测序的新标准,为所有涉及病毒的研究领域提供了一个基本框架,其分类法也可以被用在公共的序列数据库中。此外,联邦机构还可以根据这些标准,审批和调控与病毒有关的产品,例如诊断产品、疫苗和治疗药物。   文献来源:Standards for sequencing viral genomes in the era of high-throughput sequencing.
  • 垃圾分类厢房除臭机,垃圾厢房喷雾杀菌除臭设备
    垃圾分类厢房除臭机,垃圾厢房喷雾杀菌除臭设备【新闻导读】众所周知,现在全国上下无论是城市还是乡村,垃圾分类投放都在如火如荼地进行着 垃圾分类工作,是一项利国利民的环保工程,人人有责 不过,大家都没有考虑到,垃圾分类投放到垃圾分类厢房后,垃圾分类厢房内的处理,垃圾分类把有害垃圾,可回收垃圾,其它垃圾等分开了,但是接下来把垃圾堆放在垃圾分类厢房内就没有后续的处理了,这样垃圾分类厢房内的杀菌除臭处理得不到很好的处理,垃圾分类厢房也将是臭气熏天,蚊虫满天飞,不仅大家不敢靠近,还怎么投放垃圾,而且还会影响垃圾分类厢房附近居民的正常生活与身体健康!    这些都是被忽略垃圾分类厢房杀菌除臭处理带来的后遗症,以及还有可能导致疾病的传播,大家都很清楚,垃圾分类厢房内滋生的大量蚊虫会到处飞,飞到哪里把人叮上一口,这样可能会有疾病被传播,蚊虫飞进家庭厨房中爬过食物等,这些都会导致疾病被传播 特别是在炎热的夏天,垃圾分类厢房内的垃圾堆放的多了,没有及时的运走,在离垃圾分类厢房很远的地方就能隐隐约约的闻到哪独有的“味道”,就会让人难以靠近!所以,垃圾分类厢房内的杀菌除臭处理也需要大家的重视,需要得到大家的关注。  那么,垃圾分类厢房内的垃圾臭味样怎么样去处理呢?其实很简单,一台垃圾厢房喷雾杀菌除臭设备就能轻松的搞定,那就是正岛ZY-1800垃圾分类厢房除臭机,只要添加入绿色环保天然植物除臭液进行定时喷雾除臭,就能能从根源上解决垃圾分类厢房的恶臭问题,帮你的垃圾分类厢房远离恶臭!安装和操作都比较简单,容易上手 只要通上电就能运行,自动化程度高,可手动控制,也可以根据垃圾分类厢房的实作情况进行调整该设备进行自动喷雾消毒、杀菌以及除臭的工作程序!    正岛垃圾厢房喷雾杀菌除臭设备--ZY-1800垃圾分类厢房除臭机,注入中性除味剂可自动为酒店、商场、写字楼、厕所等空间除味,注入中性消毒水可为室内自动消毒,注入自来水可为场所空气自动加湿。  ◎高效除臭:将用于除异味的浓缩液雾化成气态,使其能与异味分子充分混合,从而发挥高效除臭、除异味作用。  ◎杀菌灭蚊:可定时喷天然植物液不仅除臭、除异味,还能杀菌灭蚊,清新空气,大大降低了使用成本和维护费用。  ◎节约成本:雾气的主要成分是水,成本低 添加少许除异味的浓缩液,超声波雾化技术,将浓缩液的活性高效发挥。  ◎超细雾滴:经过超声后的雾滴极其细密,因此表面活性强、吸附力大,使植物液对臭味分子的包裹反应效果好。  ◎节省人工:添加一次用于除臭、除异味的浓缩液之后,半个月或一个月无需打理,自动完成喷雾除臭、除异味。    正岛垃圾厢房喷雾杀菌除臭设备--ZY-1800垃圾分类厢房除臭机,控制方式采用数字时序控制器自动循环控制,自动循环控制周期由一秒钟到九十九分钟五十九秒,可任意设置工作时间及停止时间,设定好后可连续工作,无需人员职守 配有5.5公斤水容量的自备水箱,水箱上端连接有注水口,下端配有放水开关,操作简单、维护方便!欢迎您来咨询垃圾分类厢房除臭机,垃圾厢房喷雾杀菌除臭设备的详细信息!  正岛垃圾厢房喷雾杀菌除臭设备--ZY-1800垃圾分类厢房除臭机控制方式及技术参数:    正岛垃圾厢房喷雾杀菌除臭设备--ZY-1800垃圾分类厢房除臭机箱体采用全不锈钢材质,表面喷塑处理,此举既保证了外形美观大方又满足了设备防腐的要求。内部采用六振子集成式雾化组件,并配有无水保护装置,所产生的雾粒直径只有 小于10μm,颗粒均匀,能长时间悬浮于空气当中。可根据实际需要连接⊙75mm的PVC管路,其传输距离可在5-8米左右。  综上所述:垃圾分类投入站或垃圾分类厢房如何杀菌、消毒、除臭?是每一个垃圾分类厢房管理人员很是头疼的问题,因为垃圾分类厢房内的恶臭很难从根源上解决处理,许多都是处理表面,导致垃圾分类厢房内的恶臭越来越严重,然后影响到居民以及客户,有的垃圾分类厢房内的杀菌除臭处理不好,你在很远的地方就能闻到垃圾分类厢房的恶臭。如果想要从根源上的去对垃圾分类厢房杀菌除臭处理,那么就用垃圾分类厢房杀菌除臭设备就很好,从根根源上解决了恶臭等问题,还为你的健康保驾护航,这就是垃圾分类厢房安装杀菌除臭设备的必要所在。    垃圾分类厢房的杀菌除臭处理到底用什么样的设备比较适合,既能满足垃圾分类厢房的各种需求,又能让经费方面花销不大,要满足垃圾分类厢房的各种要求这一点上就难住了很多的杀菌除臭设备,因为很多的垃圾分类厢房杀菌除臭的设备功能都比较单一,只能满足垃圾分类厢房内的其中一小部分的要求,但是这也是现如今为什么垃圾分类厢房内的各种问题得不到很好的解决,这只是其中的一小部分原因。 现如今,正岛ZY-1800垃圾分类厢房除臭机在各全国各地很多生活小区、商场、城市综合体、机关、学校、企事业单位等的垃圾投放站及生活垃圾分类厢房都得到了广泛的应用,可以用于30㎡到100㎡的垃圾分类厢房使用。100㎡的垃圾分类厢房建议安装两台及以上的设备处理效果会更好!以上关于垃圾分类厢房除臭机,垃圾厢房喷雾杀菌除臭设备的全部相关信息是正岛电器提供的,以供大家参考学习!
  • Cancer Cell | 单细胞图谱揭开非小细胞肺癌肿瘤分类新标准
    免疫治疗是非小细胞肺癌(Non-small cell lung cancer,NSCLC)的主要治疗方法之一。虽然肿瘤突变负荷(Tumor mutational burden,TMB)与免疫治疗的响应应答相关,但是免疫应答与肿瘤基因型之间的关系还知之甚少。2021年11月11日,美国西奈山伊坎医学院Miriam Merad研究组与Ephraim Kenigsberg研究组合作发文题为Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification,通过建立病人非小细胞肺癌中肿瘤细胞的scRNA-seq以及CITE-seq分析,确定了肿瘤突变负荷以及TP53突变的情况,从而构建了NSCLC肿瘤的细化分类以及患者分层,为免疫疗法的响应提供了新的数据库参考。为了对肿瘤微环境中的免疫细胞的转录状态进行检测,作者们对未进行治疗的、早期的NSCLC患者体内的肿瘤进行切除并对细胞进行分析(图1)。作者们通过CITE-seq(Cellular Indexing of Transcriptomes and Epitopes by Sequencing)、scRNA-seq以及TCR-seq(T cell receptor sequencing)整合免疫细胞表面标记的抗体分析生成了三个数据库。作者们对8名患者的肿瘤和非肺部组织进行了CITE-seq,对另外27名患者进行了scRNA-seq。CITE-seq中采用了15个用于注释细胞类型的抗体,并最终扩展到81个抗体进行更具体的研究。除此之外,作者们的还对三名患者进行了scRNA-seq/TCR-seq的联合分析。图1 对病人NSCLC肿瘤组织的CITE-seq、scRNA-seq以及TCR-seq分析总的来说,来自35个肿瘤和29个相匹配的非肺部样本中的361,929个单细胞被分为30个注释的转录状态细胞群。基于RNA的聚类分析,作者们共鉴定除了49个免疫细胞群体,包括T细胞、B细胞、浆细胞、肥大细胞、浆细胞样树突状细胞以及单核吞噬细胞等。CITE-seq数据使用成熟的蛋白质细胞标记物进一步确认了细胞身份。为了确定组织取样是否会导致分析结果的差异,作者们对8名患者的每个肿瘤的三个不同区域进行了取样对比分析。作者们发现免疫细胞表型的差异主要是由肿瘤之间的差异而非区域取样差异造成的。因此,肿瘤微环境中的特征稳健且可重复,促使作者们进一步分析其中转录状态的差异与肿瘤分型之间的关系。通过对肿瘤的scRNA-seq以及CITE-seq分析,作者们发现肿瘤中树突细胞(Dendritic cells,DC)组分主要包括cDC1、cDC2、富含调控因子的成熟mregDC以及DC3类型(图2)。其中DC3是肿瘤中最普遍存在的DC亚型,并且在肿瘤中数量会增加,而mregDC是最为罕见的类型。先前的研究表明mregDC的激活对于诱导肿瘤定向T细胞应答至关重要,因此作者们想对单个载玻片上的肿瘤样品进行连续免疫组化染色,研究检测mregDC在肿瘤中的分布【1】。作者们发现在靠近T细胞的三级淋巴结构区域(Tertiary lymphoid structures,TLS)存在MYH11+滤泡树突状细胞的聚集。TLS结构的形成有助于患者接受免疫疗法以及预后【2,3】。通过对DC3细胞类型的分析,作者们发现DC3的特征介于单核细胞样细胞和cDC2样细胞之间。另外,通过基因表达的差异分析作者们鉴定发现一个DC模块基因mod28富集表达在肿瘤病灶区域,其中包括CD1A以及CD207基因表达,这些基因标记出LCH(Langerhans cell histiocytosis)朗格汉斯细胞组织细胞增生症细胞,因此作者们又将该细胞群的分类名称为LCH-like细胞。随后作者们对NSCLC中的T细胞进行了细致分类。CITE-seq对T细胞的分析鉴定发现CD8+细胞具有自然杀伤细胞样(Natural killer-like)特征,另外也有多种因子表达的激活型T细胞等。除此之外,通过对病人体内的NSCLC肿瘤进行配对的scRNA-seq/TCR-seq分析,作者们发现激活型T细胞是肿瘤中存在最多的类群,而且与非肺部组织相比肿瘤内包含多种类型的T细胞,比如激活型T细胞、周期型T细胞以及调节型T细胞等。作者们对的肿瘤中免疫细胞的数量进行分析后发现,B细胞和浆细胞的数量在肿瘤中都出现了显著的升高,但是B细胞与浆细胞之间的比例相对来说是比较稳定的。为了建立起细胞表型驱动病人多样性的关联,作者们希望对细胞类型出现频率进行归一化分析。通过该分析,作者们发现激活型T细胞、IgG+浆细胞以及MoMΦ-II细胞对于肺癌的出现具有很高的相关性。因此,作者们将该细胞组成称为肺癌激活模块(Lung cancer activation module,LCAM)。作者们可以根据肿瘤免疫微环境中存在的免疫细胞的类型对病人进行分型,与已有的聚类方法Seurat【4】相比LCAM分型方法具有很高的准确性和稳健性,对其他独立于本工作的数据库【5】进行测试也可以确认该LCAM分类方法具有很高的可重复性。作者们发现LCAM评分与病人吸烟的情况具有相关性,该细胞模块的表达是对突变和异位表达的肿瘤抗原的适应性反映的标志。而且,LCAM与TP53突变负担也存在相关性,TP53突变的肿瘤与TP53野生型的肿瘤相比,LCAM评分更高。而且TP53的突变与肿瘤突变负担也存在相关性。为了鉴定这些发现在其他肿瘤中是否具有普适性,作者们在肺鳞状细胞癌中也进行了相似的分析,发现肺鳞状细胞癌中也表现出较高的LCAM评分水平。因此,LCAM与肿瘤突变负担相关,可能可以作为特异性免疫检查点阻断反应的非冗余生物标志物。 工作模型总的来说,该工作通过对35个NSCLC病人中相匹配的肺部肿瘤与非肺部组织的scRNA-seq、CITE-seq以及TCR-seq,构建了迄今为止最大的早期肺癌免疫反应细胞图谱,并通过对其中免疫细胞类型的分析建立了对NSCLC肿瘤进行详细分型的LCAM模块,LCAM评分较高说明患者正在经历一个更有力的抗原特异性抗肿瘤适应性免疫应答过程,同时说明LCAM可以作为更直接的衡量抗原特异性抗肿瘤免疫激活的指标。原文链接:https://doi.org/10.1016/j.ccell.2021.10.009
  • 简单、快速测试假冒药、仿制药和辉瑞新冠药的 飞行时间质谱法
    继2022年12月7日国务院联防联控机制公布《关于进一步优化落实新冠肺炎疫情防控措施的通知》之后,国内陆陆续续全面放开。但是,放开并不是说新冠病毒消失了,只是它的毒性减小,而传染性仍然很高。从12月份开始,中国一大波人感染新冠,一时间网上全是“阳阳阳”的消息,年轻人发烧、头痛、拉肚子……,还有不少老年人本身就有基础性疾病,感染新冠后导致去世。这时,降低住院/死亡风险88%的辉瑞新冠特效药—Paxlovid需求激增,价格一度飙升到2万/盒,即使这样依然是“一药难求”。因此,很多国家的药企去争相获取辉瑞仿制药的授权。印度作为仿制药大国,作为“世界药房”必然在辉瑞授权的仿制药生产国中。于是,辉瑞公司治疗新冠病毒肺炎的“神药”—Paxlovid和印度仿版药物成为了最近市面上最紧俏最热门的的药物。然而即使大家千方百计买到了,但如何鉴定真伪又成了个难题。一般来说,检测药物成分从而鉴定药物的真伪首先会选用液质联用仪(LC-MS),原理是在气态中根据样本质荷比的不同将其分离并进行检测。但LC/MS-MS前端的液相洗脱时间长,一般会有十几分钟到1个小时的持续分析时长,单个样本检测需要的时间较长,这就导致液质的检测通量低,每日的检测样本量有限。北京东西分析仪器公司生产的飞行时间质谱仪为多功能检测平台,除了从分子水平快速精准鉴定微生物、核酸基因分型法检测致病菌以及检测疾病蛋白标志物外,此款仪器还可用于检测药物小分子。其实对于药物这种成分相对简单的样品来说,飞行时间质谱具有独特的检测技术优势:通量高(一次可上样96个样品)、速度快(单个样本检测仅需10秒左右)、无需复杂的样本前处理。但对于检测小分子(进行了鉴定。首先对两种药中是否含有抑制新冠病毒在人体内增殖的成分—Nirmatrelvir (奈玛特韦)进行了检测。通过快速、简单的样本前处理, 然后开始点靶、干燥和上机检测。我们在辉瑞新冠特效药中很快就检测到了奈玛特韦的离子峰(m/z=499.54Da),然而在我们所检测的印度仿制药中却未检测到该质量数的离子峰,这一结果说明此药盒中的奈玛特韦片不含Nirmatrelvir这一治疗新冠的关键成分。图3.飞行时间质谱检测Paxlovid和Primovir中成分—奈玛特韦比对图随后,我们又检测了两种药中是否含有能够让nirmatrelvir在身体里保持更长时间活性、更好抗击病毒的“守护神”--利托那韦,检测结果显示两种药的利托那韦片中均含有有效成分利托那韦(m/z=720.95Da)。图4.飞行时间质谱检测Paxlovid和Primovir中成分-利托那韦比对图此外,在检测辉瑞原研药和印度仿制药的利托那韦片时,我们发现辉瑞原研药利托那韦片需要大概50%左右的激光能量才能将其离子化(激光能量为30%时,依然检测不到离子峰,如图五),而印度仿制药中的利托那韦,仅需15%的常规用激光能量就能很好的电离,所用能量仅是辉瑞药的三分之一。据此,东西分析建立的飞行时间质谱法可以通过调节激发药物电离激光能量的大小,很容易地将同一化合物的不同制剂、即辉瑞原研药和仿制药区分开来。这一特点在目前的分析方法中尚未见到报道。关于不同制剂对药物在体内的吸收、分布、代谢和排泄的区别,以及对服药间隔时间的要求,有待药理学家研究。图5.不同激光能量激发下两种药中利托那韦对比图产 品Ebio Reader 3700 Plus 飞行时间质谱仪Ebio Reader 3700 Plus飞行时间质谱仪基于基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)技术原理,具有高灵敏度、高精度、检测时间短、应用范围广等特点,广泛应用于临床、疾控、食品安全、农业、工业、出入境检疫等领域。操作简单无需复杂的样品前处理。性能稳定长寿命固体激光器;飞行管随环境温度、湿度的变化小,保证检测的稳定 ;高效网筛离子源,提高仪器的灵敏度 ;PIE高压脉冲电源控制,实现离子的延迟推斥,提高整体仪器的分辨能力。软件智能基于神经网络聚合分类法的人工智能软件;拥有强大数据库,实现对菌种的实时鉴定;具备聚类分析功能,可进行T-test等数据分析;具有自建库功能,可根据用户实际情况建立自有菌种库 ;可根据用户具体需求,进行相应升级,用于疾病蛋白标志物和核酸基因分型的检测。
  • 湖南省衡阳生态环境监测中心220.00万元采购波散型XRF,能散型XRF,分子荧光光谱
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 波散型XRF,能散型XRF,分子荧光光谱 开标时间: 2021-12-31 10:00 采购金额: 220.00万元 采购单位: 湖南省衡阳生态环境监测中心 采购联系人: 李女士 采购联系方式: 立即查看 招标代理机构: 湖南同信项目管理有限公司 代理联系人: 葛女士 代理联系方式: 立即查看 详细信息 湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目公开招标公告 湖南省-衡阳市-雁峰区 状态:公告 更新时间: 2021-12-09 湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目公开招标公告 公告时间:2021年12月09日 受湖南省衡阳生态环境监测中心的委托,本代理机构对湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目进行采购,现将采购事项公告如下: 一、采购项目信息 项目名称:湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项 政府采购计划编号:湘财采计[2021]002363号 采购项目编号:1071765-20211209-29 项目负责人:李女士 联系电话:18873453661 合同履行期限:详见招标文件 采购方式:公开招标 采购预算:2,200,000元 采购项目内容与数量: 分 包: 包名 预算金额(元) 最高限价(元) 代理服务费限价(元) 1 2,200,000 2000000 26000 包详情: 包名 品目分类 标的名称 简要技术要求 数量 1 A02100415-环境监测仪器及综合分析装置 波长色散型X射线荧光光谱仪 详见招标文件 1 需落实的政府采购政策:详见招标文件 本采购项目 接受进口产品。 二、投标人的资格要求 1、投标人的基本资格条件:应当符合《政府采购法》第二十二条第一款的规定,即: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录。 (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录。(6)法律、行政法规规定的其他条件。 2、供应商特定资格条件: 包1: 无 3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。 4、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加此项目的其他招标采购活动。 5、列入失信被执行人、重大税收违法案件当事人名单,列入政府采购严重违法失信行为记录名单的,拒绝其参与政府采购活动。 6、本次招标 不接受 联合体投标 。 三、获取公开招标文件的时间、地点及方式 1、有意参加投标者,请于2021年12月09日 起至2021年12月16日止,每日8:30时起至下午17:00(北京时间),双休日及节假日除外,在 衡阳市公共资源交易中心网购买招标文件。 2、招标文件每套售价0元,售后不退。可选择现金、金融机构转账方式购买招标文件,发票当场领取或在开标时领取。 经采购人授权代理机构向成交供应商收取服务费最高限价:26,000元 四、投标截止时间和开标时间及地点 1、提交投标文件的截止时间:2021年12月31日 10:00 2、提交投标文件地点:衡阳市公共资源交易中心网 3、开标时间:2021年12月31日 10:00 4、开标地点:衡阳市公共资源交易中心 五、公告期限 1、本招标公告在中国湖南政府采购网(www.ccgp-hunan.gov.cn)发布。公告期限从本招标公告发布之日起5个工作日。 2、在其他媒体发布的招标公告,公告内容以本招标公告指定媒体发布的公告为准;公告期限自本招标公告指定媒体最先发布公告之日起算。 六、疑问及质疑 1、潜在投标人对政府采购活动事项如有疑问的,可以向采购人或采购代理机构提出询问。采购人或采购代理机构将在3个工作日内作出答复。 2、潜在投标人认为招标文件或招标公告使自己的合法权益受到损害的,可以在收到招标文件之日或招标公告期限届满之日起7个工作日内,以书面形式向采购人、采购代理机构提出质疑。 七、采购项目联系人姓名和电话 1、采购项目 联系人姓名:李女士 电 话:18873453661 2、采购人 名 称:湖南省衡阳生态环境监测中心 地 址:湖南省衡阳市雁峰区苏眼井1号 联系人:赵红星 电 话:17382146889 邮 编:421001 电子邮箱:/ 3、采购代理机构 名 称:湖南同信项目管理有限公司 地 址:衡阳市蒸湘区解放西路90号君恒花苑1号楼 联系人:葛女士 电 话:15673410262 邮 编:421001 电子邮箱:1729998616@qq.com 八、其它补充事宜 1、投标保证金 开户名称:详见招标文件 开 户 行:详见招标文件 银行账号:详见招标文件 2、购招标文件款、招标代理服务费 开户名称:/ 开 户 行:/ 银行账号:/ 3、财务部联系人、电话 财务部联系人:/ 财务电话:/ × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:波散型XRF,能散型XRF,分子荧光光谱 开标时间:2021-12-31 10:00 预算金额:220.00万元 采购单位:湖南省衡阳生态环境监测中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:湖南同信项目管理有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目公开招标公告 湖南省-衡阳市-雁峰区 状态:公告 更新时间: 2021-12-09 湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目公开招标公告 公告时间:2021年12月09日 受湖南省衡阳生态环境监测中心的委托,本代理机构对湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项项目进行采购,现将采购事项公告如下: 一、采购项目信息 项目名称:湖南省衡阳生态环境监测中心土壤环境监测能力建设仪器设备政府采购项目包2重新立项 政府采购计划编号:湘财采计[2021]002363号 采购项目编号:1071765-20211209-29 项目负责人:李女士 联系电话:18873453661 合同履行期限:详见招标文件 采购方式:公开招标 采购预算:2,200,000元 采购项目内容与数量: 分 包: 包名 预算金额(元) 最高限价(元) 代理服务费限价(元) 1 2,200,000 2000000 26000 包详情: 包名 品目分类 标的名称 简要技术要求 数量 1 A02100415-环境监测仪器及综合分析装置 波长色散型X射线荧光光谱仪 详见招标文件 1 需落实的政府采购政策:详见招标文件 本采购项目 接受进口产品。 二、投标人的资格要求 1、投标人的基本资格条件:应当符合《政府采购法》第二十二条第一款的规定,即: (1)具有独立承担民事责任的能力; (2)具有良好的商业信誉和健全的财务会计制度; (3)具有履行合同所必需的设备和专业技术能力; (4)有依法缴纳税收和社会保障资金的良好记录。 (5)参加政府采购活动前三年内,在经营活动中没有重大违法记录。 (6)法律、行政法规规定的其他条件。 2、供应商特定资格条件: 包1: 无 3、单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。 4、为本采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的,不得再参加此项目的其他招标采购活动。 5、列入失信被执行人、重大税收违法案件当事人名单,列入政府采购严重违法失信行为记录名单的,拒绝其参与政府采购活动。 6、本次招标 不接受 联合体投标 。 三、获取公开招标文件的时间、地点及方式 1、有意参加投标者,请于2021年12月09日 起至2021年12月16日止,每日8:30时起至下午17:00(北京时间),双休日及节假日除外,在 衡阳市公共资源交易中心网购买招标文件。 2、招标文件每套售价0元,售后不退。可选择现金、金融机构转账方式购买招标文件,发票当场领取或在开标时领取。 经采购人授权代理机构向成交供应商收取服务费最高限价:26,000元 四、投标截止时间和开标时间及地点 1、提交投标文件的截止时间:2021年12月31日 10:00 2、提交投标文件地点:衡阳市公共资源交易中心网 3、开标时间:2021年12月31日 10:00 4、开标地点:衡阳市公共资源交易中心 五、公告期限 1、本招标公告在中国湖南政府采购网(www.ccgp-hunan.gov.cn)发布。公告期限从本招标公告发布之日起5个工作日。 2、在其他媒体发布的招标公告,公告内容以本招标公告指定媒体发布的公告为准;公告期限自本招标公告指定媒体最先发布公告之日起算。 六、疑问及质疑 1、潜在投标人对政府采购活动事项如有疑问的,可以向采购人或采购代理机构提出询问。采购人或采购代理机构将在3个工作日内作出答复。 2、潜在投标人认为招标文件或招标公告使自己的合法权益受到损害的,可以在收到招标文件之日或招标公告期限届满之日起7个工作日内,以书面形式向采购人、采购代理机构提出质疑。 七、采购项目联系人姓名和电话 1、采购项目 联系人姓名:李女士 电 话:18873453661 2、采购人 名 称:湖南省衡阳生态环境监测中心 地 址:湖南省衡阳市雁峰区苏眼井1号 联系人:赵红星 电 话:17382146889 邮 编:421001 电子邮箱:/ 3、采购代理机构 名 称:湖南同信项目管理有限公司 地 址:衡阳市蒸湘区解放西路90号君恒花苑1号楼 联系人:葛女士 电 话:15673410262 邮 编:421001 电子邮箱:1729998616@qq.com 八、其它补充事宜 1、投标保证金 开户名称:详见招标文件 开 户 行:详见招标文件 银行账号:详见招标文件 2、购招标文件款、招标代理服务费 开户名称:/ 开 户 行:/ 银行账号:/ 3、财务部联系人、电话 财务部联系人:/ 财务电话:/
  • 核酸质谱之漫话三:核酸质谱法在人乳头瘤病毒(HPV)分型检测中的应用
    导读在女性恶性肿瘤中,宫颈癌的发病率仅次于乳腺癌,而大多数宫颈癌是由人乳头瘤病毒(HPV)感染所致。目前已分离出的HPV达100多型,其中至少14型可导致宫颈癌或其他恶性肿瘤。全球范围内,大多数的宫颈癌中可测出高危型HPVl6和18亚型,其中HPV16亚型诱发癌变的潜力最大。东西分析基于飞行时间质谱技术平台成功开发出40多种HPV分型的应用方案,为临床提供早期宫颈癌的精准诊断,并为治疗提供准确的参考建议。人乳头瘤病毒(HPV),是一种乳头瘤空泡病毒,女性患病率通常高于男性。部分类型的HPV感染是宫颈癌的高危因素。感染后主要累及人体的皮肤和黏膜,可分为低危型和高危型。高危致癌型HPV分布于α属第5,6,7,9,11五个种。高危型HPV感染是宫颈癌、口腔癌、直肠癌、食道癌等恶性疾病的危险因素之一。而在在女性恶性肿瘤中,宫颈癌的发病率仅次于乳腺癌,大多数宫颈癌是由HPV感染所致。已分离出的HPV达100多型,其中至少14型可导致宫颈癌或其他恶性肿瘤。全球范围内,大多数的宫颈癌中可测出高危型HPVl6和18亚型,其中HPV16亚型诱发癌变的潜力最大。HPV基因分型检测的意义HPV的感染在治疗前后,可能存在型别的差异,这可以作为医生治疗效果的评估指标;连续两次HPV分型检测显示单一型别的高危亚型的感染,显示宫颈癌发生的可能性增大;HPV的感染在不同的地区,占主要地位的型别有所不同,分型检测有利对于各地研究、使用疫苗进行HPV感染的预防控制。因此,HPV基因分型检测能够:确认感染危险程度 极高危型HPV16型感染会在几年内发展为宫颈上皮内瘤变三级(CIN3)+至浸润性癌,而非致癌型HPV61的感染,持续很长时间也不会发展为癌。确认是否持续感染高危型持续感染是导致宫颈癌的最主要因素。大多数HPV感染在1-2年内可清除,当间隔一年以上、连续两次以上检测出同一种或组HPV基因型时,被认为是持续性感染。若第一次HPV检测结果阳性,很难确定感染的时间。从感染HPV到发生宫颈癌最少需要8-10年的潜伏时间,连续检测可以有效避免错过治疗纠正的机会。识别传染源人所感染的HPV与感染源的基因型相同。可以使用安全措施及共同治疗和检测进行,有助于持续性感染纠正。疫苗接种指导 只要没有感染疫苗覆盖的类型,接种都是有益的。目前HPV 技术检测面临的问题L1靶标基因整合后脱落漏检现有的技术平台,几乎所有的HPV检测产品均以L1为靶点。无法避免病毒进入细胞后从游离态变为整合态,L1基因脱落,导致恶变样本漏检。动态范围窄,高危低载量出现漏检以目测法和荧光法定性的检测,动态范围窄。当多基因型混合感染时,无法检出高危低载量HPV病毒,导致高危致癌型漏检。致癌高中危型未全覆盖,造成漏检目前试剂盒无法同时检测IARC在2012年提出的2B类以上27个致癌HPV基因型,从而导致中危致癌型漏检。应用核酸质谱技术进行人乳头瘤病毒(HPV)分型检测的优势对高危型采用致癌基因E6,极高危HPV 16/18型采用E6/L1双基因,从而避免病毒基因整合造成的假阴性,能够最大限度避免出现漏检;高灵敏度:可扫描超过40种HPV基因型。特异性PCR扩增+探针单碱基标记,以分子量分型,灵敏度达个位拷贝,超宽动态范围超过9个数量级。能够防交叉反应以及防扩增污染,从而有效避免假阳性。高通量:每天可检测上千个样本。东西分析经过多年的开发,基于飞行时间质谱技术平台成功开发出40多种HPV分型的应用方案---能够同时快速检测出超过20种高危和低危致癌及常见致疣HPV型以及超过20种可能致癌和低危致疣HPV型。能够有效避免恶变样本漏检和假阳性,从而为临床提供早期宫颈癌的精准诊断,并为治疗提供准确的参考建议。Ebio Reader 3700 Plus飞行时间质谱仪操作简单无需复杂的样品前处理。性能稳定长寿命固体激光器;飞行管随环境温度、湿度的变化小,保证检测的稳定 ;高效网筛离子源,提高仪器的灵敏度 ;PIE高压脉冲电源控制,实现离子的延迟推斥,提高整体仪器的分辨能力。软件智能基于神经网络聚合分类法的人工智能软件;拥有强大数据库,实现对菌种的实时鉴定;具备聚类分析功能,可进行T-test等数据分析;具有自建库功能,可根据用户实际情况建立自有菌种库 ;可根据用户具体需求,进行相应升级,用于疾病蛋白标志物和核酸基因分型的检测。应用范围广广泛用于临床、疾控、食品安全、农业、工业、出入境检疫等领域。往期回顾BREAK AWAY核酸质谱之漫话一:什么是核酸质谱核酸质谱之漫话二: 核酸质谱法鉴定结核病及其耐药性
  • 核酸质谱之漫话五: 核酸质谱法鉴定非洲猪瘟病毒
    导读2023年以来,国内关于非洲猪瘟的消息就此起彼伏,从北到南覆盖众多省份,本篇将主要介绍核酸质谱技术在鉴定非洲猪瘟方面的内容……非洲猪瘟(Infection with African swine fever virus,简称:ASF)是由非洲猪瘟病毒(African Swine fever virus,简称:ASFV)感染家猪和各种野猪而引起的一种急性出血性的烈性传染病。世界动物卫生组织(OIE)将其列为法定报告动物疫病,该病也是我国重点防范的一类动物疫情。其特征是发病过程短,最急性和急性感染死亡率高达100%,临床表现为发热(达40~42℃),心跳加快,呼吸困难,部分咳嗽,眼、鼻有浆液性或粘液性脓性分泌物,皮肤发绀,淋巴结、肾、胃肠粘膜明显出血。非洲猪瘟疫情严重危害生猪养殖及相关产业的发展。其病程短、传播快,致死率高,控制难度极大。因保护性免疫反应的复杂性,目前尚无有效的疫苗进行预防,从而被称作养猪业的“天敌”。自1921年非洲猪瘟首次被确认起,在百年间的几次暴发,都可称为养殖业的灾难。2018年8月开始非洲猪瘟在我国广泛流行,席卷大半个中国,给我国养猪业带来的损失相当严重。而由于ASFV传播的隐蔽性和复杂性,该流行病仍未解决。尽管人类早就发现了ASF,但缺乏安全有效的疫苗。因此,寻找有效可靠的诊断方法对控制ASF疫情至关重要。非洲猪瘟病毒基因分型的意义ASFV是一种双链DNA病毒,具有24种已知基因型。该病毒由四层蛋白质外壳和一个内源性基因组组成,其结构比许多其他病毒复杂得多。此外,其多层结构对其复制和存活起着重要作用。目前非洲猪瘟病毒的主要检测方法及局限性目前针对非洲猪瘟的病原学诊断技术包括抗原检测、活病毒检测和核酸检测等。主要分为针对病毒抗原、抗体反应的免疫学技术和针对病毒DNA的核酸检测技术等。酶联免疫吸附试验(ELISA):是当前最为常用的免疫学诊断技术,抗体必须要感染病毒达到一定程度才会出现,无法对ASFV的早期感染做出诊断。在猪感染非洲猪瘟病毒的早期,借助于聚合酶链式反应(PCR)等分子生物学技术可实现对病毒核酸的检测。具有较低的敏感性,仅属于最简单的分子生物学检测技术。病毒分离-红细胞吸附测定(HAD):病毒分析是一种验证方法,其相应的分析(红细胞吸附分析)耗时,只能用于验证具有红细胞吸附特性的菌株。此外,它必须在生物安全三级实验室中进行,限制其应用。等温扩增技术适用于快速现场检测。然而,它的灵敏度略低于荧光PCR。由于使用多种方法和实验来检测多个基因既耗时又费力,因此使用目前可用的qPCR方法只检测到少数基因。多重PCR+核酸质谱技术进行非洲猪瘟快速分型鉴定的优势时间短:无需培养分离。极高的特异性:达95–100%。更高的灵敏度:不受病原体活性的限制,允许DNA检测受损或死亡的病原体。早期筛查:感染早期甚至症状出现之前即可识别阳性病。高通量:每天可检测上千个样本。用于ASFV检测及基因分型鉴定:如B646L基因编码的ASFV的主要衣壳蛋白p72被用作诊断流行性ASFV及其分型的首选蛋白; ASFV毒力强弱分株:如基于CD2(EP402R)的SNP和MGF505部分缺失与否,可以区分I型强毒株和弱毒株;区分野生株和疫苗株:如在制造疫苗建立基因缺失菌株的人工构建过程中,通常靶向EP402R(CD2v)、MGF和A137R等基因。东西分析再升级多重PCR+核酸质谱技术东西分析经过多年的开发,运用多重PCR+核酸质谱技术,成功开发出“非洲猪瘟病毒基因分型、毒力强弱分株和基因缺失检测试剂”。此试剂集荧光PCR和PCR测序技术为一体,采用核酸质谱独特的高重数PCR质谱SNP精细测序优势,结合自身研发的《DNA二维码扫描》专利技术,在一个PCR反应中将以下三个功能合为一体:24个基因分型:根据国标检测P72(B646L)基因区的型特异SNP位点,通过单点或多点组合,区分24种基因型;毒力强弱分株:根据农业部相关指南的靶标基因分析,发现基于CD2(EP402R)的SNP和MGF505部分缺失与否,可用三靶标区分I型强毒株和弱毒株;基因缺失:根据疫苗基因(EP402R、MGF505-3R和A137R)缺失组合鉴定疫苗基因缺失株。此试剂适用于非洲猪瘟病毒分型、毒力强弱分株和区分野生株与疫苗株基因缺失的市场需求。有助于农业、海关等部门从分子水平追溯引发非洲猪瘟疫情的病毒来源、监测ASFV在我国的分布以及流行趋势、掌握和阻断病毒潜在的传播途径及可能的传播方式,对于ASFV的有效防控具有重要意义。仪器展示Ebio Reader 3700 Plus飞行时间质谱仪操作简单无需复杂的样品前处理。性能稳定长寿命固体激光器;飞行管随环境温度、湿度的变化小,保证检测的稳定 ;高效网筛离子源,提高仪器的灵敏度 ;PIE高压脉冲电源控制,实现离子的延迟推斥,提高整体仪器的分辨能力。 软件智能基于神经网络聚合分类法的人工智能软件;拥有强大数据库,实现对菌种的实时鉴定;具备聚类分析功能,可进行T-test等数据分析;具有自建库功能,可根据用户实际情况建立自有菌种库 ;可根据用户具体需求,进行相应升级,用于疾病蛋白标志物和核酸基因分型的检测。应用范围广广泛用于临床、疾控、食品安全、农业、工业、出入境检疫等领域。往期推荐Historical articles核酸质谱之漫话一:什么是核酸质谱核酸质谱之漫话二:核酸质谱法鉴定结核病及其耐药性核酸质谱之漫话三:核酸质谱法在人乳头瘤病毒(HPV)分型检测中的应用核酸质谱之漫话四:核酸质谱法鉴定军团菌?关于我们北京东西分析仪器有限公司,拥有三十多年的分析仪器研发、制造、服务的历史,系国家高新技术企业、北京市高新技术企业、北京市“专精特新”小巨人企业、北京市“专精特新”中小企业和分析仪器制造行业国际化企业。拥有计量器具资质、医疗器械资质和安标资质等多项资质证书。多次获得BCEIA金奖和行业最具影响力奖。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证。多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 核酸质谱之漫话二: 核酸质谱法鉴定结核病及其耐药性
    导读结核病是严重威胁人类健康的重要传染性疾病之一。如何准确快速诊断和鉴别诊断结核病及其耐药性,对指导临床开展早期精准有效治疗至关重要。本篇将主要介绍核酸质谱技术在鉴定结核病及其耐药性方面的内容……结核病是严重威胁人类健康的重要传染性疾病之一。来自世界卫生组织的数据显示:2021年全球有1060万例新发结核病患者,死亡近160万例,新增45万例耐多药/利福平耐药结核病患者;我国新发78万例结核病患者,新增耐多药/利福平耐药结核病患者约3.3万例,是全球结核病及耐药结核病高负担国家之一;肺外结核占所有结核病的15%~40%,因其容易导致器官或组织功能性损伤和器质性障碍而成为近年来结核病领域关注的重点(数据摘自《中国防痨杂志》)。因此,准确快速诊断和鉴别诊断结核病及其耐药性,对指导临床开展早期精准有效治疗至关重要。常见的结核病及其耐药性的诊断方法目前对诊断结核病及其耐药性的方法有:实时荧光定量PCR技术、恒温扩增技术、基因芯片/线性探针技术、基因测序技术和核酸质谱技术等。核酸质谱技术鉴定结核分枝杆菌的优势目前,核酸质谱技术可鉴定结核分枝杆菌复合群8个亚种和40个非分枝杆菌菌种及其亚种,合计48个分枝杆菌菌种和亚种,几乎覆盖了临床上分枝杆菌病的所有常见致病菌。而对于分枝杆菌的保守基因片段,核酸质谱技术可以针对基因的多态性进行设计和鉴定。其优势如下:01敏感度高:目前核酸扩增技术的结核分枝杆菌检测均基于IS6110、IS1081等位点进行扩增,选择其中的1个或2个,而核酸质谱技术可在此基础上增加其他位点的多肽性检测;02特异性高:核酸质谱可以用多基因结果验证,保证结核分枝杆菌检测的特异度;03耐药性检测方面应用范围广:几乎覆盖了目前常用的抗结核和抗分枝杆菌病的药物,检测针对性强、准确性高;04检测速度快:近百例样本同时进行检测分析,检测周期短于一代和二代测序,对少量样本也能进行多基因多位点检测。无需培养,实现单个核苷酸碱基的直接鉴定。核酸质谱技术鉴定结核分枝杆菌抗结核药物目前核酸质谱技术可检测结核分枝杆菌4种一线抗结核药物(异烟肼、利福平、吡嗪酰胺和乙胺丁醇)和常用的二线抗结核药物(氟喹诺酮类、链霉素等)的耐药基因型。药物的检测结果与表型药物敏感性(简称“药敏”)试验结果具有很好的一致性;并可根据耐药相关的基因多态性进行设计,从而获得相关的耐药基因突变结果。可用于检测常用一线、二线抗结核药物的耐药基因位点。如利福平和异烟肼等。* 利福平:利福平的耐药决定区集中了95%以上的临床耐药菌株。核酸质谱技术能够检测出此决定区的所有突变位点,以及区外的常见位点,从而较全面地预测利福平耐药性。同时,核酸质谱法检测的结果还会提示是低水平耐药还是高水平耐药,从而避免出现使用药敏方法检测时的遗漏。综上所述:对于结核病的诊断,我国主要通过患者的临床表现、影像学检查结果及免疫学检测结果进行综合分析,但缺点是检测时间长及准确率有待提高。近年来,分子诊断技术包括核酸质谱技术的迅速崛起和发展,为结核病的快速诊断提供了新的方法。东西分析经过数年的开发,基于飞行时间质谱技术平台开发出快速鉴定结核分枝杆菌及其抗结核药物的应用方案。基于用户的具体需求,通过核酸质谱这个快速及强有力的辅助诊断工具,东西分析可对结核分枝杆菌进行精确到种乃至亚种水平的鉴定,从而为临床提供早期精准诊断和治疗参考建议。对于阳性的检测结果,还可进一步进行耐药性检测。即根据检测结果,临床医生不仅能够进行高效精准的结核病诊断,还能够及时调整治疗药物,从而优化治疗方案。Ebio Reader 3700 Plus飞行时间质谱仪操作简单无需复杂的样品前处理。性能稳定长寿命固体激光器;飞行管随环境温度、湿度的变化小,保证检测的稳定 ;高效网筛离子源,提高仪器的灵敏度 ;PIE高压脉冲电源控制,实现离子的延迟推斥,提高整体仪器的分辨能力。软件智能基于神经网络聚合分类法的人工智能软件;拥有强大数据库,实现对菌种的实时鉴定;具备聚类分析功能,可进行T-test等数据分析;具有自建库功能,可根据用户实际情况建立自有菌种库 ;可根据用户具体需求,进行相应升级,用于疾病蛋白标志物和核酸基因分型的检测。应用范围广广泛用于临床、疾控、食品安全、农业、工业、出入境检疫等领域。往期回顾BREAK AWAY核酸质谱之漫话一:什么是核酸质谱
  • 水泥窑协同处置固废那些事儿——EDX分析前先做个固废“垃圾分类”吧
    导 读固废是固体废弃物的简称。除了最常见的生活垃圾,还有工业垃圾,包括污泥,建筑泥浆,废油脂废酸废碱,和密封的气态废物等。把这些种类复杂,数量庞大的废弃物收集起来后,要做减量化,无害化,甚至资源化的处理,可真不是一件简单的事儿。 岛津分析中心X射线荧光组,有着丰富的水泥行业分析经验,在配合水泥行业做固废协同处置的新领域,参考了我国现在各地越来越重视和积极实施的城市垃圾分类方法。将固废做水泥窑协同处置前,按其性状做了一个“垃圾分类”:A.干固废 B.湿固废 C.有害固废 D.可回收固废 结合分类给出了合理的分析解决方案固废是固体废弃物的简称,但如果你把它“顾名思义”到固体垃圾,就太小看它了;实际上,除了最常见的多种多样的生活垃圾,它还包括工业粉渣废料垃圾,还包括液态的污水,市政污泥,建筑泥浆,废油脂废酸废碱,乃至部分密封的气态废物。 随着城市现代化步伐加快,人们生活水平的提高,生产和产生的各种垃圾数量也与日俱增,对生态环境构成严重威胁。现代工业的发展,也带来了固体废弃物的产生量逐年增多,对人类环境造成的危害也越来越严重。尤其现代电子信息技术、医药化工技术的发展,更导致了许多危险废物的产生。 看数据看图怎样有效处置围城垃圾,如何高效解决总量巨大、种类繁多、兼具生化危害的固废难题!?最传统的掩埋方式,在巨大的总量压力下,受空间、时间以及污染问题困扰,已经越来越难以为继;焚烧成为了更引人关注的处置模式,在这一模式下,主要担心的问题变成了成本和规模,以及焚烧过程中控制二噁英的生成和对环境的二次污染问题。 水泥窑协同处置是水泥工业提出的一种新的废弃物处置手段,它是指将满足或经过预处理后满足入窑要求的固体废物投入水泥窑,利用水泥回转窑内的高温、气体长时间停留、热容量大、热稳定性好、碱性环境、无废渣排放等特点,在进行水泥熟料生产的同时实现对固体废物的无害化处置过程。其显著优势为: 水泥窑协同处置废弃物固体废物的优势随着水泥窑协同处置固废的推广,为了规范其发展和防治环境污染,《HJ662-2013 水泥窑协同处置固体废物环境保护技术规范》与《GB 30760-2014水泥窑协同处置固体废物技术规范》中对入窑固废中的重金属等污染控制成分进行了限定。因此,进行协同处置的企业除了水泥的传统分析外,还需要对重金属等进行检测。 X射线荧光设备是水泥行业重要的传统分析仪器,其中波长型荧光已经广泛应用于水泥行业的生产过程控制,岛津MXF-2400多道同时型波长色散荧光和新品MXF-N3(MXF-N3 PLUS),是众多水泥厂家品控的好帮手。而水泥窑协同处置固废时,面对比普通水泥原料更加复杂的固废投料,样品不均匀,固态液态混合,有机质多等难题,则需要另一种荧光设备的协助——能量色散型X射线荧光(EDX),它具有样品适用性更好,测试方便灵活的特点,尤其擅长对固废来料的快速检测。不过,固废样品的复杂性的确不容小觑,也给EDX带来了挑战。因此,参考我国现在各地越来越重视和积极实施的城市垃圾分类方法,将固废做协同处置前,按其性状有效地做区分是一个合乎逻辑,符合潮流的思路,岛津分析中心据此为固废做了一个“垃圾分类”:A、 “干固废”——最常见的类别,包括一般固废,污泥、污染土壤、矿渣、尾矿、建筑垃圾等含一定量液体,但通过简单烘干制样后分析,材质接近土壤、水泥生产原料;B、“湿固废”——存在大量液体组成的固废类别,包括油、烃含量高的物质以及以水为主体的油水混合物,采用液体分析模式直接进行分析;C、“有害固废”——主要为医药、化工等行业产生的,精馏残渣、盐类等化工废弃物,相对于前两者,往往存在更多更高含量的有毒有害成分,需要更多的关注。特殊的分析模式配合岛津专利的BG-FP法,以及特别提示的操作防护手段;D、“可回收固废”——很多固废并不只是垃圾,而可以利用的资源,EDX可以帮助筛选很多种类别的资源固废。岛津自动化EDX设备@水泥窑协同处置固废的分类解决方案特别推荐水泥是高自动化的成熟产业,应用于巨量的固废协同处置也有高效自动化的需求;固废的分类完成后,面对大批量的样品,EDX还有自动化系列设备可以适应水泥行业的自动化需求,提高测试效率。EDX自动化系统通过机械手自动上样,自动测试和导出结果,全程节省了人力,最大程度发挥仪器使用效率。由于多数固废样品有刺鼻气味,使用自动化系统也可以避免分析人员过多接触样品,更为人性化。 撰稿人:郑 京
  • 『重磅』2022年度高等教育中国学科评级结果发布
    5月11日,泰晤士高等教育发布了第三版中国学科评级。基于中国教育部的学科分类体系,泰晤士高等教育中国学科评级为中国大陆高校提供学科层面的全球洞见,以及与全球其他地区高校比较并展示学术实力的机会。今年的评级包括了91所中国大陆高校与其他1543所全球大学,采用中国教育部的学科分类法,涵盖82门学科,以A+ 至C–的评分系统比较这些大学的表现。与其他主要学科排名或评级机构相比,泰晤士高等教育中国学科评级在中国学科分类体系下提供更多学科的全球评级结果。使用中国学科分类方法还可以帮助中国学生根据自己熟悉的学科做出明智的升学选择。2022年中国学科评级的结果表明,在绝大多数学科中,中国大陆高校的表现均优于世界其他地区的高校。总体而言,中国大陆高校的平均评级为B+,而全球高校的平均评级为B。值得一提的是,最近宣布退出国际大学排名的中国人民大学和南京大学仍旧在评估的范围。但是相较于教育部的学科评估,中国人民大学表现总体不佳,即使文科也仅一个学科进入A+(艺术学理论),其中在教育部评估中表现较好的哲学学科(教育部四次评估,第一次没报名,第二、三次居第二,第四次为A档),在该排名中则位居B档(第5档)。涵盖学科中国教育部以13个支柱领域对111门学科进行分类。本评级通过12个支柱领域来衡量82门学科的绩效。这些分类是:●农学●艺术学●经济学●教育学●工学●历史学●法学●文学●管理学●医学●哲学●理学 泰晤士高等教育排除了14门强烈围绕军事和\或国家安全主题的学科,另外还排除了7门过于中国特有的学科,因为很难将它们与国际大学进行比较。泰晤士高等教育还排除8门学科,因为其数据质量不足以进行国际比较。评级资格大学须满足下列4项关键标准以被纳入本学科评级:●必须进入2022年度泰晤士高等教育世界大学排名●必须符合与2022年泰晤士高等教育世界大学排名相关的学科大类排名门槛●境外高校必须在提交2022年度泰晤士高等教育世界大学排名时选择了相关学科大类;中国大陆高校必须提交他们教授相关学科的证据●必须满足一个学科最低的论文发表数量要求(2017至2021年间)满足这4个条件的大学将被纳入某一门给定学科的评级。所有被纳入至少一个学科评级的大学将进入总评级表单,旨在提供不同学科的绩效概览。中国学科评级结果注:同一评级结果的大学不分先后泰晤士高等教育中国学科评级是唯一一个基于中国教育部的学科分类、以全球大学为参照的中国大学绩效评估表。该评级衡量研究密集型大学的所有核心使命,包括教学、研究、国际视野和知识转移。我们使用下列11个经仔细校准的绩效指标,以提供最全面而平衡的比较,因此深受学生、学者、大学领导、教育界与政府的信赖。这份评级涵盖82门学科,比现有任何其他主要排名或评级的范围更广。绩效指标可分为5个领域,分别是:●教学(学习环境)●研究(发表量、收入和声誉)●引用(研究影响力)●国际视野(国际教师、学生和国际合著)●行业收入(知识转移)2022年度泰晤士高等教育中国学科评级的数据来自2022年度泰晤士高等教育世界大学排名、2021年和2022年度泰晤士高等教育中国学术声誉调查、2020和2021年的学术声誉调查以及爱思唯尔(Elsevier)文献计量数据库。
  • 沃特兰德最新推出原位藻类分类测定仪
    环境条件的变化会造成不同藻类生物种群的优胜略汰,但是这将在世界范围内对环境造成巨大危害,而且有些藻类会引发毒性反应,对公共健康带来威胁,制约社会经济发展,一个典型的例子就可以看出——有害藻类水华现象,其中的主要种群就是蓝藻,为之,浮游生物中藻类分类测定就显得至关重要。沃特兰德最新推出FhytoFind原位藻类分类测定仪,帮助大家了解浮游生物中藻类分类情况。 PhytoFind是一款原位在线藻类的分类工具,它可通过检测藻类的荧光特性来区分不同的藻类,从而进行PE含藻(混合组),PC含有藻类(蓝藻),和其他藻类组实时丰度计算。仪器中的一个传感器用于自动修正溶解有机材料(DOM)的干扰,从而提供更准确的评估,传感器也进行了光学优化以尽量减少浊度的影响。藻类丰度以百分比做显示和记录和其一起保存的数据有温度、深度和叶绿素a浓度。 坚固的外壳可以对抗恶略的环境条件,防生物侵蚀清洁刷和铜板可以降低生物侵蚀,长期在线监测可配备防水电池,连续供电3个月,内部存储60000组数据。固态光学组件确保长期监测的稳定性。
  • 垃圾分类你会了吗?背后的“battle”触目惊心!
    近段时间以来,上海百姓最热闹的话题就是“你是什么垃圾?”。号称史上最严的上海垃圾管理条例于2019年7月1日施行,宝宝们又多了一份操心的事情了。据东方证券研报测算,本次上海垃圾分类共计耗费约75亿人民币。据悉,强制垃圾分类将在全国46个重点城市展开,政府大力的推行强制垃圾分类,除了节省垃圾处理费用、节约资源、回收循环利用等之外,防止有害垃圾(镍镉电池、氧化汞电池、镉镍电池、铅酸电池、卤素灯、废含汞温度计、废含汞血压计)污染水质土壤也非常有意义。资料显示,有害垃圾中,废旧灯管尤其是老式荧光管,汞含量平均约为0.5mg,能污染180吨地下水及周边土壤,汞及其化合物通过皮肤、呼吸道等进入体内,损坏中枢神经系统等。废旧灯管中含有的铅、隔等其它有害元素,对人体及环境均会造成不同程度的危害。环境保护,用对相关的检测设备很有必要!奥林巴斯用于环境检测的Vanta分析仪在样件准备方面几乎没有要求,是用于筛查大面积场地和分析袋装土壤、沉积物、流体等样品的一款极为完美的工具。在上海浦东新区某场地调查需要用到手持式XRF设备,当时使用不同品牌产品直接对比的形式进行比较采购。客户在关注八大土壤重金属之外(V、Cr、Mn、Ni、Cu、Zn、As、Cd)外,还对锑(Sb)元素有特别要求,客户在两次产品对比中,奥林巴斯手持式XRF设备在Sb元素测试上均表现最佳,其他重点关注元素也有较好的结果。决定采购奥林巴斯设备后,设备直接用在该场地现场检测车中使用,客户反馈现场土壤直接装袋测试也有较好的测试效果。使用手持式XRF分析仪的优势特性:快速覆盖大面积区域,从而提高了采样密度,推进了决策的时间进程。使勘探人员立即专注于异常情况。增加密度/扩充采样可最大程度地提高在野外进行分析的效率。使用XRF技术对样本进行预筛选,可以为在实验室进行的分析选择优先样本,从而可更合理地预算分析经费。在现场根据详实的信息作出决策,可以优化钻探预算经费的使用。Vanta分析仪是测量需优先探测的银(Ag)、砷(As)、镉(Cd)、铬(Cr)、铜(Cu)、Hg(汞)、镍(Ni)、铅(Pb)、硒(Se)、铊(Tl)、锌(Zn)等污染元素,以及《资源保护及恢复法案》(RCRA)中限制的银(Ag)、砷(As)、钡(Ba)、镉(Cd)、铬(Cr)、Hg(汞)、铅(Pb)和硒(Se)元素的理想工具,还可以检测稀土元素(REE)及放射性元素铀(U)、钍(Th),检测含量为PPM到百分含量级别。Vanta系列仪器改进创新、坚固耐用、高效多产仪器配备SD存储卡可使用WI-FI,蓝牙(Bluetooth)适配器进行数据传输可使用USB闪存盘进行方便快速的数据传输Axon技术提高分析结果的精准性IP 65/64—防尘防水坠落测试(MIL-STD-810G)探测器快门闸保护及聚酰亚胺网眼保护
  • 新规!北京厨余垃圾分类质量不合格将不收运
    p   6月23日,北京市城市管理委员会联合北京市城市管理综合行政执法局发布了《北京市厨余垃圾分类质量不合格不收运管理暂行规定》,以规范厨余垃圾收集运输管理,促进生活垃圾分类管理责任人和收集运输单位依法履行垃圾分类义务。 /p p   规定中要求厨余垃圾应从产生时就与其他品类垃圾分开,投放前沥去水分,不得混有其他类别垃圾,不得将分好的厨余垃圾混入其他垃圾。生活垃圾分类管理责任人应当建立厨余垃圾日常管理制度,根据厨余垃圾产生量规范设置分类收集容器,并做好日常维修、更换、清洗或者补设,保持容器和周边环境干净整洁。 /p p   同时,收集运输单位依据合同对厨余垃圾的分类质量严格把关,由作业人员通过现场目测或采用工具翻查的方式进行判定。在交付点拟交付的厨余垃圾中明显混有其他类别垃圾的,即判定为分类质量不合格。 /p p   当收集运输单位发现拟交付的厨余垃圾分类质量不合格时,应当主动与生活垃圾分类管理责任人联系,要求生活垃圾分类管理责任人改正。 /p p   生活垃圾分类管理责任人现场改正合格的,应当予以收运。拒不改正的,收集运输单位应当向街道办事处和乡镇人民政府或城市管理综合行政执法部门举报。 /p p   如果生活垃圾分类管理责任人不能及时改正的,收集运输单位应当在交付点或垃圾桶盖上张贴《厨余垃圾分类质量不合格不收运告知单》,注明改正要求和改正期限,拍照留证,并告知生活垃圾分类管理责任人改正。改正期限一般不超过3天。改正期限内,对分类质量不合格的厨余垃圾暂不收运。生活垃圾分类管理责任人采取改正措施,经收集运输单位确认分类质量合格的,恢复收集运输服务。 /p
  • Resonon | 使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类
    肉类富含丰富的蛋白质和营养物质,不仅能够满足我们的味蕾,还能够提供我们身体所需的能量和营养。随着肉类需求的增加,大规模的肉类生产和运输过程中,肉类的速冻可以一定程度保持食物的新鲜度和口感。然而,关于速冻解冻的肉类,和新鲜肉类的混淆,让人难以分辨。首尔大学的研究人员利用高光谱成像技术,做了相关的研究。使用高光谱成像仪和机器学习对新鲜和冻融牛肉进行分类由于对安全、可食用肉类的需求的不断增加,冷冻储存技术得到了不断改进。然而目前存在解冻肉在处理和销售过程中被进行了错误的标记,宣称为新鲜肉类,这可能导致消费者受到误导或产生安全隐患。在这项研究中,使用高光谱图像数据构建了一个机器学习(ML)模型,用于区分新鲜冷藏、长期冷藏和解冻的牛肉样本。通过四种预处理方法,共准备了五个数据集来构建ML模型。使用PLS-DA和SVM技术构建了模型,其中应用散点校正和RBF核函数的SVM模型性能最佳。结果表明,利用高光谱图像数据立方体,可以构建区分新鲜肉类和非新鲜肉类的预测模型,这可以成为肉类储存状态常规分析的快速、非侵入性方法。安装在暗室中的高光谱数据采集系统的配置示意图基于此,来自首尔大学的研究人员使用Resonon Pika L 高光谱成像仪,在近红外光谱的400-1000 nm波段内获取高光谱图像数据立方体,进行了相关研究。在本研究中,图像采集系统安装在暗室中,以确保完全消除外部光并能够采集高光谱图像。将九个样本同时放置在哑光黑色板上,通过移动相机获取高光谱图像数据立方体。所有样品均经过光学稳定处理,在采集高光谱数据之前将它们置于实验环境中 20 分钟,消除由肌红蛋白/氧肌红蛋白含量差异引起的巧合差异。随后,通过分离红色肉部分,从高光谱数据立方体中提取了(ROI)的光谱,确保了只有红色部分肉的光谱被提取用于分析。这个过程产生了高质量的数据集,适用于后续的分析和解释。使用四种预处理技术(MSC、SNV转换、一阶Savitzky–Golay滤波和最小-最大归一化)对提取的光谱进行模型开发。本研究获取的高光谱数据立方体中的光谱图像。(a–c) 分别为“新鲜”、“受损”和“冷冻”样品的 630–650 nm 平均图像;(d-f)分别为“新鲜”、“受损”和“冷冻”样品的 540-560 nm 平均图像。用于构建肉样本分类模型的高光谱数据立方体中的光谱。(a) 实验数据的完整光谱;(b) 每个实验组的平均光谱(实线)以及加减标准差后的光谱(虚线)。研究结论这篇文章研究了使用NIR高光谱成像仪,对牛肉进行分类,区分其“新鲜”、“受损”和“冷冻”状态。通过将韩国产牛肉样品划分为新鲜冷藏、长期冷藏和解冻状态,共获得了九个高光谱图像数据立方体,并通过滴水损失测试定量分析了牛肉样品的状况。本研究共收集了4950个光谱图像,将其80%用作训练集,20%用作测试集。在构建机器学习模型时,使用了四种预处理方法,包括MSC和SNV用于校正,Savitzky-Golay 1st滤波器用于平滑,Min-Max用于归一化,以及原始数据,共准备了五个数据集。采用PLS-DA和SVM技术构建模型,其中SVM模型使用了四个核函数。评估模型性能时,准确性是主要指标,同时对“新鲜”类别的F1分数进行了估计,以独立验证生鲜肉分类的性能。测试集的准确率在几乎所有模型中都超过90%,主要错误是由于未能正确区分“受损”和“冻结”类别。具有散点校正和RBF核函数的SVM模型表现最佳,其准确度达到96.57%,“新鲜”类别的F1分数为100%。研究结果表明,通过纯化高光谱图像数据立方体筛选的光谱可以构建一个预测模型,用于区分新鲜肉和非新鲜肉。这些模型在未来的实际肉类采购场所中具有可行性。
  • 万深发布藻类和浮游动物自动分类计数仪新品
    一、名称:藻类和浮游动物自动分类计数仪(AlgaeAC+ZooCC增强型)英文名: Automatic identification and classification counter for Algae & Zooplankton, Model AlgaeAC+ZooCC plus二、用途:水体中的浮游植物(藻类)和浮游动物优势种类和数量,以及颗粒度分布是研究水环境的重要依据,历来采用人工作业判定,相当费时费力。AlgaeAC藻类自动分类计数仪和ZooCC浮游动物自动分类计数仪可有效解决用户的该痛点问题,主要用于生态学调查、渔业、水产养殖、教育中,对水体中的浮游植物(藻类)和浮游动物样品,做自动分类计数、大小测量以及生物量测定。AlgaeAC+ZooCC增强型还带有藻类和浮游动物的智能鉴定模块,帮助减轻以往繁重的鉴定工作量,是生态调查监测的必备工具。三、核心参数:1、★全时自动对焦的2410万像素高分辨率大视野光学成像,针对显微藻类优化的对焦算法,确保扫描图像清晰,支持20X、40X物镜等放大倍率。2、★水样经前处理而置于藻类计数框后,自动完成藻类识别与分类计数全过程(自动移动视野对焦扫描拍照、自动分类识别计数、自动生成统计报表)。检测依据《SL733-2016内陆水域浮游植物监测技术规程》、《水和废水监测分析方法》(第四版)第五篇《水和废水的生物监测方法》,及GB17378-2007《海洋监测规范》、GB/T12763-2007《海洋调查规范》对应到藻类的计算要求。3、★系统内含蓝藻门、硅藻门、绿藻门、裸藻门、隐藻门、金藻门、甲藻门、黄藻门常见的55个属种以上藻类分类识别库,可根据当地情况自行扩展到60个至100个属种。4、★可分析获得每个藻体的面积、周长、体积、长、宽、主轴、副轴、等效直径等形态参数。可分析统计各藻类(按门或属种)的数量、面积、体积及其占比;对各分类进行排序及柱状图显示占比情况。可在Excel软件中进一步统计分析数据。可在采集图像上直接标出藻类名称,提取分割每个藻类的图像并自动分类保存,可回溯查看历史数据。自动给出分类计数统计报告,标示优势种和优势度,并按优势种排序。自动计算香农-威纳指数、均匀性指数、丰富度指数、藻个体密度、藻细胞密度、生物量等。5、可自动分类分析3~1000μm的藻类,100个视野的自动扫描成像+自动分析时间15-20分钟(视野数25-400个可选);检测范围为105-1010个/升;当地分类识别库优势种自动识别率≥90%,综合自动识别率≥80%,经交互修正后的最终识别率可达98%以上;在浓度为107-108个/升时,自动分析的重复性误差小于5%。6、模仿人工显微镜检测藻类的过程,可按全片计数法、对角线计数法、行格计数法、随机视野计数法等5种计数方式进行成像计数。7、★可以9600*6400dpi扫描获得巨大的透扫正片图像(厂家标示的最高分辨率62336*37760像素),能包含上千个完整的浮游动物。优化的照明参数能确保图像对比度和成像质量。8、★自动提取和保存超大图像中的浮游动物,自动学习并实现150μm以上常见优势浮游动物按大类鉴定来高效率自动分类计数(按滤网200μm为1档,1500μm为2档,分别从多到少来自动统计),给出浮游动物大小的粒径谱分布等参数。内置东海、南海、黄海、渤海四大海域初步分类文件,用户可自行扩充或新建标准库(种类可达100类),自动学习生成分类文件。学习15大类3000张已分类图库样本,来新建自动学习分类文件耗时≤6分钟/次。9、★适合分析水样量50-700mL/次。扫描图像≤15分钟/水样,分类计数的自动分析耗时≤6分钟/水样。具有鼠标辅助分割和拖动目标改判分类特性,以获得100%正确的统计结果。10、★自动给出分类计数统计报告,可分析获得每个浮游动物的面积、周长、体积、长、宽、主轴、副轴、等效直径等形态参数。可分析统计每类浮游动物的数量、面积、体积、占比及多样性指数;对各分类进行排序及柱状图显示占比情况。可在Excel软件中进一步统计分析数据。11、可批量化兼容导入其它已知标准学习库图和其它图像。标配2个水样盘:高透光超白玻璃做面,容积2cm高*144cm2(9600*6400dpi或9600*4800dpi扫描,对应1档滤网)、2cm高*350cm2(1200*1200dpi扫描,对应2档滤网)。12、★藻类和浮游动物的智能鉴定模块1)能快速有效地以图搜图,来智能鉴定多达2.4098万个种海水和淡水的藻类、浮游动物(中文、拉丁文双语显示的浮游生物专家图库:藻类共15个门、1636个属、14645个种;浮游动物共24大类、1936个属、9453个种)。已有有效图库量26.4777万张以上,各图库属种和内容可自行扩充。还能按P5胸足搜索鉴定桡足类。2)能自动索引用户已建计数表的藻类和浮游动物来生成所关注流域小图库,使以图搜图搜素鉴定更快捷准确。3)微囊藻分析模块能自动学习与自动分析团状微囊藻群体的细胞数,自动计数颗粒性或单细胞微藻、链状微藻细胞、线虫等类的浮游动物。4)具有藻类、浮游动物计数及形态测量功能,统计并报告优势种序列。内置34种几何模型,通过测量少量参数即可计算浮游生物个体/细胞体积及生物量。13、可根据采集地地理坐标在地图上定位及标注,支持高德地图、高德卫星地图、谷歌地图、谷歌卫星地图等多种地图源。14、厂家提供协助建立1个当地分类初始识别库服务,提供远程协助指导、3年免费远程升级服务。四、配置清单:1)藻类和浮游动物自动分类计数仪AlgaeAC+ZooCC增强型(含浮游生物智能鉴定系统) 1套2)高精度电控X-Y自动扫描平台+控制器 1套3)全时自动对焦的高分辨率光学成像系统 1套4)高分辨率、高性能A4幅面影像扫描仪 1套5)奥林巴斯BX53三目生物显微镜 1套6)品牌电脑(i5 九代以上CPU /16G内存/含支持CUDA的GTX1060 GPU/ 2T硬盘/ 23”彩显,1个USB3.0口+3个USB2.0口,运行环境Windows 10操作系统) 1台7)高透明大容量水样盘 2个本技术标书中打★款项必须响应,否则为重大偏离。建议报“单一来源”直接采购,理由是:目前仅万深分析系统能快速有效地以图搜图,来智能鉴定多达2.4098万个种的藻类、浮游动物,国内外其它任何系统均无法替代或PK。直采因省掉中间环节还省钱。创新点:用于生态学调查、渔业、水产养殖、教育中,对水体中的浮游植物(藻类)和浮游动物样品,做自动分类计数、大小测量以及生物量测定,自动完成藻类识别与分类计数全过程(自动移动视野对焦扫描拍照、自动分类识别计数、自动生成统计报表)。其还带有藻类和浮游动物的智能鉴定模块,快速有效地以图搜图,来智能鉴定多达2.4098万个种海水和淡水的藻类、浮游动物,帮助减轻以往繁重的鉴定工作量,是生态调查监测的必备工具。 藻类和浮游动物自动分类计数仪
  • 生物试剂的分类
    ELISA试剂盒生物试剂涉及到化学试剂分类。我国的试剂规格基本上按纯度(杂质含量的多少)划分,共有高纯、光谱纯、基准、分光纯、优级纯、分析和化学纯等7种。国家和主管部门颁布质量指标的主要优级纯、分级纯和化学纯3种。 (1)优级纯(GR:Guaranteed reagent),又称一级品或保证试剂,99.8%,这种试剂纯度最高,杂质含量最低,适合于重要精密的分析工作和科学研究工作,使用绿色瓶签。(2)分析纯(AR),又称二级试剂,纯度很高,99.7%,略次于优级纯,适合于重要分析及一般研究工作,使用红色瓶签。(3)化学纯(CP),又称三级试剂,≥ 99.5%,纯度与分析纯相差较大,适用于工矿、学校一般分析工作。使用蓝色(深蓝色)标签。ELISA试剂盒(4)实验试剂(LR:Laboratory reagent),又称四级试剂。 除了上述四个级别外,ELISA试剂盒目前市场上尚有:基准试剂(PT:Primary Reagent):专门作为基准物用,可直接配制标准溶液。光谱纯试剂(SP:Spectrum pure):表示光谱纯净。但由于有机物在光谱上显示不出,所以有时主成分达不到99.9%以上,使用时必须注意,特别是作基准物时,必须进行标定。纯度远高于优级纯的试剂叫做高纯试剂(≥ 99.99%)。玉米粉琼脂 Corn Meat Medium 250 用于真菌培养沙氏琼脂培养基 Sabouraud’s Agar 250 用于真菌检测(GB标准)沙氏BHI琼脂 Sabouraud BHI Agar 250 用于真菌检测(Acumedia 方法)沙门氏菌显色培养基 Salmonella Chromogenic Medium 1000ml 用于沙门氏菌的显色培养三糖铁琼脂(TSI) Triple Sugar Iron Agar 250 生化培养基,用于肠杆菌科细菌的生化反应筛选(GB、SN标准)噻孢霉素 A 1.25μg/支*5 添加于100ml HB0121中乳糖肉汤 Lactose Broth 250 用于食品中沙门氏菌检验前增菌乳糖莫能霉素葡萄糖醛酸琼脂 LMG Agar 250 用于滤膜MUG法检测食品中大肠菌群数(SN/T1059.2)乳糖复发酵培养基 Lactose Broth 250 用于大肠菌群,粪大肠菌群,大肠杆菌的测定(GB标准)乳糖蛋白胨培养液 Lactose Peptone Broth 250 用于饮用水,水源水中总大肠菌群的测定(GB标准)乳糖胆盐发酵培养基 Lactose Bile Broth 250 用于大肠菌群,粪大肠菌群,大肠杆菌的测定(GB标准)去氧胆酸盐琼脂 Desoxycholate Lactose Agar 250 用于大肠杆菌固体平板测定,肠道菌选择性分离庆大霉素琼脂 Gentamycin Agar 250 用于霍乱弧菌选择性分离培养茜素-β-半乳糖苷琼脂 Aliz-gal Agar 250 用于食品、饮料和饮用水中大肠菌群快速检测和计数(GB/T)普通肉汤培养基 Broth Medium 250 用于金黄色葡萄球菌的增菌培养(SN标准)葡萄糖胰蛋白胨琼脂 Glucose Tryptone Agar 250 用于嗜热菌芽孢(需氧芽孢总数、平酸芽孢和厌氧芽孢)分离培养(SN标准)葡萄糖琼脂 Dextrose Agar 250 用于细菌的综合生化试验葡萄糖半固体培养基 Dextrose Semisolid Medium 250 用于志贺氏菌的复合生化试验(GB标准)葡萄糖铵培养基  Ammonium Dextrose Medium 250 用于志贺氏菌的葡萄糖铵试验(GB标准)葡萄球菌增菌肉汤 Staphylococcus Enrichment Broth 250 用于凝固酶阳性葡萄球菌的选择性增菌葡萄球菌选择性琼脂110(CHAPMAN 琼脂) Staphylococcus Selective AgarNO.110 250 用于金黄色葡萄球菌的分离培养
  • 19项制修订项目纳入《化妆品安全技术规范》,涉及色谱、质谱、光谱等仪器
    国家药品监督管理局组织起草了《化妆品毒理学试验方法样品前处理通则》等19项制修订项目并形成相应检验方法,经化妆品标准专家委员会全体会议审议通过,现予以发布。其中,《化妆品毒理学试验方法样品前处理通则》等11项制定项目(详见附件2-12)为新增检验方法,纳入《化妆品安全技术规范(2015年版)》(详见附件1),自2024年12月1日起实施。《化妆品中二噁烷的检验方法》《化妆品中二甲硝咪唑等120种原料的检验方法》《化妆品中二硫化硒的检验方法》(详见附件13-15)为修订的检验方法,替换《化妆品安全技术规范(2015年版)》中原有检验方法(详见附件1)。自2024年12月1日起,化妆品注册、备案及抽样检验相关检验应当采用本通告发布的检验方法。比马前列素、拉坦前列素、他氟前列素、他氟乙酰胺、曲伏前列素为新增禁用物质,纳入《化妆品安全技术规范(2015年版)》(详见附件1),自发布之日起实施。附件:1.《化妆品安全技术规范》19项制修订项目情况汇总表附件1.doc    2.化妆品毒理学试验方法样品前处理通则 附件2.docx    3.急性吸入毒性试验方法 附件3.docx   4.急性吸入毒性试验 急性毒性分类法 附件4.doc    5.光反应性活性氧(ROS)测定试验方法 附件5.docx    6.体外皮肤变态反应 U937细胞激活试验方法 附件6.docx    7.皮肤吸收体内试验方法 附件7.doc    8.28天重复剂量经口毒性试验方法附件8.doc    9.28天重复剂量吸入毒性试验方法 附件9.doc    10.90天重复剂量吸入毒性试验方法 附件10.doc    11.扩展一代生殖发育毒性试验方法附件11.docx    12.两代生殖发育毒性试验方法 附件12.docx    13.化妆品中二噁烷的检验方法 附件13.doc   14.化妆品中二甲硝咪唑等120种原料的检验方法 附件14.docx    15.化妆品中二硫化硒的检验方法 附件15.docx 国家药监局  2024年3月18日
  • 青岛能源所发明高通量高稳定性的拉曼流式细胞术pDEP-DLD-RFC
    单细胞拉曼光谱(SCRS)能非标记、非侵入性、无损、全景式地揭示细胞代谢状态,因此基于SCRS的活体单细胞流式检测(Raman Flow Cytometry,RFC),有着广阔应用前景。近日,青岛能源所单细胞中心和青岛星赛生物合作发明了基于介电诱导确定性侧向位移完成单细胞聚焦、捕获/释放的拉曼流式检测技术pDEP-DLD-RFC,并证明其针对人体细胞(肿瘤)、植物(微藻)、酵母和细菌等多种细胞类型的广谱适用性。基于此推出的FlowRACS 3.0仪器,为活体单细胞代谢表型组的高通量检测提供了全新工具。该工作近日发表于《先进科学》(Advanced Science)。活体单细胞代谢表型组的流式检测,在微生物资源挖掘、细胞工厂筛选、酶元件表征、生物过程监控、临床诊疗等方面,具有共性的支撑作用。与荧光流式和质谱流式等现有流式细胞检测手段相比,拉曼流式具有无需标记细胞、活体检测、信息量丰富等优势,因此是一种具有广阔应用前景的细胞分析手段。但是,高通量拉曼流式技术的应用受限:首先,如何提高样品的普适性,以适用于不同细胞类型与不同表型的检测;其次,如何提高检测的通量,以实现高度异质性细胞群体的深度检测;最后,如何提高运行的稳定性,以支撑高度可靠的仪器使用流程。针对上述问题,青岛能源所单细胞中心王喜先、任立辉、刁志钿、何曰辉等带领的研究小组发明了“介电诱导确定性侧向位移实现单细胞聚焦、捕获/释放的拉曼流式检测技术”(Positive Dielectrophoresis Induced Deterministic Lateral Displacement-based Raman Flow Cytometry,pDEP-DLD-RFC)。首先,通过宽流场高流量的进样策略,有效防止细胞沉降,从而实现了长时间稳定运行(>5小时);其次,通过介电诱导细胞确定性侧向位移,实现宽场中细胞高效聚焦地流经检测位点,从而保证了拉曼检测效率;最后,通过施加检测时间依赖的周期性介电场,实现了单细胞的快速捕获/释放,以满足各种不同代谢表型的普适性、高通量检测。基于上述关键技术突破,研究小组研制成功兼具广谱通用性、高通量、运行稳定性等性能的高通量拉曼流式检测系统,并开发了一系列应用:肿瘤细胞分类、微藻合成过程监控、产油酵母多表型监控、细菌药敏性检测。第一,植物生物制造过程的代谢监控。基于共振拉曼信号,实现了雨生红球藻中虾青素含量的实时监测,从而示范了单细胞精度的虾青素累积过程细胞工厂代谢状态的监控,并考察了“高光”和“缺氮”等条件对细胞虾青素累积速度及其同步性的影响。其虾青素含量检测速度达~2700 events/min,为目前最高的自发拉曼检测/分选通量。第二,酵母生物制造过程的代谢监控。基于非共振拉曼信号,示范了油脂酵母中细胞代谢活力、甘油三脂含量、油脂不饱和度等多个关键代谢表型的同步动态监控,进而通过拉曼组机器学习、拉曼组内关联分析(Intra-Ramanome Correlation Analysis,IRCA)等算法,实现了单细胞代谢状态(准确率>96%)的实时鉴定,以及细胞内代谢物相互转化网络的实时重建。第三,细菌药敏性的流式快检。基于单细胞中心前期提出的重水饲喂单细胞拉曼药敏原理,以大肠杆菌和多种常见抗生素为例,开发了流式药敏快检技术,并通过与拉曼药物应激条形码(Raman Barcode for Cellular Stress-response,RBCS)、IRCA、拉曼组机器学习等算法,证明该流式药敏快检技术还能实时地判断单菌体精度的药物应激状态、构建细胞内代谢物相互转化网络等,从而揭示细菌-药物互作机制。此外,流式检测大大提高了药敏检测中SCRS取样深度,对于识别群体中通常占比很低的耐药细胞,具有重要的意义。第四,肿瘤细胞类型的快速区分。基于SCRS中信息丰富的指纹区,以膀胱癌、肺癌、肾细胞癌、乳腺癌等细胞株为例,证明流式拉曼技术耦合拉曼组机器学习算法,能以平均95%的准确率,完成肿瘤细胞类型的快速判别。该方法对于肿瘤细胞质量检测等应用具有潜在的应用价值。与转录组、蛋白组和代谢物组相比,拉曼组能表征单细胞精度的底物代谢、产物合成、环境应激性、化合物相互转化等关键代谢表型,而具广谱适用、活体、无损、非标记、全景式表型、可分辨复杂功能、快速、低成本、能耦合下游测序、质谱或培养等优势,因此拉曼组是一种更接近于“功能”、更适合于临床、工业等场景的单细胞表型组。为了支撑人体、动植物和微生物拉曼组数据的自动化采集与分析,单细胞中心与星赛生物基于pDEP-DLD-RFC技术,推出了高通量流式拉曼分析/分选仪FlowRACS 3.0,将大大加速拉曼组平台的推广应用。该工作由单细胞中心马波研究员和徐健研究员主持,与青岛星赛生物合作完成,得到了国家重点研发计划、国家自然科学基金委和山东省自然科学基金委的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制