手持视网膜检测仪

仪器信息网手持视网膜检测仪专题为您提供2024年最新手持视网膜检测仪价格报价、厂家品牌的相关信息, 包括手持视网膜检测仪参数、型号等,不管是国产,还是进口品牌的手持视网膜检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合手持视网膜检测仪相关的耗材配件、试剂标物,还有手持视网膜检测仪相关的最新资讯、资料,以及手持视网膜检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

手持视网膜检测仪相关的厂商

  • 东莞市玖弘检测仪器有限公司是一家专注于检测设备研发、生产、销售为一体的科技型设备制造民营企业,其主要业务范围是研发、产销各种检测仪器仪表如:电子仪器仪表、自动化设备及配件、通用机械设备、注塑机、五金配件、模具、以及机电设备专业的仪器维修和技术服务、高分子材料产品质量检测、销售计量器具、货物进出口等。未来东莞市玖弘检测仪器有限公司将继续在领域保持定力,开拓奋斗,希望与广大的朋友们一起携手共进!
    留言咨询
  • 18916787161 作为无损检测行业的专业制造商,科电仪器技术为先导,为客户提供高效、上等的检测解决方案。我们的检测技术涵盖超声波测厚仪、涂镀层测厚仪、防腐层检漏仪、电火花检测仪、led观片灯、红外线检测等领域。 服务范围广阔,石油、化工、航空,造船、电力、军工、钢铁、机械、冶金、汽车、锅炉压力容器、玻璃及金属加工等,安全有效的提供您无损及环境检测服务 Te l 18916787161
    留言咨询
  • 紫微装备(沈阳紫微检测仪器有限公司),原紫微测试无损事业部,隶属于紫微测试。公司致力于无损检测仪器的研发、生产,和技术创新。沈阳紫微检测仪器有限公司,是一家国际品牌的试验设备制造商和解决方案提供商、国内颇具规模的检测设备制造民营企业。国家高新技术企业、辽宁省省级企业技术中心、沈阳市中小企业公共服务示范平台。公司先后通过ISO-9001质量体系认证、武器科研三级保密单位、GJB9001B-2009武器装备质量体系认证单位(编号:16JB3415)。紫微装备致力于压力流量密封性、汽车零部件耐久性、环境稳定性、材料热物理性试验设备的研发、生产、销售和服务。随着规模的不断扩大,生产基地分别设立在沈阳、长春、丹东、武汉。未来产值将达到3亿元。
    留言咨询

手持视网膜检测仪相关的仪器

  • HMsERG 动物视网膜电图系统是用于视觉电生理学研究的一款产品,适用于所有类型的哺乳动物、鸟类及爬行动物研究。OcuScience 产品线的关键特点是系统按照国际视觉电生理学会(ISCEV)标准内置了相关测试协议,并且客户也可根据个人需求自定义测试协议。HMsERG 内置微型Ganzfeld刺激器,能够充分为动物整个视网膜提供最佳照明,刺激器产生的光强最高可达30 cd.s/m2。HMsERG 为世界各地的许多实验室提供技术支持,帮助他们更好地了解眼睛并为医学带来重大进步。ERG 是对特定光刺激的视网膜电响应的定量测量,其可被用于诊断疾病、识别毒理学效应和眼科疾病分析评估治疗。HMsERG 产品组合包括对各种体型的哺乳动物和其他脊椎动物进行ERG 所需的必要附件,以及适用于不同研究和临床环境的电极,包括活性嵌银尼龙线电极、ERG-Jet 角膜接触镜电极以及参考/接地电极等。HMsERG LAB HMsERG LAB 系统,是专为小鼠、大鼠和兔子等小型实验动物设计的视网膜电图检测系统,其包括手持或固定的fERG 刺激光源、加热实验台,用于屏蔽其他电干扰的法拉第笼、辅助电极定位夹具以及各种ERG 测量电极。除此之外,用户还可选配单边或双边视觉诱发电位检测。HMsERG 系统的用途包括但不限于以下方面的研究: 细菌性眼内炎 糖尿病视网膜病变 眼内炎 青光眼 传染病学 MicroRNA 疗法 人工视网膜 药物功效和毒理学 VEP 记录 视网膜干细胞 视网膜变性 肌肉营养不良的视网膜效应 色素性视网膜炎 小鼠眼病的转基因模型 The HMsERGLab System is Used World-Wide toAid inOphthalmic Research:The HMsERGLAB System ELECTRORETINOGRAPHY DEVICES AND SUPPLIES VETERINARIANS & LARGE ANIMAL CLINICS RESEARCHERS & SMALL ANIMAL STUDIESHand-held Multi-species Electroretinography [HMsERG] Yes Yes Ex Vivo ERG Adapter No Yes Stainless Steel Subdermal Needle Electrodes Yes Yes Silver-embedded Thread Electrodes No Yes ERG-Jet Lens Yes YesMini Contact LensYesYesRodent Contact Lens with Siver-embedded Thread Electrodes Yes Yes Goniovisc (Methylcellulose) Yes Yes Dual Photo-Stimulator Option Yes Yes Neutral Density Conical Filter 3 for the HMsERG Yes Yes Rodent Examination Table No YesTemperature ControllerNoYesFaraday CageNoYes Rodent Face Mask No Yes 3 Red LED Headlamps for Dark Adaptive Lighting Yes Yes如需研究动物的视网膜影像,可选择:视网膜成像系统:视网膜影像系统是专为啮齿动物,特别是针对大小鼠设计的眼科成像系统。主要功能:视网膜眼底成像、视网膜电图、眼科 OCT、OCT 分割、眼科激光、CNV(激光电凝术后脉络膜心血管生成)、眼前节成像等。MICRON® IV 视网膜眼底成像系统采用模块化设计,体积小巧占用空间少,可根据实验需求进行功能扩展。其他系统大多数都需要搭载该系统才能得以实现其功能。可以说,MICRON® IV 视网膜眼底成像系统是对啮齿动物进行眼部结构和功能全方位研究的基础。出色的成像能力视网膜眼底成像系统具有 3 种成像功能:明场成像、血管造影成像和荧光成像有的三芯片 CCD 相机可提供 3um 的明场分辨率,并具有捕捉微弱荧光图像的灵敏度。除了荧光素和伊文氏蓝血管造影外,还可以对常见的报道分子(如 GFP、YFP、mCherry 和 CFP)进行成像。图像处理软件“Discover ”具有包括控制在内的多项新功能,确保在实验过程中能够捕捉到效果最佳的图像。新功能包括 图像处理 对比拉伸 软件适用性增强 线条轮廓国际认可度高Micron 技术在北美、亚洲和欧洲的 200 多个研究中心发挥着不可或缺的作用,并被国际 300 多种出版杂志引用。该系统已被广泛应用于包括基础眼科、毒理学、药效学和神经学等多项科学研究当中。主要特点: 有别於一般眼底镜,专为大/小鼠设计之视网膜影像撷取系统; 视网膜成像分辨率低于4μm,视野范围(FOV)可达60度(2mm); 具有3种成像方式,明场、血管造影和荧光 定制的三芯片 CCD 相机提高了捕捉更微弱荧光图像的灵敏度 近红外成像的新功能可捕获长波段荧光成像和血管造影成像 能够实现捕捉静止图像或视频的实时成像 使用方式和萤光显微镜类似,可观察明视野和萤光(Ex.CFP,GFP,mChrry等)影像; 兼具单张图像拍摄及数位影像录影功能; 非常适合用在萤光血管造影,甚至可看到微血管内血球的动态流动; 可即时切换萤光滤片及焦距调整; 设计灵活可扩展,可根据科研需求选配 ERG、OCT、激光或裂隙灯等系统 对人机工程学设计进行改进,更加方便实验操作主要应用范围: 萤光血管造影 糖尿病视网膜病变 视网膜母细胞瘤 视网膜黄斑衰退症 早产儿视网膜病变 脉络膜新生血管 视网膜色素变性等 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • HMsERG 动物视网膜电图系统是用于视觉电生理学研究的一款产品,适用于所有类型的哺乳动物、鸟类及爬行动物研究。OcuScience 产品线的关键特点是系统按照国际视觉电生理学会(ISCEV)标准内置了相关测试协议,并且客户也可根据个人需求自定义测试协议。HMsERG 内置微型Ganzfeld刺激器,能够充分为动物整个视网膜提供最佳照明,刺激器产生的光强最高可达30 cd.s/m2。HMsERG 为世界各地的许多实验室提供技术支持,帮助他们更好地了解眼睛并为医学带来重大进步。ERG 是对特定光刺激的视网膜电响应的定量测量,其可被用于诊断疾病、识别毒理学效应和眼科疾病分析评估治疗。HMsERG 产品组合包括对各种体型的哺乳动物和其他脊椎动物进行ERG 所需的必要附件,以及适用于不同研究和临床环境的电极,包括活性嵌银尼龙线电极、ERG-Jet 角膜接触镜电极以及参考/接地电极等。HMsERG LABHMsERG 系统的用途包括但不限于以下方面的研究: 细菌性眼内炎 糖尿病视网膜病变 眼内炎 青光眼 传染病学 MicroRNA 疗法 人工视网膜 药物功效和毒理学 VEP 记录 视网膜干细胞 视网膜变性 肌肉营养不良的视网膜效应 色素性视网膜炎 小鼠眼病的转基因模型 The HMsERGLab System is Used World-Wide toAid inOphthalmic Research:The HMsERGLAB System ELECTRORETINOGRAPHY DEVICES AND SUPPLIES VETERINARIANS & LARGE ANIMAL CLINICS RESEARCHERS & SMALL ANIMAL STUDIESHand-held Multi-species Electroretinography [HMsERG] Yes Yes Ex Vivo ERG Adapter No Yes Stainless Steel Subdermal Needle Electrodes Yes Yes Silver-embedded Thread Electrodes No Yes ERG-Jet Lens Yes YesMini Contact LensYesYesRodent Contact Lens with Siver-embedded Thread Electrodes Yes Yes Goniovisc (Methylcellulose) Yes Yes Dual Photo-Stimulator Option Yes Yes Neutral Density Conical Filter 3 for the HMsERG Yes Yes Rodent Examination Table No YesTemperature ControllerNoYesFaraday CageNoYes Rodent Face Mask No Yes 3 Red LED Headlamps for Dark Adaptive Lighting Yes Yes如需研究动物的视网膜影像,可选择:视网膜成像系统:视网膜影像系统是专为啮齿动物,特别是针对大小鼠设计的眼科成像系统。主要功能:视网膜眼底成像、视网膜电图、眼科 OCT、OCT 分割、眼科激光、CNV(激光电凝术后脉络膜心血管生成)、眼前节成像等。MICRON® IV 视网膜眼底成像系统采用模块化设计,体积小巧占用空间少,可根据实验需求进行功能扩展。其他系统大多数都需要搭载该系统才能得以实现其功能。可以说,MICRON® IV 视网膜眼底成像系统是对啮齿动物进行眼部结构和功能全方位研究的基础。出色的成像能力视网膜眼底成像系统具有 3 种成像功能:明场成像、血管造影成像和荧光成像有的三芯片 CCD 相机可提供 3um 的明场分辨率,并具有捕捉微弱荧光图像的灵敏度。除了荧光素和伊文氏蓝血管造影外,还可以对常见的报道分子(如 GFP、YFP、mCherry 和 CFP)进行成像。图像处理软件“Discover ”具有包括控制在内的多项新功能,确保在实验过程中能够捕捉到效果最佳的图像。新功能包括 图像处理 对比拉伸 软件适用性增强 线条轮廓国际认可度高Micron 技术在北美、亚洲和欧洲的 200 多个研究中心发挥着不可或缺的作用,并被国际 300 多种出版杂志引用。该系统已被广泛应用于包括基础眼科、毒理学、药效学和神经学等多项科学研究当中。主要特点: 有别於一般眼底镜,专为大/小鼠设计之视网膜影像撷取系统; 视网膜成像分辨率低于4μm,视野范围(FOV)可达60度(2mm); 具有3种成像方式,明场、血管造影和荧光 定制的三芯片 CCD 相机提高了捕捉更微弱荧光图像的灵敏度 近红外成像的新功能可捕获长波段荧光成像和血管造影成像 能够实现捕捉静止图像或视频的实时成像 使用方式和萤光显微镜类似,可观察明视野和萤光(Ex.CFP,GFP,mChrry等)影像; 兼具单张图像拍摄及数位影像录影功能; 非常适合用在萤光血管造影,甚至可看到微血管内血球的动态流动; 可即时切换萤光滤片及焦距调整; 设计灵活可扩展,可根据科研需求选配ERG、OCT、激光或裂隙灯等系统 对人机工程学设计进行改进,更加方便实验操作主要应用范围: 萤光血管造影 糖尿病视网膜病变 视网膜母细胞瘤 视网膜黄斑衰退症 早产儿视网膜病变 脉络膜新生血管 视网膜色素变性等请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 小动物视网膜成像 400-860-5168转4543
    德国Rodent小动物视网膜微循环成像系统配置高性能的LED光源,并且配置了专门的动态、静态血管分析软件,能广泛的应用于小动物视网膜微循环等研究 。产品特点:    整套设备包含光源、彩色相机、彩色/单色成像模块,图像采集分析软件、小动物手术台。只需占用极小的实验空间,方便安装使用。在有限实验场地就能建立一个同时应用于学生实验和基础研究的眼科研究工作站。  *有别于一般眼底镜,专为动物(大、小鼠)设计的视网膜成像系统  *使用方法和荧光显微镜类似,可以观察明视野和荧光造影*兼具静态图像拍摄和数位动态影像录影功能应用领域:  *眼球病理研究 *神经科学 *基因工程 *细胞生物学 *干细胞/再生医学  一般病理性检查  糖尿病视网膜病变(Diabetic Retinopathy)  视网膜母细胞瘤(Retinoblastoma)  视网膜黄斑衰退症(AMD)  脉络膜新生血管(Choroidal Neovascularization)  视网膜色素变性(Retinitis Pigmentosa)
    留言咨询

手持视网膜检测仪相关的资讯

  • 许国旺团队合作成果:糖尿病视网膜病变可通过血液代谢标志物检测与发现
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,中国科学院大连化学物理研究所研究员许国旺团队与上海交通大学附属第六人民医院贾伟平团队、中科院上海生命科学研究院研究员吴家睿团队合作,在糖尿病视网膜病变的早期发现方面取得新进展,发现了12-羟基花生四烯酸(12-HETE)和2-哌啶酮(2-piperidone)适用于糖尿病视网膜病变的诊断,尤其适合早期筛查。相关研究近日发表于Advanced Science。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b2ace437-6b49-465c-af3b-35195092e4ec.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-align: center " 糖尿病视网膜病变可通过血液代谢标志物的检测 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 糖尿病在世界各地的发病率不断上升,造成社会、财政和医疗系统负担不断加重。国际糖尿病联合会预计,到2045年全球糖尿病患病人数将高达7亿人。中国糖尿病的患病人数已高居全球首位。糖尿病视网膜病变是糖尿病最常见、最严重的微血管并发症之一,也是成年人视力降低和致盲的主要原因,严重影响着全球成千上万人的生活质量。糖尿病视网膜病变的筛查和早期诊断对该病的预防和治疗尤为重要。目前的筛查和诊断仍依赖于视网膜成像,该方法人力、物力、财力消耗大,且依赖专业眼科医生的操作及对视网膜图像的判读,不利于大规模的快速筛查。因此,探索一种快速、高效、简便的体外诊断技术对糖尿病视网膜病变的早期发现和诊断有重要价值。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本项研究共纳入905名受试者的血清样本,基于多平台代谢组学数据,全面揭示了糖尿病视网膜病变发生发展过程中异常的代谢特征和紊乱的代谢通路。通过多变量/单变量统计分析,研究人员发现并验证了一个新型组合标志物(12-HETE和2-piperidone),实现了糖尿病视网膜病变的快速、精准的体外诊断,其灵敏度高达80.5%~89.4%、特异性高达91.9%~93.3%,受试者工作曲线下面积AUC=0.928-0.946。该组合标志物在疾病的早期诊断中也表现出明显优势,其灵敏度高达81.6%~92.9%、特异性高达90.1%~93.3%、AUC=0.925-0.958,使糖尿病视网膜病变只需要进行血液检测就可快速及早发现病变原因,为糖尿病视网膜病变血液检测提供了可靠、高效、便捷的新方法。 /p p style=" text-indent: 2em " 点击链接了解原文: a href=" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714" target=" _blank" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714 /a /p
  • 岛津成像质谱显微镜应用专题丨视网膜药物分析
    高分辨率成像质谱应用于大鼠视网膜中氯喹的分布分析 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。 因此,最近成像质谱分析法,即不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文为您介绍使用成像质谱显微镜iMScope TRIO对氯喹给药后大鼠视网膜进行检测的示例。 1.大鼠视网膜中氯喹的高空间分辨率成像在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。图1 氯喹的结构式 表1 分析条件 使用成像质谱显微镜iMScope TRIO进行高空间分辨率成像,发现在约10μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。 图2 组织切片上的MS/MS质谱图图3 光学图像和MS/MS质谱图像 在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope TRIO的MS/MS模式进行测定,提高灵敏度,能够获得10μm的高空间分辨率下的MS/MS图像。 2.大鼠眼球中氯喹的高速成像在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS模式测定在中等分辨率(50μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2所示。 表2 分析条件图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm 虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope TRIO依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集速度取决于目标检测区域中所包含的点数。iMScope TRIO能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 3.基质涂敷方式的比较在氯喹成像质谱分析中,比较了2种不同的MALDI基质涂敷方式。图5显示了有升华法获得的成像结果(基质升华方式的示意图如图6所示)。基质升华有iMLayer升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件同时基质涂敷的过程也很重要。图5 升华法获得的氯喹分布质谱图像图7 喷雾法获得的氯喹分布质谱图像图6 基质升华方式示意图 4.在相同切片上进行MS和MS/MS成像分析成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope TRIO可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 文献题目《High spatial Resolution Imaging by iMScope TRIO -Imaging of Chloroquine Distribution in Rat Retina-》使用仪器岛津iMScope TRIO 声明1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。
  • 通过高分辨成像质谱分析大鼠视网膜中氯喹的分布
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药物研发过程中,候选化合物的体内药代动力学分析是非常关键的步骤。该分析不仅可以掌握其药效药理,还可以得到和毒性评价有关的信息。通常,使用放射性自显影技术(Autoradiography: ARG)和荧光色素标记细胞的方法进行分析。但是,使用ARG的方法成本高,而且一方面这些方法无法区别原药和代谢物,另一方面标记物质的行为可能与未标记物存在差异。因此,最近成像质谱分析法,不进行标记即可对候选化合物进行检测的方法备受瞩目。质谱成像法除了能够在无标记的情况下对各种物质的分布进行分析,还能够使用同一切片同时分析原药及其代谢物,有望在今后的药物研发领域得到应用,取得新的突破。本文介绍使用成像质谱显微镜iMScope i TRIO /i 对氯喹给药后大鼠视网膜进行检测的示例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c4265e4a-c078-4017-93d2-68a9d4eafbd5.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 氯喹的结构式 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠视网膜中氯喹的高空间分辨率成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在本次分析中,对给予抗疟剂药物氯喹的大鼠视网膜进行分析。图1为氯喹的结构式。使用氯喹标准品进行分析,对基质及测定模式进行优化,表1为组织切片的分析条件。使用成像质谱显微镜iMScope i TRIO /i 进行高空间分辨率成像,发现在约10 μm厚的视网膜色素上皮周围有氯喹的分布(图2和图3)。在测定氯喹时,如果使用成像质谱分析法常用的MS模式,因受到生物体衍生杂质带来的离子抑制、干扰的影响,无法得到清晰的MS图像(此处数据省略)。在本次分析中,通过iMScope i TRIO /i 的MS/MS模式进行测定,提高灵敏度,能够获得10 μm的高空间分辨率下的MS/MS图像。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1a9ec68-3837-45b5-a422-9f98ed4422b0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8fad9a5c-304b-4f86-b070-8ec12bb1a38d.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " 图2 组织切片上的MS/MS质谱图 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4ba84009-2ef8-4ef5-92af-f47ac86ebdb9.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 光学图像和MS/MS质谱图像 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 大鼠眼球中氯喹的高速成像 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在药代动力学研究过程中,为了阐明药物分子在细胞及器官水平的特征分布区域,分别需要在高空间分辨率及中等空间分辨率获得药物分子的分布信息。本实验使用MS/MS span style=" text-indent: 2em " 模式测定在中等分辨率(50 μm)下测定大鼠眼球整体的氯喹分布情况,分析条件如表2 所示。虽然使用了更大的激光直径,有可能带来存在噪音高、离子抑制等问题,iMScope /span i style=" text-indent: 2em " TRIO /i span style=" text-indent: 2em " 依然能够检测得到具有较高信噪比的氯喹特征碎片,并获得清晰的质谱图像。成像质谱实验的采集 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 速度取决于目标检测区域中所包含的点数。iMScope i TRIO /i 能够独立更改激光直径及采集间隔等参数,从而能够轻松控制采集速度及图像尺寸,并且不会影响数据质量。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/12e37b19-cce0-4e12-a91f-8af4b67f0802.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 基质涂敷方式的比较 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在氯喹成像质谱分析中,比较了2 种不同的MALDI 基质涂敷方式。 图5 显示了由升华法获得的成像结果(基质升华方式的示意图如图6 所示)。基质升华由iMLayer 升华仪自动完成,而喷雾方式由手动完成。喷雾方式获得成像结果如图7 所示。对比两种方式的检测结果,升华法获得了更加清晰尖锐的氯喹分布图像,而喷雾的结果则看起来会有一些扩散,如图7 所示。前处理方式的优化依然取决于组织切片的特性以及所使用的基质类型。如示例中的结果,前处理步骤对最终成像结果的图像质量有显著的影响,不仅仅是切片制备的条件,基质涂敷的过程也很重要。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3e80c956-c24a-4b4f-b277-ff7fa0b9a5ad.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图6 基质升华方式示意图 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 在相同切片上进行MS 和MS/MS 成像分析 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 成像质谱分析中,在同样位置只能采集一次数据。但是,使用iMScope i TRIO /i 可以调整激光直径及采集间隔,因此可以在采集点之间留下未采集区域,从而实现更多次的成像分析。图8显示了使用激光直径为5μm,采集间隔为10μm时,在同一采集区域内进行4次成像分析的方式。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/7029ec9e-44bf-483d-a071-a1651cfc8ffb.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图4 组织切片上氯喹的MS/MS产物离子质谱图,激光直径50μm /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/b8099d01-93e1-49aa-9926-907aeab7a6d9.jpg" title=" 8.png" / /p p style=" text-align: center " 图5 升华法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/c8b163cf-961b-4c26-8d20-902c68beed0f.jpg" title=" 9.png" / /p p style=" text-align: center " 图7 喷雾法获得的氯喹分布质谱图像 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/d51c038b-8e0c-4efa-8ecf-87c964a43b83.jpg" title=" 10.png" / /p p style=" text-align: center " 图8 在同一测定区域进行1次MS分析及3次MS/MS分析的数据采集设置方式示例 /p p br/ /p

手持视网膜检测仪相关的方案

手持视网膜检测仪相关的资料

手持视网膜检测仪相关的论坛

  • 视网膜脱落

    谁知道为什么会引起视网膜脱落?视网膜脱落手术后注意事项?

  • 小动物视网膜激光光凝仪简介

    [url=http://www.f-lab.cn/vivo-imaging/cnv.html][b]小动物视网膜激光光凝仪[/b][/url]是专业为小鼠和大鼠视网膜研究而设计的精密[b]视网膜光凝仪[/b]和[b]激光光凝系统[/b],它采用图像引导激光系统产生精确易于传送的[b]激光光凝固[/b]效果,以产生[b]脉络膜新生血管CN[/b]V。其用小动物视网膜激光光凝仪户友好的设计使技术人员能够精确可靠地控制产生脉络膜新生血管CNV所需的激光焦点的位置,大小和强度。产生脉络膜新生血管CNV优点准确控制和记录试验样品位置光斑尺寸的精确控制易于使用紧凑、精确的激光传输[img=小动物视网膜激光光凝仪]http://www.f-lab.cn/Upload/CNV-choroidal-neovascularization.jpg[/img]小动物视网膜激光光凝仪:[url]http://www.f-lab.cn/vivo-imaging/cnv.html[/url]

  • 光电所“小型化视网膜自适应光学连续成像仪”研制完成

    近日,由中科院科研装备研制项目资助的“小型化视网膜自适应光学连续成像仪”研制工作在光电技术研究所顺利完成。该成像仪通过校正人眼像差可以获得高分辨率眼底视网膜图像,在临床疾病早期诊断等方面具有重要应用价值。 变形镜作为自适应光学系统的核心器件,其性能决定了成像仪的整机性能。光电所前期研制的视网膜自适应光学成像仪采用分立式压电驱动变形镜,受目前构造工艺的限制,其变形量小、口径大、成本高,难以适应临床大规模人群使用和产业化推广,寻求一种新型的变形镜以突破其临床应用限制已成为成像仪产业化推广过程中亟待解决的问题之一。与此同时,由于双压电片变形镜具有构造简单、结构灵活多样且易于小型化等优点,在眼科自适应光学领域具有较好的应用前景。因此,光电所于2010年开展了基于双压电片变形镜的新一代小型化视网膜自适应光学成像仪研制。 项目组在前期研究工作的基础上,针对人眼像差特性,设计并研制成功35单元双压电片变形镜,其行程达到20微米,而口径仅有原来分立式压电驱动变形镜口径的一半。在变形镜研制的基础上,先后解决基于双压电片变形镜的AO系统优化设计、闭环控制算法等关键技术,研制成功首套基于双压电片变形镜的小型化视网膜自适应光学成像仪,其体积仅为原来37单元成像仪的一半,但像差校正性能却得到大幅提升,大大降低了对人眼低阶像差预补偿的要求。 通过小规模人眼实验表明,新一代成像仪分辨率高、像差校正范围大、操作简单,这为其临床大规模人群使用和产业化推广走出重要一步。

手持视网膜检测仪相关的耗材

  • 手持式臭氧检测仪配件
    手持式臭氧检测仪配件是高精度臭氧监测的臭氧浓度传感器,可用于实验室和室外环境,手持式臭氧检测仪配件非常适用于微阵列应用中的臭氧监测。事实上,微阵列应用中的荧光染料暴露在臭氧浓度低至5-10 ppb(ppb:十亿分之一)的臭氧下10-30s就会被降解。因此,微阵列的应用程序中需要高精度监测超低臭氧浓度。这种高度敏感的微阵列臭氧传感器,可以高度精确地监测超低臭氧浓度,而且只要短暂反应时间。 手持式臭氧检测仪配件是采用气体敏感的半导体技术和特殊的高灵敏度,高精度校准(HSPC)技术。这使得微阵列臭氧传感器成为完美的臭氧监测仪器,可用于微阵列应用和其他需要的高精度监测超低臭氧含量的应用。 微阵列臭氧传感器有手持舒服,是由于其形状符合人体工学并且轻巧。其智能控制显示屏显示臭氧浓度的测量,允许设置两个可编程警报以及可以选择计量单位。该微阵列臭氧传感器可通过其便携包进行传递,自身带有电源供应转换器和电池。有几种选项:温度和相对湿度监测,扩大室外或高臭氧水平的应用程序的标定范围,PC实时数据独立记录,或直接传输至PC,数据记录和管理软件这些选项相互结合,使微阵列臭氧传感器成为灵活和可靠的质量控制工具,可用于实验室应用程序,尤其建议用于微阵列应用程序。 编号 名称 BTZM_SC 微阵列高精度手持式臭氧传感器 TH 温度和相对湿度监测选项 ER 扩大标定范围选项 DL 实时数据记录选项
  • 奥斯恩 手持式扬尘噪声监测仪 其他环境监测仪配件
    奥斯恩 手持式扬尘噪声监测仪 其他环境监测仪配件的产品介绍: 手持式扬尘噪声检测仪OSEN-SYZ是我司专门针对建筑工地/城市建设扬尘/道路扬尘污染研发的一款移动式扬尘噪声检测仪,是一套符合GB3096-2008《声环境质量标准》和GB3095-2012《环境空气质量标准》相关标准的建筑工地环境监测噪声扬尘终端设备仪器。主要用于建筑工地、垃圾场、拆迁工地、工厂、产业园、社区、工业企业等自行筹建的环境监测监控中心;手持式扬尘噪声检测仪OSEN-SYZ用于对空气中悬浮颗粒物的浓度PM2.5/PM10进行快速检测仪器。采用一体化结构设计,集手持式液晶显示仪表+多种传感器+便携手提箱合成在一个便携式手提箱内,本仪器具有模块化自由组合、移动式实时监测、测试快捷、准确稳定、操作简单、维护方便、交直流两用等特点。产品特点: 本机体积小巧、美观,操作方便简单,性能可靠,携带极为方便。可以手动存储记录也可通过主机任意设置采样间隔,自动存储记录数据。大屏幕中文液晶显示,全程跟踪记录各个被测环境因子的数值、组数、低电压示警,具有断电数据自动存储保护功能。 采用一体化结构设计,内置GPS模块,能准确的测量出被测地点的地理信息,界面除显示所测环境参数、存储数据外,还可显示测点的经纬度。位机软件功能强大,随时可以通过USB接口将记录中的数据导出到计算机上,并可以存储为EXCE表格文件,生成数据曲线,以供其它分析软件进一步进行数据处理,可作为环境评价的一个依据。 产品参数:1.粉尘测量范围:0.001-10mg/m3;2.检测灵敏度:0.001mg/m3;测量最小颗粒物粒径0.1μm;3.测量粒径档别:2.5μm,10μm(PM2.5,PM10);4.粉尘浓度测量相对误差:±10%5.稳定性相对误差:±2.5%6.采样流量:1.0L/min7.采样流量误差:≤2.5% 8采样流量稳定性:≤±5%9.仪器测定的重现性误差:平均相对标准差小于7%;10.噪声测量范围:30db~130db11.分辨率:0.5db12.供电方式:交直流两用 13.软件:上位机软件免费赠送、配RS485接口,可连接电脑实现数据传输,远程监控、可配置GPS模块(选配)、微型打印机(选配)产品保修卡:1.仪器硬件设备(不包括其它供应商的仪器设备)售出后保修一年,保修期从销售之日算起。保修时,本公司负责必要的调校或检验工作。经2.核准检验合格后才装箱,发还给用户。3.用户的职责是:按照说明书来使用仪器,若需要维修,就把它送往本公司或协商后在使用现场解决。4.在保修期内,一切非人为使用不当造成的故障,当由我公司免费维修。5.用户支付将产品退回至维修部门的运费和保险费,而我公司支付将维修好的产品交付给用户的运费和保险费。 6.保修只限于本仪器硬件设备,不涉及因使用不当而导致其它设备、人身及财产的损失。保修限制对于不正确的使用或不充分的维护(包括用户附加的软件或接口),用户自行拆机,本公司将不予保修。在保修期内,校验、维修服务、咨询是免费的。保修期后将收取适当的材料及人工成本费用。下列各项不属保修范围:1.由于外接非系统设备所要求额定电压值的交流或直流电源,形成过度线路电压而造成系统设备的损坏。2.由于机械外力(撞击、跌落等)造成面板、显示屏、开关、装置及机壳的变形损坏并涉及到内部器件和组件的故障。3.擅自拆开仪器设备所造成的损坏。4.其他供应商制造的独立仪器附件和用户需额外付款订购的选项。5.由于仪器工作于系统环境技术规范之外的状态下而造成的损坏。6.用户自行修改系统软件造成仪器不能正常运行。7.用户未到指定的授权机构进行校准、维修所造成仪器不能正常运行。
  • 重金属手持式重金属检测仪TD-XRL
    重金属手持式重金属检测仪TD-XRL,特点功能,说明书,操作指南:销售热线,15300030867,13718811058,张经理,欢迎您的来电咨询!1. 高精度,最低检出限优于ppb;2. 检测时间快,最快检出时间小于60秒;3. 自主研发检测软件,内置多套检测程序,无需客户编制参数就可以实现样品的快速精确检测;4. 采用无汞电极,检测不会造成二次污染,更加环保,电极性能稳定,维护简便;5. 多种检测模块,专用检测底液,避免离子间相互干扰;6. 内置多个可编程分析菜单,可根据用户需求自行开发多种重金属离子检测;7. 中文界面,智能化设计,简单易学,客户无需专业知识就可独立操作;8. 仪器配置大容量电池,满足户外持续检测需求;9. 配置专用手提箱,携带方便,重量轻;10. 高清晰液晶屏显示,触摸操作,简单上手;11. 可存储2000组测量数据;12. 专用USB接口,可直接导出测量数据。重金属手持式重金属检测仪TD-XRL,技术参数:型号TD-XRL货号准确度≤10%重复性≤10%显示大屏幕背光LCD显示器,中文菜单输入方式触摸屏存储容量2000组数据以上数据接口RS-232C和标准USB2.0接口测量时间30S环境温度-30—30℃电源锂电池续航能力4-5H
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制