当前位置: 仪器信息网 > 行业主题 > >

组合式激光测量系统

仪器信息网组合式激光测量系统专题为您提供2024年最新组合式激光测量系统价格报价、厂家品牌的相关信息, 包括组合式激光测量系统参数、型号等,不管是国产,还是进口品牌的组合式激光测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合组合式激光测量系统相关的耗材配件、试剂标物,还有组合式激光测量系统相关的最新资讯、资料,以及组合式激光测量系统相关的解决方案。

组合式激光测量系统相关的资讯

  • 组合式生物芯片技术获中国专利奖金奖
    今年1月,闫小君、郭晏海研制的组合式生物芯片技术,以高通量、规模化、可标准化生产和可控制质量等突出优点,荣获国家知识产权局和世界知识产权组织颁发的中国专利奖金奖。   生物芯片技术是伴随着人类基因组计划而衍生的一项重大高新技术。第四军医大学全军基因诊断技术研究所1995年10月开始生物芯片的研制与开发,1999年4月研制成功我国第一块医用蛋白质芯片。组合式生物芯片是他们近年来在医学生物芯片领域的又一技术创新。   组合式生物芯片是通过打点方式在小芯片的表面固定一种或多种检测分子,再根据需要,将多种小芯片组合在框架内,构成一张芯片成品。   全军基因诊断技术研究所主要从事基因诊断与基因分析技术的研究和推广,早在1996就开展了HP抗体检测生物芯片的探索性研究,是我国最早从事生物芯片研究的单位之一,现拥有多项芯片制备和应用技术专利。他们研发的蛋白芯片诊断试剂盒有三个品种已获得国家诊断试剂新药证书,而且配套研发的生物芯片阅读仪获得国家医疗器械生产注册证书。   阎小君教授为第四军医大学全军基因诊断技术研究所所长,博士研究生导师,多年来一直致力于将分子生物学技术与临床医学相结合的应用型研究工作,在基因诊断技术系列方法建立和系列产品研发方面作出了突出成就。郭晏海副教授主要从事基因诊断技术研究,在基因诊断试剂和配套检测仪器的研究开发方面成绩突出。
  • 和泰仪器携DuraPro全触屏组合式纯水/超纯水系统亮相“2019第九届中国药品质量安全大会”
    p    strong 仪器信息网讯 /strong 2019年4月26日-27日, “2019第九届中国药品质量安全大会暨新产品新技术展览会”在杭州市浙商开元名都酒店顺利召开,800多位来自多省市药监部门和药品检验机构的相关人员、中外制药企业的高层及药品生产和药品管理人员、科研院所药物分析和实验室研究人员等参会。上海和泰仪器有限公司作为大会赞助商参加了本次大会及展览。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/2a550d0f-012c-4ef7-82f4-58b8102076af.jpg" title=" 展会现场2.JPG" alt=" 展会现场2.JPG" / /p p style=" text-align: center " 展会现场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/b309c8d3-1e08-4fac-8926-1ea57e338636.jpg" title=" DSC08030.JPG" alt=" DSC08030.JPG" / /p p style=" text-align: center " 和泰仪器 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201904/uepic/c3c26565-4645-4c67-817f-11577376bc00.jpg" title=" DSC08033.JPG" alt=" DSC08033.JPG" / /p p style=" text-align: center " DuraPro全触屏组合式纯水/超纯水系统 /p p   本次展会上,和泰仪器为用户带来了为2018年新推出的美国泽拉布DuraPro全触屏组合式纯水/超纯水系统,以及经典的Master系列超纯水机。DuraPro全触屏组合式纯水/超纯水系统造型美观,颜色明亮,并配置了远程移动式独立取水器,吸引了不少制药行业用户驻足询问,展会现场气氛热烈,彼此相谈甚欢。其中,有几位来自制药企业的用户表示,和泰的纯水仪器产品类型比较全,能够满足用户多种多样的需求,且价格合理,服务快速、便捷,是制药企业、单位非常不错的选择。 /p p br/ /p
  • 财政部实施新的组合式税费支持政策 利好仪器仪表企业
    4月20日,财政部召开2022年一季度财政收支情况网上新闻发布会,介绍了2022年一季度财政收支情况,在“答记者问”环节中,财政部详细介绍了年初以来出台的新的组合式税费支持政策,利好仪器仪表企业。以下为问答实录:   当前,我国经济发展面临需求收缩、供给冲击、预期转弱三重压力,外部环境更趋复杂、严峻和不确定。中央经济工作会议提出,2022年积极的财政政策要提升效能,更加注重精准、可持续。今年的《政府工作报告》对积极的财政政策作出了具体部署,提出要实施新的组合式税费支持政策,预计全年退税减税约2.5万亿元。财政部门认真贯彻落实党中央、国务院决策部署,组织实施好退税减税政策,政策发力适当靠前,年初以来已经出台了20多项税费支持政策,主要包括:   一是延续实施扶持制造业、小微企业和个体工商户的减税降费政策。延续部分税收优惠政策执行期限,保持政策连续性、稳定性;对中小微企业新购置的设备、器具,单位价值在500万元以上的,按照单位价值的一定比例自愿选择在企业所得税税前扣除;对小微企业年应纳税所得额超过100万但不超过300万的部分,减按25%计入应纳税所得额,按20%的税率缴纳企业所得税;将科技型中小企业研发费用加计扣除比例由75%提高至100%;对增值税小规模纳税人适用3%征收率的应税销售收入,免征增值税;由省、自治区、直辖市人民政府根据本地区实际情况,以及宏观调控需要确定,对增值税小规模纳税人、小型微利企业和个体工商户可以在50%的税额幅度内减征“六税两费”。   二是实施大规模留抵退税。综合考虑为企业提供现金流支持、促进就业消费投资、大力改进因增值税税制设计类似于先缴后退的留抵退税制度,对留抵税额提前实行大规模退税。将先进制造业按月全额退还增值税增量留抵税额政策范围扩大至符合条件的小微企业、制造业等行业企业,并一次性退还小微企业、制造业等行业企业存量留抵税额,全面解决制造业等行业留抵退税问题。   三是出台支持特殊困难行业纾困发展的税收政策。将生产、生活性服务业加计抵减政策执行期限延长至2022年12月31日;对2022年航空和铁路运输企业分支机构暂停预缴增值税;对2022年对纳税人提供公共交通运输服务取得的收入免征增值税。   四是设立3岁以下婴幼儿照护个人所得税专项附加扣除。将纳税人照护3岁以下婴幼儿子女的相关支出,按照每个婴幼儿每月1000元的标准定额扣除。   以上政策发布以来,财政部会同相关部门抓紧组织实施,扎实推进政策落实,做实做细各项工作,并开展形式多样的政策宣传解读,切实加强舆论正面引导,积极回应社会关切,提高各项政策知晓度,帮助企业用尽用好政策。下一步,财政部将进一步落实落细各项税费支持政策,切实发挥好政策效用,确保党中央、国务院决策部署落地生根。
  • 1417万!北京大学生命科学学院四极杆-高分辨组合式质谱仪和超高灵敏度液相色谱串联三重四极杆质谱仪采购项目
    一、项目基本情况1.项目编号:OITC-G240311292项目名称:北京大学生命科学学院超高灵敏度液相色谱串联三重四极杆质谱仪采购项目预算金额:890.000000 万元(人民币)最高限价(如有):890.000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1超高灵敏度液相色谱串联三重四极杆质谱仪2套此设备将用于RNA中心的科研工作。该设备主要用于有机化合物的定量,同时兼顾定性工作,着重解决极低含量有机物准确、稳定定量的难题,能够提升表观遗传学研究的深度和广度,如对低丰度的 RNA 修饰物、低样品量尤其是微量甚至单个细胞的样本进行快速分析。此外,能够对代谢物、脂质、蛋白质、药物等目标物进行精准定量,实现靶向代谢组学、脂质组学研究。先进的设备是加速科研进展的利器,促进各学科建设的发展和多元化人才的培养。是890万元注:1) 投标人须对整个包中全部内容进行投标,不得转包、分包。评标、授标以整个包为单位。具体技术要求详见招标公告所附附件(即,本招标文件第六章)。合同履行期限:合同签订后90日内交货并安装完毕。本项目( 不接受 )联合体投标。2.项目编号:OITC-G240311291项目名称:北京大学生命科学学院四极杆-高分辨组合式质谱仪采购项目预算金额:527.600000 万元(人民币)最高限价(如有):527.600000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1四极杆-高分辨组合式质谱仪1套此设备将用于RNA中心的科研工作。1.使用高质量精度的质谱仪可对核酸进行mapping分析,可对产品序列进行准确确认,并监测其加帽、加尾的长度等;2.通过质谱的高分辨率,可实现对核酸药物的分析,质谱的高分辨可实现同位素峰基线分离,使得测得结果更为准确;3.对于序列分析,高精度与高灵敏度并存,可实现序列全覆盖。是527.6万元注:1) 投标人须对整个包中全部内容进行投标,不得转包、分包。评标、授标以整个包为单位。具体技术要求详见招标公告所附附件(即,本招标文件第六章)。合同履行期限:合同签订后90日内交货并安装完毕。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年04月23日 至 2024年04月29日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:登录http://www.oitccas.com/注册并购买。方式:登陆“东方招标”平台(http://www.oitccas.com/),点击“获取采购文件”链接图标,或直接输入访问地址(http://www.oitccas.com/pages/sign_in.html?page=mine)完成投标人注册手续(免费),然后登陆系统寻找有意向参与的项目,已注册的投标人无需重新注册。招标文件售价:每包人民币600 元。如决定购买招标文件,请完成标书款缴费及标书下载手续。售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区颐和园路5号         联系方式:吴老师;010-62758587      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯、余睿; 010-68290508;010-68290563            3.项目联系方式项目联系人:吴老师电 话:  010-62758587
  • 1416万!赛默飞世尔、AB SCIEX中标北京大学生命科学学院四极杆-高分辨组合式质谱仪等采购项目
    一、项目一(一)项目编号:OITC-G240311292(招标文件编号:OITC-G240311292)(二)项目名称:北京大学生命科学学院超高灵敏度液相色谱串联三重四极杆质谱仪采购项目(三)中标(成交)信息供应商名称:普思百得(北京)科技发展有限公司供应商地址:北京市丰台区南三环西路16号2号楼4层518中标(成交)金额:889.5000000(万元)(四)主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 普思百得(北京)科技发展有限公司 超高灵敏度液相色谱串联三重四极杆质谱仪 AB SCIEX (Distribution) Triple Quadtm 7500 system-QTEAP Activated 2套 ¥8,895,000.00(五)凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区颐和园路5号         联系方式:吴老师;010-62758587      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯、余睿; 010-68290508;010-68290563            3.项目联系方式项目联系人:吴老师电 话:  010-62758587二、项目二(一)项目编号:OITC-G240311291(招标文件编号:OITC-G240311291)(二)项目名称:北京大学生命科学学院四极杆-高分辨组合式质谱仪采购项目(三)中标(成交)信息供应商名称:北京合众汇美国际贸易有限公司供应商地址:北京市朝阳区光华路7号13层16B1号中标(成交)金额:527.1000000(万元)(四)主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京合众汇美国际贸易有限公司 四极杆-高分辨组合式质谱仪 赛默飞世尔科技(中国)有限公司 Orbitrap Exploris 240 1套 ¥5,271,000.00 (五)凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:北京大学     地址:北京市海淀区颐和园路5号         联系方式:吴老师;010-62758587      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯、余睿; 010-68290508;010-68290563            3.项目联系方式项目联系人:吴老师电 话:  010-62758587
  • 2331万!赛默飞、布鲁克等中标北京大学成都前沿交叉生物技术研究院超高分辨率组合式串接液质联用仪等采购项目
    一、项目11、项目编号:OITC-G230311952(招标文件编号:OITC-G230311952)2、项目名称:北京大学成都前沿交叉生物技术研究院超高分辨率组合式串接液质联用仪采购项目3、中标(成交)信息供应商名称:北京合众汇美国际贸易有限公司供应商地址:北京市朝阳区光华路7号13层16B1号中标(成交)金额:899.5700000(万元)4、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京合众汇美国际贸易有限公司 超高分辨率组合式串接液质联用仪 赛默飞世尔科技(中国)有限公司 Orbitrap 等 1等 ¥8,995,700.00 二、项目21、项目编号:OITC-G230311372(招标文件编号:OITC-G230311372)2、项目名称:北京大学成都前沿交叉生物技术研究院高灵敏度液相串联三重四极杆离子阱质谱仪采购项目3、中标(成交)信息供应商名称:上海佰珐科学仪器有限公司供应商地址:上海市浦东新区上川路612号4幢2146室中标(成交)金额:354.8800000(万元)4、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 上海佰珐科学仪器有限公司 高灵敏度液相串联三重四极杆离子阱质谱仪 AB Sciex (Distribution) QTRAP 6500+ 1套 ¥3,548,800.00 三、项目31、项目编号:OITC-G230311951(招标文件编号:OITC-G230311951)2、项目名称:北京大学成都前沿交叉生物技术研究院离子淌度飞行时间高分辨质谱仪采购项目3、中标(成交)信息供应商名称:四川省航新高科贸易有限公司供应商地址:四川省成都市武侯区长益东二路1号10栋8层805号中标(成交)金额:699.6000000(万元)4、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 四川省航新高科贸易有限公司 离子淌度飞行时间高分辨质谱仪 布鲁克 timsTOF Pro2 1套 ¥6,996,000.00 四、项目41、项目编号:OITC-G230311410(招标文件编号:OITC-G230311410)2、项目名称:北京大学成都前沿交叉生物技术研究院液相色谱-四极杆-超高分辨组合式质谱仪采购项目3、中标(成交)信息供应商名称:北京一卓健康科技有限公司供应商地址:北京市朝阳区光华路7号9层1012中标(成交)金额:378.9000000(万元)4、主要标的信息序号 供应商名称 货物名称 货物品牌 货物型号 货物数量 货物单价(元) 1 北京一卓健康科技有限公司 液相色谱-四极杆-超高分辨组合式质谱仪 赛默飞世尔科技 Q Exactive Plus 等 1套 ¥3,789,000.00 五、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:北京大学成都前沿交叉生物技术研究院     地址:成都市高新区桂溪街道天府五街200号菁蓉汇7号楼A区2楼203室         联系方式:肖老师 weidixiao@pku.edu.cn; 付老师,fuyuanhao1992@163.com      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290530            3.项目联系方式项目联系人:王军、郭宇涵、李雯电 话:  010-68290508、010-68290530
  • 1239万!北京大学成都前沿交叉生物技术研究院超高分辨率组合式串接液质联用仪等采购项目
    一、项目基本情况1.项目编号:OITC-G230311952项目名称:北京大学成都前沿交叉生物技术研究院超高分辨率组合式串接液质联用仪采购项目预算金额:900.0000000 万元(人民币)最高限价(如有):900.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1超高分辨率组合式串接液质联用仪 1套用于在质量扫描范围、分辨率、灵敏度和扫描速度等方面用于满足蛋白质组学(高通量蛋白鉴定、大规模蛋白相对定量、非标记绝对定量、Top-Down研究、翻译后修饰等)的研究。 是900 万元合同履行期限:合同签订后180日内交货并安装完毕本项目( 不接受 )联合体投标。2.项目编号:OITC-G230311953项目名称:北京大学成都前沿交叉生物技术研究院400M核磁共振波谱仪采购项目预算金额:339.0000000 万元(人民币)最高限价(如有):339.0000000 万元(人民币)采购需求:包号货物名称数量简要技术规格是否允许采购进口产品采购预算1400M核磁共振波谱仪1套主要用于有机化合物、天然产物、生物分子间相互作用等方面的研究,以及有机化学、生物化学、药物化学等方面的结构分析和性能研究;可用于液体、可溶性有机物、无机物、聚合物、生物物质的分子结构和相互作用研究;可进行多种核素的单、双共振实验,1H同核相关,NOE实验,以正常和反向方式进行异核相关检测。是339万元合同履行期限:合同签订后270日内交货并安装完毕本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月02日 至 2023年09月08日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:http://www.oitccas.com/;北京市海淀区丹棱街1号互联网金融中心20层方式:登录东方招标 http://wwwqas.oitccas.com/注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京大学成都前沿交叉生物技术研究院     地址:成都市高新区桂溪街道天府五街200号菁蓉汇7号楼A区2楼203室         联系方式:肖老师 weidixiao@pku.edu.cn; 付老师,fuyuanhao1992@163.com      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:王军、郭宇涵、李雯;010-68290508、010-68290530            3.项目联系方式项目联系人:王军、郭宇涵、李雯电 话:  010-68290508、010-68290530
  • 能量天平激光干涉测量系统闲区长度测量方法研究
    自2019年5月20日起,新的国际单位制正式实施,其中质量的单位千克启用了基于普朗克常数的新定义。能量天平是我国自主的千克新定义复现方案,该方案由中国计量科学研究院张钟华院士提出。能量天平利用电磁力做功与电磁场能量变化之间的转换与平衡,建立普朗克常数与被测砝码质量之间的桥梁。图1 能量天平结构示意图与测量原理电磁力做功量的测量涉及电磁力大小的测量和线圈相对位移测量两方面。因此,悬挂线圈与激励磁体的相对位移测量系统至关重要。它不仅实现了能量天平对于“米”的量子化基准的溯源,而且在保证能量天平积分区间的一致性上也发挥了关键作用。能量天平采用外差激光干涉测量系统对悬挂线圈与激励磁体的相对位移进行测量(图2),但该干涉测量系统存在较大的光学闲区(图3),进而影响了能量天平在空气环境中运行时位移测量的准确性。图2 能量天平激光干涉测量系统图3 能量天平光学闲区示意图近日,发表于《计量科学与技术-中国计量科学研究院专刊(2022)》的文章“能量天平激光干涉测量系统闲区长度测量方法研究”,对能量天平干涉测量系统中闲区长度测量方法进行了分析与讨论。主要成果(1)提出了基于真空/空气环境光程差测量的光学闲区长度测量方法。该方法利用能量天平的真空系统改变光学闲区的空气折射率;利用激光干涉系统测量折射率改变过程中的光程变化,进而测得光学闲区的长度,将原毫米量级的闲区长度测量不确定度抑制至4 μm,大大提高了光学闲区长度的测量能力。(2)利用光学闲区长度表征的绝对距离,实现了对能量天平激励磁体与悬挂线圈间相对零位的测量,以保证悬挂线圈系统位于磁体的均匀区范围。该相对零位的标准测量不确定度达到了54.2 μm。此项研究得到了国家自然科学基金青年基金项目(51805507)的支持。能量天平科研团队简介重新定义千克曾被《Nature》列为世界性的科研难题。张钟华院士向这一科研难题发起了挑战,提出了基于全静态测量的能量天平方案,该方案被《Metrologia》列为国际三种千克量子化定义与复现方法之一。目前,能量天平由李正坤研究员带领的年轻团队接力攻关。该团队连续攻克了高匀场激励磁体设计、准静态磁链差测量、外磁屏蔽方法优化、真空超精密几何量测量、能量天平准直误差理论与技术、超高直线度重载驱动方法与装置等一系列科研难题,建立了第二代能量天平装置NIM-2,其实物图如图5所示。该装置于2019~2020年间,代表中国参加了千克新定义后的首次千克复现方法国际关键比对(CCM.M-K8.2019)。经国际计量局对各国的数据综合评定,能量天平的测量结果与比对参考值(KCRV)的相对偏差为1.17E-8,相对标准不确定度为4.49E-8,比对结果如图6所示。该测量数据已成功用于首个国际质量共识值(the Consensus Value)的评定,进而用于SI新定义后全球质量量值传递。能量天平的研究工作,为建立我国自主的质量量子化基准装置提供了重要的技术支撑。图5 能量天平装置实物图图6 首次千克复现方法国际关键比对(CCM.M-K8.2019)比对结果
  • 科技部科学仪器重大专项评审专家谈激光跟踪仪技术及应用
    激光跟踪仪技术及应用周维虎1,周培松2,石俊凯11. 中国科学院微电子研究所2. 海宁集成电路与先进制造研究院一、引言激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。目前,国际上主要有瑞士Leica、美国API和美国FARO三家公司生产销售激光跟踪仪。其中Leica公司凭借自身百年光学仪器制造优势,全球市场占有率最高,目前该公司主推产品型号为AT960,该仪器最大测量距离为80m,空间坐标测量精度为15μm+6μm/m,数据输出速率为1000点/秒;API公司激光跟踪仪小型灵巧,安装和校准快捷,移动方便,便于携带,目前主推产品为Radian系列,其中Radian Pro最大测量距离可达80m,三维坐标测量精度为为10μm+5μm/m;FARO公司财力雄厚,研发投入高,销售网络强大,目前主推产品为Vantage系列,其中VantageS6最大工作范围为80m,角度测量精度为为20μm+5μm/m,数据输出速率为1000点/秒。自1997年开始,国内天津大学、清华大学、中国科学院光电研究院等科研院所先后对激光跟踪测量技术及设备进行了相关研究,其中天津大学最先对单站式结构跟踪仪坐标测量系统进行了研究,并开展了测量功能实验,为激光跟踪仪的后续开发奠定了基础;清华大学对组合式多自由度跟踪测量系统进行了研究,基于三组跟踪测量系统构建空间位置姿态测量系统;中国科学院光电研究院团队(该团队于2018年划转至中科院微电子研究所)自2009年开始研究激光跟踪仪,在中科院装备项目、国家重大仪器设备开发专项、国家重点研发计划、装备发展部、国防科工局等项目的支持下,经过10余年研发和技术积累,实现了激光跟踪仪的自主研制,打破了国外技术封锁和垄断。当前,激光跟踪仪技术正向高精度、小型化、多功能、智能化等方向发展。激光跟踪仪是机器人校准的理想仪器,可以配合机器人实现高精度智能制造。高端激光跟踪仪含有大范围超清摄像头,用于测量过程断光后靶标的自动寻找和测量续接。除此之外,激光跟踪仪结合不同的测量靶标还可以实现隐藏点测量、工件局部形貌高密度扫描测量以及六自由度测量。随着激光跟踪仪在航空航天、舰船、核工业等大型装备制造中的重要性日益凸显,国内用户对仪器国产化的要求越来越高,随着中美贸易战的加剧和发达国家对我国高技术产品的打压,激光跟踪仪国产化替代势在必行。二、激光跟踪仪测量原理激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。2.1三自由度激光跟踪仪如图2.1所示,当激光跟踪仪工作时,激光测距系统获得靶球到仪器的精确距离r,方位编码器和俯仰编码器测角系统分别测出目标方位角A和俯仰角E,利用这三个原始测量值,就可以通过球坐标与直角坐标之间的转换关系获取空间三维直角坐标(X,Y,Z)。图2.1 三自由度激光跟踪仪原理图合作靶球在空间移动时,从合作靶球返回的一部分光会进入激光跟踪仪内部的位置检测器(PSD,Position Sensitive Detector),随着合作靶球的移动PSD将探测偏移值,跟踪控制系统根据这个偏移值控制方位和俯仰电机转动直到偏移值为零,从而达到跟踪的目的。测量组合参数(A,E,r) 经过坐标转换得到空间三维直角坐标(X,Y,Z)后,经过数据分析软件可以得到被测对象各种几何量参数。激光跟踪仪数据采集系统将测量数据发送至上位机以后,经上位机解析可以确定目标的三维尺寸、几何形貌等信息,并通过计算机实时显示并打印测量结果。2.2 六自由度激光跟踪仪图2.2 六自由度激光跟踪仪原理图六自由度激光跟踪仪为三自由激光跟踪仪的升级产品,在空间位置信息测量的基础上加入了视觉测量、光电测量和惯性测量等模块,用以获取目标空间姿态信息。首先需要建立激光跟踪仪坐标系与上述测量模块之间的转换关系,并通过视觉测量中纵向投影比不变的约束实现横滚角测量;在上述基础上,基于光束向量唯一性约束和激光准直传感原理实现方位角和俯仰角的测量,最后实现三个空间姿态角的测量;除此之外,还融入了惯性测量单元IMU的测量信息,用于动态条件下的辅助测量。三、激光跟踪仪产业和市场分析随着我国制造业产业升级和科技领域的迅猛发展,高端制造、精密制造、智能化制造成为我国未来工业和科技领域的主流方向,激光跟踪仪等精密测量仪器具有巨大的应用前景。在大尺寸精密测量领域,激光跟踪仪具有测量范围大、精度高、功能多、可现场测量等优点,取代了大型固定式三坐标测量机、经纬仪、全站仪等许多传统测量设备,在设备校准、部件检测、工装制造与调试、集成装配和逆向工程等应用领域显示出极高的测量精度和效率,激光跟踪仪已成为大尺寸精密测量的主要手段,激光跟踪仪应用领域主要包括航空航天、汽车制造、重型机械制造、重工与船舶、能源、科研、医疗等领域。根据国外市场研究机构,2017年全球激光跟踪仪市场规模为2.595亿美元,2020年全球激光跟踪仪市场规模为3.438亿美元,预计2023年有望达到5.216亿美元,2028年有望达到8.364亿美元,市场主要驱动力来自质量控制和检验、对准、逆向工程和跨行业校准的需求。按应用细分,质量控制和检验占据最大的市场份额。这是因为激光跟踪仪被越来越多地用于监控和测量跨行业的质量,如汽车、航空航天和国防。为确保客户的要求和规格,质量控制和检验是汽车、航空航天和国防工业的重要参数。为了做到这一点,这些行业主要依靠激光跟踪仪来检查和监测元器件、组装件和成品质量。激光跟踪仪在建筑产品测量、过程优化和通过快速精确测量提供解决方案方面具有精确度高和易便携等不可替代的优势。按行业细分,汽车、航空航天和国防有望引领整个激光跟踪仪市场。在航空航天和国防行业中,激光跟踪仪用于三维测量、逆向工程、武器系统、轴与导轨对准、雷达罩剖面图、飞行器传动装置,以及许多其他测量产品和服务。在航空航天行业中,激光跟踪仪最常应用于夹具部件检查和机翼部件装配。在汽车行业中,激光跟踪仪被用于自动化生产线校准、铰接线和车身部件对准、大型面板和装配主体面板测量、逆向工程、部件验证表面测量、工业机器人调整、变形和动态测量、质量控制和检验等。按地区细分,欧洲占据激光跟踪仪市场的最大份额。为了满足生产过程中的质量和安全要求,欧洲的原始设备制造商(OEMs)早已经开始使用激光跟踪仪。在汽车行业中,激光跟踪仪也得到了多种应用,例如质量检查、对准和校准。因此,日益增长的汽车行业对激光跟踪仪需求也在逐渐增加。德国、英国和法国有望成为欧洲激光跟踪仪市场的三大贡献国。亚太地区市场预计将获得最高的复合年增长率,该地区市场增长的关键驱动因素是市场参与者对新技术的日益关注和采用,这一地区已成为全球投资的焦点和业务拓展的机会。四、国产激光跟踪仪新成果及应用国内开展激光跟踪仪研发主要有中国科学院微电子研究所周维虎团队、深圳中图仪器公司、海宁集成电路与先进制造研究院等,近年来在国家和地方相关部门的支持下仪器研发取得了快速发展,主要体现在以下方面:1)与绝对测距技术相融合,提高仪器的测量精度和测量方便性。激光跟踪仪都是基于球坐标的测量系统,在没有绝对测距之前,没有测量信息冗余,测量过程中任意一个参数丢失,都直接影响测量数据的准确性。新一代激光跟踪仪都增加了激光绝对测距功能,这使得激光跟踪仪的测量信息有了冗余,保证了测量的精确性,在测量过程中丢失部分信息依然可以完成测量工作;同时,由于被挡光时不需要重回基准点复位,这也提高了使用方便性和测量效率。2)与视觉测量系统相结合,实现六自由度测量功能。激光跟踪仪与视觉测量系统相结合不仅能精确定位目标的三维位置,而且还能通过配合特定的靶镜对目标的空间三维姿态进行检测。不仅如此,视觉测量系统还可以识别目标靶镜,保证光路中断后可以通过视觉方式重建测量光路,且无需用户介入。3)测量靶镜多样化。针对三自由度、六自由度等测量需求需要提供不同的测量靶标,另外,仪器还配有隐藏点靶标、扫描测头等附件,使仪器具有隐藏点测量功能和局部区域扫描功能,不仅使仪器测量复杂结构的能力大大提高,还拓展了系统的通用性。4)自我诊断功能。精密测量要求仪器在各种测量环境下保证稳定的工作状态,所以仪器在测量中对自身状态的检测和诊断显得特别重要,自我诊断能在系统工作时实时显示系统的状态,排除微振、升温、光强不足等因素带来的影响。5)飞秒激光频率梳测距技术。飞秒激光频率梳绝对测距技术能够实现大量程、高精度和快速测量三者的完美统一,是激光测距领域的重大突破,有望为大型零部件外形测量、大型设备装配对接,尤其是未来空间任务提供新的技术支撑,在激光跟踪测距、高精度激光雷达测距、卫星编队位置测量、导航星间链路测距、深空探测、引力波测距等领域具有广阔的应用前景。6)组网协同测量技术。针对大型复杂设备装配测量中被测目标尺寸较大或者存在遮挡,单测站难以完成测量任务的难题,通过激光跟踪仪多次设站或者利用多台跟踪仪组网可实现对于大型复杂装备的测量。组网测量技术基于空间多公共点约束,建立激光跟踪仪多测站平差模型,利用平差的权重、约束条件等进行多测站空间位置和姿态的解算,同时求解出所有被测点的三维坐标,得到空间被测物体关键尺寸和特征信息的最优解。7)功能强大的测量软件。激光跟踪仪软件是测量系统的重要组成部分之一,系统软件通过TCP/IP通讯与硬件进行实时数据交互,对硬件上传的数据进行处理和分析,并控制硬件系统执行相应的测量等控制指令。软件系统为用户操作提供人机交互接口,通过数据库管理可实现用户对测量数据的编辑和输入输出等操作,在此基础上通过三维显示操作可面向用户实现测量数据和拟合数据的直观显示和交互操作。为了进一步提升系统测量精度,激光跟踪仪软件系统利用误差补偿算法对激光跟踪仪测距、测角和几何误差进行实时修正,结合激光跟踪仪硬件系统实现大型复杂工件或设备的高精度测量。近年来由中国科学院微电子研究所和海宁集成电路与先进制造研究院共同组建的研发团队(以下简称该团队)致力于实现激光跟踪仪国产化。该团队在激光跟踪仪领域取得了一系列具有自主知识产权的研究成果,共申报发明专利45项(已授权32项),软件著作权5项,发表研究论文130余篇。 2020年激光跟踪仪成果通过了中国仪器仪表行业协会组织的成果鉴定,鉴定委员会认为:“本研究成果技术难度很大,创新性很强,取得了多项自主知识产权。整体达到国际先进水平,研制的激光跟踪仪填补国内空白,飞秒激光跟踪仪属国际首创,其中绝对测距精度、断光续接精度达到国际领先水平。”该成果于2020年分别荣获中国机械工业技术发明特等奖、中国计量测试学会科技进步一等奖。该团队目前主推三自由度激光跟踪仪ICAM-LT-3DOF、六自由度激光跟踪仪ICAM-LT-6DOF如图4.1所示。图4.1(a) ICAM-LT-3DOF型激光跟踪仪图4.1(b) ICAM-LT-6DOF型激光跟踪仪ICAM-LT-3DOF型激光跟踪仪与ICAM-LT-6DOF型激光跟踪仪的主要技术指标如表4.1和表4.2所示。表4.1 ICAM-LT-3DOF型激光跟踪仪主要技术指标指标参数最大测量范围(半径)80m空间坐标测量精度15μm+6μm/m水平角测量范围±320°垂直角测量范围-45°~+60°数据采集速度1000 点/秒跟踪速度>4m/s表4.2 ICAM-LT-6DOF型激光跟踪仪主要技术指标指标参数空间坐标测量范围(半径)80m空间坐标测量精度15μm+6μm/m姿态测量范围(半径)25m姿态测量精度≤0.05°水平角测量范围±320°垂直角测量范围±145°角度测量误差≤1’’数据采集速度1000 点/秒跟踪速度>4m/s截至目前,该团队研制的国产激光跟踪仪已在航天五院514所、航空304所、武船公司、中科院高能所、中科院国家空间科学中心、航天科工集团三院三十一所等多个科研院所和企业进行了应用。1)航天领域应用图4.2 激光跟踪仪在航天五院514所应用激光跟踪仪在航天五院514所进行了如下应用:① 紧缩场结构测试:完成紧缩场实验室结构测量,测得最大反射面尺寸10m×15m,最大测量距离35m,最高公差1mm;② 卫星壳体焊接工装结构测量:完成典型零件测量,测得工件尺寸1.5m-3m,测量距离:10m,最高公差0.2mm。在上述测量工作中,使用激光跟踪仪突破了传统测距在测程、精度和测量速度方面难以协调的瓶颈,提高了卫星和空间有效载荷的制造及组装精度。2)航空领域应用图4.3 激光跟踪仪在航空304所应用激光跟踪仪在航空304所进行了如下应用:① 航空工装测试:坐标不确定度达0.05mm,满足航空制造对精度溯源要求;② 飞机水平飞控部件姿态测量:位置传感器测量精度在线校准精度达0.018mm。在上述测量工作中,使用激光跟踪仪主要解决了两个问题:① 解决了大尺寸航空工装测量问题,提供了可供溯源的依据和测量基准,为数字化制造提供了可靠的计量保证;② 解决了飞机水平飞控部件姿态测量问题,实现了飞机部件姿态高精度高效率数字化测量,为航空制造安全提供了保障。3)船舶领域应用图4.4 激光跟踪仪在武船公司应用在船舶领域中,激光跟踪仪在武船公司进行了如下应用:① 与API激光跟踪仪测试数据进行比对,验证本激光跟踪仪的准确性、可靠性、稳定性、可操作性等综合性能;② 对船台建造过程中的分段结构外形尺寸、装配尺寸、位置偏差等进行了测量,突破了大尺寸测量仪器三维坐标测量方法关键技术。根据应用结果,在船舶领域应用激光跟踪仪,建立了相应的应用方法/规程,可逐步推广到船舶建造其他阶段,为船舶建造精度控制提供新的方向。4)大科学装置应用在大科学装置方面,激光跟踪仪在中科院高能所进行了如下应用:① 对北京正负电子对撞机储存环部分设备进行了准直调整,调整精度达0.1mm;② 在中国散裂中子源建设过程中,对隧道控制网进行测量,相对点位测量精度0.08mm,绝对点位测量精度0.05mm。图4.5 激光跟踪仪在中科院高能所应用在上述测量测试工作中,使用激光跟踪仪主要解决了两个问题:① 利用标准杆进行空间测量,大跨度搭接测量控制网,提高了控制网测量精度和效率;② 采用边长法进行高精度设备标定,彻底消除了测角误差的影响,提升了大科学装置安装精度。此外,该团队研发的激光跟踪仪还广泛应用于机器人磨削、航天钻孔及铣削、机器人校准等场景中,如图4.6所示。图4.6 激光跟踪仪在机器人场景的应用机器人磨削(左),航天钻孔及铣削(中),机器人校准(右)随着现代工业技术的迅猛发展,高端制造业对设备尺寸及空间位置精度要求越来越严苛,激光跟踪仪作为最先进的三坐标精密测量仪器之一,将为工程技术及科学研究大尺寸精密测量提供有效的解决方案。(点击图片查看专题)
  • 大型飞机装配中的高精度测量技术研究进展
    新一代飞机向着大型、重载、长寿等方向发展,对其装配质量、精度等提出更高的要求。装配中几何尺寸、物理损伤等的高精度测量是调控飞机装配工艺、保证装配指标的基础和关键,对飞机服役性能有着重要的影响。本文围绕新一代飞机结构尺寸大幅增加、承力结构复材化发展下的需求,论述了大型飞机装配中高精度测量技术的研究进展,具体从大空间点位高精度测量方法、大型结构外形高精度测量方法、复合材料结构装配缺陷高精度检测技术等方面对国内外理论研究和技术应用进行了梳理和总结,并指明相关技术的未来发展趋势和前景。1 飞机装配那些事儿 飞机装配是飞机制造的关键环节,装配过程中涉及的学科范围广、技术标准要求高,属于典型的高端装备制造技术。飞机装配是将各种零、组、部件按照规定的技术条件和质量要求进行配合与连接,并进行检验与试验的工艺过程,装配的质量直接决定了飞机产品的外形精度、制造质量和服役性能等。 新一代飞机向着大型、重载、长寿等方向发展,其制造也向着高精度、低成本、柔性化、智能化等方向转变,对装配的精度、效率与质量均提出了更高的要求。此外,以纤维增强型复合材料为代表的轻质高强材料也逐渐由次承力结构升级为主承力结构。对此,开展大型飞机的大空间高精度测量、复合材料损伤的高精度检测方向的研究,是新一代飞机高效、高质装配的强有力支撑。图1高精度测量技术在飞机装配现场的应用2 飞机装配大空间测量场高精度测量方法 传统大空间测量场多使用单台或者单种测量设备进行构建,为满足大尺寸部件的高精度测量需求,组合式测量系统应运而生。通过组合多个测量设备或不同测量系统,往往可以达到一个较好的效果。 由于大空间测量场的特点,需要对其进行坐标配准,即将测量点坐标转换到全局坐标系下,并将数据进行融合。坐标配准、环境等因素往往会影响测量场的精度,所以还需要对测量场进行不确定度评估,并对误差进行补偿。因此,测量场配置优化、坐标系配准和不确定性评估等三个方面的内容是影响大空间测量场测量精度和效率的关键技术。图2 组合式大尺寸测量3 飞机大部件装配外形数字化高精度测量方法 飞机装配是保证飞机外形精度的重要环节,提高飞机部件装配外形检测水平对于提升飞机制造质量具有重要意义。飞机装配部件外形尺寸大、曲面形状复杂、型面测量数据量大,传统单一测量设备测量精度和效率之间的矛盾突出。随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。本章将具体针对数字化测量技术在飞机外形轮廓及蒙皮表面质量检测过程中的应用以及大规模点云数据的处理方法展开介绍。3.1 飞机大尺寸外形轮廓高精度检测航空产品中的大部件装配曲面外形准确度决定着飞机的气动/隐身性能,采用合理的方式对飞机大部件装配外形进行检测尤为重要。飞机曲面外形具有尺寸大、形状复杂、测量数据量大的特点,通常采用数字化测量方法实现大部件外形的高精度测量。早期数字化测量多采用接触式测量方法,以三坐标测量机为代表,常应用于整体叶片型面、中间整流罩的检测过程中。接触式测量具有测量精度高的优点,但缺点是效率低、易划伤目标表面且无法实现自动化测量。激光扫描法、结构光法、激光雷达法、摄影测量法等非接触式测量方法的出现提升了测量范围和测量效率,而且可开发性和自动化程度高的特点使它们在飞机大部件外形自动化测量方面展现出优势。表1列举了几种数字化测量系统并对其主要参数及优缺点进行了分析对比。表 1. 外形数字化测量系统对比但随着测量要求的进一步提高,单一设备无法兼顾测量精度和测量效率的矛盾愈发明显,近年来许多学者通过构建数字化组合测量系统,使设备性能互补,从而提高测量精度与效率。将关节臂测量仪、激光跟踪仪以及摄影测量组合,在飞机内襟翼上翼面外形精度测量上进行应用与验证,在保证外形测量精度的同时进一步提高了测量效率。此外,结合结构光重建和摄影测量技术也可实现高精度、高效率、非接触的大尺寸飞机结构外形的三维重建,精度可达到亚毫米量级(0.16 mm以下)。如图6所示。图 3 基于后方摄像机视觉定位的全局三维重建原理图为了进一步提升飞机大部件曲面外形的测量精度,需要对数字化测量系统进行站位规划与测量轨迹规划。测量仪器的站位规划是数字化测量的前提,站位的合理性直接影响着测量效率和精度。早期测量站位主要由操作者的经验决定,往往需要反复调整才能满足测量要求,测量效率低,难以满足现代飞机高效的测量需求。针对激光雷达测量飞机大部件外形测量需求,采用基于区域生长算法的站位规划方法得到初始站位,之后引入测量不确定度对其进行优化,该方法相比于经验法和聚类算法更具可行性和有效性。而对于飞机大型蒙皮柔性测量系统,效率优化的扫描站位规划被提出,提升了扫描效率和完整性。此外,规划轨迹可以使测量设备在满足测量条件的情况下充分发挥性能,最大程度上降低系统误差,提高扫描数据的精确度,从而提升测量精度与测量效率。对于包含激光跟踪仪和工业机器人的自动化扫描系统中的测量轨迹规划问题,首先在CATIA中按照结构特征类别进行轨迹的初始规划,之后对测量误差进行分析,建立系统误差预测模型并通过粒子群算法对测量轨迹做进一步优化,可达到快速找到满足扫描约束的同时系统误差最小的姿态的目的,从而提高曲面扫描的测量精度。为了提升结构光的检测精度,一种以改进贪心算法为基础的覆盖路径规划方法被提出,降低了视点数目,提升了结构光检测精度,从而提升了曲面外形测量精度,如图4所示。图 4 测量不确定度对比图。(a)文献方法;(b)目标采样法3.2 飞机部件外形表面质量高精度检测高精度数字化测量技术也广泛应用于飞机外形表面质量检测过程中,包括蒙皮对缝检测以及铆钉平齐度检测等。飞机蒙皮主要通过铆钉固定在机翼骨架外围,其作用是维持飞机的气动外形,必须承担一定的局部气动力,装配时要保证蒙皮对缝的间隙及阶差在允许范围内。此外,蒙皮表面铆钉平齐度对飞机的隐身性能及气动性能也有着比较重要的影响,随着新一代战机对隐身性能及气动外形的要求越来越高,相应地对飞机蒙皮铆接质量提出了更高要求。传统的蒙皮对缝检测采用塞尺测量,对人工操作要求高、效率低、误差较大,且不能有效采集和处理测量数据。随着数字化测量技术的不断发展,为了提高缝隙测量的精度和效率,国内外学者以线结构光视觉测量和激光扫描为代表的非接触测量方法应用于对缝检测中,如图8所示,相关的数字化检测设备,包括美国Origin Technologies公司的Laser Gauge系列产品、德国8Tree公司的Gap Check相关产品等均采用非接触测量方法快速测量蒙皮阶差和间隙。线结构光视觉传感器可以实现对蒙皮对缝阶差与间隙的尺寸测量,阶差和间隙的重复测量精度分别达到了0.04 mm和0.05 mm以下。针对二维激光对缝检测多次测量重复精度不高的问题,基于三维激光扫描的蒙皮对缝检测方法被提出,其间隙和阶差测量精度可分别达到0.04 mm和0.02 mm。此外,有学者利用机器视觉的方法,提出了一种基于改进优化算法的飞机蒙皮对缝视觉测量方法,达到精确测量蒙皮对缝间隙的目的,测量精度达到了0.02 mm以下。图 5 基于线结构光的阶差与间隙测量模型对于铆钉齐平度的检测,传统的检测靠人工抽检来实现,即采用传统卡尺或指针式三脚千分表手动检测,测量误差大且有较大局限性。非接触式数字化测量技术在铆钉平齐度检测方面同样展现出优势,构建双目多线结构光测量系统对铆钉齐平度进行测量,可实现对蒙皮表面铆钉头部凸台或凹坑特征的精准测量,精度可达到0.03 mm以下,但该系统无法同时测量多个铆钉。而基于3D激光扫描仪的图像采集系统,利用深度学习算法分析处理采集到的图像,可以同时检测多个结果,效率高,重复检测精度达到0.015 mm,精度相比人工抽检提高较大。此外,针对铆钉逐一检测任务量大且检测可靠度低的不足,基于面结构光的铆钉平齐度检测方法先提出了一种图像噪声轮廓分割方法,之后基于图像-点云映射策略实现了快速且稳定的分割铆钉点云,铆钉平齐度测量偏差达到了0.006 mm以下。如图6所示。图 6 铆钉标准件及平齐度测量结果。(a)标准件;(b)测量结果随着近年来数字化测量技术的不断发展,其广泛应用于飞机大部件装配外形测量过程中,尤其在飞机大尺寸外形轮廓检测、飞机蒙皮对缝间隙、阶差检测以及铆钉平齐度检测等应用中展现出较大优势,这归功于其测量精度和效率的提高以及测量范围的扩大。在测量过程中会产生大量的点云数据,对大规模点云数据进行有效的优化处理对后续测量模型建立的准确度以及相关测量数值的精度十分重要。4 面向复合材料装配缺陷的高精度检测技术 航空复合材料具有重量轻、比刚度大等优点,既能减轻飞机重量,也提高了飞机的整体互换性,方便维护,在飞机制造领域得到了广泛的应用。但此类复合材料由于装配时的应力变化会产生脱粘、分层、夹杂等装配缺陷,对产品的安全使用及长时间服役造成严重威胁,因此需要对复合材料装配过程中产生的缺陷进行高精度检测。 针对不断装机应用的各种新的航空复合材料、新的复合材料成型工艺、新的复合材料结构和新的检测与缺陷评估要求,从检测方法分类上,主要体现在:激光检测、超声检测、X射线检测和太赫兹检测技术等。近几年,随着众多学者对信号处理、图像处理和三维信号重构等技术的研究,使得检测精度和缺陷数据后处理能力逐步提升,面向复合材料装配缺陷高精度检测方法及技术逐步趋于智能化、自动化、可视化。图4 复合材料缺陷三维可视化[1]5 飞机装配测量为我国飞机制造保驾护航 大尺寸高精度测量技术已经成为但广泛应用中的核心关键技术尚处在积累阶段,需要不断的应用验证。数字化测量系统正朝着便携、网络、高效、精密方向发展,飞机装配大尺寸高精度测量技术也已从单一技术走向多传感器技术的融合。 对于飞机装配大空间测量场高精度测量,传统方法多基于单台或单种测量设备,导致精度及效率不足,通过测量场配置优化、坐标系优化、精度评估与补偿等技术来提升测量场的构建效率及精度是当前及未来的提升方向。而对于飞机大部件装配外形数字化高精度测量,飞机部件装配外形尺寸大、曲面形状复杂,型面测量数据量大,单一设备测量精度和效率之间矛盾突出。通过优化测量轨迹、提高视觉检测精度、大规模点云数据融合等技术手段充分发挥各测量设备的优点,来保证飞机大尺寸外形轮廓和飞机外形表面质量检测应用过程中的效率及精度。 因此,组合式数字化测量系统及多技术的融合研究是未来发展和提升的重要方向。在保持高检测精度的前提下,智能化、可视化、自动化的无损检测是未来的发展方向。 在数字化工厂和智能制造的背景下,根据目前大型飞机装配中的高精度测量技术及系统的特点,未来应立足于具体型号及实际应用场景,深入开展高精度测量技术及系统的应用和研究,并形成相应技术体系,充分发挥数字化高精度测量技术的优势。未来,多数字化测量系统协同工作,大空间数字化测量场构建,部件装配外形数字化及装配缺陷检测,这对提高我国飞机制造的水平和核心竞争力具有十分重要的意义。参考文献:[1] Qin L, Zhang S, Song Y, et al. 3D ultrasonic imaging based on synthetic aperture focusing technique and space-dependent threshold for detecting submillimetre flaws in strongly scattering metallic materials[J]. NDT & E International. 2021, 124: 102523.原文下载:张开富, 史越, 骆彬, 童长鑫, 潘婷, 乔木. 大型飞机装配中的高精度测量技术研究进展.pdf通讯作者介绍 张开富,西北工业大学教授、博士生导师,教育部“长江学者”特聘教授、冯如航空科技精英奖获得者,飞行器高性能装配工业和信息化部重点实验室负责人,兼任中国图学学常务理事、中国机械工程学会生产工程分会技术委员会委员。长期从事航空航天制造领域先进装配与连接、结构损伤及疲劳等研究工作,主持国家自然科学基金、国家重点研发计划、重大型号攻关计划等项目近20项,发表高水平学术论文70余篇、授权中国发明专利27件,主持制定航空行业标准2项,以第一完成人获国家科学技术进步二等奖、陕西省自然科学奖一等奖、陕西省科学技术一等奖各1项。课题组介绍 西北工业大学航空宇航装配团队依托于工业和信息化部重点实验室、西北工业大学航空宇航科学与技术学科(A+学科、双一流学科),获批陕西省科技创新团队、国防科技创新团队,长期从事航空航天领域装配建模与优化、先进装配与连接工艺、复材结构设计制造、智能测试技术与工艺等方向研究。团队拥有正高级职称人员6人(其中国家级人才3人)、副高级职称人员6人,硕博士研究生80余人。近年来,团队承担国家级科研项目30余项,授权国家发明专利50余项,在Composite Science and Technology、IEEE Transactions on Robotics、Additive Manufacturing、Composites Part B、航空学报、复合材料学报、机械工程学报等期刊发表学术论文百余篇,参与制定行业标准/型号研制规范10余项,研究成果在运20、C919、ARJ21等我国航空航天重大型号得到持续工程应用,先后获国家科学技术进步二等奖1项、省部级一等奖2项、其他省部级奖励5项。
  • XL-80:全新轻型激光干涉仪测量系统
    在超精密的测量和校准方面,激光干涉仪已经扮演多年极重要的角色。但是近年来随着自动化运动系统性能大幅提高,面对半导体和传统金属加工业的需求,现有激光系统的性能已无法满足一些客户的要求。 Renishaw的新型XL-80激光干涉仪能够满足和超越实际工业规范水平,提供4 m/s最大的测量速度和50 kHz记录速率。即使在最高的数据记录速率下,系统准确性可达到± 0.5ppm(线性模式)和1纳米的分辨率,这些改进意味着工程师仍能使用可溯源性激光干涉的独特优势,帮助解决现代化机器设计问题。 系统精度比原有的对应产品ML10激光系统有所提升,在整个日常温度、气压和湿度不同工作环境下,均可达到± 0.5 ppm的精度。环境读数使用XC-80智能传感系统进行读取,每7秒更新一次激光读数补偿值。还有一点很重要,与Renishaw的ML10系统一样,所有测量值均采用稳定的氦氖激光源的波长为基准,保证能够溯源至国际公认的长度标准。 此新系统可以与现有的ML10系统光学镜组完全兼容,使目前全球数千ML10用户能够升级到新系统,并同时保留其在光学镜组、程序和人员培训上的原有投资。 我们还提供已更新的Renishaw软件版本(LaserXL™ 及QuickViewXL™ ),能够以用户熟悉的、易于使用的格式提供数据。Laser XL™ 能够执行循序渐进式的测量,以方便对大多数机床按标准进行检验,QuickViewXL™ 软件能够在屏幕上实时地显示激光读数。 您只要看一眼Renishaw的新型XL-80激光装置和XC-80补偿器,就会注意到它们比原有的ML10和EC10小了许多。现在,二者总重仅3公斤多一点(包括连接电缆、电源和传感器),比原来减轻了70%。当然,随着激光头和补偿器尺寸减小,其他系统组件,例如三脚架和云台也相应地减小以便相配,因此整个系统(除了三脚架)的装运箱减小了许多。现在,最小的“脚轮箱”只有原来箱子的一半大一点点,却可以携带整个线性和角度测量系统,并有放置Renishaw QC10球杆仪组件的位置。这个高度便携的“检查和修正”系统总重不到15公斤,同类产品无以匹敌。 为了与系统的其他组件的便携性相匹配,我们设计了新型三脚架和装运箱,仅重6.2公斤。 激光头和云台体积很小,能够方便地固定在标准磁性座上,可以在不方便使用三脚架固定的应用条件下使用。XL-80激光测量系统的光束高度和光学镜组尺寸与ML10系统一样,因此也可以直接放在花岗岩工作台(不使用三脚架云台)上,进行坐标测量机的校准。 Renishaw已将激光的预热时间缩短至大约仅6分钟。预热速度较同类系统快,因此用户等待时间减少了,用于测量工作的几率增加了,这对于机器校准服务商和那些需要在一个地点执行多项测量的用户而言非常重要。 现在,信号增益的开启和关闭是一项标准功能,使其具有80米线性测量距离的能力。若短距离应用时,则可以提高信号强度。激光信号通过USB连线直接输出到电脑上(无需单独的接口),辅助功能端口可提供模拟信号及工厂按需设定的数字信号输出。XL-80激光头的配置集原ML10G/Q/X多种任选功能于一体,功能更完善。 XL-80系统具有长达3年标准的全面保修,并可以以优惠的价格选购延长保修时间为5年。对于使用ML10的老用户和使用其他厂商制造的同类系统的新客户,我们均提供一些特别优惠政策。请联络Renishaw各办事处。
  • 1030万!哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购项目
    一、项目基本情况项目编号:HTCL-ZB-236129项目名称:哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购及服务预算金额:1030.000000 万元(人民币)最高限价(如有):1030.000000 万元(人民币)采购需求:1套电致发光器件综合特性测量系统,其他要求详见招标文件。1套激光直写系统,其他要求详见招标文件。合同履行期限:合同签订后12个月内完成所有设备到货、所有设备调试完毕并具备验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月06日 至 2023年11月10日,每天上午8:30至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:黑龙江省招标有限公司方式:现场获取。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:黑龙江省招标有限公司            地 址:哈尔滨市南岗区汉水路180号            联系方式:陆超、温智伟 电话:0451-82375252            3.项目联系方式项目联系人:陆超、温智伟电 话:  0451-82375252
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 激光闪光法热常数测量系统
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm, (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 不贴点!跟踪式激光扫描系统在大尺寸精密测量中显身手
    精准测量是支撑高质量制造的基石。先临三维的高精度工业3D扫描技术作为一种光学测量工具,凭借其高精度、高效率、非接触等优势,为高端制造的精密三维尺寸检测提供保障。当下,这项技术已经渗透至到汽车工业、航天制造、电子电器、教育科研等行业,满足了不同用户对三维尺寸检测的需求。在工业领域,激光3D扫描仪得到了广泛应用。然而,传统的激光3D扫描仪需要在被测物体上粘贴标志点,以实现高精度三维数据的拼接与获取。在大型工件的三维尺寸检测中,这种方式动辄需要粘贴和去除成百上千个标志点,耗费大量时间。先临三维的跟踪式激光扫描系统以动态跟踪、不贴点的独特优势,以及激光扫描高精度、高效率、材质适应性佳的稳定表现,为大型工件精准的三维尺寸检测提供了破题思路。通过在扫描仪的工作过程中使用跟踪仪来获取扫描仪的三维空间信息,跟踪式激光扫描系统实现了大范围的无需标志点的拼接扫描,从而为大型工件的三维尺寸检测进一步提速。行业应用案例: 汽车工业白车身是指装焊完成但未涂装的车身结构,是整车零部件的载体。这种车身具有尺寸体积大、曲面复杂、部分零件表面反光等检测难点,因此需要精度高、无需贴点、材质适应性更强的激光3D扫描设备进行数据获取。使用先临天远的FreeScan Trak Pro2 跟踪式激光扫描系统,仅需约10分钟即可获取完整的白车身三维数据。此外,扫描精度最高可达0.023mm且重复性精度稳定,结果准确可靠满足工业测量需求。*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。轨道交通轨道车辆的车身主体是由一次次的焊接而成型,保证焊接的准确度,是后期顺利装配的基础。因此,确保扫描结果精准、扫描过程不贴点以保证效率,是车身进行三维检测的核心诉求。FreeScan Trak Pro跟踪式激光扫描系统表现出色,高效获取车身的完整三维数据后,将扫描获取数据与原始的CAD设计数据相对比,即可完成车身的焊接质量检测。模具铸造在模具铸造过程中,模型的形状和尺寸至关重要。面对结构复杂的大型铸件模型,不贴标志点的高效扫描成为三维检测中的关键环节。FreeScan Trak Pro流畅、高质的扫描提供了助力,不仅大幅缩短三维尺寸检测时间,还为铸件的浇筑生产节省大量时间。更多应用场景先临三维的跟踪式激光扫描系统,同样为航空制造、工程机械等行业的大尺寸精密测量提供高效解决方案。我国制造业正向高端迈进,大型化装备 和复杂结构制造的兴起,对测量方式提出了精度更高、适应性更强的要求。先临三维的高精度工业3D扫描业务线,品全而精,包含踪式激光三维扫描系统、手持式激光三维扫描仪、固定式蓝光三维扫描仪等多款产品,以精准测量保证精密制造。未来,先临三维将持续对产品、功能、应用进行深度打磨,让高精度工业3D扫描技术朝着设备无线化、软件智能化、检测自动化的方向不断精进,助力先进制造业的高质量发展。
  • 高精度、复合式、智能、易用 | 2024上半年几何量测量仪器新品盘点
    随着工业4.0浪潮的持续深化,高精度、智能化、集成化的测量仪器成为推动制造业转型升级的关键力量。2024年上半年,众多仪器厂商凭借其深厚的技术积累和创新能力,推出一系列几何量精密测量仪器新品,不仅提升了测量技术的边界,更为智能制造注入了新的活力。本文特对2024年上半年上市新品进行盘点,以飨读者。(本文产品信息来源网络公开信息,如有遗漏,欢迎留言补充。联系邮箱:niuyw@instrument.com.cn)海克斯康 SmartScan VR800智能蓝光扫描系统3月,海克斯康发布SmartScan VR800智能蓝光扫描系统。该新品是首款配备自动变焦镜头的结构光3D扫描仪,拥有智能分辨率、智能变焦和智能抓拍三大创新功能。它专为提高工作效率而设计,通过简单的软件设置,即可完成扫描分辨率和测量范围的快速调整,为用户实现精确、高效的扫描测量提供了前所未有的创新体验。 OCTAV HP高精度复合式影像测量专机4月,在2024中国数控机床展览会(CCMT)期间,海克斯康发布重量级新产品——OCTAV HP高精度复合式影像测量专机。该产品精度高达0.4μ+,是一款为满足用户对于高精度、高性能、高稳定性测量需求而设计的高端复合式影像测量专机。该新品将行业内先进的测量传感技术,包括高精度的接触式触发和扫描技术,基于影像测头的视觉检测技术,基于共聚焦白光测头的光学扫描测量技术等,定制化集成到一台测量设备上,实现了一机多能以及高精度复合式测量。OCTAV HP亚微米级别的影像测量功能结合先进的多传感器融合技术,适用于航空航天、半导体、新能源、3C电子、医疗等行业领域。蔡司CAPTUM三坐标测量机3月 28 日,深圳ITES展会现场,蔡司盛大推出全新三坐标测量机CAPTUM。新品具有安装快捷、服务便利、操作简便等优势,为企业提供坚实可靠的质量保障。值得一提的是,CAPTUM 家族首次引入“Plug and Play”即插即用设计概念,让用户操作更为便捷。其高适配的应用场景特点,更是让三坐标的应用变得更简单易用。4月,在第十六届重庆国际电池技术交流会/展览会(CIBF 2024)上,蔡司发布O-INSPECT 863 Duo多用途复合式坐标测量机,该新品是一款集成了三坐标测量功能、影像测量以及显微镜检测功能的复合式测量设备,配备连续扫描接触式测量、高倍率变焦影像镜头等,广泛应用于电子、医疗、汽车、航空航天领域的复杂工件的形位公差测量及缺陷检测。天准科技CM系列三坐标测量机4月,在第十三届中国数控机床展览会(CCMT 2024)上,天准科技发布CM系列三坐标测量机,该新品以超高精度 0.3μm 国家重大专项复合测量机技术背景为研发基础,目前拥有CMZ/CMU/CME 三大系列,集Vispec Pro软件系统、HSP测头/TR50旋转测座探测系统、驱控一体TCC电控、直线电机驱控技术四大自研技术为一体,同时创新性地将工业级的碳化硅陶瓷材料运用在高端系列机型上,重新定义行业精密测量标准,广泛应用于汽车、模具、机械加工、精密制造、计量院所、航空航天等领域。6月18日,在第十六届中国国际机床工具展览会(CIMES)上,天准科技发布了全新VMZ超高精度影像仪。该新品在测量精度以及稳定性上实现了跨越式提升,测量精度高达0.8μm,最大倍率高达4000倍。出色的测量精度和稳定性,使其能够轻松应对各种复杂测量任务,适用于半导体、微组装、光通信等高精度测量场景。思看科技NimbleTrack灵动式三维扫描系统4月9日,思看科技发布NimbleTrack灵动式三维扫描系统和NimbleTrack灵动式三维扫描系统。NimbleTrack集全无线、不贴点、双边缘计算、一体成型架构于一身,精准驾驭中小型场景动态三维测量场景,其扫描仪和跟踪器深度集成高性能芯片与嵌入式电池模组,实现了全域无线测量和高速稳定的数据传输,开启工业计量智能无线新时代。AM-CELL C系列自动化3D检测系统AM-CELL C系列自动化3D检测系统创新性融入核心单元设计理念,集易部署、易操控、高拓展性、全方位安全于一体,为中小型零部件检测打造自动化交钥匙解决方案,探寻智能制造更多可能。中图仪器WD4000系列无图晶圆几何量测系统2月,中图仪器针对晶圆几何形貌量测需求,基于在精密光学测量多年的技术积累,历经数载,自研了WD4000系列无图晶圆几何量测系统,适用于线切、研磨、抛光工艺后,进行wafer厚度(THK)、整体厚度变化(TTV)、翘曲度(Warp)、弯曲度(Bow)等相关几何形貌数据测量,能够提供Thickness map、LTV map、Top map、Bottommap等几何形貌图及系列参数,有效监测wafer形貌分布变化,从而及时管控与调整生产设备的工艺参数,确保wafer生产稳定且高效。3月,中图仪器发布Mizar Silver三坐标测量机,融汇多项核心创新技术,采用低热膨胀花岗岩导轨系统、环抱式气浮支撑系统、Z轴柔性平衡设计、高刚性传动系统、空间21项结构误差补偿技术等,并装载全自主化运动控制器与测头测座系统,自主化三坐标测量软件PowerDMIS。先临三维FreeScan UE Pro2 无线高速激光手持三维扫描仪5月,先临三维发布FreeScan UE Pro2 无线高速激光手持三维扫描仪。此番创新融合了嵌入式边缘计算模块,实现无线传输功能,为用户带来了前所未有的操作自由。这款新品借助内置的嵌入式边缘计算模块与灵活的移动电源支持,可以更加游刃有余地获取高精度三维数据。基恩士VM-6000大范围三坐标测量仪5月,基恩士发布VM-6000大范围三坐标测量仪,通过接触探头、激光扫描探头,单人即可在现场测量大型产品的尺寸、形状。新品测量范围由原来的15m扩大到25m,适用于各行各业的大型产品。Qualifire&trade 激光干涉仪2024年初,阿美特克 旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire&trade 。Qualifier加入了一系列高端干涉仪解决方案,旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。秉承Zygo在计量领域的卓越标准,Qualifire&trade 不仅确保了高精度,更通过精细化的人体工程学设计优化了用户交互体验,使操作更为高效,部署更加灵活,完美平衡了性能与便捷性。综上所述,2024年上半年发布的一系列新品,在高精度、集成化、智能化、自动化、便捷性与易用性等多个维度实现了显著突破与创新。这些技术的深度融合可大幅提升生产效率与灵活性,降低对人工的依赖,助力企业降本增效。这一系列创新成果,无疑为工业4.0智能制造的加速推进提供了强有力的技术支持和保障。
  • 便携式电池供电激光功率测量积分球助力激光企业发展
    某现场安装激光二极管的制造公司需要一种可靠的方法用于现场测量激光功率,而无需带回实验室进行测试。激光测量系统需要完全由电池供电,因为现场没有电源。Labsphere(蓝菲光学)根据客户要求提供一套独立的、便携式且耐用的激光功率测试系统。Labsphere (蓝菲光学)提供标准的激光二极管测量积分球; 然而,还需将新功能整合到系统中,使其能被带到现场测试。 由此产生的一个小而轻的积分球系统,能够在世界任何地方进行可靠的激光功率测量。1.5 英寸开口端,用于轻松安装激光二极管组件针孔滤光片后面的制冷型 InGaAs 探测器,用于在功率低至 200 μW 的情况下进行红外范围内的辐射测量两个 FC/PC 适配器,允许通过光纤连接额外的探测器Spectralon® 漫反射材料,在 UV-VIS-NIR 范围内提供近乎完美的朗伯反射,以优化测试结果的准确性为 TE 冷却器和充电装置供电的可充电电池组轻巧的手持式塑料支架可固定每个组件,并带有泡沫内衬派力肯手提箱,可确保安全运输特点电池组可为系统供电数小时,为一个项目中的多项测试提供充足的时间每个组件都包依附在安装板上,提供了极大的可移动性,而手提箱确保了产品运输过程中的安全性InGaAs 探测器在近红外范围内提供可靠的校准测量,附加的光纤适配器使系统能够灵活地在其他范围内或使用光谱仪执行附加测试Spectralon 极高的漫反射率,以及积分球内的挡板几何形状,很大限度地提高了光照射到探测器上的均匀性Labsphere(蓝菲光学) 的 HELIOSense 软件进行实时数据收集、存储和可视化,使测试变得简单易行。光谱响应
  • 护航亚运!“5G+北斗” ZERO高精度检测系统开启燃气巡检新模式
    10月8日晚,第十九届亚洲运动会在杭州圆满闭幕。作为史上规模最大、参赛人数最多的一届亚运会,对城市安全保障工作也提出了极大考验。特别是燃气安全问题,如何及时发现泄漏风险消除隐患,就需要高效、快速、灵敏的检测设备来实现。 为确保亚运期间燃气安全平稳运行,杭州萧山新奥燃气公司采用普瑞亿科“ZERO车载式高精度天然气泄漏检测系统”和“ZERO便携式高精度天然气泄漏检测系统”,针对亚运核心500米范围内重点区域的场馆、保障酒店、保障医院的燃气管道及附属设施,以及亚运场所1公里范围内严控区域的地下天然气管网、工商业用户、重点居民用户进行高精度检测。 ZERO车载式高精度天然气泄漏检测系统相对于传统检测车(ppm级)精度提升了1000倍,通过中红外激光光谱技术对周边环境气体进行检测分析,精度可达10亿分之一,可对行车距离150米范围内进行覆盖;与人工检测方式相比,检测车具有检测范围大、辐射面广、检测效率快、精准度高、可快速定位泄漏点等优势,能对天然气泄漏隐患做到提前发现与及时处置,从而避免事故发生。 ZERO便携式高精度天然气泄漏检测系统采用5G数据传输,搭载北斗高精准定位系统,在快速、精准查找泄漏点方面表现出色,极大地提高了巡检效率,协助新奥更高效地管理和控制潜在的泄漏风险。 除了高精度车载系统,普瑞亿科还可以针对不同的应用场景提供系统解决方案,以满足不同用户的检测需求—— 普瑞亿科提供的天然气泄漏检测系统基于先进的中红外直接吸收光谱技术,核心的CH4 C2H6分析仪具有1ppb/s和0.5ppb/s的灵敏度,极高的灵敏度和快速的响应时间确保设备能在高速路面走航和无人机记载等高速运行的工具上获得可信的数据,这不仅仅保证了天然气泄漏的准确度、更提高了天然气泄漏测量的速率。尤其是该产品具有相对最小的重量和最低的功耗,确保设备能在无人机上挂载、能在传统汽车上车载,抑或是电动自行车、摩托车车载,甚至是手提/肩背使用。优越的性能、合理的价格和宽泛的适用场景决定了ZERO泄漏检测系统正在引导着天然气泄漏检测的发展方向。 针对本系统解决方案,我们配置了ZERO All-in-One 组合式天然气泄漏检测系统,主要包含ZERO(Plus)车载式系统、ZERO Flight 飞行版系统、ZERO(Plus)便携式系统三位一体的立体解决方案,以满足高速车载走航测量、高空飞行测量和便携式精准定位测量需要;同时系统包含必要的现场硬件和软件、服务器端及智慧客户终端。 ZERO依托5G、大数据、物联网等现代信息技术,从设备、系统到云实现数字化集成,在降低成本的同时,为用户提供一站式全方位天然气泄漏解决方案,搭建从采集处理、分析到决策支持的数据闭环,以数字技术赋能燃气安全管理,从而实现城市智慧管网、智慧燃气的全链条、数字化集中管理。
  • 测试通过!ZERO正式入驻萍乡 高精准燃气泄漏检测系统护航城市安全
    近日,为有效推动江西省萍乡市湘东区部署开展的城镇燃气管道及设施“带病运行”问题专项治理工作,萍乡新奥长丰燃气公司引进了一个高科技“新武器”——搭载了由普瑞亿科自主研发的ZERO天然气泄漏检测系统的高精准检测车,在全区范围内部署燃气隐患排查整治行动。 ZERO车载式高精度天然气泄漏检测系统相对于传统检测车(ppm级)精度提升了1000倍,通过中红外激光光谱技术对周边环境气体进行检测分析,精度可达10亿分之一(ppb级),可对行车距离150米范围内进行覆盖;与人工检测方式相比,检测车具有检测范围大、辐射面广、检测效率快、精准度高、可快速定位泄漏点等优势;经过最新的中红外直接吸收光谱技术采集 CH4 C2H6 数据,并通过整合气象参数(风速、风向、气压、温湿度等)、行车轨迹并进行逻辑运算,在不超过80km/h的车速下,高效获得天然气是否泄漏及泄漏浓度、泄漏位置等信息;相关信息将直接上传到燃气公司监管平台实行远程调度处理,能对天然气泄漏隐患做到提前发现与及时处置,从而避免事故发生。 为验证高精准检测车远距离快速巡检的能力,5月16日上午,特邀请萍乡市燃气发展服务中心技术人员,对湘东镇道田段市政管网、香榭帝景居民小区燃气设施开展燃气巡查测试,巡检测试过程中,仪器发出警报音。 此次测试环节显示,检测车能准确判断可能存在的泄漏点,系统也会自动生成巡检轨迹和报表,更高效、快捷地识别和锁定泄漏点,大大提高了燃气泄漏预警和险情处理工作效率,高精准检测车的引进对萍乡市湘东区燃气安全检查和隐患排查防范于未然,是确保安全生产的重要措施及保障。 除了高精度车载系统,普瑞亿科还可以针对不同的应用场景提供系统解决方案,以满足不同用户的检测需求—— 普瑞亿科提供的天然气泄漏检测系统基于先进的中红外直接吸收光谱技术,核心的 CH4 C2H6 分析仪具有1ppb/s和0.5ppb/s的灵敏度,极高的灵敏度和快速的响应时间确保设备能在高速路面走航和无人机记载等高速运行的工具上获得可信的数据,这不仅仅保证了天然气泄漏的准确度、更提高了天然气泄漏测量的速率。尤其是该产品具有相对最小的重量和最低的功耗,确保设备能在无人机上挂载、能在传统汽车上车载,抑或是电动自行车、摩托车车载,甚至是手提/肩背使用。优越的性能、合理的价格和宽泛的适用场景决定了ZERO泄漏检测系统正在引导着天然气泄漏检测的发展方向。 针对本系统解决方案,我们配置了ZERO All-in-One 组合式天然气泄漏检测系统,主要包含ZERO(Plus)车载式系统、ZERO Flight 飞行版系统、ZERO(Plus)便携式系统三位一体的立体解决方案,采用5G数据传输,搭载北斗高精准定位系统,以满足高速车载走航测量、高空飞行测量和便携式精准定位测量需要;同时系统包含必要的现场硬件和软件、服务器端及智慧客户终端。 ZERO依托5G、大数据、物联网等现代信息技术,从设备、系统到云实现数字化集成,在降低成本的同时,为用户提供一站式全方位天然气泄漏解决方案,搭建从采集处理、分析到决策支持的数据闭环,以数字技术赋能燃气安全管理,从而实现城市智慧管网、智慧燃气的全链条、数字化集中管理。
  • 莱赛激光拟挂牌新三板 主营激光测量仪器
    1月3日消息,莱赛激光科技股份有限公司(以下简称:莱赛激光)已于近日正式申请新三板挂牌,全国股转系统披露的挂牌资料显示,莱赛激光董事长陆建红、副董事长张敏俐2人,通过直接和间接合计占股72%,为莱赛激光共同实际控制人。  公告显示,莱赛激光2014年度、2015年度、2016年1-9月营业收入分别为1.11亿元、9961.31万元、8212.80万元 净利润分别为546.37万元、678.32万元、791.14万元。  资料显示,莱赛激光主要业务为激光测量仪器设备的研发、生产和销售,主要为客户提供激光测量的整体解决方案。
  • 应用案例 | HT8700大气氨激光开路分析仪用以测量广州塔附近大气氨通量
    项目内容:中国科学院广州地球化学研究所测量广州塔附近的大气氨通量,并进行实验比对项目时间:2023年9月项目地点:广州塔仪器安装项目意义&bull 空气质量监测:氨是一种有害气体,常常与空气污染和城市环境质量相关。通过在广州塔上安装氨激光开路分析仪,可以实时监测城市空气中的氨浓度,有助于评估空气质量,并提供数据支持,以采取必要的措施来改善空气质量。&bull 健康保护:氨的高浓度对人类健康有害,可能导致呼吸问题和其他健康问题。通过监测氨浓度,可以提前发现潜在的危险,采取措施来保护城市居民的健康。&bull 环境保护:氨还可以对周围的生态系统产生不利影响,对水体和土壤造成污染。通过监测氨的浓度,可以采取措施来减少氨的排放,降低对环境的不良影响。&bull 科学研究:广州塔上的氨监测数据可以用于科学研究,例如气象学、环境科学和大气化学。这些数据有助于研究氨在城市大气中的来源、传播和化学反应,从而更好地理解城市大气环境。&bull 污染源追踪:氨的监测可以帮助确定城市内潜在的氨排放源,这有助于政府和监管机构采取措施来减少污染源并加强环境管理。知识分享:通量塔的选址和建设原则在生态学、气象学和环境科学等领域,通量塔是一种用于测量大气层中气体和能量交换的设备。这些通量塔用于监测大气和地表之间的物质通量,例如水蒸气、二氧化碳、热量等,以了解生态系统和大气中的不同过程。通量塔通常包括一系列仪器和传感器,用于采集大气和地表参数的数据。选址和建设原则:&bull 代表性地点:通量塔的选址应考虑到它们所监测的生态系统或气象过程的代表性。选择代表性地点可以确保测量结果对于整个区域或生态系统有意义。&bull 最小扰动:通量塔的建设应尽量减少对周围环境的扰动。这包括减少人工结构对生态系统或气象过程的影响,以确保测量的准确性。&bull 高度选择:通量塔通常会建立在不同的高度,以测量气体和能量通量在大气中的垂直分布。选择适当的高度可以提供更全面的数据。&bull 安全考虑:通量塔的建设和维护应符合安全标准,以确保工作人员和环境的安全。通量塔在环境科学研究中起着重要作用,帮助科学家了解大气和生态系统之间的相互作用,以及气体和能量的交换过程。选择合适的位置和正确的建设原则对于获得准确和可靠的数据非常关键。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 天津市拓普仪器有限公司将参加“2009春季高教仪器设备展示会”的通知
    天津市拓普仪器有限公司将于2009年5月17日-19日参加在大连举办的2009年春季全国高教仪器设备展示会,届时我公司将展出红外分光光度计、紫外可见分光光度计、激光拉曼光谱仪、组合式多功能光栅光谱仪、单光子计数实验系统、色度测量实验装置、黑体实验装置、椭圆偏振测厚仪、纤维光学实验仪、光通信实验系统、迈克尔逊干涉仪、超声光栅仪等仪器,欢迎广大新老客户来我公司展位参观指导! 展位号:129-134
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications,PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
  • 西安光机所在超短激光脉冲光场测量研究方面取得重要进展
    近日,西安光机所阿秒科学与技术研究中心在超短激光脉冲光场测量研究方面取得重要进展。研究团队创新性提出基于微扰的三阶非线性过程全光采样方法,该方法的可测量脉冲脉宽短至亚周期,波段覆盖深紫外到远红外,具有系统结构简易稳定、数据处理简单等优点。相关两项研究成果相继发表在Optics Letters。论文第一作者为特别研究助理黄沛和博士生袁浩,通讯作者为曹华保研究员、付玉喜研究员。   超短激光脉冲作为探索物质微观世界以及产生阿秒脉冲的重要工具,其完整的电场波形诊断尤为重要。目前普遍采用的表征技术广义上可分为频域测量、时域测量两类。在频域,具体有频率分辨光学门控(FROG)、光谱相位干涉法 (SPIDER)和色散扫描(D-SCAN)等主要方法,通过测量非线性过程产生的光谱信息来间接获取超短脉冲脉宽及相位。此类方法因装置简单易于搭建而被广泛采用,但通常需要复杂的反演迭代算法,并且难以获得光电场信息,而且受限于相位匹配机制,比较难以应用于倍频程以上的激光脉冲测量。   而基于时域采样的测量方法通常不受严格的相位匹配限制,并且对电场波形很敏感,可用于直接测量光电场,近年来发展势头较好。研究团队提出基于微扰三阶非线性过程的全光采样方法是一种基于时域采样的测量方法,在实验中分别应用瞬态光栅效应(TGP)和空气三倍频效应(Air-THG),准确的测量了钛宝石激光器输出多周期脉冲(750-850nm,25fs)、基于充气空心光纤后压缩技术(600-1000nm,7.2fs)和双啁啾光参量放大系统(1300-2200nm,15fs)产生的少周期脉冲,实现了覆盖可见、近红外到中红外波段的超短脉冲测量,可以满足不同波段超短脉冲测量的需求。未来此项进展可以在阿秒驱动源快速诊断、超短激光脉冲测量装置国产化等方面发挥重要作用。
  • Endress+Hauser光学分析子公司成立 旨在提升基于激光吸收光谱的测量技术能力
    2022年1月1日,原Endress+Hauser子公司SpectraSensors和Kaiser Optical Systems合并,强强联合,成立Endress+Hauser光学分析新子公司。Endress+Hauser集团的此举旨在提升基于激光吸收光谱测量技术的专业能力,进一步聚焦实验室和过程分析领域,实现业务可持续性发展。2012年和2013年,Endress+Hauser集团分别完成了对这两家美国公司的收购。两家公司都有悠久的创新历史,生产的光学分析产品技术先进,其中,SpectraSensors公司的TDLAS可调谐二极管激光吸收光谱技术帮助集团进一步强化气体分析业务能力;Kaiser Optical Systems公司是拉曼光谱技术的全球领导者,具备专业的固体、液体和气体分析知识,技术和产品应用广泛,部分涉及疫苗生产。Manfred Jagiella博士是Endress+Hauser集团执行委员会成员,全面负责分析业务在过去的几年里,过程和实验室分析一直被定义为Endress+Hauser集团的战略重点。“我们希望能够进一步研发和扩充实验室和过程分析领域的产品组合。Endress+Hauser液体分析,耶拿分析仪器和Endress+Hauser光学分析,这三家子公司是集团分析战略的关键组成要素。” Endress+Hauser执行委员会分析业务负责人Manfred Jagiella博士说。John Schnake出任Endress+Hauser光学分析公司总经理“客户青睐操作简单、坚固耐用、满足实际工况要求的测量仪表。” 新子公司总经理John Schnake说。有了基于激光吸收光谱的测量技术,Endress+Hauser分析产品组合全面整合,能够为工业客户提供从产品研发和工艺流程设计,到质量控制和生产制造的全方位专业支持。公司总部位于密歇根州Ann Arbor位于密歇根州Ann Arbor的拉曼光谱分析仪生产厂位于加利福尼亚州Rancho Cucamonga的TDLAS分析仪生产厂Endress+Hauser光学分析总部位于密歇根州Ann Arbor,这也是拉曼光谱分析仪的研发和生产基地。TDLAS分析仪仍在加利福尼亚州Rancho Cucamonga生产。新公司是Endress+Hauser集团的全资子公司,拥有约200名员工。
  • 农污监测新突破 | 激光助力大气氨的测量
    ▲氨涡度协方差通量观测系统。新突破 准确量化农业生态系统的NH3排放可帮助理解某区域甚至是全球范围的NH3收支以及落实空气污染的控制和缓解战略。 中国科学院大气物理研究所的科学家及其合作者在《农业和森林气象学(Agricultural and Forest Meteorology)》上发表了一篇研究,称他们开发了一种便携式太阳能开路NH3分析仪(型号:HT8700)。该分析仪专门用于基于涡度协方差(eddy covariance-EC)方法的NH3通量观测,这是测量陆地生态系统和大气之间NH3交换的最直接和有效的方法。该团队不仅在实验室,也通过野外现场实验研究了分析仪测量NH3流量的适用性。原理与前景 基于电化学方法的通量系统需要具有高灵敏度和快速响应的NH3分析仪。该研究的主要作者王凯博士说:“运用通量观测新仪器使我们能够监控不同类型生态系统的NH3通量,包括排放和沉降。” HT8700 NH3分析仪基于最先进的量子级联激光吸收光谱技术。其开放路径设计克服了封闭路径仪器存在的一些问题。该仪器具有良好的响应时间、精度和稳定性,是基于电化学技术的NH3流量测量的理想工具。 来自宁波HealthyPhoton有限公司的合著者王博士说:“现场实验证明了开路设计对于NH3通量观测的重要性,但我们认为未来还有更多改进的机会。现阶段因为光学镜直接暴露在环境中,其数据可用性在很大程度上受到激光信号强度频繁降低的限制。我们正在开发一种镜子自动清洁设计,使该仪器更适合自动化测量、使用寿命更长,尤其是在多尘的野外条件下。”
  • 线阵CCD探测器 激光粒度仪降本增效的新希望
    p style=" text-indent: 2em " CCD兴起于20世纪70年代,是由一组规则排列的金属-氧化物-半导体( MOS)电容器阵列和输入、输出电路组成。它能够利用时钟脉冲电压来产生和控制半导体势阱的变化,完成对光的探测。不同于普通固态电子器件,CCD器件中信息的存在和表达方式为电荷,而不是电流或电压,因此对信息的表达具有更高的灵敏度。按照感光单元的排列方式来划分,CCD器件可以分为线阵CCD和面阵CCD。 /p p style=" text-indent: 2em " 传统激光粒度仪采用环形光电二极管阵列作为探测器,但一般探测器只有 32 环,较低的空间分辨率限制了其在颗粒测量中的应用。并且由于应用量少,导致其成本非常高。近些年来,以面阵 CCD 为探测器的激光粒度仪得到了一定的发展,但在室温条件下,面阵 CCD 容易受到暗电流的影响,动态范围一般只有 20~30dB,且面阵CCD 存在价格高,尺寸小,采集电路设计复杂等缺陷。相比于面阵 CCD 探测器,线阵 CCD 具有分辨率高,动态响应范围宽等特点,并且可以对像素点进行直接操作,具有更大的灵活性,因此能够满足不同环境条件下的颗粒粒度测量要求。目前,在不同工业领域,线阵 CCD 已经得到广泛应用,如高性能文件打印、光谱扫描、光学字符识别等。由于应用范围广,使得线阵 CCD 成本较低。所以采用线阵 CCD 探测器替代传统探测器可以有效降低激光粒度仪的制造成本。 /p p style=" text-indent: 2em " 目前,激光粒度仪的光学结构主要有前置式傅里叶透镜光学结构和后置式傅里叶透镜光学结构两种,目前,依然采用前置式傅里叶透镜光学结构的激光粒度仪制造商有丹东百特、辽宁仪表研究所、成都精新以及国外的 Shimadzu、Sympatec 等公司。并且由于干法测量要求的特殊性,一般干法激光粒度仪也采用前置式傅里叶透镜光学结构。因此,本文主要对前置式傅里叶透镜光学结构进行探讨。线阵 CCD 具有 7450 个像素点,单位像素点的尺寸为 4.7× 4.7μm,采用精度为8bit,采样数据率为 30MHz。基于线阵 CCD 的前置式傅里叶光学结构的激光粒度仪系统结构如下图所示。 /p p style=" text-indent: 0em " img src=" http://img1.17img.cn/17img/images/201807/insimg/ff47e6ea-83ad-496d-bcc6-49c8703f9433.jpg" title=" 基于线阵 CCD 的前置式激光粒度仪系统结构示意图.png" / /p p style=" text-indent: 0em text-align: center " span style=" text-indent: 2em " (基于线阵 CCD 的前置式激光粒度仪系统结构示意图) /span /p p style=" text-indent: 2em " 随着工业生产实践的不断进步,针对小粒径颗粒、不规则形状颗粒和特殊材料颗粒的研究越来越深入。基于线阵 CCD 探测器的激光粒度仪测量性能需要从颗粒的散射光学模型、仪器的光学结构和采集数据的反演算法三个方面来进一步提高。 /p p style=" text-indent: 2em " 不管是 Mie 氏光散射理论还是夫琅禾费衍射理论,其前提条件都是假设被测样品为球形颗粒。而在实际社会生产过程中,颗粒的形状往往是不规则的,采用传统光散射理论描述颗粒的散射光强分布是不合适宜的,容易造成反演粒度分布偏离真实粒度分布。因此,建立更普适性的颗粒散射光学模型是提高激光粒度测量准确性的关键。使用近似非负约束 Chin-Shifrin 算法是一种获得准确性更高的颗粒粒度分布的方法。 /p p style=" text-indent: 2em " 为了提高颗粒测量粒度范围,扩大线阵 CCD 的可测量散射角,建议采用渐变滤光片系统对中心艾里斑光强进行滤光处理,获取颗粒小角度散射光强信息,同时为了扩大有效测量散射角,设计组合线阵 CCD 探测器,对大角度散射光进行有效采集。另外,为了满足不同社会生产需求,例如在线颗粒测量、超细颗粒粒度测量等。引入更高效的数据反演算法也迫在眉睫。 /p
  • 激光精密测量技术及其在高端装备制造业中的应用
    “中国制造 2025”发展战略对高端装备制造业的质量提出了更高要求。超精密测量对提升高端装备制造质量具有基础支撑作用,并在制造全过程中的质量控制发挥决定性作用;只有解决整体测量能力问题,才能从根本上解决高端装备制造质量问题。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。目前,越来越多的激光精密测量系统已作为产品检测的重要环节融入高端装备制造生产线,并已成为大型装备制造业中质量保证的重要手段,包括激光干涉仪、激光跟踪仪等。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器,广泛应用于材料几何特性表征、精密传感器标定、精密运动测试与高端装备集成等场合;特别是基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。激光跟踪仪是一种大尺寸空间几何量精密测量仪器,具有测量功能多(三维坐标、尺寸、形状、位置、姿态、动态运动参数等)、测量精度高、测量速度快、量程大、可现场测量等特点,是大型高端装备制造的核心检测仪器。激光跟踪仪基于球坐标测量系进行测量,主要用于大尺寸坐标测量以及大型构件尺寸及形位误差测量,亦可对运动部件进行动态跟踪测量。为帮助用户更好地了解激光精密测量技术及其在高端制造中的应用,仪器信息网将于2022年10月20-21日举办首届“精密测量与先进制造”主题网络研讨会,特邀中国科学院微电子研究所主任周维虎、清华大学教授张书练、哈尔滨工业大学长聘教授胡鹏程、中国计量科学研究院副研究员崔建军分享主题报告。 点击图片直达报名页面中国科学院微电子研究所主任/研究员 周维虎《激光跟踪仪精密测量技术与应用》(点击报名)周维虎研究员长期从事精密光电测量技术与仪器研究,主持科技部重大仪器专项、国家重点研发计划、自然基金重大仪器专项、国防科工局重点预研、装备发展部军用测试仪器、中科院仪器装备项目等50余项精密测量与仪器类课题,获得中国机械工业科学技术发明特等奖、中国计量测试学会技术发明一等奖等7项省部级奖励,发表论文近200篇,申请专利近50项,编写教材1部,起草国家计量检定规程和规范4部,获得国务院特殊津贴、中科院朱李月华优秀教师奖、江苏省双创领军人才、青岛市创新领军人才等称号。成功研发国际上首台飞秒激光跟踪仪、国内首台三自由度激光跟踪仪和六自由度激光跟踪仪,打破了国外在激光跟踪测量领域的技术垄断。担任中国科学院大学岗位教授、博士生导师,北京航空航天大学、华中科技大学、大连理工大学、吉林大学、合肥工业大学等十余所高校兼职教授和博士生导师,南京航空航天大学特聘教授,湖北工业大学楚天学者教授。担任《计测技术》、《测控技术》、《中国测试》和《光电子》期刊编委,《Optical Engineering》、《中国航空学报(中、英文)》等十余份国内外期刊审稿人。报告摘要:激光跟踪仪用于超大尺寸空间几何量测量,具有测量速度快、精度高、范围大,可现场测量等特点。在航空航天、船舶、雷达、高铁、能源设备、汽车、大科学装置等大型装备制造领域具有广泛应用,本报告重点介绍激光跟踪仪研发技术及相关领域中应用。清华大学教授 张书练《激光回馈精密测量技术新进展》(点击报名)张书练,清华大学教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。曾任清华大学精密测试技术及仪器国家重点实验室主任,现任广东省计量院重点实验室学术委员会主任。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。哈尔滨工业大学长聘教授 胡鹏程《超精密激光干涉位移测量技术进展与挑战》(点击报名)胡鹏程,哈工大长聘教授、博导,精密仪器工程研究院副院长,2019年入选国家高层次青年人才计划。校内兼职:第二届校学术委员会,委员;超精密仪器技术及智能化工信部重点实验室,副主任;超精密光电仪器工程研究所,常务副所长。校外兼职:中国计量测试学会,第八届计量仪器专业委员会,副主任委员;IEEE Senior Member;中国电子学会、中国光学工程学会,高级会员;中国仪器仪表学会传感器分会,理事;教育部学位与研究生教育发展中心,中国高校创新创业教育研究中心,评审专家;《光学精密工程》编委,《哈尔滨工业大学学报》青年编委,《红外与激光工程》青年编委;国家重点研发计划引力波探测重点项目,咨询专家组,成员;ISPEMI 2018, Secretary General;IFMI&ISPEMI 2020,Cochair of organizing committee,IFMI&ISPEMI 2022,Cochair of organizing committee 学术研究:围绕超精密激光测量与光电仪器方向,从事基础研究、关键技术突破和仪器研制测试。承担国家科技重大专项课题、技术基础项目、国家重大工程项目、国家自然科学基金国际合作研究项目、国家自然科学基金重大研究计划课题、国家自然科学基金面上项目等,项目经费1.2亿余元;发表SCI检索论文60篇,出版编著1部,申请/授权国内外发明专利152项。 科研成果奖励:中国计量测试学会科学技术进步奖,一等奖(第1完成人,基础类,2021年);国家技术发明奖,二等奖(第5完成人,2013年)等。报告摘要:甚多轴高速超精密激光干涉测量技术与仪器是高端装备发展与前沿研究的重大核心基础技术,作为光刻机等高端装备中不可替代的核心单元,其直接决定了装备所能达到的极限运动精度与整体性能;作为溯源精度最高的长度计量测试仪器,其准确统一全国相关量值,支撑国际单位制量子化变革等前沿研究。随着高端装备发展与前沿研究的迅猛发展,其甚多轴、高速、超精密测量需求越加显著,使激光干涉测量技术发展不断面临新的挑战。为此,开展了甚多轴高速超精密激光干涉测量技术研究,突破了激光稳频、多轴干涉镜组、干涉信号处理等多项关键技术,研制成功系列超精密激光干涉测量仪器,测量速度优于5m/s,动态测量分辨力0.077nm,光学非线性误差优于0.02nm,并在微电子光刻机、国家基准装置、德国PTB超测量装备等成功应用,为我国高端装备发展与前沿研究奠定重大共性技术基础。中国计量科学研究院课题组长/副研究员 崔建军《差分珐珀激光干涉微位移计量及应用研究》(点击报名)崔建军副研究员长期从事精密几何量测量技术及计量标准研究,主持和参加科技部重大仪器专项、国家重点研发计划、国家及北京市自然科学基金项目、国家市场监管总局项目等30余项精密测量与几何量计量研究项目,获得浙江省科学技术进步二等奖、国家质检总局科技兴检二等奖、中国计量测试学会科学技术进步三等奖等多项省部级奖励,发表论文近40余篇,申请专利近30项,软件著作权20余项,正在负责及参加起草的国家计量检定规程规范10余项。主持建立新一代双频激光干涉仪计量标准装置、激光测微仪、光栅式测微仪校准装置、纳米薄膜厚度计量标准装置等多项国家量值最高的计量标准装置。提出了双频差分法布里珀罗激光干涉技术原理,研制了准确度达到数十皮米的微位移及干涉仪非线性计量装置。担任担任全国半导体器件、全国光学和光子学光纤传感、全国试验机等3个标准化技术委员会委员,担任中国机器人检测认证联盟技术委员会分工作专家组专家,国家计量标准的一级考评员和一级注册计量师,中国计量科学研究院研究生导师,南方科技大学、河南理工大学等多所高校兼职研究生导师,担任《计量学报》、《计量科学与技术》、《中国计量》、《中国激光》,《光学学报》、《sensor review》《measurement》、等十余份国内外期刊审稿人。报告摘要:微位移测量是高端装备核心零部件设计和先进制造急需的应用基础技术,也是几何量计量、微纳制造和光刻技术等发展所急需的关键技术。报告针对当前急需的纳米及亚纳米精度的激光干涉仪、亚纳米电容测微仪和纳米位移传感器等难以计量的现状,创造性提出采用固定频差双频激光建立差分珐珀干涉系统的光学理论,并研究基于该理论构建精度达到数十皮米甚至更高量级的位移测量技术实现方法,研制实现皮米级分辨力的高精度位移测量装置,推动国家精密测量、先进制造等领域的高质量发展,也为建立皮米级国家最高微位移计量标准装置提供技术方法。扫码报名抢位指导单位:中国计量测试学会主办单位:仪器信息网协办单位:上海大学会议日程报告时间报告主题报告人单位职务10月20日上午09:30-10:00工业视觉技术进展及装备应用邾继贵天津大学精密仪器及光电子工程学院院长10:00-10:30激光跟踪仪精密测量技术与应用周维虎中国科学院微电子研究所主任/研究员10:30-11:00激光回馈精密测量技术新进展张书练清华大学教授11:00-11:30待定胡鹏程哈尔滨工业大学长聘教授10月20日下午14:00-14:3020年来齿轮测量技术的发展石照耀北京工业大学长江学者特聘教授14:30-15:00基于波长移相技术的光学平行平板轮廓和厚度信息测量技术于瀛洁上海大学机电工程与自动化学院院长15:00-15:30视觉在线测量与检测技术卢荣胜合肥工业大学教授15:30-16:00面向智能制造的全过程、全样本、全场景测量李明上海大学教授10月21日上午09:00-09:30工业摄影测量技术研究及应用郑顺义武汉大学教授09:30-10:00装备空间运动误差被动跟踪测量方法与仪器娄志峰大连理工大学副教授10:00-10:30差分珐珀激光干涉微位移计量及应用研究崔建军中国计量科学研究院课题组长/副研究员10:30-11:00面向先进制造过程的在线计量技术研究赵子越中国航空工业集团公司北京长城计量测试技术研究所高级工程师
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制