当前位置: 仪器信息网 > 行业主题 > >

自动射线晶体定向仪

仪器信息网自动射线晶体定向仪专题为您提供2024年最新自动射线晶体定向仪价格报价、厂家品牌的相关信息, 包括自动射线晶体定向仪参数、型号等,不管是国产,还是进口品牌的自动射线晶体定向仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动射线晶体定向仪相关的耗材配件、试剂标物,还有自动射线晶体定向仪相关的最新资讯、资料,以及自动射线晶体定向仪相关的解决方案。

自动射线晶体定向仪相关的论坛

  • 【求助】对X射线晶体学比较熟悉的同学进来帮我看看

    两道题,感觉比较基本,可是我找不到相关的书来看,只好请教各位了1.若是正交晶系,晶体数据采用MoKα(λ=0.7107埃)射线收集,收集范围为2θmax=51.4度,则按全球进行收集理论上能收集倒多少个非重复衍射点?2.用MoKα(λ=0.7107埃)收集单晶数据时,要求收集衍射点倒2θMo=50.5度,若改用CuKα(λ=1.5418埃),则必须收集衍射点2θCu到多少度才能得到同样分辨率的数据?

  • 小动物脊髓夹立体定向仪

    [url=http://www.f-lab.cn/stereotaxis/sts-7-ht.html][b]小动物脊髓夹立体定向仪[/b]STS-7-HT[/url]用于夹紧基因敲除小鼠或新生大鼠的脊髓,并具有[b]立体定向仪器[/b]的功能。[b]小动物脊髓夹立体定向仪[/b]STS-7-HT[b]特色[/b]其脊髓夹紧装置可以让用户使用指尖感觉到夹紧触感,从而防止对脊髓造成损伤[b],[/b]结合了主要用于显微操作器的精细调节技术,可以对一个目标点准确定位[b],[/b]配置小动物头部夹紧单元(口夹和鼻甲),将小鼠或大鼠的小脑袋固定在正确的位置,提供了有精细调节功能的辅助耳固定杆,辅助耳固定杆的点可用于各种尺寸,并且根据用途替换,替代容易(例如,用来避免鼓膜的破裂或牢固地固定耳朵),自从Narishige的立体定位操作器根据此标准制造后,STS-7-HT配备了一根AP框架杆(18.7mm方形),用来安装如SM-15Narishige立体定位显微操作器这样的配件,需要带显微操作器的版本请访问 STS-7 *用于有发育完全的耳道的小鼠或新生大鼠,[b][b]小动物脊髓夹立体定向仪[/b]STS-7规格[/b][table=505][tr][td][b]配件[/b][/td][td]专用辅助耳固定杆连接环螺丝六角扳手[/td][/tr][tr][td][b]尺寸大小[/b][/td][td](基板):宽400 x 深300 x 高110mm, 9.6kg[/td][/tr][/table]更多定位仪请浏览官网:[url]http://www.f-lab.cn/stereotaxis.html[/url]

  • 【分享】晶体结构的X-射线粉末衍射法测定(摘要)

    晶体结构的X-射线粉末衍射法测定(摘要)梁敬魁中国科学院物理研究所,北京,100080 随着计算机技术的发展和应用,以及X-射线源和中子源强度、衍射仪分辨率的提高,利用多晶衍射数据进行复杂晶体的结构分析成为可能。目前这方面的工作已有很多报导,其中主要有最大熵法 、能量最小法 、Monte Carlo法 以及利用单晶结构分析方法,从粉末衍射数据测定晶体结构,测定了在不对称晶胞中含60个原子,178个原子参数的 的复杂晶体结构 。本文仅综述这一种测定方法。一、粉末衍射图谱的指标化、晶系、空间群和点陈常数的测定 衍射图谱的指标化方法很多,目前比较常用的有效方法是计算机程序法。例如TREOR尝试法计算机程序 ,Iio晶带分析计算程序 、DICVOL二分法计算机程序等 。在指标化的基础上确定空间群和计算点阵常数。二、重叠峰的分离 根据粉末衍射图谱、利用单晶体结构分析方法测定晶体结构。独立的强衍射峰的数目需为不对称晶胞内原子数目的10-15倍,或待测参数3-5倍,由于粉末衍射图衍射线的重叠,往往达不到这一要求。重叠峰的分离是粉末法测定晶体结构的关键问题。1. 利用衍射峰形函数分离重叠峰 衍射峰形函数可用Rielevld法的峰形函数 和Fourier合成法 峰形函数表征。在晶体结构未知的情况下,应用一步迭代法 、二步迭代法 以及直接法统计关系 等方法进行全谱的拟合,使拟合结果与实验结果符合。2. 导数图解分峰法 在光谱学中应用导数技术,可以比较好地从平滑的数据中确定重叠峰的数目和位置。对于平滑的重叠峰,二阶导数的最小值和四阶导数的最大值是很明锐的,可以很容易判断其位置,其衍射峰强度可通过二阶导数或四阶导数两旁的卫星小峰的高度和距离来计算。三、结构振幅|F|输入单晶结构分析程序 从各分离衍射峰的相对强度可推算出相庆的结构振幅|F|,根据晶体结构的特点,将|F|输入相应的单晶结构分析程序,例如在晶体结构含有重原子,通常可用三维Paiierson函数法,一般情况可用直接法。 根据结构分析结果所得的电子密度图r(r)或|E|图,可以确定原子的位置,但由|F|有误差,且粉末衍射数据少,在r(r)或|E|图可能会出现不少杂峰,只有峰值较大的才比较可靠,可能对尖结构中的某些原子,对于那些较小的峰,并不一定该位置存在有原子,比较可靠的作法是在第一步只确定一些重原子的位置,而后在用Fourier变换或差值Fourier变换来确定其它原子。四、差值Fourier变换和Rieiveld法修正 在得出初步相角值的情况下,原则上可用Fourier合成法求解全部原子的位置,但由于粉末衍射数据的完备性和准确度不够,经多次循环后获得稳定的电子密度图,可能仍未能达到满意的结果,在这种情况下一般应采用差值Fourier合成法,使计算和观察的结构振幅Fourier合成的级数断尾效应趋于相互抵消,差值Fourier合成可发现失落的原原子,修正原子位置的偏离以及热运动参数。如果差值Fourier合成仍不能获得满意的结果,可将已确定的原子位置输入Rielveld程序,修正后可以得到一套新的|F|值,再进行差值Fourier变换,确定其它原子,可一直重复上述过程,直到满意为止。最生将所得的全部原子参数的初始值输入Rieiveld法程序进行合谱拟合精修。五、示例 LeBai 完全用实验常用X-射线衍射仪,收集粉末衍射数据,用Fourier合成法峰形函灵敏分离重叠峰,成功地测定了空间群为Pnc2、单胞体积为 、在不对称晶胞中含有29个独立原子、74个原子位置参数,比较复杂的 的晶体结构。

  • 【资料】x射线衍射中单晶衍射与多晶衍射的区别!

    [size=4][font=楷体_GB2312]X射线衍射法因晶体的是单晶还是多晶分为x射线单晶衍射法和X射线多晶衍射法。  [b]单晶X射线衍射分析的基本方法[/b]为劳埃法、周转晶体法和四圆单晶衍射仪法。书上还会有别的方法,因不太常用在此不再啰述。现在最常用的是四圆单晶衍射仪测单晶。  [b]劳埃法[/b]改变波长、以光源发出连续X射线照射置于样品台上静止的单晶体样品,用平板底片记录产生的衍射线。根据底片位置的不同,劳埃法可以分为透射劳埃法和背射劳埃法。背射劳埃法不受样品厚度和吸收的限制,是常用的方法。劳埃法的衍射花样由若干劳埃斑组成,每一个劳埃斑相应于晶面的1~n级反射,各劳埃斑的分布构成一条晶带曲线。  [b]周转晶体法[/b]:周转晶体法以单色X射线照射转动的单晶样品,用以样品转动轴为轴线的圆柱形底片记录产生的衍射线,在底片上形成分立的衍射斑。这样的衍射花样容易准确测定晶体的衍射方向和衍射强度,适用于未知晶体的结构分析。周转晶体法很容易分析对称性较低的晶体(如正交、单斜、三斜等晶系晶体)。  [b]四圆单晶衍射仪法[/b]是转动晶体。以四个圆的转动变量φ、χ、ω和2θ进行晶体和计数器的转动,以实现倒格点与埃瓦尔德(Ewald)衍射球球面相遇产生衍射的必要条件。φ圆对应于安置晶体的测角头的自转转动,χ圆对应于测角头在其所坐落的仪器金属χ环内侧圆上的转动,ω圆对应于金属χ环绕中垂线(Z轴)进行的转动,2θ圆则对应于为保持衍射方向相对于入射X射线为2θ的角度所需进行计数器的转动。是常用的测量单晶衍射的方法[/font][/size]

  • 【求助】药学人求助--高压均质制备纳米晶体中,X射线衍射谱图原料药和制备样品相关分析求助

    【求助】药学人求助--高压均质制备纳米晶体中,X射线衍射谱图原料药和制备样品相关分析求助

    各位朋友好! 目前制备纳米晶体,在X粉末衍射结果分析方面出了点小问题,肯定大家帮忙分析。本人药学专业,对于X射线衍射很少涉及,故求助大家,先谢谢各位看帖人了! 说明:1) 药物为半水合物。2) 制作了5个样品的X射线衍射图谱。 分别为: 1原料药固体粉末 2辅料固体粉末(两组分A、B) 3原料药高压均质冻干粉末 4处方高压均质冻干粉末 5处方物理混合固体粉末(含药处方组成和比例) 其中,2、3、4、5加有冻干保护剂甘露醇,甘露醇是在高压均质制备样品结束后才添加的, 未参与高压均质过程。 结果如图:详见附件PDFhttp://ng1.17img.cn/bbsfiles/images/2010/12/201012121649_266523_1716832_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/12/201012121649_266524_1716832_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/12/201012121649_266525_1716832_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/12/201012121649_266526_1716832_3.jpghttp://ng1.17img.cn/bbsfiles/images/2010/12/201012121650_266527_1716832_3.jpg原料药经文献比对,和文献一致, 原料药高压均质和处方高压均质结果一致,却和原料药不一致, 辅料和

  • 【求助】一个关于单晶X射线衍射的问题

    在单晶X射线衍射图像中,有的时候会出现在主衍射点的旁边紧挨着一个强度较小的衍射点,这是不是由于晶体本身样品的缺陷造成的?比如说孪晶的存在??这种情况会对最后的结构精修有什么影响呢?望有经验的前辈指教!谢谢!!

  • 【史料】X射线的发现推动了化学进展(唐有祺)

    X射线的发现推动了化学进展--纪念伦琴发现X射线100周年唐有祺(北京大学物理化学研究所) "如果至今没有发现X射线晶体学,就无法想象今日的化学是什么样的。"这是瑞士化学、晶体学教授邓尼兹 (J. D. Dunitz) 在"X射线分析和有机分子的结构"一书中写的一句话,表明了X射线在化学进展中所起的作用,以下通过回忆X射线晶体学的诞生,X射线晶体结构分析和化学的关系,来纪念伦琴发现X射线100周年。一、X射线晶体学的诞生 1895年11月8日德国维尔茨堡大学物理研究所所长伦琴发现了X射线,自X射线发现后,物理学家对X射线进行了一系列重要的实验,探明了它的许多性能,根据狭缝的衍射实验,索末菲 (Sommerfeld) 教授指出,X射线如是一种电磁波的话,它的波长应当在1埃上下。 在发现X射线的同时,经典结晶学有了很大的进展,230个空间群的推引工作使晶体构造的几何理论全部完成,当时虽没有办法测定晶胞的形状和大小以及原子在晶胞中的分布,但对晶体结构已可臆测。根据当时已知的原子量、分子量、阿尔伽德罗常数和晶体的密度,可以估计晶体中一个原子或一个分子所占的容积,晶体中原子间距离约1-2埃。1912年,劳埃 (Laue) 是索末末菲手下的一个讲师,他对光的干涉现象很感兴趣,刚巧厄瓦耳 (P. Ewald) 正随索末菲进行结晶光学方面的论文,科学的交流使劳厄产生了一种极为重要的科学思想:晶体右以用作X射线的立体衍射光栅,而X射线又可用作量度晶体中原子位置的工具,刚从伦琴那里取得博士学位的夫里德里克 (W. Friedrich) 和尼平 (P. Knipping) 亦在索末末菲教授处工作,他们自告奋勇地进行劳厄推测的衍射实验,他们使用了伦琴提供的X射线管和范克罗斯 (Von. Groth) 提供的晶体,最先对五水合硫酸铜晶体进行了实验,费了很多周折得到了衍射点,初步证实了劳厄的预见。后来他们对辉锌矿、铜、氯化钠、黄铁矿、沸石和氯化亚铜等立方晶体进行实验,都得了正面的结果,为了解释这些衍射结果,劳厄提出了著名的劳厄方程,劳厄的发现导致了X射线晶体学和X射线光谱学这二门新学科的诞生。 劳厄设计的实验虽取得了正面的结果,但X射线晶体学和X射线光谱学成为新学科是一些得力科学家共同努力的结果。布拉格父子 (W. H. Bragg, W. L. Bragg)、莫塞莱 (Moseley)、达尔文 (Darwin) 完成了主要的工作。通过他们的工作认识到X射线具有波粒二重性;X射线中除了连续光谱外,还有波长取决于阴极材料的特征光谱,发现了X射线特征光谱频率和元素在周期表中序数之间的规律;提出了镶嵌和完整晶体的强度公式,热运动使衍射线变弱的效应,发展了X射线衍射理论。W. L. 布拉格在衍射实验中发现,晶体中显得有一系列原子面在反射X射线,他从劳厄方程引出了布拉格方程,并从KCl和NaCl的劳厄衍射图引出了晶体中的原子排列方式。W. L. 布拉格在劳厄发现的基础上开创了X射线晶体结构分析工作。 伦琴在1901年由于发现X射线成为世界上第一个诺贝尔物理奖获得者,而劳厄由于发现X射的晶体衍射效应也在1914年获得了诺贝尔物理奖。二、X射线晶体结构分析和化学 W. L. 布拉格开创的X射线晶体结构分析工作把X射线衍射效应和化学联系在一起。当NaCl等晶体结构被测定后,使化学家恍然大悟,NaCl的晶体结构中没有用NaCl表示的分子集团,而是等量的 离子和 离子棋盘交叉地成为三维结构。当时X射线结构分析中的位相问题是通过强度数据和强度公式用试差法来解决的,只能测定含二、三十个参数的结构,这些结构虽简单,但使无机物的结构化学有了真正的开始。从1934年起,帕特孙 (Patterson) 法和其他应用付里叶级数的方法相继提出,位相问题可通过帕特孙函数找出重原子的位置来解决,使X射线晶体结构分析摆脱了试差法。 1954年 X射线晶体结构分析的逐渐广泛使用,提供了许多分子内部的结构信息。鲍林氢量子力学和近代化学理论结合起来,建立和发展了现代结构化学。他提出的电负性计算方法和概念、原子杂化轨道理论和价键学说以及关于离子化合物结构的规则 是阐明各种复杂物质构造及性质的有力武器。他根据晶体结构测定得到的数据提出的a-螺旋体二级结构模型,为研究生物大分子的奥秘打开了通道。 1964年诺贝尔化学奖获得者霍奇金 (D. M. C. Hodgkin) 是世界上获得这项荣誉为数极少几个女科学家之一,是擅长X射线晶体结构分析的女化学家。她用X射线晶体结构分析测定了配尼西林的晶体结构,在1949年又成功地测定出维生素 的更为复杂的空间构型和构象,从而为合成维生素 和其它复杂的化合物开辟了道路。她还测定了胰岛素生物大分子的晶体结构。维生素 的晶体结构的测定使帕特孙函数重原子法到了里程碑的水平。 1962年诺贝尔化学奖获授予佩鲁茨 (M. F. Perutz) 和肯德鲁 (Sr. J. C. Kendrew) 二位生物、结晶学家。他们发展了X射线晶体结构分析技术,通过浸泡把重原子引入到蛋白质中,然后用同晶置换法解决位相问题,测定了鲸肌红蛋白和马血红蛋白的空间精细结构。从发现蛋白质有肽链结构到完全搞清楚蛋白质分子的精细的空间结构,前后差不多经过了半个世纪。在生物学对蛋白和核酸这两类大分子的三维结构研究无法前进的时候,X射线晶体结构分析为生物化学研究带来了突破。当今X射线晶体结构分析已成为生物大分子研究中的有力工具。 1985年诺贝尔化学奖授予晶体学家豪甫特曼 (H. Hauptman) 和卡尔 (J. Kale)。他们一直从事直接法的研究,用数学处理手段,从实验测得的结构振幅中找出包含的位相信息。直接法获得成功使X射线晶体结构分析中的位相问题基本上得到了解决。直接法可测定各种类型化合物的晶体结构,特别适作于重原子法无法测定的有机化合物的晶体结构。位相问题的解决使X射线结构分析和化学的关系更密切了。 至今X射线晶体结构分析有了很大的发展,这是和科学技术的进步紧密相关的。计算机技术,自动化技术等进展都把X射线结构分析技术提高到新的水平。现在衍射强度收集已完全自动化,计算机控制的四圆衍射仪已进入实验室,为化学家掌握和使用。X射线晶体结构分析已成为鉴定化合物的结构最可靠的方法。据1988年的统计,约有65000种化合物,30000种无机化合物和400种生物大分子的晶体结构已被测定。现每年约有5000种新化合物的晶体结构在各类杂志中报道。X射线晶体结构分析是研究原子在三维空间中结合的有力手段,它的发展必将进一步推动化学进展。

  • 单晶X射线衍射技术的原理与应用

    结构决定性质,确定晶体结构是探究材料物化性质的基础,单晶X射线技术是目前最准确和快速解析晶体结构的方法,根据衍射点出现的位置可以确定晶体的晶胞参数和对称性,根据衍射点的强度可以得到晶体的原子位置。本视

  • 【转帖】X射线衍射原理

    特征X射线及其衍射 X射线是一种波长很短(约为20~0.06┱)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如铜靶材对应的X射线的波长大约为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程: 2d sinθ=nλ式中λ为X射线的波长,n为任何正整数。   当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时(图1),在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型 根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法(图2a)的理论基础。而在测定单晶取向的劳厄法中(图2b)所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。  X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相 而铁中的α─→γ转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面:   物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。   精密测定点阵参数 常用于相图的固态溶解度曲线的测定。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可得到单位晶胞原子数,从而确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。   取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。   晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。   宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。   对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。   合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。   结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。   液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。   特殊状态下的分析 在高温、低温和瞬时的动态分析。   此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。   X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。 爱心捐助

  • 【分享】X射线衍射分析的实验方法及其应用

    【分享】X射线衍射分析的实验方法及其应用

    自1896年X射线被发现以来,可利用X射线分辨的物质系统越来越复杂。从简单物质系统到复杂的生物大分子,X射线已经为我们提供了很多关于物质静态结构的信息。此外,在 各种测量方法中,X射线衍射方法具有不损伤样品、无污染、快捷、测量精度高、能得到有关晶体完整性的大量信息等优点。由于晶体存在的普遍性和晶体的特殊性能及其在计算机、航空航天、能源、生物工程等工业领域的广泛应用,人们对晶体的研究日益深入,使得X射线衍射分析成为研究晶体最方便、最重要的手段。本文主要介绍X射线衍射的原理和应用。[B]1、 X射线衍射原理[/B]  1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理 。衍射线空间方位与晶体结构的关系可用布拉格方程表示:[img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191408_119327_1703280_3.jpg[/img]

  • 【分享】X射线衍射仪

    [url=http://baike.baidu.com/image/8b527d278fe8dd10918f9de9][img]http://imgsrc.baidu.com/baike/abpic/item/8b527d278fe8dd10918f9de9.jpg[/img][/url]X射线衍射仪是利用[url=/view/59839.htm]衍射[/url]原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.  X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业。  基本构造 X射线衍射仪的形式多种多样, 用途各异, 但其基本构成很相似, 图4为X射线衍射仪的基本构造原理图, 主要部件包括4部分。  (1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。  (2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。  (3) 射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。  (4) 衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制