当前位置: 仪器信息网 > 行业主题 > >

自动化原子力显微镜

仪器信息网自动化原子力显微镜专题为您提供2024年最新自动化原子力显微镜价格报价、厂家品牌的相关信息, 包括自动化原子力显微镜参数、型号等,不管是国产,还是进口品牌的自动化原子力显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合自动化原子力显微镜相关的耗材配件、试剂标物,还有自动化原子力显微镜相关的最新资讯、资料,以及自动化原子力显微镜相关的解决方案。

自动化原子力显微镜相关的资讯

  • Park FX40:一款高智能全新型自动化原子力显微镜重磅来袭
    (2021年6月25日)Park帕克原子力显微镜公司(以下简称为“Park”)作为一家飞速成长的原子力显微镜公司,一直潜心于研发新科技并取得了丰硕的成果。近日Park隆重推出了一款重量级的全新型显微镜——Park FX40!该显微镜集全自动技术、安全性能、智能学习等人工智能软件一体化。这也是世界首台能够自动化所有前期设置和扫描过程的智能型原子力显微镜(AFM)。毋庸置疑,Park FX40将为研究界翻开崭新的一页!新型全自动原子力显微镜Park FX 40助力您的科学研究“与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。”新的 Park FX40 原子力显微镜不仅是几十个新功能的组合和原件的再升级,它还在原有的设计基础上,进行了全面而彻底的改革,使得AFM 具备高级的自动化能力。福音来了!即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。“作为研发的新品,Park FX40的强大功能来源于其他AFM迄今为止从未使用过的全新技术。”Yoo补充道。除此之外,Park FX40还彻底升级了AFM的许多关键方面,其中包括采用尖端的机电技术极大降噪,减少束斑大小,调整光学视野,以及多功能嵌入样品台等。“我们很高兴能成为北美第一个体验Park FX40原子力显微镜的研究所。”哥伦比亚大学机械工程系的James Home教授发言道,“这款FX40增加了许多新功能并且升级了很多特性。作为Park的长期用户,我们对此感到非常兴奋和激动。这款FX40在人工智能和自动化技术上都实现了崭新的突破。我相信它可以极大地提高我们实验室的研究水平,并且推动整个纳米计量领域的创新。”Park FX 尖端的智能系统可以让您在初始操作时同时放置多个样品(相同或不同类型),它将根据您的需求进行自动成像。除此之外,该显微镜还能轻松及时地获取可发布的数据,并缩短研究周期来获得科学和工程上的最终成功。这些都有助您实现更快更准的研究。 Park FX40 独特的环境传感、自我诊断系统和避免头部碰撞的智能系统确保自身能够以最佳性能持续运行。在与全球原子力显微镜应用科学家们的密切合作下,Park产品市场部过去一整年都在不懈努力,潜心研发Park FX。"我们的科学家认识到AFM可以帮助研究人员获得前所未有的科学数据,并对纳米科学创新产生不可估量的影响。” Park公司的创立者,全球CEO朴尚一博士(Dr. Sang-il Park)评论道,“一直以来,我们都秉承着一颗赤诚之心来研发超级智能自动化的 Park FX 。因为我们的终极目标是为研究人员的工作保驾护航,帮助他们发现并打开科学更深处奥秘的大门!”在半导体市场,Park一直以其领先的自动化AFM 系统而闻名。它率先将AFM 技术作为纳米级计量的主要工具,使其成为行业的主流。而现在,Park最新推出的Park FX也将引领AFM创新领域开启新的自然篇章。关于帕克原子力显微镜帕克原子力显微镜是全球第一个推出商业原子力显微镜产品的上市公司。帕克公司成立30多年来,始终致力于纳米领域的形貌和力学测量以及半导体先进制程工艺的计量的新技术新产品的开发。帕克独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。帕克公司成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park公司的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。 为了给客户提供高效便捷的售后服务,帕克公司在中国区建立有售后服务中心并配有备件仓库。
  • 新品|布鲁克推出自动化生物型原子力显微镜JPK NanoWizard V
    仪器信息网讯 2021年12月20日, 布鲁克发布生物型原子力显微镜JPK NanoWizard® V BioAFM ,这是一种新型系统,标志着生命科学原子力显微镜研究的自动化和易用性的里程碑。NanoWizard V是一种非常快速的自动化 生物型AFM,可以选择与先进的光学显微镜完全集成。它能够对从亚分子到细胞和组织的大小范围内的样品进行快速、定量的机械测量和动力学分析。系统参数的自动设置、对齐和重新调整为力学生物学动态实验的长期、自我调节实验开辟了新的可能性。NanoWizard V 生物科学原子力显微镜澳大利亚悉尼大学生物医学工程高级讲师,纳米健康网络传感器和诊断集群联合主席David Martinez Martin博士表示:“该系统承诺的速度和分辨率、易用性以及高达毫米范围的能力使其成为纳米医学和生物医学应用中 AFM 研究的改变者,”(Martinez Martin博士的研究重点是发现健康和疾病的新生物标志物,以及细胞生理学)“我们相信NanoWizard V 是最先进的生物型AFM,它在一个系统中结合了三项重大创新:快速、定量的力学生物学测量、快速扫描 AFM 以及需要最少用户输入的自动化,” 布鲁克公司生物型AFM总监Heiko Haschke博士补充道,“在过去十年中,我们在使用 PeakForce Tapping® 和定量成像 (QI) 模式的定量纳米力学方面积累了丰富的经验。通过在我们新的PeakForce-QI TM模式中结合两者的最佳方面,我们使新手和专家都能够进行高分辨率、定量的力学生物学BioAFM 实验。我们希望这个新系统能够为更全面地了解动态细胞过程和相关分子机制做出重大贡献。”关于 JPK NanoWizard V BioAFMJPK NanoWizard V是布鲁克业界领先的最新一代生物型AFM。它已针对高时空分辨率进行了优化,具有大扫描区域、灵活的实验设计以及与先进光学显微镜系统的出色集成。其 PeakForce-QI 模式可实现快速灵活的定量纳米力学测量,显着扩展 AFM 在速度和分辨率方面的能力。NanoWizard V采用新颖的扫描仪和传感器技术以及先进的控制软件,包括直观的、基于工作流程的图形用户界面 (GUI),以确保真正、易于使用的 AFM 操作。该系统包括 JPK 标志性的高速、高性能 Vortis 2 控制电子设备、先进的数字控制以及增强其多参数成像能力和数据处理程序。借助motorized mapping、 DirectOverlay、DirectTiling 和 ExperimentPlanner 功能,定位和测量可以被设置为自动运行和重新排列,确保快速的样品观察和最高的力灵敏度。结合新的自动化硬件功能和丰富的液体池和温度控制选件,JPK NanoWizard V使各种级别的用户都能够完全专注于他们的实验。因此,它是多用户环境或成像设备的理想工具。关于 JPK BioAFMJPK于2018年7月加入布鲁克公司,为布鲁克公司的全球业务和已有的仪器开发和支持带来了活细胞成像、细胞力学、粘附力、分子力测量、光阱和生物刺激-反应表征方面的深入专业知识。JPK BioAFM充分利用两段历史的优势,为生物分子和细胞成像以及单分子、细胞和组织的力测量提供显微仪器。 关于布鲁克公司布鲁克公司使科学家能够获得突破性的发现,并开发新的应用,以改善人类的生活质量。布鲁克公司的高性能科学仪器以及高价值的分析和诊断解决方案使科学家能够在分子、细胞和微观层面探索生命和材料。通过与客户的密切合作,布鲁克公司在生命科学分子研究、制药应用、显微和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究和临床微生物学等领域实现了创新,提高了生产力,并使客户获得成功。
  • 全流程高智能!Park原子力显微镜发布全新系列原子力显微镜Park FX40
    仪器信息网讯 2021年6月25日,Park帕克原子力显微镜公司(以下简称为“Park”)宣布推出一款重量级的全新系列原子力显微镜——Park FX40!该原子力显微镜集全自动技术、安全性能、智能学习等人工智能软件一体化,并描述之为“世界首台能够自动化所有前期设置和扫描过程的智能型原子力显微镜(AFM)”,Park FX40或将为研究界带来全新体验。全新型原子力显微镜Park FX40“与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。”Park FX40中文版预告视频于近日全球首播:新的 Park FX40 原子力显微镜不仅是几十个新功能的组合和原件的再升级,它还在原有的设计基础上,进行了全面而彻底的改革,使得AFM 具备高级的自动化能力。福音来了!即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。除此之外,Park FX40还彻底升级了AFM的许多关键方面,其中包括采用尖端的机电技术极大降噪,减少束斑大小,调整光学视野,以及多功能嵌入样品台等。“作为研发的新品,Park FX40的强大功能来源于其他AFM迄今为止从未使用过的全新技术。”Yoo补充道。“我们很高兴能成为北美第一个体验Park FX40原子力显微镜的研究所。”哥伦比亚大学机械工程系的James Home教授发言道,“这款FX40增加了许多新功能并且升级了很多特性。作为Park的长期用户,我们对此感到非常兴奋和激动。这款FX40在人工智能和自动化技术上都实现了崭新的突破。我相信它可以极大地提高我们实验室的研究水平,并且推动整个纳米计量领域的创新。”Park FX 尖端的智能系统可以让用户在初始操作时同时放置多个样品(相同或不同类型),并将根据用户的需求进行自动成像。除此之外,该显微镜还能轻松及时地获取可发布的数据,并缩短研究周期来获得科学和工程上的最终成功。这些都有助用户实现更快更准的研究。 同时,Park FX40 独特的环境传感、自我诊断系统和避免头部碰撞的智能系统确保自身能够以更佳性能持续运行。据悉,在与全球原子力显微镜应用科学家们的密切合作下,Park产品市场部过去一整年都在不懈努力,潜心研发Park FX。“我们的科学家认识到AFM可以帮助研究人员获得前所未有的科学数据,并对纳米科学创新产生不可估量的影响。” Park公司的创立者,全球CEO朴尚一博士(Dr. Sang-il Park)评论道,“一直以来,我们都秉承着一颗赤诚之心来研发超级智能自动化的 Park FX 。因为我们的终极目标是为研究人员的工作保驾护航,帮助他们发现并打开科学更深处奥秘的大门!”在半导体市场,Park一直以其先进的自动化AFM 系统而闻名。它率先将AFM 技术作为纳米级计量的主要工具,使其成为行业的主流。而Park最新推出的Park FX也将为AFM创新领域开启新的篇章。关于Park帕克原子力显微镜公司Park公司成立于1988年,是全球第一个推出商业原子力显微镜产品的上市公司。Park公司成立30多年以来,始终致力于纳米领域的形貌、力学测量和半导体先进制程工艺的计量的新技术新产品的开发。Park独创的技术包括将XY和Z扫描器分离,实现了探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,能够快速成像的同时还可以大大提高测试效率,降低实验测试成本等。Park公司成立至今,致力于开发新产品和新技术,旨在为客户解决各类技术难题,以提供最完善的解决方案。其原子力显微镜以高端的产品质量和快捷优质的售后服务受到广大客户的认可。为给中国客户提供更加高效便捷的售后服务, Park公司在中国区建立了售后服务中心并配有备件仓库。
  • 非凡体验,触手可得——日立全自动型原子力显微镜AFM5500M
    日立高新技术集团在原有AFM系列原子力显微镜产品线的基础上, 于2016年3月8日在全球重磅推出了AFM5500M新一代全自动型原子力显微镜。这是日立高新收购精工纳米科技以来,又一款通过技术整合来提供更全面解决方案的代表性产品。  日立AFM5500M全自动型原子力显微镜的特点有: 一、该产品和之前型号相比,新增了自动悬臂更换和自动激光调节功能。由于涉及到参数的优化,传统原子力显微镜需要高度熟练的操作者,而日立AFM5500M仅需一次点击就可以进行悬臂的更换,极大地提升了操作简便性。 二、扫描器、传感器及图像化部采用了全新技术,测定精度和自动化程度更高。 三、通过马达台坐标共享,与日立高新的经典产品扫描电镜联用,观察样品的同样位置,为科研提供更全面的解决方案。日立AFM5500M不仅适用于纳米尺度的基础研究,而且还满足工业仪表领域的需求。  关于日立全自动型原子力显微镜AFM5500M的详细特点,请见点击:http://www.instrument.com.cn/netshow/SH102446/C248662.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 290万!广东工业大学高精度自动原子力显微镜等设备采购
    项目编号:1371-2241GDGH1153项目名称:高精度自动原子力显微镜等设备采购采购方式:公开招标预算金额:2,900,000.00元采购需求:合同包1(高精度自动原子力显微镜):合同包预算金额:1,650,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表高精度自动原子力显微镜1(套)详见采购文件1,650,000.00-本合同包不接受联合体投标合同履行期限:合同签订后120天内交付使用。合同包2(四通道耗散型石英晶体微天平分析仪):合同包预算金额:1,250,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他专用仪器仪表四通道耗散型石英晶体微天平分析仪1(套)详见采购文件1,250,000.00-本合同包不接受联合体投标合同履行期限:合同签订后120天内交付使用。
  • 沈阳自动化所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。  在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。  为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合,实现了三种成像模式——微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。  实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了新的技术手段。  研究工作得到国家自然科学基金国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的支持。AFM和扫描微透镜关联成像示意图半导体芯片成像结果
  • 帕克原子力显微镜与您相约Semicon China 2019
    帕克原子力显微镜与您相约Semicon China 2019Semicon China作为中国首要的半导体行业盛事之一,将于2019年3月20日到3月22日在上海新国际博览中心隆重举行,帕克原子力显微镜公司将会亮相此次半导体的行业盛典。 日期:2019年3月20日-22日地点:上海新国际博览中心(SNIEC)展位号:E7馆 7330帕克原子力显微镜与您相约Semicon China 2019Semicon China作为中国首要的半导体行业盛事之一,将于2019年3月20日到3月22日在上海新国际博览中心隆重举行,帕克原子力显微镜公司将会亮相此次半导体的行业盛典。 日期:2019年3月20日-22日地点:上海新国际博览中心(SNIEC)展位号:E7馆 7330帕克的NX-Wafer不仅是可以用于高级5G器件设计的最佳原子力轮廓仪,还可满足VCSEL的一些应用,可提供从2寸到4,6,8,12寸的全自动化测量!帕克公司的应用专家们会在7330展位现场进行技术答疑。 恭候您的光临!帕克原子力显微镜公司帕克的NX-Wafer不仅是可以用于高级5G器件设计的最佳原子力轮廓仪,还可满足VCSEL的一些应用,可提供从2寸到4,6,8,12寸的全自动化测量!帕克公司的应用专家们会在7330展位现场进行技术答疑。 恭候您的光临!帕克原子力显微镜公司
  • 原子力显微镜制造商Park Systems(帕克原子力显微镜) 在科斯达克到达1兆(万亿)韩元的关口
    世界领先的原子力显微镜制造商Park Systems(中文名称:帕克原子力显微镜)于2021年4月20日宣布,公司股票估值超过1万亿韩元(近10亿美元)。 Park Systems(中文名称:帕克原子力显微镜)于2015年12月17日在KOSDAQ首次公开发行了100万股股票,KOSDAQ相当于韩国的纳斯达克(NASDAQ)。自首次公开募股以来, Park Systems(中文名称:帕克原子力显微镜)已发展成为全球原子力显微镜领域的领导者,在原子力显微镜半导体先进自动化遥遥领先,并将原子力显微镜(AFM)技术作为纳米尺度测量的首要工具带入主流。Park Systems(中文名称:帕克原子力显微镜)创始人兼CEO Sang-il Park博士在接受采访时候表示,“Park持续收到来自世界顶尖半导体和数据储存供应商的采购订单“。Sang-il Park博士曾作为斯坦福大学课题组的小组成员参与开发了世界首台原子力显微镜,并于1988年研发了首个商业型原子力显微镜。“即使是受疫情影响的近两年Park依旧以超过20%的复合增长率快速成长,订单持续走高。” KOSDAQ的估值接近10亿美元,吸引了外国投资者的注意,他们积极购买股票,使公司的持股比例从1月的11%增加到3月的18%。不仅如此, Park Systems(中文名称:帕克原子力显微镜)还在最新公布的2020福布斯亚洲10亿美元以下200强企业上榜,更是获得科斯达克(KASDAQ)大奖,并在富时(FTSE)小型股指数上榜。 2020年, Park Systems(中文名称:帕克原子力显微镜)与IMEC签署了第二期JDP协议合 作开发用于半导体制造的纳米计量解决方案。不仅如此, Park Systems(中文名称:帕克原子力显微镜)还完成了对Molecular Vista的股权投资, Molecular Vista作为一家AFM的生产商,该公司主要聚焦于基于光诱导力显微镜的纳米红外技术(IR PiFM)进行AFM红外联用的定量可视化研究工作,从而实现分子水平上探测和解析物质的红外光谱特征。 Park Systems(中文名称:帕克原子力显微镜)总部设在韩国首尔。自成立以来,以不可忽视的实力全球化扩张,如今 Park Systems(中文名称:帕克原子力显微镜)已成为用于工业、研究和学术纳米尺度研究的原子力显微镜(AFM)工具的首要供应商。在全球范围内应用广泛的技术研究所促进了许多领先的原子力显微镜技术的发展,包括 True Non-Contact (非接触)技术、SmartScan操作软件、可用于纳米力学分析和电气模式的PinPoint模式 最近 Park Systems(中文名称:帕克原子力显微镜)还推出了用于纳米级光刻的智能Litho。 Park Systems(中文名称:帕克原子力显微镜)是第一家具有里程碑意义的原子力显微镜制造公司。其基于挠性的扫描系统带来了新水平的准确性、分辨率和样品处理技术。2024年, Park Systems(中文名称:帕克原子力显微镜)将扩大并搬迁公司总部,以推进公司的运营和技术发展。 Park Systems(中文名称:帕克原子力显微镜)将为科学和工业实验室引入一种具有人工智能和机器人智能化的全新全自动化原子力显微镜 ,敬请期待! 关于 Park Systems(中文名称:帕克原子力显微镜)帕克原子力显微镜是全球第一个推出商业原子力显微镜产品的上市公司。Park(帕克)公司成立30多年来,始终致力于纳米领域的形貌&力学测量和半导体先进制成工艺的计量的新技术新产品的开发。Park(帕克)独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。Park(帕克)公司成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park(帕克)公司的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。为了给客户提供高效便捷的售后服务, Park(帕克)公司在中国区建立有售后服务中心并配有备件仓库。
  • 不忘初心,砥砺前行——Park原子力显微镜成长史
    不忘初心,砥砺前行,以下按照时间轴,一起回顾Park原子力显微镜公司成长史,以及伴随世界原子力显微镜技术发展的故事。01Park公司简介 帕克原子力显微镜(Park Systems,以下称Park)是一家专门从事纳米设备测量的公司。Park致力于新技术开发,始终是纳米显微镜和计量学领域的创新者。Park在AFM技术发展中发挥着举足轻重的作用,制造和销售具有全自动化软件且使用方便的高精度原子力显微镜(AFM)。截至2021年4月20日,Park股票估值超过了一兆(万亿)韩元。朴尚一(Sangil Park)博士和他的导师Calvin Quate教授02为梦想而坚守Park原子力显微镜创始人朴尚一博士 Dr. Sangil Park1985年朴尚一博士所在的课题组(师从Calvin Quate教授)研发出世界首台原子力显微镜1988年朴尚一博士在美国硅谷创立了Park Scientific Instruments公司(PSI)1997年朴尚一博士将年销量为1200万美金的PSI以1700万美金的价格转卖给了美国测量设备公司Thermo Micro.1997年朴尚一博士回到韩国,创立PSIA公司,即为后来的Park原子力显微镜公司。Park原子力显微镜1997年4月PSIA(株)成立(资金5亿韩元)1998年7月中小企业厅风险投资企业确认1998年10月被韩国产业资源部评定为工业为主技术开发公司2000年04月韩国科学技术部颁发国家研究奖(NRL)2002年7月获得NT Mark(New Technology)新技术认证2002年消除串扰技术的发展(XE),从而提高了原子力显微镜的反馈和成像2003年4月成立美国分公司(PSIA Inc.)2003年5月被韩国科学技术部选为核心技术开发产业(Nano)2003年10月获得CE标志认证(XE-100, XE-150产品型号)2004年2月获得“工业技术奖”2004年真正非接触模式(True Non-contact Mode)实现无损样品扫描2005年1月被评为2004年韩国十大新技术企业(原子力显微镜技术)2005年7月获得ISO 14001环境管理体系认证2006年1月获得韩国高新技术认证(NEP, New Excellence Product)2007年1月成立日本分公司韩国十大新技术奖(XE-3DM技术)-知识经济部2010年12月韩国技术大赏银奖(XE-3DM技术)(经济部长奖)
  • 日立原子力显微镜应用技术研讨会在上海举行
    2016年6月30日,日立原子力显微镜应用技术研讨会在上海举行,来自北京、上海、南京等地区的20多位专家学者参加了此次技术研讨会。会议前后,日立原子力显微镜应用工程师在中科院上海硅酸盐研究所对用户进行了系统的应用培训。  此次研讨会邀请到了中科院上海硅酸盐研究所的曾华荣研究员做了题为《高分辨扫描探针压电-声学-热学显微术及其应用研究》的报告,介绍了其在铁电材料研究中对于日立高分辨型原子力SPA-400及日立环境型原子力显微镜AFM5300E的应用心得。日立高新北京分公司总经理加藤博司先生、天美公司上海分公司总经理顾家晖先生分别致辞,日立原子力显微镜全球应用中心山冈武博博士,日立高新北京分公司罗琴女士,天美公司原子力应用工程师周海鑫博士等人参与了研讨会。  日立高新北京分公司总经理加藤博司先生在致辞中介绍了日立原子力的发展历程,并对日立原子力显微镜的发展规划向与会学者做了介绍。天美公司上海分公司总经理顾家晖先生对于日立原子力显微镜的市场发展情况进行了回顾,并对日立原子力显微镜日后的发展表达了美好的祝愿。  中科院上海硅酸盐研究所曾华荣教授结合其在铁电畴领域的应用,对压电响应显微术、扫描探针声学显微术、扫描热学显微术、扫描热电显微术等先进探针显微术的特点进行了介绍,扫描探针压电-声学-热学联用研究的方式引起了与会学者的极大兴趣。  日立原子力显微镜全球应用中心山冈武博博士针对日立环境可控型原子力显微镜AFM5300E的特点,介绍了AFM5300E在力学、磁学、电学等方面的应用。AFM5300E可调节密闭样品仓中的温度、湿度,并可使样品处于真空或者气氛保护条件下进行原子力测试。山冈博士将日本运用AFM5300E取得的最新科研成果向大家做了分享。  天美公司原子力应用工程师周海鑫博士介绍了日立原子力的产品线,对于高分辨型AFM5100N、环境可控型AFM5300E以及最新发布的全自动化原子力显微镜AFM5500M的特点和应用做了详细的介绍。  最后,日立高新电镜应用工程师罗琴女士对于日立扫描电镜-原子力的联用方案进行了介绍。日立高新在扫描电镜领域拥有丰富的经验,原子力显微镜产品线的加入实现了SEM-SPM同位置同气氛保护方面的联用,为科研工作者提供了更加丰富的科研解决方案。日立高新与天美公司会继续以支持中国科技发展为己任,不断开发高性能仪器,为广大科研工作者提供更加优质的服务。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 选型指南| 专家教你5招分辨优劣原子力显微镜
    原子力显微镜(AFM)的基本原理虽然不难,但是要在纳米尺度上得到可靠的的数据就要依赖周密的仪器设计,而这通常就带来了繁琐的使用界面。用户经常需要面对复杂的设定,因此他们需要AFM技术的知识储备,并且还要花费大量的测量时间。然而,复杂的仪器一定意味着难用吗?我们来找找在选择AFM的时候您需要考虑的几个方面!快速而简单的探针安装在AFM测量之前,需要安装微悬臂探针。探针悬臂非常小-通常是50到300微米长,20到60微米宽,2到8微米厚。探针安装通常需要经验:不仅操作起来费劲(并且如果安装时候掉针还会造成浪费),而且如果装得不合适还会导致激光无法对准。出现这种情况的话,用户就不得不回过头去重复探针更换的步骤,重新安装探针(或装一根新的探针),并且重新开始激光调节步骤,十分繁琐。这就是为什么探针安装的步骤应该要快速,简单和可靠。找出这样的一款现代化的AFM仪器,它能够提供解决这个问题的新颖方法。探针安装应该是快速可靠的而不是繁琐费时的。自动激光对准在探针放入仪器后,就要进行激光的对准。为了使得AFM测量准确和可靠,激光对准至关重要。糟糕的激光对准可能降低光杠杆的灵敏度,引起假像,甚至成不了像。然而,通常的手动激光对准很费时而且难操作。自动激光对准找出这样一款AFM,它能够提供完全自动化的激光对准功能。现代化的AFM仪器仅仅需要在控制软件中点击两次鼠标就能完成激光的自动对准。侧视相机监控进针过程AFM设计的一个重要难题是建立一套能控制扫描前探针靠近样品表面的系统,使得探针不会撞到表面而损坏。但是通常的进针系统,用户必须要很小心地控制,使探针安全靠近样品表面。在透明样品,暗样品,以及复杂几何结构的样品上,进针控制尤其有挑战性,其原因是探针和样品间的距离很难估计。进针过程带有很大的撞针风险。侧视相机监控探针靠近新一代的AFM集成了侧视相机,使得用户能看到探针相对于表面的准确的位置,从而安全地移动探针靠近表面。随后软件开始自动进针过程-几秒钟后就可以进入扫描的状态了。测量时间短时间对每个人都很重要。使用AFM的时候,需要花费一定的测量时间。用户操作AFM通常需要5步:1. 安装探针2. 放置样品3. 激光对准4. 移动样品到测试位置5. 进针并开始测量。对那些需要繁琐的探针更换,手动激光对准,没有侧视相机,以及缺少自动化的AFM仪器,这5个步骤至少要用去一阵子时间。再加上,如果使用者不是AFM的熟练工(事实上这很正常)或者面对各种不同类型的样品,就需要更长的时间来完成这些步骤。找出高度自动化的AFM,减少测量时间,这样您就能专注于更重要的内容。 解耦xy和z扫描器压电陶瓷必须要用这样的方式构造,使得它们能够沿x,y和z轴移动探针(或样品)。最常用的三维扫描器结构之一是管状的扫描器-主要因为它易于制造。但是它有一些缺点:由于它的几何结构,管状扫描器易于产生很多非线性,尤其是在大范围扫描时会有弧形扭曲。扫描器的弧形扭曲来源于它弯曲的运动轨迹,而这些弯曲或者弧形会体现在测得的高度图上。解耦xy和z扫描器找出具有xy和z方向解耦扫描器的AFM。这种扫描器设计,xy扫描器位于样品下而z扫描器位于扫描头上以减少扫描器之间的串扰。您需要一台满足所有上述方面的原子力显微镜吗?试试新一代AFM: 安东帕ToscaTM 400。自动化被植入到Tosca™ 400的每个操作层级,效率的提升和简化的AFM操作将令您受益。
  • 1430万!福建农林大学全自动原子力显微镜等设备采购项目
    项目编号:[3500]FJYS[GK]2022175 项目名称:福建农林大学全自动原子力显微镜等设备采购项目 采购方式:公开招标 预算金额:14300000元 包1: 采购包预算金额:3000000元 采购包最高限价:3000000元 投标保证金:30000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A021099-其他仪器仪表全自动原子力显微镜1(台/套)是详见附件3000000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包2: 采购包预算金额:1700000元 采购包最高限价:1700000元 投标保证金:17000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业2-1A021099-其他仪器仪表冷冻超薄切片机1(台/套)是详见附件1700000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包3: 采购包预算金额:4800000元 采购包最高限价:4800000元 投标保证金:48000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业3-1A021099-其他仪器仪表透射电子显微镜1(台/套)是详见附件4800000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标 包4: 采购包预算金额:4800000元 采购包最高限价:4800000元 投标保证金:48000元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业4-1A021099-其他仪器仪表多功能环境场发射扫描电子显微镜1(台/套)是详见附件4800000工业 合同履行期限: 详见招标文件 本采购包:不接受联合体投标
  • 快讯:Park原子力显微镜股票估值到达1兆(万亿)韩元关口
    仪器信息网讯 2021年4月20日,世界知名原子力显微镜制造商Park Systems(中文名称:帕克原子力显微镜)宣布,公司股票估值超过1万亿韩元(近10亿美元)。 Park Systems于2015年12月17日在KOSDAQ首次公开发行了100万股股票,KOSDAQ相当于韩国的纳斯达克(NASDAQ)。自首次公开募股以来, Park Systems已发展成为全球原子力显微镜领域的行业翘楚,尤其在原子力显微镜半导体先进自动化领域优势明显,并将原子力显微镜(AFM)技术作为纳米尺度测量的首要工具带入主流。Park Systems创始人兼CEO Sang-il Park博士在接受采访时候表示,“Park持续收到来自世界顶尖半导体和数据储存供应商的采购订单“。Sang-il Park博士曾作为斯坦福大学课题组的小组成员参与开发了世界首台原子力显微镜,并于1988年研发了首个商业型原子力显微镜。“即使是受疫情影响的近两年Park依旧以超过20%的复合增长率快速成长,订单持续走高。”帕克原子力显微镜创始人兼CEO Sang-il Park博士KOSDAQ的估值接近10亿美元,吸引了外国投资者的注意,他们积极购买股票,使公司的持股比例从1月的11%增加到3月的18%。不仅如此, Park Systems还在最新公布的2020福布斯亚洲10亿美元以下200强企业上榜,更是获得科斯达克(KOSDAQ)大奖,并在富时(FTSE)小型股指数上榜。2020年, Park Systems与IMEC签署了第二期JDP协议合作开发用于半导体制造的纳米计量解决方案。不仅如此, Park Systems还完成了对Molecular Vista的股权投资, Molecular Vista作为一家AFM的生产商,该公司主要聚焦于基于光诱导力显微镜的纳米红外技术(IR PiFM)进行AFM红外联用的定量可视化研究工作,从而实现分子水平上探测和解析物质的红外光谱特征。Park Systems总部设在韩国水源。自成立以来,凭借实力逐渐全球化扩张,如今 Park Systems已成为用于工业、研究和学术纳米尺度研究的原子力显微镜(AFM)工具的首要供应商。在全球范围内应用广泛的技术研究所促进了许多领先的原子力显微镜技术的发展,包括 True Non-Contact (非接触)技术、SmartScan操作软件、可用于纳米力学分析和电气模式的PinPoint模式 最近 Park Systems还推出了用于纳米级光刻的智能Litho。Park Systems是一家具有里程碑意义的原子力显微镜制造公司。其基于挠性的扫描系统带来了新水平的准确性、分辨率和样品处理技术。据悉,2024年, Park Systems将扩大并搬迁公司总部,以推进公司的运营和技术发展。 Park Systems将为科学和工业实验室引入一种具有人工智能和机器人智能化的全新全自动化原子力显微镜 ,值得期待!
  • 易被忽视的重要技术:关于原子力显微镜样品制备技术的反思
    基于探针,电子束和光谱的成像技术在近二十年都取得了变革性的进展。技术进展主要聚焦在显微镜核心技术本身。以原子力显微镜为例,对于技术进展的关注侧重于成像模式,成像速度以及物理,化学测量的关联成像等,往往不包括试样制备因素。2021年8月18日,中国科学院沈阳自动化所苏全民研究员将在仪器信息网主办的“第三届原子力显微镜”主题网络研讨会中,线上为大家分享“试样制备在显微镜技术中的使能作用—关于原子力显微镜技术的反思”。图自Hui, F., Lanza, M.*, “Scanning probe microscopy for advanced nanoelectronics”, Nature Electronics 2, 221-229 (2019)本次报告,苏全民研究员将聚焦于各种显微镜试样制备技术的对比,并以一些试样制备为使能的技术革命为例来阐述其作用。在原子力显微镜领域中,一个普遍认识是试样无须特殊处理和制备。在适当成像模式和探针控制条件下,原子力显微镜成像的结果便是试样纳米尺度本征物性的表征。报告将力图证明正是因为缺乏试样制备的技术,原子力显微镜技术在揭示试样纳米尺度的本征性能这一核心应用目标上落后于其他显微镜技术。作为纳米尺度3维形貌的工具,原子力显微镜成功的成为其他技术的标定标准。AFM试样无须特殊制备就能够定量表征试样的本征几何形貌。但在使用AFM进行纳米物性测量时, 无论探针和试样的表面吸附,表面畸变层等都有可能导致探针相互作用的复杂化,产生非本征作用。在许多应用中,非本征作用的贡献可能大于试样本征物理和化学性能的贡献。报告将进一步分析 “非本征作用” 的物理机制,进而探讨试样制备和环境控制的重要性并展望如何通过试样制备更好的揭示各类试样纳米尺度的本征物性,使试样制备在原子力显微镜领域中也起到使能作用。报告时间:2021年8月18日上午10:00--10:30即刻报名占座:https://www.instrument.com.cn/webinar/meetings/AFM2021/报告人简介苏全民,国家特聘专家,纳米定位和测量国家标准专家组成员,全国显微镜协会理事,于2017年全职回国,现为中国科学院自动化研究所研究员和天津大学兼职教授。回国前为美国布鲁克公司高级技术总监,领导原子力显微镜(AFM)技术和系统的研发。苏全民是53 项美国授权专利的发明人,领导布鲁克原子力显微镜的技术和产品开发,曾获 R&D 100(2002)和 Microscopy Today(2012) 年度最佳产品奖。苏全民发表了80多篇论文;并组织了“Seeing at the Nanoscale”系列国际会议,担任过各种国际会议的分会主席,如MRS , M&M, AVS等,并在多个国际会议(IEEE, MRS,M&M,AVS等)做过大会,分会和专题特邀报告。或扫码报名占座关于“第三届原子力显微镜网络会议”日程
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    作者: Sang-Joon Cho, Park Systems Corp.副总裁兼研发中心总监、Ilka M. Hermes, Park Systems Europe 首席科学家利用原子力显微镜进行的自动缺陷复检,通过纳米级的分辨率在三维空间中可视化缺陷。因此,纳米级成像设备是制造过程的一个重要组成部分,它被视为当今半导体行业中最理想的技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行精确检测和准确分类。 与时俱进的光刻工艺使得生产的半导体器件越来越微小化。器件尺寸一旦减小,晶圆衬底上的纳米级缺陷就限制了器件的性能使用。因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征技术。由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,进而损害定量成像和随后的缺陷分类。而原子力显微镜 (AFM) 自动缺陷复检 (ADR)技术则有效地解决了该问题。该技术利用 AFM 常用的纳米分辨率,能够在三维空间中可视化缺陷,大大减少了缺陷分类的不确定性。因此,ADR-AFM 成为了当今半导体行业缺陷复检最理想的技术。缺陷检查和复检由于摩尔定律,半导体器件变得越来越小,需要检查的缺陷(DOI)大小也在减小。DOI可能会降低半导体器件性能的缺陷,因此对工艺良率的管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战。合适的表征技术必须能够在两位数或一位数纳米范围内以高横向分辨率和垂直分辨率对缺陷进行无创成像。一般来说,半导体行业的缺陷分析包含两个步骤。第一步:缺陷检测。利用吞吐量虽高但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,接下来需要依赖高分辨率技术进行缺陷复检。第二步:缺陷复检。利用高分辨率显微镜方法,如透射电子显微镜(TEM)或扫描电子显微镜(SEM)或原子力显微镜(AFM)。通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少检查的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,而非接触测量模式的AFM则有效地避免了该影响。它不仅可以无创地扫描表面,还有高横向和垂直分辨率对缺陷进行成像。因此,原子力显微镜能提供可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中可达到最高的垂直分辨率。除接触模式外,AFM还可以启用动态测量模式,即悬臂在样品表面上方振荡。由此,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。随着自动化原子力显微镜的更新发展,原子力显微镜的应用越来越广泛,从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正发展成为用于缺陷分析的新一代在线测量解决方案。使用原子力显微镜自动缺陷复检AFM 缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。基于此,用户最初会在 AOI 和 AFM 之间的附加步骤中,手动在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤不仅非常耗时还大大降低了吞吐量。另外,使用 AFM 的自动缺陷复检需要从 AOI 数据中导入缺陷坐标。而缺陷坐标的导入需要准确对准晶圆及精减AOI 和 AFM 之间的载物台误差。位置精度比AOI 更高的光学分析工具(例如Candela),可以有效减少中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。自动化的测量过程无需用户在场,吞吐量还增加了一个数量级。为了保持纳米级的针尖半径和连续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可有效防止探针针尖磨损并确保对缺陷进行精确地定量复检。△图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 在相同纳米级缺陷下所产生的不同缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 则通过机械直接扫描缺陷表面进行成像。除了横宽,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。可视化的缺陷三维形状确保了缺陷分类的可靠性和精确性,而这些是AOI无法实现的。当对比分别利用 AOI 和 ADR-AFM 确定缺陷的大小时,我们发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM确定的 91 nm 尺寸的三分之一。在测量“pit”缺陷 5 和 6 时,我们观察到了 AOI 和 ADR-AFM 之间的最大偏差。AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。上述比较清楚地表明,仅用AOI不足以进行缺陷的成像和分类。△图2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM, ADR-SEM 也可以进行高分辨率的缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检。在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先需要通过ADR-SEM对晶圆的相同区域进行成像,然后通过ADR-AFM进行测量(图2)。AFM图像显示,ADR-SEM扫描的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可视性,图2a表明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术不断创新,半导体器件尺寸不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM自动化的测量简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础。在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI性能,AFM的高垂直分辨率有助于进行可靠的三维缺陷分类。非接触式测量模式确保了无创伤的表面表征,并有效防止AFM针尖磨损,从而确保在许多连续测量中能够依旧保持精准的高分辨率。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。缺陷检查和复检随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。使用原子力显微镜自动缺陷复检基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术中半导体器件尺寸的不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM测量的自动化简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础,在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI,AFM的高垂直分辨率有助于可靠的三维缺陷分类。非接触式测量模式确保了无创伤表面表征,并防止AFM针尖磨损,从而确保在许多连续测量中能够维持高分辨率。作者:Sang-Joon Cho, Vice President and director of R&D Center, Park Systems Corp.Ilka M. Hermes, Principal Scientist, Park Systems Europe.
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 日立高新全球发布AFM5500M原子力显微镜新品
    p   3月8日,日立高新技术集团在原有的AFM系列原子力显微镜产品线的基础上,在全球重磅推出了AFM5500M型新一代原子力显微镜。这也是日立高新收购精工纳米科技以来,又一款以技术整合来提供更全面解决方案的代表性产品。 /p p   该产品和原来的型号相比,新增了自动探针更换和自动光轴调整功能,扫描器和传感器以及图像化部采用了新技术,因此更加提高了测定精度和自动化程度。此外,该产品还能和日立高新的经典产品扫描电镜通过共享坐标的方式,实现观察样品的同样位置的功能,为广大用户提供了更全面的解决方案。 /p p style=" text-align: center " img width=" 450" height=" 336" title=" nr20160308_01.jpg" style=" width: 450px height: 336px " src=" http://img1.17img.cn/17img/images/201603/insimg/857d9632-158d-4b3f-a467-bd7d42eb4929.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong AFM5500M 原子力显微镜 /strong /p p   新研发的扫描仪和低噪声三维传感器可以实现高的测量准确性。自动悬臂加载和激光准直功能进一步增强其易用性。AFM5500M不仅吸引了纳米尺度基础研究的人员,而且还解决了工业仪表领域的需求。 /p p   SPM利用探针扫描样品表面,同时执行形貌以及其他材料特性的纳米尺度的测量。鉴于电子设备、先进性能材料和精密组件开发、生产和质控等方面的发展,近年来对高分辨率SPM的需求显著提高。相比之下,由于扫描参数优化等技术的限制,传统SPM需要高度熟练的操作者,而AFM5500M仅需一次点击就可以进行悬臂的改变,并开始测量。 br/ /p
  • 让微观变得直观——岛津原子力显微镜
    对极限微观的不断探索源于人们原始的求知欲。国际度量衡制度的确立为我们指引了探索的方向。从米到毫米,从毫米到微米,从微米到纳米。当物质被我们不断地“劈碎”。越来越多新性质,新现象,新功能被发现。人们对自然的认识越来越深刻,对物质的操纵也越来越得心应手。 从二十世纪末开始,人类对微观的探索延伸到了纳米领域。在这个从仅比原子高一个层级的尺度范围内,物质展现了一种和宏观截然不同的状态和性质。表面效应、小尺寸效应和宏观量子隧道效应带来的是超高强度、超高导电性、超流动性、超高催化活性等等无与伦比的属性。 碳纳米管作为第一种人工合成的纳米材料,甫一问世,其超高强度就惊艳世人。它的质量是相同体积钢的六分之一,强度却是铁的10倍。 单壁碳纳米管高度(直径)测量在碳纳米管被研制出来以后,双壁碳纳米管、掺杂碳纳米管、复合碳纳米管等多种材料被源源不断制作出来。极小的尺度和样品多样性,迫切需要一种合适的检测工具。 在纳米尺度下,光学显微镜的分辨率早已鞭长莫及,电子显微镜则因为严格复杂的制样过程使测试门槛令人高不可攀,激光粒度仪对长径比过大的样品测试误差极大也不适合。这时,较合适的观测工具就是原子力显微镜。 原子力显微镜作为专门的纳米材料表征工具,天然具有高分辨率、高环境兼容性、多属性分析种种优势。 原子力显微镜观察的不同碳纳米管形态在生产中,因工艺不同,会产生长短粗细不同的碳纤维。如何有效对这些样品进行归类分析是个大问题。 不同工艺下碳纳米管分散状态借助岛津原子力显微镜配备的颗粒分析软件,则可以自动分析筛选,并对纤维的各种尺度进行统计分析。 极长和极短碳纳米管的自动分类统计同样,对于常见到的纳米材料——纳米颗粒而言,也可以依靠该软件进行统计分析。 纳米颗粒的粒径统计而且,利用原子力显微镜,还可以有效观察同样粒径下颗粒的不同形貌。例如以下两个颗粒,粒径均在100nm左右,如果用激光粒度仪测试,会被归为一类。但是用原子力显微观察,则可以发现很大的不同。 粒径近似的纳米颗粒聚集形态左侧的颗粒是单个粒子,二右侧的则是多个颗粒聚集形成的,在原子力显微镜的小范围观察图像中可以清晰分辨二者的不同。 但是,通常的原子力显微镜很难兼顾大视野和高分辨。要想同时观察统计大量颗粒,就需要用大范围观察,这样一来每个颗粒的细节分辨就难以看清。如果聚焦到一个颗粒上细致观察,则无法从整体上评估样品。 解决的办法就是提高原子力显微镜图像的分辨率。岛津推出了8192*8192点阵的高扫描能力。可以在大范围观察的同时又看清每一个小细节。 兼顾大视野和小细节的超大点阵扫描图像原子力显微镜作为人类眼睛的延伸,像一个精细的触手,细致地捕获纳米材料的形貌、机械性能、电磁学性能等等属性,使这个微乎其微的领域直观地展现在我们眼前,为我们更深更广地认识纳米材料提供了有力帮助。 文中相关仪器介绍详见以下链接:https://www.shimadzu.com.cn/an/surface/spm/index.html 本文内容非商业广告,仅供专业人士参考。
  • 天美公司&日立高新 原子力显微镜最新应用技术研讨会 邀请函
    2016年6月30日,天美(中国)科学仪器有限公司与日立高新技术公司,联合中科院上海硅酸盐研究所,共同举办日立原子力显微镜最新应用技术研讨会,期待您的莅临。  2012年5月,日立高新科技公司全资收购精工电子有限公司子公司精工电子纳米株式会社,这其中包括了精工的原子力显微镜业务。近年来,日立高新在秉承精工原子力原有品质的基础上,积极创新,不断完善原子力产品线,相继更新了高分辨率型AFM5100N、环境可控型AFM5300E和大样品仓型AFM5400L,并在全球范围得到了市场的认可。  2016年3月,日立高新隆重推出了最新的原子力产品AFM5500M,日立最新一代原子力显微镜AFM5500M采用了全新设计的低噪音闭环压电陶瓷扫描器,在实现200μ m大范围扫描同时也能保证较高的图像平整度,避免球面误差和正交耦合效应。AFM5500M拥有自动更换探针、自动调节激光光路、自动参数设置等一系列全新的自动化设计,极大的提高样品的测试效率,为使用者带来便捷的感官体验。  藉此研讨会之际,我们邀请到日立原子力全球应用中心工程师山冈 武博先生,介绍日立原子力产品的最新应用和最新解决方案。会议还将邀请中科院上海硅酸盐研究所曾华荣研究员做特邀报告。会议内容详实丰富,将是一场难得的信息盛宴,相信您一定会不虚此行。会议期间还将安排仪器现场参观,以便您对日立原子力显微镜的特点有更直观、更深刻的了解。  在此,天美公司携手日立高新共同向您发出诚挚的邀请,热忱欢迎您的莅临! 时间: 2016年6月30日(星期四)下午14:00-18:00地点: 上海巴黎春天新世界酒店 三楼 钻石3号厅酒店地址:中国上海市长宁区定西路 1555号会议议程14:00~14:15 致辞 日立高新技术公司北京分公司总经理 加藤 博司 先生天美公司上海办事处总经理 顾家晖 先生14:15~15:30 日立原子力显微镜最新应用主讲人:日立原子力显微镜全球应用中心工程师 山冈 武博 博士15:30~16:00 高分辨率扫描探针压电—声学—热学显微术及其应用研究主讲人:中科院上海硅酸盐研究所研究员 曾华荣 先生16:15~16:45 日立原子力产品链及AFM5500M介绍主讲人:天美公司电镜产品经理 周海鑫 博士16:45~17:15 日立FE-SEM&IM应用介绍讲解人:日立高新技术公司电镜应用工程师 罗琴 女士17:15~17:45 上海硅酸盐研究所日立AFM5300E参观18:00 晚宴关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 好消息!原子力显微镜现在购买即送三年质保服务大礼包
    继今年安东帕推出了适合中型样品测量、针对预算有限科研的原子力显微镜新成员Tosca 200之后,Tosca系列家族的高配版Tosca 400和精简版Tosca 200可以同时满足高端和中端的表面表征科研需求了。随着对材料纳米级研究的需求日益升温,即日起,安东帕向科研市场宣布又一重大的好消息。 现在无论购买适合大型样品的高配版Tosca 400还是适合中型样品测量、有限预算科研的精简版Tosca 200 AFM,都可以获得升级版服务大礼包,其中包括:- 3年免费维护质保- 3张客户免费培训券- 多达10种样品的免费详细测量报告折扣券 这么多好礼,还能同时享受探索微观世界的乐趣,畅游知识的海洋,是不是已经乐不思蜀? Tosca家族将先进技术与高时效、简单易用的操作集于一身。这款顶级性能的 AFM 产品汇集了自动化功能、强大的软件,以及安东帕在工业高精度分析仪器开发、生产和经销领域的长期经验。Tosca 200 和Tosca 400具备如下市场领先的特点:• 自动激光对准 • AFM市场上最简单的进针过程 • 高效测量多个样品 • 一键样品导航 • 快速安全地安装探针 • 精确测量—最大限度减少平面外运动 • 缩短获得结果的时间此外,2019原子力显微镜开放日活动正在如火如荼的进行中,需要免费前来测样的技术人员,可以带上您的样品,由我们的产品专家为您免费提供测试分析报告。享受探索微观世界的乐趣,畅享科技带来的高效!
  • 原子力显微镜助力光伏新时代
    随着全球能源需求的不断增长,可再生能源技术成为人们关注的焦点。其中,基于光伏(photovoltaic,PV)材料的技术实现了将光能转化为电能的难题,具有广阔的应用前景。然而,太阳能电池技术的商业化仍面临着成本高、功率转换效率低以及器件寿命短等挑战1。无论要克服哪方面的问题,成功的关键都依赖于表征技术的提高,尤其是对高空间分辨率的要求更加严苛。以顺应目前先进制造下微米及纳米尺度特征的材料所需(例如钙钛矿薄膜中的多晶体、有机半导体中的体异质结网络和纳米结构化的光捕获层)。牛津仪器原子力显微镜(AFM)以实现纳米级的高空间分辨率著称,可为其他成像技术补充材料器件更多维度的信息2。它不仅可以测量结构,还可以测量功能响应,从而深入了解结构性质、处理流程和表观性能之间的关系(图1)。本文中,我们将探讨牛津仪器AFM在表征两种新兴光伏材料(如钙钛矿和有机半导体)各方面性质的应用。值得注意的是,其他材料,包括无机半导体(Si、CdTe灯),黄铜矿(CIGSSe、CuInSe2等)以及具有多个吸收体的串联系统,也可以从AFM表征中受益。通过AFM,我们可以更好地理解这些材料的性能和潜力,为未来的太阳能电池技术发展提供有力支持。图 1:观察MAPbI3中纳米尺度光响应光伏电池性能指标,如短路电流Isc通常在宏观尺度上测量,但纳米尺度下的表征,可以揭示微结构对性能的关键影响。上图显示在约0.07 W/cm2的照度下,甲基铵铅碘化物(CH3NH3PbI3或MAPbI3)薄膜上的短路电流ISC叠加在三维形貌图的结果。通过光导电AFM(pcAFM)获取了从偏置电压0到+1 V的电流。然后,通过图像每个像素位置的I-V曲线中确定Isc的值,最终生成短路电流-形貌图。使用MFP-3D BIO AFM获得,扫描范围为3微米3。 1 钙钛矿型新材料有机-无机混合型钙钛矿材料的太阳能电池技术因其转换效率的快速提升(仅用了七年时间到22%的转换效率)而备受关注1,4。更重要的是,该技术可以通过相对简单和廉价的溶液处理技术(例如旋涂)进行制造。目前的研究重点在于测量基本属性并提高长期稳定性。通过AFM的表征,有效推动二者的共同发展。1.1理解晶体结构评估钙钛矿薄膜的微观结构对于基础研究和实际应用都具有重要意义。例如,它可以揭示光电响应与晶粒尺寸之间的极敏感的依赖关系,并帮助解决大规模制造中的难题,如钙钛矿如何从前驱体状态结晶等。为了满足这些需求,AFM探测了表面高度和形貌的三维定量图(图2)。形貌图显示了薄膜属性,包括覆盖度和均匀性,并允许快速计算表面高低起伏特性,如粗糙度,以便快速比较不同薄膜。AFM形貌图可以在轻敲或接触模式下获得的,通常可以分辨出纳米以下的垂直特征结构。实际上,当前少数AFM可以实现垂直分辨率达到几十皮米,从而完成晶体和分子的晶格级成像。牛津仪器新型AFM自动化程度高,可大大减少实验设参时间并简化数据采集。当钙钛矿暴露于不同环境条件时,氧化或其他化学反应可能对微观结构和其他材料性能造成不可逆损伤。使用专门的环境控制模块,将样品保护在经过净化的惰性气体环境中进行AFM实验,可以防止这种退化。环控组件还可以提供惰性气体的湿度控制。更有甚者,通过将整个AFM放置在手套箱中以完全隔离大气(参见图5),来实现更严格的环境控制。图 2:晶格结构变化溶液处理技术已被成功应用于生成具有均匀表面覆盖的致密钙钛矿薄膜。然而,这些薄膜的晶粒通常非常细小,导致晶界损失增加,从而降低了光转换效率。为了解决这个问题,研究人员开发出苄基硫代酸根(GUTS)的前驱体处理方法,以增加薄膜的晶粒尺寸。左侧图片中,我们可以看到未经处理的MAPbI3薄膜的形貌,右侧图片是使用GUTS/异丙醇溶液(4 mg/ml,GUTS-4)处理后的薄膜的形貌图。可见通过处理以后,已成功地将平均晶粒尺寸从纳米级别提升到了微米级别。此外,使用GUTS-4处理的薄膜制备的太阳能电池的功率转换效率比未处理的薄膜高出约2%。扫描尺寸5微米5。1.2测量电和功能化响应光伏机制研究在很大程度上依赖于大量的光电数据,以全面理解其工作原理。钙钛矿薄膜的多晶结构极大地推动了在微观和纳米尺度上进行测量的能力。AFM的高分辨率电学测试技术能够揭示电荷传输、捕获和复合等过程以及相关行为。当在配置了样品照明功能的AFM上进行实验时,这些技术的作用更为明显。多模态和其他类似的研究方法也为我们提供了深入理解光伏材料的可能性。这些方法包括使用多种原子力显微镜模式(如KPFM、CAFM、EFM)以及其他表征工具,如扫描和透射电子显微镜(SEM和TEM)、光致发光(PL)和拉曼光谱,以获取获取多维度的数据。如图3(KPFM,CAFM和TEM)和图4(CAFM,KPFM和PL)所示。1.21导电模式(CAFM)测电流导电原子力显微镜(CAFM,在照明下实验时,称为光电导AFM(pcAFM))是常用的AFM电学检测模式。它们都利用导电探针来感知施加了直流偏压的样品中的电流。通过接触扫描或快速力图成像,可以获得局部电流图,进而揭示光诱导的载流子迁移变化、光电导率的局部变化以及其他相关性质。为了避免信号伪影,可以在pcAFM测量期间停用AFM检测激光。而改变测试参数,如偏置电压、照明强度、波长或极化,则可以提供更深入的信息。CAFM和pcAFM也可以获得具有纳米级分辨率的电流-电压(I-V)曲线。只需将探针移动到在用户自定义的位置,并在接触模式下施加偏置电压,就可以测量到电流。得到的I-V曲线可以揭示电荷的生成和注入、接触电阻以及退火或其他处理流程的影响等方面(图3)。由于CAFM和pcAFM在纳米级高分辨电流图方面表现出色,因此对AFM的能力提出更多特殊要求。例如,测量需要高灵敏度和低噪声,因为电流可以跨越六个数量级(皮安到微安)。此外,定量探针-样品的接触面积也需要先校准悬臂梁弹簧常数,完成这些校正之后,就能精确测量和控制施加的力了;如果没有高灵敏度,这些校正将难以完成。1.2.2 静电力(EFM)/开尔文探针力(KPFM)模式测电场静电力显微镜(EFM)和开尔文探针力显微镜(KPFM)是评估光电响应的另外两种独特模式。它们拥有纳米级的空间分辨率,能够深入探究单个晶粒、晶界以及晶粒之间的微观变化。EFM和KPFM都基于轻敲模式运行的,所以可以近似反映开路时的行为。EFM主要感知由长程静电力梯度引起的电场变化,因此对于检测嵌入导体或表面电荷不均引起的电容变化非常敏感。它通常是一种快速简易的方法,可以用来定性地获得电场和电容之间的对比。为了减少形貌变化的干扰,可以使用双通道扫描技术进行EFM扫描。相比之下,KPFM感知的是探针和样品之间的接触电势差(图3和4)。KPFM最关键的优点是能够定量测量功函数,这是许多光伏系统中电势变化的根本原因。使用KPFM进行功函数的纳米级成像可以得到关于能带弯曲、掺杂剂密度和光诱导变化相关的详细信息。KPFM通常采用双通道振幅调制(AM)方法进行操作,类似于EFM,但也可以在单通道频率调制(FM)模式下操作。FM-KPFM通常具有更高的空间分辨率,并包含来自悬臂梁高阶谐波响应的其他信息。图 3:研究晶界处的离子迁移钙钛矿材料具有许多令人着迷的性能特点,如磁滞和热电效应等,其背后的机制尚待深入分析。本图展示了多晶MAPbI3薄膜的表面电势(KPFM)与形貌结构的叠加。通过透射电镜获得的晶体学取向(未在此图中显示)与表面电势的关联性揭示了一个有趣的趋势:具有较大电位差异的晶粒之间的边界角度比那些具有较小电位差异的晶粒间的边界角度更高(如图中的△)。使用CAFM获取的局部I-V曲线显示出在高角度晶粒边界处存在较强的暗流磁滞,但在低角度边界处几乎没有磁滞。(蓝色和红色箭头分别代表加压和降压各一次)。这些结果表明,晶粒边界处的迁移速度远快于晶内迁移,并且对晶内迁移起到了主导作用。通过MFP-3D AFM获取,扫描范围为2微米6。图 4:关联局部光学和纳米电学特性理解钙钛矿材料空间异质性的起源对于提升光电转化效率至关重要。这项研究中,甲基铵铅溴化物(CH3NH3PbBr3或MAPbBr3) 沉积在玻璃(Glass) /碲化镉(ITO) /聚(3,4-亚乙基二氧硫)聚苯乙烯(PEDOT:PSS)等基底上制备薄膜。样品被安装在AFM样品并通过488nm激光束激发,生成局部相对光致发光(PL)强度图。通过CAFM获取的注入电流图像(偏压为+3.2 V)显示的行为与PL强度无关。尽管这些样品的形貌结构相似,但在虚线、点线和实线曲线表示的区域中,PL响应从暗到亮分别为高、中和低。此外,FM-KPFM表面电位图像并未显示出任何相关性。这一结果与裸玻璃上制备的MAPbBr3薄膜的结果形形成鲜明对比,表明异质性的来源并非在薄膜内部,而是在电极-膜界面上。使用MFP-3D AFM获取,扫描范围为7微米7。1.2.3压电力模式(PFM)表征铁电性此外,钙钛矿中的铁电性质可能会对光伏器件的性能有着多样化的影响。例如,极化场可以更有效地分离电子空穴对,带电的畴壁也可以作为额外的导电通路。铁电性还可以扮演开关功能,从而可以通过偏压控制光电流的方向。然而,我们对于特定反应条件和所得铁电性质之间关系的理解不足,阻碍了进一步探究这些行为如何影响器件性能的脚步。因此,提高表征能力,特别是在畴和晶粒大小这个关键尺度的表征水平,变得尤为重要。压电力显微镜(PFM)是表征铁电性质的强大技术。它对于静态和动态行为(例如畴的结构、生长和极化反转)的纳米级探索非常有用。通过测量机电响应以及形貌,PFM可以深入探究功能特征与结构-性质关系(图5)。在薄膜上进行PFM测量时,需要施加足够高的电压以获得良好的信噪比,但同时也要避免引起极化激活甚至损坏样品。为解决这个问题,推荐在悬臂梁的接触共振频率附近操作,这样可以在较低的驱动电压下实现更高的灵敏度,而牛津仪器Asylum系列的AFM标配该技术。图 5:检测材料铁弹性质通过溶剂退火制备MAPbI3(CH3NH3PbI3)薄膜的形貌图(左)显示,该薄膜是具有阶梯结构的微米级晶粒。相应的垂直PFM振幅图(右)在300 kHz(接近共振频率)处以+2.5V AC偏压获取,观察到了在形貌中不存在的规律间隔条纹畴,相邻畴的方向变化为90°。PFM图中红蓝色线段表明条纹呈周期性变化,范围约从100到350 nm。这表明该薄膜具有铁弹性质,其畴结构依赖于薄膜纹理和特定的制备路线。样品置于氮气环境保护,通过手套箱中的MFP-3D AFM获取的,扫描范围为7微米8。1.3界面层工程在太阳能电池的构造中,最基础的模型仅由两个电极间和中间钙钛矿吸收层构成。然而,为进一步提升电池的性能,通常需要引入其他的层次。在这个过程中,AFM展现出了独特的技术优势,它能够独立或与其他设备协同工作,对各层进行精确的表征。我们可以使用AFM导电探针从顶部接触器件,重构出平面视图来获取电导相关信息,或者在横截面中研究跨界面的行为。表面粗糙度等信息可以通过界面层的纳米尺度形貌成像获取;粗糙度会直接影响层与层之间的粘附性,并展现有机薄膜的相分离和分散等形态特征。CAFM和pcAFM等电学模式也具备广泛的应用价值,例如评估导电均匀性或识别电荷捕获或复合区域。KPFM表征因其对表面接触电势和功函数的敏感性而特别有益。由于设计界面层的目的通常是为了为载流子创造更有利的路径,使其远离吸收体并靠近电极,因此进行仔细选择,确保每个界面处的能级对齐,将从原理层面提高材料的性能。这一过程中,KPFM能够对带弯曲和功函数的空间变化进行成像(图6),为载流子路线的选择提供有益的反馈。图 6:通过多层堆叠改善稳定性为了更有效地利用电子传输层(ETLs),需要对其属性进行更好的控制。研究人员在NiOx上的MAPbI3(CH3NH3PbI3)薄膜上获取了表面电势图,在添加苯基-C71-丁酸甲基酯(PC70BM)和罗丹明101(Rh)层之前和之后获得的图显示了差异。通过钝化钙钛矿晶粒边界缺陷,Rh层显著减少了电势的空间变化。诱导表面光电压的结果显示,附加层降低了表面电势并减少了ETL/阳极界面处的带弯曲。这些结果有助于解释为什么带有Rh层设备的效率和稳定性会增加。在MFP-3D AFM上用双通道KPFM模式获取,扫描范围为1微米9。牛津仪器AFM特点1:软硬件设计与优化微观尺度的导电性能指导了材料设计方向,是光伏领域最常见的表征手段。要实现高分辨率,高灵敏度的电流测量范围,MFP-3D和Cypher系列采用了独特的ORCA模块。Orca在悬臂梁夹具中,集成了一个低噪声传输阻抗放大器,其操作范围从约1 pA到20 nA,并提供了多种增益选项。而更高级的双增益ORCA附件时,会同时激活两个独立的放大器,可以确保在更广泛的电流范围内进行高分辨率测量(约1 pA至10μA)。此外,软件中的Eclipse Mode通过双通道方法改善了Asylum AFMs上的光电流测量精度,并减少了光诱导伪影。其原理是,在第一次扫描中,以接触模式获取形貌信息。然后在第二次扫描中关闭AFM的检测激光,并在相同高度执行pcAFM测量。这时候探针所检测到的信号全部来自样本本征激发,不会耦合检测激光可能造成的光诱导。 同样,Asylum系列标配的GetReal功能使得对探针-样品接触力的理解和测量更加简单和精确。这个功能很轻易在采集软件的界面处找到,用户只需点击一下,就可以自动校准悬臂梁弹簧常数和光杠杆灵敏度,而无需接触样品;对于一些罕见探针,也可以通过输入探针形貌长宽特征的方式进行计算拟合。这个功能大大简化了传统的校正方式,促进力学领域相关探索。基于上述对软硬件的持续升级,电噪声屏蔽和力的精确控制能力大幅加强。Cypher系列和Jupiter提供了新的快速电流成像模式,为柔软或脆性材料提供了强大的电流成像功能。当扫描速率高达1 kHz(Cypher系列)时,可以在不到10分钟内获取256×256像素的数据,且每个像素都包含完整的电流和力曲线信息,方便进一步分析处理。而在铁电研究领域,所有的Asylum Research AFMs都配备了高灵敏度、用于共振增强PFM测量的软件,其中包括双AC共振跟踪(DART)模式或Band Excitation选项。两个(或更多)追踪频率的引入可以减小由于形貌起伏带来的接触共振频率变化,确保针尖信号与形貌变化无关。DART模式扩大样品选取范围,使得形貌对结果的干扰降低了,同时减小了接触共振对探针-样品的磨损。压电响应的另一个问题就是新型材料(如氧化铪)的压电系数太小了,即使是AFM善于在纳米尺度观测突变,也很难实现清晰,高信噪比的扫描。所以牛津仪器Asylum Research针对性提供高压PFM模块。对于MFP-3D Origin+ AFM为±220 V,对于MFP-3D 和Cypher系列AFMs为±150 V,让原本皮米级别的响应变得更清晰可见。牛津仪器AFM特点2:优秀的环境控制许多材料会不可逆转地受到表面与周围氧气或水蒸气的影响,这可能导致样品退化或测量结果不可靠。在新能源与锂电池领域,保护样品,防止环境因素产生不可控变化显得显得尤为重要。对于MFP-3D系列AFM,可以使用封闭的流体腔来实现环境隔离。而对于Cypher ES AFM,则可以使用液体/灌注专用holder来实现环境隔离。这类设计可以确保在测量过程中,样品不会同周围的环境之间有任何直接接触,从而保证材料的原始状态,提高测量结果的准确性和可靠性。而通过更换载物台(PolyHeater或者CoolerHeater),可以实现对样品最低从0°C到最高250°C的环境温度控制。如果样品在大气下极不稳定,需要更极致的环境隔离方案,则可以选择将AFM整机置于充满保护气体的环境中进行测试。Turnkey Glovebox Solutions为MFP-3D和Cypher系列AFM提供了完全的环境隔离解决方案。牛津仪器AFM特点3:MFP-3D 对于光伏领域的特别支持为了适应愈发灵活的光伏检测体系,并改进对光活性材料系统的表征,MFP-3D AFM有特别的选配方案,并构建了一个灵活的光伏一站式平台。这个平台通过将可定制的样品照明激发模块,安装在AFM的底部,然后在MFP-3D已有的各种测试功能中集成照射样品激发功能,使得可以在多种AFM模式和环境中进行高分辨率表征。其参数及特点包括:光纤耦合LED允许最大照度 1太阳,照度控制步长为1%(如图7所示)支持商用的适配器板,可以轻松容纳外部光源,例如Hg-Xe灯开放式设计允许在光路中插入Ø 1〞组件,例如滤光片、偏振器和光阑快速释放适配器可让您在几秒钟内在多个光源和光纤之间切换与MFP-3D 所有的环控附件完美兼容,包括加热、冷却和湿度控制等MFP-3D PV(Photovoltaics)选配的光学元件放置在样品台下面的底座,带有铰链门,便于用内置的LED灯照明样品。样品可以用MFP-3D附随的LED照明器或是用户自己提供的光源照明。通过具有可调节聚焦的透镜将光聚焦到样品上,从而适应一系列不同厚度的样品。同时,插入点允许添加滤镜、偏振器和其他组件获得额外的实验灵活性。使用光伏选配方案,为可视化纳米尺度实时光电响应与定量分析光激发提供了有力的支持。在对新型光伏材料表征技术不断提出新需求的当下,建立了多模态联用的新思路。图 7:氧化铟锡(ITO)衬底上退火的聚(3-己基噻吩)和苯基-C61-丁酸甲酯(P3HT:PCBM)体异质结层使用了ORCA模式,在-1V的偏压下对体异质结层样品进行成像。在测量过程中,打开和关闭530nm的照明光源,同时以1%的增量增加强度(全功率约为0.9 W/cm² )。图像的横截面显示了测量电流对光强度的依赖性,并且对光强度的微小变化具有很高的灵敏度。2 有机半导体以聚合物和有机小分子为基础的有机太阳能电池,作为下一代光伏技术,具有广阔的前景。其原料来源广泛,绿色环保,性能优秀,且可通过低成本的处理技术(如溶液处理或蒸镀)进行制造。目前,这些电池已达到最低的商用转换效率标准(10%), 而要继续推进商业化,关键是增加电池寿命,突破只有几年的服役时长障碍 10。因此,理解其性能如何因光线、热量和其他环境因素而退化至关重要。AFM可以从微观尺度测量设备局部结构和性能变化等重要信息,有助于解决上述问题11。2.1体异质结(BHJ)形貌成像有机太阳能电池通常使用体异质结(BHJ)光吸收剂,这是一种自组装的纳米网络结构,由给体和受体材料组成。其转化效率强烈依赖于网络的特定相分离和连通性,不幸的是,现阶段预测给定合成路线所生成的结构,都仍然具有挑战性。更不用说,探究形态是如何通过各种老化机制发生改变的难题。因此,表征BHJ薄膜的微纳米尺度的形态,探究其中关联性是至关重要的。扫描电子显微镜(SEM)是一种广泛使用的选择,但要保证足够清晰的对比度通常会造成样品损伤。而AFM成像几乎是无损的,可以在各种环境条件下,揭示BHJ组分的大小和分散性,并探索处理流程中变量(例如溶剂蒸发速率和退火)的影响。(图8)。有机材料上的形貌图通常在轻敲模式下扫描,这种模式施加的横向和垂直作用力极其温和。较低的力不仅可以减小样品损伤,而且由于较小的探针-样品接触面积,还可以实现更高的空间分辨率。如果使用非常小的悬臂梁配合新型快速扫描AFM,则可以控制低至亚皮牛级的力,这对于易变形的脆性聚合物非常有帮助。BHJ形态也可以用感知力学性质的AFM模式进行表征。例如,轻敲模式的相位图可以区分在混合物不同组分之间精细的结构细节。通过力曲线获得的弹性模量图还可以显示相分离和分散(图9)。其他纳米力学模式不仅可以进行快速定性成像,而且还可以定量测量弹性和粘性响应。特别是,新型双模轻敲技术(例如AM-FM模式)可以实现高分辨率的快速成像14。图 8:氟化调节性能在共轭聚合物主链中用氟代替氢可以提高转化效率和耐用性。在这里,就探究这种效果进对四个窄带隙聚合物进行了系统研究:PF-0无氟,PF-1a和PF-1b具有中剂量氟和不同的区域选择性,而PF-2具有最多的氟12。使用不同剂量溶剂添加剂DIO获得了聚合物/PC70BM的溶液处理薄膜。PF-1a混合物的形貌图表明,少量的DIO增加了相分离,从而提高了功率转换效率,但更高DIO浓度产生了次优形态。图像显示,所有四个混合物的均方根粗糙度随着氟含量的增加而增加,这可能是因为团聚增强了。通过MFP-3D AFM在轻敲模式下获得,扫描范围为5微米12。图 9:评估分子量效应本研究旨在探究不同聚合物链数平均分子量的PDPP4T-TT和苯基-C61-丁酸甲基酯(PCBM)混合物薄膜的杨氏模量分布。通过力曲线成像获取的分布图,可以区分出BHJ相。其中较低的模量对应于PDPP4T-TT,较高的模量对应于PCBM(插图显示了相应的轻敲模式形貌图)。对于中等分子量的薄膜观察到的大片PCBM域表明,在旋铸过程中通过垂直分离而产生的富含PCBM的表面。这个结果可以解释使用这种薄膜制造的晶体管测量到的异常低的串联电阻值。相比之下,其他薄膜中的相看起来很好地混合在一起,从而产生了具有更高的串联电阻。通过Cypher AFM获取,扫描范围为3微米13。2.2 纳米尺度光电响应成像理解有机半导体的电荷注入、传输、捕获和复合仍然是提高效率并减少性能退化的研究关键点。AFM在纳米尺度的光响应成像可以提供有关潜在机制的宝贵信息,并精确定位BHJ中每个过程发生的地点。使用CAFM和pcAFM对有机半导体成像可以在纳米尺度呈现,供体-受体混合物中获得光电流的状态和电荷传输网络。这些模式因此可以帮助确定微观结构各向异性、光强度或其他参数在光电转换中扮演的角色(图10)。然而,有机半导体的脆弱和相对柔软的特性使其容易受到传统接触式(CAFM和pcAFM)施加横向力的影响。同时,接触模式对样品和针尖的磨损会影响测量电流的稳定性,让数据难以重复,使图像的解释变得更加复杂。为了解决这些问题,近年来已经发展出了快速电流成像技术。快速电流成像技术会驱动悬臂梁在垂向上进行连续正弦运动,同时在横向方向进行移动扫描,最终形成一个快速力曲线阵列并在每一个点都记录了测量电流。当在光照下测量时,可以轻易地将形貌和电流数据相关联,从而揭示出局部结构-性质关系。事实上,只要保存过时间对电流和探针偏转的完整曲线,研究者们还可以通过软件对数据进行更高阶的分析。EFM和KPFM为有机半导体的电学表征提供了许多优势。使用EFM测量电容梯度的局部变化或使用KPFM测量表面电势,可以探索优化器件性能或提高长期稳定性的方法。这些基于非接触性质的模式大大减小了由探针功函数产生的能量屏障效应,因此可以实现开路响应的测量。然而,由于双通道扫描需要每行数据都扫描两次才能获得EFM和KPFM图像,这需要花费好几分钟的时间,所以它们更适合研究相对较慢的过程。对于更快的过程,例如毫秒到秒级别的电荷注入和载流子扩散,可能需要使用其他的电学模式进行研究。例如,FM-EFM以及悬臂梁振荡成像等技术,通过测量功率耗散和电荷捕获的局部变化,来研究光化学降解过程15。此外,还有一些更高阶的方法,如时间分辨EFM和混频KPFM,已经能够对有机半导体和钙钛矿中的局部载流子寿命、光诱导充电速率以及热退火效应进行动态研究15,16。尽管这些技术并非常规AFM的标准配置,但它们却突显了Asylum AFM基于开源软件平台的优势。事实上,Asylum的所有AFM都提供了开放控制架构,为优化数据采集和分析程序提供了无限可能,例如将测量与照明同步启动然后自动化批处理数据。图 10:探索P3HT:PCBM中光电流的异质性本研究测量了聚(3-己基噻吩) (P3HT)和PCBM混合物中的pcAFM电流图像,图像显示了具有较高和较低电导率的区域。并在暗处和照明时(~0.09 W/cm2, 530 nm)测量了画圈位置的I-V曲线。在这两种情况下,电流都随着电压低于-0.3 V时而增加,然后在正偏压下过渡到更高的电阻。其中一些位置,电流量取决于照明条件(黑色和蓝色圆圈),而在另一些位置(绿色圆圈)始终很高。使用PV选配方案和ORCA附件在MFP-3D AFM上获取,扫描范围为1微米17。。2.3 优化中间层有机太阳能电池通常包含附加层,用于提取和接收电荷以及控制表面重组。为了优化性能,先期使用AFM获得的纳米尺度信息,来设计界面层是不可或缺的步骤。例如,形貌图可以评估由于中间层加入而引起的BHJ形态变化,这将会影响载流子复合效率17。此外,EFM和KPFM的跨界面成像可以提供设计中间层所需的信息,使得中间层能够更好地排列从光吸收器到电极的电场和能级。中间层可以通过翻转几何形状或完全封装等方法来提高器件的稳定性。而要模拟设备失效和老化,环境控制功能十分重要,环控功能允许器件被惰性气体包围,并在现实或增强湿度条件下进行实验(图11)。温控是AFM环境控制的另一个重要方面;使用专门的载物台架可以实现高达几百度稳定、精确的温度变化。基于AFM环控功能在微观尺度对于设备稳定性和寿命研究,将推进设备商用化的进程。图 11:表征湿度相关效应P型金属氧化物可以作为有机太阳能电池中有效的空穴提取层,但不同环境条件对它们电学性能的影响尚不完全了解。本研究探究多晶NiOx薄膜在不同环境条件下的电学性能。KPFM结果发现在相对湿度变化时,表面电势呈现出纳米级空间变化。随着相对湿度的增加,表面电势的平均值降低,而形貌特征的平均尺寸增大。这种行为与水在薄膜表面吸附而导致的电荷屏蔽相一致。观察到的表面电势空间不规则性最可能是由于对暴露的不同取向晶粒的不均匀化学吸附引起的。通过Cypher AFM上获取,扫描范围为1微米。数据来源于橡树岭国家实验室纳米材料科学中心18。总结光伏技术的发展正逐渐满足世界日益增长的能源需求。基于钙钛矿和有机半导体的器件也迸发了更多的可能。实现原料丰富、低成本的可再生能源技术已经近在眼前,然而,要实现这一目标,我们需要更先进的表征手段来改进下一代光伏材料。牛津仪器AFM提供了多样模式,可以在黑暗和可变照明下呈现设备纳米级结构和功能响应。结合更高的空间分辨率、更快的成像速度和更完善的环境控制,这些优势将使AFM成为光伏领域不可或缺的工具。通过使用AFM,我们可以更好地了解光伏材料的性能和稳定性,从而为新一代光伏技术的研发提供有力支持。了解更多Asylum网站列举了AFM在常见研究方向中的应用。这些页面包括相关的应用笔记,网络研讨会和选定的出版物。详情请查看:“原子力为纳米尺度电学表征添砖加瓦” –http://AFM.oxinst.com/Nanoelectrical“原子力显微镜对压电铁电研究的进展” – http://AFM.oxinst.com/PFM参考文献1. A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science 352, aad4424 (2016).2. E. M. Tennyson, J. M. Howard, and M. S. Leite, ACSEnergy Lett. 2, 1825 (2017).3. Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Nano Lett. 16, 3434 (2016).4. J. Li, B. Huang, E. N. Esfahani, L. Wei, J. Yao, J. Zhao, and W. Chen, npj Quantum Materials 2, 56 (2017).5. N. D. Pham, V. T. Tiong, D. Yao, W. Martens, A. Guerrero, J. Bisquert, and H. Wang, Nano Energy 41, 476 (2017).6. Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, and J. Huang, Energy Environ. Sci. 9, 1752 (2016).7. D. Moerman, G. E. Eperon, J. T. Precht, and D. S. Ginger, Chem. Mater. 29, 5484 (2017).8. I. M. Hermes, S. A. Bretschneider, V. W. Bergmann, D. Li, A. Klasen, J. Mars, W. Tremel, F. Laquai, H.-J. Butt, M. Mezger, R. Berger, B. J. Rodriguez, and S. A. L. Weber, J. Phys. Chem. C 120, 5724 (2016).9. J. Ciro, S. Mesa, J. I. Uribe, M. A. Mejia-Escobar, D. Ramirez, J. F. Montoya, R. Betancur, H.-S. Yoo, N.-G. Park, and F. Jaramillo, Nanoscale 9, 9440 (2017).10. J. R. O’Dea, L. M. Brown, N. Hoepker, J. A. Marohn, and S. Sadewasser, MRS Bull. 37, 642 (2012).11. M. Pfannmoeller, W. Kowalsky, and R. R. Schroeder, Energy Environ. Sci. 6, 2871 (2013).12. J. Yuan, M. J. Ford, Y. Zhang, H. Dong, Z. Li, Y. Li, T.-Q. Nguyen, G. Bazan, and W. Ma, Chem. Mater. 29, 1758 (2017).13. A. Gasperini, X. A. Jeanbourquin, and K. Sivula, J. Polym. Sci., Part B: Polym. Phys. 54, 2245 (2016).14. M. Kocun, A. Labuda, W. Meinhold, I. Revenko, and R. Proksch, ACS Nano 11, 10097 (2017).15. R. Giridharagopal, P. A. Cox, and D. S. Ginger, Acc. Chem. Res. 49, 1769 (2016).16. J. L. Garrett, E. M. Tennyson, M. Hu, J. Huang, J. N. Munday, and M. S. Leite, Nano Lett. 17, 2554 (2017).17.T.-H. Lai, S.-W. Tsang, J. R. Manders, S. Chen, and F. So, Mater. Today 16, 424 (2013).18. C. B. Jacobs, A. V. Ievlev, L. F. Collins, E. S. Muckley, P. C. Joshi, I. N. Ivanov, J. Photonics Energy 6, 038001 (2016).致谢感谢R. Giridharagopal, B. Huey, and H. Phan for valuable discussions and L. Collins, R. Giridharagopal, D. Ginger, A. Gruverman, I. Hermes, B. Huey, J. Huang, I. Ivanov, F. Jaramillo, D. Moerman, N. Pham, Y. Shao, K. Sivula, V. Tiong, H. Wang, S. Weber, and J. Yuan 等人提供的图像支持。
  • 岛津原子力显微镜技术发展历程
    人类探索极限的脚步从未停止。为了看得更细,看得更清。列文虎克发明了显微镜,成为人类利用工具观察世界的肇始。 从此,光学成为显微镜的支配性规律。自十七世纪到二十世纪初,光学显微镜完成了几乎所有类型的研发、设计和定型。但因为衍射极限的发现,似乎提高观察的分辨率只有改进光源这一种路径。激光的发明成为光学显微镜在分辨率上最后的努力。 十九世纪初电子的发现,以及微观粒子的波粒二象性特性的揭示,成为了电子显微镜的基础。但是电子显微镜实际上可以看做光学显微镜在量子力学下的延伸。用加速电子束替代了传统光源,用磁透镜/静电透镜代替了透明介质透镜,可是几乎所有的理论结构都与光学显微镜一致。二十世纪三十年代电子显微镜被发明至今,其分辨率极致被提高到亚纳米级别,距离原子级分辨似乎只有一步之遥。 但是自然界被物理铁律支配,这一步似乎近在咫尺,但却云崖天隔。二十一世纪的电子显微镜已经进入了和二十世纪光学显微镜同样的境地,只能在不断改进各部件的精度中一丝一毫地改进图像,但无法跨越最后的鸿沟。 量子力学成为了新一代显微镜的理论基础。1981年,隧道扫描显微镜被发明,一种全新的显微镜横空出世。它不同于光学显微镜和电子显微镜,完全摆脱了对检测介质的依赖,以微粒间的作用(电、力)为检测信号,一举突破了原子级别的分辨率。随后在1985年被发明的原子力显微镜,更是将适用对象从金属和半导体拓展到所有的固体。 这是一种全新的显微方法和工具,从二十世纪八十年代末到九十年代初,全球各主要科技强国纷纷开展了扫描探针显微镜的研发。 OUR HISTORY岛津 也正是在这个时期,岛津开始涉足该领域。1991年,基于超高真空环境的隧道扫描显微镜AIS-900面世。 相对于在大气环境下的隧道扫描显微镜,真空环境是其工作环境更为简单,图像分辨率和清晰程度都更高,工作也更稳定。 虽然真空环境带来了分辨率的提高,但是同时也限制了样品的测试和操作的便利性。为此,1993年,岛津开发了兼容多种环境的WET-901,同时可以满足对大气环境、真空环境、特殊气氛、液体环境、电化学环境等不同要求。WET-901和随后的WET-9400代表着岛津敏锐地意识到,随着原子力显微镜的不断完善,微区观测技术必然会对原位分析产生重要的影响。因此,岛津持续不断地改进环境控制舱,应对不同时期科研领域的需求。 紧接着在1995年,岛津推出了成功的SPM-9500系列。二十世纪九十年代中后期是原子力显微镜大发展的时期,各种扫描模式从实验室走向实用。从1995年2001年,岛津SPM-9500系列也历经SPM-9500、SPM-9500J、SPM-9500J2、SPM-9500J3四个型号,不断吸收新的功能模式。同时,该系列具备的自动进针和头部滑动机构也在操作性上领先于其他竞争对手,这些特点使得该系列成为了一个长寿的产品。 随后的SPM-9600(2005年)、SPM-9700(2010年)、SPM-9700HT(2016年)基本都延续了SPM-9500的基本结构,通过不断改进控制器,提高分辨率,增加新功能,改善操作性。 在这个时期,商用原子力显微镜陷入了一个发展瓶颈,功能模式固化,应用领域受限,每个厂家都在不同的方向上尝试新的突破。有的厂商开始匹配半导体工业的需求,有的则在生命科学领域进行研发。 岛津也在思考什么才是原子力显微镜的发展根本? 不识庐山真面目,只缘身在此山中。经过大量的思考和尝试,一切回归本源——分辨率。只有分辨率才是显微镜最核心的技术指标。于是在2014年推出了调频型原子显微镜SPM-8000FM并在2017年升级为SPM-8100FM。该系列最核心的技术是调频控制探针,利用频率对作用力的分辨率和反馈速度远高于振幅的特点,实现了在大气和液体环境中原子/分子级的分辨率。 利用调频模式对作用力的高分辨检测能力,还成功地将原子力显微镜的应用从固体表面观察拓展到固液界面的水合化和溶剂化作用。这项技术有助于电池和摩擦学等领域的前沿研究。 最近的十年,随着原子力显微镜对不同应用领域的拓展,新的技术和新的需求也在不断涌现。 岛津原子力显微镜将会如何应对新变化?又会开发什么新技术呢? 一切尽在5月18日14:00由宏入微 顺手随心岛津SPM-Nanoa原子力显微镜在线发布会敬请期待!
  • 新起点 新征程!帕克原子力显微镜上海实验室开幕式顺利举行
    仪器信息网讯 5月16日,帕克原子力显微镜(以下称为Park Systems)上海实验室举行了开幕式。为了向客户提供更出色的产品和服务,Park Systems对2019年成立的上海实验室进行了扩建。扩建后的上海实验室占地更加广阔,设备也更加齐全,相信对于Park Systems进一步开辟中国市场将发挥重要作用。Park Systems上海实验室开幕式Park Systems中国区首席代表张菲博士介绍到场嘉宾韩国驻上海领事馆商务领事金根模先生致开幕词Park Systems全球执行副总裁Dr. Sang-Joon Cho致祝贺辞Park Systems亚太区销售经理Terry Yang部长致辞Park Systems中国区销售总裁张家荣介绍中国市场发展现状和发展蓝图Park Systems中国区销售总裁张家荣首先介绍了Park公司经历的三个冒险阶段,第一阶段是1988-1997年,当时Park Systems的创始人Sang-il Park(朴尚一博士)博士是美国斯坦福大学的研究人员之一,见证并参与了第一台原子力显微镜的发明。随后在1988年,第一台商用原子力显微镜问世,至1997年短短十年间就在全世界卖出了几千台原子力显微镜。第二阶段是1997-2022年,Sang-il Park博士回国创立Park Systems公司,并将目标转向了工业界,在经历了最初一段相对艰难的时期后,经过与IMEC的合作,最终在半导体市场取得了巨大的成功。2015年,Park Systems公司在韩国上市,直至2023年市值已经达到约1兆韩元。Park Systems在北京、上海、广州等多地布局,随着国内市场的繁荣,Park Systems公司也决定进一步地扩大上海实验室的规模。随后就在2023年,Park Systems公司进入了第三个冒险阶段,Park Systems公司推出了全自动的原子力显微镜FX40。对于国内市场而言,全新的自动化的原子力显微镜FX40必将掀起一轮新的革新。此外,Park Systems公司也在尝试结合不同的光学光学方法开发更多更好的原子力显微镜应用。Park Systems中国区售后经理张华新介绍中国区售后服务规划Park Systems中国区售后经理张华新介绍道,Park Systems售后团队的主要工作是机台的安装、培训、调试以及机台的维护保养等,目前中国区售后工程师已经突破了30人,并在武汉、合肥、北京、青岛、无锡、上海、广州等地设置了售后服务点。此外,Park Systems总部也有约10名售后工程师随时援助中国区售后团队,其中大部分都会说中文。Park Systems在国内还有充足的备件,在武汉、上海、合肥、武汉等地都有备品仓库,这些备品能够让Park Systems售后团队更快地解决客户发生的问题,特别是工业级的客户。今年Park Systems还计划在广州和青岛建立两个备件仓库,用来支援华中和华南两地。Park Systems在国内还有两个维修服务中心,这两个维修服务中心能够缩减备品返修时间,提高备品供应的效率。Park Systems在上海实验室布置了NX10和NX20两个科研型的演示机台,还新增了工业设备NX-Wafer,这些演示机台不仅具有演示作用,售后团队也可以利用演示机台进行内部培训,提高工程师的售后能力;演示机台也可以辅助售后工程师进行故障排查以及新应用和新功能的评估。Park Systems中国区销售经理魏晓冬致闭幕辞魏先生表示,Park Systems上海实验室位于上海虹桥核心区域,建筑面积接近500平米,现拥有12英寸的NX-Wafer全自动在线机台、兼容工业和科研的8英寸的NX20以及研究型的小样品机台NX10,近期还会再进驻全自动的研究型机台FX40,不久的将来Park Systems新收购的德国Accurion在线椭偏仪和主动隔振平台产品也都将亮相上海实验室。这些产品和应用方案可以给客户从购买设备之前的调研考察到售后阶段的各种应用需求提供完备的技术支持,从而帮助客户在各自的量测领域应用中解决面临的问题,提升工艺水平,提高研发效率。Park Systems中国区销售经理魏晓冬、Park Systems亚太区销售经理Terry Yang部长、Park Systems中国区首席代表张菲博士、Park Systems全球执行副总裁Dr. Sang-Joon Cho、韩国驻上海领事馆商务领事金根模先生、Park Systems中国区销售总裁张家荣、Park Systems全球市场部副总裁Jessica Kang常务、Park Systems全球技术支援部副总裁Peter Kang部长(从左至右)参加剪彩仪式Park Systems上海实验室参观
  • 日程公布|第三届原子力显微镜网络会议:14位嘉宾分享AFM技术前沿
    2021年8月18日,由仪器信息网(www.instrument.com.cn) 主办,纳米科学(NanoScientific) 协办的“第三届原子力显微镜网络会议”云端来袭!会议背景原子力显微镜(Atomic Force Microscopy, AFM) 是继扫描隧道显微镜(STM)之后发明的一种具有原子级高分辨仪器,自1985年商业化以来,由于AFM可以在大气和液体环境下对各种材料和样品进行纳米区域的多种物理性质进行测量,或者直接进行纳米操纵,AFM现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医研究和各类纳米相关学科的科研领域中,成为纳米科学研究的基本工具。而与光镜、电镜等相比,AFM相对较低的效率(成像范围小、速度慢、不易操作),一定程度限制了该技术的更广泛推广。30余年来,随着AFM技术的不断发展,当前的AFM商业化产品已逐渐趋向更高效、操作更便捷,各AFM品牌争相推出新产品新技术不断提高AFM应用效率,帮助AFM市场份额不断攀升。近些年,AFM的市场容量的环比增长更是多年超越光镜、电镜,AFM技术表现出更强劲市场增长潜力。2021年4-6月短短两个月间,岛津、牛津仪器、日立、Park原子力显微镜等四家AFM品牌更是先后发布了4款AFM新品,从高性能、视频级、易操作、全自动化等方面将商品化AFM产品技术进一步向前推进。此背景下,2021年8月18日,“第三届原子力显微镜主题网络研讨会”将继续线上开讲。旨在利用互联网技术为原子力显微学科研及相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到原子力显微学专家的精彩报告!会议概述9位知名AFM应用科研专家报告为您分享AFM技术多领域最新应用前沿3位AFM品牌企业专家代表报告为您分享AFM最新发布AFM新品技术动向12位专家在线答疑,线上面对面为您的AFM科研、应用痛点答疑解惑热点应用:水科学应用、石墨烯生长、纳米材料力学、静电性质动态测量、二维原子晶体界面调控、半导体器件失效分析、界面电荷转移反应、天然高分子溶液行为...技术前沿:便捷操作、全自动化、高速扫描、视频级、试样制备技术革命、光镜电镜衔接技术、智能化...抽奖活动:会议下半场将设置抽奖,奖品包括Kindle阅读器、现金红包等,详见文末介绍扫描二维码立即报名参会或进入会议官网报名参会:https://www.instrument.com.cn/webinar/meetings/AFM2021/报告嘉宾(按报告顺序)江颖 北京大学物理学院量子材料科学中心博雅 特聘教授报告题目:氢敏感的原子力显微术及其在水科学的应用国家杰出青年科学基金获得者,美国物理学会会士。研究方向为表面物理和扫描探针显微学,长期致力于尖端扫描探针显微术的自主研发,以实现电子态、核量子态、振动态、光子态、自旋态等单量子态的极限探测和操控,及其在单分子和低维材料方向的应用。曾获全球华人物理与天文学会“亚洲成就奖”、日本“仁科芳雄亚洲奖”、中国科学十大进展(2次)、北京市杰出青年中关村奖、陈嘉庚青年科学奖、中国青年科技奖等奖项或荣誉。发表文章 60 余篇, 包括: Science 2 篇、Nature 5 篇、Nature 子刊10篇。担任Journal of Chemical Physics、Chemical Physics、Advanced Quantum Technologies等国际期刊杂志编委。刘金荣 日立科学仪器(北京)有限公司 高级工程师报告题目:日立新一代AFM100系列原子力显微镜日立科学仪器(北京)有限公司/精工原子力显微镜资深工程师,从事原子力显微镜应用和技术支持超过20年。苏全民 中国科学院沈阳自动化所 研究员报告题目:试样制备在显微镜技术中的使能作用——关于原子力显微镜技术的反思国家特聘专家,纳米定位和测量国家标准专家组成员,全国显微镜协会理事,于2017年全职回国,现为中国科学院自动化研究所研究员和天津大学兼职教授。回国前为美国布鲁克公司高级技术总监,领导原子力显微镜(AFM)技术和系统的研发。苏全民是53 项美国授权专利的发明人,领导布鲁克原子力显微镜的技术和产品开发,曾获 R&D 100(2002)和 Microscopy Today(2012) 年度最佳产品奖。苏全民发表了80多篇论文;并组织了“Seeing at the Nanoscale”系列国际会议,担任过各种国际会议的分会主席,如MRS , M&M, AVS等,并在多个国际会议(IEEE, MRS,M&M,AVS等)做过大会,分会和专题特邀报告。陈强岛津企业管理(中国)有限公司 SPM产品担当报告题目:从能用到好用,从专家到傻瓜——原子力显微镜高效操作技术发展毕业于北京理工大学生命学院。具有17年操作使用原子力显微镜的经验,熟悉扫描探针显微镜的各种功能,对各类样品测试均有丰富的经验;从事原子力显微镜的技术及市场工作11年,对该仪器技术的发展及各厂商产品特点均有深入的了解。目前任岛津公司原子力显微镜的产品担当,负责该产品的技术及产品推广等工作。刘金养 福建师范大学物理与能源学院 副教授报告题目:成核点在石墨烯生长过程中的作用中科大理学博士,副教授,硕士生导师。近年来一直从事二维纳米晶体材料的设计、生长、表征、性能调控及其在光电探测方面的应用。在化学气相沉积法生长石墨烯纳米结构、新型二维纳米晶体材料及其光电探测器应用等研究开发上取得了一系列研究成果和重要进展,先后在Nature Communication, ACS Applied Materials &Interfaces, Nanoscle, Carbon, Crystal Growth & Design, Journal of Physical Chemistry C等国内外学术期刊上发表SCI论文近30篇,被Nature Communication,ACS nano,Nanoscale等引用超过300余次,单篇最高引用达48次;此外,以第一发明人申请发明专利8项,其中3项已获得授权。李慧琴 上海交通大学分析测试中心 高级工程师报告题目:原子力显微镜在纳米材料力学表征方面的应用近二十年一直从事原子力显微镜在微纳米材料方面的表征应用。主持并编写了三项关于原子力测试方法方面的国家标准(GB T 36969-2018,GB/T 31227-2014,GB/T 31226-2014)和一项国家教学仪器标准( JY/T 0582-2020);申请并授权了2项关于小球探针制备的发明专利;参与了多项国家自然科学基金的研究并发表了多篇关于原子力显微镜应用的论文。钱建强 北京航空航天大学物理学院教授报告题目:原子力显微镜在静电性质动态测量中的应用中国仪器仪表学会显微仪器分会理事,中国宇航学会空间遥感专业委员会委员,全国高等学校光学教学研究会理事,主要从事纳米测量方法与显微仪器技术研究。上世纪90年代初师从姚骏恩院士,研制成功国内首批激光检测原子力显微镜。近年来承担并完成国家科技支撑计划重大课题子课题、国家863、国家自然科学基金、北京市自然科学基金等项目20余项。先后研制成功基于自激励和自感知的石英音叉探针频率调制原子力显微镜,原子力显微镜液相环境频率调制成像系统,原子力显微镜高次谐波/多频激励成像系统。率先开展了基于压缩感知的原子力显微镜成像方法研究,基于小波变换的原子力显微镜高次谐波信号分析。在Nanotechnology、Ultramicroscopy、Review of Scientific Instruments等国内外学术期刊发表论文100余篇,获授权国家发明专利15项,主编并出版工信部“十二五”规划教材1部。程志海 中国人民大学物理学系 教授报告题目:氢敏感的原子力显微术及其在水科学的应用基金委优青,中国仪器仪表学会显微仪器分会理事,中国硅酸盐学会微纳米分会理事。2007年,在中国科学院物理研究所纳米物理与器件实验室获凝聚态物理博士学位。2011年8月-2017年8月,国家纳米科学中心(中科院纳米标准与检测重点实验室),任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”(技术百人计划)和首届“卓越青年科学家”,卢嘉锡青年人才奖获得者,青年创新促进会会员并获首届“学科交叉与创新奖”等。目前,主要工作集中在先进原子力探针显微分析技术方法及其在低维材料与表界面物理等领域的应用基础研究。杨鹏 云南大学 教授报告题目:原子力显微在第十族TMDs物性研究中的应用研究兴趣集中在纳米颗粒及其自组装的光学和电学性能,原子分子操纵,人工纳米结构的电学性能,纳米电子学等。师从欧洲科学院院士Marie-PaulePileni教授,于2010年在法国居里夫人大学获得博士学位。2012年取得法国高校教师资格,并在巴黎狄德罗大学任教。美国能源部劳伦斯伯克利国家实验室访问学者。2016年作为引进人才全职加盟云南大学。承担和参与过国家自然基金、欧盟ERC、欧盟FP7、法国ANR、伯克利国家实验室项目等。部分论文发表在Nano Letters, ACS Nano, Physical Review B等国际知名杂志上。同时是国家自然基金通讯评审人,美国化学会、英国皇家物理学会旗下期刊审稿人,伯克利国家实验室分子工厂用户执委会委员、中国物理学会会员、全法中国科技工作者协会会员、全国材料新技术发展研究会理事等。陈迪 清华大学未来实验室 副研究员2021年Park AFM奖学金获奖者报告题目:从原子尺度理解固/气界面上的高温电化学反应机理本科毕业于清华大学材料科学与工程系,于麻省理工学院材料科学与工程系获博士学位,在斯坦福大学材料科学与工程系完成了博士后训练。以第一作者和共同作者的身份在Nature Catalysis, Advanced Functional Materials, Chemistry of Materials, Nature Materials, Nature Nanotechnology等杂志发表论文多篇。主要研究方向为:固态离子学;薄膜材料;高温电化学;表界面的同步辐射表征。王静禹 华南理工大学 在站博士后 2021年Park AFM奖学金获奖者报告题目:基于分子间作用力的天然高分子溶液行为研究2014年获得长沙理工大学学士学位,博士期间在华南理工大学邱学青教授的生物质资源利用团队进行学习与研究,于2020年获得化学工程博士学位,并在毕业后继续以博士后身份在该课题组开展研究工作。2018年至2020年,以联合培养博士身份赴美国威斯康辛大学-麦迪逊校区进行为期两年的交流学习。有着7年的原子力显微镜应用经验,目前的研究工作主要包括天然高分子分子间相互作用和溶液行为的基础研究及其超分子结构的精确调控。潘涛 Park原子力显微镜 高级工程师报告题目:扫描电容显微镜在FA实验室的应用资深AFM应用工程师,在AFM领域工作5年,具有丰富的AFM的样品测试经验。长期从事测量力学性能的纳米尺度表征,加入帕克(Park)公司后,主要从事原子力显微镜在计量领域的相关应用。抽奖活动抽奖规则:主持人将在会议直播中现场公布,欢迎参会关注!扫描二维码立即报名参会或进入会议官网报名参会:https://www.instrument.com.cn/webinar/meetings/AFM2021/
  • 层状材料的原子力显微镜
    • James Keerfot• Vladimir V Korolkov原子力显微镜(AFM)是一种测量探针和样品之间作用力的技术,它不仅可用于测量纳米级分辨率的表面形貌,还可用于绘制和操作可使用纳米级探针处理的一系列性能。在这里,我们只谈到了最先进的AFM在层状材料研究中的一些能力。我们希望探索的第一个例子是如何使用AFM来研究垂直异质结构中的层的注册表,这会产生许多有趣的现象[1,2]。根据层间和层内的结合、晶格周期和两个重叠薄片角度的对称性和失配,可以观察到单层石墨烯(SLG)和六方氮化硼(hBN)[3]之间的莫尔图案或扭曲控制的双层二硫化钼(2L-MoS2(0°))[4]中的原子重建等特征。在图1中,我们展示了我们的FX40自动AFM如何使用导电AFM(C-AFM)和侧向力显微镜(LFM)来测量这些特征。这两种技术都源于接触模式AFM,其中悬臂由于排斥力而产生的偏转用于通过反馈回路跟踪表面形貌。LFM测量探针在垂直于悬臂梁的方向上扫描时的横向偏转,而C-AFM绘制尖端样品结处恒定电压和力下的电流图。除了传统的形貌通道外,AFM还使用这些模式,为研究垂直异质结构中层间扭曲和应变影响的研究人员提供了“莫尔测量”。图1:Park Systems的FX40自动AFM(a)用于使用LFM(c)和c-AFM(d)测量hBN和单层石墨烯(b)之间的莫尔图案。对于具有边缘扭曲角和有利的层间结合的样品,可以测量原子重建,这是石墨上平行堆叠的双层MoS2的情况(e)。与莫尔图案一样,在这种情况下,由于重建,可以使用LFM(f)和C-AFM(g)测量不同配准的区域。除了探索层状材料的形态和注册,原子力显微镜还具有一系列功能模式,可以用纳米尺度的分辨率测量诸如功函数、压电性、铁电性和纳米机械性能等性能。在图2中,我们展示了如何使用单程边带开尔文探针力显微镜(SB-KPFM)[5]来同时绘制尖端和具有不同层厚度的MoS2薄片之间的形态和接触电势差(CPD)。MoS2薄片从聚二甲基硅氧烷(PDMS)转移到Si上,在MoS2和Si之间留下截留的界面污染气泡。通过比较形貌(见图2b)和CPD(见图2c),我们看到由于MoS2层厚度和截留的界面污染物气泡的大小,CPD发生了变化。通过从地形数据中提取相对应变的估计值,该估计值基于尖端水泡相对于平坦基底的行进距离,可以直接将CPD和一系列层厚度的应变关联起来[6]。图2:KPFM是用Multi75E探针和5V的电驱动(VAC)和5kHz的频率(fAC)在硅(天然氧化物)上的MoS2上进行的(a)。对于多层MoS2薄片,同时绘制了形貌图(b)和CPD(c),揭示了由于层厚度和捕获污染物的气泡的存在而导致的CPD对比度。通过从地形图像中提取相对应变的估计值,我们绘制了各种泡罩尺寸和MoS2厚度的相关应变和CPD(d),如图图例所示。在我们的最后一个例子中,我们将研究如何使用原子力显微镜来决定性地操纵层状材料。在图3 a-c中,我们比较了90 nm SiO2/Si中2-3层(L)石墨烯薄片在使用阳极氧化切割之前(见图3b)和之后(见图3c)的横向力显微镜图像,其中尖端使用接触模式保持接触,同时施加40 kHz的10 V AC偏压[7]。除了阳极氧化,原子力显微镜还能够对层状材料进行机械改性。图3d-f中给出了一个这样的例子,其中使用Olympus AC160探针(刚度~26N/m)将聚苯乙烯上的3L-MoS2薄片缩进不同的深度。如图3f的插图所示,压痕深度(使用非接触模式监测)与压痕力密切相关。以这种方式修改局部应变已被证明可以决定性地产生表现出单光子发射的位点[8]。图3:在接触模式(a)下,通过向探针施加AC偏压,对少层石墨烯进行阳极氧化。通过比较(b)之前和(c)之后的LFM图像来证明薄片的确定性切割。也可以在聚苯乙烯上进行几层MoS2的压痕,证明了机械操作(d)。通过非接触模式AFM监测的压痕深度显示,压痕力范围高达~7.2µN。总之,我们已经展示了AFM如何能够提供比表面形貌多得多的信息,并且可以执行的一套功能测量和样品操作过程为关联测量提供了新的机会。易于使用的功能以及使用最佳探针自动重新配置硬件进行功能测量的能力,使Park的FX40特别适合此类调查。References[1] R. Ribeiro-Palau et al. Science 361, 6403, 690 (2018).[2]Y. Cao et al. Nature 556, 80 (2018).[3] C. Woods et al. Nature Phys. 10, 451 (2014).[4]A. Weston et al. Nat. Nanotechnol. 15, 592 (2020).[5] A. Axt et al. Beilstein J. Nanotechnol. 9, 1809–1819 (2018)[6] E. Alexeev et al. ACS Nano 14, 9, 11110 (2020)[7] H. Li et al. Nano Lett., 18, 12, 8011 (2018)[8] M. R. Rosenberger et al. ACS Nano, 13, 1, 904–912 (2019)原文:Atomic force microscopy for layered materials,Wiley Analytical Science作者简介• 詹姆斯基尔福(James Keerfot)Park Systems UK Ltd, MediCity Nottingham, Nottingham, UK.弗拉基米尔科罗尔科夫(Vladimir V. Korolkov)Park Systems UK Ltd., MediCity Nottingham, UK.弗拉基米尔于2008年获得莫斯科大学化学博士学位。随后,他进入海德堡大学,专攻薄膜的X射线光电子能谱学,随后在诺丁汉大学任职,在那里他发现了自己对扫描探针显微镜(SPM)的热情,并成为SPM技术的坚定拥护者,以揭示纳米级的结构和性能。他率先使用标准悬臂的更高本征模来常规实现分辨率,而以前人们认为分辨率仅限于STM和UHV-STM。弗拉基米尔目前发表了40多篇科学论文,其中包括几篇在《自然》杂志上发表的论文。尽管截至2018年,他的专业知识为SPM技术的产业发展做出了贡献,但他的工作仍在激励和影响该领域的学术冒险。
  • 日立新品|AFM100系列原子力显微镜
    新品:原子力显微镜AFM100系列AFM100系列原子力显微镜在提高操作便利性基础上,实现了更低噪音,更高分辨率和更低的漂移量,可用于科学研究开发以及质量管理。系列包括高性能AFM100 Plus及其入门型号AFM100两种机型。通过使用AFM100/100Plus,任何人都能轻松且稳定地获取可靠数据,从而完成从科学研究用途到质量管理中的日常作业。特别是AFM100 Plus,其用途广泛,可用于3D形貌观察、粗糙度分析、物性评估等领域。并可配置AFM Marking功能,实现与电子显微镜同一位置观察。 产品特点高性能:极低系统噪音,低漂移;高效率及操作简易化:Pre-mount cantilever预装探针系统,Realtune II参数自动优化,Recipe菜单化测量;电镜联用:AFM Marking功能,实现与日立电子显微镜的联用;高效的支持:自诊断功能,离线软件。 第三届原子力显微镜网络研讨会日期:8月18日时间:9:30-10:00题目:日立新一代AFM100系列原子力显微镜报告人:日立科学仪器(北京)有限公司 高级工程师 刘金荣 想了解更多产品信息,请点击链接,报名参与!https://www.instrument.com.cn/webinar/meetings/AFM2021.html公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 2021上半年原子力显微镜新品盘点:四品牌集中发布 聚焦四技术趋势
    自1985年在美国斯坦福大学发明出首台原子力显微镜(Atomic Force Microscopy, AFM)以来,AFM凭借其前所未有的高空间分辨率、可以测量纳米级的多种物理性质等,在纳米科学等领域的应用得到快速发展。相比光镜、电镜,AFM相对较低的效率(准确性、易操作性),一定程度限制了该技术的更广泛推广。30余年来,随着AFM技术的不断发展,当前的AFM商业化产品已逐渐变得更高效、操作更便捷,各AFM品牌争相推出新产品新技术不断提高AFM应用效率,帮助AFM市场份额不断攀升。2021年4月到6月两个月间,四家AFM品牌先后发布了4款AFM新品,集中的新品发布,为用户带来哪些最新技术,AFM性能又获得了哪些提升?以下对四款新品新技术进行整理,方便大家快速了解AFM最新技术动向。上半年AFM新品发布概览上市时间品牌型号亮点4月19岛津SPM-Nanoa由宏入微,顺手随心4月27日牛津仪器Cypher VRS1250视频级原子力显微镜6月17日日立科学仪器AFM100系列高操作性6月25日Park原子力显微镜Park FX40全流程高智能技术趋势一:操作更便捷在岛津SPM技术30周年之际,岛津将最新发布SPM-Nanoa的设计宗旨定义为“让更多的人轻松使用SPM”,在便捷操作方面,配置的自动观察功能可帮助更多普通用户可以更容易才做获得高分辨图像。如智能模式“Automatic observation”、自动光轴调整“Link On”、自动参数调整“NanoAssist”等功能,帮助光轴调整、样品准备、图像捕获等操作过程不再依赖操作人员的丰富经验或技巧。日立科学仪器AFM100系列为简化过去操作繁琐的悬臂更换,采用新开发的预装方式悬臂,提高了操作性。而且,通过配备自动向导功能,还可以根据样品的表面形貌,自动设置最佳测量条件,对探针进行接触状态控制和扫描速度调整等,任何人测量都可以得到稳定的结果,从而提高了数据的可靠性。此外,该机型支持自动多点测量,只需点击一下,从测量,到图像数据分析、保存可一次性完成,大大缩短了数据测量分析时间。Park原子力显微镜Park FX40与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。” 即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。技术趋势二:图像更清晰岛津SPM-Nanoa,比肩高端型号的高信噪比检测系统:高信噪比检测系统、最高8K点阵成像。牛津仪器Cypher VRS1250强调了其高速、高分辨率。特殊的微光斑悬臂探测系统,在视频级 AFM 适用的小探针上也能给出出色的信噪比。Asylum 的 blueDrive 光热激励技术和优秀的机械设计大大减少热漂移问题,为观察纳米材料动态过程提供稳定、温和且高分辨的成像仪器,不错过动态过程中的重要时刻。技术趋势三:扫描更快速,省时高效岛津SPM-Nanoa:探针更换夹具、高速扫描器、Nano 3D Mapping Fast等技术帮助数据获取时间减少到1/6甚至更少。牛津仪器Cypher VRS1250描述为新一代的视频级原子力显微镜。相较于前一代的 Cypher VRS,新一代的原子力显微镜将扫图速度提升了两倍,每秒可扫 45 帧图。科研人员将能观察纳米尺度下的材料动态过程,包括生化反应、二维分子的自组装、蚀刻和溶解过程等。Cypher VRS1250同时还支援许多不同的操作模式及配件,使得它在各式的高速AFM中脱颖而出,让实验不局限于高速成像,对跨领域科研团队和公共设备平台而言,十分理想。技术趋势四:光镜电镜衔接技术岛津SPM-Nanoa,先进的光学显微系统帮助其光学图像和SPM图像的无缝衔接。日立科学仪器AFM100系列提高了与其扫描电镜SEM产品的亲和性。选配功能“AFM标记功能”通过采用日立高新技术自主开发的SÆMic.(SÆMic:AFM-SEM相关显微镜法)观察方法,提高了与扫描电子显微镜SEM装置的亲和性。在观察样品的同一位置时,可以充分发挥各个设备的特性,对样品进行机械特性、电气特性、成分分析等检测,易于开展多方面分析。【直播预告】8月18日:原子力显微镜新技术新应用线上研讨会——第三届AFM网络会议即刻报名占座:https://www.instrument.com.cn/webinar/meetings/AFM2021/日程预览时间Time报告题目Topic演讲嘉宾The Speakers09:00氢敏感的原子力显微术及其在水科学的应用江颖 教授北京大学09:30日立新一代AFM100系列原子力显微镜刘金荣 高级工程师日立科学仪器有限公司10:00试样制备在显微镜技术中的使能作用——关于原子力显微镜技术的反思苏全民 研究员中国科学院沈阳自动化所10:30从能用到好用,从专家到傻瓜——原子力显微镜高效操作技术发展陈强SPM产品担当岛津企业管理(中国)有限公司11:00成核点在石墨烯生长过程中的作用刘金养 副教授福建师范大学物理与能源学院11:30原子力显微镜在纳米材料力学表征方面的应用李慧琴 高级工程师上海交通大学13:30欢迎 致辞Keibock Lee Chief EditorNanoScientific13:40欢迎致辞张菲 博士北京航空航天大学13:50原子力显微镜在静电性质动态测量中的应用钱建强 教授北京航空航天大学14:20二维原子晶体界面调控的原子力显微学研究程志海 教授中国人民大学14:50抽奖活动15:00原子力显微在第十族TMDs物性研究中的应用杨鹏 教授云南大学15:30从原子尺度理解固/气界面上的高温电化学反应机理陈迪 副研究员清华大学未来实验室16:00基于分子间作用力的天然高分子溶液行为研究王静禹 博士后华南理工大学化学与化工学院16:30扫描电容显微镜在FA实验室的应用潘涛 高级工程师Park原子力显微镜附:上半年发布四款AFM新品详情1 岛津新一代原子力显微镜SPM-Nanoa【产品链接】岛津新一代原子力显微镜SPM-NanoaSPM-Nanoa设计宗旨:让更多的人轻松使用SPM岛津的设计理念是让更多的人轻松使用SPM,本次发布的新一代原子显微镜SPM-Nanoa主要有以下三大特点:1)操作更简便,自动观察自动观察功能使得任何人均可自如操作获得高分辨图像:智能模式“Automatic observation”、自动光轴调整“Link On”、自动参数调整“NanoAssist”2)图像更清晰,功能先进比肩高端型号的高信噪比检测系统:高信噪比检测系统、最高8K点阵成像;光学图像和SPM图像的无缝衔接:先进光学显微系统3)扫描更快速,省时高效数据获取时间减少到1/6甚至更少:探针更换夹具、高速扫描器、Nano 3D Mapping Fast基于SPM市场需求,实现5方面功能增强以往市场对于SPM的需求主要包括两方面,一是性能方面对成图质量、分辨率的需求;一方面是操作性方面,探针安装及光轴调整、扫描图像时的参数调整、寻找观察区域等环节可操作性的需求。基于市场需求,岛津SPM-Nanoa主要在5方面实现功能增强,以实现性能和可操作性的兼容。5方面功能增强包括:检测灵活度(硬件)、光轴自动调整(软、硬件)、参数自动设定(软件)、数据获取速度(软、 硬件)、光学辅助系统性能(硬件)等。2 牛津仪器视频级原子力显微镜 Cypher VRS 1250【产品链接】视频级原子力显微镜 Cypher VRS 1250相较于前一代的 Cypher VRS,新一代的原子力显微镜将扫图速度提升了两倍,每秒可扫 45 帧图。使用如此高速实验设置,科研人员将能观察纳米尺度下的材料动态过程,包括生化反应、二维分子的自组装、蚀刻和溶解过程等等。Cypher VRS1250同时还支援许多不同的操作模式及配件,使得它在各式的高速AFM中脱颖而出,让实验不局限于高速成像,对跨领域科研团队和公共设备平台而言,十分理想适切。AsylumResearch 总裁 Terry Hannon 表示,AsylumResearch 致力追求提高 AFM 高速扫描技术的界限,CypherVRS1250 提升了两倍的扫描速率,使科研人员进行实验测试时,在时间和空间上都能有所突破。除了高速扫描以外,还能结合各种不同操作模式和配件,Cypher VRS1250 毋庸置疑地是研究生物分子、生物膜、自组装过程、二维材料、聚合物等的优秀 AFM 选择。Cypher VRS1250 特别为了高速、高分辨率成像而生。特殊的微光斑悬臂探测系统,在视频级 AFM 适用的小探针上也能给出出色的信噪比。Asylum 的 blueDrive 光热激励技术和优秀的机械设计大大减少热漂移问题,为观察纳米材料动态过程提供稳定、温和且高分辨的成像仪器,不错过动态过程中的重要时刻。综合了以上优点,Cypher VRS1250 操作容易且支援多种操作模式,是台能够解决不同的科研团队实验需求的优秀 AFM。3 日立科学仪器AFM100系列【产品链接】AFM100系列AFM100系列追求操作性并提高了处理量,可用于科学研究开发以及质量管理,包括高性能AFM100 Plus及其入门型号AFM100两种机型。AFM100/100Plus旨在解决操作复杂等问题,推动具有高操作性的AFM装置在工业领域和科学研究开发领域实现普及。通过使用AFM100/100Plus,任何人都能轻松且稳定地获取可靠数据,从而完成从科学研究用途到质量管理中的日常作业。特别是AFM100 Plus,其用途十分广泛,可用于从观察石墨烯和碳纳米纤维等纳米材料,到超过0.1 mm的大范围3D形貌观察、粗糙度分析、物性评估等领域。产品特点:1.提高了操作性、可靠性及总处理量为简化过去操作繁琐的悬臂更换,采用新开发的预装方式悬臂,提高了操作性。而且,通过配备自动向导功能,还可以根据样品的表面形貌,自动设置最佳测量条件,对探针进行接触状态控制和扫描速度调整等,任何人测量都可以得到稳定的结果,从而提高了数据的可靠性。此外,该机型支持自动多点测量,只需点击一下,从测量,到图像数据分析、保存可一次性完成,大大缩短了数据测量分析时间。2.提高了与本公司SEM装置的亲和性 选配功能“AFM标记功能”通过采用日立高新技术自主开发的SÆMic.(SÆMic:AFM-SEM相关显微镜法)观察方法,提高了与扫描电子显微镜SEM装置的亲和性。在观察样品的同一位置时,可以充分发挥各个设备的特性,对样品进行机械特性、电气特性、成分分析等检测,易于开展多方面分析。3.实现装置的扩展性和持续性为确保用户可长期使用,该装置标配控制软件免费下载服务和能够自行诊断意外故障因素的自检功能。因此,用户只需自己动手进行软件升级,即可始终保持最新性能。4 Park原子力显微镜全新型原子力显微镜Park FX40【产品链接】全新型原子力显微镜Park FX40“与Park推出的前几代AFM系列不同,Park FX40自行负责了扫描前和扫描期间的所有设置,包括自动换针、探针识别、激光校准、样品定位以及近针和成像优化等操作。”Park全球产品研发部门副总裁Ryan Yoo评论道,“Park FX40兼有最新的人工智能技术和Park领先于半导体行业且价值百万美金的自动化技术,所以可以轻松自主执行上述任务。”新的 Park FX40 原子力显微镜不仅是几十个新功能的组合和原件的再升级,它还在原有的设计基础上,进行了全面而彻底的改革,使得AFM 具备高级的自动化能力。福音来了!即便是未经专业培训的研究型科学家们也能通过该显微镜轻松快捷地完成扫图过程,而专业的研究人员更可以将选择和正确装载探针的时间节省下来,以专注于他们更擅长的领域。除此之外,Park FX40还彻底升级了AFM的许多关键方面,其中包括采用尖端的机电技术极大降噪,减少束斑大小,调整光学视野,以及多功能嵌入样品台等。Park FX 尖端的智能系统可以让用户在初始操作时同时放置多个样品(相同或不同类型),并将根据用户的需求进行自动成像。除此之外,该显微镜还能轻松及时地获取可发布的数据,并缩短研究周期来获得科学和工程上的最终成功。这些都有助用户实现更快更准的研究。 同时,Park FX40 独特的环境传感、自我诊断系统和避免头部碰撞的智能系统确保自身能够以更佳性能持续运行。据悉,在与全球原子力显微镜应用科学家们的密切合作下,Park产品市场部过去一整年都在不懈努力,潜心研发Park FX。“我们的科学家认识到AFM可以帮助研究人员获得前所未有的科学数据,并对纳米科学创新产生不可估量的影响。” Park公司的创立者,全球CEO朴尚一博士(Dr. Sang-il Park)评论道,“一直以来,我们都秉承着一颗赤诚之心来研发超级智能自动化的 Park FX 。因为我们的终极目标是为研究人员的工作保驾护航,帮助他们发现并打开科学更深处奥秘的大门!”
  • Park 原子力显微镜发布AFM新品:针对新一代显示器,最大样品2200 mm!
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 6月23日,知名原子力显微镜(AFM)制造商Park原子力显微镜公司(Park Systems Inc.)宣布推出高分辨率、自动化原子力显微镜新品——Park NX-TSH,据介绍,Park NX-TSH的 /span span style=" text-indent: 2em color: rgb(0, 112, 192) " 龙门架设计 /span span style=" text-indent: 2em " 平板式探针扫描器专为最新一代显示器工厂的应用需求研发设计, /span span style=" text-indent: 2em color: rgb(0, 112, 192) " 最大样品可以测到2200 mm /span span style=" text-indent: 2em " 。另外,其模块化设计还可在提供样品3D形貌的同时提供微区电流测量。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 405px " src=" https://img1.17img.cn/17img/images/202006/uepic/c86270b5-68fa-4a86-aa11-aeafcc66248d.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 405" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 产品研发背景:迎合OLED新兴市场带来照明和屏幕技术的需求 /strong /span /p p style=" text-indent: 2em " 有机发光二极管(OLED)技术由于其扁平、薄如纸、柔韧性,并且具有漫射光的能力,该技术有望在未来几年显著推动市场增长。 /p p style=" text-indent: 2em " 数据显示,OLED面板市场在2020-2025年期间将以12.9%的复合年增长率增长,到2025年将达到455.5亿片。尽管受全球新型冠状病毒疫情影响而总体上将出现小幅下滑,但业内专家仍预计OLED面板将成为全球采用的一种重要的显示技术趋势,且屏幕尺寸将更大,分辨率将提高到8K,并将具有新的外形规格。 /p p style=" text-indent: 2em " 为了迎合OLED市场的需求,原子力显微镜制造商Park 原子力显微镜开发了Park NX-TSH,扩大了其Gen8 +和所有大型平板显示器的AFM工具。为制造下一代平板显示器制造商而开发,以克服300 mm样品尺寸的限制。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong Park NX-TSH:用于大样品分析,最大样品2200 mm! /strong /span /p p style=" text-indent: 2em " 尖端扫描头(TSH)是一种自动移动的扫描头,适用于对OLED,LCD,光子学用于最大尺寸达2200 mm的大样品进行工业AFM测量,用于大样品分析。自动的尖端扫描头采用气载台技术,可将x,y,z扫描仪直接移动到基板上的所需位置。 /p p style=" text-indent: 2em " “Park NX-TSH专为生产制造下一代平板显示器的半导体厂(fab)开发设计,并克服了300 mm的门槛限制。” strong Park市场部副总裁Keibock Lee谈道 /strong 。 /p p style=" text-indent: 2em " 自动化的Park NX-TSH系统通过龙门式尖端扫描仪系统克服了纳米计量学的挑战,该系统可直接移动到样品上的某个位置,并生成粗糙度测量,台阶高度测量,临界尺寸和侧壁测量的高分辨率图像。 /p p style=" text-indent: 2em " Park NX-TSH可以在x,y和z方向上扫描针尖,最大扫描方向为100 µ m x 100μm(x-y方向),z方向为15μm,并具有灵活的卡盘,可容纳大型和重型样品。随着对更大尺寸的平板显示器的需求增加到65英寸,75英寸甚至更多。Park NX-TSH通过自动尖端扫描系统克服了这些挑战,而在龙门式尖端扫描仪系统中克服了纳米计量学的挑战。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 374px " src=" https://img1.17img.cn/17img/images/202006/uepic/24d9eaff-04cb-43a0-a66b-5534c4a10458.jpg" title=" 2.png" alt=" 2.png" width=" 450" height=" 374" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " Park NX-TSH专为Gen8+和所有大平板显示器研发,不仅能够进行纳米级尺寸测量,也可进行微区电性测试。同时,Park NX-TSH还可以兼容多种型号机械手臂,实现自动化测量。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/4a5a2c6d-45a6-4703-9155-50b765639ccd.jpg" title=" 3.png" alt=" 3.png" width=" 450" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 该全自动Park NX-TSH系统专为超大样品量身订造,扫描器可以固定在龙门架上,并能提供高分辨率的粗糙度测量,步长测量,临界尺寸和侧壁测量。 /p p style=" text-indent: 2em " Park NX-TSH将样品固定在样品卡盘上,连接到机架的尖端扫描头移动到表面样品的测量位置。这也使得Park NX-TSH尖端扫描头系统克服了样品尺寸和重量的限制。 /p p style=" text-indent: 2em " 原子力显微镜是一种准确、无损的纳米级样品测量方法,使用Park NX-TSH,可以在龙门式桥架上的OLED,LCD等上获得可靠的高分辨率AFM图像,从而系统的提高生产率和质量。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 值得关注的是, /strong /span Park 原子力显微镜将参加6月27日-29日上海新国际博览中心举办的Semicon China,并在展位E7549上现场演示新品Park NX-TSH和NX-Photomask,并将在稍后举行的SEMICON West展会上进行线上产品展示秀。届时,大家感兴趣可以现场观摩咨询。 span style=" color: rgb(127, 127, 127) " (地址:上海新国际博览中心;时间:2020年6月27-29日;展位:E7 7549) /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 283px " src=" https://img1.17img.cn/17img/images/202006/uepic/b4de76ec-87cf-40a1-b2d7-1e53b1e2b408.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 283" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 112, 192) " strong 关于Park原子力显微镜 /strong /span /p p style=" text-indent: 2em " Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。 /p
  • 讲座视频上线|第三届原子力显微镜网络会议近千听众数据分析
    2021年8月18日,由仪器信息网主办,纳米科学(NanoScientific)协办的“第三届原子力显微镜主题网络研讨会”在云端顺利召开。一天的听众行业分布原子力显微镜(Atomic Force Microscopy, AFM) 是继扫描隧道显微镜(Scanning Tunneling Microscopy)之后发明的一种具有原子级高分辨仪器,自1985年商业化以来,由于AFM可以在大气和液体环境下对各种材料和样品进行纳米区域的多种物理性质进行测量,或者直接进行纳米操纵,AFM现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医研究和各类纳米相关学科的科研领域中,成为纳米科学研究的基本工具。本次参会听众主要包含化工、仪器仪表、能源、金属、电子电器、环境、机械等领域。听众单位性质分布本次研讨会除了邀请9位知名原子力显微镜/扫描探针研究/应用专家分享AFM技术的最新研究应用前沿,还邀请了刚刚发布AFM新品的3家AFM品牌专家代表为大家分享AFM产品的最新技术进展。参会听众约六成来自高校院所,其他较多单位性质还包括仪器厂商、工业企业、检测机构等,侧面反应这些单位对原子力显微镜仪器技术应用前沿、操作技术等更加关注。听众工作中常用仪器门类树状图一天的12个报告内容设置,主要围绕原子力显微镜/扫描探针技术,涉及热点应用领域包括水科学应用、石墨烯生长、纳米材料力学、静电性质动态测量、二维原子晶体界面调控、半导体器件失效分析、界面电荷转移反应、天然高分子溶液行为等。涉及相关技术包括便捷操作、全自动化、高速扫描、视频级、试样制备技术革命、光镜电镜衔接技术、智能化等。可以看到参会者日常常用的仪器门类,除了本次会议主题的原子力显微镜,及相关的扫描隧道显微镜、静电力显微镜、扫描离子电导显微镜外,电镜、X射线仪器、光谱等占比也较高,展现了以原子力显微镜为主要研究手段的应用领域中,应用关联性较高的一些仪器门类。经征求报告专家意见,会议12个报告中,10个报告将设置报告视频回放,详细见下表,便于广大网友温故知新。分会场视频回放链接报告题目演讲嘉宾第三届原子力显微镜网络研讨会(上)(08月18日)链接 氢敏感的原子力显微术及其在水科学的应用江颖(北京大学)链接 日立新一代AFM100系列原子力显微镜刘金荣(日立科学仪器(北京)有限公司)链接 试样制备在显微镜技术中的使能作用——关于原子力显微镜技术的反思苏全民(中国科学院沈阳自动化所)链接 从能用到好用,从专家到傻瓜——原子力显微镜高效操作技术发展陈强(岛津企业管理(中国)有限公司)/成核点在石墨烯生长过程中的作用刘金养(福建师范大学物理与能源学院)链接 原子力显微镜在纳米材料力学表征方面的应用李慧琴(上海交通大学)第三届原子力显微镜网络研讨会(下)—2021 NanoScientific Symposium China (NSSC 2021)(08月18日)链接 欢迎 致辞Keibock Lee(NanoScientific)链接 欢迎致辞张菲(北京航空航天大学)链接 原子力显微镜在静电性质动态测量中的应用钱建强(北京航空航天大学)链接 二维原子晶体界面调控的原子力显微学研究程志海(中国人民大学)抽奖活动链接 原子力显微在第十族TMDs物性研究中的应用杨鹏(云南大学)/从原子尺度理解固/气界面上的高温电化学反应机理陈迪(清华大学未来实验室)链接 基于分子间作用力的天然高分子溶液行为研究王静禹(华南理工大学化学与化工学院)链接 扫描电容显微镜在FA实验室的应用潘涛(Park原子力显微镜)会议技术交流群会议技术交流、合作:yanglz@instrument.com.cn附:会议下午场2021 NanoScientific Symposium China (NSSC 2021)抽奖活动中奖名单下午场NSSC 2021会场,共有近四百名在线网友参与了抽奖和填写调研问卷,现将获奖名单公示如下(未完成兑奖可邮件沟通:yanglz@instrument.com.cn)一等奖(kindle阅读器)获得者:电话号码 15050***549,李**二等奖,三等奖和参与奖获得者请参考下方图片:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制