复式光学显微镜

仪器信息网复式光学显微镜专题为您提供2024年最新复式光学显微镜价格报价、厂家品牌的相关信息, 包括复式光学显微镜参数、型号等,不管是国产,还是进口品牌的复式光学显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合复式光学显微镜相关的耗材配件、试剂标物,还有复式光学显微镜相关的最新资讯、资料,以及复式光学显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

复式光学显微镜相关的厂商

  • 400-860-5168转3750
    企业概况 英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道 英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。 **的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学® (Dynascope® )装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发 近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

复式光学显微镜相关的仪器

  • 超高真空光学显微镜/光谱仪测试系统Ultra-high Vacuum (UHV) Optical / SpectroscopicMicroscope System将光学显微镜或光谱仪模组对接于超高真空系统,可以作为超高真空互联系统的检测节点之一,用于材料和器件在不同制备环节之间对外延的薄膜或者转移沉积的二维材料等样品的质量进行快速无损检测。产品特性和核心技术模块化设计,光学部分相对独立。&bull 包含光学显微镜、激光离焦量传感器、自动调焦和共聚焦耦合光路等等在内的全部光学部分全部集成于一个光学模组之中,作为整体置于超高真空腔体之外,透过视窗玻璃聚焦于真空腔内的样品表面。&bull 不污染真空内环境。&bull 超高真空系统烘烤时可以整体取走,并在烘烤完毕之后方便地定位安装。&bull 可根据用户需求,灵活配置激光器、单色仪、探测器和物镜等光学组件。视窗玻璃厚度像差的补偿校正。&bull 拉曼光谱的高收集效率和分辨率。性能参数:注:上述表格中的激光波长、物镜和单色仪等部件可以根据客户需求调整。测试案例:超高真空长工作距离(120 mm)显微测试
    留言咨询
  • [ 产品简介 ]在对较大样本进行荧光成像时,非焦平面的杂散光往往会使图像模糊,从而降低对比度和分辨率。全新蔡司结构照明Apotome 3光学切片成像组件,可搭载在开方式倒置荧光显微镜、研究级正置荧光显微镜和大视野宏观变倍显微镜等宽场显微镜上。Apotome 3可以自动识别物镜放大倍数,将与之匹配的栅格移动到光路中,利用结构照明,将栅格结构投影到样品的焦平面上,消除样本非焦平面的杂散光,再通过蔡司特有的算法生成更清晰锐利的光学切片,让您获得出色分辨率和高对比度图像。与传统宽场荧光显微图像相比Apotome 3 能够显著提高轴向分辨率,您可以获得支持三维渲染的优质光学切片,厚的样品也不例外。[ 产品特点 ]&bull 优质的光学切片:蔡司Apotome3具有三种不同几何性状的栅格,无论您选择何种放大倍率,都可以保证高分辨率, &bull 自由选择光源和染料:蔡司Apotome 3可适应荧光团和光源。因此,当实验的复杂性和需求发生变化时,您也可以灵活应对。&bull 更多结构化信息:凭借结构照明的专利算法,您甚至可通过反卷积进一步改善图像质量。更好地识别所检查对象的重要结构。[ 应用领域 ]&bull 组织学样品二维、三维荧光光切成像&bull 活细胞样品二维、三维荧光光切成像&bull 全胚胎大视野荧光光切成像 皮质神经元DNA和微管染色的宽场图像(DAPI,A488),Z stack,40X物镜(左图未使用Apotome拍摄,右图使用 Apotome拍摄)
    留言咨询
  • 可信计量、逼真成像、清晰结果?逼真成像与可信测量数据的结合?简易直观的操作界面提供良好的用户体验?更快速地解决复杂研究和生产要求下的各种挑战布鲁克Contour Elite™ 三维光学显微镜在已经业界广泛使用的技术领先的平台上,进一步增强Vision64® 软件的用户易用性,创新性加入全新的成像软硬件,拓展高保真成像能力。在要求极高的研发、质量控制领域,Contour Elite™ 可为用户提供高速、准确和重复性极佳的测量结果。同时,它为用户提供在通常共聚焦显微镜下能得到的成像与显示效果,如彩色影像等。建立在Wyko® 专有白光干涉仪基础上,历经三十多年软硬件的积累与创新,布鲁克Contour Elite系统提供了直观可视化的操作界面,丰富的用户自定义方式,自动化程序控制功能,以及最快速、广泛适用的表面三维形貌的高保真成像与准确测量,来保证各种领域研发、生产应用的测试需求。 Contour Elite K高稳定性,具备一定防震性能设计的桌面式型号 Contour Elite I全自动,有集成防震垫设计的桌面式型号 Contour Elite X全自动,集成落地式防震台的型号
    留言咨询

复式光学显微镜相关的资讯

  • 探索微观世界:从光学显微镜到电子显微镜
    人的肉眼分辨本领在0.1毫米左右,我们是怎么一步步地看见细菌、病毒,乃至蛋白质结构的呢?这背后离不开这群“强迫症”。采访专家:张德添(军事医学科学院国家生物医学分析中心教授)“我非常惊奇地看到水中有许多极小的活体微生物,它们如此漂亮而动人,有的如长矛穿水而过,有的像陀螺原地打转,还有的灵巧地徘徊前进,成群结队。你简直可以将它们想象成一群飞行的蚊虫。”1675年,一名荷兰代尔夫特市政厅的小公务员给英国皇家学会写了这样一封信,向学会的会员们描述自己用自制的显微镜观察到的奇妙景象。作为给当时欧洲最富盛名的学术组织寄去的一封学术讨论信件,这名公务员并没有进行大篇幅严谨却枯燥的科学论证,而是用朴实的语言,在字里行间留下了自己发现新事物时那种孩童般的惊奇与喜悦。这位当时默默无闻的小公务员,正是大名鼎鼎的微生物学和显微镜学先驱者—安东尼范列文虎克。在50年的时间里,列文虎克用制作的显微镜观察到了细菌、肌纤维和精细胞等微观生物,并先后给英国皇家学会寄去了300多封信件来讨论他的新发现。正是在列文虎克的不懈坚持下,人类观察世界的眼睛终于来到了微生物层面。初代显微镜:拨开微生物世界的迷雾列文虎克能发现色彩斑斓的微生物世界,主要得益于他在透镜制作方面的天赋。他一生中制作了多达400多台显微镜,与今日我们熟知的显微镜存在很大不同,列文虎克的显微镜绝大多数属于单透镜显微镜,仅由一个小黄铜板构成,使用时需要仰身将这个铜板面向阳光进行观察。列文虎克凭借他的一系列惊人发现迅速成为当时科学界的“网红级”人物。然而真正奠定显微镜学理论基础的,则是同时期的英国科学家罗伯特胡克。在列文虎克还在钻研透镜制作技艺时的1665年,在英国皇家学会负责科学试验的胡克,就制作了一台显微镜,与列文虎克使用的单透镜显微镜不同,这是一台复式显微镜,其工作原理和外形已经很接近现代的光学显微镜了。胡克用这台显微镜观察一片软木薄片,发现了密密麻麻的格子状结构,酷似当时僧侣居住的单人房间,因此胡克就用英语中单人间一词“cell”来命名这种结构,而这个单词在当代被翻译为“细胞”。不久,胡克写就了《显微图谱》一书,将这一重要观察成果写入书中。胡克的研究成果很快引起了列文虎克的注意,他曾研究过胡克的显微镜,但最后还是使用了自制的单透镜显微镜来进行观察。原因就在于胡克显微镜存在严重的色差问题。所谓色差,就是在光线经过透镜时,不同颜色的光因折射率不同,会聚焦于不同的点上,使得样品的成像被一层色彩光斑所包围,严重影响清晰度。列文虎克提出的解决方案也很简单,就是在透镜研磨的精细程度上下功夫,将单透镜制成小玻璃珠,并将之嵌入黄铜板的细孔内,这样在放大倍数不低于胡克显微镜的基础上,最大程度避免色差对成像的干扰。但代价是,由于观察时是需要对着阳光,对观测者的眼睛伤害很大。除了色差,早期显微镜还存在着球面像差问题,即光线在经过透镜折射时,接近中心与靠近边缘的光线不能将影像聚集在一点上,使得成像模糊不清。自显微镜诞生之日起,色差和球面像差就成为“与生俱来的顽疾”,一直制约着人们向微观世界进军的步伐。直到19世纪,光学显微技术才在工业革命的助力下完成了一次实质性蜕变,从而在根本上解决了这两个难题。挑战色差与球面像差:逐渐清晰的微观视角首先是1830年,一个名为李斯特的英国业余显微镜学爱好者首先向球面像差发起挑战,他创造性地用几个特定间距的透镜组,成功减小了球面像差影响。此后,改进显微镜的主阵地很快转移到了德国,其中1846年成立的蔡司光学工厂,更是在此后一个世纪里成为领头羊。1857年蔡司工厂研制出第一台现代复式显微镜,并成功打入市场。不过在研制和生产过程中,蔡司也深受色差之苦:当时通行的增加透镜数量的做法,虽能提升显微镜的放大倍数,却仍无法消除色差对成像清晰度的干扰。1872年,德国耶拿大学的恩斯特阿贝教授提出了完善的显微镜学理论,详细说明了光学显微镜的成像原理、数值孔径等科学问题。蔡司也迅速邀请阿贝教授加盟,并研制出一批划时代的光学部件,其中就包括复消色差透镜,一举消除了色差的影响。在阿贝教授的技术加持下,蔡司工厂的显微镜成为同类产品中的佼佼者,很快成为欧美各大实验室的抢手货,并奠定了现代光学显微镜的基本形态。不久,蔡司又拉来了著名化学家奥托肖特入伙,将其研制的具有全新光学特性的锂玻璃应用在自家产品上。1884年,蔡司更是联合阿贝与肖特,成立了“耶拿玻璃厂”,专为显微镜生产专业透镜。显微镜技术的突飞猛进也让各种现代生物学理论不断完善,透过高分辨率的透镜,微观世界中各种复杂的结构逐步以具象的形式呈现在人类眼前。由于微观层面的生物结构大多是无色透明的,为了让他们在镜头下变得清晰可见,当时的科学家普遍将生物样品染色,以此提高对比度方便观察。这一方法最大的局限在于,染料本身的毒性往往会破坏微生物的组织结构,这一时期染剂落后的材质,也无法实现对某些特定组织的染色。直到1935年荷兰学者泽尼克发现了相衬原理,并将之成功应有于显微镜上。这种相衬显微技术,利用光线穿过透明物体产生的极细微的相位差来成像,使得显微镜能够清晰地观察到无色透明的生物样品。泽尼克本人则凭借此次发现斩获了1953年的诺贝尔物理学奖。军事医学科学院国家生物医学分析中心教授,长期致力于电子显微镜领域研究的张德添向记者介绍道:“人的肉眼分辨本领在0.1毫米左右,而光学显微镜的分辨本领可以达到0.2微米(1毫米=1000微米)的水平,能够看到细菌和细胞。但由于光具有波动性,衍射现象限制了光学显微镜分辨本领的进一步提高。”二战结束后,随着各种新理论新技术的不断应用,光学显微镜得到了长足进步,但也是在这一时期,光学显微镜的潜力已经被发掘到了极限。为蔡司工厂乃至整个显微镜学立下汗马功劳的阿贝教授就提出了“分辨率极限理论”,认为普通光学显微镜的分辨率极限是0.2微米,再小的物体就无能为力了—这一理论又被称为“阿贝极限”,这就好像一层屏障将人类的探索目光阻隔在更深度的微观世界大门之前,迫使科学家们另寻他途。电子显微镜:另辟蹊径,重新发现既然可见光存在这样的短板,那么能否利用其他波长较短的光束来实现分辨率的突破呢?张德添进一步介绍道:“1924年后,人们从物质领域内找到了波长更短的媒质—电子,从而发明了电子显微镜,其分辨本领达到了0.1纳米的水平。”1931年,德国科学家克诺尔和他的学生鲁斯卡在一台高压示波器上加装了一个放电电子源和三个电子透镜,制成了世界首台电子显微镜,就此为人类探索微观世界开拓了一条全新的思路。电子显微镜完全不受阿贝极限的桎梏,在分辨率上要远远超越当时的光学显微镜。鲁斯卡在次年对电子显微镜进行了改进,分辨率一举达到纳米级别(1微米=1000纳米)。在这个观测深度,人类终于亲眼看到了比细菌还要小的微生物—病毒。1938年,鲁斯卡用电子显微镜看到了烟草花叶病毒的真身,而此时距离病毒被证实存在已经过去了40年时间。对于电子显微镜技术的发明,张德添这样评价道:“电子显微镜是人们认识超微观世界的钥匙和工具,它解决了光学显微镜受自然光波长限制的问题,将人们对世界的认识从细胞水平提高到了分子水平。” 从肉眼只能观察到的毫米尺度,到光学显微镜能够达到的微米尺度,再到电子显微镜能进一步下探到纳米尺度,显微成像技术正在迅速突破人类对微观世界的认知极限。不过电子显微镜本身的缺憾也愈加明显。由于电子加速只能在真空条件下实现,在真空环境之下,生物样品往往要经过脱水与干燥,这意味着电子显微镜根本无法观测到活体状态下的生物样品,此外电子束本身又容易破坏样品表面的生物分子结构,这就导致样品本身会丢失很多关键信息。这一顽疾在此后又困扰了科学家多年。直到1981年,IBM苏黎世实验室的两位研究员宾尼希与罗雷尔,用一种当时看起来颇有些“离经叛道”的方法,首先解决了电子束损害样品结构的问题。他们利用量子物理学中的“隧道效应”,制作了一台扫描隧道显微镜。与传统的光学和电子显微镜不同,这种显微镜连镜头都没有。在工作时,用一根探针接近样品,并在两者之间施加电压,当探针距离样品只有纳米级时就会产生隧道效应—电子从这细微的缝隙中穿过,形成微弱的电流,这股电流会随着探针与样品距离的变化而变化,通过测量电流的变化人们就能间接得到样品的大致形状。由于全程没有电子束参与,扫描隧道显微镜从根本上避免了加速电子对生物样品表面的破坏。扫描隧道显微镜在今天也被称为“原子力显微镜”,“在微米甚至纳米水平,动态观察生物样品表面形貌结构的变化规律,原子力显微镜是有其独特优势的”,张德添向记者解释说,“如果条件允许,还可以检测生物大分子间相互作用力的大小,为结构与功能关系研究提供便利。”1986年,宾尼希和罗雷尔凭借扫描隧道显微镜,获得当年的诺贝尔物理学奖,有趣的是,与他们一起分享荣誉的,还有当初发明电子显微镜的鲁斯卡,当时的他已是耄耋老人,而他的恩师克诺尔也早已作古。新老两代电子显微镜技术的里程碑人物同台领奖,成为当时物理学界的一段佳话。老树新芽:突破“阿贝极限”的光学显微镜电子显微镜在问世之后的几十年间,极大拓展了人类对生物、化学、材料和物理等领域认知疆界。而无论是鲁斯卡,还是宾尼希和罗雷尔,他们所作的贡献不仅让自己享誉世界,还助力其他领域的学者登上荣誉之巅。比如英国化学家艾伦克鲁格凭借对核酸与蛋白复杂体系的研究获得1982年度诺贝尔化学奖,而他的科研成果正式依靠高分辨电子显微镜技术和X光衍射分析技术而取得的。在克鲁格获奖的当年,以色列化学家达尼埃尔谢赫特曼更是使用一台电子显微镜,发现了准晶体的存在,并独享了2011年的诺贝尔化学奖。目前,电子显微镜已经成为金属、半导体和超导体领域研究的主力军。但在生物和医学领域,电子显微镜本身对生物样品的损害,依旧是难以逾越的技术难题。于是不少科学家开始从两条路径上寻求解决之道:一条是研发冷冻电镜技术,这种技术并不改变电子显微镜整体的工作模式,而是从生物样品本身入手,对其进行超低温冷冻处理。这样状态下,即使处在真空环境中,样品也能保持原有的形态特征与生物活性。“由于观测温度低,生物样品也处于含水状态,分子也处于天然状态,样品对辐射的耐受能力得以提高。我们可以将样品冻结在不同状态,观测分子结构的变化。”张德添向记者解释道。瑞士物理学家雅克杜波切特、美国生物学家乔基姆弗兰克和英国生物学家理查德亨德森凭借这项技术分享了2017年度诺贝尔化学奖。新冠疫情暴发后,冷冻电镜技术又为人类研究和抗击疫情做出了突出贡献。2020年,西湖大学周强实验室就利用这种技术,首次成功解析了此次新冠病毒的受体—ACE2的全长结构,让人类对新冠病毒的认识向前迈出了关键性一步。另一条路径是从传统的光学显微镜入手。在电子显微镜的黄金时代,不少科学家就开始着手研制超高分辨率光学显微镜,甚至开始尝试突破一直以来困扰光学显微镜的“阿贝极限”,而“荧光技术”就成为实现这一切的关键。早在19世纪中叶,科学家们就发现:某些物质在吸收波长较短而能量较高的光线(比如紫外光)时,能将光源转化为波长较长的可见光。这种现象后来被定义为“荧光现象”。荧光现象在自然界是普遍存在的,这一现象背后的原理也在20世纪迅速被应用在光学显微镜上。1911年,德国科学家首次研制出荧光显微镜装置,用荧光色素对样品进行荧光染色处理,并以紫外光激发样品的荧光物质发光,但成像效果不佳,而且把荧光物质当作染色剂,和早期的染色剂一样,本身的毒性会伤害活体样品。直到1974年,日本科学家下村修发现了绿色荧光蛋白,其毒性远弱于以往的荧光物质,是对活体标本进行荧光标记的理想材料——这一发现成为日后科学家突破“阿贝极限”的有力武器。时间来到1989年,供职于美国IBM研究中心的科学家莫尔纳首次进行了单分子荧光检测,使得光学显微镜的检测尺度精确到纳米量级成为可能。随后在莫尔纳的基础上,美国科学家贝齐格开发出一套新的显微成像方法:控制样品内的荧光分子,让少量分子发光,借此确定分子中心和每个分子的位置,通过多次观察呈现出纳米尺度的图像。通过这种方法,贝齐格轻而易举地突破了光学显微镜的阿贝极限。几乎在同时,德国科学家斯特凡赫尔在一次光学研究中突发奇想:根据荧光现象原理,如果用镭射光激发样品内的荧光物质发光,同时用另一束镭射光消除样品体内较大物体的荧光,这样就只剩下纳米尺度的分子发射荧光并被探测到,不就能在理论上得到分辨率大于0.2微米的微观成像了吗?他随即开始了试验,并制成了一台全新显微镜,将光学显微镜分辨率下探到了0.1微米的水平。困扰光学显微技术百年的阿贝极限难题,就这样历经几代科学家的呕心沥血,终于在本世纪初被成功攻克。莫尔纳、贝齐格和赫尔三位科学家更是凭借“超分辨率荧光显微技术”分享了2014年度的诺贝尔化学奖。时至今日,在探索微观世界的征途上,光学显微镜和电子显微镜互有长短、相得益彰。当然在实际应用中,科学家越来越依赖于将多种显微成像技术结合使用。比如今年5月,英国弗朗西斯克里克研究所就依托钙化成像技术、体积电子显微技术等多种显微成像技术,成功获得了人类大脑神经网络亚细胞图谱。在未来,多种显微成像技术相结合,各施所长,将进一步完善我们在生物、医学、化学和材料等领域的知识结构,把这个包罗万象的奇妙世界更完整地呈现在我们眼前。
  • 1645万!武汉大学采购散射式-近场光学高精度显微镜等
    项目编号:WHCSIMC2022-1308806ZF(H)项目名称:武汉大学散射式-近场光学高精度显微镜、电感耦合等离子体质谱、热重-红外-气相色谱质谱联用仪、有机无机样品预处理系统采购项目预算金额:1645.0000000 万元(人民币)最高限价(如有):1645.0000000 万元(人民币)采购需求:1.本次公开招标共分4个项目包,具体需求如下。详细技术规格、参数及要求见本项目招标文件第(三)章内容。第一包:(1) 项目包名称:散射式-近场光学高精度显微镜(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:900万元人民币(6)其他:本项目包接受进口设备投标第二包:(1) 项目包名称:电感耦合等离子体质谱(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:285万元人民币(6)其他:本项目包接受进口设备投标第三包:(1) 项目包名称:热重-红外-气相色谱质谱联用仪(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:320万元人民币(6)其他:本项目包接受进口设备投标第四包:(1) 项目包名称:有机无机样品预处理系统(2) 类别:货物(3) 数量:一套(4) 简要技术要求:详见招标文件第三章(5) 采购预算:140万元人民币(6)其他:本项目包里的微波消解仪、十万分之一天平、非接触式超声破碎仪接受进口设备投标.合同履行期限:第一包:交货期 :合同签订后10个月内;质保期 :本项目免费质量保证期要求不低于1年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第二包:交货期 :合同签订后120日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第三包:交货期 :合同签订后 90 日内;质保期:本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。第四包:交货期 :合同签订后60日内;质保期 :本项目免费质量保证期要求不低于3年。免费质量保证期从货物供货、安装、调试正常且经采购人确认验收合格之日起算。其中微波消解仪的炉腔质保:腔体5年质量保证,非人为损坏、如出现形变或腐蚀生锈,免费更换。本项目( 不接受 )联合体投标。
  • 腐蚀在激光共聚焦扫描显微镜眼中的璀璨形貌
    p    strong 腐蚀形貌常用表征方法 /strong /p p   在腐蚀研究和工程中,腐蚀形貌是判断各种腐蚀类型、评价腐蚀程度、研究腐蚀规律与特征的重要依据。腐蚀形貌表征最常用的方法便是宏观观察、扫描电子显微镜观察和金相显微镜观察等,这些方法容易受主观因素影响。 /p p    strong 激光共聚焦扫描显微镜 /strong /p p   激光共聚焦扫描显微镜(LSCM)以激光作为光源,采用共轭成像原理,沿x、y方向逐点扫描试样表面,合成图像切片,再移动z周,采集多层切片,形成图像栈,将所有图像栈的信息进行合成,形成可以测量垂直高度和表面粗糙度及轮廓的三维表面形貌图像,是一种高敏感度与高分辨率的显微镜技术。 /p p   该技术已广泛应用于形态学、生理学、免疫学、遗传学等分子细胞生物学领域。由于采用激光共聚焦扫描显微镜表征腐蚀形貌具有较好的客观性,因此其在材料腐蚀中也有较好的应用前景。 /p p    strong 试验材料 /strong /p p   试验试剂为乙醇、丙酮(分析纯,国药集团化学试剂有限公司)。试验钢为油田现场用N80钢管,其化学成分(质量分数)为:0.22%C,1.17%Mn,0.21%Si,0.003%S,0.010%P,0.036%Cr,0.021%Mo,0.028%Ni,0.018%V,0.012%Ti,0.019%Cu,0.006%Nb,余量Fe。 /p p    strong 试验仪器 /strong /p p   红外碳硫分析仪,直读光谱仪,电子天平,M273A恒电位仪,扫描电镜,激光共聚焦扫描显微镜。 /p p    strong 腐蚀试验 /strong /p p    span style=" color: rgb(0, 176, 240) " (1)全面腐蚀 /span /p p   将N80钢管加工成挂片试样,用350号金相试纸对试样进行打磨,然后再用丙酮除油和乙醇清洗,最后吹干。 /p p   依据标准ASTM G170-06(R2012)《实验室中对油田及炼油厂缓蚀剂评价及鉴定的标准指南》和SY/T 5405-1996《酸化用缓蚀剂性能试验方法及评价指标》,采用静态腐蚀挂片法对N80钢进行全面腐蚀试验。 /p p   试验在高温高压反应釜中进行。试验介质为15%(质量分数)的N,N& #39 -二醛基哌嗪缓蚀剂,试验温度90℃,试验时间为4h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的缓蚀剂膜和腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    span style=" color: rgb(0, 176, 240) " (2)沟槽腐蚀 /span /p p   将N80钢管加工成15mm× 5mm圆片试样,焊缝位于试样的中央,试验前采用350号金相砂纸打磨试样,再用丙酮除油和乙醇清洗,最后吹干,并采用光栅尺测量圆片尺寸。 /p p   依据标准Q/SY-TGRC 26-2011《ERW 钢管沟腐蚀实验室测试方法》,对N80钢进行沟槽腐蚀试验,得到沟槽腐蚀的试样。 /p p   试验采用电化学极化法(三电极体系),在1000mL玻璃电解池(带石英窗口)内进行。试验介质为3.5%(质量分数)的NaCl溶液。饱和甘汞电极为参比电极,N80钢为工作电极,铂电极为辅助电极。 /p p   试验时对试样施加-550 mV的恒电位(相对于参比电极),极化144h。试验后取出试样,逐步采用毛刷机械法和超声波酒精振荡清洗试样表面的腐蚀产物,然后烘干送检LSCM。同时,对试样进行宏观观察和扫描电镜观察。 /p p    strong 结果与讨论 /strong /p p    span style=" color: rgb(0, 176, 240) " 1 全面腐蚀 /span /p p   全面腐蚀试验后试样的宏观照片、扫描电镜图和LSCM图分别如图1—3所示。对比这三幅图可以看到:宏观和扫描电镜观察显示试样表面均匀腐蚀,无点蚀坑 LSCM观察显示,试样表面有两处点蚀坑,两处点蚀坑的直径分别为10.24,11.65μm,深度分别为13.78μm和19.83μm。由此可见,LSCM不仅可获得试样的表面三维图,还可客观迅速地找到局部腐蚀处,并可对局部腐蚀处进行简单测量处理。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8531e939-7799-465b-a201-8006f8ee75f1.jpg" title=" 图1 全面腐蚀试验后试样的宏观照片.jpg" alt=" 图1 全面腐蚀试验后试样的宏观照片.jpg" / br/ br/ /strong strong 图1 全面腐蚀试验后试样的宏观照片 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/9fc9d4b0-37e5-4403-bc07-0e25c5a3291f.jpg" title=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" alt=" 图2 全面腐蚀试验后试样的扫描电镜图.jpg" width=" 378" height=" 406" border=" 0" vspace=" 0" style=" width: 378px height: 406px " / /strong /p p style=" text-align: center " strong 图2 全面腐蚀试验后试样的扫描电镜图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/c4ecb6b1-a0e5-4322-b1de-903eca0143be.jpg" title=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" alt=" 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图.jpg" width=" 400" height=" 271" border=" 0" vspace=" 0" style=" width: 400px height: 271px " / /strong /p p style=" text-align: center " strong 图3 全面腐蚀试验后试样的激光共聚焦扫描显微镜表征图 /strong /p p    span style=" color: rgb(0, 176, 240) " 2 沟槽腐蚀 /span /p p   由于N80钢管为焊管,其母材与焊缝的显微组织不一样,在腐蚀环境中易产生电位差,使得焊缝熔合线处易出现深谷状的凹槽,如图4所示。沟槽腐蚀敏感系数α是判断焊管焊缝抗腐蚀的一个重要参数,其计算方法如式(1)所示。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201809/uepic/3507e746-8170-4721-a27d-d203442685a6.jpg" title=" 式(1).png" alt=" 式(1).png" / /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/613be5a5-5c15-45e0-a6d8-6ee416278e9d.jpg" title=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" alt=" 图4 沟槽腐蚀试验后试样的宏观照片.jpg" / /strong /p p style=" text-align: center " strong 图4 沟槽腐蚀试验后试样的宏观照片 /strong /p p   式中:h1为原始表面和腐蚀后表面的高度差 h2为原始表面和点蚀坑坑底的高度差,如图5所示。h1和h2均取3次测量的平均值,当α& lt 1.3时,表示焊管焊缝对沟槽腐蚀不敏感 当α≥1.3时,表示焊管焊缝对沟槽腐蚀敏感,需采取措施减少沟槽腐蚀。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/8e59d50c-bea6-49da-8f6a-d2448171379f.jpg" title=" 图5 沟槽腐蚀试验参数测定.png" alt=" 图5 沟槽腐蚀试验参数测定.png" / /strong /p p style=" text-align: center " strong 图5 沟槽腐蚀试验参数测定 /strong br/ /p p   沟槽腐蚀试验后试样的金相图和LSCM图分别如图6和图7所示。通过金相图和LSCM图得到参数h1和h2,并根据式(1)计算沟槽腐蚀敏感系数,结果如表1所示。 /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/75c010b6-db01-472f-ae3d-cff23f615d7c.jpg" title=" 图6 沟槽腐蚀试验后试样的金相图.jpg" alt=" 图6 沟槽腐蚀试验后试样的金相图.jpg" / /strong /p p style=" text-align: center " strong 图6 沟槽腐蚀试验后试样的金相图 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/467f4cb3-f842-418c-af0d-e067c5e4ee20.jpg" title=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" alt=" 图7 沟槽腐蚀试验后试样的LSCM图.jpg" / /strong /p p style=" text-align: center " strong 图7 沟槽腐蚀试验后试样的LSCM图 /strong /p p style=" text-align: center " strong 表1 不同方法得到的沟槽腐蚀敏感系数 /strong /p p style=" text-align: center " strong img src=" https://img1.17img.cn/17img/images/201809/uepic/15d8299e-3916-4241-bf81-692270f87d04.jpg" title=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" alt=" 表1 不同方法得到的沟槽腐蚀敏感系数.png" / /strong /p p   采用金相显微镜测h2和h1时,需根据主观判断找到3个深度最深的腐蚀坑,然后将其局部放大,并采用仪器标尺测量h2和h1 而采用LSCM测h2和h1时,沟底层处便是腐蚀坑深度,且测量标尺为LSCM自带,因此该方法更便捷、直观和客观,由此计算的α也更可靠。 br/ /p p    strong 结论 /strong /p p   (1)激光共聚焦扫描显微镜表征腐蚀形貌以三维图方式显示,局部腐蚀处可一眼看到,更直观。 /p p   (2)用激光共聚焦扫描显微镜表征沟槽腐蚀,可以直观和客观地找到腐蚀坑深处,仪器自带标尺可直接测量坑深,数据测量更便捷,由此计算的敏感系数也更可靠。 /p

复式光学显微镜相关的方案

复式光学显微镜相关的资料

复式光学显微镜相关的试剂

复式光学显微镜相关的论坛

  • 【分享】光学显微镜的使用

    现代普通光学显微镜利用目镜和物镜两组透镜系统来放大成像,故又常 被称为复式显微镜。它们由机械装置和光学系统两大部分组成。在显微镜的光学系统中,物镜的性能最为关键,它直接影响着显微镜的分辨率。而在普通光学显微镜通常配置的几种物镜中,油镜的放大倍数最大,对微生物学研究最为重要。与其他物镜相比,油镜的使用比较特殊,需在载玻片与镜头之间加滴镜油,这主要有如下二方面的原因: 1. 增加照明亮度 油镜的放大倍数可达 100Χ,放大倍数这样大的镜头,焦距很短,直径很小,但所需要的光照强度却最大。从承载标本的玻片透过来的光线,因介质密度不同(从玻片进入空气,再进入镜头),有些光线会因折射或全反射,不能进入镜头,致使在使用油镜时会因射入的光线较少,物像显现不清。所以为了不使通过的光线有所损失,在使用油镜时须在油镜与玻片之间加入与玻璃的折射率( n=1.55 )相仿的油镜(通常用香柏油,其折射率 n=1.52)。 2. 增加显微镜的分辨率 显微镜的分辨率或分辨力 (resolution or resolving power)是指显微镜能辨别两点之间的最小距离的能力。从物理学角度看,光学显微镜的分辨率受光的干涉现象及所用物镜性能的限制,分辨力D可表示为:D=λ/2N.A,式中λ= 光波波长; NA= 物镜的数值孔径值。 光学显微镜的光源不可能超出可见光的波长范围( 0.4--0.7 μ m ),而数值孔径值则取决于物镜的镜口角和玻片与镜头间介质的折射率,可表示为:NA=n × sin α式中α为光线最大入射角的半数。它取决于物镜的直径和焦距,一般来说在实际应用中最大只能达到 120 O ,而 n为介质折射率。由于香柏油的折射率( 1.52 )比空气及水的折射率(分别为 1.0 和 1.33)要高,因此以香柏油作为镜头于玻片之间介质的油镜所能达到的数值孔径值(NA 一般在1.2-1.4)要高于低倍镜、高倍镜等干镜( NA 都低于1.0)。若以可见光的平均波长 0.55μm来计算,数值孔径通常在0.65左右的高倍镜只能分辨出距离不小于0.4μm的物体,而油镜的分辨率却可达到 0.2 μ m 左右。

  • 光学显微镜@长霉的条件及@保养方法%%

    光学显微镜@长霉的条件及@保养方法%%

    光学显微镜@长霉的条件及@保养方法%%光学显微镜属精密仪器,在工矿企业和科研院校运用的十分广泛,对运用和寄存环境有着较高的需求。湿润、霉菌、氧化腐蚀及工业废气等都会对光学显微镜形成损害。光学显微镜长霉的条件:湿度: 环境相对湿度大于60%霉菌即可成长。大于65%时, 成长加速,湿度达80-95%时, 是霉菌的高发环境。温度: 霉菌菌丝体在8℃以上环境温度即可成长, 12℃以上成长加速,当温度在10℃以上, 湿度在60%以上的环境下, 霉菌即可对物品形成损害。当温度在20-35℃, 湿度在75-95%时, 霉菌即可呈爆发性成长。养分物质: 霉菌对养分物质需要的量很少, 碳、氮、钾、磷、硫、镁等是霉菌的必需养分物质, 霉菌还能吸收一切的无机盐来历的根本元素。当物品富含上述霉菌所需的养分成份, 而环境的温度湿度又适合孢子发育时, 即可长霉。因而,在工作中安放光学显微镜时应尽可能远离上述使光学显微镜长霉的条件。在使用光学显微镜过程中应特别注意做好保养工作。1、严厉依照有关操作规矩运用显微镜,防止因运用不当形成损毁。2、 显微镜在贮存和运用过程中,遍及存在着生霉起雾疑问,霉和雾会使显微镜的视场含糊,分辩率降低。为了使显微镜坚持杰出的作业状况,延伸运用寿命,显微镜的作业环境应坚持清洗、枯燥、防尘。3、显微镜在每次运用结束后应及时做好清洗作业,特别是目镜、物镜等简单污染的光学部件,如发现体现外表有尘埃、指纹、脏物等,应及时用镜头纸清洗洁净。4、显微镜作业室最佳能设备空调、抽湿及防尘设备。5、如发现光学部件内部有生霉等表象,最佳及时联络有关厂家派人清洗、维修。

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

复式光学显微镜相关的耗材

  • 病理显微镜配件
    病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级标准,进口病理显微镜高端具有无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像.病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级别新标准,进口病理显微镜高端无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像,而且还把Infinitive ICO2 Plan 物镜列为标准配件供用户使用。双目病理切片显微镜是我们奥地利生命科学显微镜中病理切片显微镜的一种,秉承欧洲精密光学高端设计和制造优势, 具有绝佳的光学性能和性价比,非常适合 各种医院,医学院校和研究所以及各种医疗机构的使用。病理切片显微镜显配件特色:3年保质期 Pure ICO2 Plan infinity optics 4/10/40物镜先进的LED光源系统人体工程学免疲劳观察镜筒智能感应节能系统,自动熄灯聚焦自动停止功能适合佩戴眼镜工作者使用,不需要额外眼罩非机架式载物台进口病理显微镜高科技紧凑设计多系统聚光病理切片显微镜配件参数镜体: MCX51型镜体 203x145mm 带有LED 照明系统, 适合电源为110-220VAC,50/60HZ. 具有智能感应系统,15分钟不用就自动关闭照明系统,全面节能。四孔转角物镜转盘:显微镜聚焦:具有低位聚焦(low position), 粗调聚焦(coaxial coarse )以及校准的微调聚焦功能,总体聚焦范围20mm, 具有安全自动聚焦停止功能和装置。观察镜筒: ARCTYPE型双目型, 头部30度倾斜, 360度可旋转,瞳距48-75mm可调,固定于镜体上。载物台:非机架式双层机械载物台,150x133mm尺寸,行程范围:76x30mm (X-Y), 载物台可上下移动20mm,单手操作样品架 (specimen holder) ,固定于显微镜镜体上。多系统聚光器(Multisystem-Condenser): Abbe明视场聚光器孔径虹膜N.A 1.25, 快速使用技术,对于不同物镜快速达到最佳照明状态。目镜 (Eyepieces, 2pcs): 3WF 10x18Widefield, 适合戴眼镜用户使用,不需要额外的眼罩。无限远光学矫正技术ICO2 Plan 4/0.10, WD 23.5mm, CC 0.17ICO2 Plan 10/0.25, WD 10.0 mm, CC 0.17ICO2 Plan 40/0.65, WD 0.54 mm, CC 0.17病理切片显微镜可选附件---相衬配件Brightfield and Phase Contrast 10/40Brightfield, Darkfield and Phase Contrast 10/40进口病理显微镜加热台我们针对特殊样品(如活细胞)需要稳定的温度,我们特意设计了显微镜的加热台或显微镜温控台,与我们的显微镜精密匹配。病理切片显微镜配件显著的产品优势:先进的LED光学光源系统:我们的进口病理显微镜采用具有世界一流水平的全新LED光照系统,确保以超低功耗高亮度均匀照明整个目标样品. 这种LED光源节能,以更低能耗提供更高亮度的照明,而且照明的均匀度大幅度提高。 ARC型镜筒:这个系列的病理切片显微镜创立了“输入工作”的新标准,使用双目Arctype tube技术,从而为目镜提供两个不同的位置,全面照顾到身高不同的用户,实现人体工程学姿势长时间工作而不感到劳累。 瞳距48-75mm可调,屈光度可调,每个用户都能找到自己最佳的使用状态; 目镜设计适合佩戴眼镜的用户,不需要佩戴额外的眼罩即可使用。 智能感应(smart sense)技术--节能利器:病理切片显微镜具有全新超高灵敏度智能感应系统, 安装于显微镜底座的前部,15分钟没有使用,该感应系统将自动光比显微镜照明光源,全面节能并提高照明效率。 四孔物镜转换器 Quadruple nosepiece: 采用转角物镜转换器,转为4个物镜的使用而设计,并具有后视功能,为载物台上提供更多空间,观测样品视场大大优化,操作更为舒服而简单。病理显微镜载物台-stage: 独具奥地利专利技术的“玻璃覆盖”技术,采用可更换,超硬,防划,耐腐蚀的玻璃覆盖载物台,保护载物台免受刻划、磨损、腐蚀。病理显微镜多系统聚光器-Multisystem-Condenser: 采用Abbe明视场聚光器,孔径虹膜NA 1.25.,对于不同数值的物镜,确保快速呈现最佳观测结果,并且支持显微镜升级到各种暗视场/明视场,明视场/相衬等配置。进口病理显微镜零部件固定设计: 这是显著以特色之一,为显微镜各个部件提供了保安系统,观察镜筒,物镜,目镜,载物台,聚光器固定到显微镜镜体上,确保所有零部件不分离而丢失. 抗真菌处理--适合恶劣工作环境: 可以再温度较高,湿度较大的气候或环境中工作,采用特殊的抗真菌处理,确保光学系统不受损坏,图片保持明亮而清晰。进口病理显微镜便携实用: 采用了“节省空间“的理念设计, 适合小空间工作实用。而超轻的重量又适合运输、携带和存储。
  • 光学显微镜灯泡大全 其他金相耗材
    PHILIPS飞利浦卤素灯 型号  规格  通用代码  主要应用  产地 7387  6V10W米泡 ESA/FHD  显微镜  欧洲进口 7388  6V20W米泡  ESB  光学设备  欧洲进口 5761  6V30W米泡      欧洲进口 7027  12V50W米泡  BRL/BCD  内窥镜  欧洲进口 7023  12V100W米泡  FCR  投影仪  欧洲进口 6834  12V100W杯泡    显微镜         欧洲进口 Zeiss蔡司荧光显微镜灯泡 灯泡型号: HBO50W/3HBO50W/ACHBO100W/2HBO103W/2HBO200W/2HBO200W/4 HBO200W XBO75W/2XBO75W/2OFRXBO150W/1XBO150W/1OFRXBO450WOFR OLYMPUS奥林巴斯显微镜灯泡 灯泡机型 LS156V15WBHCBHMBHMJVM-LSG.STM LS306V30WBHABHBIMT 6V10WCHACHB 6V20WCHK2CHSCH20CH30CK2 6V30WBX41BX40CX40CX2IX50BHTCK30/40 12V100WBX12BX50BX60BHS 220V20WSBCHK HBO50WCHCXCX2CK40 HBO100WBX2BXBH2 HBO200W 型号: HBO50W/ACHBO100W/2HBO200W XBO75W/2XBO150W/1OFRBHF Leica莱卡显微镜灯泡 型号: HBO50W/ACHBO1000W/2HBO200WHBO200W/2HBO200W/DCHBO200W/4 XBO75W/2XBO75W/2XBO100WOFRXBO150W/1XBO450WOFR OSRAM荧光显微镜灯泡HBO100W/2HBO100W/2 OLYMPUS倒置显微镜灯泡LS-30 NIKON显微镜灯杯6V20WJCRM6V20W OLYMPUS显微镜灯GB-4GB-4 Leica/Leitz显微镜灯泡仪器型号如下,灯泡型号: ZEISS灯泡39-01-536V25W ZEISS灯泡38-01-776V15W Zeiss荧光显微镜灯泡如表 BAUSCH&LOMB灯泡71-71-506V25W LEICA手术显微镜灯泡38464312V50W OSRAM荧光显微镜灯泡HBO103W/2HBO103W/2 Zeiss显微镜灯泡38-01-776V15W OSRAM荧光显微镜灯泡HBO50WACHBO50W/AC NARVA灯泡551476V25W Nikon荧光显微镜灯泡见表 ZEISS显微镜灯泡6V15W 各品牌显微镜灯泡OLYMPUS/Storz/Zeiss/Leitz/Nicon/Wolf ZEISS定位机灯泡38-61-07SL1206V OLYMPUS倒置显微镜灯泡LS-15 OLYMPUS显微镜灯泡TB-16V5A6V5ATB-1 OLYMPUS荧光显微镜灯泡见表 手术显微镜灯泡12V60W ZEISS灯泡39-01-766V15W 220V30W奥林巴斯灯泡 380018-252012V60W Standard014-380018-1740.6V15W StandardWL-380018-1730.6V15W 380018-2520Zeiss12V60W XTL-3100(E,F)连续变倍体视显微镜灯泡:卤素灯泡12V10W XTJ-4000D体视显微镜灯泡:卤素灯泡12V10W XTX-3C体视显微镜灯泡:卤素灯泡12V10W XTD-6分档变倍体视显微镜灯泡:卤素灯泡12V20W --------------------------------------------- MMDS-SP倒置金相显微镜灯泡:卤素灯泡6V30W D5000透反射倒置金相显微镜灯泡:卤素灯泡6V30W BDS系列(BDS200-FL,BDS200,BDS200-PH)倒置显微镜灯泡:卤素灯泡12V20W -------------------------------------------- MDJ系列金相显微镜灯泡:卤素灯泡6V/20W MIT100反射金相显微镜灯泡:6V20W卤素灯 MC006-6XB正置三目金相显微镜灯泡:卤素灯泡6V20W MPC-850金相显微镜灯泡:卤素灯泡6V20W MC006-5XB正置双目金相显微镜灯泡:卤素灯泡6V20W 6XB-PC型金相显微镜灯泡:卤素灯泡6V20W MDS-SP金相显微镜灯泡:卤素灯泡6V/30W, MDS系列实验室倒置金相显微镜6V/30W ------------------------------------------- SMZ-B2双目体式显微镜灯泡:卤素杯灯12V/15W XTD-406B体视显微镜灯泡:卤素灯泡12V10W XTD-406C体视显微镜灯泡:卤素灯泡12V10W XTJ-4400体视显微镜灯泡:卤素灯泡12V10W XTL3400体视显微镜灯泡:卤素灯泡12V10W XTL-2600体视显微镜灯泡:卤素灯泡12V10W XTL-2400体视显微镜灯泡:卤素灯泡12V10W XTJ4600体视显微镜灯泡:卤素灯泡12V10W --------------------------------------------- XLE-1大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE-2大平台金相检测显微镜灯泡:卤素灯泡6V20W XLE—3大平台金相检测显微镜灯泡:卤素灯泡12V/50W ---------------------------------------------- BK-POL偏光显微镜灯泡:卤钨灯泡12V50W BK-POLR偏光显微镜灯泡:卤钨灯泡12V50W XPT-7单目偏光显微镜灯泡:卤钨灯泡灯泡:6V15W XP400D型偏光显微镜灯泡:卤钨灯泡6V20W XP400B型偏光显微镜灯泡:卤钨灯泡6V20W XP400C型偏光显微镜灯泡:卤钨灯泡6V20W POL-280偏光显微镜灯泡:卤钨灯泡12V20W XP500C偏光显微镜灯泡:6V15W XP1D实验室透射偏光显微镜灯泡:卤钨灯泡6V15W 59X普及偏光显微镜灯泡:卤钨灯泡12V30W ---------------------------------------------- BK-FL24荧光显微镜泡:卤素灯泡6V20W BK-FL4荧光显微镜泡:卤素灯泡6V20W 奥林巴斯BX51-FL荧光显微灯泡:卤素灯泡12V100W ------------------------------------------------ XSP-15C生物倒置显微镜灯泡:卤素灯泡12V50W SMART系列生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX21生物显微镜灯泡:卤素灯泡6V20W 奥林巴斯CX41/CX31系列生物显微镜灯泡:卤素灯泡6V30W XDS1C电脑型倒置生物显微镜灯泡:卤素灯泡12V50W XDS1D数码型倒置生物显微镜灯泡:卤素灯泡12V50W. 万能研究级正置奥林巴斯BX41生物显微镜灯泡:卤素灯泡6V30W L1100型生物显微镜灯泡:卤素灯泡6V20W
  • 显微镜电动平台
    显微镜电动平台,显微镜自动平台由中国领先的进口精密仪器和实验室仪器旗舰型服务商-孚光精仪进口销售!孚光精仪精通光学,服务科学,欢迎垂询!显微镜自动平台能够手动360度旋转显微镜电动平台提供的制动功能非常灵敏显微镜自动平台同时可配备物镜适配器显微镜电动平台支持所有常见型号的物镜 显微镜电动平台和显微镜自动平台能够手动360度旋转,提供的制动功能非常灵敏,显微镜旋转台支持所有常见型号的物镜.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制