当前位置: 仪器信息网 > 行业主题 > >

透射模式样品进样器

仪器信息网透射模式样品进样器专题为您提供2024年最新透射模式样品进样器价格报价、厂家品牌的相关信息, 包括透射模式样品进样器参数、型号等,不管是国产,还是进口品牌的透射模式样品进样器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透射模式样品进样器相关的耗材配件、试剂标物,还有透射模式样品进样器相关的最新资讯、资料,以及透射模式样品进样器相关的解决方案。

透射模式样品进样器相关的资讯

  • 光学薄膜透射反射性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用PerkinElmer紫外可见近红外光谱仪配置可变角度测试附件,直接测试样品不同角度下绝对反射率、透射率曲线,无需参比镜校准,操作简单方便,测试结果更加准确。附件为变角度绝对反射、变角度透射率测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。PerkinElmer Lambda1050+ 光谱仪自动可变角附件光路图图1 仪器外观图固定布局 工具条上设置固定宽高背景可以设置被包含可以完美对齐背景图和文字以及制作自己的模板下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。样品变角度透射测试采用自动可变角附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,无需多次操作,测试曲线如下图所示。图2 样品不同角度和偏振态下透射率测试数据样品变角度透射/反射曲线测试同一个样品,可以通过软件设置一次性测试得到样品透射和反射率曲线,如下图所示,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。图3 样品45度透射和反射曲线测试NIST标准铝镜10度反射率曲线测试采用自动可变角附件测试NIST标准铝镜10度下反射率曲线,如下图所示,黑色曲线为自动可变角附件测试曲线,红色为NIST标准值曲线,发现两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。图4 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。图5 样品全波段(200-2500nm)变角度反射率测试不同膜系设计的镀膜样品性能验证
  • 赛默飞透射电镜助力超导理论研究
    2023年2月22日,清华大学朱静院士团队联合复旦大学车仁超教授和北京大学李源副教授在《自然》杂志上发表了题为” Topological spin texture in the pseudogap phase of a high-Tc superconductor” [1] 的文章。该研究工作采用赛默飞透射电子显微镜(TEM)首次在赝能隙态YBa2Cu3O6.5材料中发现了拓扑磁涡旋结构的存在。该拓扑磁涡旋结构的发现在实空间微观尺度上给赝能隙态下的时间反演对称性破缺提供了的直接图像证据,并且发现该拓扑磁涡旋结构在电荷密度波态时被破坏,进入到超导态时又重新出现,这一发现对揭示高温超导的微观机理具有重大的意义,而先进的透射电子显微镜在这一发现上更是功不可没。朱静院士,车仁超教授等人深耕于超导材料研究领域,洛伦兹低温原位透射电镜研究领域,电子显微学研究领域多年,取得了一系列重要研究成果。在本研究中,研究团队利用复旦大学电子显微镜实验室新安装的Spectra 300透射电子显微镜开展低温洛伦兹样品测试,获得了此次重大发现。2021年,赛默飞上海纳米港(Shanghai NanoPort, Thermo Fisher Scientific)有幸参与其中部分实验工作,在创建冷冻实验环境和原位数据采集方面积极地配合支持。本文将主要介绍两种电子显微学技术——洛伦兹透射电镜(LTEM)和积分差分相位衬度(iDPC)在该工作中起到的关键作用。洛伦兹透射电镜(LTEM)正常TEM光路下,物镜处于开启状态,样品在物镜上下极靴中间处于~2T的强磁场中,样品本征的磁结构会被物镜的强磁场破坏。为了在无磁环境下观察样品本征的磁结构,赛默飞场发射透射电镜Talos和球差校正透射电镜Spectra都可以通过关闭物镜电流使样品处于零磁场环境,再由位于物镜下极靴内部的洛伦兹磁透镜实现对样品微观本征磁结构的观察。LTEM成像模式主要有两种:Fresnel成像模式和Foucault成像模式。Fresnel成像模式是通过改变图像的离焦量实现对磁畴或畴壁的观察。其图像主要特点是欠焦和过焦条件下磁畴畴壁的衬度是相反的,而正焦图像则没有磁衬度。Foucault成像是通过遮挡或者保留后焦面上与磁畴相关的衍射信号来实现(类似于暗场像), 适用于观测不同磁化取向的磁畴。图1a-c分别为该文章中赝能隙态YBa2Cu3O6.5样品的正焦、过焦以及欠焦下的Fresnel图像,离焦量为±1.08 mm。其反转的衬度特点,切实证明了该样品中存在拓扑学特征的畴结构。此外,赛默飞透射电镜上的洛伦兹功能不仅可以实现无磁环境,还可以很方便地通过改变物镜电流来改变磁场,用于原位研究磁结构随磁场强度的变化。在本研究中,作者通过改变物镜电流对样品施加外磁场影响,拓扑学特征消失,进一步证明了该效应是由磁学特性引起的。作者通过使用强度传递方程(Transport of Intensity Equation, TIE)的相位重构技术[2],对LTEM图像进行数据处理得到拓扑磁涡旋结构的磁场方向和相对强度分布(图1d-e, i-l)。图1m-n是由LTEM结果推测出来的两种可能的磁涡旋结构示意图。该文章中LTEM实验分别在赛默飞Spectra300,Themis和Titan机台进行了重复验证,均观察到拓扑磁涡旋结构。图1 (a-c)LTEM Fresnel模式下赝能隙态YBa2Cu3O6.5样品的正焦、过焦、欠焦图像(离焦量为±1.08 mm),样品处于300 K,零磁场环境,标尺为500 nm;(d-e)为通过TIE算法得到的磁场和磁场强度图像;(f-j)为红色方框对应的剪裁放大图像;(k-l)为单个磁涡旋结构的磁场和磁场强度图;(m-n)为两种可能的拓扑磁涡旋结构示意图[1]除了常规的LTEM成像外,赛默飞球差校正透射电镜Spectra系列可以通过物镜球差校正器对LTEM光轴进行像差校正。像差校正洛伦兹模式下可以得到优于1nm的信息分辨率,从而帮助科研工作者观察到更小的磁结构。积分差分相位衬度(iDPC)球差校正透射电镜的超高空间分辨率提供了关于拓扑自旋结构的出现与局域晶体结构之间关系的更多信息。铜基超导材料中氧原子的掺杂或缺失对材料性能具有重要的影响,直接观察到氧原子的占位对深入揭示材料微观结构与性能之间的关系具有重大的意义。然而,广泛使用的扫描透射电镜(STEM)的高角环形暗场(HAADF)图像,因其主要接收高角卢瑟福散射信号,导致轻重元素无法同时成像,C、N、O等轻原子无法观察到。STEM环形明场(ABF)像虽然能观察到轻元素,但ABF图像无法直接解读,而且存在对样品厚度要求高、图像信噪比不佳等问题。为了解决以上问题,赛默飞提出并发展了积分差分相位衬度(iDPC)技术。iDPC这一全新STEM成像模式的出现,大大提高了透射电子显微镜捕获原子的能力。iDPC技术具有能实现轻重原子同时成像,能实现低电子剂量,高分辨和高信噪比成像,图像衬度易解读等优点[3]。目前,iDPC技术已成为材料表征领域技术热点,在表征轻元素占位、二维材料、电子束敏感材料、超导体等领域具有重要的应用。iDPC成像技术现已完全集成在赛默飞球差校正电镜Spectra和场发射电镜Talos上,能实现iDPC图像的在线采集和显示。图2 (a) YBa2Cu3O6.0, (b) YBa2Cu3O6.5和(c) YBa2Cu3O6.9的原子分辨率iDPC图像[1]图2为YBa2Cu3O6.0、YBa2Cu3O6.5和YBa2Cu3O6.9的高分辨iDPC图像,可以清楚的观察到氧原子的位置,随着氧掺杂含量的不同,Cu-O链上的氧占位逐渐增加。值得注意的是赝能隙态YBa2Cu3O6.5的Cu-O链上出现了氧富集和氧缺失的有序排列。作者认为这种氧的有序排列有利于拓扑磁涡旋结构沿c轴自由排列,是观察磁涡旋结构的最佳区域。作者认为现阶段不能完全排除氧填充链激发磁性的可能。赛默飞将致力于相关电子显微学技术的研发与应用,为材料的电、磁学性能研究提供更强大的助力。作者:刘建参考文献[1] Zechao Wang, Ke Pei, Liting Yang, Chendi Yang, Guanyu Chen, Xuebing Zhao, Chao Wang, Zhengwang Liu, Yuan Li, Renchao Che & Jing Zhu. Topological spin texture in the pseudogap phase of a high-Tc superconductor. Nature (2023). https://doi.org/10.1038/s41586-023-05731-3[2] M. Beleggia, M.A. Schofield, V.V. Volkov, Y. Zhu. On the transport of intensity technique for phase retrieval. Ultramicroscopy 102 (2004) 37–49.[3] Ivan Lazi&cacute , Eric G.T. Bosch and Sorin Lazar. Phase contrast STEM for thin samples: Integrated differential phase contrast. Ultramicroscopy 160, 265-280 (2016).
  • 经验分享:透射电子显微镜应用领域及样品制备方法
    透射电子显微镜是使用较为广泛的一类电镜,具有分辨率高、可与其他技术联用的优点。已广泛应用于医学、生物学等各个研究领域,成为组织学、病理学、解剖学以及临床病理诊断的重要工具之一。常规电镜样品制备包括常温化学双固定、常温脱水包埋、常规超薄切片、普通电镜观察几个步骤。样品制备过程历时约一周,超薄切片经醋酸双氧铀和柠檬酸铅染色后,电镜观察。所有操作均按照以下流程进行。一、试剂0.2 mol/ L磷酸盐缓冲液Na 2 HPO 4 2H 2 O 35.61 g 或Na 2 HPO 4 7H 2 O 53.65 g / Na 2 HPO 4 12H 2 O 71.64 gNaH 2 PO 2 H 2 O 27.60 g 或NaH 2 PO 4 2H 2 O 31.21 g加双蒸水(ddH2O)到1000 mL0.1 mol/ L磷酸盐缓冲液(PBS)0.2 mol/ L磷酸盐缓冲液 250 mL加双蒸水到500 mL2 % 低温琼脂低温琼脂 1.0 g加双蒸水到 50 mL加热到沸腾,溶液均匀后备用1 % 戊二醛固定液25 %(m/v)戊二醛水溶液 2 mL0.2 mol/ L磷酸盐缓冲液 25 mL加双蒸水到50 mL1 % 锇酸固定液2 %(m/v)锇酸水溶液 10 mL0.2 mol/ L磷酸盐缓冲液 10 mL包埋剂A液Epon 812 树脂 50 mL十二烷基琥珀酸酐(modecenyl succinic anhydride, DDSA) 80 mL包埋剂B液Epon 812 树脂 50 mL六甲酸酐(methyl nadic anhydride, MNA) 44.5 mL2 , 4 , 6 - 三甲氨基甲基苯酚( 2, 4, 6 - tridimethylamino methyl phenol, DMP-30 )甲苯胺蓝染液甲苯胺蓝 1 g1 mol/ L NaOH 10 mL加双蒸水到50 mL混匀过滤后使用1 % 醋酸双氧铀染液醋酸双氧铀 0.2 g加双蒸水到10 mL封口膜封口,4℃避光保存1 % 柠檬酸铅染液硝酸铅 0.265 g柠檬酸钠(含2分子结晶水) 0.352 g加双蒸水到10 mL①① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。封口膜封口,4℃保存仪器修块机 Leica EM TRIM切片机 Leica EM UC6光学显微镜 Nikon 80i 及配套拍照系统DS-L1透射电子显微镜 JEOL-1230Gatan Bioscan Camera 792低电压透射电子显微镜 JEM-1230二、实验流程一、 取材与固定A. 植物样品1. 自来水冲洗表面泥尘后,使用灭菌水清洗2-3次,置于铺有预湿滤纸的培养皿中。2. 使用干净锋利的刀片切取目标材料,所取材料体积不大于3 mm3。切取样品时应注意动作迅速、减小损伤,避免来回切拉;使用的灭菌水及器具应4℃预冷,并在操作中尽量保持低温以降低组织细胞活性。3. 将切下材料放入装有预冷的戊二醛固定液的青霉素小瓶中后抽气,抽几次后轻摇小瓶,并打开瓶盖。重复2-3次,直到样品沉入瓶底。4. 室温静置1h,或摇床轻摇1h。5. PBS清洗3次,10min/次。6. 1%锇酸固定液固定1h。7. PBS清洗3次,10min/次。B. 动物样品1. 4℃预冷生理盐水冲洗组织块,迅速切取组织块,体积不大于3 mm32. 将切取的组织块投入装有预冷戊二醛固定液的青霉素小瓶中,并抽气直至样品沉底。3. 室温静置1h,或摇床轻摇1h。4. PBS清洗3次,10 min/次。5. 1%锇酸固定液固定1 h。6. PBS清洗3次,10 min/次。C. 单层培养细胞或悬浮培养细胞样品②1. 3000 rpm离心5 min,收集细胞样品,尽量多的吸弃培养液上清。2. 加入4℃预冷PBS液,充分吹吸混匀,静置4 min,3000 rpm离心5 min,吸弃上清。① 配制铅染液时,要先加水6 mL,超声震荡30 min,使乳白色柠檬酸铅悬液充分混匀。然后滴加1 mol/L NaOH,并不是晃动,直至溶液变清亮。最后定容至10 mL。② 细胞样品处理和藻类及其他游离样品处理流程可相互参照,即细胞样品可以酌情使用琼脂铸模法取材固定,藻类及其他游离样品也可以使用血清预包埋法取材固定,总体视样品密度及其对于温度的耐受等条件而定。3. 重复步骤2一次。4. 加入预冷的血清或蛋清,充分吹吸混匀,3000 rpm离心10 min,吸弃大部分上清,留少部分,吹吸悬浮沉淀细胞。(或离心后吸弃上清,留少部分上清,不悬浮沉淀细胞,视样品浓度而定)5. 缓慢加入戊二醛固定液,小心放入4℃冰箱,固定过夜。6. 吸弃上清,刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的血清包埋块。7. 使用干净的单面刀片或手术刀,将血清包埋块切成2 mm3左右的小块,取3-5个富集细胞样品效果较好的包埋小块继续下面实验。8. PBS清洗3次,10 min/次。9. 1%锇酸固定液固定1 h。10. PBS清洗3次,10 min/次。D. 藻类及其他游离培养样品1. 吸取2%低温琼脂液200μL到0.2mL离心管,并将离线管置于冰上,取10μL枪头迅速插入琼脂中并保持离心管竖直,且枪头竖直靠中的包裹在琼脂中。2. 静置1 min,待琼脂凝固后,小心拔出枪头,形成琼脂空腔,待用。3. 3000 rpm离心5 min,收集样品,尽量多的吸弃培养液上清。4. 加入4℃预冷PBS液,充分吹吸混匀,静置4min,3000 rpm离心5min,吸弃上清。5. 重复步骤2清洗,吸弃大部分上清,留极少部分上清液,吹吸悬浮样品。6. 使用10μL 移液器小心将样品加入已经制备好的琼脂空腔中,使样品充满空腔大部分,添加过程中尽量避免气泡出现。7. 吸取50μL溶化的琼脂,快速滴加到空腔琼脂上封口,冰浴5 min,待琼脂完全凝固。8. 使用单面刀片小心划开离心管壁,用钳子拉开离心管,小心取出已凝成固体的琼脂包埋块,稍作修葺。9. PBS清洗3次,10 min/次。10. 1%锇酸固定液固定1 h。11. PBS清洗3次,10 min/次。二、 脱水1. 按丙酮与灭菌水体积比3:7配制30%脱水剂。吸弃样品管/瓶中的PBS,快速加入现配的脱水剂(脱水换液过程禁止出现样品暴露空气中现象,可不全部吸完,略有剩余,使样品浸润;动作应迅速准确),室温放置或摇床轻摇45 min。加入按30%、50%、70%、90%、100%(v/v)的浓度梯度进行脱水。2. 配制50%脱水剂,快速换液,室温轻摇45 min。3. 配制70%脱水剂,快速换液,室温轻摇45 min。4. 配制90%脱水剂,快速换液,室温轻摇45 min。5. 使用纯丙酮快速换液,室温轻摇30 min③。6. 重复步骤5一次。三、 渗透包埋在此步脱水操作完成后即可开始配制渗透用包埋剂,以免安排不周。样品浸泡在纯丙酮中时间不宜过久,以免造成样品较脆,不利于超薄切片。1. 配制渗透用树脂包埋剂1) 取干净的10 mL注射器,拔去活塞,用封闭针头堵住注射口,放于通风橱中。2) 小心倾倒B液9 mL到注射器中;然后再小心倾倒A液1 mL。3) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色均匀,无丝状液体。4) 小心拔去活塞,通风橱中操作,缓慢滴加14滴DMP-30。5) 插入活塞,堵住注射器后,颠倒摇匀至液体颜色完全均匀,无丝絮状分色,竖直放置待用。2. 按照包埋剂与丙酮体积比3:7配制30%渗透剂,快速吸弃样品管中纯丙酮并加入渗透剂,轻摇渗透3 h。3. 按照包埋剂与丙酮体积比7:3配制70%渗透剂,快速换液,轻摇渗透过夜。4. 重新配制包埋剂,并小心推按注射器,将包埋剂挤到包埋模具中至液面略凸。5. 解剖针挑取样品到纯包埋剂中,渗透3 h。6. 小心挑取样品,滤纸上稍微沾下吸弃部分粘附的包埋剂,轻轻放置到未渗透过样品的包埋孔中,小心将样品按到底,摆放好位置。记录各样品对应包埋块编号。7. 梯度温度聚合包埋1) 37℃烘箱中12 h,期间定时观察样品有无漂移现象,如有,则再次小心摆放样品位置。2) 45℃烘箱中12 h。3) 60℃烘箱中24 h。四、 修块与切片1. 拿到包埋块后检查样品位置是否得当,选取位置好的包埋块优先进行修块、切片。2. 粗修包埋块1) 使用六角扳手将包埋块固定在样品头上,露出长度合适。2) 将样品头固定在修块机上,体视镜观察修块,分四个方向将包埋块头部多余的包埋剂修去,暴露出组织块。3) 使用锋利的单面刀片修去组织块周围毛刺的包埋剂,使其四边光滑清晰。4) 卸下样品头装至切片机上,使用玻璃刀修片,直至样品表面光滑清晰。3. 半薄切片1) 将粘有水槽的玻璃刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见900nm厚度切片反光为亮绿色。6) 待有切片下来形成4-6片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,放到干净载玻片上,酒精灯略微加热,使水蒸干,并对着光亮用记号笔标示切片所在位置。4. 半薄切片染色1) 吸取20μL甲苯胺蓝染液,滴加到载玻片放有切片的位置,室温静置30 s 。2) 去离子水冲洗玻片,直至不再有蓝色。吸水纸上沥干,酒精灯略微加热,加速切片上的水分蒸发。3) 显微镜观察切片质量和样品位置。5. 精修包埋块1) 移去装有水槽的玻璃刀,取下装有包埋块的样品头,装至修块机上。2) 根据半薄切片结果,使用新的锋利刀口,小心修理包埋块四边,使其尽可能的光滑、平整。6. 超薄切片1) 将钻石刀装至切片机刀台上,体视镜下小心对刀,不时转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的距离相等。2) 转动手轮,使整个样品高于刀刃,点控制面板Start,设置切片区域上边界;转动手轮,使整个样品低于刀刃,点控制面板End,设置切片区域下边界。3) 手动步进刀台靠近样品,至出现彩色干涉光,转动手轮,使样品上下移动,调整刀台左右角度及样品上下角度,直至包埋块整个表面与刀刃的干涉光谱颜色一致;继续步进刀台,并通过体视镜观察干涉光谱变化,直至干涉光消失。4) 转动手轮,使样品离开刀刃区域,使用滴管将干净的去离子水加到玻璃刀水槽中,体视镜观察直至液面略低于刀刃。5) 调整切片厚度与速度,按控制面板Run/Stop键,开始切片。体视镜观察可见70nm厚度切片反光为亮灰色及浅灰色。6) 待有切片下来形成10-20片的切片带,按Run/Stop键停止切片,体视镜观察下,使用睫毛笔将所需薄片拨离刀刃,并将所需切片聚拢一起。7) 用干净捞片环轻轻沾取切片所在区域,根据水膜表面张力捞取切片,轻轻放到干净载膜铜网上,用尖角滤纸靠近铜网边缘缓慢吸干水分。8) 轻轻移去捞片环,将载有切片的铜网放到铺有滤纸的平皿中,晾干待染色观察。五、 染色1. 醋酸双氧铀染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。2) 将放有切片的载网小心放到染色盘上,有切片面靠上,并稍微用镊子按载网边缘,使其与染色盘接触粘附牢固。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色30 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。6) 重复清洗2次。2. 柠檬酸铅染色1) 按每片载网20μL染液的量吸取醋酸双氧铀染液,13 200 rpm离心5 min。④2) 在放置染色盘的平皿中放入2片固体NaOH,用以吸收平皿中CO2气体。3) 吸取20μL染液滴加到载网上面,盖上平皿防尘,室温染色8 min。4) 将染色盘整个放到装有去离子水的清洗缸中,轻摇清洗1 min。5) 小心取出染色盘,更换水洗液,轻摇清洗5min。连续染色时,载网不需要从染色盘上拿下,清洗后直接进行铅染即可,但是铅染液要现用现取。6) 重复清洗2次。7) 小心夹取载网,放置到铺有滤纸的干净平皿中,晾干待电镜观察。六、 电镜观察1. 取出样品杆,打开样品夹,小心放入载网,合上样品夹,并转动样品杆,轻敲确保样品夹已准确固定载网。2. 将样品杆插入透射电镜样品室,开始抽气。3. 打开灯丝开关,等待检测电流出现后,打开观察窗开始观察。4. 先在低倍下找到切片,再高倍观察切片,寻找待看目标,仔细对焦。5. 将切片目标区域遇到观察窗中间后,调整灯丝电流密度为3.8 pA/cm2。6. 插入拍照CCD,Start View,微调焦距,Start Acquire 拍照。7. 拍照完毕,按格式需求保存照片到指定文件夹。8. 使用专用写保护闪存盘拷贝数据到公共电脑观察、使用。三、应用领域1、材料领域材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电子显微镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结 构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。
  • 技术线上论坛| 6月15日《深入“探索”台式低电压透射电镜,专为生物、医学、轻元素样品而来》
    [报告简介]受限于传统透射电子显微镜过高的加速电压,传统电子显微镜成像时需要对C/H/O/N等元素组成的生物样品进行重金属盐离子负染。而负染过程本身会对生物样品带来不可避免的损害,且容易产生“假象”。而且负染操作需要对重金属盐溶液的种类、浓度,染色的时间长短等诸多实验条件进行摸索的试错,这也提升了生物样品制样的难度。在成像过程中,传统透射电镜80kV以上的加速电压也非常容易击碎生物样品,对生物样品产生不可逆地破坏。综上所述,对生物样品的成像一直以来就是传统透射电子显微镜的短板。 由Delong公司推出的LVEM系列生物型透射电子显微镜,地解决了以上的问题。其采用的5kV和25kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对生物样品成像条件温和,摆脱了染液与负染过程本身可能对生物结构造成的损害,所得图像为“正像”,更加真实地展现生物样品的结构特征。LVEM生物型透射电镜可以对外泌体、脂质体、噬菌体、病毒、细胞切片等生物样品进行无负染成像,所得的图像衬度更高。 本次讲座,我们将具体介绍LVEM生物型透射电镜的技术特点,对生物样品的制样步骤,并分享多种生物样品的成像实例。[直播入口]请扫描下方二维码进入生物型透射电子显微镜技术交流群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]开始 2022年06月15日 10:00结束 2022年06月15日 10:30[主讲人介绍]曹宇棽 工程师曹宇棽,北京交通大学生物工程与分子生物学硕士。2020年加入Quantum Design中国子公司,担任产品经理,负责多功能低电压台式透射电子显微镜。 熟悉低电压透射电镜的成像技术,在生物样品的电镜成像领域有丰富的经验。摆脱传统电镜桎梏的生物型透射电镜Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,一次性地摆脱了上述所有的生物电镜成像难题,为生物样品的电镜成像提供为便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。LVEM生物型电镜案例LVEM生物型透射电镜对生物样品成像友好,除了LNP之外,对于病毒颗粒、外泌体、噬菌体、DNA、细胞切片等生物样品的成像效果也非常,可以满足研究人员多样化的成像需求,且其操作简便,制样简单,是使生物科研工作者研究更加游刃有余的“科研利器”。 部分用户单位:技术线上论坛:https://qd-china.com/zh/n/2004111065734
  • 175nm-50000nm变角度透射反射光学性能检测方法进展
    随着智能穿戴设备、消费电子设备应用兴起,生物识别、物联网、自动驾驶、国防/安防等领域对光电镀膜材料的需求日益旺盛。不同行业根据使用场景,对光学镀膜的性能提出了更加多样化的需求,越来越多需要测试镀膜样品的变角度透射、变角度反射信号。传统变角度反射测试一般为相对反射率测试,需要通过参比镜进行数据传递,往往参比镜在不同角度下的绝对反射率曲线很难获取,给测试带来很大困难,同时在数据传递中也会增加误差的来源。本文主要介绍采用珀金埃尔默紫外/可见/近红外光谱仪和Spectrum 3红外傅里叶变换红外光谱仪,配置TAMS等可变角度测试附件,测试样品不同角度下绝对反射率、透射率数据,实现175nm-50000nm透射率、反射率等光学性能的精确表征。TAMS附件为变角度绝对反射、变角度透射测试附件,如下图所示,检测器和样品台均可以360度旋转,通过样品台和检测器配合旋转,测试不同角度下透射和反射信号。 Lambda系列分光光度计 TAMS变角度透射反射附件光路图图1 仪器外观图以下分别选取不同应用场景下的典型样品,对测试数据进行简要介绍。01样品变角度透射测试采用TAMS附件可以方便快捷的测试样品不同角度下透射数据,自动测试样品不同角度下P光和S光下透射率曲线,一次设置即可完成所有角度在不同偏振态下透射率曲线测试,测试曲线如下图所示。 图2 样品不同角度和偏振态下透射率测试数据(点击查看大图)TAMS附件配套不同的偏振组件,可以自动测试样品不同波长下偏振信号,如下图测试石英样品在45度下偏振P光和S光反射数据: 图3 样品紫外波段P光和S光偏振测试(点击查看大图)02样品变角度透射/反射曲线测试通过软件设置,可一次性测试得到样品透射和反射率曲线,如下图,该样品在可见波长下反射率大于99.5%,透射率低于0.5%,可同时表征高透和减反性能。 图4 样品45度透射和反射曲线测试(点击查看大图)03NIST标准铝镜10度反射率曲线测试测试NIST标准铝镜10度下反射率数据,如下图所示,黑色曲线为TAMS测试曲线,红色为NIST标准值曲线,两条测试曲线完全重合,进一步证明测试系统的可靠性,可以准确测试样品的光学数据。 图5 NIST标准铝镜10度反射率曲线测试(红色为NIST标准曲线)04样品变角度全波长反射曲线测试(200-2500nm)软件设置不同的测试角度和偏振方向,自动测试样品不同角度下P光和S光偏振态下反射率曲线,如下图所示,200-2500nm整个波段下测试曲线均有优异信噪比,尤其是在紫外区(200-400nm),可以完成各波长范围的反射性能测试。 图6 样品全波段(200-2500nm)变角度反射率测试(点击查看大图)05不同膜系设计的镀膜样品性能验证测试样品600-1400nm下45度反射率曲线,该样品在1200nm以上属于高反射率,反射率大于99.5%,同时需要关注600-1200nm范围各个吸收峰情况,该波段下吸收峰非常尖锐,同时吸收峰较多,需要仪器具备高分辨率,从而准确测试出每一个尖锐吸收峰信号。 图7 膜系设计验证样品45度反射率测试(点击查看大图)06双向散射分布函数(BSDF)测试除了测试常规变角度透射和反射曲线外,TAMS附件可以自动测试样品不同角度下透射和反射率信号,可以得出样品不同角度下的透射分布函数(BTDF)和反射分布函数(BRDF)信号,最终得到双向散射分布函数(BSDF)。采用该附件可方便测试样品双向散射分布函数(BSDF)、双向反射分布函数(BRDF)、双向透射分布函数(BTDF)等光学参数测试,测试结果如下图所示: 图8 BRDF和BTDF测试(点击查看大图)如下图所示,测试样品不同波长下BSDF分布函数曲线(BRDF + BTDF),从而可以得出样品随不同角度下透射和反射信号变化情况。 图9 样品不同波长下BSDF(BRDF+BTDF)测试(点击查看大图)07窄带滤光片测试Lambda系列光谱仪为双样品仓设计,TAMS附件可与标准检测器、积分球检测器自由更换。对于窄带滤光片样品,即需要准确测设带通区域的透过率、半峰宽,也需要准确测试截止区吸光度值(OD值),可直接切换标准检测器进行检测。 图10 用于激光雷达的镀膜镜片透射和OD值测试数据(点击查看大图)08红外波段区变角透射反射测试珀金埃尔默傅里叶变换红外光谱仪,可广泛应用于上述红外材料光学性能测试,可测试样品在不同波段下红外透光率以及反射率,搭配变角透射及变角反射附件,可以实现不同角度下透射率及反射率测试,如下图为红外波段透射和反射测试曲线: 图11 用于Spectrum 3傅里叶红外的TAMS附件 图12 红外TAMS附件测试样品红外波段不同角度透射数据Summary综上,采用Lambda系列紫外/可见/近红外分光光度计以及傅里叶红外光谱仪,搭配TAMS、标准检测器、积分球等多种采样附件,可以组合出完备的材料光学性能测试平台,满足光学镀膜测试的多样化需求,更加准确便捷的得到样品的光学检测数据。 关注我们
  • 透射电镜样品制备技术之生物样品制备流程
    透射电镜样品制备技术之生物样品制备流程透射电镜常用的50-100 kV电子束来说,样品的厚度控制在10~100 nm为宜。由于电镜产生的电子束穿透能力很弱,需要把标本切成厚度小于0.1 µ m以下的薄片才适用,这种薄片称为超薄切片(Ultrathin sectioning)。常用的超薄切片厚度是50-70 nm,也可进行冷冻超薄切片。超薄切片技术是为透射电子显微镜观察提供薄样品的专门技术,研究材料类、生物类样品的基本技术,尤其是观察细胞、组织、器官等的超微结构以及亚细胞结构常用的技术。也是电镜细胞化学、免疫电镜等技术的关键性技术。它在生物学的发展过程中占据重要的地位,目前各种细胞、组织的超微结构知识几乎都是由它提供的。冷冻超薄切片机 Leica EM UC7制备流程取材→固定→脱水→包埋(渗透、包埋、聚合)→超薄切片→电子染色(生物类)取材→清洗→包埋(渗透、包埋、聚合)→超薄切片→电子染色(材料类)生物样品超薄切片要求:(1)细胞的细微结构保存良好,没有明显的物质凝聚、丢失、添加等人工效应;(2)切片厚度50-100 nm为宜:太薄反差低;太厚反差好,但结构重叠,电子束不能穿透;(3)切片应耐电子束的强烈照射,不变形不升华;(4)切片能够适当被染色,保证一定的反差;(5)切片均匀,无皱褶、刀痕,无染色剂或其他化学物质的沉淀。取材目地和要求(1)新鲜。(材料离体后1-5 min内进入固定液,避免细胞自溶和结构变化)(2)体积小。(厚度(3)机械损伤小。(动作轻巧,器械锋利,避免对组织的挤压和推拉,建议用剃须刀片、手术刀片、手术剪刀。)(4)低温操作,器械、容器、固定液均需预冷(降低酶的活性,减少组织自溶)。(5)取材部位准确,且注意材料的方向性和定位。固定目的和要求:终止组织细胞的生化过程同时把它们的超微结构改变控制在最小范围内,并保护这些结构在后续的脱水、包埋等过程中不被破坏;将蛋白、离子等内容物保留在原位,以便后续的研究。固定液:固定剂+缓冲液(1)破坏细胞的酶活性系统(2)稳定细胞物质成分,并保存之(3)接近细胞生活状态的渗透压,使细胞不收缩或膨胀(4)在组分的分子之间建立交联,提供骨架稳定细胞器的空间构型(5)提供一定的电子反差固定剂:戊二醛(C5H8O2):渗透性好,保存蛋白质、酶活性,稳定糖元,无电子染色作用,固定脂类和膜差。可长时固定(低温可达半年)。锇酸(OsO4):强氧化剂,固定脂类、膜结构,有电子染色作用;破坏酶活性。多聚甲醛:优良地保存酶活性,用于细胞化学。缓冲液:仿效细胞外液成分,对细胞富有生理保护。维持稳定的pH值;提供适当的渗透压;提供适当的离子成分使样品不抽提,不沉淀。固定方法:常用双固定法,用戊二醛对样品前固定,漂洗后使用锇酸对样品进行后固定。影响因素: 1.pH值:动物组织7.2-7.4,植物6.8-7.0,高度含水组织8.0-8.4 2.缓冲液类型:磷酸缓冲液、二甲砷酸盐缓冲液等,0.05-0.1 mol/L 3.渗透压:KCl, NaCl, 蔗糖调节 4.固定剂浓度:戊二醛2-6%,四氧化锇1-2% 5.材料大小:0.5-1 mm³ 操作步骤:戊二醛固定液:有细胞壁的样品5%,无细胞壁样品3%。加入缓冲体系,确保生物样本内外渗透压,避免细胞萎缩或吸涨。切取一小块组织,置入预冷的戊二醛固定液(3-5%)中,4℃预固定20分钟后,捞出置于洁净的保鲜膜或培养皿上(已滴有预冷的固定液),在固定液中用将组织切成2-5 mm长, 2-3 mm宽, 1 mm厚的细条,移入盛有预冷的戊二醛固定液的离心管中,4 ℃固定过夜。1.植物细胞的细胞壁和液泡会阻碍固定液迅速渗入。植物材料内部存有的空气,往往使材料漂浮于固定液面之上,由此影响到植物组织的固定效果。组织放入戊二醛固定液后,可用真空泵抽出组织内部的气体,使材料沉入固定液中。2.动物样本的取材,可将动物麻醉或急性处死后切取组织。或者采用原位固定、流灌固定后再切取所需组织。3.细胞培养的样品,轻微并短暂离心,倒净培养液后,加入预冷的固定液,4℃固定10 min后,低温6000 rpm/min离心5 min(离心力不可过大,离心时间不可过长,避免机械挤压),去上清,滴加新鲜固定液并重悬,4℃固定过夜。脱水用适当的有机溶剂取代组织和细胞中的游离态水分,使之能与包埋剂混合。要求:脱水要彻底;更换液体动作要迅速;脱水时间不宜过长;固定后的样品要充分漂洗。脱水剂:乙醇、丙酮、环氧丙烷等。步骤:逐级梯度脱水30%→50%→70%→80%→90%→95%(以上步骤每次15-20 min)→100%(2-3次,每次15 min)→100%丙酮(20 min) 包埋1.渗透:用包埋剂或混合液逐渐取代组织内的脱水剂(或前介质),使细胞内外所有的空隙被渗透液填充,使包埋剂逐步渗透到组织细胞内部,以便与细胞外的包埋剂同时聚合。包埋剂:聚合有良好的切割性能,软硬度易调节粘度低,易渗透;溶于脱水剂;电子透明度好,并具有一定的反差,聚合要充分、均匀,聚合温度要尽可能低;本身无结构,热稳定性好,可耐电子束轰击;来源丰富,且各批号性能尽可能一致;切片易染色,且对人体无害。常用Epon 812、Spurr、LR white等步骤:逐级梯度渗透,脱水剂:包埋剂3:1 → 1:1 → 1:3 →纯包埋剂2.包埋:将渗透好的样品块放入到适当的包埋模具中,灌装上纯包埋剂包埋。3.聚合:加温聚合形成固体基质,牢固地支撑整个细胞结构或组织,制成适于机械切割的固体包埋块,利于切片。步骤:37℃(12 h)→45 ℃(12-48 h)→60 ℃(24-48 h)超薄切片制刀:常用玻璃刀、钻石刀。刀上要装水槽,并注入槽液。槽液要求:不与材料发生化学反应,干净无杂质;液面与刀口基本平行;低粘度,蒸发量小;有一定的表面张力,有利于漂浮切片。常用的槽液:双蒸水、二甲基亚砜(DMSO)、甘油水溶液等。修块:除去组织周围多余的包埋介质和不感兴趣的部分,以提供较大的有效观察面积。并修成一定形状、大小的包埋块截面,便于连续切片。可手工、机械修块。切片:装块→装刀→对刀→加水→切片→捞片注意事项:对刀是关键;槽液用新鲜溶液;温度20~25℃,相对湿度60%;室内无空气流动,清洁,防止震动;刀槽密封,否则漏水。电子染色利用高密度的重金属染色剂(铅、铀)与细胞某些微细结构或成分结合,以增加样品局部的电子散射能力,提高电镜图像反差的方法。染色实质上是增大电子密度,电镜图像灰度不同。电子显微镜图片均为黑白灰,无彩色。常用染色剂:醋酸铀:主要染核酸、核蛋白、细胞核、结缔组织。要避光,有微弱的放射性柠檬酸铅:主要染膜结构、脂类、核酸。易与CO2反应成沉淀,染色中应避免。步骤:单染:铅盐单染,铀盐单染。双染色:醋酸双氧铀染色→漂洗→柠檬酸铅染色→漂洗→干燥。双染色较为常用。材料样品取材后可用丙酮清洗样品表面,直接包埋(渗透、包埋、聚合),超薄切片、电子染色(锇酸熏染)。
  • 350万!嘉庚创新实验室透射电子显微镜货物类采购项目
    项目编号:[350200]WSCG[GK]2022009 项目名称:嘉庚创新实验室透射电子显微镜货物类采购项目 采购方式:公开招标 预算金额:3500000元 包1: 合同包预算金额:3500000元 投标保证金:0元 采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)1-1A02100301-显微镜透射电子显微镜1(套)是1、工作条件1.1 电力供应:220V(±10%),50Hz,1φ 380V(±10%),50Hz,3φ;1.2 工作温度:15℃-25℃;1.3 工作湿度:60%。2、透射电镜基本单元2.1 电子枪为LaB6或W灯丝,提供备用灯丝至少2根;2.2 TEM模式下分辨率:点分辨率: ≤0.30 nm,线分辨率: ≤0.15 nm;2.3 最高加速电压≥120 kV,提供最高加速电压下的合轴文件;2.4 TEM模式下的放大倍数范围至少满足x100–x650,000;2.5 照明系统束斑尺寸:对于W灯丝:80-4000 nm,对于LaB6灯丝:40-2000 nm,且照明系统束斑具有高的稳定度。2.6 具备高衬度成像模式以获得样品的更多细节和高分辨观测效果;2.7 具有合轴调整快速调用功能,透射/能谱分析/电子衍射分析三种模式仅需通过软件实现快速切换;2.8 具备会聚束电子衍射功能;2.9 配备全自动样品台:计算机控制,全对中,高稳定性,全自动马达样品台(至少4轴),支持单倾/双倾样品台,样品移动范围:X轴/Y轴≥2 mm;Z轴≥0.4 mm,样品台α倾斜角度:≥±30°;2.10 提供1根单倾样品杆,1根双倾样品杆;2.11 为保证不同用户的不同测试需求,电镜操作者可以根据需要,在透射、电子衍射等不同模式下设置一套或多套电镜状态参数,每套状态参数相互独立,可在使用过程中迅速切换调用。可设置任意多个用户,每个用户之间的参数设置相对独立,同时还可以相互调用。3、高速高分辨CMOS相机系统3.1 为保证成像质量,应配备一体化底装高灵敏度的CMOS相机;3.2 相机应具备高的像素数,其中最高像素数≥2048×2048,并可实现在不同像素数下的拍照和视频录制;3.3 相机的计算机平台应为Win10的64-bit,图像储存格式多样,如TIFF,BMP,JPEG,PNG等;3.4 相机具备直接拍摄电子衍射功能;3.5 相机具备自动对焦、自动对中、自动消像散等功能,提高样品拍摄的智能化和便捷化;3.6 相机应支持样品台导航功能,保证目标样品的快速定位和测试;3.7 支持DigitalMicrograph处理工具包进行数据处理,漂移校正,滤波,图像增强,图像裁切,可进行在线或后续的离线分析和数据处理。4、能谱仪系统4.1 探测器应具备高分辨、高信噪比和高稳定性且易于维护,SDD电子制冷探测器,无需其他辅助制冷手段,没有震动,探测器可自动伸缩,保护能谱仪免受高能电子辐照;4.2 能谱仪探测器应具有较大的有效面积,提高能谱仪计数率,保证有较强的接收信号,有效面积≥60 mm2;4.3 EDS系统应配备高的能量分辨率和大的元素分析范围;4.4 探测器具备防污染功能,减小样品对能谱仪的污染;4.5 能谱应用软件必须能够进行定性和定量分析。定性分析能够实现自动标识谱峰,也可手动选择元素标识谱峰,无禁止自动标定的元素;定量分析能够实现自动或手动对目标区域元素进行定量分析,可实现对测试样品任一区域、任一形状,任一面积的定量分析,获得原子百分比,元素质量比,元素重量比等多种形式的数据。能谱应用软件支持分屏显示及远程控制,支持中、英文等多种操作界面,可进行在线或后续的离线分析。5、系统配置5.1 具有高性能的硬件和软件配置,兼顾基本的原位实验。主机电脑内存RAM≥32G;显卡:显存≥8GB GDDR6,核心频率≥1845 MHz,显存位宽≥256 bit,视频输出支持DP/HDMI;CPU:主频≥3.7GHz,核心数量≥8核,线程数≥18线程,三级缓存≥20MB;固态硬盘容量≥3T,机械硬盘容量≥4T;数字化操作系统,Windows10的64-bit计算机控制系统,在用户图形界面上完成电镜的操作控制,支持包含高速相机软件、电子衍射分析软件、能谱软件等64位软件。5.2 提供足够的数量的数据处理软件拷贝(包含相机图片分析软件和能谱分析软件),方便后续对电镜测试数据进行处理,提供在线版license文件不少于1个,离线版license文件不少于6个。6、真空系统具有离子泵、扩散泵系统(前级机械泵)等,保证最优真空度,电子枪室≤1×10-7 Pa,样品室≤2×10-5 Pa。7、样品杆、存放架、套管、标样/标具、工具包7.1、提供原装单/双倾角样品杆,原装样品杆存放架,套管等至少一套;7.2、提供标样及耗材配件包,包含标样/标具,真空脂、密封圈、样品夹、样品杆固定螺丝等至少一套8、附件系统8.1 为保证透射电镜正常运行,必须配备相应的附件系统,包括稳定的电源供给,不间断电源设备(UPS),遇到断电,停电,主电源故障等不能供电情况,UPS立即切换工作,继续为透射电镜稳定供电至少2小时。此外,要求UPS设备对电压过高或电压过低都能提供保护;8.2 配备空气压缩装置;8.3 保证相机正常工作,配备空冷式循环冷却水装置;9、设备的场地动力条件要求9.1 提供设备的现场安装方案说明和图纸,主要包括设备占地面积、重量、动力要求(用电、用水、用气、尾排等);9.2 根据设备安装方案对场地进行必要的改造、装修,使其满足设备安装要求;9.3 在指定实验室除就位安装,并负责完成该设备相关的二次配工程,包括用气、用水、用电、尾排等,保证设备能够快速定位安装投入使用。另外要确保该二次工程符合国家相关标准,能够保证设备安全正常使用。3500000 合同履行期限: 合同签订后 (180) 天内交货 本合同包:不接受联合体投标
  • 一文看懂透射电子显微镜TEM
    p   透射电子显微镜(Transmission Electron Microscope, 简称TEM),是一种把经加速和聚集的电子束透射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度等相关,因此可以形成明暗不同的影像,影像在放大、聚焦后在成像器件(如荧光屏,胶片以及感光耦合组件)上显示出来的显微镜。 /p p   strong  1 背景知识 /strong /p p   在光学显微镜下无法看清小于0.2微米的细微结构,这些结构称为亚显微结构或超细结构。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1932年Ruska发明了以电子束为光源的透射电子显微镜,电子束的波长比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM分辨力可达0.2纳米。 /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e4bcd2dc67574096b089e3a428a72210_th.jpeg" height=" 316" width=" 521" / /p /center p style=" text-align: center " strong 电子束与样品之间的相互作用图 /strong /p p & nbsp & nbsp & nbsp 来源:《Characterization Techniques of Nanomaterials》[书] /p p   透射的电子束包含有电子强度、相位以及周期性的信息,这些信息将被用于成像。 /p p    strong 2 TEM系统组件 /strong /p p   TEM系统由以下几部分组成: /p p   电子枪:发射电子。由阴极,栅极和阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速和加压的作用。 /p p   聚光镜:将电子束聚集得到平行光源。 /p p   样品杆:装载需观察的样品。 /p p   物镜:聚焦成像,一次放大。 /p p   中间镜:二次放大,并控制成像模式(图像模式或者电子衍射模式)。 /p p   投影镜:三次放大。 /p p   荧光屏:将电子信号转化为可见光,供操作者观察。 /p p   CCD相机:电荷耦合元件,将光学影像转化为数字信号。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/077c0e70dca94509a9990ee4bf72b7c8_th.jpeg" height=" 359" width=" 358" / /center p style=" text-align: center " strong 透射电镜基本构造示意图 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 3 原 理 /strong /p p   透射电镜和光学显微镜的各透镜及光路图基本一致,都是光源经过聚光镜会聚之后照到样品,光束透过样品后进入物镜,由物镜会聚成像,之后物镜所成的一次放大像在光镜中再由物镜二次放大后进入观察者的眼睛,而在电镜中则是由中间镜和投影镜再进行两次接力放大后最终在荧光屏上形成投影供观察者观察。电镜物镜成像光路图也和光学凸透镜放大光路图一致。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/e9d4e63ae7de44bdb90ac7b937a15169_th.jpeg" height=" 333" width=" 422" / /center p style=" text-align: center " strong 电镜和光镜光路图及电镜物镜成像原理 /strong /p p & nbsp & nbsp & nbsp 来源:中科院科普文章 /p p    strong 4 样品制备 /strong /p p   由于透射电子显微镜收集透射过样品的电子束的信息,因而样品必须要足够薄,使电子束透过。 /p p   试样分类:复型样品,超显微颗粒样品,材料薄膜样品等。 /p p   制样设备:真空镀膜仪,超声清洗仪,切片机,磨片机,电解双喷仪,离子薄化仪,超薄切片机等。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/57ee42cd8391437292cd04cc7bd24694_th.jpeg" height=" 296" width=" 406" / /center p style=" text-align: center " strong 超细颗粒制备方法示意图 /strong /p p & nbsp & nbsp & nbsp 来源:公开资料 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ddf2c80dbe34a069bc51a3595a55160_th.jpeg" height=" 325" width=" 404" / br/ strong 材料薄膜制备过程示意图 /strong /center p   来源:公开资料 /p p   strong  5 图像类别 /strong /p p    strong (1)明暗场衬度图像 /strong /p p   明场成像(Bright field image):在物镜的背焦面上,让透射束通过物镜光阑而把衍射束挡掉得到图像衬度的方法。 /p p   暗场成像(Dark field image):将入射束方向倾斜2θ角度,使衍射束通过物镜光阑而把透射束挡掉得到图像衬度的方法。 /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/c458ccf5fa5c4ffa9cb948e2d28b76b0.png" height=" 306" width=" 237" / br/ strong 明暗场光路示意图 /strong /center center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/701e2e4343ea4409b3afdd92e1717804.jpeg" height=" 318" width=" 294" / br/ strong 硅内部位错明暗场图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (2)高分辨TEM(HRTEM)图像 /strong /p p   HRTEM可以获得晶格条纹像(反映晶面间距信息) 结构像及单个原子像(反映晶体结构中原子或原子团配置情况)等分辨率更高的图像信息。但是要求样品厚度小于1纳米。 /p p    /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/264c1d9b2f454ea9b8aa548033200a33.png" height=" 312" width=" 213" / /center p style=" text-align: center " strong HRTEM光路示意图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/d53de1201a4e41948d4d095401c3dc3b.jpeg" height=" 234" width=" 321" / br/ strong 硅纳米线的HRTEM图像 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong (3)电子衍射图像 /strong /p p   选区衍射(Selected area diffraction, SAD): 微米级微小区域结构特征。 /p p   会聚束衍射(Convergent beam electron diffraction, CBED): 纳米级微小区域结构特征。 /p p   微束衍射(Microbeam electron diffraction, MED): 纳米级微小区域结构特征。 br/ /p p    /p center p style=" text-align:center" img alt=" " src=" http://img.mp.itc.cn/upload/20170310/f6fc1e403ef74234af93d4f9979429cd.png" height=" 296" width=" 227" / /p p strong 电子衍射光路示意图 /strong /p /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/b0631c33d4b44f10bf9bdb0f908830c5.png" height=" 174" width=" 173" / /center p style=" text-align: center " strong 单晶氧化锌电子衍射图 /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/2ac3b6fb7b03421096ee3af0790b9acb.png" height=" 174" width=" 175" / /center p style=" text-align: center " strong strong 无定形氮化硅电子衍射图 /strong /strong /p center img alt=" " src=" http://img.mp.itc.cn/upload/20170310/02f2f6c3980a4450a36bc7bbc36f10e5.png" height=" 174" width=" 170" / br/ strong 锆镍铜合金电子衍射图 /strong /center p   来源:《Characterization Techniques of Nanomaterials》[书] /p p    strong 6 设备厂家 /strong /p p   世界上能生产透射电镜的厂家不多,主要是欧美日的大型电子公司,比如德国的蔡司(Zeiss),美国的FEI公司,日本的日立(Hitachi)等。 /p p    strong 7 疑难解答 /strong /p p    strong TEM和SEM的区别: /strong /p p   当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、背散射电子、俄歇电子、特征X射线、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。扫描电镜收集二次电子和背散射电子的信息,透射电镜收集透射电子的信息。 /p p   SEM制样对样品的厚度没有特殊要求,可以采用切、磨、抛光或解理等方法特定剖面呈现出来,从而转化为可观察的表面 TEM得到的显微图像的质量强烈依赖于样品的厚度,因此样品观测部位要非常的薄,一般为10到100纳米内,甚至更薄。 /p p    strong 简要说明多晶(纳米晶体),单晶及非晶衍射花样的特征及形成原理: /strong /p p   单晶花样是一个零层二维倒易截面,其倒易点规则排列,具有明显对称性,且处于二维网格的格点上。 /p p   多晶面的衍射花样为各衍射圆锥与垂直入射束方向的荧光屏或者照相底片的相交线,为一系列同心圆环。每一族衍射晶面对应的倒易点分布集合而成一半径为1/d的倒易球面,与Ewald球的相贯线为圆环,因此样品各晶粒{hkl}晶面族晶面的衍射线轨迹形成以入射电子束为轴,2θ为半锥角的衍射圆锥,不同晶面族衍射圆锥2θ不同,但各衍射圆锥共顶、共轴。 /p p   非晶的衍射花样为一个圆斑。 /p p   strong  什么是衍射衬度?它与质厚衬度有什么区别? /strong /p p   晶体试样在进行电镜观察时,由于各处晶体取向不同和(或)晶体结构不同,满足布拉格条件的程度不同,使得对应试样下表面处有不同的衍射效果,从而在下表面形成一个随位置而异的衍射振幅分布,这样形成的衬度称为衍射衬度。质厚衬度是由于样品不同微区间存在的原子序数或厚度的差异而形成的,适用于对复型膜试样电子图象做出解释。 /p p    strong 8 参考书籍 /strong /p p   《电子衍射图在晶体学中的应用》 郭可信,叶恒强,吴玉琨著 /p p   《电子衍射分析方法》 黄孝瑛著 /p p   《透射电子显微学进展》 叶恒强,王元明主编 /p p   《高空间分辨分析电子显微学》 朱静,叶恒强,王仁卉等编著 /p p   《材料评价的分析电子显微方法》 (日)进藤大辅,及川哲夫合著,刘安生译。 /p p   来源:中国科学院科普文章《透射电子显微镜基本知识介绍》 /p
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • 495万!天津大学化工学院透射电镜原位样品杆采购项目
    项目编号:TDZC2022J0011项目名称:天津大学化工学院透射电镜原位样品杆采购项目预算金额:495.0000000 万元(人民币)最高限价(如有):495.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1天津大学化工学院透射电镜原位样品杆采购项目1该设备可以用于透射电镜下直接研究在不同的气氛条件和不同温度下的材料的变化,从而可以让材料在真实的工作环境下观察,并且还能达到可以实现实时动态观察高温气氛环境下高分辨的各种反应过程,实现例如材料的低维材料的生长、材料电学稳定性,热学稳定性等的原子分辨率实时的动态的过程的观察。 合同履行期限:合同签订后180天内交货本项目( 不接受 )联合体投标。
  • 495万!天津大学化工学院透射电镜原位样品杆采购项目
    项目编号:0682-2242022J0009项目名称:天津大学化工学院透射电镜原位样品杆采购项目预算金额:495.0000000 万元(人民币)最高限价(如有):495.0000000 万元(人民币)采购需求:序号产品名称数量简要技术规格备注1透射电镜原位样品杆1套该设备可以用于透射电镜下直接研究在不同的气氛条件和不同温度下的材料的变化,从而可以让材料在真实的工作环境下观察,并且还能达到可以实现实时动态观察高温气氛环境下高分辨的各种反应过程,实现例如材料的低维材料的生长、材料电学稳定性,热学稳定性等的原子分辨率实时的动态的过程的观察。合同履行期限:合同签订后180天内交货本项目( 不接受 )联合体投标。
  • 嘉兴学院单一采购透射电镜 赛默飞1500万元中标
    p    strong 仪器信息网讯 /strong 嘉兴学院分析测试中心日前发布公共服务平台建设项目(二期)单一来源公示,采购200KV场发射透射电子显微镜、场发射扫描电子显微镜、聚焦离子束和电子束系统各一套,赛默飞世尔以1500万元中标,供应商为浙江省科学器材进出口有限责任公司。 /p p    strong 一、 采购人名称 /strong : 嘉兴学院(含平湖师范) /p p    strong 二、 单一来源编号 /strong : singleSource2020021183265695 /p p    strong 三、 采购项目名称 /strong : 分析测试中心公共服务平台建设项目(二期) /p p    strong 四、 采购组织类型 /strong : 分散采购-分散委托集采 /p p    strong 五、 采购项目概况 /strong : /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/32ada1fb-f862-4e38-89d5-f2191dffffe4.jpg" title=" 2020-02-27_212748.jpg" alt=" 2020-02-27_212748.jpg" / /p p    strong 六、 拟采用的采购方式 /strong : 单一来源 /p p    strong 七、 申请理由: /strong /p p   透射电镜(TEM)是材料科学中十分重要的分析工具。可以进行样品的形貌分析,结构分析和成分分析。形貌分析可以获得非晶材料的质厚衬度像、多晶材料的衍射衬度像和单晶薄膜的相位衬度像(原子像)。结构分析可以进行电子衍射、原子位错、孪晶类型、晶界结构等研究。成分分析可对小到纳米尺度的微区或晶粒的成分进行测量。该设备是探索物质表观特性及微观本质的强有力工具。 /p p   分析测试中心作为校级公共服务平台,不仅服务于全校师生,同时为嘉兴地区的科研院所和生产企业提供技术支持。本项目仪器设备主要用于校内外的科研工作,对仪器设备的性能、功能要求高,需要具有高灵敏度、高分辨率、快速高效的特点,并具备磁性样品直接观察并实时测试磁力线分布状况、TEM/ STEM /EDS快速三维重构的功能。此外,由于透射电镜对制样要求非常高,人工制样不仅操作繁琐、十分耗时,而且操作人员的制样技术严重影响透射电镜的测试结果,因此需要具备为透射电镜进行全自动制样功能。 目前场发射透射电子显微镜(TEM)生产商只有美国赛默飞世尔科技(并购美国FEI品牌)和日本电子两家,而满足我校采购需求的仅美国赛默飞世尔科技一家(代理商:浙江省科学器材进出口有限责任公司)。 /p p   赛默飞世尔的TalosF200X是目前在无球差校正技术的同类型场发射透射电镜中性能最优异的产品:1)专利独特的4探头STEM设计可以同时快速采集来自不同角度的电子信号,4个对称分布的无窗SDD检测器的能谱仪系统,具有极高的灵敏度,每秒可收集高达105幅能谱图,其Mapping的采集时间可缩短一半以上。EDS Mapping的分辨率可达500x500 像素 2)因为检测器是无窗设计,对于轻元素的灵敏度比常规有窗能谱仪检测器提高1倍以上 3)独特的微分相位衬度技术(DPC)可实现对磁性样品的直接观察,并实时测试磁力线分布状况 4)三维重构功能的应用,不但实现TEM模式和STEM模式的三维成像,配合4探头的能谱仪系统还可实现三维EDS成像。另外,美国赛默飞世尔公司的Helios 5 CX聚焦离子束和电子束系统,其离子束分辨率30kV下2.5nm,电子束分辨率30kV下STEM 0.6nm、1kV下1.0nm,具备为透射电镜进行全自动制样功能、自动切割和三维重构功能。 /p p   由于本项目仪器设备主要用于我校科研工作并服务嘉兴地区的科研单位,对仪器设备的性能、功能要求高,符合我校需求的只有美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统,因此计划单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。 /p p    strong 八、 拟定供应商: /strong /p p   1、拟定供应商名称 /p p   浙江省科学器材进出口有限责任公司 /p p   2、拟定供应商地址 /p p   浙江 /p p    strong 九、 论证专业人员信息及意见: /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/b13f829d-a4f7-41fa-8600-60af2bcc4f66.jpg" title=" 2020-02-27_212758.jpg" alt=" 2020-02-27_212758.jpg" / /p p   专业人员对供应商因专利、专有技术等原因具有唯一性的具体论证意见: 无球差校正的200kV场发射透射电子显微镜目前无国产设备,国外生产商只有美国赛默飞世尔科技和日本电子两家,不适合公开招标采购方式。根据用户调研,符合采购需求的只有美国赛默飞世尔科技公司一家。美国赛默飞世尔科技公司的Talos F200X场发射透射电子显微镜和Helios 5 CX聚焦离子束和电子束系统具有独特技术领先优势,符合用户需求,建议单一来源采购美国赛默飞世尔科技公司的TalosF200X场发射透射电子显微镜及其配套的制样和初筛系统(Helios 5 CX聚焦离子束和电子束系统和场发射扫描电子显微镜)。 /p
  • CIF发布CIF透射电镜样品杆清洗机新品
    CIF透射电镜样品杆清洗机CIF透射电镜(TEM)样品杆清洗机采用双等离子清洗源设计,自动切换,一机多用,清洗快速高效。远程等离子体清洗快速高效低轰击损伤,同时可实现常规等离子清洗。主要用于TEM透射电镜样品杆的等离子体清洗和真空检漏用途。产品特点u 双等离子清洗源u 一机多用u 快速高效低损伤 技术参数产品型号CIF-TEM真空泵Agilent 、IDP-3涡轮式真空干泵入口压力1.0个大气压(0psig),出口压力1.4个大气压(6.5psig)抽速60L/min,极限真空3.3 x 10-1 mbarKF16入口接口等离子电源13.56MHz等离子射频电源,射频功率5-100W可调两种等离子体清洗源,原位等离子源和远程等离子源,自动匹配器清洗室清洗室尺寸(长X宽X高)150X150X150mm清洗数量可同时清洗3支TEM样品杆适配品牌THERMO FISHER(FEI)、日立HITACHI、捷欧路JEOL气体控制标配双路50毫升/分气体质量流量控制器(MFC),精确测量自动控制气体流量,不会受环境温度和压力变化影响气源选择根据需求氧气、氩气、氮气、氢气等多种清洗气源选择真空控制美国MKS公司925-12010皮拉尼真空计, 测量范围1E-5Torr真空保证真空计和电磁阀安全互锁操控方式7寸全彩触摸屏控制,中英文互动操作界面电源220V,50/60Hz,300W质量保证二年质保,终身维护创新点:CIF透射电镜(TEM)样品杆清洗机采用双等离子清洗源设计,自动切换,一机多用,清洗快速高效、低等离子体轰击损伤,同时可实现常规等离子清洗。核心部件采用国际一流品牌,保证设备优异的质量和稳定性。主要用于TEM透射电镜样品杆的等离子体清洗和真空检漏用途。 CIF透射电镜样品杆清洗机
  • 透射与反射测量技术关键工具及颜色测量方法
    在现代科学研究和工业应用中,精确的物质性质测量是至关重要的。特别是在材料科学、光学工程以及生物医学领域,透射测量与反射测量技术的应用日益增多,它们在各自的领域内发挥着不可替代的作用。透射测量是指测量光线通过物质后的强度变化,以此来分析物质的特性;而反射测量则是基于光线打到物质表面后反射回来的光强变化进行分析。这两种测量技术虽然操作原理不同,但都旨在通过光与物质的相互作用来揭示物质的内在属性。一、透射测量与反射测量的比较分析透射式和反射式分光光度计均能利用光源的闪烁特性,覆盖360至750纳米范围内的全部波长光线进行照射。通过对透射光或反射光的测量,这些设备能够创建出色彩的量化图谱(即色彩“指纹”)。在反射光谱中,主要波长决定了颜色的属性。紫色、靛蓝及蓝色属于短波段,波长介于400至550纳米之间;绿色处于中波段,波长在550至600纳米;而黄色、橙色及红色表示长波段光。对于光亮增白剂(OBA)和荧光剂这类特殊物质,它们的反射率甚至可以超过100%。反射式分光光度仪通过照射光源至样本表面并记录以10纳米步长测得的反射光比例,以此来分析颜色。这种方法适用于完全不透明的物质,通过反射光的量化,可以准确测量其色彩。而配备透射功能的分光光度仪则是通过让光穿透样本,使用对面的探测器来捕获透过的光。这一过程中,探测器会测量透射光的波长及其强度,并把它们转换成平均透射率的百分比,以量化样本的特性。尽管反射模式能够用于分析半透明表面,但准确了解样本的透明度是必须的,因为这直接关系到最终数据的准确性。二、样品确实不允许光线穿透吗?测量透射率与评估不透明度并不总是等同的,因为不透明度涉及两个方面:是否能遮挡视线穿过的表面或基质,以及材料允许光线通过的程度。通常,您可能会认为您的手是不透光的,从某种角度来看,这是正确的。然而,当您把手电筒紧贴手掌并开启时,会发现光线能够从手的另一侧透射出来。半透明与透明材质的本质区别半透明材料允许光线穿透,却不允许清晰的视线通过。举个例子,经过蚀刻处理的浴室塑料门便是半透明的。相比之下,透明材料,如普通的玻璃板,可以让人从一侧清楚地观察到另一侧的物体。三、实际应用及解决方案考虑到涂料,当其涂布于墙面时,其不透明性足以覆盖下层材料,阻止透视效果。但要准确评估涂料的不透明度,我们需采用对比度分析法。一旦应用于基底,涂料通常表现出高不透明度,使得Ci7500台式色差仪成为其测量的理想工具。至于塑料,虽然肉眼看来我们可能无法通过塑料样本看穿,但它们可能具备一定的光透过性。比如,外观不透明的塑料瓶,在未经测试前其真实透光性难以判断。以过氧化氢瓶为例,其内容物若暴露于阳光下会迅速分解,因此这类瓶子通常呈棕色,以屏蔽阳光。然而,置于强烈光源下,这些瓶子是能透光的。鉴于成本考虑,过氧化氢瓶的制造尽量保持不透明。在纺织品的应用上,选择分光光度仪时需考虑具体的使用场景。美国纺织化学师与印染师协会(AATCC)推荐将样品折叠至四层以确保不透明度的测量。这一方法对于测量厚实的织物如灯芯绒裤或棉质卷料足够有效,但对于透明或薄的半透明尼龙材料,采用其他量化技术可能更为合适。请记住,在测量特定允许一定光线透过的纺织品时,按照ASTM的203%遮光测试标准,必须使用具备透射功能的分光光度仪进行测量。Ci7600台式分光光度仪、Ci7800台式分光色差仪和Ci7860台式色差仪均支持透射和反射模式测量,它们为需要同时评估不透明与半透明样本的应用场景提供了理想解决方案。这些设备能够执行三种主要测量方式:①直接透射测量:针对完全透明的样本设计,如塑料拉链袋和清晰的玻璃板。②全透射测量:适合那些允许光线穿透但视线模糊的半透明样本,比如橙汁、洗涤液以及2升容量的塑料瓶。③雾度测量:针对那些能够散射光线的半透明样本,如汽车尾灯的塑料覆盖件,这类样本散射红色光线,而不直接显露灯泡和灯丝。若您的需求仅限于测量完全不透明的表面,Ci7500台式色差仪或许更符合您的需求。然而,如果您的主要测量对象为不透明表面,偶尔也需测量一些允许光线透过的物体,那么具备透射测量功能的设备,如Ci7600台式测色仪或更高端的型号,将是更合适的选择。四、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 日本电子推出透射电镜用制样设备
    日本电子推出透射电镜用最简单的制样设备 透射电镜的样品制备非常关键,但却非常麻烦,且需要很好的经验,对于一些例如含有软硬兼有成分的样品,几乎无法制备。针对这种情况,日本电子株式会社开发出了一步到位式离子制样仪EM-09010IS,它使用氩离子切割样品,实际上就是一台超小型的FIB。EM-09010IS的出现对于透射电镜的样品制备可以说是革命性的进步。从制备步骤来讲,只需将样品简单切薄,就可立即装入;从操作性上来讲,没有透射电镜样品制备经验的人也可以得到完美的薄区,从使用上来讲,对于软硬混合的样品,得心应手,还不会给脆性样品带来应力破坏;另外,由于切割角度可以随意调整,还可以为EBSD和AEM提供完美的样品制备;从运行成本来讲,EM-09010IS用的氩源比FIB用的镓源便宜的多。北京工业大学张泽院士领导的研究小组已经安装了一台该设备。目前EM-09010IS只提供给日本电子株式会社透射电镜的用户,详情请咨询日本电子株式会社各地办事处。
  • OPTON微观世界|第33期 扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用
    引 言扫描电镜中的被散射电子衍射技术(EBSD)在确定材料结构、晶粒尺寸、物相组成以及晶体取向甚至是应力状态标定都有一定的涉及。通过电子衍射技术的进一步发展,Keller与Geiss基于EBSD技术相同的硬件与软件,通过改变样品台的倾角,使得荧光闪烁体信号接收器在样品下方接收透射电子衍射信号,从而代替原先的背散射信号。这种新技术称为Transmission Kikuchi diffraction(TKD),由于它的信号接收方式特点也被称为t-EBSD。由于接收信号的方式由被散射电子信号转为透射电子信号,其分辨率得到了明显的提升,由原来的EBSD技术的几十纳米(20-30nm平行于电子束的方向,80-90nm垂直于电子束的方向)提高到了TKD技术的10纳米。由于电子束与材料交互作用体积的减少,分辨率提高,使得分析超细晶材料以及其中的纳米颗粒的到了实现。为了改善电子衍射信号接收能力,一种新型的电子束-样品-接收器(on-axis TKD)共轴TKD式的几何设计在法国洛林大学(Université de Lorraine)与布鲁克公司联合组装使用,这个新装置不仅可以接收菊池花样还可以接收衍射点的信息。虽然此时TKD的说法已经不能十分贴切的描述实际情况,应该改为扫描电镜中的透射衍射(Transmission Diffraction )更为合理。由于传统上TKD缩写已经被普遍接受,所以我们在本文中以共轴透射菊池衍射(on-axis TKD)来表述此种新方法。这种新型的接受方法比传统的非共轴TKD(off-axis TKD)方法得到更高的信号强度。同时,共轴TKD方法由于其接收信号的对称性,可以使得原先非共轴TKD方法得到的扭曲的信号得以矫正。本文的主要目的是揭示透射衍射花样随着不同试验条件、样品参数(电子束入射强度、样品与探测器的距离、样品的厚度、样品的原子序数)的变化规律。帮助试验人员选择衍射花样中的合适的衍射数据(点、线、带),以及相应的设置电镜与样品的参数。最后在实际的纳米材料中采用TKD技术对样品进行纳米尺度的分析研究。试验方法所有的试验都是基于ZEISS Supra 40型号与ZEISS Gemini SEM进行的,配备的设备是Bruker e-Flash1000摄像机,对应的探测器型号是Bruker OPTIMUS。如图1所示,传统的TKD系统与on-asix TKD系统的探头接收方向并不相同。图2表示了FIB制样方法获得的楔形单晶Si薄片式样,样品厚度在25nm到1μm之间,用于后续的试验检测。图1 (a)同轴式透射菊池衍射(on-axis TKD);(b)传统非同轴透射菊池衍射(off-axis TKD);(c)电子背散射衍射(EBSD)图2 实验用的FIB砌削的楔形Si单晶样品的SEM图像电子束入射能量、样品厚度以及原子序数对TKD衬度的影响1衍射衬度的种类在同轴TKD技术中,收集到的衍射花样衬度不仅仅受到显微镜参数的影响,对于不同的观察样品其衍射花样衬度也会有所不同。目前,样品的厚度与入射电子的加速电压是日常应用过程中最基本的影响因素,样品的密度与原子序数也是重要的影响参数,但是目前无法对其进行系统的分析。同时,信号接受探测器的摆放角度、与样品的测试距离也是在实际操作中影响信号接受质量的因素之一。我们可以把衍射花样分为两类:衍射斑点与菊池花样。菊池花样有三种不同的衬度:线衬度、亮带衬度、暗带衬度。2菊池线与菊池带菊池线的形成原因在于,如果样品足够厚,那么将会产生大量以各种不同方向运动的散射电子;也就是说,电子与样品发生非相干散射。这些电子与晶体平面作用发生布拉格衍射。菊池线的形成有两个阶段,一是由于声子散射形成的点状的非连续的发射源,如图3(A)所示。第二是由于这些散射后的电子将相对于面hkl以θB运动(如图3B所示),从而与这些特定晶面发生布拉格衍射。因为散射电子沿各个方向运动,衍射书将位于两个圆锥中的一个内(如图3C)。换言之,因为入射k矢量有一定的范围,而不是单一确定的k矢量,所以观察到的衍射电子的圆锥而不是确定的衍射束。考虑与hkl晶面成θB角度方向的所有矢量所构成的圆锥,称之为Kossel圆锥,并且圆锥角(90-θB)非常小。由于荧光屏/探测器是平面并且几乎垂直于入射束,Kossel圆锥将以抛物线形式出现。如果考虑近光轴区域,这些抛物线看上去就像两条平行线。有时把这两条菊池线和他们之间的区域称为“菊池带”。图3(A)样品在某一点处所有电子散射的示意图(B)部分散射电子以布拉格角θB 入射特定hkl晶面而发生衍射(C)这些圆锥与Ewald球相交,由于θB很小,在衍射花样上产生了近似直线的抛物线。3布拉格衍射斑点与TEM中的衍射斑点形成原理相似,TKD中衍射斑点是由于低角弹性散射形成的,低角弹性散射是连续的,然而在高角范围内,随着与原子核的相互作用,散射分布并非连续,这也就解释了为何衍射斑点只能在低散射角度的区域才能够观察到。图4显示了单晶Si样品中,随着厚度变化引起的衍射信息变化,在样品较薄的区域我们可以看出衍射斑点的信息,随着样品厚度的增加,衍射斑点信息消失。菊池花样在样品时很薄的区域,衬度模糊,而在样品厚度很大时,衬度表现的较弱,其它阶段花样都比较清晰。图5中可以看出,随着入射电子能量的降低,衍射斑点也逐渐消失。由此,可以认为衍射斑点的强度在样品厚度一定的前提下,可以认为是入射电子能量的函数。图4 单晶Si在不同厚度下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 (a)43nm (b)45nm (c)48nm (d)52nm (e)65nm (f)100nm (g)200nm (h)300nm (i)1000nm 加速电压E=15keV,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images随着加速入射电子的加速电压的变化,透射菊池衍射花样的变化,可以看出,与图4中的变化规律相似。可以看出入射电子能量与样品厚度在对花样的衬度影响方面扮演着同样的角色。但是其原理并不完全一样,随着入射电子加速电压的降低,菊池带的宽度逐渐变窄。图6所示,基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系,可以看出入射电子的能量是产生电子衍射斑点的样品厚度的函数。图5 单晶Si在不同加速电压下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 加速电压(a)30keV (b) 25keV (c)20keV (d)15keV (e)10keV (f)7keV;样品厚度d=150nm,探测器样品距离DD=29.5mm,光阑尺寸60μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images图6 Si、Ti两种材料随着电子入射能量以及样品厚度变化为变量的布拉格衍射斑点显示示意图实际样品测试纳米材料由于其优异的力学、光学以及催化性能,在材料研究领域中已经成为新的研究热点。其中纳米金属材料由于其优异的力学性能已经得到了广泛的研究,特别是纳米孪晶铜材料,是最早研究的纳米金属材料之一,但是由于其晶粒尺寸小于100nm,其孪晶片层只有十几个甚至几纳米(图7),使得以往的结构研究手段多采用透射电镜(TEM)的方法。但是由于TEM难以对大量晶粒的取向进行统计分析,这就需要用到扫描电镜的EBSD技术,介于传统的EBSD技术的分辨率的局限,一直少有纳米级别的分析。那么有了TKD的新型技术,就可以对纳米级别的材料进行细致的分析。图7 纳米孪晶铜的TEM观察由于纳米孪晶的制备方法多采用电沉积的方法,得到薄膜形式的材料。所以在生长厚度方向上由于厚度较薄(约20nm),本次实验是用金(Au)薄膜样品进行观察,采用的是场发射扫描电镜Zeiss Merlin Compact 以及Bruker OPTIMUS 同轴TKD探测器进行观察。结果如图8所示,可以看出片层结构的分布,经过进一步的分析,可以看出片层结构之间的界面角度为60度,可以确定为[111]112纳米孪晶,并且通过测量可以确定片层宽度仅有2nm。基于共轴TKD技术,让以往在SEM中难以完成的纳米结构的织构组织分析成为可能。并且对纳米尺度材料的性能提升提供了进一步的实验支持。图8 a)纳米金颗粒的孪晶结构PQ图与IPFZ叠加显示;(b)(a)图中线段处角度分布图小 结1.共轴式透射菊池衍射技术可以在衍射花样中获得更加广泛的衍射信息:布拉格衍射斑点、菊池线以及菊池带。2.随着样品厚度的增加,衍射斑点、菊池线、菊池带依次产生。在样品较薄的状态下,菊池带呈现明亮的带状,随着样品后的增加,深色衬度在在带中出现并缓缓变暗,直至带状衬度明锐显现。3.样品厚度与入射电子能量可以作为相关联的变量,影响着衍射信息的衬度;减小样品厚度相当于增加入射电子能量。也就是说要得到特定的衍射衬度,可以调整样品的厚度与调整入射电子束的能量这两种方法是等价的。4.基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系。可以看出这二者呈线性关系,且根据元素的不同样品厚度与入射电子能量的比值的常数也有所差别。5.采用共轴TKD技术测试了金纳米颗粒的纳米片层结构,并且分辨出了2nm尺度的孪晶片层结构。
  • iCEM 2016特邀报告:透射电镜低温样品制备技术
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 透射电镜低温样品制备技术 /strong /p p style=" TEXT-ALIGN: center" strong img title=" 祝建.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/b666ec1a-e107-4a24-8192-3c9f104bf9ba.jpg" / /strong /p p style=" TEXT-ALIGN: center" strong 祝建 教授 /strong /p p style=" TEXT-ALIGN: center" strong 同济大学生命科学与技术学院 /strong /p p strong 报告摘要: /strong /p p   透射电镜低温样品制备的目的除了与常规样品制备一样,既要符合电镜观察、分析的需要(样品足够薄,而又有足够的强度,不被电子束破坏),而又不会在制样过程中破坏样品的原始状态。使得该样品的分析结果足够真实。通常包括冷冻固定(冷冻、喷射冷冻、高压冷冻固定)、低温脱水(冷冻替代、冷冻干燥)和冷冻超薄切片技术等。这些透射电镜的样品制备技术逐渐成为电镜样品制备的发展趋势,更真实地反映样品的结构和生命现象。 /p p strong 报告人简介: /strong /p p   祝建,同济大学生命科学与技术学院教授,博士生导师。主要研究方向:植物细胞的全能性及其超微结构。1982年毕业于宁夏农学院,后留校任教。1982—1992年宁夏农学院生物系,教师。1992-1995年在苏黎世瑞士联邦理工学院学习并作博士论文(中瑞联合培养博士生),1996年获西北大学博士学位。1996年上海铁道大学医学院,2000年至今,任职于同济大学生命科学与技术学院。 /p p   现任中国植物学会第十四届理事会植物结构与生殖生物学专业委员会委员,中国电子显微学会低温电镜技术专业委员会委员,上海市显微学学会理事。 /p p strong 报告时间: /strong 2016年10月26日上午 /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /a & nbsp /p
  • 这21类常见分析仪器对测试样品的要求有什么不同?
    什么样的样品适合什么样的仪器?这个话题看似简单,却经常被大家忽略掉。一不小心,您辛辛苦苦做出的样品,送到仪器旁边却发现不符合要求,时间、成本,一把辛酸泪......  不同分析仪器原理不同,对测试样品的要求也不一样。整天奔波于实验室的朋友们,您是否了解不同仪器对样品的要求?今天特别为大家收集了实验室常见的21种分析仪器对于测试样品的要求,相信对你的科研工作会有很大的帮助。  核磁共振波谱仪  (1)送检样品纯度一般应95%,无铁屑、灰尘、滤纸毛等杂质。一般有机物须提供的样品量:1H谱5mg,13C谱15mg,对聚合物所需的样品量应适当增加。  (2)仪器配置仅能进行液体样品分析,要求样品在某种氘代溶剂中有良好的溶解性能,送样者应先选好所用溶剂。常备的氘代溶剂有氯仿、重水、甲醇、丙酮、DMSO、苯、邻二氯苯、乙腈、吡啶、醋酸、三氟乙酸。  (3)尽量提供样品的可能结构或来源。如有特殊要求(如检测温度、谱宽等)  红外光谱仪  为了保护仪器和保证样品红外谱图的质量,分析的样品,必须做到:  (1)样品必须预先纯化,以保证有足够的纯度   (2)样品须预先除水干燥,避免损坏仪器,同时避免水峰对样品谱图的干扰   (3)易潮解的样品,干燥器放置   (4)对易挥发、升华、对热不稳定的样品,用带密封盖或塞子的容器盛装并盖紧,需要同实验室说明情况   (5)对于有毒性和腐蚀性的样品,必须用密封容器装好。送分别在样品瓶标签的明显位置和分析任务单上注明。  有机质谱仪  适合分析相对分子质量为50~2000u的液体、固体有机化合物样品,试样应尽可能为纯净的单一组分。  气相色谱-质谱联用仪  气相色谱仪均使用毛细管柱,进入气相色谱炉的样品,必须是在色谱柱的工作温度范围内能够完全汽化。  液相色谱-质谱联用仪  (1)易燃、易爆、毒害、腐蚀性样品必须注明。  (2)确保分析结果准确、可靠,要求样品完全溶解,不得有机械杂质 未配成溶液的样品要注明溶剂。  (3)尽可能提供样品的结构式、分子量或所含官能团,以便选择电离方式   (4)液相色谱–质谱联用时,所有缓冲体系一律用易挥发性缓冲剂,如乙酸、醋酸铵、氢氧化四丁基铵等配成。  飞行时间质谱仪  (1)试样的种类、组分及样品量本仪器适用测定多肽、蛋白质,也可以测定其它生物大分子如多糖、核酸和高分子聚合物、合成寡聚物以及一些相对分子质量较小的有机物,如C60或C60的接枝物等。被测样品可以是单一组分也可以是多组分的,但样品组分越多,谱图就越复杂,谱图分析的难度也越大 如果电离过程中组分之间存在相互抑制作用,则不一定能保证每个组分都出峰。常规测定的样品量约为1~10皮摩尔/微升。  (2)样品的溶解性:被测样品必须能够溶于适当的溶剂、最好是未溶解的固体或纯液体。若样品为溶液,需要提供样品的溶剂、浓度或含量等信息。  (3)纯度:为取得高质量的质谱图,多肽和蛋白质样品应避免含氯化钠、氯化钙、磷酸氢钾、三硝基甲苯、二甲亚砜、尿素、甘油、吐温、十二烷基硫酸钠等。如果被测样品在预处理过程中不能避免使用上述试剂,则必须用透析法和高效液相色谱法对样品进行纯化。水、碳酸氢铵、醋酸铵、甲酸铵、乙腈、三氟乙酸等都是用于纯化样品的合适试剂。蛋白质样品纯化后,应尽可能冻干。样品中的盐可通过离子交换法祛除。  紫外-可见吸收光谱仪  (1)样品溶液的浓度必须适当,且必须清澈透明,不能有气泡或悬浮物质存在   (2)固体样品量0.2g,液体样品量2ml。  气相色谱仪  能直接分析的样品应是可挥发、且是热稳定的,沸点一般不超过300℃,不能直接进样的,需经前处理。  液相色谱仪  样品要干燥,最好能提供要检测组份的结构 对于复杂样品,尽可能提供样品中可能还有其它哪些成分。  元素分析仪  (1)尽可能提供分子式和元素的理论含量或其它相关信息   (2)样品必须是不含吸附水的均匀固体微粒或液体,并经过提纯。如样品不纯(含吸附水、有机溶剂、无机盐或其它杂质)会影响分析结果,使测试值与计算值不符   (3)样品应有足够的量,以满足方法和仪器的线性和灵敏度。  离子色谱仪  送检样品可以溶于水,或稀酸、稀碱,所用的酸碱不能含有待测离子。对于样品中含有待测元素,但在水、酸、碱溶液中以非离子状态存在的化合物,需要进行相应的样品前处理。  等离子体原子发射光谱仪  (1)对送检样品(检测条件)的要求:提供品来源、种类、属性(如矿石、合金、硅酸盐、特种固熔体、高聚物等)。尽可能列出主要成份、杂质成份及其(估计)含量 待检元素中最低(估计)含量是多少?  (2)对于溶液,写明介质成份(溶剂、酸碱的种类及其(估计)含量)、含氟(F-)与否?因为氟(F-)将严重腐蚀雾化器!)固体样品要制成不含任何有机物的溶液,其最终酸度控制为1mol,样品量:5-50ml。如含悬浮物或沉淀,务必过滤 另请同时测试试剂空白溶液用作扣除空白   原子荧光光谱仪  (1)样品分析一般要求  原子荧光光谱仪分析的对象是以离子态存在的砷(As)、硒(Se)、锗(Ge)、碲(Te)等及汞(Hg)原子,样品必须是水溶液或能溶于酸。  (2)固体样品  ①无机固体样品样品经简单溶解后保持适当酸度。  检测砷(As)、硒(Se)、碲(Te)、汞(Hg),介质为盐酸(5%,v/v)   检测锗(Ge),介质为硫酸(5%,v/v)   检测汞(Hg),介质也可为硝酸(5%,v/v),检测(As)介质也可为硫酸(2%v/v)。  由于铜、银、金、铂等金属对待测元素的干扰较大,因此该几类合金样品中的砷、硒、碲、汞不宜采用本仪器测定。  ②有机或生物固体样品  样品经硝化处理为溶液并保持适当酸度,其介质酸度与无机样品同。  (3)样品中待测元素限量要求  由仪器灵敏度及分析方法决定,样品含待测元素上下限为0.05μ g/g~500μ g/g,不在此含量范围内的样品使用本仪器检测将无法保证检测结果的准确可靠。  (4)样品量  每检测1个元素,要求固体样品量不少于2g,液体样品量不少于20mL,水样不少于100mL。  差示扫描量热仪  固体样品,在所检测的温度范围内不会分解或升华,也无挥发物产生。样品量:  单次检测无机或有机材料不少于20mg,药物不少于5mg。注明检测条件(包括检测温度范围,升、降温速率,恒温时间等)。  热重分析仪  样品量:不少于30mg。送样时请注明检测温度范围,实验气氛(空气、N2或Ar),升温速率,气体流量等。  X射线粉末衍射仪  送检样品可为粉末状、块状、薄膜及其它形状。粉末样品需要量约为0.2g(视其密度和衍射能力而定) 块状样品要求具有一个面积小于45pxx45px的近似平面 薄膜样品要求有一定的厚度,面积小于45pxx45px   X射单晶末衍射仪  送检样品必须为单晶。选择晶体时要注意所选晶体表面光洁、颜色和透明度一致。不附着小晶体,没有缺损重叠、解理破坏、裂缝等缺陷。晶体长、宽、高的尺寸均为0.1~0.4mm,即晶体对角线长度不超过0.5mm(大晶体可用切割方法取样,小晶体则要考虑其衍射能力)。  透射电子显微镜  由于受电镜高压限制,透射电子束一般只能穿透厚度为几十纳米以下的薄层样品。除微细粒状样品可以通过介质分散法并直接滴样外,其它样品的制备方法主要有物理减薄(离子和双喷减薄等)和超薄切片法。超薄切片样品的制备,需经样品前处理、包埋、切片等复杂工序,周期较长   场发射扫描电子显微镜  送检样品必须为干燥固体、块状、片状、纤维状及粉末状均可。应有一定的化学、物理稳定性,在真空中及电子束轰击下不会挥发或变形 无磁性、放射性和腐蚀性。含水分较多的生物软组织的样品制备,要求用户自己进行临界点干燥之前的固定、清洗、脱水及用醋酸(异)戊酯置换等处理,最后由本室进行临界点干燥处理。观察图像样品应预先喷金膜。一般情况下,样品尽量小块些(≤ 10x10x5mm较方便)。粉末样品每个需1克左右。纳米样品一般需超声波分散,并喷涂超细微金膜。  扫描电子显微镜-X射线能谱仪  送检样品必须为干燥固体,块状、片状、纤维状、颗粒或粉末状均可。应有一定的化学、物理稳定性,在真空中及电子束轰击下不会挥发或变形 无磁性、放射性和腐蚀性。对含水份较多的生物软组织样品,要求预先进行临界点干燥前的固定、清洗、脱水及用醋酸(异)戊酯置换等处理。最后进行临界点干燥处理。图像观察样品应预先镀金膜,成份分析样品必需镀碳膜。一般情况下,样品体积不宜太大(≤ 5x5x2mm较适合)。  电子探针  定量分析的样品必须磨平抛光、清洗干净。若样品不能进行表面磨平抛光(将影响分析精度)处理应事先说明。样品应要切成小薄片,不能切割制样,必须先与测试人员确定。应先标记好分析面上的测试点,无标记测试位置时,测试时只选有代表性、较平整位置测试。液体样必须先浓缩干燥。分析的样品必须是在高能电子轰击下物理和化学性能稳定的固体、不分解、不爆炸、不挥发、无放射性、无磁性。
  • 420万!集美大学海洋食品与生物工程学院透射电子显微镜采购项目
    项目编号:[350200]ZW[GK]2022004项目名称:集美大学海洋食品与生物工程学院透射电子显微镜采购方式:公开招标预算金额:4200000元 包1:采购包预算金额:4200000元采购包最高限价:4200000元投标保证金:0元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02100301-显微镜透射电子显微镜1(套)是1环境条件: 1.1 电源:220V(±10%),50Hz/60Hz;1.2 工作环境温度:15~23度1.3 工作环境湿度:<60%RH1.4 运行持久性:连续使用1.5 安装条件:地线独立接地,电阻小于100欧姆即可2 应用范围:用于对纳米材料、高分子材料、医药和生物医学等样品进行高分辨观察;3. 技术要求:3.1 加速电压:20-120KV(以100V为步长调节)3.2 分辨率:≤0.2nm3.3 ▲电子枪:钨灯丝,具有电流自动控制,灯丝计时,气压式自动升枪等功能,可选配LaB6灯丝3.4 ★观察模式:不更换硬件的前提下,可在同一台仪器上实现物镜的高分辨(HR)和高反差模式(HC)的一键切换(提供两种模式切换的截图)。适合纳米材料及病毒的高分辨观察和生物组织的高反差观察。3.5 放大倍数:高反差模式:X200~X200,000高分辨模式:X4,000~X600,000低倍模式:X50~X1,0003.6 ▲图像旋转:最大范围X1,000~X40,000,旋转角度:±90度(15度/步)3.7 ★物镜焦长:高反差模式焦长:≥8.8mm,保证高反差观察效果。3.8 ★使用高速、高灵敏的COMS荧光屏相机(帧率≥160fps)取代了传统的荧光屏观察窗,将TEM操作统一于显示器上。3.9 ★一体化直插式CMOS相机,≥1200万像素,兼顾高分辨和大视野观察;一体化主相机具有自动保护功能,防止电子束过强对CMOS的损伤。3.10 具有自动聚焦功能,适用范围:×1,000~×20,000,误差:<7um(×10,000),可设定自动欠焦量。3.11 具有自动消像散功能,适用范围:×3,000~×20,000,误差:<1.2um(×20,000)3.12▲自动图像导航:Whole View功能,超低倍观察,观察范围φ2mm;利用Whole View图像在设定倍率下自动拍照,并利用所得图片进行导航,同时保留坐标导航和图片回溯功能。3.13 自动拼图功能:高低倍下均可实现拼图,可以实现4 x 4张图片快速自动拼图(仅需4分钟),最大像素13k x 10k2.14 具有自动聚焦、自动定位可无人值守拍摄多张图片的功能,准确定位并自动拍摄数量≥99★2.15 配备自动倾斜图像捕捉系统及3D重构软件系统,能够实现自动倾转样品台、马达自动对中样品、自动拍照、EMIP-3D自动计算3D结构信息。2.16 辅助功能实时测量:测量图片或衍射图案漂移校正:对漂移图像进行校正Rizm功能:可用鼠标控制样品位置的移动(高倍)2.17 样品低损伤观察低剂量电子束观察,软件界面上电子束剂量实时显示自动预辐照功能2.18 ★两端支撑式高稳定样品杆,有效防止样品漂移、抖动(提供样品杆两端的实物图片)。2.19样品平移:X/Y ±1mm(CPU控制马达驱动),Z ±0.3mm。2.20 样品台倾斜角:±70度,可显示样品位置、倾角等。2.21 ▲物镜活动光阑:4孔光阑,最小光阑孔≤15um。2.22 真空系统:2.22.1真空逻辑由测量值控制;2.22.2★真空交换仓预抽时间≤15s,抽真空到可以显示样品图像≤20s(提供抽真空开始到显示图像的视频图像);2.22.3配有全量程规,操作界面上实时监测镜桶内真空的变化;2.22.4不使用扩散泵,配置分子泵,抽速不低于300L/s,旋转泵,抽速不低于135L/min。3. 必要配置:3.1 透射电镜主机 1台3.2自动升枪电子枪 1套3.3两级照明镜系统 1套3.4五级成像镜系统 1套3.5分子泵(流速≥300L/s) 1台3.6机械泵 1台3.7空压机 1台3.8冷却循环水 1台3.9 COMS荧光屏相机(帧率≥160fps) 1台3.10直插式1200万像素CMOS相机 1台3.11 CMOS相机与电镜一体化操作软件 1套3.12自动倾斜图像捕捉系统及3D重构软件系统 1套3.13高反差和高分辨物镜极靴 各1套3.14两端支撑式高稳定样品杆 1套3.15控制单元,包括电脑主机、键盘、鼠标、旋钮板 1套4.技术服务:为用户培训使用仪器的工作人员。其培训内容指的是仪器设备的基本原理、安装、调试、操作使用和日常保养维修等。5.性能试验与质量保证:5.1应对仪器设备的质量、规格、性能、数量进行详细和全面的检查,并出具检验证明,如有缺失,应负责赔偿。5.2仪器设备的保修期为一年。5.3售 后 服 务:厂家在福建设有办事处并配有专职的电镜维修工程师。4200000工业合同履行期限: 合同签订后(180)天内交货本采购包:不接受联合体投标
  • 2021年度中国市场电镜新品盘点(18款): 场发射、扫描透射成主流
    经历2020年疫情笼罩,2021年全球电镜市场规模回暖,规模再次以个位数速率增长,作为最大需求单一市场国家,中国则实现20%以上增长。电镜新品发布也迎来活跃一年,发布新品不仅低、中、高端产品基本覆盖,大部分主流品牌皆有输出,国产方面也多点开花。以下对2021年在电镜新品进行盘点,数据主要统计自本网报道或公开信息,如有遗漏、错误欢迎在留言区补充或邮件(yanglz@instrument.com.cn )。2021年电镜发布新品速览(按发布时间顺序)类型品牌产品名称型号描述SEM蔡司新一代Gemini场发射扫描电镜系列GeminiSEM 360GeminiSEM 460GeminiSEM 560高分辨,不挑样日本电子肖特基场发射电镜JSM-IT800(i)/(is)适用观测半导体器件聚束科技高通量(场发射)扫描电镜Navigator-100B PLUS国产高通量场发射升级款祺跃科技原位高温扫描电镜-国产原位高温日本电子新型扫描电子显微镜JSM-IT510钨灯丝电镜升级飞纳台式场发射扫描电镜Phenom Pharos G2分辨率提至1.8nm日立两款场发射扫描电子显微镜SU8600SU8700聚焦自动获取大量数据功能国仪量子场发射扫描电镜SEM5000国产场发射扫描电镜TEM日本电子新一代冷冻电镜CRYO ARMTM 300II (JEM-3300)速度、操作、通量全面升级赛默飞球差校正透射电镜Spectra Ultra适合电子束敏感材料的球差电镜赛默飞扫描透射电镜Talos F200E为半导体行业设计纳镜鼎新高通量生物扫透电镜智眸365(Smart View 365)国产高通量生物扫描透射电镜聚焦离子束显微镜赛默飞聚焦离子束扫描电子显微镜 (FIB-SEM)Helios 5 PXL Wafer DualBeam聚焦半导体领域其他日本电子超微电子衍射平台Synergy-ED电镜-x射线衍射平台赛默飞定制球差校正电镜Spectra φ定制球差电镜扫描电镜:11款齐发,9款场发射!扫描电镜方面,场发射产品成为新品主流,蔡司和日立分别发布3款、2款场发射电镜,日本电子发布场发射和钨灯丝升级产品,飞纳台式场发射电镜分辨率提升至1.8nm。国产方面,国仪量子也加入场发射产品行列,聚束科技发布高通量场发射升级产品,祺跃科技则基于其原位力学技术,发布原位高温扫描电镜。蔡司|新一代Gemini场发射扫描电镜系列【3款】Gemini系列新品,左至右:GeminiSEM 360,GeminiSEM 460,GeminiSEM 560【发布会专题】 发布时间:3月24日参考价格:300-600万元蔡司此次发布的GeminiSEM 360,GeminiSEM 460,GeminiSEM 560是Gemini电子光学系统针对不同的应用场景衍生出的三款新型号。GeminiSEM 360搭载1型Gemini镜筒,是一款高通用性成像工具。其物镜为静电透镜+磁透镜复合透镜,在提高其电子光学性能的同时将它们对样品的影响降至更低。即使对极具挑战的样品也能进行高品质成像。Beam booster技术具有镜筒内的电子加减速功能,可确保获得小束斑和高信噪比;Gemini镜筒内带有平行设计的镜筒内二次电子和背散射电子探测器,可实现信号的高效采集,同步获取形貌衬度和成分衬度像。GeminiSEM 460搭载2型Gemini镜筒,专为应对复杂的分析工作而设计。它除了复合透镜和镜筒内加减速设计以外,利用双聚光镜设计实现更加灵活的束流调节。用户可以在小束流的高分辨成像模式与大束流的分析模式之间进行无缝切换,对称设计的EDS接口可让您获得无阴影的成分分布图,而物镜无漏磁设计可以让您获得无畸变的大面积EBSD花样。您还可以通过加装各种原位实验附件将Gemini 460升级为一个自动化原位实验平台。GeminiSEM 560搭载3型Gemini镜筒,带给用户极致的高分辨成像体验。该款镜筒拥有两个可协同工作的电子光学系统:Nano-twin透镜和新型电子光学引擎Smart Autopilot,可通过聚光镜优化所有工作条件下的电子束会聚角,进一步提升分辨力;还可实现1倍到200万倍的无缝过渡,大视野导航和亚纳米成像一镜到底。日本电子|场发射电镜JSM-IT800半透镜版本(i)/(is)新型肖特基场发射扫描电子显微镜JSM-IT800【产品链接 】 发布时间:8月31日参考价格:200-400万元JSM-IT800 集成了用于高分辨率成像的透镜内肖特基 Plus 场发射电子枪、创新的电子光学控制系统“Neo Engine”, 以及追求易用性的GUI“ SEM中心”可以完全整合JEOL 的x射线能谱仪。JSM-IT800 有五种不同物镜版本:混合镜头版本 (HL),这是一种通用 FE-SEM;超级混合镜头版本(SHLs/SHL,功能不同的两个版本),可实现更高分辨率的观察和分析;以及新开发的半透镜版本(i/is,两个不同功能的版本),适用于半导体器件的观察。半透镜通过在物镜下方形成的强磁场透镜会聚电子束来实现超高分辨率。此外,该系统有效地收集从样品发射的低能量二次电子,并使用上部透镜内检测器 (UID) 检测电子。因此,它可以对倾斜样品和横截面样品进行高分辨率观察和分析,这正是半导体器件故障分析所需的。此外,它对于电压对比度观察也非常有用。聚束科技|高通量(场发射)扫描电子显微镜 Navigator-100B PLUS高通量(场发射)扫描电子显微镜 Navigator-100B PLUS【 产品链接】 发布时间:8月参考价格:500-700万元成像速度在同等条件下是同类机型的10倍以上,可在72小时内以4nm 像素完成对10x10 mm2 区域的无遗漏采集。 新机型在硬件部分模组提升较大,配备新型电子枪,电子束落点能量范围可达30keV,涵盖绝大多数扫描电镜落点能量需求范围。分辨率可达1.0nm (15keV下), 且在1-3kV低加速电压下即可获得1.5nm高分辨率的同时,仍能保持1‰以下的低图像畸变。具备高度智能化,包括简单快捷全景光学导航、一键全自动换样、全景光学导航、实时聚焦追踪,可以实现全自动超大区域(100mm×100mm)全息地图集式拍摄,并绘制成全景地图式信息浏览。祺跃科技|原位高温扫描电镜祺跃科技原位高温扫描电镜新品【发布详情】 发布时间:10月14日新开发的扫描电镜设计理念包括样品室空间从紧凑到合理,样品台承载能力较大、成像探测器承温能力提升、保证高真空足够的抽气能力等,达到追求时序信息的目标。本次新品实现整机国产化的核心部件包括高温二次电子探测器、三维移动平台与大载荷拉伸平台、1400度原位加热器、超大结构样品腔室和超高真空系统等。保障电镜极端环境长时间稳定运行的相关模块包括冷阱、等离子清洗、极靴屏蔽、红外测温等。同时兼容EDX和EBSD等,还预留设置了多种通讯接口,为今后拓展更多原位技术留有余地。 日本电子|钨灯丝扫描电镜升级产品JSM-IT510钨灯丝扫描电子显微镜JSM-IT510【产品链接】 发布时间:11月8日参考价格:130-200万元为了满足基础研究、工业现场对更快获取结果数据等, JSM-IT510系列进一步提升了InTouchScope™ 的可操作性。借助新增的Simple SEM功能,现在可以将日常工作 “交给”仪器。主要特点包括:新型“Simple SEM”功能、最新型低真空二次电子探头 (LHSED)、 扫描电镜图像和能谱的一体化、实时立体三维图像、实时分析功能、新的导航放大功能、0 倍放大、显示X射线产生区域、SMILE VIEW™ Lab管理软件等。飞纳|第二代肖特基场发射台式扫描电镜Phenom Pharos G2飞纳台式场发射扫描电镜 Phenom Pharos G2【 产品链接 】 发布时间:11月24日参考价格:200-300万元Phenom Pharos G2, 集背散射电子成像、二次电子成像和能谱分析功能于一体。高亮度肖特基场发射电子源,使用户可以轻松获得高分辨率图像,且低电压性能优异。Pharos G2分辨率提升至1.8nm,采用热场发射电子源,信噪比高,使用寿命长,保证长期稳定的性能。飞纳台式场发射扫描电镜能谱一体机标配背散射电子成像、二次电子电子成像和能谱分析功能,可对各种样品进行高分辨成像及元素分析。日立|全新场发射扫描电镜SU8600和SU8700全新冷场发射扫描电镜SU8600(左)和热场发射扫描电镜SU8700(右)【发布会专题】 发布时间:12月9日全新一代冷场发射扫描电镜SU8600不光保留了日立传统冷场电镜的优点,还采用了新型冷场电子枪,可选择更多种类的探测器,而且具有全新的自动数据获取功能,这些技术的加入使得SU8600的成像、分析能力以及自动化性能都有了质的飞跃。具体特点包括:强大自动化功能、成熟的电子光学系统、强大的图像显示和存储、简便的操作等。全新一代热场发射扫描电镜SU8700是一款集高分辨观察、高效率分析、自动化操作等特点于一身的扫描电镜。全新的自动数据获取功能,电子光学系统,多探头检测系统等技术的加入使得SU8700的成像和分析能力有了质的飞跃。具体特点包括:强大的自动化功能、全新的电子光学系统、高效的分析能力、丰富的样品适用性、简便的操作等。国仪量子|场发射扫描电子显微镜SEM5000场发射扫描电镜SEM5000【 发布信息 】 参考价格:200-300万元新品场发射扫描电子显微镜SEM5000,是一款高分辨的多功能扫描电镜,分辨率优于1 nm,放大倍数超过一百万倍。SEM5000的新型镜筒,优化了电子光路设计,采用高压隧道技术,在高电压和低电压下均能实现高质量成像;系统配置了无漏磁物镜,实现了无漏磁高分辨成像,适用于磁性样品分析;可选配多种探测器及其它分析仪器,能够满足用户的各种需求。将广泛应用于锂电池材料、新型纳米材料、半导体材料、矿物冶金、地质勘探、生物等领域。透射电镜:冷冻电镜、球差电镜,国产扫描透射透射电镜方面,面向高端市场的扫描透射电镜成为新品主流。日本电子新一代冷冻电镜JEM-3300年初上市。赛默飞球差电镜新品Spectra Ultra、扫描透射电镜新品Talos F200E更加关注半导体领域。国产方面,基于生物到实验室和生物物理所合作,针对病理组织样本高通量成像需求的专用扫描透射电子显微镜SmartView发布。日本电子|新型冷冻电镜JEM-3300新型冷场发射低温电子显微镜(cryo-EM)——CRYO ARM™ 300 II (JEM-3300)【 产品链接 】 发布时间:1月22日参考价格:3000-5000万元JEM-3300新型冷冻电镜基于“快速、易于操作、获得高对比度和高分辨率图像”的理念而开发。与之前的CRYO ARM™ 300相比,JEM-3300可进行高质量数据的快速采集、操作简便,并在通量方面有大幅提升。主要特点:通过最佳电子束控制实现高速成像,独特的“Koehler mode”照射模式允许均匀电子束照射到样品的特定位置,JEM-3300吞吐量相比上一代提升两倍或更高;提高了高质量图像采集的硬件稳定性,配备了一种新型冷场发射枪(cold FEG)、新的柱内 Omega 能量过滤器;系统升级后可操作性更高等。赛默飞| 球差校正透射电镜Spectra Ultra 新一代扫描透射电镜Spectra Ultra S/TEM【产品详情】 发布时间:3月3日参考价格:2500-5000万元全新Spectra Ultra在数分钟内即可灵活优化高级成像和分析条件。出于加快材料研究进程以及高通量需求,用户现在可以以非常快的速度稳定地调节加速电压。这极大扩展了研究的样品范围,最大程度地减少了电子束损伤,并显著降低了工具的优化耗时。“配置了Ultra-X的Spectra Ultra改变了材料科学研究人员和半导体从业者的游戏规则。它可以通过迅速施加不同的加速电压来显著减少电子束损伤,并且用户将能够检测极低浓度的轻元素。”赛默飞世尔材料科学副总裁Rosy Lee表示,“此外,与其他商业化解决方案相比,用户可以以更高的分辨率快速成像快速分析,以研究新材料和改进现有材料。”赛默飞| Talos F200E扫描透射电镜Talos F200E扫描透射电镜发布时间:3月17日参考价格:600-1500万元Talos F200E (S)TEM提供原子级分辨率成像、快速EDS)分析和增强的数据可靠性,专为满足半导体行业日益增长的需求而设计。且具有成本效益,易用性高,帮助半导体实验室实现快速的样品表征,加快可以量产的速度,提高制程良率。“随着创新的步伐不断加快,半导体企业要求其分析实验室加快周转时间,并在各种设备和工艺技术上提供更可靠和可复现的(S)TEM数据,以支持他们的业务,”赛默飞半导体事业部副总裁Glyn Davies表示,“Talos F200E通过提供高质量的图像数据、快速的化学分析和行业领先的缺陷表征等特质,可以为客户提供高性价比、易用的解决方案。”纳镜鼎新|高通量生物扫描透射电子显微镜SmartView高通量生物扫透电子显微镜智眸365(Smart View 365)【产品详情】 发布时间:7月28日智眸365(Smart View 365)以其高通量、全自动、超高清图像的优越特性在降低人员工作强度的同时为专家分析和诊断病理提供更多的信息,有效提高诊断的效率与正确率。满足专业用户对超微病理诊断的需求。主要特点包括:高通量高效率,插入病理切片样品仓,选定工作模式,一次性自动连续完成多至500个样品成像等;高分辨,分辨率高达0.9nm STEM图像;高稳定运行,长寿命、超稳定的场发射电子源;使用简单等。聚焦离子束显微镜赛默飞|Helios 5 EXL晶圆聚焦离子束扫描电子显微镜Helios 5 EXL晶圆聚焦离子束扫描电子显微镜【产品详情】 发布时间:4月21日参考价格:700-1500万元Helios 5 EXL旨在满足半导体厂商随着规模化经营而不断增加的样品量以及相应的分析需求。这款产品拥有的机器学习和先进的自动化能力,可提供精确的样品制备,以支持5纳米以下节点技术和全环绕栅极半导体制程以及良率提高。赛默飞半导体事业部副总裁Glyn Davies 表示:“半导体实验室正面临着巨大的压力,在不增加成本的情况下,他们需要更快地提供TEM分析数据,以支持制程监控并提升学习曲线,Helios 5 EXL可以通过可扩展的、可复现的和高精度的TEM样品制备来应对这一挑战。”其他新品:扩展技术与定制产品日本电子|超微电子衍射平台Synergy-ED超微电子衍射平台Synergy-ED发布时间:5月31日日本电子与Rigaku公司联合开发出Synergy-ED,一个超微电子衍射平台(ED),通过将日本理学的结构分析技术和设备(如其高灵敏度检测器)与日本电子的透射电子显微镜相结合,将两者的核心技术结合起来,希望新品的技术能够应用于材料研究、化学和药物开发等领域,并为利用电子衍射进行单晶结构分析提供新的解决方案。在以前困难的亚微米范围内,结构分析成为可能。赛默飞|定制球差校正电镜Spectra φ定制的高分辨率扫描透射电子显微镜Spectra φ发布时间:5月20日定制的高分辨率扫描透射电镜Spectra φ,用以支持莫纳什大学在先进材料方面的研究。该仪器安装在澳大利亚莫纳什电子显微镜中心(MCEM)。Spectra φ提供增强的电子束灵活性,以优化复杂材料系统的高速多维成像。Spectra φ 的设计和制造符合由MCEM 和澳大利亚科学院院士Joanne Etheridge教授领导的团队的规格。通过将 Spectra φ 纳入其仪器阵容,莫纳什大学将继续推动对重要能源相关的开创性研究,包括高效光伏设备、电池、材料轻量化、低功耗电子产品和清洁发电等。
  • 以“太行”之名,挺起透射电镜产业的中华脊梁——我国首台国产商业场发射透射电镜诞生
    1月20日,由生物岛实验室领衔研制,拥有自主知识产权的首台国产商业场发射透射电子显微镜TH-F120“太行”在广州发布。这标志着我国已掌握透射电镜用的电子枪等核心技术,并具备量产透射电镜整机产品的能力。  透射电镜技术跨越多个学科、工程技术复杂、攻关难度大。经过三年多努力,中国科学家们完成了我国首台100%自主知识产权的120千伏场发射透射电镜的整机研制,实现了0.2nm分辨率的成像能力,达到了产品化的水平。  “这对于我国摆脱进口依赖、实现高水平科技自立自强具有重大意义。”中国科学院院士、生物岛实验室主任徐涛介绍,这将打破国内透射电镜100%依赖进口的局面,场发射透射电子显微镜将为我国在材料科学、生命科学、半导体工业等前沿科学及工业领域的高质量发展提供有力支撑。  以“太行”之名,挺起透射电镜产业的中华脊梁  如果说光学显微镜揭开了细胞的秘密,那么透射电子显微镜则把纳米级的微观世界展示在人类眼前。1933年,世界上第一台透射电镜诞生,为科学研究提供更强有力的武器,也因此被誉为高端科学仪器皇冠上的“明珠”。  透射电镜具有极高的行业垄断性与技术门槛。行业数据显示,此前,我国透射电镜100%依赖进口,国产化尚属空白。2022年,我国进口透射电镜约300台,进口总额超30亿元,预计2022年至2028年期间,年复合增长率超5.8%。  生物岛实验室生物电子显微镜技术研发创新中心研究员孙飞早在2016年便带领团队联合中国科学院生物物理研究所启动了预研工作。  “我们通过广泛交流,集合了有志于从事国产电镜自主研制的科学家和工程师,涵盖了电子光学、机械、自动化控制、软件等相关领域。”孙飞介绍,其中既有来自国内外学界的科研人才,也有在产业界深耕扫描电子显微镜多年的领军人物,“大家都抱有同样的愿景,就是造出我们国家自己的透射电镜。”  2020年,这支来自全国各地甚至海外的队伍集结在广州的生物岛实验室组展开技术攻关。团队成立三年多以来,在国家自然科学基金委、科技部、广东省科技厅、广州市科技局的大力支持下,相关研发工作接连取得重大突破——先后成功研制120千伏场发射电子枪、120千伏低纹波高压电源、400万像素和1600万像素棱镜耦合CMOS电子探测相机、100万杂合像素直接电子探测相机等透射电镜核心关键部件。  据悉,电子枪是透射电镜的“光源”,其作用是发射高能电子束照射到样品上,是透射电镜最为核心的部件之一。“将原有的30千伏场发射电子枪提升为120千伏,要解决电子源发射稳定性、高压真空打火等问题。经过不断的摸索,我们突破国外相关技术壁垒,去年成功实现120kV场发射电子枪的稳定量产。”孙飞说到。如今,生物岛实验室是我国唯一有能力量产该透射电镜核心部件的单位。  孙飞直言,更大的困难在于如何将各个研制成功的部件组合起来实现联调,真正拿到高分辨率图像。“拿到分辨率优于0.2nm图像的那天,我们非常激动,我国终于突破这一关键技术。”  为了进一步推动透射电镜的产业化,生物岛实验室与国内领先的科学仪器公司国仪量子联合成立了广州慧炬科技有限公司,致力于将透射电镜技术商业化应用。  “我们成功走到今天,得益于生物岛实验室作为新型研发机构的特殊体制机制,保证了研发队伍的稳定。同体制内外并行发力,与产业界的紧密合作。同时,国家部委项目的支持,保证了项目研制的可持续性。”孙飞说。  此次广州慧炬科技有限公司推出的首款透射电镜新品TH-F120,取名源自中华名山“太行”,寓意TH-F120将如太行山一样成为中国透射电镜产业的脊梁。  向“珠穆朗玛”进发,将推出更高千伏电镜透视更厚材料  广州慧炬科技有限公司总经理曹峰正在推进“太行”的商业化应用。他介绍,场发射透射电镜在高端科研、产业发展应用广泛、意义重大。在生命科学研究领域,它可以看到蛋白质的生物结构;用在集成电路领域,可以实现半导体的缺陷检测;用在新材料领域,可开展锂电池的研发等等。  曹峰表示,“太行”是拥有原子级分辨率的显微放大设备,信息分辨率达0.2nm,可以呈现大多数晶体的排列结构。广州日报记者现场看到,“太行”能清晰呈现小鼠大脑中的髓鞘组织、小鼠肝脏细胞的里的线粒体。“它是多个技术的复合体。我们必须在每个环节都做到极致,才能保证设备整体达到超高分辨率。”曹峰说。  尽管“太行”是该公司推出的“入门级”产品,现已具备多项先进性能——一是自主研制的高亮度场发射电子枪,相比于同级进口产品的热发射电子枪,亮度更高,发射稳定性和相干性更优,匹配自主研制的电磁透镜系统,针对120kV成像平台特别优化电子光学设计,可为用户带来更佳的图像衬度和分辨率;二是自主研制的高稳定性低纹波高压电源,实现了高压自动控制,保证电子枪稳定发射;三是标配自主研制的高像素CMOS相机,在低电子剂量的工况下仍可呈现丰富的样品细节;四是以人机分离为设计理念,匹配高度自动化的控制系统,使图像采集工作更加舒适高效;五是预设充足的拓展接口和整机升级空间,满足用户需求迭代,有效延长整机使用年限。  曹峰透露,团队明年计划研制出200千伏场发射透射电镜。“电压虽然看起来只是增加了80千伏,但研制难度却是指数级增加,设备的稳定性、防护性都需要进一步探索。”  曹峰表示,电压越高意味着电子能量越高,就越能穿透更厚的样品。目前120千伏的电镜,可以穿透大约50纳米厚度的材料。但是对于常见的100纳米的材料,还需要200甚至300千伏的电镜。  在未来数年,该公司计划推出场发射透射电镜系列EM -F200“峨眉”、KL -F300“昆仑”,冷冻透射电镜系列YL -F100C“玉龙”、TGL -F200C“唐古拉”、 ZMLM -F300C“珠穆朗玛”,热发射透射电镜系列QL -T120“秦岭”、DX -LaB120“丹霞”。“我们的透射电镜产品取名均源自中华名山,代表慧炬立足中国、放眼世界,助力科研工作者勇攀高峰、不断突破。”曹峰说。  此次“太行”的发布,是生物岛实验室“二次创业”,向成果转化专业机构成功转型的缩影。作为广州市首批省实验室之一,生物岛实验室不断培养高价值专利,与本地头部企业共建联合实验室、技术产业转化中心,累计孵化企业12家,其中4家估值已经超亿元。通过技术作价、配比投入等方式撬动社会资本近1.5亿元,助力科研成果高效率转化,赋能产业科技创新,为广州高质量发展作出突出贡献。
  • 低电压、无负染,LNP成像新突破——生物型透射电镜LVEM
    在近期的新冠疫情中,各类mRNA疫苗纷纷采用了LNP作为递送载体,有效避免了核酸被降解,提高了mRNA进入细胞的效率。在LNP的应用研究中,质量控制往往为重要也为困难的一环。LNP的质量(如其包封率、载药量与稳定性)很大程度上取决于其囊泡的结构是否均匀、稳定,这就需要研究人员对LNP进行透射电镜成像,来直接观测LNP的囊泡结构、粒径等形态信息。 随着科研的进步,人们对成像仪器的要求与日俱增。但是即便在高分辨成像设备多如牛毛的今天,生物样品的透射电镜成像却一直是一个难题。所谓“电镜易得,样品难求”,如何制得一个无损的电镜样品从而拍摄到清晰、高反差的生物样品图片,一直是生物样品透射电镜成像中的大的难题。这个难题很大程度上是由透射电镜的高电压与制样中的染色/负染步骤导致的。 负染是在使用传统透射电镜对生物样品成像时“不得不”采用的样品处理手段,但是负染的处理手段也会带来显著的问题: 、就是生物样品制样复杂,在制样染色过程中,样品容易产生收缩、膨胀、破碎以及内含物丢失等结构改变; 二、重金属盐离子本身会对生物样品的形貌造成不可逆的损害,这种损害在传统制样过程很难避免; 三、负染所得的“负像”并不能真实地反映生物样品的形貌特征,尤其对于LNP等囊泡结构,囊泡表面局部凹陷,可能会有少量染液遗留在凹陷处,或者载网表面有负染液残留的痕迹等,这些负染液在电镜观察时就会产生“假象”; 四、对于制样操作者的要求较高,生物样品的种类多种多样,而每一种生物样品负染时佳的制样条件(重金属盐溶液的种类、浓度,染色的时间长短等)都不一样。这就需要制样人员根据各自实验室的条件,在长时间地摸索与多次地试错来获取佳的制样条件,大量宝贵的时间和样品就这样浪费在染色制样条件的摸索中了; 五、传统透射电镜操作复杂,维护困难,而实验平台的透射电镜往往一“时”难求,生物样品的佳观测时间往往较短,经常会出现获得好的生物样品,却发现电镜早要在一周后才能预约的尴尬局面; 后,即便已经采用了负染等手段,LNP类的囊泡生物样品还是非常脆弱的,在成像过程中经常会出现囊泡被长时间电子流照射给“轰碎”的状况,这就迫使操作者加快操作速度,更加手忙脚乱。摆脱传统电镜桎梏的生物型透射电镜 Delong Instrument公司推出的LVEM生物型透射电子显微镜(LVEM5&25)采用了5kV与25kV的低加速电压设计,一次性地摆脱了上述所有的生物电镜成像难题,为生物样品的电镜成像提供为便捷高效的解决方案。 高衬度:低能量电子对有机分子产生更强烈的散射,具有更高对比度。无需染色:突破以往生物/轻材料成像需要重金属染色的局限性。高分辨率:无染色条件下能够达到1.5 nm的图像分辨率。多模式:LVEM5能够在TEM、SEM、STEM三种模式中自由切换。高效方便:真空准备只需要3分钟,空间小,环境需求低。易操作且成本低:友好智能化操作界面,低耗材,低维护费用,无需专业操作人员。生物样品友好 LVEM生物型透射电镜采用的5kV与25kV低电压设计,对生物样品不会造成任何损伤,与传统高压电镜相比,低电压反而提高了生物样品成像的衬度/反差;无需重金属染液负染,对于LNP等囊泡结构成像条件温和,摆脱了染液与负染过程本身可能对囊泡结构造成的损害,所得图像为“正像”,更加真实地展现囊泡的结构特征。 生物样品细节损失少 如下图所示,传统高压透射电镜本身就会带来样品细节损失,在80-120kV下的透射电镜成像过程中,大量十几纳米尺寸的颗粒会直接被“击穿”。而LVEM生物型透射电镜采用的5kV与25kV低电压设计,不仅避免了传统高压透射电镜长时间照射对于生物样品的损害,还可以保留下更多地小有机颗粒图像,获得更多地细节。小型化设计,操作更加方便 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM电镜从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。操作界面智能化,更加方便。 LVEM生物型电镜案例 LVEM生物型透射电镜对生物样品成像友好,除了LNP之外,对于病毒颗粒、外泌体、噬菌体、DNA、细胞切片等生物样品的成像效果也非常,可以满足研究人员多样化的成像需求,且其操作简便,制样简单,是使生物科研工作者研究更加游刃有余的“科研利器”。 部分用户单位:
  • 厦门大学5525万招标采购质谱、透射电镜等5台仪器设备
    仪器信息网讯 近日,厦门大学在5日内发布五项仪器招标公告,采购串联三重四级杆质谱、电化学球差原位透射电镜、超高分辨质谱仪等5台/套仪器设备。公告显示,招标预算总金额达5525.2万元,五项招标项目将于2月下旬陆续开标。  招标项目明细及采购仪器要求如下两个表格及附件所示。仪器招标项目明细采购仪器明细 附件1: 串联三重四级杆质谱  一、主要技术参数:  1 液相色谱部分:  1.1 二元高压泵系统  1.1.1 流速范围:0.001-5.0 mL/min,0.001 mL/min步进  1.1.2 流速精度:≤ 0.070%  1.1.3 操作压力:0-18000 psi  1.1.4 流速准确度:± 1.0%  1.1.5 梯度准确度:± 0.4%  1.1.6 梯度精确度:± 0.2%  1.2 自动进样器  1.2.1 样品数量:≥ 100瓶  1.2.2 进样精度:≤ 0.5% RSD  1.2.3 进样线性度:0.999  1.2.4 交叉污染:0.005%  1.3 智能化半导体控温柱温箱  1.3.1 柱温范围:室温以下10℃~80℃  1.3.2 温度稳定性:± 0.1℃  2 质谱仪部分:三重四极杆质谱仪  2.1 质谱仪包括以下完整组件:ESI,APCI离子源、离子导入系统、三重四极杆质量-线性离子阱分析器、电子倍增器检测器系统、数据采集处理系统各一套。  2.2 质量范围(m/z):5-2000amu  2.3 灵敏度:ESI正离子灵敏度:1pg 利血平柱上上样, MRM分析测量m/z195(子离子)、m/z609(母离子), 信噪比≥ 510000:1 ,C.V.5%  2.4 正负离子切换速率:≤ 5ms  2.5 质量稳定性:≤ 0.1amu (48hr)  2.6 离子驻留时间:≤ 1ms  2.7 电喷雾离子源:流速 5uL/min—3000uL/min以上 APCI 大气压化学离子源流速范围:流速 50uL/min-3000uL/min以上。  2.8 同时具备串联四极杆、线性离子阱扫描模式及MRM3扫描功能  2.9 半峰宽0.7amu下,线性离子阱扫描速度:≥ 20000 amu/s  2.10 线性离子阱分辨率:≥ 10000(在250amu/s)  2.12 具有以下扫描模式:全扫描(Full Scan)、子离子扫描( Product Ion Scan)、母离子扫描(Precursor Ion Scan)、中性丢失扫描(Neutral Loss Scan)、选择离子扫描(SIM)、选择反应扫描(SRM)、多反应监测扫描(MRM)、混合扫描(Mixed Scan Mode) 、增强全扫描(EMS)、增强子离子扫描(EPI)、增强多电荷扫描(EMC)、增强分辨率扫描(ER)、时间延迟碎裂功能(TDF)。  2.13 线性离子阱MS/MS 全扫描灵敏度 1pg 利血平直接进样,信噪比100:1(峰峰比)  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为36个月原厂质保,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  6.供应商需提供相关配件,例如UPS/ 2小时、相关代谢组学软件和数据库。  附件2: 分析型流式细胞仪  一、技术参数  1. 光学系统:整合了最新的激光和光学技术,最多可配置5根激光器,检测20个参数变化,进行18色分析,且具备升级更多激光器空间。  1.1 配置5根固体激光器的型号及功率:355nm: 15mW, 405nm: 50mW, 488nm: 50mW, 561nm: 50mW,640nm: 40mW 激光功率损失低于20%。  1.2 检测器:18个荧光检测器,1个前向散射角检测器,1个侧向散射角检测器。  1.3 所有光学通道配插拔式滤光片,每个光学通道组可自由升级或更换接收器及滤光片。使用者可自行更换滤片,更换滤片后无需任何光路校准或校正。  1.4 光路激发系统:包括一个激光阵列,由多达五种固定波长的激光、光束形成器和单个独立小孔共同组成,可形成空间上隔离的独立的光斑,避免不同激光器之间的干扰。激光光束与样本在石英杯流动室准确聚焦,产生荧光信号。  1.5 光路收集系统:采用专利的光胶耦合石英流动池(光圈≥ 1.2NA)以及多角形光路收集系统,连续八角形全反射接收光路能够最大化地收集检测信号,其中PMT通过前置带通滤片收集特定波长范围的荧光。这种构造可以使得光路系统中滤光片与光镜能够根据需要轻易更换而无需额外调整光路。  1.6 荧光检测灵敏度:FITC≤ 80MESF, PE≤ 30MESF。  1.7 荧光检测分辨率 PI染色CEN样本,G0/G1期全峰宽PI-Area CV 3.0% (488 nm) 2um的荧光小球散射光全峰宽CV 2.0%。  2. 液流系统:采用保持真正固定角度的石英杯流动室的设计。  2.1 液流系统由气压泵正压力驱动。通过流体动力学聚焦,使样本通过石英杯流动室,并在流动室被激光照射。流动室与激光成固定角度并与收集光路胶耦合。这种设计确保激光器精准聚焦在样本流上,同时能够最大程度减少启动时间,优化不同实验间数据重现性并能够实现日常自动质控。  2.2 外置鞘液桶(8升)与废液桶(10升)可置于地面,方便使用。  2.3 液流传感器维持恒压,当鞘液不足、用尽或废液桶满时,液流监测系统都会发出警报。  2.4 样品分析速度可连续调节,并预设低速(12μ L/min),中速(35μ L /min),高速(60μ L /min)。  2.5 样品最大分析速度可达40,000细胞/秒。  3. 数据获取、分析:软件能够高效设置、获取并分析流式细胞实验数据。本软件集成了强大的功能,如快速分层设门、多种图形格式及批处理。  4. 仪器性能质控:仪器全息跟踪(CS&T)全自动质控系统能够建立设定基线并调整仪器变量。CS&T最大程度的减小了操作误差,并通过设定多个激光器信号时间延迟和最优化PMT电压确保结果的一致性。保证每一个数据的准确性。  5. 脉冲处理信号:可同时分析脉冲高度、宽度、面积和时间4种参数。  6. 荧光补偿:18*18全矩阵荧光补偿,可脱机补偿,离线分析。  7. 电脑工作站:Intel Xeon E3-1240v3 CPU 3.4GHz,内存4G,硬盘≥ 1TB,独立显卡1G,2个21寸LCD,DVD/RW,Windows 7操作系统 彩色激光打印机一台 5Kv稳压电源一台。  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件3: 高端分选型流式细胞仪  整体要求:全新原装产品,模块化设计,全自动设置时间延迟,在任意数量的荧光和补偿下达到≥ 70,000细胞/秒的高速分选功能。  一、光路系统  1. 激光器配置:5根激光器,不少与5个Pinhole,可激发≥ 15色荧光:高功率355nm固体激光器,高功率405nm 固体激光器,高功率488nm 固体激光器,高功率561nm 固体激光器,高功率640nm 固体激光器。  2. 系统具备≥ 7个独立光斑,采用独立光纤引导,不同波长的激光光路相互独立,对样品进行激发  3. 检测通道:≥ 15个荧光通道,≥ 2个散色光通道,包括前向角和侧向角,PMT检测器不少于17个。  4. 配置≥ 1个前向PMT检测器,前向散射光可以配备≥ 3种不同的Masks,可以检测200nm和区分100nm差异的颗粒。配置≥ 1个侧向PMT检测器,并且任意≥ 405nm激光器都可选装侧向散射光   5. 激光光路固化,无需荧光微球反复调试,开机即可使用。  6. 升级能力:开放光学平台,7个Pinhole,最高可升级至7根激光,并可同时激发。  7. 激发方式:合理的激发模式,保障高回收率和细胞活性。  二、液流及分析系统  1. 系统压力:4-100 PSI ,可调。保证系统的高速分选和稳定。  2. 液滴振荡频率:≥ 200KHz(每秒20万颗液滴/秒)   3. 检测速度:≥ 100,000个细胞/秒   4. 检测灵敏度:FITC≤ 125MESF,PE≤ 125MESF   5. 可在同一时间检测并分析小至200nm至30um的三个数量级以上的生物样本   6. 鞘液桶、废液桶、喷嘴可高压灭菌 液流管道及喷嘴可更换:完全消除不同样本间的交叉污染,适应干细胞检测、干细胞分选、细胞治疗或酵母等高污染样本等等特殊应用的实现   三、分选性能  1. 分选速度:≥ 70,000个细胞/秒   2. 分选纯度:≥ 99%,在≥ 70,000个细胞/秒分选速度下   3. 分选设置:配备全自动智能分选设置,自动设置液体延迟,无需微球设置分选条件   4. 分选收集通道:能进行≥ 4路分选,能够进行单细胞分选、自定义分选和玻片分选 分选模式:可实现2路、4路等多路细胞分选及成份分选,单克隆分选,以及成份分选、定位分选 可选择纯度模式、富集模式、混合模式,并可将三种模式在一份样本中同时使用   5.支持“无电”式分选方法,最大限度保证样本细胞活性   6. 智能进样系统:可使用如下规格样本管:0.5ml,1.0ml,1.5ml,5ml,7ml,15ml,50ml,可进行自动混匀振荡、排气泡、反冲、自动清洗等功能   7. 标准喷嘴规格:70um、100um。并可根据需求添置喷嘴   8. 可快速连同喷嘴及流动室一起更换,不影响光路,节省操作时间   9. 无菌保障:分选收集仓内置紫外灯,保证收集细胞无菌性   四、数字化信息处理系统  1. 数字化脉冲原始信息量:≥ 32bit   2. 数字化信号采集频率:≥ 100 MHz   3. 单次检测细胞数收集能力:≥ 10亿   4. ≥ 4,294,967,296 通道   五、软件以及控制系统  1. 分选控制系统:触屏式控制软件系统,能对所有分选分析结果进行统计   2. 数据获取和分析软件,无加密限制,可方便用户安装于多台电脑,便于数据分析,具备数据叠加等功能   3. 颜色补偿:支持全矩阵补偿,支持脱机补偿,自动补偿   4. 支持在分选期间可阻止电脑进入睡眠状态,可阻止电脑自动重启   二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件4: 超高分辨质谱仪  一、主要技术参数:  1 工作条件:  1.1. 工作电压:230V± 10%,15Amps,50Hz  1.2. 温度:16-260C  1.3. 湿度:50-80%  1.4. 长时间连续运行  2 功能要求:  2.1 蛋白质组学:蛋白质组学研究中的蛋白质鉴定、翻译后修饰、生物大分子相互作用、多肽和蛋白质的定量分析。  2.2 药物代谢:新药研发,代谢物鉴定,研究与疾病有关的标记物和代谢组学、脂质组学,小分子和生物大分子的相互作用。  2.3 食品安全、环境分析、毒理及临床研究:高通量农药、兽药、毒物及非法添加物等目标化合物和未知物的筛选、定量、确证。  2.4 操作过程由计算机控制。  3 技术要求:  3.1超高压纳流液相  3.1.1 压力范围:0~ 1200 Bar  3.1.2不分流一体化设计和防脉冲泵,能实现智能流速控制及上样和柱平衡,确保梯度的重现性。  3.1.3 防脉冲泵:使用蓝宝石活塞的单作用式注射无脉冲泵保证密封圈和阀门更换频率最低化。  3.1.4 内置自动化的维护步骤,具有定期提醒功能,可进行自动检漏测试,系统反压测试。可实现进样前流路自动气泡检测。  3.1.5 内置式电脑设计,可通过触摸屏直接控制,使得系统设置,方法配置和日常维护最简单。  3.1.6 梯度流速:20-2,000 nL/min 推荐流速:100-1,000 nL/min,实现稳定的、无脉冲梯度  3.1.7 上样和再平衡速度:最快25µL/min.(反压限制)  3.1.8 保留时间重现性:典型 0.1- 0.4% RSD (在推荐流速下)  3.1.9 样品瓶位数:48位HPLC进样小瓶,兼容96孔板384孔板。  3.1.10样品室控温:最低5℃。  3.1.11进样范围:0.1-18µL (20µL 进样环),0.01µL递增  3.1.12 进样重现性:≤ 0.2% RSD at 5µL ≤ 3.0% RSD at 100Nl  3.1.13 上样速度:0~40µL/min  3.1.14 梯度延迟体积:1µL  3.1.15可定制特定清洗程序,可设置三路不同溶剂清洗,交叉污染:0.05%(咖啡因)  3.1.16阀:4个6通阀(免维护),3个位置微量阀  3.1.17 上样环体积标配20µL,可选5µL和50µL.  3.1.18 上样线性:BSA 0.999 at 0.5-10µL(进样体积) Caffeine 0.999 at 0.3-1.6µL (进样体积)  3.1.19 可与纳喷源和质谱的无缝连接,集成化单一LC-MS软件控制,具有远程诊断功能。  3.1.20 可实现进样前流路自动气泡检测  3.2 四极杆-线性离子阱-高分辨轨道阱三合一质谱:四极杆-双压线性离子阱-静电场轨道阱傅里叶转换三合一超高分辨质谱  3.2.1 硬件部分:  3.2.1.1 离子源:  3.2.1.1.1 简便新一代离子源可使所有气体和电路连接自动安装 增强型的排气口能够除去更多的雾化溶剂,进而降低基线噪音,吹扫气设计降低化学噪音,延长仪器运行时间  3.2.1.1.2 加热的电喷雾离子源,流速:1-2000ul/min(不分流)  3.2.1.2 纳喷源:适合所有Nano流速,蛋白质组学用  3.2.1.3 离子光学部分:  3.2.1.3.1 高容量离子传输管:增加更多的离子流进入真空系统,从而提高灵敏度 无须卸真空就可维护。  3.2.1.3.2电动离子漏斗:高效捕获离子传输管中存在的每个离子,并将其有效转移到主动离子束传导组件,从而提高灵敏度  3.2.1.3.2 主动离子束传导组件:具有轴向场的主动离子束传导组件阻挡了中性粒子和高速簇粒子进入四极杆,从而降低噪音  3.2.1.3.3 尖端四极杆质量过滤器:分段四极杆设计,用于母离子选择,能够使离子阱和Orbitrap质量分析器并列运行。在最低可达0.4 amu的选择窗口下具有高效的离子传输能力,提高了灵敏度和选择性。  3.2.1.3.4 多极离子通道:实现高能碰撞裂解(HCD) 同时由动态扫描管理控制的多极离子通道,使离子阱和轨道阱质量分析器的有效扫描速率得到提高、易于实现并列检测 用于母离子选择,能够使离子阱和轨道阱质量分析器并列运行。  3.2.1.3.5 轨道阱质量分析器:≥ 500,000FWHM的分辨率第二代超高场轨道阱,大大提高对同重干扰物的分离效果 扫描速率≥ 20HZ。  3.2.1.3.6 双压线性离子阱质量分析器:双压结构可使扫描速率最高达20 Hz。在诸如基于MS3的多通道肽段定量实验中,同步母离子选择(Synchronous Precursor Selection, SPS)提高了信噪比,在最低可达0.2 amu。双打拿极大表面积的检测器,具有宽线性范围,并延长了寿命和抗污染性  3.2.1.4 真空系统:差分泵,真空2 × 10-10 Torr  3.2.2 性能指标:  3.2.2.1 质量范围:50-6000 m/z  3.2.2.2 最大分辨率: ≥ 500,000 FWHM (at m/z200)  3.2.2.3 扫描速率:轨道阱MSn ≥ 20Hz 离子阱MSn ≥ 20Hz  3.2.2.4 质量准确度(MS和MS/MS):1ppm(内标) 3ppm(外标)  3.2.2.5 离子阱灵敏度:ESI:100 fg利血平,MS/MS 信噪比200:1  3.2.2.6 线性动态范围:5000:1  3.2.2.7 自动MS/MS(MSn)级数:n=1-10级  3.2.2.8 同步母离子选择: 基于MS3的多通道分析,一次MS2扫描可以选择20个母离子  3.2.2.9 使用多极离子通道并列运行:利用四极杆质量过滤器,一次扫描可以选择10个母离子  3.2.2.10 正负离子切换速度:1.1秒(完成1次正离子模式全扫描和1次负离子模式全扫描,分辨率30000)  3.2.2.11 多种碰撞模式:具有高能碰撞裂解(HCD)、脉冲Q值诱导解析(PQD)、碰撞诱导解析(CID),去除1/3低质量数Cut Off效应  3.2.2.12 电子转移解离(Electron Transfer Dissociation)  ETD效率:1pmol/ul 血管紧缩素以3ul/min流速直接进样,能保证ETD碎裂效率 15%  3.2.3 傅里叶转换FT类质谱,但无需液氦和液氮的消耗,维护容易并且成本低廉。尤其高分辨质谱不需要额外检测器,轨道阱本身即是分析器又是检测器。  3.3 软件系统:  3.3.1 仪器自动操作软件,自动调节记录仪器参数,数据采集和处理软件,控制液相色谱进样。  3.3.2 蛋白质组学应用软件:用于蛋白定性定量分析  3.4 计算机 (Computer):  3.4.1 硬件:不低于:Intel酷睿i7 CPU 3.4G Hz以上,16G内存,2T 硬盘,22〞液晶显示器  3.4.2 Windows 7 操作系统  4. 仪器配置要求  4.1四极杆-双压线性离子阱-静电场轨道阱傅里叶转换三合一质谱仪主机  4.2加热的电喷雾源(H-ESI)和纳喷源  4.3 ETD装置  4.4 超高压纳流液相色谱仪  4.5 仪器控制和数据处理  4.5 蛋白质组学应用软件  4.6 计算机、10KV不间断电源(1H)和氮气钢瓶及减压阀等辅助设备  4.7 肽分析柱3根和预柱3根 离子源喷针12根 备用泵油一瓶等耗材一批。  二、售后服务  1.设备安装调试:仪器到货后,买方负责提供必要的实验室条件,卖方在接到买方通知的7个工作日内派人前往负责该设备的安装、调试和操作培训,直至达到各项验收指标合格。  2.提供全套完整的技术资料,包括说明书、用户手册、装箱单、仪器使用维护手册等   3.技术培训:仪器安装验收后,立刻提供不少于一个月的操作使用培训,并确保购买方能熟练使用该仪器。  4. 原厂家在福建省内有制造厂商产品应用技术人员及硬件维修人员,提供本地化的应用支持及硬件维护服务,一旦仪器发生故障,能够24小时内响应,48小时内维修工程师到达现场。商家应保证配件供应,一个月内无法修好仪器,应提供样机供用户免费使用,或联系厦门地区其他单位的同档次仪器供用户使用,并承担由此产生的所有费用。  5.保修期:质保期至少为24个月,自与最终用户签署验收合格单之日起算。质保期内发生任何设备损坏,所需要的维修费用(包括零部件费用、维修费用)均由卖方承担(若人为操作不当造成的损坏,不在此例),产品终身维修。  附件5:电化学球差原位透射电镜技术指标及配置要求  一、 整套设备配置要求:  1. 双球差透射电镜1台  2. 场发射透射电镜 1台  3. 等离子清洗机 1台  4. 聚焦离子束双束电子显微镜 1台(选配,投标人需单独列明价格,以及技术参数等,用户有权选择采购或不采购配置)  二、各部分具体参数要求:  1. 电子光学系统  1.1. 加速电压:30kV – 300kV(or 200kV)   1.2. 合轴文件:30kV(or 40kV),60kV,80kV,120kv,300kV(or 200kV)   1.3. 加速电压稳定度:≤ 0.8 ppm/10min   1.4. 物镜电流稳定度: 0.2 ppm/min   1.5. 束斑漂移 Maximum spot drift: ≤ 0.5nm/min   1.6. 束流/束斑尺寸:≥ 2.5nA @ 1nm, ≥ 0.25nA @ 0.2nm (all @ 300 kV)   2. 分辨率  2.1. *TEM信息分辨率:≤ 60pm@300kV (or 200kV) ≤ 100pm@60kV (or 40kV)   2.2. *STEM分辨率:≤ 60pm@300kV (or 200 kV) ≤ 100pm@60kV (or 40kV)   3. 物镜  3.1. *物镜极靴间距 (Pole Piece Gap) :≥ 4 mm   4. Image球差矫正器,Probe球差矫正器  5. *CMOS相机(16M)+直接电子相机  5.1. 像素≥ 4096 x 4096   5.2. 高速拍照:CMOS≥ 25 fps 直接电子相机(4096 x 4096≥ 300fps)  6. *能谱仪技术要求  高灵敏快速能谱技术   7. *EELS-GIF  7.1. 一体化EELS-GIF   GIF System (Model 965),dualEELS,能量分辨率 0.1eV  7.2. GIF合轴文件:60kV,80kV,120kV,200kV(or 300kV)   7.3. 束斑漂移:≤ 1nm/min   7.4. 在同一用户界面下,能谱、EELS可以和STEM配合工作,同时连续采集数据,快速完成线扫描、面扫描和定性/定量分析   8. *原位样品台及附件  8.1三维移动+加热+电场+微环境控制(可分别组合)  8.2真空度检测,渗漏检测  9. 等离子清洗装置:  9.1. 配备等离子清洗装置,用于清洁样品和样品杆   9.2. 配备样品杆真空存放装置   10. 远程控制软件和控制面板  10.1. 远程控制软件   10.2. 在同一用户界面下,能谱、EELS可以和STEM配合工作,同时连续采集数据,完成线扫描、面扫描和定性/定量分析   11. *TEM备用场发射灯丝   12.* 场发射透射电镜  12.1. *加速电压:30kV – 300kV(or 200kV)   12.2. 合轴文件:30kV(or 40kV),60kV,120kV,300kV(or 200kV)   12.3. *物镜极靴间距 (Pole Piece Gap) :≥ 4 mm   12.4. 高速CMOS相机,(4096 x 4096≥ 25fps)  12.5. 高灵敏快速能谱技术  12.6.备用场发射灯丝   13. 聚焦离子束双束电子显微镜(FIB-SEM)性能指标(选配优先)  13.1. 离子束系统:  离子源种类:液态Ga离子源 离子源分辨率:≤ 5.0nm@30kV 加速电压:0.5kV - 30 kV 束流强度:0.6pA - 65nA (15孔光阑条) 离子源寿命:不低于1000小时   13.2. 辅助气体注入系统:  拥有独立的分离式气体注入系统,可重新配置 具备金属沉积系统,可在离子束、电子束诱导下进行Pt、C等沉积 可增加至4种气体注入系统,拥有10种以上备选过程方案 每种气体配备独立的气体注入器,防止不同气体交叉污染   14. *投标产品必需在国内有应用实例(提供中标通知书或合同复印件,原件备查),产品性能经过广泛验证,稳定可靠。  15、技术文件  15.1 设备制造厂商提供销售、售后服务授权书、质量认证书,有完善的售后服务团队和零配件仓库。(提供相关认证资格证书复印件)  15.2 提供中文版和英文版的仪器设备样本简介、产品技术性能说明,以及系统软件操作简介。  15.3 仪器设备详细清单、各项技术参数,以及具体参数的测试条件。  15.4 仪器硬件操作手册和软件使用手册,系统各种设备的维修、保养手册。  15.5 仪器验收标准。  15.6 技术服务条款、技术培训条款,以及售后服务承诺。  15.7 仪器设备装箱清单。  16、技术服务条款  16.1开箱验收:供方应在合同生效后30天内向用户提供详细的安装准备条件及安装计划。仪器到达用户所在地后, 在接到用户通知后1周内,由设备管理部门,合同购置单位,销售单位共同进行开箱验收,检查设备在运输过程中有无损坏、丢失,附件、随机备件、专用工具、技术资料等是否与合同、装箱单相符,并填写设备开箱验收单,存入设备档案,若有缺损及不合格现象应立即向有关单位交涉处理,索取或索赔。  16.2 设备安装调试:透射电镜室外部整体环境改造,由供应方在设备到达前完成,设备开箱验收后执行安装调试直至达到验收指标(该指标应不低于招标标书所要求的指标)。任何虚假指标响应一经发现即作废标,投标商必须承担由此给用户带来的一切经济损失和其它相关责任。透射电镜室外部环境改造,  16.3 安装调试及应用培训:由专业工程师负责安装、调试。培训内容包括:基本原理、结构、操作、软件使用、数据处理、维护保养及简单故障排除等。仪器正常使用一年后再免费培训一次。即卖方为用户提供两次免费(每次不低于2人)国内技术培训,对于设备使用,直到教会为止。  16.4 保修期:至少提供三年全机免费保修,保修期自验收合格,双方签字之日起计算。在保修期内属产品质量问题所发生的一切费用由供方负担。保修期满前1个月内供方应负责对用户的仪器进行一次免费的,全面的检查,并写出正式报告,如发现问题或潜在问题,应在保修期内将问题解决。保修期内出现因质量故障而导致仪器停用的时间应从保修期内扣除。所有修理或更换的部件均顺延享受两年保修期。在质量保修期外,免费提供技术支持 如果设备需要返厂修理或校准,保证在3个月内返回。  16.5 维修响应时间:针对设备故障,接到用户通知后4小时内响应,确定解决方案后,48小时内到现场维修。重大问题或其它无法迅速解决的问题应在一周内解决或提出明确解决方案,得到用户的认可后,在预定的期限内解决问题。否则,供方应赔偿由此而造成的损失。终生免费技术服务咨询。  16.6 软、硬件升级:供方应负责仪器操作软件终身免费升级,并优惠提供与之相关的硬件升级。  17. 以上标注“*”条款为强制性要求,投标供应商必须达到这些要求,否则将被视为未实质性响应招标文件要求,为无效投标。
  • 天美生物透射电镜学术交流会成功举办
    “生物透射电镜的应用与研究”学术交流会议在京成功举办   北京纳米科学大型仪器区域中心“生物透射电镜的应用与研究”学术交流会议于2012年11月23日在国家纳米科学中心召开。   本次会议由北京纳米科学大型仪器区域中心联合天美(中国)科学仪器有限公司共同举办。会议旨在促进区域中心各所之间的学术交流与区域中心开放设备应用水平的提高,为不同学科间的交叉与交流提供桥梁。参会人员包括国家纳米科学中心、中科院物理所、中科院化学所、中科院高能所、中科学理化所、中科院过程所、中科院电工所等单位的老师和学生近百人。     学术交流会议现场国家纳米科学中心熊玉峰老师在做报告   国家纳米科学中心熊玉峰老师首先对国家纳米科学中心的生物成像平台进行了简要介绍,对平台所购进的系列仪器设备及其主要用途进行了概括说明。之后,会议特别邀请了北京市神经外科研究所孙异临教授与大家分享生物透射电镜样品的制备方法和经验,详尽丰富的讲座赢得了与会者的强烈响应。资深电镜专家中科院生物物理所徐伟研究员应邀出席本次会议,并为大家作了题为“衬度成像在生物技术上的应用”的主题报告,从理论角度解析生物电镜的成像因素。天美(中国)科学仪器有限公司张龙改工程师对日立新一代全数字化透射电镜HT7700作了简单介绍,这款是市场上同类产品中的最新型号,设计采用高灵敏度的荧光屏CCD取代传统的荧光屏,将TEM操作统一于显示器 可在同一台电镜上实现高反差、高分辨两种观察模式,适合观察生物医学、纳米材料、软材料等多领域的样品。领先的设计理念和大集成一体化功能,更加简便地操作,是HT7700的最大特点。     北京市神经外科研究所孙异临教授     中科院生物物理所徐伟老师     天美公司应用工程师张龙改   天美公司特邀请日立全球应用中心工程师仲野靖孝先生,为大家在仪器现场演示日立透射电镜HT7700的操作与应用。 与会者对透射电镜HT7700进行了参观和做样测试,仲野先生对大家提出的问题进行了详尽的解答。与会者对HT7700独特的荧光屏CCD设计表现出浓厚的兴趣,快速准确的自动拼图功能,给各位老师和同学留下了深刻的印象,与会者对仪器的性能给予了很高的评价。     仲野靖孝先生在现场为用户做演示   公司介绍:   天美(中国)科学仪器有限公司(“天美(中国)”)是天美(控股)有限公司(“天美(控股)”)的全资子公司,从事表面科学、分析仪器、生命科学设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。天美(中国)在北京、上海、等全国15个城市均设立办事处,为各地的客户提供便捷优质的服务。   天美(控股)是一家从事设计、研发、生产和分销的科学仪器综合解决方案的供应商。 继2004年於新加坡SGX主板上市后,2011年12月21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国Froilabo公司、瑞士Precisa公司 和美国IXRF等多家海外知名生产企业,加强了公司产品的多样化。   更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • 专题推荐|低压透射电子显微镜LVEM在病毒学研究中的应用
    病毒作为一种病原体一直受到学术界的广泛关注。然而由于病毒通常尺寸较小,传统的光学显微镜往往难以满足其形态观测的需求,这使得高分辨率的透射电子显微镜成为了当前病毒学研究的一个重要手段(图1),可以用来研究病毒的结构和成分。目前使用的透射电子显微镜进行病毒颗粒的检测和识别仍面临着巨大的挑战。这是因为病毒的主要组成部分多为含碳的轻元素有机物,这类样品很容易被高能电子束穿过,造成其光学衬度较低,且由于共价键化合物的低稳定性使得其在传统电子显微镜的高加速电压 (一般为80-200 kV) 下非常不稳定,不适合直接进行观察。因此病毒的形态学观察一般采用负染色成像技术,需要在观测前对样品进行复杂的负染操作,占有大量的时间,且可能会掩盖掉一些病毒的形貌特征,造成使用透射电子显微镜观测病毒的门槛较高。图1. (A)80 kV 和 (B)5 kV加速电压下透射电子显微镜下观测到的SV40感染的小鼠胰腺切片(Microscopy Research and Technology, DOI:10.1002/jemt.20603)为了解决这一难题,低压透射电子显微镜(Low Voltage Electron Microscope, LVEM)应运而生。LVEM突破了传统透射电子显微镜的80 kV加速电压的低限,研究人员可在低压下观察轻质生物样品,无需染色,简化了样品制备流程;同时该设备可在保证高图像对比度的前提下,使用温和的加速电压进行病毒形态学的检测和识别,能够识别以往可能被污渍和负染的瑕疵所掩盖的病毒特征。Delong Instruments公司的LVEM 5&25是一类专门针对低电压设计研发出的透射电子显微镜。LVEM使用特殊设计的倒置式肖特基(Schottky)场发射电子枪,提供高亮度高相干性的电子束,这种低能电子束与样品的相互作用比传统透射电子显微镜中的高能电子要强得多,使得电子被轻质有机材料强烈散射,导致了特征的异常分化(Microscopy Research and Technology, DOI: 10.1002/jemt.22428)。在病毒学研究方面,该设备大放大倍数高于通常观测病毒所需要的大约50,000倍的放大率,且依然保持不错的分辨率(2 nm),可满足病毒形态和结构研究的需求。相比于高电压,5kV 的加速电压提供的电子束与样品的作用更强,对密度和原子序数有更高的灵敏度,对低至0.005 g/cm3的密度差别仍能得到很好的样品图像对比度,有效提高了轻元素样品的成像质量,适合针对病毒学的研究。需要指出的是,LVEM 25与LVEM 5建立在相同的平台之上,前者在一个稍高的加速电压下工作,在满足轻元素样品观测的要求下可进一步提高终的图像分辨率。图2. LVEM 5的结构示意图(A)和小鼠心脏超微结构成像 (B) 。(Microscopy Research and Technology, DOI:10.1002/jemt.22659)LVEM 5&25显微镜可用于检测腺病毒(图3A)、HIV(图3B)、轮状病毒(图3C)、球状病毒(图3F)、棒状病毒(图3 G-H)、星形病毒、杯状病毒、诺瓦克样病毒、疱疹病毒和乳头瘤病毒等。另外对于类病毒载体的研究,LVEM 5&25也是一项利器。它能够在不负染的情况下直接观测类病毒载体的形态,帮助研究者快速筛选载体,解决传统电镜制样难,机时紧张等问题(Journal of Nanobiotechnology, DOI: 10.1186/s12951-016-0241-6)。图3. (A-C) LVEM 5观察多种非负染的病毒样品 (D-E) LVEM 5&25 实物图 (F-H) LVEM 25观察多种负染后的病毒样品。 (图片来源于Delong Instruments官网)LVEM的高对比度成像技术匹配快速的时间-图像周期、高通量研究,可作为一种快速诊断方法,用于识别病毒感染源和辅助病理研究,是快速检测具有公共卫生重要性病原体的有力工具。LVEM 5&25 更是一台多种功能集成的电子显微镜,具有四种不同的成像模式——透射电镜(TEM)、扫描电镜(SEM)、扫描透射电镜(STEM)和电子衍射(ED),能够为病毒学研究工作者同时提供多种表征所需的成像模式,全面的对病毒样品的结构和成分进行分析(图4)。图4. 使用LVEM 5 对HIV膜蛋白结构同时进行(A)TEM和(B)ED分析。(Journal of Virology,DOI:10.1128/JVI.01526-19.)除了拥有高质量成像和多功能集成的特点外,LVEM 5&25的体积小 (无需专业实验室),维护费用低廉(无需冷却水和专用电源),在使用期间基本不会产生任何额外的费用,大大降低了研究所需的成本。另外它采用了真空自闭锁技术,换样仅需3分钟,降低了仪器操作难度,对广大的非专业用户变得更加友善。我们相信随着低压透射电镜的不断发展,LVEM 5&25将成为一个强有力的工具,使得病毒形态的观测变得越来越简单,更多以往被传统电镜所忽略的细节结构信息将被挖掘出来,大的提高研究人员对病毒结构和成分的认知,为人们的科研和生活服务。
  • 中国蛋白质3D高清照片还仰赖舶来的透射式电镜
    p strong   是什么卡了我们的脖子—— /strong /p p strong   我们的蛋白质3D高清照片仰赖舶来的透射式电镜 /strong /p p strong   亟待攻克的核心技术 /strong /p p   5月29日,清华大学生命科学院博士生张森森的蛋白样品9时准时在液氮环境下进入冷冻电镜。几天后,埃(10-10)级精度的蛋白质“高清3D彩照”将出炉。研究人员可以“直视”单个蛋白质的分子结构,并解出生命运转机理。 /p p   这期间,冷冻电镜中的电子枪将持续发射电子,每次看一个小单元。为了解释这个“小单元”,张森森为科技日报记者示意了一个“镊子尖”大小的小金片,“金片上约有200个左右的均匀小孔,每个小孔中再分150个小孔,电子束一次只‘看’其中一个小孔。”金片类似蛋白质的“载玻片”,与光学显微镜不同的是,载玻片透光,小金片要透电子,容许电子束透过样品时受到散射。散射信号被捕捉记录下来,计算后可呈现分子结构。 /p p   透射式电镜的生产能力是冷冻电镜制造能力的基础之一。“国内没有一家企业生产透射式电镜。”赛默飞公司技术支持陈宝庆说得不假思索,他毕业于北京大学地球物理专业,对行业非常了解,他介绍,“之前还有几个企业制造,比如原江南光学仪器厂现在就不造了。” /p p    strong 能做到单电子束控制的灯丝,只有进口 /strong /p p   “理论上说,只要施加足够强的电场,电子就会从材料中‘游’出来。”陈宝庆说。但“游”的状态与可以使用的电子状态相距甚远。 /p p   什么样的电子才能为蛋白质拍摄高清3D彩照呢?东南大学材料科学与工程学院万克树教授描述了理想的状态:速度完全一样的电子,从“源头”的一个点上、非常多地发射出来。 /p p   “这些要求是相互矛盾的。”万克树解释,电子从材料表面溢出,要发射电子多,面积就要大,但是面积大了就难以满足一致性要求。 /p p   如果把电子枪想象成一把枪,它必须以“狙击”的精度完成机枪的扫射,“子弹”的角度、速度完全一致。 /p p   “电子的能量要做到高度一致,虽还达不到激光的程度,但也必须是很窄的分布。”陈宝庆解释,电子“子弹”一致性是提高图像分辨率的前提。 /p p   为此,电子枪的核心构造其实是一根极细的“陀螺针”,形似陀螺,尖端却比针还细。电子从尖端出发,在真空的环境下,前去与大分子“相撞”,进而反映出分子构象。 /p p   “之前的技术路线是通过加热让电子枪发射电子,发射源(俗称“灯丝”)用钨丝或六硼化镧,需要2500℃左右,高温促使电子发射,但也使电子异常活跃、难以控制,因此热发射电子枪的电镜精度低。”万克树说。 /p p   “场发射是通过高压电场,把电子从‘灯丝’里拉出来,室温下可完成。”万克树说,“所用灯丝国内没有生产,全部依赖进口,每根上万美元左右。” /p p   他提到的常温场发射枪(肖特基电子枪)是将氧化锆沉积在单晶钨的晶体的特定面上。FEI公司后来在电子枪生产上又有了新的突破,将热和场结合起来,稳定性进一步提升。在清华大学冷冻电镜实验室的仪器介绍中可以看到,一台2013年购买、2015年到货的最新型号电镜在电子枪一栏标明“X-FEG”,有中文翻译为超稳定高亮度电子枪。“所用灯丝在材质上与之前的一致,工艺不同能够使亮度更强。”陈宝庆介绍。 /p p strong   上了邮票的科研成就,被中断 /strong /p p   场发射的另一个关键部分是牵拉出电子的外加电场,电场电压高达300千伏。“在这样的高压下保持电压稳定,才能‘拉’出稳定一致的电子,专业上称为‘单色性好’。”万克树说。 /p p   据题为《中国透射式电子显微镜发展的历程》的文章记载,1963年,我国就开始了高压100kV电子枪稳定因素探讨的实验,1965年完成样机,中国自主研制透射式电镜于1979年达到当时的国际先进水平,还专门为国产的电子显微镜发行过纪念邮票。 /p p   该领域的研发却由于种种原因一度中断。“直到几年前,中国也试图重启这方面的公司,也曾立项想要完成场发射透射电镜的自主研发。”陈宝庆回忆,曾经有相关的科研人员,辗转找到他询问,为什么FEI公司没有相关专利。 /p p   “他们想到的捷径之一是把生产厂商的专利拿来参考,但是其中很多生产工艺是秘方级别的,根本不会外传。”陈宝庆说。 /p p strong   从“看人影”到“辨雀斑”,中国研发没使上劲 /strong /p p   “如今,中国只有一家企业生产扫描电镜,透射电镜完全不生产了。”陈宝庆说,德国蔡司公司也停止了透射电镜的生产,目前世界上生产透射电镜的厂商只有3家,分别是日本电子、日立、FEI(2016年被赛默飞公司以42亿美元收购。) /p p   没有市场是设备巨头纷纷放弃透射电镜的原因。“透射电镜之前的清晰度,使得冷冻电镜在科学研发上基本没有实际作用。”陈宝庆说。可以理解为,以前只能看清楚个人影,现在却能辨认清楚脸上的雀斑。 /p p   除了电子枪的原理变化,冷冻电镜上其他的技术精进,例如三维重建算法的实现、样品制作机器人的研发成功等,使得冷冻电镜的分辨率大规模提升,成为生命科学研究的利器。 /p p   在冷冻电镜从“看人影”到“辨雀斑”的发展历程中,中国没有使上劲。在冷冻电镜实验室中,从耗材到配件都必须进口。“加样台10万元一个、小金片50元一个、外托150元一个……”张森森说,所有匹配冷冻电镜使用的工具都需要原装,根本不存在“山寨版”。零件坏了找不到人修理,只能等待零件邮寄到货后进行更换。对于中国的冷冻电镜使用者们来说,这样的体验可能还要持续不短的时间。 /p p /p
  • 赛默飞推出全新紧凑型场发射透射电镜Talos F200i
    p    strong 2017年10月19日,成都 /strong —— 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2017全国电子显微学学术年会举办期间展出全新高效灵活、更适合材料科学研究的Thermo Scientific sup TM /sup Talos sup TM /sup F200i场发射透射电子显微镜(S/TEM),并进行现场演示。这一产品于今年9月份最新面世,此次推出也是在中国市场的首次亮相。2017全国电子显微学学术年会是电子显微学及技术发展前沿、交流基础研究和应用研究新进展的高水平学术大会。此会议汇集了来自国内外数百名知名显微学领域的专家和学者。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/b9b0fb53-b4e7-4749-8f73-b34792abb063.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 2017全国电子显微学学术年会现场 /p p   赛默飞材料与结构分析电镜业务总经理及副总裁Trisha Rice、赛默飞材料与结构分析电镜业务亚太区副总裁荆亦任、赛默飞材料与结构分析中国区高级商务总监陈厅行等一同参加了此次盛会。“Thermo Scientific sup TM /sup Talos sup TM /sup F200i场发射透射电子显微镜是专门针对中国客户的需求进行设计,”赛默飞材料与结构分析电镜业务亚太区副总裁荆亦任指出,“兼具高度自动化的高性能系统,配置灵活、体积小巧,是多用户实验室中各类应用的理想之选。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/14c69a68-1454-40f0-a24c-eb6312b13256.jpg" title=" 2 显微学专家张泽院士与赛默飞工作人员亲切会面_副本.jpg" / /p p style=" text-align: center " 显微学专家张泽院士与赛默飞工作人员亲切会面 /p p   Thermo Scientific sup TM /sup Talos sup TM /sup F200i场发射透射电子显微镜(S/TEM)具备最高高压200kV的高性能,能够以定制的方式满足客户成像和化学分析的需求。该产品拥有先进的自动化功能,可确保较高的分析效率,并且能在不同的用户权限之间快速、轻松地进行切换。其直观的界面使用户可在各种实验室应用中进行高分辨成像和分析,除此之外,该系统较小的体积及简介的外观设计不但为后期的使用维护提供便利,也减少了对安装现场基础设施的需求。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/06ce6618-3a81-41e4-9f86-c2efaedfd134.jpg" title=" 3 Thermo ScientificTM TalosTM F200i场发射透射电子显微镜(STEM)_副本.jpg" / /p p style=" text-align: center " Thermo Scientific sup TM /sup Talos sup TM /sup F200i场发射透射电子显微镜(S/TEM) /p p   会议期间,赛默飞选用了单晶硅样品及钛酸锶样品向客户展示其性能。通常透射电子显微镜的实验室对环境条件的要求都比较高,事实证明,该电镜产品在会场这样的条件下也能获取优异的结果,参会代表纷纷对于其高性能的表现给出了高度的肯定及评价。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/5858f2c6-0ef6-4aff-a1c3-758396c6be86.jpg" title=" 4 赛默飞于大会期间现场演示Talos F200i性能_副本.jpg" / /p p style=" text-align: center " 赛默飞于大会期间现场演示Talos F200i性能 /p p   “我们希望中国的客户在赛默飞的助力下,获得更加丰富的有挑战性的研究成果,在世界材料科学领域的研究中,做出更加突出的贡献,”赛默飞材料与结构分析电镜业务副总裁Trisha Rice表示, “事实证明,近些年来,赛默飞的产品帮助我们的客户在高影响因子的期刊上发表的文章越来越多,更有一些成果已经应用到了日常生活中。我们相信在双方共同的努力和合作下,材料科学研究领域的明天会更好。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/66cf6d91-7d06-42fa-978a-bd1ffc6fb6ce.jpg" title=" 5 赛默飞材料与结构分析电镜业务副总裁Trisha Rice在大会上发表演讲_副本.jpg" / /p p style=" text-align: center " 赛默飞材料与结构分析电镜业务副总裁Trisha Rice在大会上发表演讲 /p p   赛默飞一直以来在全球范围内帮助更多科学家在创新探索的道路上取得突破。近日公布的2017年诺贝尔化学奖表彰了三位科学家在冷冻电镜(cryo-EM)技术领域的杰出贡献,三位科学家都使用了由赛默飞制造的仪器帮助他们完成研究。此次Thermo Scientific sup TM /sup Talos sup TM /sup F200i场发射透射电子显微镜(S/TEM)的盛装亮相,再一次显示了赛默飞通过冷冻电镜帮助更多科学家取得世界前瞻性研究成果的不断努力。 /p p    strong 关于赛默飞世尔科技 /strong /p p   赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额超过200亿美元,在全球拥有约65,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、加速药物上市进程、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们领先结合创新技术、便捷采购方案和全方位服务。 /p p    strong 赛默飞世尔科技中国 /strong /p p   赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数超过4000名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有6家工厂分别在上海、北京和苏州运营。我们在全国还设立了5个应用开发中心,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。 /p
  • 葛炳辉团队:STEM模式下基于扫描莫尔条纹快速测定样品厚度的方法
    ◆第一作者:南鹏飞通讯作者:葛炳辉教授通讯单位:安徽大学论文DOI:10.1016/j.micron.2022.103230近日,安徽大学电镜中心南鹏飞同学关于利用扫描摩尔条纹测定样品厚度的工作被Micron杂志接收。样品厚度是透射电镜(TEM)成像中的重要参数,主要用于图像衬度的解释以及性能和微观结构之间的关系的研究。当前,透射电镜中常用的样品测厚方法主要包括电子能量损失谱(EELS),会聚束电子衍射(CBED)和位置平均会聚束电子衍射 (PACBED)等技术。其中EELS是一种原位测厚技术,主要通过log-ratios方法或K-K求和法则来计算样品的相对厚度或绝对厚度。在准确测得非弹性平均自由程的情况下,EELS测厚的准确度可达± 10%。CBED测厚则主要借助模拟来实现,测厚准确度可达 ± 5%。PACBED是扫描透射模式(STEM)下的一种测厚方法,通过对多个位置的CBED花样取平均,最终获得的PACBED花样中只包含厚度、倾转和极化的影响,精确度优于± 10%。然而,实际使用时,EELS测厚需要昂贵的Gatan成像过滤系统(Gif),而CBED和PACBED测厚则需要复杂且耗时的模拟工作。本工作介绍了一种STEM模式下快速测定样品厚度的方法,主要通过调节focus借助系列离焦的扫描莫尔条纹(SMF)成像来判断。通过将样品倾转至正带轴或强的双束衍射条件,并且适当调整放大倍数和电子束扫描方向就可以在中等放大倍数范围观察到SMF像。通过SMF的形成条件可知,只有电子探针和样品发生相互作用时才能观察到SMF。再通过改变离焦量,就可以控制电子探针相对于样品的位置,从而实现SMF的出现和消失。因此,实际在改变离焦值时电子探针的位置变化 ∆f 就反映了样品厚度。不过,要更准确的获得样品厚度 T 还需要考虑电子探针在深度方向的尺寸 δz 以及样品表面总的非晶层厚度 A, 即 T=∆f-δz+A ,其中δz=1.77λ/α^2,α 为会聚半角,λ 为电子波长。进一步地,本工作还结合EELS测厚方法验证了SMF测厚方法的正确性。该工作强调了系列离焦SMF在快速测定样品厚度方面的应用,能够有效避免STEM模式下的电子束损伤和积碳问题,尤其适用于不耐电子束辐照的样品。赞助国家自然科学基金项目 (Nos. 11874394) 安徽省高校协同创新计划项目 (No. GXXT-2020-003)。论文链接https://doi.org/10.1016/j.micron.2022.103230
  • 透射电镜主流厂商大揭秘
    p   作者:汪玉玲 /p p   本文仅代表作者个人观点 /p p   如今的透射电子显微镜市场主流厂商包括日本电子,日立和FEI。除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。本文带你全面了解透射电镜厂商的前世今生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 1 你不知道的日本电子株式会社JEOL /strong /span /p p   首先介绍一下老大哥日本电子株式会社JEOL。 /p p   提起日本电子,大家应该都不陌生,目前在我国各大科研院所都不难看到JEOL电镜的影子。日本电子株式会社是一家世界顶级的科学仪器生产制造商。能在这么多的仪器制造商中鹤立鸡群室有原因的,日本电子有着非常丰富且高端的产品线,生产的都是技术含量非常高的科技产品,电子显微镜,核磁共振,质谱仪,X射线光电子能谱,俄歇电子能谱等。是世界上有且仅有的一家企业可以同时生产这些高端仪器产品的企业。 /p p    strong 透射电子显微镜 /strong /p p   日本电子生产透射电子显微镜的历史算得上是非常悠久,它的前身是1949年5月在东京成立的日本电子光学实验室有限公司,成立同年就推出了第一代透射电子显微镜—JEM-1透射电子显微镜,见下图。 /p center p style=" text-align:center" img style=" width: 500px height: 334px " title=" " alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/65d5174298474dea9d7f6baf29abeb8c.jpeg" height=" 334" hspace=" 0" border=" 0" vspace=" 0" width=" 500" / /p /center p style=" text-align: center " strong JEM-1透射电子显微镜 /strong /p p    strong 你知道吗? /strong /p p   其实,我们国家也在同时期开始了透射电镜的研发工作,算起来起步并不算晚,但是由于之后一些年的各种历史原因,不得不中断了。现在,日本已经是毫无疑问的电镜生产大国,而我们国家的电镜发展却只有个别在国家资助下的小规模研究(之后的文章会有专项介绍),这么重要的科研设备掌握在别人的手里,为长远考虑,国产电镜的发展必须跟上才行。 /p p   1961年该公司正式改名为日本电子株式会社(JEOL Ltd.),日本电子是在二战后开始透射电镜研发,并且是以电子显微镜起家的。六十余年的技术沉淀让它的电镜产品不断的发展壮大,逐渐得形成了它的品牌影响力,成为了全球市场市场上的领头羊。 /p p   2009年,日本电子成立六十周年庆,推出了当时世界上分辨率最高的商业化球差校正透射电镜JEM-ARM200F,透射模式分辨率达0.19nm,STEM-HAADF的分辨率可达0.078nm,这款产品大获成功,开启了球差校正的新时代。如下图, /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/1a4762c278d74239aa3a94f4b48213bc.jpeg" height=" 287" width=" 249" / /center p   第一台JEM- ARM200F安装在德州大学圣安东尼奥分校University of Texas at San Antonio,2010年1月安装结束,二月初就获得了惊人的实验结果。该仪器展示了JEOL实打实的超级稳定性和超高分辨率。2010年,西安交通大学也购入了中国首台该型号的电镜,也是中国大陆第一台STEM球差校正透射电镜。之后,上海交通大学,武汉大学,东北大学,中国科技大学,中科院大连化物所,中科院物理所,神华集团低碳清洁能源研究所等也陆续上马。目前,中国大陆已经有十几台该型号电镜,相信前方大批的高能科研成果也正在路上…… /p p   2014年,日本电子再次引领潮流,发布了终极分辨率的大杀器——新一代球差校正透射电镜JEM-ARM300F,也称为GRAND ARM,这是一款300kV原子分辨级透射电子显微镜,是JEM-ARM200F的升级版,采用了日本电子独自研发的十二级像差校正器,分布率达到 0.05nm,STEM-HAADF的分辨率可达0.063nm,日本电子再一次把商业化的透射电镜推向了一个新的极限,巩固了自己在电子显微镜领域的世界领先地位。 /p p    strong 日本电子的成功的原因 /strong /p p   1. 研发与制造技术的长期积累。一台JEM-ARM300F有三万多个零配件,最佳的电子显微镜表现能力要求每一个零件都能做到百分之百。 /p p   2. 销售和售后服务保障。日本电子有较为成熟的销售和售后服务渠道,可以保证高品质的维修配件的流通速度和高素质的产品服务工程师。 /p p   3. 电镜专业人才培养。日本电子虽然是一家仪器制造商,但是却在一直通过各种活动对青年科研人员提供资助,例如,风户研究基金会,早在1969年就成立了,目的就是鼓励和推广电子显微镜领域的学习和研究。 /p p   随着我国科技的逐步发展,中国的电镜市场已经越来越大,成为了全球第一大市场,但是中国所使用的透射电子显微镜却全部都是进口的,这种现象应该引起我们所有电镜小工匠们的深思。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 2 关于FEI的那些“小事儿” /strong /span /p p   接下来介绍JEOL在透射电镜领域最有力的竞争者——FEI。FEI是一家美国的高科技公司,是为全球纳米技术团体提供解决方案的创新者和领先供应商, “TOOLS FOR NANOTECH”,生产的产品主要面向半导体、数据存储、结构生物学、材料和工业领域。 /p p    strong FEI的透射电镜历史 /strong /p p   1971 /p p   FEI公司成立于1971年,仅从年份上上看,似乎它起步要比JEOL要晚很多,但是FEI生产透射电子显微镜的历史可不是从1971年开始的。要知道美国的FEI公司开始并不是做透射电子显微镜的,最初它只致力于提供高纯,单一取向晶体作为场发射材料。 /p p   1997 /p p   事情发生在1997年,香港回归了,这一年,除了这件大事还发生了一件小事:FEI和荷兰的飞利浦电子集团电子光学公司(PEO)宣布合并其全球业务,飞利浦电子集团成为了FEI的最大股东。由此FEI开始了电镜产业领袖之路。 /p p   1949 /p p   在透射电镜的商业化历史上,1949年有着重要的意义。飞利浦电子光学公司在这一年向世界推出了全球第一台商用透射电子显微镜 “EM100”,要知道JEOL的第一台JEM-1也是在1949年推出的。可以说,飞利浦电子光学公司一直是举世公认的电镜产业领袖之一。 /p p   2009 /p p   FEI公司最新发布第二代球差校正电镜Titan G2 60-300透射电镜,这是Titan系列电镜中一项革命性产品。FEI Titan系列产品是FEI的明星系列,自2005年推出,包括有Titan G2 60-300,Titan3 G2 60-300,Titan Krios和Titan ETEM (环境透射电镜)。该系列产品以其具有突破性的稳定优异的性能获得了商业上的巨大成功。 /p p   Titan G2 60-300它的STEM分辨率可达0.08nm,Titan3 G2 60-300可达0.07nm,它是世界上唯一能够同时实现亚埃分辨率及分析型机靴(S-TWIN)的透射电镜,而且是世界上唯一的300kV Cs球差校正透射电镜。 /p p   在我国,该系列的电镜普及率也是相当高的,清华大学,浙江大学,中科院金属所,重庆大学,西安交通大学,中南大学,东南大学,深圳大学,广西大学等科研院所及高校,都装备了该系列的球差校正透射电镜,随着国内科学技术的进一步发展,相信越来越多的镜子会在这片土地上生根发芽,开花结果。 /p p    strong 你知道吗? /strong /p p   美国总统奥巴马曾经在西海岸技术巡视时去Intel,在他们的TEM实验室里亲自经历了一把,他说:“我看到了一些原子。”从图片上就可以看到,他使用的就是正是FEI Titan系列的球差透射电镜。 /p p   2016:FEI出嫁了! /p p   与JEOL不同,FEI公司的发展历经多次的收购与合并,通过这样的强强联合,使自己的实力越来越强大。 /p p   1996年:收购美国ElectronScan公司及其“环境扫描(ESEM)”技术 收购位于捷克布尔诺的Delmi公司 /p p   1997年:FEI和飞利浦电子光学合并其全球业务 /p p   1999年:新的FEI购并美国Micrion公司 /p p   2002年:FEI收购Atomika (SIMS二次离子质谱仪) /p p   2003年:FEI收购Emispec (ESVision) /p p   2016年:FEI 正式出嫁。在2016年5月27日,赛默飞以交易最终金额为42亿美元的聘礼迎娶了电镜制造商FEI公司,这笔交易应该会在2017年年初完成,完成后,FEI将成为赛默飞旗下分析仪器业务中的一员。赛默飞是生命科学领域的领导者,FEI的电子分析技术的加入将与赛默飞的质谱技术结合。相信赛默飞也将利用公司的全球规模和商业化运作进一步推广FEI的产品。 /p p   未来的透射电子显微镜领域,可以预见FEI将在生物领域大放异彩,只是不知道那时候它家的产品该姓什么?赛默飞还是FEI?毕竟都是嫁出去的人了嘛!*(^_^)/* /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 3 无所不能的HITACHI——日立 /span /strong /p p   接下来主要来谈一下三家主要的透射电镜供应商的最后一家——日立HITACHI。如果说JEOL和FEI算是比较专一型的企业的话,那么Hitachi就是比较博爱了。 /p p   HITACHI /p p   日立是日本的一家超级大国企,可以说它本身就是一个完整的工业体系,涉及的产业从核电站,铁路,军工,到家电,医疗,物流,通信,金融以及各种黑科技(^_?)☆,可以说是无所不做。他的总员工数约32万人,在日本是继丰田汽车之后的第二大的企业。 /p p    strong 日立的历史 /strong /p p   日立的前身是久原矿业日立矿山附属的机械修理厂,1910日立制作所正式成立。在1920年,改组成名为日立制作所株式会社。同样,在之后的第一次世界大战及二次世界大战,给日立提供了很好的发展机会,生产各种军舰,坦克,发了战争财。到1944年,日立已经发展起来了,拥有了11家工厂。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/fa3c45af7ced427d93e998728a129f11.jpeg" height=" 300" width=" 444" / /center p style=" text-align: center " strong 日立树—日立集团的统一品牌形象 /strong /p p    strong 你知道吗? /strong /p p   日立树位于夏威夷瓦胡岛,树龄120年,属于雨树,日立每年支付40万美元用于维持该树的摄影资格。日立树含义有几种说法,一般认为是日立有像大树一样广阔的事业群,不过,现在也有人解读为日立把非营利业务放置在巨大的树荫下藏起来。 /p p    strong 日立高新技术 /strong /p p   如上所说,日立的产业和产品十分丰富,子公司也非常多。而日立的电子显微镜部门属于日立高新技术公司。 /p p   2001 /p p   日立高新于2001 年由日立制作所旗下的测量仪器集团、半导体制造设备集团及贸易集团Nissei Sangyo公司合并而成,日立制作所持有日立高新52%的股份。虽说“日立高新”只有十几年的历史,但是其实体则于1947年就已经存在了。现在的日立高新主要提供电子显微镜、全自动生化分析仪、通用分析仪器、半导体元器件检测设备等尖端技术产品,从近两年的市场表现来看,可以说日立高新还是相当成功的。 /p p   2012 /p p   从FEI的发展历史可以看到,并购是一个扩充核心业务、增强企业竞争力的重要策略。然而对于日本企业来说,并购并不多见。但是2012年日立高新的一个并购项目相当成功,2012年5月日立高新收购精工电子旗下全资子公司精工电子纳米科技,成立了日立高新技术科学。精工电子以光、电子线、X射线、热分析为核心技术,特别是它的聚焦离子束技术有很好的历史和评价。同年,日立高新就推出了实时三维结构分析聚焦离子束扫描电镜(FIB-SEM)新品NX9000。 /p p    strong 你知道吗? /strong /p p   日立高新科学仪器营业本部本部长Okada Tsutomu曾说过,尽管日立高新的分析产品有很多,其他仪器的销售台数比电镜多很多,但是销售额却远赶不上电镜业务!可以看出,电镜业务的利润有多大,但是没办法,我们做不出来嘛!!! /p p   日立透射电子显微镜 /p p   目前,日立高新在扫描电镜技术方面积累颇丰,成果也十分显著,但相比较来说,日立在透射电镜尤其是高端透射电镜技术方面却稍逊一筹。 /p p   2015:球差校正透射电镜 /p p   日立推出了一款球差校正透射电镜HF5000,虽然比其他两家企业稍晚一点,但是,这也标志着日立在电镜方面的水平和实力。这台球差校正电镜采用了日立高新经过考验而被认可的冷场发射电子枪技术,达到了亚埃级的空间分辨率(0.1 nm或更低)。另外,它的镜筒和样品台经过了重新的设计。该产品的推出使得日立高新形成了120kV、200kV、300kV全系列的透射电镜产品。 /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/f71329b25fb3443482c4b6a5adba9477.jpeg" height=" 465" width=" 574" / /center p   环境透射电镜 /p p   另一台比较成熟的商用电镜是日立原位环境透射电镜,可以通过特制样品台施加外场刺激,同时进行实时观察。三款环境透射平台分别为H-9500ETEM、HF- 3300ETEM/STEM/SEM,以及HF-3300S Cs-corrected ETEM / STEM / SEM。在我国,浙江大学、西安交通大学、北京化工大学都安装了该系列电镜。 /p p    /p center img alt=" " src=" http://5b0988e595225.cdn.sohucs.com/images/20180105/cd78ef2556b24502beb2733bb5af5d2a.jpeg" height=" 359" width=" 505" / /center p   有人说:中国工业想要比过日本要先比过日立!确实,作为一个有完整工业体系的超级大公司,确实有很多值得学习的地方,中国工业还有很长的路要走。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 4 光学“大咖”——卡尔 蔡司 /span /strong /p p   世界上能生产透射电子显微镜的厂家并不多,除了上述三家之外,德国的蔡司(Zeiss)公司也在电子光学仪器领域占有一席之地。 /p p   蔡司公司是一家老牌光学仪器公司,蔡司的历史相比于其他几家公司的历史都来得悠久。公司名称起源于创始人,德国光学家卡尔· 蔡司(Carl Zaiss),上图为蔡司商标的演变。最后一个大家一定很熟悉,在各种镜头,金相显微镜,扫描电镜上面你会经常见到。 /p p    strong 蔡司的历史 /strong /p p   1846年,卡尔· 蔡司创立了一家精密机械及光学仪器车间,自此开始了蔡司的创奇时代。蔡司凭借其在光学领域的卓越品质,成功的经营了一个世纪,到二战以后,由于政治原因,德国被迫分裂,蔡司公司也被迫一分为二,之后,东德的产品冠名为Carl Zeiss Jena,西德产品冠名为Carl Zeiss,但东、西蔡在设计上都秉承了蔡司的优质传统。正所谓分久必合,到1990年,两个公司又重新重组成一个公司,总部设在奥伯考亨,东西合璧一直到今天,蔡司公司仍然是光学领域的执牛耳者。 /p p    strong 你知道吗? /strong /p p   蔡司公司还是一个非知名的军工企业。二战中德国的狙击枪,最先进的主站坦克 “豹”2A6,德国214型潜艇,性能超凡,他们都装备了蔡司公司的光学设备。因此,在战争年代,各国把光学工业列为战略工业,制造光学玻璃的原材料石英矿成为了战略物资,光学玻璃产业在军事领域的意义不亚于航天技术。 /p p    strong 蔡司——光学领域 /strong /p p   在光学领域,蔡司是毫无疑问的独孤求败。一百多年来,蔡司光学显微镜在各行各业都展现了其强大的魅力。十九世纪末,Robert Koch博士利用蔡司显微镜发现杆菌是导致结核病的原因。1911年,挪威探险家首次踏上南极大陆,他当时用的就是蔡司的望远镜。可以说在医学,生理学,物理学,化学,军事,天文学等多个领域,都不难找到蔡司显微镜的影子。 /p p   strong  蔡司——电子光学领域 /strong /p p   蔡司公司在电子光学领域却并不像它在光学领域如此出色。虽然蔡司公司有很悠久的历史,但是其在电子光学领域要晚于其他几家制造商,蔡司电子光学的前身为LEO(里奥),在透射电镜领域有60多年的经验。蔡司的光学技术是有口皆碑的,它的电子束技术也并不差。在1949年,就制成了世界上第一台静电式透射电镜,1992年制成了第一台带有成像滤波器的透射电镜,2003年制成了第一台具有Loehler照明的200KV场发射透射电镜及第一台具有镜筒内校正Omega能量滤波器的场发射透射电镜。 /p p   目前,蔡司主要的一款透射电镜为LIBRA能量过滤式透射电子显微镜,(libra是天秤座的意思,不知道蔡司为什么以星座来命名他的产品,知道的可以留言给小编哦!)该电镜配备了独特的OMEGA二阶校正能量过滤器和Koehler库勒照明系统。该款电镜有两种配置:LIBRA 200 CS TEM以能量过滤型200KV LIBRA TEM为基础,做了物镜透镜的球差校正。通过使用校正器,可以采集分辨率0.7A的图像。 LIBRA 200 STEM具有为聚光镜配备的校正器,可以用于在扫描模式下对分辨率远远低于1A和极高分辨率下样品化学分析的成像,尤其是EELS。校正后聚光镜允许探针尺寸减小到1A,同时增大强度。此外,独特的单色仪把能量扩散减小到0.15eV。这对于材料科学的基础研究尤其有利(尤其是纳米颗粒的化学分析)。 /p p   蔡司的透射电镜普及率比另外几家较少,国外哈佛大学,德国马普研究所,国内的重庆大学等也装备了该系列蔡司透射电子显微镜。 /p p   透射电镜自发明之日起已经有八十多年的历史了,它的发明对人类的科技工作的贡献不容小觑,但是能成功的进行商业化生产的公司却不多,电镜生产之繁琐复杂可见一斑。除了上述四家公司之外,国内外还有许多企业在朝着这个方向努力,我们也期待电镜国产化的那一天。 /p
  • 玻璃行业中的透射与反射色彩质量测量—色差仪
    玻璃作为一种常见的材料,广泛应用于建筑、汽车、家具等领域。在玻璃行业中,透射和反射是两个重要的性质。透射涉及玻璃对可见光的透明程度和色彩表现,而反射关乎玻璃表面镀膜的效果。本文将介绍如何使用在线ERX55分光光度仪和ColorXRAG3色度分析仪来监控色彩质量和测量玻璃镀膜的反射率。透射是玻璃行业中最重要的光学性质之一,它决定了玻璃对可见光的透明程度和色彩表现。当光穿过玻璃时,会受到折射现象的影响。折射是光在从一种介质传播到另一种介质时改变方向的现象。这种折射现象使得玻璃能够将光有效地传播到玻璃的另一侧,使我们能够透过玻璃看到外面的世界。在玻璃行业中,透射率是一个重要的参数。透射率定义为通过玻璃的光强与入射光强的比值。透射率越高,玻璃对光的透明度就越好。而对于特定波长的光,其透过玻璃的能量与光谱分布有关,因此,不同类型的玻璃可能对不同波长的光具有不同的透射率。透射率的测量通常使用分光光度计来完成。在线ERX55分光光度仪是高精度的测量仪器,可以用于测量透明薄膜的色彩、可见光透射和雾度,持续监控色彩质量。通过持续监控透明薄膜的色彩质量,生产厂家可以确保产品的一致性和稳定性。反射是另一个在玻璃行业中需要关注的光学现象。反射率是一个指标,用于衡量光线在物体表面反射的程度。在玻璃制造过程中,常常会在玻璃表面进行涂层处理,这些涂层能够改变玻璃的反射性能。通过合理设计涂层,可以实现特定的反射率,使玻璃在特定波长范围内表现出所需的特殊光学效果,如防紫外线、隐私保护等。玻璃作为非散射性物体,在传统的直接照明测量设备中无法准确提供色彩数据。为解决这一问题,ColorXRAG3色度分析仪成为了一种重要工具。该设备具备宽波长范围(330nm到1,000nm)和高光学分辨率(1nm),可在实验室中安装在支架上,对放置在样品支架上的玻璃板进行测量。同时,它也可用于在线测量,安装在玻璃板上方的横梁用于测量低辐射玻璃,或安装在玻璃板下方用于测量遮阳镀膜。ColorXRAG3色度分析仪具有紧凑型设计,可从距离玻璃板10mm处捕获非散射性样品的光谱数据和色彩反射值,甚至能鉴定多银层镀膜。该仪器采用氙气闪光灯,同时采用+15°:-15°、+45°:-45°和+60°:-60°三种光学结构,每秒进行一次测量,以实现全方位的色彩数据获取。其中,±15°的测量值与传统实验室测量的积分球光学结构结果相同,而±45°和±60°的测量值则可以显示不同观察角度下的色彩变化。ColorXRAG3色度分析仪的应用为玻璃行业提供了一种高效、准确的色彩测量解决方案,使生产厂家能够更好地控制透射与反射性能,提高产品质量,并满足不同市场需求,推动玻璃行业的持续发展。透射和反射是玻璃行业中非常重要的光学现象。透射性能决定了玻璃的透明度和色彩表现,而反射率则与玻璃表面的涂层处理密切相关。使用在线ERX55分光光度仪和ColorXRAG3色度分析仪,可以对玻璃产品的透射性能和反射性能进行精确测量和监控,从而保证玻璃产品的质量和性能达到预期要求。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制