当前位置: 仪器信息网 > 行业主题 > >

粉末堆积密度

仪器信息网粉末堆积密度专题为您提供2024年最新粉末堆积密度价格报价、厂家品牌的相关信息, 包括粉末堆积密度参数、型号等,不管是国产,还是进口品牌的粉末堆积密度您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉末堆积密度相关的耗材配件、试剂标物,还有粉末堆积密度相关的最新资讯、资料,以及粉末堆积密度相关的解决方案。

粉末堆积密度相关的资讯

  • DiaPac公司选择康塔AUTOTAP堆密度分析仪
    DiaPac公司,一家位于休斯敦的碳化钨加工企业,他们已经开始转向使用康塔公司出品的Autotap堆密度分析仪来测量他们高密度粉末的堆积密度或振实密度。这些测量均是为了满足客户各种领域的材料耐磨应用,例如运用于油田钻井钻头、采矿工具和研磨设备的表面硬化等等。DiaPac的首席冶金专家指出振实密度的重要性是在于它从某方面反映了混合粉末的一些特质:“....颗粒大小分布及其堆积密度指标反映了金属复合材料在耐磨性和刚性之间的平衡。我们始终致力于在不牺牲材料刚性的前提下增强它的耐磨性,无论是耐磨性还是刚性,他们对颗粒的堆密度都是相当敏感的。”   在谈到康塔堆密度分析仪给该部门所带来的好处时,他继续说到:“与我们的其他堆密度分析仪器相比,据我所知,康塔的仪器一直都是我们行业的标准,(有20多年了吧?)最初促使我选择使用康塔堆密度分析仪是由于Autotap在振实过程中粉末是旋转的,而我们的共混物通常有非常细的“粘连”成份(团聚体),经常使粉末的堆密度值最大化。粘连的粉末具有很高的休止角,并且“攀”在量筒里形态也不是我们想要的,我们很清楚这会牺牲我们精确性。Autotap 在测定中让混合粉末旋转起来,避免了这些问题。”   在实际运用方面,DiaPac技术人员还注意到了它在振实密度实验操作上的优势:“与先前其它仪器相比,他们很快就注意到在使用康塔的仪器时开机迅速,放置和移开量筒操作简单。” 并且“不必敲击量筒侧壁以保持粉末床层水平,也不必进行任何套管机构操作,我们也几乎不会再打碎任何这些昂贵的经过认证的量筒。”   康塔公司Autotap堆密度分析仪遵循美国材料实验协会ASTM B527标准(金属粉末及其化合物振实密度标准测试方法)和其它国际准则,康塔堆密度分析仪有单样品管和双样品管两款仪器可供选择。   企业介绍:   DiaPac公司:专业提供各种超硬碳化物合金材料。这些材料与他们的丰富行业经验相结合给同领域的企业提供了多种耐磨的解决方案。DiaPac 在回收再利用方面也是行业的领军企业,他们从废旧的工具、矿泥、太空碎片中提取回收硬质碳化物合金,使得这些可再生材料得以加以利用,为客户的解决方案提供了有效的成本优势。DiaPac有限责任公司是一家通过ISO 9001:2008认证的公司。www.diapac.net/index.html   美国康塔仪器公司:成立于1968年,是世界领先的粉末和多孔材料性能表征分析仪器的设计专业制造商,尤其是在多站样品分析仪器和数据分析处理方法的应用方面具有世界领先水平。我们为ISO 9001:2008的行业标准提供最权威的数据测支持,同时也致力于提供高品质的仪器维护服务。康塔有50多个销售和技术服务办事处和代理机构遍布全球各地。康塔还将参加2010年1月在代托纳比奇举行的先进陶瓷与复合材料会议暨博览会。
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 浅析2020版药典新增的堆密度和振实密度测定法
    《中国药典》2020年版征求意见稿中,新增了粉末样品堆密度和振实密度测试的方法、装置和要求。本文中,小编将为小伙伴们带来有关堆密度和振实密度测试的内容。本法用于测定药物或辅料粉体在松散状态下的填充密度。松散状态是指将粉末样品在无压缩力的作用下倾入某一容器中形成的状态。 堆密度是粉体样品自然地充填规定容器时,单位体积粉体的质量,堆密度测定值受样品的制备、处理和贮藏的影响,即与处置过程相关。颗粒的排列不同可导致堆密度在一定范围内变化,即便是轻微的排列变化都可能影响堆密度的值。 堆密度可通过测量过筛后一定质量的粉末样品在量筒中的体积来确定,或使用专用的体积计进行测定,也可通过测定过筛后充满具有一定容积容器的粉末样品的质量来确定。下图为征求意见稿中的装置的示意图:下图为月旭科技du家代理的Copley堆密度测试仪,符合征求意见稿中对堆密度的测试要求。Copley堆密度测试仪和选配件信息如下:振实密度是指粉末在振实状态下的填充密度。振实状态是将容器中的粉末样品按某一特定频率下,向下振敲直到体积不再变化时粉体柱的状态。机械振动是通过上提量筒或量杯并使其在重力作用下自由下落一段固定的距离实现的。振实密度可通过测定固定质量样品的振实体积(第yi法和第二法)或测定样品在已知容积量器中振实后的质量(第三法)求得。下图为征求意见稿中的装置示意图:下图为月旭科技du家代理的Copley振实密度测试仪,符合征求意见稿中对振实密度的测试要求,作为常规测量粉末振实密度的可靠解决方案,Copley JVi测试仪是市场上唯yi一款提供药典指定的三种测试振实密度方法的系统。触摸屏操作,可直接计算压缩性指数和豪斯纳比率(计算方式符合征求意见稿)。
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • 使用密度仪联用和压汞法测量片剂的密度和孔隙率
    孔隙率在制药行业中的应用孔隙率会影响溶剂渗透片剂固体基质的难易程度,是片剂或颗粒剂产品重要的质量属性。溶剂的渗透速率会影响片剂的崩解和溶出过程,并进一步影响药物的生物利用度和临床疗效。通常,具有确定药物活性成分(API)含量的片剂,孔隙率更高,会更快地溶解,进而更快地释放API。哪些分析技术能够测量孔隙率?使用AccuPyc系列气体置换法密度仪和GeoPyc系列包裹密度分析仪分别测量片剂的骨架体积和包裹体积,结合质量可由此算得相应的密度值。同时,这两款仪器彼此都可根据另一台所提供的密度生成相应的孔隙率值。使用AutoPore系列全自动压汞仪测量片剂的孔道信息。压汞法分析技术是基于在精确控制的压力下将汞压入孔结构中的方法实现的。除孔隙度外,压汞法表征还可获得样品的众多特性,例如:孔径分布、总孔体积、中值孔径、堆积密度和骨架密度等。案例研究:两种方法确定孔隙率研究对象为阿司匹林片。骨架密度、包裹密度和孔隙率数据如下表。无论是气体置换或者压汞法,都能够进入片剂表面的孔隙,因此两种方法得到的骨架密度接近。由于GeoPyc包裹密度的测试中,包裹介质DryFlo的粒径远大于片剂的孔径,所以包裹密度值与AutoPore测得的值有差异。对于压汞法,即使没有施加压力,汞也能进入这些孔隙,因此包裹密度值较大。而包裹密度的差异,也得到了不同的孔隙率结果。总结使用不同的方法都能测得片的孔隙率,用于制剂的过程控制和质量控制。结合片的特性和研究的精度要求,即可选择AccuPyc和GeoPyc系列密度仪联合,也可以选择AutoPore压汞法分析,高效、快速地获得片剂的孔隙率。如您想了解更多关于 Micromeritics 密度测量解决方案的内容,可以观看我们的专题网络研讨会。扫描二维码即可观看。关于 Micromeritics品质、 专业、 可靠, 这就是 Micromeritics。Micromeritics 是提供表征颗粒、粉体和多孔材料的物理性能、化学活性和流动性的全球高性能设备生产商。我们能够提供一系列行业前沿的技术,包括比重密度法、吸附、动态化学吸附、压汞技术、粉末流变技术、催化剂活性检测和粒径测定。公司在美国、英国和西班牙均设立了研发和生产基地,并在美洲、欧洲和亚洲设有直销和服务业务。Micromeritics 的产品是全球具有创造力的企业、政府和学术机构旗下 10,000 多个实验室的优选仪器。我们拥有专业的科学家队伍和响应迅速的支持团队,他们能够将 Micromeritics 技术应用于各种要求严苛的应用中,助力客户取得成功。
  • 大昌华嘉为低碳清洁能源研究所引进Freeman粉末流动性测试仪
    大昌华嘉商业(中国)有限公司 DKSH 日期:2012年11月16日 Date: 11/16/2012 上海,16.11.2012 专注于发展亚洲市场拓展服务的大昌华嘉集团与Freeman Technology,继成功合作为华东理工大学提供中国第一台粉末流动性测试仪之后,再次为北京低碳清洁能源研究所(简称低碳所)引进世界领先的粉末流动性质测试仪器FT4。 煤粉的特性:(1)煤粉是由尺寸不同、形状不规则的颗粉所组成,一般煤粉颗粒直径范围为0&mdash 1000um,大多20&mdash 50um的颗粒;    (2)煤粉密度较小,新磨制的煤粉堆积密度过约为(0.45&mdash 0.5)吨/立方米,贮存一定时间后堆积密度为(0.8&mdash 0.9)吨/立方米; (3) 煤粉颗粒的流动性,由于煤粉很细,,单位质量的煤粉具有较大的比表面积,部分煤粉含水量较高,从而使其气体输送过程中产生不同的问题。 中国国内煤炭行业的大部分用户使用煤块,而大量的煤粉由于利用价值低,容易被客户抛弃造成浪费,如果把煤粉收集运输到一块,压成煤块,或者直接采用煤粉输送到煤制油或煤制气的设备中,可以大大提高煤粉的附加值,同时减少浪费。 煤粉从原料到后期加工或应用的气力输送研究对于实现能源高效利用、电厂低排放、低硫化应用具有重要意义。 由于国内的煤种多而杂,煤质差异很大,煤粉输送率、风速、风压等基本参数及其优化需要积累不同来源的煤粉的粉末性质。FT4能够提供全面的粉末流动性参数,如充气流动能(低应力下的煤粉内聚强度),透气性(煤粉充气后的空气溢出难易程度),压缩性(煤粉密度的变化)和剪切性质(煤粉在高应力下的内聚强度和颗粒间摩擦性,如料斗和螺杆输送),为使用煤粉的企业提供煤粉输送设备的工艺参数所需的数据。 关于北京低碳清洁能源研究所 北京低碳清洁能源研究所(简称低碳所)是神华集团有限责任公司出资组建的国家级研究机构,主要致力于发展新技术,改善煤炭利用效率,减少对环境的影响。 目前,低碳所正从事31项研究课题,并在低阶煤热解技术、费托合成催化剂、煤炭气化、直接液化残渣利用、煤制天然气转化、甲烷化催化剂等领域取得了重大进展。 低碳所已与清华大学、中科院等6所中国领先高校和研究所以及4家外国企业和实验室建立了合作关系,现已经提交PCT国际专利申请5项,向中国专利局申请发明专利14项,另外约有29项发明专利申请正处在技术交底的不同阶段。 关于Freeman Technology Freeman Technology 专精于粉末及其流动特性的先进表征与分析技术。该公司成立于1989年,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业获得ISO 9001:2008 认证,所有仪器都在其位于英国格洛斯特郡(Gloucestershire)的设计制造中心生产。研究解读粉末的行为是该企业的经营策略中心。 关于DKSH(大昌华嘉) 大昌华嘉是专注于亚洲地区的全球领先市场拓展服务集团。正如&rdquo 市场拓展服务&rdquo 一词所述,大昌华嘉致力于帮助其它公司和品牌拓展现有市场或新兴市场业务。 大昌华嘉在全球35个国家设有650个分支机构-其中630家分布于亚太地区,拥有24,000多名专业员工。因其销售额和员工人数为居瑞士前20大公司之列。2011年,大昌华嘉的年度净销售额(net sales)近73亿瑞士法郎。 科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中 国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们在中国设有多个销售,服务网点,旨在为客户提供全方位的产 品和服务。 2011年,在中国科学仪器行业目前最高级别的峰会&ldquo 2011中国科学仪器发展年会(ACCSI 2011) &rdquo 上,大昌华嘉(DKSH)喜获&ldquo 最具影响力经销商&rdquo 奖。 更多信息,请联系: 中国上海徐汇区虹梅路1801号凯科国际大厦2208室,200233 电话 +86 400 821 0778 传真 +86 21 3367 8466
  • 福州大学通过代理商与汇美科签订1台LABULK 0335振实密度仪(堆密度仪)采购合同
    福州大学通过代理商与汇美科签订1台LABULK 0335振实密度仪(堆密度仪)采购合同振实密度仪产品简介LABULK 0335振实密度仪是用来测量粉体振实密度(堆密度)的仪器。该仪器由触屏操作面板、振动组件、电机、打印机、电子天平及量筒组成。根据国际及国内的标准研发的LABULK 0335振实密度仪按照设定好的转速及振实高度进行工作,使振动组件上面安放的盛装干粉样品量筒上下振动,从而测量出该粉体的振实密度。该仪器可以随意设定测量参数,并可以用户名登录、自动测量,数据库存储及查询、自动打印,除振实密度外,还可以自动测出粉体的流动性等指数。广泛用于金属、医药、食品、塑料、矿物等领域。仪器生产厂家与供应商为丹东汇美科仪器有限公司。型号为LABULK0335的振实密度仪采用国际先进的振实密度测试技术设计制造,仪器的主要参数性能超过外国进口设备,而且该仪器价格合理,生产商汇美科已经成为实验室振实密度分析及仪器采购的SHOU选品牌。汇美科LABULK 0335智能振实密度仪完全符合GB/T 5162金属粉末振实密度的测定(ISO 3953) GB/T 21354粉末产品振实密度测定通用方法(ISO 3953) GB/T 23652塑料氯乙烯均聚和共聚树脂振实表观密度的测定(ISO 1068)的要求。同时还符合ASTM B527、D4164、D4781、IDF 134、ISO 787-11、3953、8460、8967、9161、JIS K5101-12-2、Z 2512、GB/T5211.4、MPIF 46、USPPart II、BSIB527、GB/T 21354、5162、14853、GB/T5162-2006/ISO3953:1993、GB/T5162-2006/ISO3953:1993中的各项指标技术参数测量特性:振实密度及流动性等装样量:5-250 mL(用户可以随意设定)计时范围:0-99999秒(用户可以随意设定)计数范围:0-99999次(用户可以随意设定)振动高度:3或14 mm振动频率:250或300转/分(用户可以随意设定)仪器尺寸:33x31x18cm(量筒高度未计)电压:220V/50Hz重量:16公斤产品特点新一代智能触屏,通过7英寸LCD显示屏精确控制操作。主机与配件通讯自检功能,让操作者一目了然。测量模式二选一,振实时间或振动次数随意设置测量过程中实时显示操作状态。通过RS-232与电子称相连,实时显示电子称数值。轻轻一触,详细的打印报告呈现眼前应用领域汽CHE与航空航天生物及药品研发能源及环境食品矿物与金属塑料及聚合物化学品等所有粉末或以颗粒状态存在的物质福州大学是国家“双一流”建设高校、国家“211工程”重点建设大学、福建省人民政府与国家教育部共建高校、福建省人民政府与国家国防科技工业局共建高校。学校创建于1958年,现已发展成为一所以工为主、理工结合,理、工、经、管、文、法、艺等多学科协调发展的重点大学。建校以来,一代代福大人秉承“明德至诚,博学远志”校训,践行以张孤梅同志为代表的艰苦奋斗的创业精神、以卢嘉锡先生为代表的严谨求实的治学精神、以魏可镁院士为代表的勇于拼搏的奉献精神等“三种精神”,积累了丰富的办学经验,形成了鲜明的办学特色,已为国家培养了全日制毕业生25余万人。
  • 大昌华嘉将于北京举办粉末流动性应用研讨会
    大昌华嘉公司将于于2012年5月10日在北京化工大学生命科学与技术学院举办的&ldquo 粉末流动性应用研讨会&rdquo 。(地址:科技大楼302会议室) 我们知道,能够预测粉末在特定生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主管评估,粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确的测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末的行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛的应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括: 英国Freeman Technology的多功能粉末流动性测试仪(FT4) 美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪 日本拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪, 多组分竞争吸附 德国克吕士(KRUSS)的接触角,表面张力分析仪 英国Copley的振实密度计,松密度计 大昌华嘉商业(中国)有限公司 市场部 2012-4-5 会议日程: 08:45 &ndash 09:00 报到 09:00 &ndash 09:15 大昌华嘉商业(中国)有限公司 致辞樊润 产品经理 09:15 &ndash 10:45 粉末流动性质及行为特点 Tim Freeman, Managing Director, Dr. Fu XiaoWei, Freeman Technology 英-中同步翻译 10:45 &ndash 10:55 茶歇 10:55 &ndash 12:00 粉末流动性质的具体应用, Dr. Fu XiaoWei, Materials Scientist 12:00 &ndash 13:30 午餐 (西边) 13:30 &ndash 15:00 仪器展示和样品测试(用户可以带样品) Dr. Fu 回 执 姓 名 单 位 通讯地址 电 话 手 机 邮 编 E-mail 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:张媛 樊润 王卫华 电话:010-65613988-129,13901255059,13810747749 ;传真:010-65610278 电子邮箱:helen.zhang@dksh.com, rain.fan@dksh.com,eric.wang@dksh.com
  • 关注有礼:康塔仪器粉末冶金陶瓷展与您相约
    2016年4月27-29日,美国康塔仪器公司将携其全自动比表面积及孔径分析仪NOVAtouch和图像法粒度粒形分析仪、真密度仪等产品亮相“第九届上海国际粉末冶金、硬质合金与先进陶瓷展览会”。欢迎大家莅临我们展位,共同探讨粉末冶金、陶瓷粉末表面改性处理以及多孔陶瓷微观结构表征分析等应用。展位号:A215,凡关注“康塔仪器”微信公众号的观众,可现场领取精美礼品一份。 表征多孔结构的主要参数是:孔隙度、平均孔径、最大孔径、孔径分布、孔形和比表面,这恰是全自动比表面和孔径分析仪的主要功能。NOVAtouch系列全自动比表面积及孔径分析仪作为康塔仪器专利产品,是高质量高性能气体吸附分析系统的代表,共有8个型号,采用彩色触摸屏,完全自动化、操作简单,因为可以不使用氦气,运行成本低;一次可以分析多个样品,因而测量效率高,可充分满足科研或质量控制实验室的需要。 除材质外,材料的多孔结构参数对材料的力学性能和各种使用性能有决定性的影响。由于孔隙是由粉末颗粒堆积、压紧、烧结形成的;因此,原料粉末的物理和化学性能,尤其是粉末颗粒的大小、分布和形状,是决定多孔结构乃至最终使用性能的主要因素。多孔结构参数和某些使用性能(如渗透率等)可以用压汞法等来测定,上图为美国康塔仪器公司的全自动压汞仪,可以同时测定两个样品。 烧结多孔材料的力学性能不仅随孔隙度、孔径的增大而下降,还对孔形非常敏感。孔隙率不变时,孔径小的材料透过性小,但因颗粒间接触点多,故强度大。过滤精度即阻截能力是指透过多孔体的流体中的最大粒子尺寸,一般与最大孔径值有关。孔径分布是多孔结构均匀性的判据。对于过滤材料要求在有足够强度的前提下,尽可能增大透过性与过滤精度的比值。根据这些原理,发展出用分级的球形粉末为原料,制成均匀的多孔结构,用粉末轧制法制造多孔的薄带和焊接薄壁管,发展出粗孔层与细孔层复合的双层多孔材料。康塔Porometer 3G孔径分析仪代表了先进的气体渗透法孔径分析技术:是基于电脑的强大软件控制,拥有卓越性能的紧凑型台式分析测量仪。它提供四种型号,适用于不同的压力(即孔径)和流速范围,以实现材料特性和仪器性能(灵敏度、准确度、再现性)的极佳匹配。精确测定施加于样品上的压力对孔隙分布分析至关重要,而这正是Porometer 3G孔径分析仪的优势所在。 多孔材料的孔径、强度等性能在很大程度上取决于所选用粉末的平均粒度、粒度分布、颗粒形状等;为了制出预定性能的材料,通常要对粉末进行预处理,如退火、粒度分级、球化和球选以及加入各种添加剂(造孔剂、润滑剂、增塑剂)等。粒度粒形分析仪,则可以对这个过程进行监控把关。康塔仪器所提供的欧奇奥图像法粒度粒形分析仪500NANOXY,干法湿法两用,具备颗粒计数功能,可提供50个以上的粒径/形貌分析参数,无疑是满足此类应用的优选产品。
  • 使用粉体流变技术研究粉末固结的情况
    粉层发生固结的原因很多,例如运输或加工过程中的固结多数由于振动造成,此时粉体受到法向和侧向的应力。一般使用自动振实仪进行模拟,振动敲击量筒中的粉体,致使颗粒的堆积状态重排。存储过程中也会发生固结,粉体主要受到与自身重量相关的正应力。可以使用透气压头对粉体材料直接施压,模拟正应力作用引发固结来实现测试。通常使用豪斯纳比率比较堆密度和振实密度,评价粉体的流动性,计算方法如下:豪斯纳比率=振实密度/堆密度粉体流动性的等级分类如下:流动性豪斯纳比率极好1.10-1.11好1.12-1.18一般1.19-1.25尚可1.26-1.34差1.35-1.45非常差1.46-1.59不流动1.6FT4粉体流变仪™ 粉体流动性测试仪FT4粉体流变仪™ 作为通用粉体测试仪,提供自动、可靠、全面的粉体性质表征。该信息可与加工经验进行关联,提高生产效率并有助于质量控制。FT4专注于测量粉体的动态流动特性,还可提供剪切盒测试,具有密度、可压性和透气性等整体特性的测试能力,全面表征与工艺相关的粉体性能。动态测试采用独特的测量技术来确定粉体的流动阻力。特殊形状的桨叶沿着既定的路径穿越精确体积的粉体。当桨叶轴向移动和旋转时,作用于其的阻力和扭矩,组合产生总流动能值[1]。实验方法评估多个行业中使用的十种粉体,采用两种方法评估不同固结方法的影响。方法1基于粉体振实,模拟运输过程。方法2直接压缩粉体,模拟长期储存。每次测试前进行预处理,确保样品处于均质、松散的堆积状态。值得注意的是,标准的豪斯纳比率测试中,测量堆密度时不需要预处理,因此重复性容易受到操作人员的影响。方法1:进行两项测试,第一步使用螺旋桨叶测量基本流动能(BFE),如上所述。测试同时提供了粉体松散状态的密度,即预处理松装密度(CBD)。第二步使用Copley振实仪振动粉体50次,采用与BFE相同的方法测量固结能。测试还提供固结粉体的密度(BDTap50)。方法2:使用透气压头施加15kPa的正应力,并且测量体积变化百分比。所有测试均重复3次,固结指数的计算公式如下:固结指数=固结能/基本流动分别选择CBD和BDTap50作为堆密度和振实密度来计算豪斯纳比率。使用四分位距(IQR)量化数据的离散情况。IQR表示数据的中位(50%)离散。较低的IQR值说明轻微离散,样本之间的差异有限。为了确保具有一定的代表性,计算IQR前需要将数据标准化。方法1:固结指数和豪斯纳比率比较10个不同的样品,固结指数(IQR=1.0)相比豪斯纳比率(IQR=0.1)的变化更大。这说明使用豪斯纳比率来比较不同类型的材料,缺乏敏感性。根据豪斯纳比率,滑石、乳糖和面粉三种样品的流动性“一般”,玉米淀粉、微晶纤维素和氧化铝三种样品的流动性“好”,余下四种样品(水泥、马铃薯淀粉、洗衣粉1和2)的流动性“极好”。比较固结指数,乳糖、面粉、玉米淀粉和微晶纤维素四种样品对于振动或敲击都非常敏感,固结指数2。通常,比较相同固结方法的不同指标,都能达到预期的趋势,比如乳糖的豪斯纳比最高,固结指数也最大。然而也有例外,滑石的豪斯纳比相对较高,固结指数却较低。所研究的材料中,密度增量无一超过25%,然而某些样品的流动能增量却大于200%。对于乳糖等材料,堆积状态的变化使得颗粒间相互作用增加,因此颗粒形貌将主导流动行为。仅仅密度的变化不足以反应特定过程中固结材料的流动性能。方法2:固结方法的差异比较不同的固结方法,固结指数(振实)和压缩百分比(直压)的排序不同。例如滑石对直压更敏感,代表长期储存时可能发生问题,然而乳糖对振实最敏感,模拟了运输或加工过程中的振动。这些不同的响应可能是由于颗粒性能和堆积结构的变化:微细、粘性的粉体可能团聚,夹带更多的空气,因此对压缩更敏感。粗糙、不规则的颗粒能够有效堆积,因此不会受到明显的压缩,但当颗粒重排时,其形貌则抑制了流动性。也突出了使用与加工过程和暴露条件相关的方法来表征样品的必要性。结论粉体流动性不是材料的固有属性,而是粉体在特定设备中以其所需要的方式流动的能力。成功的加工需要粉体与过程的完美匹配,相同的粉体在一个加工过程中表现良好,而在另一个过程中却不佳的情况并不罕见。多元特性表征为理解粉体的行为变化提供了必要的基础,能够识别并量化任何单位操作中与加工性能最相关的粉体特性。更多信息欢迎联系应用团队。[1] Freeman R., Measuring the flow properties of consolidated, conditioned and aerated powders – A comparative study using a powder rheometer and a rotational shear cell. Powder Technology, 25-33, 174, 1-2, 2007
  • NIR-II半导体聚合物点:链堆积调节和深部组织中的高对比度血管成像
    研究内容:近红外二区(NIR-II)窗口的荧光成像在研究血管结构和血管生成方面引起了人们的极大兴趣,为早期疾病的精确诊断提供了有价值的信息。然而,由于荧光团的强光子散射和低荧光亮度,对深层组织中的小血管成像仍然具有挑战性。本文描述了作者在荧光探针设计和图像算法开发方面的共同努力。首先,使用聚合物共混策略来调节大型刚性NIR-II半导体聚合物的链堆积行为,以产生紧凑明亮的聚合物点(Pdots),这是小血管体内荧光成像的先决条件。进一步开发了一种稳健的Hessian矩阵方法来增强血管结构的图像对比度,特别是小血管和弱荧光血管。与原始图像相比,在全身小鼠成像中获得的增强的血管图像在信噪比(SBR)方面表现出超过一个数量级的改善。利用明亮的Pdots和Hessian矩阵方法,作者最终进行了颅骨NIR-II荧光成像,并在携带脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑血管系统。Pdots探针开发和成像算法增强的研究为深层组织的NIR-II荧光血管成像提供了一种很有前景的方法。图1.(a)NIR-II半导体聚合物的分子结构。(b)由纯NIR-II半导体聚合物制备的聚集体或线状聚合物纳米结构的TEM图像。(c)通过将短刚性半导体聚合物与NIR-II半导体聚合物共混得到小球形Pdots的TEM图像。首先,作者研究了由两组氟取代的半导体聚合物制备的NIR-II Pdots的大小和形态,单纯的NIR-II聚合物纳米颗粒是通过再沉淀法制备的,透射电子显微镜(TEM)观察纳米粒子呈现大尺寸和线状形态。通过混合NIR-II聚合物和CN-PPV获得的Pdots的大小和形态发生了显著变化。从TEM图像可以看出,所有六种类型的混合Pdots均表现出小尺寸和球形形态,与纯CN-PPVPdots相似。CN- PPV聚合物在Pdots形成过程中具有协同效应,迫使大的刚性聚合物主链折叠并扭曲NIR-II聚合物的链堆积,从而形成小尺寸的球形形态。这表明混合具有小共轭长度的传统半导体聚合物是制备小尺寸球形NIR-II Pdots的可靠策略。图2. m-PBTQ4F Pdots与不同比例的(a)PSMA聚合物、(b) PS-PEG-COOH聚合物和(c) CN-PPV聚合物混合的TEM图像。实验证实,只有共轭聚合物,才能有效调节NIR-II半导体聚合物的链堆积行为,产生小球形的Pdots。作者研究了不同质量分数的NIR-II聚合物m-PBTQ4F分别与PSMA、PS-PEG-COOH和CN-PPV共混制得的纳米粒子的形态变化。对于PSMA和PS-PEG-COOH,所得到的大多数纳米颗粒都呈短丝状形态。虽然通过共混(1:1比例)可以减小粒子的尺寸,但粒子的尺寸分布很大,在透射电子显微镜中仍观察到部分椭圆形的纳米粒子。相反,当m-PBTQ4F与CN-PPV混合时,随着CN-PPV分数的增加,观察到了向单分散球形Pdots的明显形态演变。这些结果表明,共混刚性共轭聚合物可以有效调节NIR-II半导体聚合物的链堆积,得到致密的球形Pdots,而柔性两亲聚合物没有类似的效果。图3. (a)聚乙二醇化CN-PPV Pdots、m-PBTQ4F Pdots和 (b) 聚乙二醇化m-PBTQ4F/CN-PPV混合Pdots的吸收和发射光谱。(c)聚乙二醇化m-PBTQ4F/CN-PPV Pdots的流体动力学直径和TEM图像。(d)在808 nm连续辐射下ICG和Pdots在相同质量浓度的水中的光稳定性。为了使Pdots具有更长的血液循环时间,将m-PBTQ4F和CN-PPV聚合物组成的小尺寸Pdots进一步用两亲性PS-PEG-COOH官能化。观察三种类型Pdots的吸收和发射光谱,发现混合Pdots的吸收光谱与纯m-PBTQ4F和CN-PPV Pdots的吸收光谱一致。此外,混合的Pdots在可见光和NIR-II区域显示出双发射峰。动态光散射(DLS)测量和TEM结果显示,混合的Pdots呈球形,流体动力学直径约为20 nm。以临床批准的染料ICG为对照,对Pdots的光稳定性进行了表征,在808 nm激光持续照射2 h下,Pdots的荧光保持接近原始强度的88%,而ICG在10 min内完全光漂白,表明Pdots具有优异的光稳定性。与不同浓度的Pdots孵育24小时后的细胞存活率测定显示,Pdots的细胞毒性最小,静态溶血试验结果显示,Pdots的溶血活性可忽略不计。此外,在注射Pdots的小鼠的主要器官的苏木精和伊红(H&E)染色图像中未观察到明显异常。总之,这些结果表明聚乙二醇化m-PBTQ4F/CN-PPV Pdots是具有高亮度、光稳定性和生物相容性的小尺寸探针,有望用于体内成像应用。图4. (a)用于血管图像分割的Hessian矩阵方法示意图。(b)俯卧位采集的小鼠NIR-II荧光图像与(c)横截面强度分布。(d)仰卧位采集的小鼠NIR-II荧光图像与(e)横截面强度分布。首先进行预处理以抑制图像中的背景信号并增强血管的几何特征。进一步估计一系列的尺度因子,构造了平滑的高斯核,然后与图像进行卷积,得到Hessian矩阵的元素。然后,考虑管状结构的具体情况,推导出Hessian矩阵的特征值,最终得到血管增强图像。作者通过使用Pdots探针和Hessian矩阵方法展示了活小鼠的高对比度全身血管成像。。在静脉注射Pdots探针的小鼠的NIR-II荧光图像中,虽然注射的Pdots属于最亮的荧光团,但原始图像中几乎无法将荧光信号较弱的小血管与周围背景区分开,经Hessian矩阵法处理后,原始图像中的许多小直径血管和模糊血管均得到明显增强。从仰卧位的同一只小鼠的原始图像和增强图像中,血管结构明显增强,而来自肝脏的信号受到抑制,因为该方法只能提取具有管状结构的目标。图像处理后两条小血管的SBR较原图像增强了约13倍,说明Hessian矩阵算法对于提高全身荧光血管成像中弱小荧光血管的SBR有很强的效果。图5. 颅骨和头皮完整的小鼠的脑脉管系统的体内NIR-II荧光图像。(a)野生型C57BL/6小鼠和ND2:SmoA1小鼠的脑脉管系统NIR-II荧光图像以及(b)放大图像。(c)使用血管分割和量化算法,对野生型和荷瘤小鼠的脑血管系统中的血管长度和血管分支进行定量比较。接下来,作者使用NIR-II Pdots和Hessian矩阵法探索了小鼠脑深部组织血管成像。对正常小鼠和携带脑肿瘤的转基因ND2:SmoA1小鼠进行了头皮和颅骨脑部成像。与野生型动物相比,由于肿瘤的发展,ND2:SmoA1小鼠显示出更扭曲和紊乱的脑脉管系统,从原始荧光图像中很难识别横窦和小直径血管的轮廓,经Hessian矩阵法图像处理后,原始图像中多条小血管明显增强,横窦结构清晰。为了评估肿瘤生长中的血管形态,还定量分析了血管长度和血管分支,这些在原始图像中是无法获得的,因为它们的图像对比度低。从增强图像中提取的血管长度和血管分支统计分析表明,转基因脑肿瘤小鼠的这两个参数均显著高于野生型小鼠。血管形态的定量评估为研究肿瘤血管生成和诊断肿瘤恶性提供了一种有效方法。图6. 切除肝脏中血管的离体成像。(a)注射NIR-II Pdots期间肝脏中血管树的原始和增强图像以及(b)放大图像。(c)切除肝脏的照片。(d)从Pdots注射整个过程的NIR-II图像中获得的血管长度和(e)血管分支。(f)沿(b)中白色虚线标记的位置强度分布。接下来,进一步证明了使用NIR-II Pdots和Hessian矩阵方法在体外可视化大鼠肝脏血管结构的可行性。由于肝组织的强散射和吸收以及肝血管的复杂结构,肝血管成像是一项复杂的任务。原始图像在高度混浊的肝组织中显示出非常弱的荧光信号,而Hessian-matrix增强图像显示出高得多的SBR,肝血管成像中SBR的20倍以上增强。这些结果验证了Hessian矩阵用于血管成像的有效性,并为研究肝脏疾病中血管结构的发展提供了工具。图7. (a)颅骨完整的SD大鼠的脑脉管系统的体内NIR-II荧光图像和Hessian基质增强图像与(b)横截面强度分布。(c)大鼠切除的脑组织的亮场和荧光图像。(d) H&E染色图像。(e)健康大鼠和荷瘤大鼠脑切片荧光图像。最后,作者探索了大鼠模型中原位成胶质细胞瘤的颅骨内脑血管成像。由于颅骨更厚且光子散射更强,因此将大鼠脑可视化比将小鼠脑可视化更具挑战性。图像经Hessian矩阵法处理后,原始图像中的小直径血管明显增强,脑血管结构更加清晰可见且增强图像中的SBR有明显改善,与小鼠脑和肝血管成像结果一致。此外,进行离体NIR-II荧光成像,在来自不同组的切除的脑器官的亮场和荧光图像中,模型组肿瘤部位可见亮荧光,而对照组和假组未检测到明显信号。该结果表明,由于渗透性和滞留性增强(EPR)效应,Pdots在脑肿瘤中有效蓄积。对照组和荷瘤组脑切片的H&E染色图像,证实了脑中肿瘤的发展。除了链式堆积调制时,CN-PPV聚合物的混合也赋予Pdots橙色发射,从而能够通过常规共焦成像对组织切片进行显微镜检查,脑切片的共焦荧光图像表明Pdots在脑肿瘤中明显积聚。总之,这些结果证明了使用NIR-II荧光Pdots和Hessian矩阵法进行的大鼠脑高对比度颅骨血管成像。总结:作者设计了荧光Pdots并且开发了一种图像算法,用于小动物的高对比度血管成像。作者提出了一种聚合物共混策略,该策略可以有效地调节大的刚性NIR-II半导体聚合物的链堆积行为,产生用于小血管体内荧光成像的致密明亮的Pdots。此外,作者开发了一种有效的Hessian矩阵方法来增强血管结构的图像对比度,特别是小的和弱荧光的血管。在全身小鼠成像中,与原始图像相比,增强的血管图像在SBR中表现出超过一个数量级的改善。进一步证明了使用NIR-II Pdots和Hessian矩阵法离体可视化大鼠肝脏血管结构的可行性。原始图像显示高度混浊的肝组织的血管网络非常模糊,而Hessian矩阵图像在肝血管成像中显示SBR增强20倍以上。利用明亮的Pdots和Hessian矩阵法,最终进行了颅骨内荧光成像,并在荷脑肿瘤的小鼠和大鼠模型中获得了高对比度的脑脉管系统。本研究将成像算法与NIR-II荧光Pdots相结合,显示出其在体内促进肿瘤血管生成及其他微循环相关疾病定量成像与研究的潜力。参考文献Chen, D. Qi, W. Liu, Y. Yang, Y. Shi, T. Wang, Y. Fang, X. Wang, Y. Xi, L. Wu, C., Near-Infrared II Semiconducting Polymer Dots: Chain Packing Modulation and High-Contrast Vascular Imaging in Deep Tissues. ACS Nano 2023, 17 (17), 17082-17094.⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:艾中凯(博士)132 6299 1861⭐ ️ ⭐ ️ ⭐ ️ 恒光智影 上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,上海市“科技创新行动计划”科学仪器领域立项单位。 恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。 与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。 可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:ai@atmsii.com电话:132 6299 1861 (同微信)
  • 大昌华嘉成功举办粉末流动性应用研讨会
    大昌华嘉商业(中国)有限公司于近期在上海、北京两地成功举办了&ldquo 粉末流动性应用研讨会&rdquo 。 来自英国Freeman Technology公司的应用专家傅晓伟博士在研讨会现场为用户讲解了粉末流动性质及行为特点和粉末流动性质的具体应用,并演示了具体的仪器操作。大昌华嘉公司仪器部销售经理严秀英女士为研讨会致辞并简要介绍了粉末颗粒度的大小及形状分析的方法。本次讲座得到了行业内众多专家的一致认可,现场讨论交流热烈。 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。
  • 大昌华嘉将于上海张江药谷举办粉末流动性应用研讨会
    大昌华嘉公司将于2012年5月8日在上海药谷举办&ldquo 粉末流动性应用研讨会&rdquo 。 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 美国麦奇克有限公司(Microtrac Inc.)是世界上最著名的激光应用技术研究和制造厂商,其先进的激光粒度分析仪已广泛应用于水泥,磨料,冶金,制药,石油,石化,陶瓷,军工等领域,并成为众多行业指定的质量检测和控制的分析仪器。 大昌华嘉商业(中国)有限公司 市场部 2012-3-29 会议日程: 时 间:2012年5月8日(周二)上午9点-下午17点 地 点:张江药谷生物医药孵化基地(上海浦东张江高科技园区蔡伦路720弄1号楼) 会议室:一楼多功能厅 08:45 &ndash 09:00 报到 09:00 &ndash 09:15大昌华嘉商业(中国)有限公司 致辞 严秀英 销售经理, DKSH 09:15 &ndash 10:45 粉末流动性质及行为特点 Tim Freeman Managing Director, Freeman 10:45 &ndash 10:55 茶歇 10:55 &ndash 12:00 粉末流动性质的具体应用 Dr. Fu Materials Scientist, Freeman 12:00 &ndash 13:30 午餐 13:30 &ndash 14:30 粉末颗粒度的大小及形状分析 严秀英 销售经理, DKSH 14:30 &ndash 15:00 茶歇 15:00 &ndash 16:00 现场仪器操作及软件演示 Dr. Fu Materials Scientist, Freeman 胡江 维修经理, DKSH 16:00 &ndash 17:00 现场答疑 Dr. Fu Materials Scientist, Freeman 严秀英 销售经理, DKSH 回 执 姓 名 单 位 通讯地址 电 话 手 机 E-mail 邮 编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:姜小姐, 胡小姐 电话:4008210778 ;传真:021-33678466 电子邮箱:ins.cn@dksh.com
  • GISAXS揭示了用于太阳能电池的PbS量子点的堆积
    量子点是大约2到10纳米大小的半导体纳米晶体。由于其可调的光电特性,它们被广泛应用于LED、单电子晶体管、医疗成像和太阳能电池等领域。当用于太阳能电池时,光在量子点中产生一个电子-空穴对,可以通过施加电化学能将其分离。电子和空穴的流动产生了电流。 硫化铅(PbS)量子点具有高效、低成本和高空气稳定性等优点,是一种很有前景的光伏材料。不同的量子点合成方法可以产生不同的晶体面,从而导致不同的配体结合特性,反过来影响所谓的“陷阱态“的出现。这些陷阱态限制了太阳能电池的性能,而使陷阱态钝化是提高这些器件功率转换效率的重要策略。 华中科技大学、慕尼黑工业大学、南方科技大学以及深圳大学合作发表的一篇论文表明,可以通过控制量子点的合成来控制Pbs量子点结晶面的形成【1】。在热力学控制下,它们主要形成了带有{100}和{111}晶面的截断八面体(见下图c),而在动力学生长机制下,生成普通的八面体(见下图d),且只显示{111}晶面。 掠入射小角X射线散射(GISAXS)是研究这些量子点形状差异的有效方法,因为它对材料的堆积方式非常敏感。量子点在旋涂层薄膜中的排列是由粒子的形状决定的,因此也决定了粒子的端点。八面体则以体心立方/四方(BCC/BCT)布局堆叠,而截断的八面体以面心立方(FCC)的方式堆积成球体。从这些超点阵模型(用白点表示)计算出的布拉格峰与GISAXS结果(上图a和b)相吻合。此外,GISAXS结果可以计算晶格常数。 其他几个关于GISAXS和掠入射广角X射线散射(GIWAXS)用于研究量子点的有趣案例可以在下面引用的最近的一篇论文中找到【2】。GISAXS是一种对表面敏感的技术,可以提供纳米尺度((1 - 200 nm)的纳米结构薄膜的结构信息,由于X射线光束覆盖区域面积大,这些信息具有统计相关性。通过改变X射线散射仪的测量配置,可以在GIWAXS测量模式下研究较短长度(0.1 - 1 nm)下的样品参数。在论文中,作者介绍了测量不同超晶格结构的例子。表明GISAXS/GIWAXS是了解量子点自组装和结构的一种有价值的技术。 参考文献:[1] The research was originally published in the following articles:Yong Xia, Wei Chen, Peng Zhang, Sisi Liu, Kang Wang, Xiaokun Yang, Haodong Tang, Linyuan Lian, Jungang He, Xinxing Liu, Guijie Liang, Manlin Tan, Liang Gao, Huan Liu, Haisheng Song, Daoli Zhang, Jianbo Gao, Kai Wang, Xinzheng Lan, Xiuwen Zhang, Peter Müller-Buschbaum, Jiang Tang, and Jianbing Zhang,Facet Control for Trap-State Suppression in Colloidal Quantum Dot Solids. Adv Funct Mat, 30 (2020)[2] Saxena, V. & Portale, G. Contribution of Ex-Situ and In-Situ X-ray Grazing Incidence Scattering Techniques to the Understanding of Quantum Dot Self-Assembly: A Review. Nanomaterials 10, 2240 (2020).
  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 大昌华嘉携手英国Freeman成功举办“粉末的性质及其评价研讨会”
    大昌华嘉商业(中国)有限公司于近期于南京成功举办了&ldquo 粉末的性质及其评价研讨会&rdquo 。 来自英国Freeman Technology公司的应用专家傅晓伟博士在研讨会现场为用户讲解了粉末流动性质及行为特点和粉末流动性质的具体应用,并演示了具体的仪器操作。大昌华嘉公司仪器部销售经理严秀英女士为研讨会致辞并简要介绍了粉末颗粒度的大小及形状分析的方法。本次讲座得到了行业内众多专家的一致认可,现场讨论交流热烈。 大昌华嘉公司仪器部销售经理严秀英女士 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 英国Freeman Technology公司的应用专家傅晓伟博士 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 傅博士现场演示仪器操作 关于 Freeman Technology Freeman Technology专精于粉末及其流动特性的先进表征与分析技术。该公司成立于1989年,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业获得ISO 9001:2008认证,所有仪器都在其位于英国格洛斯特郡(Gloucestershire)的设计制造中心生产。研究解读粉末的行为是该企业的经营策略中心。 关于 DKSH (大昌华嘉) 具有200年历史的大昌华嘉商业(中国)有限公司作为英国Freeman Technology在大中国区的独家代理商,负责其所有产品、技术的推广销售和服务。我们热忱的欢迎广大客户来电咨询,与产品专家一起探讨、研究、开拓、优化粉末流动测试方法。 Freeman Technology 公司 多功能粉末流动性测试仪FT4 详细信息请查看以下链接: http://www.dksh-instrument.cn/page_show.asp?tid=2&IMType=C09&sortid=C0905&IMShowNameid=C143467&order= 更多信息,请联系: 中国上海徐汇区虹梅路1801号凯科国际大厦2208室,200233 电话 +86 400 821 0778 传真 +86 21 3367 8466
  • 欧奇奥(Occhio)首次提出卫星化粉末微观表征参数
    第九届全国颗粒测试学术会议成功举行, 卫星化粉末表征被首次提出 2013年5月30日 2013年5月25&mdash 27 日,由中国科协与贵州省人民政府共同主办的&ldquo 中国科协第十五届年会&rdquo 在贵州省贵阳市举行。作为第十五届中国科协年会第16 分会场,第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨会得到成功举办。会议期间,国产动态光散射技术的突破和颗粒形貌分析技术的发展成为令人瞩目的焦点。 在本届研讨会上,美国康塔仪器公司北京代表处杨正红先生根据欧奇奥颗粒形貌技术的发展,首次介绍了卫星化粉末(颗粒)及其微观形态表征参数。 理想的工业粉体应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起,从而对粉体的许多性质都产生重要影响。卫星化粉末就是在雾化过程中产生的非常微小的球,同较大的球粘在一起而产生的不规则颗粒(见图1)。粉末的卫星化将影响其流动性、附着力、填充性、增强性及研磨特性和化学活性(包括燃烧效率)等。任何非球形粒子对产品的流动性都可以产生不利影响,甚至可能引起非常有害的粉末堆积,最终将导致进程停止(焊接,等离子喷涂等)从而产生非常高的固定成本! 欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品。 Occhio FlowCell 200S+图像法粒度粒形分析仪仪器采用同等仪器中最高水平的 1000 万像素的照相机,拍摄分散在液体中的粉体颗粒的高分辨率照片,可拍摄到小于粒径为 200 nm 的颗粒,进行粒度分布和形状分布的分析,并可进行绝对和相对计数。由于焦距较深,它可以在全视野范围内利用光学系统控制摄影成像,粒子成像鲜明,没有像差,可测量普通图像法粒度分布仪器无法测量的粒子形状,可进行动态或静态的湿法测量,也可对异物进行有效的跟踪分析(趋势分析/动力学)。利用独自开发的CALLISTO(骄子)粒形分析软件,粒径可与激光粒度仪比较或衔接,可进行微观的形状分析,并且对粉体样品的特性进行评价。将粒子的各种形状数值化后,可进行相互比较,除了一般的ISO粒形参数外(如最大内切圆直径、最大长度、凹度、凸度、延伸度、圆形度等),还提供独有的微观粒形参数,包括钝度(Bluntness)、卫星化指数(Satelity Index)和赘生物指数(Outgrowth),共计超过43个参数的有关粒度粒形信息,为粉体颗粒的性能表征提供一种新的手段。
  • 专家有话说|如何解读《中国药典》0992固体密度测试法?
    p style=" text-align: justify text-indent: 2em " 2020版《中国药典》增加了0992固体密度测试法和0993堆密度和振实密度测定法,对应于美国药典USP699和USP616。关于固体密度,0992中定义了3种固体密度的表示方法,分别为真密度、颗粒密度以及堆密度。密度问题看似简单,但由于其体积的定义不同,虽然此前已经有不少关于这部分的解读文章,但依然在概念上含混不清,或者由于历史原因,对同一定义存在多种命名,容易造成混淆。本文以ISO标准、ASTM标准及相关国家标准为基础,对有关密度的定义及中英文名称进行系统地梳理,并介绍真密度分析的原理及其前沿表征技术。 br/ /p p style=" text-align: justify text-indent: 2em " strong 一、有关体积的定义和名称: /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/bb0681d4-6775-417b-b228-447bd7aba0d4.jpg" title=" 药4.png" alt=" 药4.png" / /p p style=" text-align: justify text-indent: 2em " 1.& nbsp 堆体积或容积(Bulk volume): /p p style=" text-align: justify text-indent: 2em " 颗粒在容器中堆积所占的体积,它包括颗粒体积,颗粒内体积和颗粒间的空隙体积(图1O)。其对应的密度叫做堆密度或堆积密度(Bulk density)。 /p p style=" text-align: justify text-indent: 2em " 堆密度中实际又包含了两个密度概念: /p p style=" text-align: justify text-indent: 2em " a)& nbsp 松装密度(Loose density):在规定条件下颗粒材料自然填充的单位容积的质量,是颗粒自然堆积的堆密度。其测定过程中要排除对颗粒堆积过程的扰动,包括颗粒重量本身下落的影响。测量过程参见GB/T31057.1-2014和中国药典0993-1堆密度测定法。 /p p style=" text-align: justify text-indent: 2em " b)& nbsp 振实密度(Tap density 或 Tapped density):在规定条件下粉体经振实后所测得的单位体积的质量。测量过程参见GB/T31057.2-2018和中国药典0993-2振实密度测定法。 /p p style=" text-align: justify text-indent: 2em " 在中国药典中,0993跟随了USP616的概念,将堆密度(Bulk density)等同于了松装密度(Loose density)。而在材料科学界,这是两个不同的概念,美国材料实验协会(ASTM)将其分别称作松装堆密度(Loose bulk density)和振实堆密度(Tapped bulk density),或堆积松装密度(Bulk loose density)和堆积振实密度(Bulk tapped density)。 /p p style=" text-align: justify text-indent: 2em " ——参见ASTM D7481 - 18& nbsp 《Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder》和ASTM C1770-13《Standard Test Method for Determination of Loose and Tapped Bulk Density of Plutonium Oxide》 /p p style=" text-align: justify text-indent: 2em " 在中国粉体材料界的应用中,如果堆密度不特指的话,一般指的是振实密度。这一点特别需要引起注意,以避免混淆。 /p p style=" text-align: justify text-indent: 2em " 2.& nbsp 颗粒体积(Particle volume): /p p style=" text-align: justify text-indent: 2em " 颗粒体积(Particle& nbsp volume)也叫包封体积(Envelope& nbsp volume)、几何体积(Geometric volume)或表观体积(Apparent& nbsp volume),它是从堆体积中扣除颗粒间孔隙的体积,即颗粒骨架体积和颗粒内开孔体积之和(图1A)。其对应的密度分别是颗粒密度、包封密度、几何密度或表观密度。 /p p style=" text-align: justify text-indent: 2em " 事实上,有关表观体积(Apparent& nbsp volume)的定义还相当混乱,莫衷一是,有的将其等同于松装体积(GB/T31057.1-2014),有的则将其等同于骨架体积(图1右B)。 /p p style=" text-align: justify text-indent: 2em " 3.& nbsp 骨架体积(Skeleton& nbsp volume)和真体积(True volume): /p p style=" text-align: justify text-indent: 2em " a)& nbsp 开孔(open pore):多孔固体中与外界连通的空腔和孔道称为开孔,包括交联孔、通孔和盲孔。这些孔道的表面积可以通过气体吸附法进行分析。 /p p style=" text-align: justify text-indent: 2em " b)& nbsp 闭孔(close pore):除了可测定孔外,固体中可能还有一些孔,这些孔与外表面不相通,且流体不能渗入,因此不在气体吸附法或压汞法的测定范围内。不与外界连通的孔称为闭孔。 /p p style=" text-align: justify text-indent: 2em " 开孔与闭孔大多为在多孔固体材料制备过程中形成的,有时也可在后处理过程中形成,如高温烧结可使开孔变为闭孔。 /p p style=" text-align: justify text-indent: 2em " c)& nbsp 骨架体积(Skeleton volume):不含开孔的颗粒体积(图1B),即其体积包括可能存在的闭孔体积,但不包括开孔体积以及颗粒间隙的体积。其对应的密度就是骨架密度。0992中用气体置换法测的“真密度”实际就是骨架密度,参见ISO 12154-2014《骨架密度的测量 气体体积置换法》。相应的国家标准也将很快出台,由于未经烧结的粉体材料很难存在闭孔,以下我们还是按习惯称呼叫做“真密度”。 /p p style=" text-align: justify text-indent: 2em " d)& nbsp 真体积(True volume):是颗粒骨架体积扣除闭孔体积后的体积(图1C)。 /p p style=" text-align: justify text-indent: 2em " 综上所述, /p p style=" text-align: justify text-indent: 2em " 骨架体积 = 真体积 + 闭孔体积 /p p style=" text-align: justify text-indent: 2em " 颗粒体积 = 骨架体积 + 颗粒内开孔体积 /p p style=" text-align: justify text-indent: 2em " 堆体积(容积)= 颗粒体积 + 颗粒间孔隙或空隙体积 /p p style=" text-align: justify text-indent: 2em " strong 二、气体体积置换法测量真密度原理及其需要注意的事项 /strong /p p style=" text-align: justify text-indent: 2em " 气体置换法也叫体积膨胀法。该技术实际用的就是阿基米德原理,不过排除的不是液体而是气体,即这种技术是以固体空间置换一定体积的气体为基础的。气体真密度分析仪具有与气体吸附法比表面分析仪一样的气路,有样品室和气体膨胀参比室(相当于歧管)。通过在等温条件下测量气体从一个气室膨胀到另一个气室,用一个压力传感器或表压传感器在样品室和参比室之间测量气体膨胀前后的压力变化,然后通过理想气体方程计算出样品的骨架体积,从而计算出样品的真密度值。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e18ea259-91d0-455c-8cd6-d5e7cdfcd0c0.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " 这种动态流动仪器的特点是:不需要测量绝对大气压值,不需要测量压力校正曲线;但需要将表压传感器调零,需要标准体积(标准球或标准块)测量参比室体积。仪器包括两种结构,见图2。二者的差别在于进气端是在样品室(结构1),还是在参比室(结构2)。结构2的工作序列与结构1正好相反,即先在参比池加压,然后气体膨胀进入样品池。这种设计的优势在于可以最大程度地减小在样品池中的死体积,从而提高少量样品的测量准确性(参见ISO 12154-2014和Multipycnometer,Quantachrome Instruments)。 /p p style=" text-align: justify text-indent: 2em " 与比表面测定一样,样品需要脱气。脱气一般在原位进行,可以连续流动脱气、脉冲增压脱气(也属于流动脱气)或真空脱气。在使用这种仪器测定时,需要注意以下事项: /p p style=" text-align: justify text-indent: 2em " 1.因为仪器原理是理想气体方程,所以测定结果和稳定性与温度有关。因此,要求实验室内温度恒定,波动在2度以内。但是因为仪器内部会发热,所以最好真密度仪配有恒温装置。 /p p style=" text-align: justify text-indent: 2em " 2.氦气比氮气更接近理想气体,所以重复性精度高;但因为氦气分子太小,可以进入闭孔引起误差,所以含闭孔较多的材料应选用氮气。 /p p style=" text-align: justify text-indent: 2em " 3.与比表面分析仪一样,死体积的概念在这里同样重要。最好分析尽可能多的样品(达到仪器的物理极限),以最大限度地提高称重精度和减小死体积。即所装样品量至少是样品池的2/3,并尽可能接近标准球体积。比如135ml的样品池通常测量误差在60μl以上,若装50ml& nbsp 以下的样品,则测量误差较大,重现性也差。 /p p style=" text-align: justify text-indent: 2em " 4.可以通过套筒尽可能多地消除“死体积”,用以减少样品室的内部体积(图3左)。但是,随着样品量的减少,其它因素的误差也随之放大。比如100ml时的误差为± 0.03%,而小于1ml时,误差则为± 3%了。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/67e2b2d0-781d-4a87-8556-7ae400e83540.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 对于体积密度较低的样品,样品池看起来很满,但固体可能只占样品池的百分之几!在这些情况下,必须使用与被测样品最相似的参比体积校准仪器(图3右)。 /p p style=" text-align: justify text-indent: 2em " 5.& nbsp 因为存在仪器稳定和样品脱气的问题,一般测定都要求至少设定测量5次以上。前面几次测量会存在误差,因为测量过程也是脱气过程。仪器会在设定的允许误差范围内(一般是0.01)停止测定并打印报告。报告给出的误差值,是最后三次结果的误差,不是所有运行测量的误差。 /p p style=" text-align: justify text-indent: 2em " 综上所述,气体真密度分析仪原理经典,操作并不复杂。但是,要获得高精度的测量结果需要真空脱气,恒定仪器温度以及比较大的样品量,而获得10ml左右的样品量往往是非常难的,尤其对于原研药,1ml的样品量是非常珍贵的。如何解决微量样品与测量精度之间的关系?为此,我们利用在超低比表面测定中发展的新技术,继续开发了静态真空气体置换法的新技术,使对少于1ml的样品测定,体积测量误差小于5μl,彻底解决了这个难题。 /p p style=" text-align: justify text-indent: 2em " strong 三、真密度测量新技术及其对仿制药应用的优势 /strong /p p style=" text-align: justify text-indent: 2em " iPyc30真密度测量新技术采用结构2的方式(图1),并引入真空体积法测比表面的关键技术,拥有2个分析室及2种测试模式,既能按常规动态气体体积置换实现快速测试,也能选择静态真空体积置换法实现精准测试(图2)。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/b1e95443-22f3-4a8d-8369-c1fbe3090f4b.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em " 该技术核心是,处于样品室中的样品不仅被真空脱气,提高了表面清洁效率,而且在静态真空条件下,基本排除了死体积的影响。此时,参比室就是定量投气的歧管,通过绝对压力传感器精确计量投入样品室的气体,直至达到平衡。因此如图3A情况的测定,不再成为问题。这意味着在20ml的样品池中测量1ml样品也无需更换样品池,具有极大的灵活性;如果同时采用图3B的套筒方式,将能进一步提高分析精度。 /p p style=" text-align: justify text-indent: 2em " 当样品量少时,测定结果对温度极其敏感。该系统采用先进的风热循环装置,进行全系统恒温,包括样品室、测控装置、气路和温度控制系统(图4)。从图4还可以发现,具有32位ADC电子电路系统的iPYC 30样品室真空度高达0.004KPa,即3.95 x 10 sup -5 /sup 大气压。如此高的真空度和压力及温度的计量精度,不仅能将复杂孔道中多孔材料的样品彻底脱气,而且能将体积的计量精度接近纳升(nl)级别。因此,对于体积<10mL的样品,静态真空体积置换法重复性和平行性均能优于± 0.03%(表1);对于体积<1mL的样品,静态真空体积置换法也具有极其出色的重复性(表2)。 /p p style=" text-align: justify text-indent: 2em " 综上所述,静态真空体积置换法测量真密度的新技术可以测量微量样品,不需要更换小样品室,不需要增加样品量,不需要套筒填充死体积,不需要多次测量取平均值,这为微量的API的测定寻找到解决方案。iPYC30可以同时测量两个样品,使得原研药与仿制药可以在同一平行环境下进行测定比较,判断工艺的符合程度。 /p p style=" text-align: center text-indent: 0em " strong 表1 & nbsp 某样品的真密度重复性和双站平行性(重现性)测定 /strong /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9cd58801-5ee1-4f25-88fd-81087860dc91.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center text-indent: 0em " strong br/ /strong /p p style=" text-indent: 0em text-align: center " strong 表2 & nbsp 六个微量样品的真密度重复性测定(约0.2ml) /strong /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/54723390-cb15-462d-9be6-305ff94e1fc4.jpg" title=" 6.jpg" alt=" 6.jpg" / /p
  • 连花清瘟又火了,胶囊制剂粉体流动性保障竟靠它?
    4月10日,连花清瘟胶囊又一次冲上热搜,数据也表明,连花清瘟确实对新冠轻症有着相当不错的效果。这得益于我国制药对于药品质量的严格把控。 而像连花清瘟这种胶囊剂,以及片剂、冲剂等制剂在生产加工前需对粉体药物的流动性进行评价,流动性达到要求才能投放生产。 Q1 为什么要评价粉末的流动特性?粉末流动性粉末流动性指粉末流动的难易程度。据不完全统计,在所有工业应用中,超过50%的材料在某个阶段是粉末状的。这些粉末需要在运输过程中保持状态稳定,并能够在各种工艺阶段中使用并制成各种剂型,可以是片剂、悬浮液或粉末制剂等。因此,对于粉末流动性的评价,在实际生产过程有着重要作用。而影响流动性的因素有颗粒尺寸,形状,粗糙度,干湿度等。 生产过程流动性差流动性适中流动性太好混合难以混匀均匀混合容易分层传输振动易结块团聚不结块分层易偏析分层压片难压片容易压片难压片装填费时费力容易影响均匀性 粉末流动特性评价的作用● 降低原材料成本:在加工前拒收不良批次; ● 保持有关工艺的*配方; ● 降低工艺成本; ● 保持*产品的质量和一致性; ● 通过优化产品的储存、包装、搬运和运输,保持生产效率和成本; ● 长期保持不同供应商或同一供应商的粉末质量; ● 开发新工艺,将粉末配制成*产品; ● 检查湿度影响:在不同气候下开放系统中使用粉末; ● 调查、保持干混料的质量。 Q2 如何进行粉末流动性评价? 堆积角(休止角)休止角是粉体堆积层的自由斜面与水平面形成的*角。 堆积角与流动性的关系根据EP可知: 30-40°可以满足生产过程中流动性的需要。休止角越大流动性越差,越不利于生产过程的控制,可以通过测量休止角,简化过程控制,降低生产成本。休止角只能定性的判断流动性的好坏或比较同种粉体因粒径和水分等引起的流动性差别。 流出速度流出速度是50g物料流过标准尺寸漏斗孔所需的时间。(GB/T 1482-2010)流出时间快,流动性好,流动的均匀性也好。 压缩度压缩度是——物质压缩的程度,反映粉体的凝聚性,松软性。 当C值20%以下时流动性较好;当C值达40%~50%时粉体很难从容器中自动流出。 Q3 PTG-S5可以测试哪些参数?传统测试方法需要实验人员分别测量粉末堆体积、质量、密度、堆角度等参数,并根据样品量和流动时间绘制流动曲线,耗时且繁琐,实验效率低,从而影响工业生产的进度。 Pharma Test全自动粉末流动性测试仪PTG-S5 针对以上问题,Pharma Test全自动粉末流动性测试仪PTG-S5可以: 1、同时测量预设质量下的粉末流动时间、粉末堆体积、粉末堆密度和堆角度(EP,USP中称休止角),并自动绘制样品流动曲线;2、预设时间下流动的样品质量,mg计;3、100g样品的流动性(EP /DAB ,USP , EP , EP ● 内置打印机,测试结束自动打印测量结果。 Q5 粉末流动性测试应用于哪些行业?● 制药:造粒、微粉化、片剂等固体剂型 ● 研磨:陶瓷、金属粉末和研磨膏 ● 催化剂:挤压物、催化剂环和细金属用粉末 ● 化学品:散装化学品、精细化学品 ● 涂料:颜料、调色剂和粘合剂 ● 清洗剂:粉状表面活性剂、填充剂和颗粒 ● 肥料:挤出物、颗粒、粉状杀虫剂
  • 揭秘!3D打印金属粉末的主流制备方法
    球形金属粉末作是金属3D打印最重要的原材料,是3D打印产业链中最重要的环节,与3D打印技术的发展息息相关。在“2013年世界3D打印技术产业大会”上,世界3D打印行业的权威专家对3D打印金属粉末给予明确定义,即指尺寸小于1mm的金属颗粒群,包括纯金属粉末、合金粉末及具有金属性质的某些难溶化合物粉末。目前3D打印用金属粉末材料主要集中在钛合金、高温合金、钴铬合金、高强钢和模具钢等方面。随着金属3D打印技术的飞速发展, 球形金属粉末的市场将保持高增长态势。2016年3D打印金属粉末的市场规模约为2.5亿美元,预计2025年市场规模将达到50亿美元。为满足3D打印装备及工艺要求,金属粉末必须具备较低的氧氮含量、良好的球形度、较窄的粒度分布区间和较高的松装密度等特征。当前我国生产的金属粉末性能难以满足高端客户需求,高质量 3D 打印用金属粉末需依赖进口。因此,研究3D打印金属粉末的制备尤为重要。本文特整理了当前3D打印用金属粉末的4种制备方法,供大家参考。1、气雾化法 气雾化法是利用惰性气体在高速状态下对液态金属进行喷射,使其雾化、冷凝后形成球形粉。根据热源的不同又可以将气雾化法细分为电极感应熔炼气雾化(EIGA)和等离子惰性气体雾化(PIGA)两种工艺,采用惰性气体既能防止产物氧化,又能避免环境污染。在 EIGA 工艺中,为电极形式的预合金棒将在不使用熔炼坩埚的情况下进行感应熔炼和雾化,其工艺原理图如下图所示。采用气雾化法所得粉末粒度分布广,大部分为细粉,杂质易于控制,但粉末由于粒径不同而冷却速度不同,导致颗粒内部易产生气泡,形成空心结构,粉末形状不均匀,出现行星球等,对粉末后期应用造成不利影响。 电极感应熔炼气雾化(EIGA)原理及其生产的金属粉末图片来源:南极熊3D打印2、等离子旋转电极雾化法(PREP) 等离子旋转电极雾化法(PREP)是生产高纯球形钛粉较常用的离心雾化技术,其基本原理是自耗电极端面被等离子体电弧熔化为液膜,并在旋转离心力作用下高速甩出形成液滴,然后液滴在表面张力的用下球化并冷凝成球形粉末。PREP 因采用自耗电极,制备出的粉末纯净度较高,且该技术不使用高速惰性气体雾化金属液流,避免了“伞效应”引起的空心粉和卫星粉颗粒的形成。因此,相对于气雾化而言,PREP 制备的粉末中空心粉和卫星粉更少。PREP 制备的粉末球形度可达 99.5%以上,但是粉末粒径分布较窄,主要介于 50~150μm,存在着粉末尺寸 偏大的问题并且细粉收得率很低。目前俄罗斯最先进的 PREP 技术也只能收得约 15%的细粉(~45μm),难以服务于微细球形钛粉市场。 等离子旋转电极雾化法(PREP)原理及其生产的金属粉末图片来源:南极熊3D打印3、等离子丝材雾化法(PA) 等离子丝材雾化法(PA)是加拿大 AP&C 公司特有的金属粉末制备技术,PA 工艺是以纯度高的金属或合金丝为原料,以等离子枪为加热源,原料丝材被等离子体瞬间熔化的同时被高温气体雾化,形成的微小液滴在表面张力的作用下球化并在下落过程中冷却固化为球形颗粒的一种工艺。以合金丝为原料制备各种材质球形粉末的工艺,可实现高水平的可追溯性和较好的颗粒大小控制。该工艺生产出的粉末粒径分布范围窄,平均粒径约为 40μm,细粉收得率高(80%),几乎没有卫星球;粉末纯度高(低氧,无夹杂),球形度高,伴生颗粒非常少。具有出色的流动性和表观密度、振实密度。主要服务对象为生物医疗和航空航天工业,产品畅销20 余个国家。 等离子丝材雾化法(PA)原理及其生产的金属粉末图片来源:南极熊3D打印近年来,国外关于 PA 技术的研究取得了不少进展,现有技术已能够在单位时间内所消耗气体与原料的质量比小于20的条件下,制备大量(至少80%)粒径分布为0~106μm的金属粉末。加拿大 AP&C 公司是 PA 技术的专利持有者,加拿大 Pyro Genesis 公司也拥有相关类似专利,但均不对外出售等离子雾化设备。由于国外公司专利保护及技术封锁,一直以来国内关于 PA技术的研究进展缓慢。 4、射频等离子球化法 射频等离子体球化法是利用射频电磁场作用对各种气体(多为惰性气体)进行感应加热,产生射频等离子,利用等离子区的极高温度熔化非球状粉末。随后粉末经过一个极大的温度梯度,迅速冷凝成球状小液滴,从而获得球形粉末。射频等离子球化技术(PS)图片来源:南极熊3D打印目前国外在这方面研究较多的公司有代表性的包括:英国 LPW 技术公司和加拿大的泰克纳公司。其中,泰克纳 (TEKNA) 公司所开发的射频等离子体粉体处理系统,在世界范围内处于领先地位,可以实现 Ti、Ti-6Al-4V、W、Mo、Ta、Ni 等金属及其合金粉末的生产。 国内北京科技大学在射频等离子球化方面也进行了大量的研究,以不规则形状的大颗粒TiH2 粉末为原料,经过射频等离子高温区后 TiH2 粉末脱氢分解、爆碎,即发生“氢爆”。爆开的金属液滴下落过程中,在表面张力的作用下缩聚成规则的球状,得到微细球形粉末。所收得的粉末粒度范围可以达到 20~50μm,细粉收得率更是高达 80%以上,各项性能参数均不逊于国际一流队列的粉末,图 6 是氢化钛粉末经射频等离子球化前后粉末形貌图。同时,该团队还将该方法创新性地应用到了钨、高温合金、钕铁硼等金属粉末的球化处理当中,均取得了显著的成果。射频等离子体制备球形钛粉示意图图片来源:南极熊3D打印球化前后的粉末形貌对比图片来源:南极熊3D打印
  • 大昌华嘉诚邀您参加“认识粉末材料中的材料科学“网络讲座
    大昌华嘉即将于2013年11月20日14:30举办&ldquo 认识粉末材料中的材料科学"网络讲座。 开课时间:2013-11-20 14:30 (教室于 2013/11/20 14:00:00开放) 会议时长: 2小时 报名条件:只要您是仪器信息网注册用户均可参加! 环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克) 人数限制:120 提问时间:您可在论坛的宣传贴中先行提问,截至时间为 2013-11-20 人类使用粉末材料已经有几千年的历史,然而对于粉末性质及其行为的认识仍然远远不够。相对于在液体和气体方面的研究进展,在粉末材料研究领域,至今还没有能够预测粉末行为的相对成熟的纯数学理论模型。 在粉末材料的生产加工中,人们每天都会面临各种不同的粉末应用难题,例如原料供应商选择、产品的研发和配方设计、工艺放大、商业化生产以及产品质量监控。粉末的性质和行为对于生产加工或者应用的成败会产生决定性的影响,而且在不同的加工阶段和加工单元,粉末的一些列不同性质都会发生重要作用,这样的相关实例有很多。 本次报告将从材料科学的角度解释粉末的不同性质如何影响粉末的加工性和产品质量,并且通过具体实例展示如何通过优化粉末性质进而适应不同的生产加工过程和应用。 报名请点击:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/909 FT4多功能粉末流动性测试仪采用专利的动力学测量技术,配合全自动的剪切盒(Shear Cell)以及包含堆密度、粉末压缩性和透气性在内的若干粉末整体性质测试方法,综合定量表征粉末的流动性质和粉末加工性质。目前该仪器系统已经落户到全球各个角落,广泛应用于化学、制药、碳粉、食品、粉末涂料、金属、陶瓷、化妆品等多种工业领域。它所提供的数据能够最大程度地帮助用户拓宽和加深对加工流程和粉末产品的理解,加快研发、配方设计和成功商业化进程,并为粉末加工流程优化提供有力支持。 Freeman Technology 简介 FREEMAN TECHNOLOGY是一家精通粉末流动性质测试方法的仪器制造商,它在粉末流动性和粉末表征领域拥有10余年的经验。其专业经验丰富的专家团队与主要产品FT4 多功能粉末流动性测试仪(FT4 Powder Rheometer® )一道为用户提供完整的粉末性质测试解决方案。 FT4多功能粉末流动性测试仪采用专利的动力学测量技术,配合全自动的剪切盒(Shear Cell)以及若干粉末整体性质测试方法,以综合定量表征流动和加工流程方面的粉末性质。该仪器系统已经安装到全球各个角落的许多不同工业领域。它所提供的数据能够最大程度地帮助用户拓宽和加深对加工流程和产品的理解,加快研发和配方设计进程以促进成功商业化,并为长期的粉末加工优化提供有力支撑。 Freeman Technology 的总部位于英国格洛斯特郡,在美国设有一家全资子公司,分销合作伙伴遍布加拿大、中国、法国、印度、爱尔兰、日本、马来西亚、新加坡、台湾和泰国等地。2007 年,公司获英国企业女王奖创新大奖 (Queen&rsquo s Award for Enterprise in Innovation);2012 年再获英国企业女王奖国际贸易大奖 (Queen&rsquo s Award for Enterprise in International Trade)。 大昌华嘉一直致力于高端、专业的科学仪器的市场拓展,我们为粉体及材料表征的研究提供了全面的解决方案,包括: 英国Freeman Technology的多功能粉末流动性测试仪(FT4)美国麦奇克(Microtrac)的激光粒度分析仪(纳米,微米,Zeta电位),粒度粒形分析仪 拜尔(BEL)的比表面孔隙分析仪,蒸汽吸附仪,高压吸附仪 德国克吕士(KRUSS)的接触角,表面张力分析仪 英国Copley的振实密度计 如果您想深入了解更多材料表征研究应用,我们将会非常高兴地为您提供更多的相关文献和应用实例。 另外我们公司还提供化学分析,物性测试,生命科学等方面的全面解决方案。
  • 大昌华嘉即将于四川绵阳举办“粉末的流动行为和多孔材料吸附表征的新进展”研讨会
    大昌华嘉公司将于2013年3月26日在四川绵阳举办&ldquo 粉末的流动行为和多孔材料吸附表征的新进展&rdquo 研讨会。 我们知道,能够预测粉末在生产过程中的表现对研究人员来说是很重要的。由于粉末自身的复杂性,粉末的定性方法一直以来都依赖于人工经验或者主观评估。粉末流动性质如果不能与生产过程条件相匹配就会导致低质量的产品甚至是生产线的停顿,因而,对流动性质进行准确评估和测试则逾显重要。 Freeman Technology设计的FT4多功能粉末流动性测试仪,可以明确地测量不同堆积状态和不同加工应力环境下的粉末剪切性质,整体性质和粉末动力学性质。由于FT4实现了对粉末行为的完整洞察,这就使得确定影响粉末加工表现的关键参数成为可能。 美国麦奇克旗下的拜尔有限公司(Bel)是一家研究生产容量法气体吸附分析仪的专业制造厂商。第一台多功能催化剂表征分析仪,首创全自动蒸汽吸附系统,开发了容量法高压吸附仪,(容量法)多组分气体和/或蒸汽混合气体吸附仪,吸附过程分析仪,痕量气体吸附仪等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 附: 大昌华嘉商业(中国)有限公司科学仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器,在中国的石油,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。 Freeman Technology专精于粉末及其流动特性的先进表征与分析技术,其多功能粉末流动性测试仪的核心源自于它独创的专利技术。该企业具备ISO 9001:2008认证,并于2007年4月获得英国企业女王奖。FT4多功能粉末流动性测试仪已经广泛地应用在制药、化学、食品、化妆品、墨粉、塑料、陶瓷、金属、粉末涂料等工业领域。 会议日程: 时间:2013年3月26日(周二)上午8点30分-下午16点 地点:四川绵阳九龙宾馆青海厅 会议室:青海厅 08:15 &ndash 08:30 报到 08:30 &ndash 09:00 大昌华嘉商业(中国)有限公司致辞 皮大刚 经理, DKSH 09:00 &ndash 10:30 多组分吸附,高压吸附,痕量气体吸附在储能材料等多孔材料领域的新应用 樊润 产品经理, DKSH 10:30 &ndash 10:40 茶歇 10:40 &ndash 11:20 粉末流动性质及行为特点 Dr. Fu Materials Scientist, Freeman 11:20 &ndash 12:20 粉末流动性质的具体应用 Dr. Fu Materials Scientist, Freeman 12:20 &ndash 13:30 午餐 13:30 &ndash 14:50 现场仪器操作及软件演示 Dr. Fu Materials Scientist, Freeman 14:50 &ndash 15:00 茶歇 15:00 &ndash 16:00 现场答疑 Dr. Fu Materials Scientist, Freeman 回 执 姓名 单位 通讯地址 电话 手机 E-mail 邮编 拟与会人数及姓名 特别需要解决的问题 现有的仪器(或新的需求) 联系人:江小姐 电话:028-8676 1111;传真:028-8676 1122 电子邮箱:winnie.xl.jiang@dksh.com
  • 麦克仪器:药物粉体密度及孔隙度测定-why and how?
    p style=" text-align: justify text-indent: 2em " 在药物制剂的研发及生产过程中,往往都会涉及到相关的药物粉体。这些粉体及其片剂的理化性质会影响其混合均匀度、压缩成型过程,以及最终制剂的生物利用度和疗效等,因此,在粉碎、混合、压片、制粒等过程中需要对其相关物理特性进行调控以确保最终制剂质量。除了关注度较高的粒度粒形,比表面积,流动性等性质外,密度及孔隙度的表征也是药物质量的重要指标,并且在研发及生产的众多环节都有所涉及。因而在美国药典USP& lt 267& gt 、USP& lt 699& gt ,日本药典JP 3.03,欧洲药典Ph. Eur. 2.9.32、Ph. Eur. 2.2.42和2020年版《中国药典》通用技术0992中,都明确规定了药物粉体相关的密度、孔隙度测定方法。 !--699-- !--267-- !--699-- !--267-- !--699-- !--267-- /p p style=" text-align: justify text-indent: 2em " 密度主要会影响粉体的流动性,均匀性,压缩性以及离析度、结晶度等等。由片料包裹密度除以骨架密度算得的片料固相分数(Solid Fraction)是辊压过程中的关键工艺参数,测定固相分数可了解药物中固体含量百分比等相关信息,从而提高辊压过程的有效性,并建立可控的辊压速度、辊压压力等工艺操作参数,对工艺过程的参数设置及优化制剂质量具有重要意义。此外,药物材料的骨架密度还可以作为其结晶状态以及二元混合物比例的标志。 /p p style=" text-align: justify text-indent: 2em " 孔隙度(Porosity)会影响药物的辊压制粒、崩解等过程,以及片剂强度、压实度、含量均匀度及溶出度等性质,是药物崩解、溶出和生物利用度的一个关键质量属性。此外,孔隙度测量还可以预测评估压缩过程中颗粒的变形特性,测量辊压后片料的总孔体积和固相分数,以及评估药物包衣的完整性,帮助确定包衣过程中物料流的参数设置等。 /p p style=" text-align: justify text-indent: 2em " 综上所述,掌握和控制药物制剂的密度及孔隙度对药物的最终疗效及生产稳定性非常重要。本文将介绍药物粉体密度及孔隙度的定义及测试原理,并举例说明相关测试结果。 /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 32px " 密度测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 密度是单位体积粉体的质量。由于粉体的颗粒内部和颗粒间会存在空隙,所以粉体所占有的体积会因测量方法不同而有所差异,并由此产生如骨架密度、包裹密度等不同的密度概念。 /p p style=" text-align: justify text-indent: 2em " (1)真密度和骨架密度(颗粒密度) /p p style=" text-align: justify text-indent: 2em " 真密度也称绝对密度,所对应的真体积是指不包含开孔和闭孔的体积。骨架密度(颗粒密度)对应的骨架体积是样品的真实体积与闭孔体积之和,即不包括与外界连通的开孔体积。 /p p style=" text-align: justify text-indent: 2em " 骨架密度的测定方法一般采用基于阿基米德原理的气体置换法测定,该法是目前世界公认的测真密度、骨架密度最可靠的技术之一,并为无损测量。图1所示为麦克仪器的AccuPyc II全自动气体置换法真密度仪,测试采用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,结合样品质量可算得骨架密度。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/2664b594-14e3-4eef-bb84-11a6fe859c65.jpg" title=" 图片1.jpg" alt=" 图片1.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C222910.htm" target=" _self" strong 图1 & nbsp AccuPyc II全自动气体置换法真密度仪 /strong /a /p p style=" text-align: justify text-indent: 2em " (2)包裹密度 /p p style=" text-align: justify text-indent: 2em " 包裹密度所对应的包裹体积包含颗粒的骨架体积和开孔、闭孔体积,以及颗粒外表面的一些粗糙空隙。 /p p style=" text-align: justify text-indent: 2em " 图2所示为麦克仪器的GeoPyc 1365全自动包裹密度分析仪。包裹密度的测试原理是使用一种独特的替代测试技术,通常采用一种具备高流动性的微小刚性球状准流体介质作为替代介质将样品包裹起来。这种替代介质的颗粒很小,在混合过程中可与样品表面紧密贴合,但不会进入样品的孔隙中。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/1d69e4af-3ac4-4276-b882-bcbeeba43019.jpg" title=" 图片2.jpg" alt=" 图片2.jpg" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C12222.htm" target=" _self" strong 图2 & nbsp GeoPyc 1365全自动包裹密度分析仪 /strong /a /p p style=" line-height: 150% text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 孔隙度测试 /strong /span /p p style=" text-align: justify text-indent: 2em " 孔隙度指的是颗粒内的孔隙以及样品间隙所占体积与粉体体积之比,通常可通过压汞法和密度计算法等获得。孔隙度越高则表明药物中的总孔体积越大,对应的固体分数就越低。 /p p style=" text-align: justify text-indent: 2em " (1)压汞法 /p p style=" text-align: justify text-indent: 2em " 压汞法是测量药物孔隙度特性常用的方法,可测得样品中与外界连通的开孔体积占总体积的百分比。压汞法的原理是基于汞对大多数固体材料不润湿,界面张力会抵抗汞进入孔中,要使得汞进入材料的开孔中则需要施加外部压力。汞压入的孔半径与所受外压成反比,根据Washburn方程可算出汞压入的孔半径与所受外力的对应关系。图3所示为麦克仪器的AutoPore V全自动压汞仪,其分析技术就是在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。压汞法具有快速、高分辨率及分析范围广等优点,除了可测得孔隙度外,该表征还可获得样品的众多特性,例如:孔径分布、总孔体积、总孔比表面积、中值孔径等等。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 150px height: 321px " src=" https://img1.17img.cn/17img/images/202007/uepic/178f7a4e-5000-496a-916d-eca9b6ca290f.jpg" title=" 图片3.jpg" alt=" 图片3.jpg" width=" 150" height=" 321" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " a href=" https://www.instrument.com.cn/netshow/SH100677/C222916.htm" target=" _self" strong 图3 & nbsp AutoPore V全自动压汞仪 /strong /a /p p style=" text-align: justify text-indent: 2em " (2)密度计算法 /p p style=" text-align: justify text-indent: 2em " 除了压汞法外,通过将气体置换法真密度仪与包裹密度分析仪联用,结合材料的骨架密度和包裹密度,由式①也可直接计算出孔隙度。同时,由式②还可以算出片料的固体分数。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/f07054e4-3ce8-4391-8f9b-055fb8a21a43.jpg" title=" 微信图片_20200730153431.png" alt=" 微信图片_20200730153431.png" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 300px " src=" https://img1.17img.cn/17img/images/202007/uepic/5f5355a4-3750-4a8b-8217-0d32b592540a.jpg" title=" 图片4.jpg" alt=" 图片4.jpg" width=" 300" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong 图4 & nbsp AccuPyc II全自动气体置换法真密度仪及GeoPyc 1365全自动包裹密度分析仪 /strong /p p style=" line-height: 150% text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong 密度及孔隙度测试举例 /strong /span /p p style=" text-align: justify text-indent: 2em " (1)药物辅料硬脂酸镁的骨架密度测定 /p p style=" text-align: justify text-indent: 2em " 硬脂酸镁是新型药用辅料,可作固体制剂的成膜包衣材料、胶体液体制剂的增稠剂、混悬剂等。使用麦克仪器的AccuPyc II全自动气体置换法真密度仪对其进行骨架密度测试,结果表明,仪器在约16分钟内完成了10个测试循环,该硬脂酸镁样品的密度平均值为1.5157 g/cm3,标准偏差仅为0.0006 g/cm3,密度结果均围绕其平均值波动,结果非常稳定,实现了药物材料快速、高精度的体积测量和密度计算。 /p p style=" text-align: justify text-indent: 2em " (2)药物的压汞法孔隙度测定 /p p style=" text-align: justify text-indent: 2em " 使用麦克仪器公司的AutoPore V 全自动压汞仪对某药物进行压汞测试。其堆积密度为1.1639 g/ml,骨架密度为1.5382 g/ml,由此计算得到的孔隙度为24.3332%。 /p p style=" text-align: justify text-indent: 2em " (3)药物片料的密度计算法孔隙度及固相分数测定 /p p style=" text-align: justify text-indent: 2em " 使用麦克仪器的GeoPyc 1365全自动包裹密度分析仪对辊压后得到的某药物片料进行孔隙度测试。测得该药物的包裹密度为1.3409 g/cm3,其标准偏差为0.0007 g/cm3,结合由AccuPyc II全自动气体置换法真密度仪测得的骨架密度1.4630 g/cm3,最后算得孔隙率为8.35 %。根据上文公式②,由骨架密度除以包裹密度可算得其固相分数为91.65 %& nbsp 。 /p p style=" line-height: 150% text-align: justify text-indent: 2em " strong 总结 /strong /p p style=" text-align: justify text-indent: 2em " 药物粉体及相关制剂的密度及孔隙度表征对其处方设计、制备、质量控制等都具有重要指导意义。密度和孔隙度不仅是辊压和压片等过程的关键工艺参数,也是硬度、崩解度、溶出度、生物利用度等的关键质量属性,会直接影响和制约药物的性质及疗效。因而研究和掌握药物粉体及制剂的密度、孔隙度对获得高质量的药物至关重要。采用气体置换法真密度仪和包裹密度分析仪可分别获得药物粉体的骨架密度和包裹密度,通过压汞法或者结合两种密度仪的密度计算法可测得药物的孔隙度及片料的固体分数。借助这些性质表征有助于掌握及预测原料药及辅料在配方中的特性,评估药物制剂的批次变化及药物相关性能,从而优化制造过程和提升产品质量。 /p p style=" text-align: right text-indent: 2em " strong 作者:林宇彤 /strong /p p style=" text-align: right text-indent: 2em " strong 麦克仪器应用工程师 /strong /p
  • 德国新帕泰克将于9月13-15日参展深圳粉末冶金、陶瓷展
    一、技术背景 ▍ 金属粉末的粒度评价 金属粉末的粒度分布影响其压实过程及压制品的致密度,另外,其目标粒度分布也因最终应用工艺的不同而不同,如堆焊、烧结、3D打印等。 对于金属粉末的粒度分布检测,需要: &diams 适用于高比重物料的分析&diams 具有耐磨性&diams 具有良好的结果重复性和重现性 采用干法粒度检测,可以避免湿法检测因为颗粒比重大而引起的沉底漏检情况,并且避免了后续的溶剂处理过程,方便快捷。 在细节上,针对分散管的设计,德国新帕泰克干法分散系统RODOS提供不同材质作为选择,以保证仪器的长期使用:整体硬化钢、碳化钨以及碳化硼材质。 HELOS&RODOS 检测结果两种不同类型金属粉末的测量结果——高度重复性 ▍ 磁材粉末的粒度分布评价 磁性材料粒度的大小与分布会影响磁体的剩磁(Br)、最大磁能积(BH)和内矫顽力(iHc);过多的细颗粒或粗颗粒不仅会影响生产过程,也会影响最终产品的质量。 磁材材料因其特殊的性质,在湿法检测中,及时使用特殊溶剂、引入超声能量也很难将其彻底分散。在实际测试过程中,对干法仪器的分散能力要求也非常高: &diams 分散能量在4.5bar以上&diams 通过分散管的颗粒需实时检测,无二次输送造成再次团聚&diams 具有良好的结果重复性和重现性 HELOS&RODOS 检测结果红色:干法检测,重复性佳,分散效果好蓝色、绿色:湿法检测,分散效果差 二、参展信息 目前德国新帕泰克干法激光粒度分析仪HELOS&RODOS已经成为磁材行业的粒度检测标杆,在金属粉末的粒度与粒形检测领域均有很多成功案例。 在此背景下,德国新帕泰克应邀参加9月13-15日于深圳举办的相关展会并携针对性的技术方案与相关行业客户展开现场交流。 展会名称:深圳国际粉末冶金、硬质合金及先进陶瓷展 2020第18届深圳国际小电机及电机工业、磁性材料展览会 展会日期:2020年9月13-15日 展会地点:深圳会展中心(福田区福华三路) 德国新帕泰克参展展位号:2号馆 C196 三、现场仪器 激光粒度仪 HELOS&RODOS 欢迎携样品现场检测交流。
  • 【操作实录】3分钟学懂精微高博真密度仪
    p style=" text-align: justify text-indent: 2em " 精微高博公司JW-M100A型全自动气体置换法真密度测试仪能够快速、高精度地测量各种粉体、块体等固体材料的真密度,测试精度高、重复性好,平均每完成一次分析约需3min。 /p p style=" text-align: justify text-indent: 2em " 该仪器采用原装机芯,集样品仓、扩展仓、压力传感器、控制阀于一体,保证了测试系统温度的均一性;仪器还配有原装进口2bar压力传感器,采集精度高。另外,JW-M100A的操作软件为精微高博自主研发,可自行设定实验次数,实验数据可导出。 /p p style=" text-align: justify text-indent: 2em " 该仪器在橡胶、新能源、冶金、石油化工等领域有广泛应用,针对炭黑、氧化锌粉末、电池负极材料、肥料及粉末金属等样品都有典型的应用场景。在下面的视频中精微高博工程师将现场演示如何快速、便捷地操作JW-M100A真密度测试仪。 /p p style=" text-align: justify text-indent: 2em " script src=" https://p.bokecc.com/player?vid=4D8FA7B5974C950C9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script br/ /p p style=" text-align: right " strong 作者:精微高博研发团队& nbsp /strong /p p (注:本文由精微高博供稿,不代表仪器信息网本网观点) /p
  • 新品登场!珠海欧美克粉体特性测试仪4月正式面市发售!
    由颗粒群体间相互作用所表现的粉体从流动到静息的相关物理特性,直接影响粉体材料的存储、加工、输送、分料或混料、制粒、包装等工艺过程的品质,其特性也与粉体的填充、压片等性能息息相关。为了给行业客户提供更为高效和全面的粉体测试整体解决方案,作为国内粒度检测与控制技术行业知名的仪器厂商,2021年4月,珠海欧美克粉体特性测试仪系列产品正式面市发售!其中珠海欧美克近期推出的PT-01粉体流动性测试仪是集合多种测量功能为一体,依据美国ASTM D6393-99标准(Standard Test Method for Bulk Solids Characterization by Carr Indices)的要求,并参考了中国国家标准GB/T 5162-2006/ ISO 3953:1993(金属粉末 振实密度的测定)、GB/T 1482-2010(用标准漏斗法测定金属粉末的流动性)、GB/T 1479.1-2010(金属粉末松装密度—漏斗法)、GB/T 16913.3-2008(自然堆积法松装密度的测定)中主要技术指标的规定进行设计制造的综合性评价粉体流动特性的测试仪器。该仪器中与粉体接触的构件广泛采用不锈钢材料,各部件表面经过精细地打磨抛光工艺处理,具有简洁易用、测量结果的重现性良好等优点,为粉体行业用户提供了流动性表征的新选择。PT-01粉体流动性测试仪PT-01粉体流动性测试仪作为欧美克研制的一款用于评价粉体流动特性的综合测试仪器,具有一机多用、测定条件灵活多样、操作简便、重复性好、符合多种标准等特点。可直接测试项目包括粉体的振实密度、松装(堆积)密度、休止角(安息角)、崩溃角、平板角、分散度、霍尔流速等参数,通过上述测试数据的计算可得到差角、压缩度、空隙率、均齐度、凝集度等指标,还能通过上述参数查表得到流动性指数、喷流性指数等卡尔指数参数。应用于工业生产和科研等多种测试场景。PT系列在各种非金属粉、金属粉、制药、化工、电池、磨料及科研教学等领域,用户对粉体振实密度一直有较高的关注度,欧美克仪器同时推出了TD型粉体振实密度测试仪。微粒的相互作用影响粉末的松散和流动特性,粉末的松装密度和振实密度的比较,是微粒相互作用的重要度量参数。由于粉体中颗粒与颗粒之间或颗粒内部存在空隙(或孔隙),其粉体的密度通常小于所对应物质的真密度。粉体密度按其测试方式的不同可以分为松装密度(又称堆积密度)和振实密度。松装密度是指粉体试样以松散状态,均匀、连续的充满已知容积的量杯,称出量杯和粉体试样的质量,便可算出粉体试样的松装密度。振实密度是指将盛在容器中的粉体在规定的条件下被振实后的密度。TD型粉体振实密度仪TD-01/02/03粉体振实密度测试仪是依据国标GB/T 5162-2006/ISO3953:1993(金属粉末振实密度的测定)中的各项指标,并参照中国/美国药典研发制造的粉体密度测试仪器。其中"振动幅度"可由国标中规定的3mm扩展到1mm~15mm整数可调,"振动频率"范围扩展到0~300次/分钟可调,"振动次数"可在0~99999次之间任意设定(当设定为0时即为松装密度)。该测试仪由可调速电机、振动组件、微电脑和微型热敏打印机等部件组成,具有结构紧凑、牢固,操作简单等特点,TD-01/02/03型号对应的仪器分别可以同时测量1,2,3个样品。TD型粉体振实密度测试仪在第十四届中国国际电池技术交流会上率先亮相,立刻受到了广大粉体行业客户的青睐和关注,展会现场持续火爆,不少粉体行业的客户和代理商驻足咨询以及深入洽谈。一直以来,欧美克坚信技术创新和诚信经营是企业的发展之本。自2010年欧美克成为英国思百吉集成成员之后,结合集团先进的研发管理经验,坚强的技术支持后盾,欧美克推出一系列粉体表征领域的应用产品,得到了广大用户的良好反响,为用户企业及粉体行业的发展都做出了自身的贡献!正是因为专注于脚踏实地经营,坚持持续的投入研发,促使欧美克的企业核心竞争力不断得到提升,从而造就了其中国颗粒测量仪产业的重要地位。粉体特性测试仪系列产品的的隆重面市,必将使珠海欧美克为粉体行业客户提供完整、高效、专业的粉体粒度检测整体解决方案添砖加瓦,锦上添花!
  • 图像分析法在3D打印金属粉末粒度及形状表征领域的应用
    2021年6月1日,《增材制造 金属粉末性能表征方法》(GB/T 39251-2020)[6]正式实施, 该标准中明确要求按照《粒度分析 图像分析法 第2部分:动态图像分析法》(GB/T 21649.2- 2017)[3]来检测并计算金属粉末颗粒投影的球形度值。早在2018年,德国最大的学术组织德 国工程师协会(Verein Deutscher Ingenieure,VDI)在《Additive manufacturing processes, rapid manufacturing Beam melting of metallic parts Characterisation of powder feedstock》(VDI 3405 Part 2.3)[13]中已将动态图像分析法列为增材制造金属粉末粒度及粒形分析的首选方法;美国材料试验协会(American Society of Testing Materials,ASTM)在《Additive manufacturing — Feedstock materials — Methods to characterize metal powders》(ASTM 52907:2019)[12]中, 也将动态图像分析法列为金属粉末粒度分析的方法之一。此次GB/T 39251的实施,代表着我国在金属粉末表征领域与国际同步。 自1999年动态图像法被发明至今已有22年的发展历程,技术层面已经十分成熟,得益于其“所见即所得”的直接测量方法,如今在亚微米-毫米尺度内正被越来越多的用户推崇, 用于颗粒粒度与粒形表征。本文使用图像分析法,激光衍射法和筛分法分别测量了金属粉末的粒度与形状,从形状分析灵敏度、与传统方法对比以及对大颗粒的检测灵敏度等方面对测量结果进行了对比分析,论证了图像分析法在该领域的应用优势。 1. 动态图像法分析原理说明:1 分散态的颗粒;2 颗粒运动控制装置;3 测量区域;4 光源;5 光学系统;6 景深;7 图像采集 设备;8 图像分析设备;9 显示 图1 动态图像法流程图 动态图像分析流程:粉末样品在(2)颗粒运动控制装置的控制下,均匀分散地进入(3) 测量区域,(4)光源发射的可见光经(5)光学系统转变为平行光,平行光照射到粉末颗粒 后形成的颗粒投影被(6)图像采集设备拍摄捕捉,颗粒图像传输至(8)图像分析设备,统 计分析得到最终结果(9)。图2 基于双摄像头成像技术的Microtrac MRB动态图像分析仪Camsizer X2,分析范围0.8μm-8mm 2 . 动态图像法在增材制造领域的应用优势 增材制造金属粉末粒度一般在20μm-80μm之间并且分布尽可能窄,同时卫星颗粒、非球形颗粒、超大颗粒或熔结颗粒的含量应尽可能低,以提高粉末烧结性能并且避免成型缺陷。 另外,3D打印过程中仅有少部分粉末用于部件成型,另有大部分粉末需要回收利用,回收粉末是否仍然满足打印质量要求是金属粉末质量检测的重要课题。传统方法一般使用筛分法或 气流分级法分级金属粉末得到所需粒度段,使用激光衍射法和筛分法测定金属粉末粒度分布,使用扫描电镜观察金属粉末球形度。 2.1 快速准确定量分析颗粒形状 利用气雾法在不同生产条件下得到原始粉末,并使用筛分法筛选出<60μm的1#与2#合 金粉末,使用SEM扫描电镜观察1#与2#合金粉末,得到图3样品图片,使用动态图像分析仪 Camsizer X2检测1#与2#合金粉末,得到图4的粒度分布与粒形分布曲线。图3 1#、2#合金粉末的扫描电镜图像图4 1#与2#合金粉末的粒度频率分布曲线(左)与球形度曲线(右)分析仪器:Microtrac MRB德国麦奇克莱驰 Camsizer X2 如图4所示,1#与2#样品粒度分布几乎完全重叠,但其球形度SHPT分布曲线呈现明显差 异,其中1#样品SHPT曲线整体更靠近右侧,表明1#样品的颗粒形貌更加规则。 表1 具有相同粒度分布的两个金属粉末样品的动态图像分析结果从表1中可知,1#与2#样品的D10、D50、D90值偏差仅有1μm左右,使用激光粒度仪根 本无法检测出两个样品的差异;使用SEM观察颗粒形状,如图3所示,虽然直观感觉1#样品 的形貌比2#样品更加规则,但SEM无法量化表征粒形数值,只能作为参考展示和定性分析; 使用动态图像法检测两个样品,球形度SPHT平均值分别为0.9166和0.8596,如果把球形度值 0.9作为球形颗粒认定标准的话,1#与2#样品SPHT>0.9的球形颗粒占比分别为65.88%和 38.02%。动态图像分析仪仅用时4-5分钟,就统计了超过1000万颗颗粒信息,得到极佳的具 有统计代表性的结果。 2.2 粒度粒形同步分析 Microtrac MRB动态图像分析仪Camsizer X2采用两个420万像素的高分辨率摄像头,每 秒钟可拍摄超过300张图像,软件统计每一张图像中的每一颗颗粒粒度及形状数据。 使用Camsizer X2检测金属粉末得到颗粒投影原始灰度图像,如图5所示,使用图像分析 功能提取出两颗颗粒的粒度与粒形数据如表2所示。图5 动态图像法单颗粒投影原始图像 表2 单个颗粒粒度与粒形数据动态图像法拍摄统计每一颗颗粒的粒度及粒形数据,基于真实的颗粒测量,所见即所得, 不受样品折射率、遮光率的影响,不受筛网变形影响,检测结果比激光粒度仪和筛分仪更加 可靠。但是在新颁布的国家标准中,粒度分布测定方法仅列出了激光衍射法与筛分法,笔者 分析是在标准制定过程中,考虑到目前图像法分析仪的市场占有率远远低于激光粒度仪,出 于方法普遍性而做出的选择。在德国VDI和美国ASTM标准中,均将图像法列为粒度和粒形 分析方法之一,在后续的标准修订中我们应该改进。 2.3 与传统方法的对比 根据样品不同、检测方法不同、应用方向不同,颗粒粒径有多种不同定义,如图6所示。 图 6 常用的颗粒粒径定义 Xc min:颗粒弦长,从 64 个不同方向测量颗粒在该方向上的最大弦长 Xc,取 64 个弦长值中最小的一 个作为颗粒弦长 Xc min,Xc min常用于和筛分法结果对比。 Xarea:等效球径,与颗粒投影面积相等的圆形的直径,Xarea 常用于和激光衍射法结果对比。 XFe max:颗粒长度,从 64 个不同方向测量颗粒在该方向上的费雷特直径 XFe,取 64 个费雷特直径中最大的一个作为颗粒长度 XFe max,即颗粒的最大卡规径。 动态图像法根据颗粒投影所占据的像素数量与位置,一次进样可以检测图 6 中 3 种不 同的粒径定义。 2.3.1 动态图像法与激光衍射法的对比 激光粒度仪一般基于米氏理论或弗朗霍夫理论,利用颗粒对光的散射现象,根据散射光 能的分布计算被测颗粒的粒度分布:当样品颗粒的散射光分布与某一大小的球形颗粒的分布 一致时,即认为样品颗粒大小等于该球形颗粒的直径。即激光粒度仪所测粒径为图6中的等 效球径Xarea,对于大部分非规则的颗粒样品,激光粒度仪测量结果存在系统性偏差。 分别使用动态图像分析仪与激光粒度仪测量4种不同形状的金属粉末,得到图7的粒度累积分布曲线。图7 激光粒度仪与动态图像分析仪粒度累积分布曲线对比 动态图像分析仪器:Camsizer X2(Microtrac MRB) 激光粒度分析仪器:Sync(Microtrac MRB) 红色曲线:Xc min 颗粒弦长;绿色曲线:Xarea 等效球径;蓝色曲线:XFe max 颗粒长度;黑色曲线:激光粒度 使用动态图像分析仪可以同时得到颗粒弦长Xc min、等效球径Xarea与颗粒长度XFe max三条 曲线,如果样品是球形颗粒,如图7中Sample1与Sample2所示,3条曲线差距很小;如果样品 中含有非球形颗粒,如图7中Sample3与Sample4所示,3条曲线就会呈现明显差异,并且样品 越不规则,3条曲线差异越明显。激光粒度仪无法区分颗粒宽度与长度,其检测结果一般位 于动态图像分析仪的颗粒弦长与颗粒长度之间。Sample2为通过53μm孔径筛网的金属粉末,所有颗粒的弦长均应小于53μm,只有部分 颗粒的长度可能大于53μm。如图7所示,Sample2的红色曲线Xc min上限D100<53μm,只有 蓝色曲线XFe max检测到少量>53μm的颗粒,而黑色曲线激光粒度数据显示有超过5%的颗粒 >53μm,与实际存在误差。这表明,激光粒度仪对颗粒粒度上限的检测精度不够准确,图像分析仪可以准确检测粒度上限D100,更接近真实结果。 2.3.2 动态图像法与筛分法的对比 筛分法作为一种经典的颗粒分级与粒度分布测量方法,被广泛应用于金属粉末的质量控制,此次实施的国家标准中,建议>45μm的金属粉末可以采用筛分法来测定粒度及粒度分布。筛分法的优点是检测范围宽、重复性好、设备成本低,缺点是检测效率低,人为误差大, 受筛网变形影响大。目前所用的筛网一般是金属丝编织筛网,网孔大小指方形网孔编织丝线 间的垂直距离。理论上标准球形颗粒通过筛网的最小孔径等于其颗粒直径,非球形颗粒通过 筛网的最小孔径约等于其颗粒弦长,如图4所示。 分别使用筛分法和动态图像法测量某粒度区间位于100μm-5mm的宽分布塑料颗粒,得到图8所示曲线。图8 宽分布塑料颗粒动态图像法与筛分法一致性曲线,横坐标为筛网目数 动态图像法分析仪器:Camsizer P4(Microtrac MRB) 筛分法分析仪器:AS200C(Retsch GmbH) 如图8所示,即使是粒度分布非常宽的样品,动态图像分析仪Camsizer也能够准确检测, 检测结果Xc min与筛分法结果高度一致,可以直接替代筛分法用于金属粉末的粒度和粒度分布测定。 实际筛分过程中,由于筛网的产地不同、标准不同、质量不同等多方面因素,再加上筛分过程中的人为误差,常常会产生非常大的筛分误差。为减小筛分误差,首先应选用经过计量认证的不易变形的标准筛网,其次,应使用振动筛分仪器在标准程序下进行筛分。 2.4 超大颗粒的检测灵敏度 增材制造金属粉末中少量大颗粒的存在会很大程度上影响粉体流动性和铺粉效率,从而影响成型件的结构强度,容易形成空隙和划痕,所以需要对金属粉末的粒度分布,尤其是超大颗粒的含量进行严格的控制。传统的激光粒度仪由于分析原理限制,对于超大颗粒的检测灵敏度仅为 2%左右。德国麦奇克莱驰 Microtrac MRB 的动态图像分析仪 Camsizer X2 采用 双摄像头技术,拍摄区域宽,分析精度高,对超标颗粒检测灵敏度可达 0.01%。 在约5克<80微米的金属粉末样品(图9 上左)中加入约0.005克(0.1%)的超过200μm 的大颗粒(图9 上中),使用Camsizer X2检测该混合样品得到图9下粒度分布曲线。‍图9 动态图像分析仪Camsizer X2对超大颗粒的检测灵敏度 如图9下所示,Camsizer X2准确检测到0.1%的超大颗粒。继续添加不同组分的超大颗粒, 验证Camsizer X2对大颗粒含量的识别精度,得到如表3结果: 表3 Camsizer X2对不同组分大颗粒的检测精度即使低至0.005%含量的超大颗粒,Camsizer X2也能够准确识别,依靠其双摄像头成像 技术,Camsizer X2超宽的检测范围不会漏拍任何颗粒。 3. 静态图像分析法在增材制造领域的应用 此次实施的标准中,显微镜法也是测量粉末球形度的方法之一。显微镜配备测量软件, 即为一台静态图像分析仪器,方法依据《粒度分析 图像分析法 第1部分:静态图像分析法》 (GB/T 21649.1 2008)[4]。图10 德国麦奇克莱驰Microtrac MRB静态图像分析仪Camsizer M1 静态图像分析仪Camsizer M1配备最多6个不同倍数的放大镜头,可以清晰拍摄细至0.5 微米的颗粒,检测上限可达1.5毫米,完全覆盖金属粉末的粒度范围。 与动态图像法一样,静态图像法同时检测颗粒的多项粒度与粒形参数,如图13所示。分 别使用动态图像分析仪Camsizer X2与静态图像分析仪Camsizer M1检测粒度区间位于38-53 μm和90-106μm的颗粒样品,对比两种方法的优劣,得到图11所示粒度频率分布曲线与表 4检测数据。‍图11 动态图像分析与静态图像分析结果 动态图像分析仪:Camsizer X2 (Microtrac MRB) 静态图像分析仪:Camsizer M1 (Microtrac MRB) 表4 动态图像分析与静态图像分析检测结果静态图像分析仪样品统计量少,容易产生取样误差,适合窄分布的样品。由于颗粒统计量少,所以大颗粒对静态图像分析仪检测结果影响较大,如图11所示,90-106μm样品的静 态图像分析曲线连续性较差,为了增加颗粒统计数量提高统计代表性,静态图像分析仪检测 时间一般在10分钟以上。 由表4可知,窄分布细颗粒样品的动态图像与静态图像检测结果一致性较好,宽分布粗颗粒样品一致性较差;动态图像比静态图像分析时间短,颗粒统计量大。 同时,静态图像分析要求颗粒应以合适浓度均匀分散在载玻片上。Camsizer M1配备专门的粉末分散装置M-jet,使用10-70kPa的负压均匀分散粉末,避免由于分散不均造成的颗粒 堆叠、黏连现象,分散效果如图12所示。图12 采用M-jet分散的金属粉末总览图 Camsizer M1采用透射光与入射光两种光源,能够从多角度拍摄分析金属粉末,在软件中分别读取入射光颗粒图像与透射光颗粒图像,见图13。图13 Camsizer M1入射光(左)与透射光(右)拍摄的金属粉末原始图像 由于颗粒处于静止状态,并且光学系统性能更加优秀,静态图像分析仪的成像质量一般远远优于动态图像分析仪。Camsizer M1的入射光图像(图13 左)能够拍摄颗粒表面细节, 观察卫星颗粒、熔结颗粒以及异形颗粒的状态,有助于更深层次了解金属粉末。 总结 图像分析法在亚微米-毫米尺度内正被广泛应用于粉体粒度分布与颗粒形貌的分析,完美适用于增材制造金属粉末。 图像分析法分为动态图像分析与静态图像分析两种,动态图像法的优势是统计代表性好、 检测时间短,检测结果可以与激光衍射法和筛分法对比,适用于金属粉末的快速准确质检; 静态图像法的优势是图像清晰度高,可以观察更多金属粉末的表面细节,适用于研发,但静态图像法检测时间长、统计代表性有待提高,取样量少容易产生取样误差,摄像头的聚焦范围窄,不适用于宽分布样品的检测分析。参考文献 1. Microtrac MRB. 066 Metal Powders with Lazer Diffraction and Image Analysis Sync X2 EN 2. 郭瑶庆, 严加松, 舒春溪,等. 催化裂化催化剂形貌分析方法的建立[J]. 工业催化, 2020(3):73-77. 3. GB/T 21649.2-2017,粒度分析 图像分析法 第2部分:动态图像分析法[S]. 4. GB/T 21649.1-2008,粒度分析 图像分析法 第1部分:静态图像分析法[S]. 5. GB/T 15445.6-2014,粒度分析结果的表述 第6部分:颗粒形状和形态的定性及定量表述[S]. 6. GB/T 39251-2020,增材制造 金属粉末性能表征方法 7. 罗章, 蔡斌, 陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 [J]. 沉积学报, 2016, 34(005):881-891. 8. 涂新斌, 王思敬. 图像分析的颗粒形状参数描述[J]. 岩土工程学报, 2004, 26(5):659-662. 9. 杨启云, 吴玉道, 沙菲,等. 选区激光熔化用Inconel625合金粉末的特性[J]. 中国粉体技术, 2016(3):27-32. 10. [1]刘鹏宇. 典型选区激光熔化粉末的特性及其成型件组织结构的研究[D]. 兰州理工大 学. 11. Nan D , Zz A , Jl B , et al. W–Cu composites with homogenous Cu–network structure prepared by spark plasma sintering using core–shell powders - ScienceDirect[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82:310-316. 12. EN ISO/ASTM 52907-2019,Additive manufacturing - Feedstock materials - Methods to characterize metal powders[S]. 13. VDI 3405 Blatt 2.3:2018-07 Additive manufacturing processes, rapid manufacturing - Beam melting of metallic parts - Characterisation of powder feedstock[S].作者:王瑞青 德国麦奇克莱驰 Microtrac MRB
  • 粉末测试解决方案——在IPB 2015 展领略FT4 粉末流变仪的魅力
    2015年10月12日,中国上海 2015年10月28日-30日,国际粉体工业、散装技术展览会暨会议(IPB)将在中国上海举行,期间观众将有机会领略来自富瑞曼科技的通用多功能粉体测试仪——FT4粉体流变仪TM的风采。 FT4采用了具有专利的动态测试方法,通过符合ASTM D7891的全自动剪切单元,对粉体多项指标如密度、可压缩性、透气性进行测试,从流动性和可加工性的角度对粉体特性进行量化。FT4在化工、制药、硒鼓、食品、粉末涂料、金属、陶瓷以及快速成型制造业得到了广泛应用。它所提供的数据,可以加深人们对工艺和产品的了解、缩短研发和配方周期、促进产品的成功规模化生产,为长期优化粉体加工提供长期支持。 该仪器将于1228(DKSH)展位号展出。整个IPB期间,富瑞曼科技的代表都会在现场,希望有机会与您一起探讨粉体表征和加工性能方面的难题。热忱期待您的光临。
  • 用动态粉末测试方法优化湿法造粒工艺
    湿法造粒是口服固体制剂生产经常采用的加工工艺,目标是将通常细而粘的活性成分和辅料加工成更均匀、自由流动的颗粒,方便下游加工。 具有理想特性的颗粒可以有效改善加工性能,包括提高生产量,赋予片剂所需的关键属性等。但是,这意味着湿法造粒制成的粒子通常只是半成品,而非最终产品,从而产生了一个问题,即:如何控制造粒工艺,获得最终能生产出良好片剂的粒子?在第一种情况下,有必要确定潮湿颗粒可测定的参数,以便用来量化粒子属性的差异。 本文描述了全球粉末表征技术领先企业富瑞曼科技和制药加工解决方案主要供应商GEA Group(基伊埃集团)公司双方进行的联合实验研究。本实验采用了基伊埃的ConsiGma? 1连续高剪切湿法造粒及干燥系统,用于造粒,并运用富瑞曼科技的FT4粉末流变仪?进行动态粉体测试。所获得的结果显示了如何根据动态测定潮湿颗粒的结果,来预测成品片剂的属性。研究结果突出表明,动态粉体测试作为一种有价值的工具,可用于加速优化湿法造粒工艺、改善对加工的认识和控制,并对连续加工方法的开发提供支持。湿法造粒的目的和挑战 湿法造粒通常用来改善压片混合工艺的特性,使得粒子在压片过程中拥有优化的加工属性,赋予片剂所需的优点。目的是形成均匀的颗粒,提高压片产量,并使片剂拥有所需的关键品质属性,如重量、硬度以及崩解性能等。 在湿法造粒时,配混料的活性成分、辅料组份和水混合在一起,形成均匀的颗粒。然后,这些均聚体或者粒子得到干燥、研磨、润滑等进一步加工,形成压片机所需的理想喂入材料。这些喂入材料的特性可以通过调节各种加工参数,包括水的含量、粉末喂入速度、螺杆速度等有可能产生影响的造粒等环节来进行控制。通过调节一个或者更多的变量,调节粒子属性,确保粒子在压片机中处于理想的性能状态。 但是,要生产出具有规定属性的粒子,需要认识这些关键的加工参数会对粒子产生何种影响,同时还必须认识粒子属性和最终片剂之间的关系。通过以下实验,可以看出动态粉末测试将如何帮助实现这些目标。动态粉末测试概述 动态粉末测试是对运动中的粉体而非静态粉体进行测量, 并直接测定了松体的流动特性,这有助于在非常接近真实加工环境的状态下对粉体进行表征。可以测得经混合、处于低应力状态、充气甚至呈流体状态下粉体样本的动态特性,以精确模拟加工环境,获得给定工艺条件下直接相关的数据。 当刀片沿着规定路径旋转通过粉体样本时,测量作用于刀片上的扭矩及力,以衡量动态粉末特性。当刀片向下穿过样本时,测得基本流动能(BFE)。它反映了粉体穿过挤出机或喂料机时,在受力状态下的流动特性。比能(SE)测量的则是刀片向上运动时粉体的特性,直接反映了低压环境下,如粉体在重力状态下自由流经模具时的行为特征。加工参数对湿法造粒粒子特性影响的研究 富瑞曼科技和基伊埃集团进行了一项研究,用以确定湿法造粒粒子的动态流动特性是否与片剂的硬度的特性相关。通常情况下,片剂硬度对片剂质量起关键作用。试验采用了基于ConsiGma 25连续高剪切粒子和干燥原理的实验室设备ConsiGma1。 这套系统包含具有专利的连续高剪切造粒及干燥机,可以加工几十克至五公斤、甚至更多的样本。 在该系统上进行的研究有利于促进高效的产品和工艺开发,系统停留时间少于30秒。用ConsiGma1生产的潮湿、干燥的粒子由FT4粉体流变仪进行了表征。 实验项目的第一阶段,对不同造粒条件,如不同含水率、粉体喂入速度和造粒机螺杆速度等状态下的粒子属性进行了评估测试,测试的是基于乙酰氨基酚(APAP)及磷酸氢钙(磷酸二钙)这两种粉体配方的模型。系统地改变了加工参数,并测量了所得到的潮湿粒子的BFE。图2显示的是以不同螺杆速率生产出来的APAP配方粒子的BFE随含水量变化的关系。 收集到的APAP配方数据显示,如果螺杆速度保持不变,则随着含水量增加,BFE也升高。当含水率相同时,低螺杆速度同时会产生高BFE的粒子。两种趋势都会出现,因为高含水量、低螺杆速度,造成喂料多,可能生产出更大、密度更高、粘结性更强、对刀片运动阻力相对更高的粒子。数据同样显示,当含水率为11%、 螺杆速度为600rpm时,所生产的粒子的BFE与采用螺杆速度为450rpm、含水率为8%的粒子的BFE相当。这项发现非常重要,因为它表示,具有相似特性的粒子可以采用不同加工条件获得。 图3显示,含水量和螺杆速度分别保持15%和 600rpm不变,当干燥粉末喂入造粒机的速度降低时,DCP配方制成的粒子的BFE显著增加。 其它数据表明,可以通过降低喂入速率,以更低的含水率得到相同BFE的粒子。如,含水15%、螺杆速度约为 18kg/小时的粒子的特性与含水25%、喂入速度为25kg/小时的粒子相近。结合APAP配混料的研究,结果显示,可以通过加工条件的不同组合来得到具有相同特性的特定粉体。 表1列出了,生产具有不同属性的两组粒子所采用的不同工艺参数。条件1和条件2获得的潮湿颗粒的BFE值约为2200mJ,而条件3和条件4获得的BFE值约为3200mJ。 在下列加工工艺,包括干燥、研磨、润滑等阶段的每一步都测量了粒子的BFE,以改善加工性能。本研究中所采用的流动助剂是硬脂酸镁。在所有这些阶段,不同组的相对BFE值保持不变,第3、4组的BFE值一直高于1、2。 图4模拟了加工过程每一阶段的粒子流动特性。条件3和4显示,干燥后的BFE值有所上升,因为,与条件1和2状态下的粒子相比,条件3和4状态下的粒子相对尺寸大、密度高、机械强度高。 研磨后,尽管粒子密度、形状和韧度差异依然存在,但尺寸更为接近。这也使得BFE的观察结果显得有理可据。这些差别在润滑后保持不变,状态1、2和3、4之间的差别明显。 这些结果清楚表明,可以在各种不同的加工条件下,加工出用BFE衡量的、具有特定流动特性的粒子。这些测试显示,BFE值可用于湿法造粒加工产品和工艺的开发, 但同时也会产生问题,即BFE值是否可以进一步用以预测压片机内的粒子行为,以及,更重要的是,BFE是否可以与片剂关键品质属性直接相关。在粒子动态特性与片剂质量之间建立相关性 采用相同的工艺参数,在压片机中对四批潮湿粒子进行了干燥、研磨、润滑。然后测量了片剂的硬度。图5 为片剂硬度与不同阶段粒子流动性的关系。 结果显示,BFE和片剂的硬度与湿态和干燥的粒子有关,而且与它们的变化极其有关。与潮湿粒子和润滑粒子有关是比较容易理解的。尽管两者的相关性不如它与干燥、研磨过的粒子来得明显。所观察到的润滑过的粒子之间差异性和相关性差应归因于硬脂酸镁的整体影响。 这个数据综合反映了粒子在不同加工阶段的流动性(用BFE进行表征)与最终粒子关键质量属性(此处指硬度)之间存在的直接关系。这意味着,一旦特定的BFE与更理想的片剂硬度相关,就可用于推动对湿法造粒工艺进行的优化。结果表明,假如潮湿粒子能够获得目标BFE,最终以硬度衡量的片剂质量就可得到保障。这为提高产品和工艺开发效率,并且,不管是分批还是连续造粒工艺,都能获得更好的工艺控制路径,创造了机会。面向未来今天,采用传统的批次加工方法依然占支配地位,但业内很多人预期,未来大量的产品会采用连续加工。本文中,富瑞曼科技和基伊埃集团共同为将这一理想变成现实向前迈进了一大步。文章揭示了通过采用不同的工艺条件,有望获得特定的片剂属性,并且指出,动态粉末特性如流动性与最终产品的特性直接相关。 本文最初于2014年3月刊登于《医药制造》杂志。结束 图 图1:FT4粉末流变仪?的基本工作原理。测量刀片(或叶片)在穿过样本时遭遇的阻力,量化所测量粒子或粉末松体的流动特性。图2:为APAP配方制备的粒子的BEF随着含水量的增加以及螺杆速度的下降而增加。图3:为DCP配方制备的粒子的BFE随着喂入速率的下降而显著上升。图4:在造粒的不同阶段BFE变化明显,但不同组的粒子之间会存在明显差异。Figure 5: A strong correlation is found between the BFE of the granules and final tablet hardness图5:粒子BFE和最终片剂硬度之间存在很强的关联度Table 1: Four different processing conditions used to make two distinct groups of granules表1:两组明显不同的粒子采用的4种不同加工条件
  • 粉末产品流动性测试解决方案
    药物粉末是一种干燥的、散状固体,由很多细小的颗粒组成,通常根据粗细和颗粒大小进行分类。粉末本身并没有被广泛地用作剂型,但经常被用于其他剂型的制备,如片剂,胶囊剂和吸入剂,并经常添加至其他成分中制成半固体状,如乳剂、软膏和膏状。1 方法介绍 粉末的流动性取决于几个因素,有些与粉末原材料有关,有些与实际生产过程有关,例如粉末从容器(料斗、漏斗、圆筒等)流出的能力或制成片剂时的可压缩性。美国药典章节和欧洲药典2.9.36章节药典推荐了三种测试粉末流动的方法:1 通过孔口流动测试定量粉末流过已知尺寸孔口的能力和时间是一种有效的测试方法。顾名思义,这种技术只适用于自由流动的粉末,不适用于粘性材料。2 静止角法(休止角)静止角,也有的称为休止角,是将粉末颗粒倒在水平表面时产生的圆锥形角度(相对于水平基底)。这与有关材料的密度、表面积、摩擦系数有关。3 剪切池法 测量破坏由散状样品形成的圆盘时的剪切力。包括2个阶段:样品固结和破坏(剪切强度),剪切池方法被广泛应用于制药行业来确定细小颗粒粉末和散状固体的流动特性以及它们在箱子、漏斗、给料机和其他处理设备上的表现。2 测试解决方案 Copley的BEP2型流动性测试仪为您提供了测试粉末流动性的方法,包含药典中引用的3种方法:通过孔口流动,静止角和剪切池,是一台一体而高效的仪器。通过在挡板机制中添加天平/计时器快捷装置来替代秒表,简化质量和时间的测试,可测试如下参数:a.固定重量样品的流动时间b.固定时间流出的样品重量c.固定体积样品的流动时间d.单位时间的样品重量(重量/时间)3 丰富的配件4 订货信息
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制