陶瓷抗弯强度检测仪

仪器信息网陶瓷抗弯强度检测仪专题为您提供2024年最新陶瓷抗弯强度检测仪价格报价、厂家品牌的相关信息, 包括陶瓷抗弯强度检测仪参数、型号等,不管是国产,还是进口品牌的陶瓷抗弯强度检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合陶瓷抗弯强度检测仪相关的耗材配件、试剂标物,还有陶瓷抗弯强度检测仪相关的最新资讯、资料,以及陶瓷抗弯强度检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

陶瓷抗弯强度检测仪相关的厂商

  • 宜兴精刚陶瓷科技有限公司成立于2012年,座落于中国江苏宜兴。我们拥有国外先进高科技技术和进口设备,是一家集研发、设计、生产特种陶瓷材料产品的专业性高科技企业。主要产品有:99氧化铝、氧化锆、碳化硅、氮化硅、ZTA特种陶瓷的结构件、高温耐火陶瓷管、棒、密封件、研磨件、基板、刀具以及各种异形件。产品具有高强度、高硬度、耐高温、耐磨损、耐腐蚀及绝缘等特性,是逐渐代替金属材料的新一代环保材料。 公司主专业生产95~99.9氧化铝结构陶瓷以及氧化锆陶瓷、氮化硅特种精密陶瓷,ZTA、堇青石等陶瓷材料产品 电热电器行业用各种规格材质的耐热、耐磨、耐电压、酸碱性陶瓷件。高铝质、刚玉质、碳化硅质,莫来石质耐高温陶瓷。普瓷、钛瓷,、高频瓷,75,85,95,99氧化铝陶瓷(管、棒、条、板、片、等陶瓷件),氧化铝刚玉管、电炉管.高温特种瓷件、耐火材料制品。  本公司拥有先进的生产加工设备,以及科研人员和技术人员,可根据客户图纸生产、加工、研发各类陶瓷异形件。产品尺寸精度高,性能稳定。
    留言咨询
  • 我公司主要生产氧化铝结构陶瓷、氧化锆陶瓷、氮化硼陶瓷,非标定制异形件、陶瓷管、刚玉管、陶瓷棒、刚玉坩埚,具有高强度、耐磨损、耐腐蚀、耐高温、绝缘性能好等特征。产品广泛应用于军工电器、航空航天、真空技术设备、工业窑炉、矿山机械、汽车电子、化工、机械等行业。
    留言咨询
  • 爱敏特陶瓷公司位于北方瓷都-唐山。由一批曾任职在跨国外资陶瓷集团(THUN)的人员创立,经过20年工作过程中的沉淀,积累了大量的设计研发经验,培养了一支技术扎实,研发、生产和质量控制QA经验丰富的队伍。与华北理工大学材料学院,燕山大学材料学院关系紧密,有着丰厚的研发基础。 品牌“爱敏特瓷”创立并专注于氧化铝陶瓷制品,氧化锆陶瓷制品,碳化硅制品等。先进的生产和检验设备,保证每只产品性能的一致性及可靠性。科学的管理机制,引进欧洲先进的AQL检测方法,从来料检验控制、生产过程控制到最终的成品检验控制,层层把关确保产品在生产过程中的每一个环节都受到有效的质量检测监控。公司产品广泛应用于石油、钢铁、冶金、工业制造、光伏、半导体、医药、等行业,并为大学实验室和科研机构提供配套产品以及产品方案。?????? 公司在为客户提供优质产品及超值服务的同时,也可以根据您公司的需求进行单独研制开发并提供技术支持(我们有专业的研发、模具和试验团队),非常感谢您关注我们的产品,希望能有机会与贵公司合作
    留言咨询

陶瓷抗弯强度检测仪相关的仪器

  • 陶瓷抗弯强度检测仪 400-860-5168转1580
    一、QJ211S陶瓷抗弯强度检测仪功能介绍: QJ211S陶瓷抗弯强度检测仪用于检测陶瓷、牙科陶瓷等材料三点弯曲、四点弯曲、压缩和拉伸试验等静态物理力学性能测试分析研究,具有应力、应变、位移三种闭环控制方式,自动求出最大力、抗拉强度、弯曲强度、弯曲应力、压缩强度、弹性模量、断裂延伸率、屈服强度等参数,并可满足GB、ISO、JIS、ASTM、DIN、JG、JT、YB、QB、YD、YY、QC、SY、SL、BB、HG等国际标准和行业标准,有着强大的数控显示系统和微机控制系统,全液晶数控设定所需参数,曲线,位移,力值能动态显示在液晶数显器上,联接电脑打印机实现全电脑控制并打印标准试验报告;以windows操作系统使试验数据曲线动态显示,试验数据可以任意删加,对曲线操作更加简便.轻松.随时随地都可以进行曲线遍历.叠加.分离.缩放.打印等全电子显示监控。二、托盘抗压检测设备技术参数:1、规格:QJ211S2、精度等级:0.5级3、最大负荷:10KN(10KN以内力值任意换);4、有效测力范围:0.02/100-100% 5、试验力分辨率,最大负荷50万码;内外不分档,且全程分辨率不变。6、有效试验宽度:320mm7、有效拉伸空间:500(800)mm8.试验速度:0.01~300mm/min9、速度精度:示值的±0.5%以内;10、位移测量精度:示值的±0.5%以内;11、变形测量精度:示值的±0.5%以内;12、采集感应方式:美国高精度传感器;13、控制系统:日本松下全数字交流伺服控制器;14、软件测控系统:全数字闭环控制系统,可实现恒应力、恒应变、恒位移、试验功能15、试台升降装置:快/慢两种速度控制,可调动;16、试台安全保护装置:软件自动诊断、电子限位;17、试台返回:手动可以最高速度返回试验初始位置,自动可在试验结束后自动返回;18、超载保护:超过最大负荷10%时自动保护;19、工装夹具配置:根据用户产品试样要求定制;20、选配装置:品牌联想液晶电脑一套;HP彩色喷默打印机一套;21、电机: 2KW-5KW23、主机重量:约145kg 三、托盘抗压检测设备公司承诺:1.购机前,我们专门派技术人员为您设计的合适流程和方案2.购机后,将免费指派技术人员为您调试安装3.整机保修一年,产品终身维护4.常年供应设备的易损件及耗品确保纸箱抗压强度试验机能长期使用
    留言咨询
  • 4PB玻璃抗弯强度检测仪/4PB试验机功能介绍: 本试验机适用于各种手机玻璃、电脑显示屏、电视屏、钢化玻璃、眼镜玻璃等材料的三点弯曲、四点弯曲测试,配上倾技的不同夹具还可以完成材料的拉伸、剪切、压缩、刺破等多种力学试验,可满足GB、ISO、JIS、ASTM、DIN、JG、JT、YB、QB、YD、YY、QC、SY、SL、BB、HG等国际标准和行业标准,有着强大的数控显示系统和微机控制系统,全液晶数控设定所需参数,曲线,位移,力值能动态显示在液晶数显器上,联接电脑打印机实现全电脑控制并打印标准试验报告;以windows操作系统使试验数据曲线动态显示,试验数据可以任意删加,对曲线操作更加简便.轻松.随时随地都可以进行曲线遍历.叠加.分离.缩放.打印等全电子显示监控。4PB玻璃抗弯强度检测仪/4PB试验机主要技术参数: 1、规格:QJ211S2、精度等级:0.5级3、最大负荷:10KN(10KN以内力值任意换);4、有效测力范围:0.02/100-100% 5、试验力分辨率,最大负荷50万码;内外不分档,且全程分辨率不变。6、有效试验宽度:320mm7、有效拉伸空间:500(800)mm8.试验速度:0.01~300mm/min9、速度精度:示值的±0.5%以内;10、位移测量精度:示值的±0.5%以内;11、变形测量精度:示值的±0.5%以内;12、采集感应方式:美国高精度传感器;13、控制系统:日本松下全数字交流伺服控制器;14、软件测控系统:全数字闭环控制系统,可实现恒应力、恒应变、恒位移、试验功能15、试台升降装置:快/慢两种速度控制,可调动;16、试台安全保护装置:软件自动诊断、电子限位;17、试台返回:手动可以最高速度返回试验初始位置,自动可在试验结束后自动返回;18、超载保护:超过最大负荷10%时自动保护;19、工装夹具配置:根据用户产品试样要求定制;20、选配装置:品牌联想液晶电脑一套;HP彩色喷默打印机一套;21、电机: 2KW-5KW23、主机重量:约145kg4PB玻璃抗弯强度检测仪/4PB试验机公司承诺:1.购机前,我们专门派技术人员为您设计合适的流程和方案2.购机后,将免费指派技术人员为您调试安装3.整机保修一年,产品终身维护4.常年供应设备的易损件及耗品确保能长期使用
    留言咨询
  • 河北抗弯强度试验机 400-860-5168转5976
    河北抗弯强度试验机本机可对橡胶、塑料、发泡材料、塑胶、薄膜、软包装、管材、纺织物、纤维、纳米材料、高分子材料、复合材料、合成材料、包装带、纸张、电线电览、安全带、保险带、皮革皮带、鞋类、胶带、聚合物、弹簧钢铸件、铜管有色金属、汽车零部件、合金材料及其它非金属材料和金属材料进行拉伸、压缩、弯曲、撕裂、90度剥离、180度剥离、剪切、粘合力、拔出力、延伸伸长率等试验。测试项目(一)普通测试项目:(普通显示值及计算值)★拉伸应力 ★拉伸强度★扯断强度 ★扯断伸长率★定伸应力 ★定应力伸长率★定应力力值 ★撕裂强度★任意点力值 ★任意点伸长率★抽出力 ★粘合力及取峰值计算值★压力试验 ★剪切剥离力试验★弯曲试验 ★拔出力穿刺力试验河北抗弯强度试验机1主题内容本标准规定了塑料复合在塑料或其它基材(如铝箔、纸、织物等)上的各种软质复合塑料材料剃离力的测定。2原理将规定宽度的试样,在一定的速度下,进行T型剥离,测定复合层与基林的平均剥离力3试验设备带有图形记录装置的拉伸试验机,或能满足本试验要求的其它装置。4试样测检测证集团股份有限公司4.1试样尺寸A法宽度15.0±0.1mm,长度200mm。用于复合薄膜等。B法宽度30.0±0.2mm,长度150mm。用于人造革、编织复合袋等。4.2试样制备将样品宽度方向的两端除去50mm,沿样品宽度方向均匀藏取纵、横试样各5条。复合方向为纵向。沿试样长度方向将复合层与基材预先剥开50mm,被剥开部分不得有明显损伤。若试样不易剥开、可将试样一端约20mm浸入适当的溶剂中处理,待溶剂完全挥发,再进行剥离力的试验。若复合层经过这种处理,仍不能与基材分离,则试验不可进行。5状态调节及试验环境试样应在温度23±2℃、相对湿度45%~55%的环境中放置4小时以上,然后在上述环境中进行试验。6试验速度A法300±50mm/m/n B法200±50mm/min。7试验步骤将试样剥开部分的两端分别夹在试验机上、下夹具上,使试样剥开部分的纵轴与上、下夹具中心连线重合,并松紧适宜。试验时,未剥开部分与拉伸方向呈T型,见图1。记录试样剥离过程中的剥离力曲线。河北抗弯强度试验机C.试样宽度、试验速度 d.纵、横方向上剥离力的算术平均值 e.如果需要,应给出剥离力的标准偏差及最大、最小值 f.取样日期、试验日期、试验人员。附加说明:本标准由中华人民共和国轻工业部提出。本标准由轻工业部塑料加工应用科学研究所归口。本标准由轻工业部塑料加工应用科学研究所负责起草。本标准主要起草人:曾新榕、李德英。本标准参焦采用DIN53357-82《塑料带和薄膜测试一膜层剥离试验》。河北抗弯强度试验机具有程控和机械两级限位保护;当负荷超过额定值5~10%时,自动停机保护;满足标准: QB/T1130 塑料直角撕裂性能试验方法满足标准:GB13022 塑料薄膜拉伸性能试验方法满足标准:GB/T16578-1996塑料和薄膜裤形撕裂方法满足标准:GB/T1040塑料拉伸性能试验方法河北抗弯强度试验机具有程控和机械两级限位保护;当负荷超过额定值5~10%时,自动停机保护;满足标准: QB/T1130 塑料直角撕裂性能试验方法满足标准:GB13022 塑料薄膜拉伸性能试验方法满足标准:GB/T16578-1996塑料和薄膜裤形撕裂方法满足标准:GB/T1040塑料拉伸性能试验方法
    留言咨询

陶瓷抗弯强度检测仪相关的资讯

  • 医用陶瓷材料力学测试,且看我英斯特朗
    陶瓷材料是人类生活和现代化建设中不可缺少的一种材料,它兼有金属材料和高分子材料的共同优点。应用领域非常广泛,涵盖科研、医疗、工业、建筑等,具有优异性能的高级陶瓷材料更是生物医疗领域的明星材料,在这类陶瓷材料的力学测试中经常能看到英斯特朗试验机的身影。陶瓷材料在现代医疗领域有着广泛的应用,其中包括补牙、牙冠、贴面、种植体和牙箍。标准ISO6872"牙科-陶瓷材料”对牙科所用陶瓷材料的力学性能做出了规定,同时提供了测试其弯曲强度的基本方法。测试时,采用英斯特朗万能材料试验机或ElectroPuls电子动静态测试系统,借助Bluehill® 软件运行试验及分析试验结果。采用微型压缩夹具,安装不同直径的砧子,装载小尺寸样品。测试既可在空气中进行,亦可浸在液体槽中来模拟人体内环境。英斯特朗弯曲夹具符合ISO6872标准试验的测试要求,夹具的特殊设计能确保跨度距离和对中的高精度,解决了这类试验中关键的对齐及平行问题。当今社会中,无数人正在遭受颈部椎间盘突出和腰间盘突出的痛苦,这是一种常见的人体老化现象。当连接脊椎的椎间盘失去灵活性和冲击吸收能力时,神经和脊髓就会受到压迫,引起手臂和颈部的慢性疼痛。过去40年,医学上往往采用颈椎融合术解除此病患,然而这种手术通常会导致颈骨不能运动,造成颈部其余椎间盘的负荷加重。针对上述情况,全新的临床试验是将人造的颈椎间盘组件,即由钛和陶瓷复合材料制成球窝结构,植入脊椎后可以代替受损的颈椎间盘,使患者的人造椎间盘的运动幅度可以和正常的颈椎间盘保持同样的水平。除了上述临床试验以外,医疗器械制造商也在研究人造颈椎间盘在遭受冲击时如何持保持持续有效,以及由钛杯边缘产生的陶瓷球开裂或剥落和固定于底座的陶瓷附件松动或损坏的情况。采用英斯特朗9350HV型落锤试验机,安装45kN (10000 磅) 载荷容量的冲击头可为试验提供足够大的载荷容量。该系统还配有气动回弹制动器,有效防止试样受到任何二次冲击。由于样品的大小、形状和样式不同,英斯特朗可针对客户的特殊需求定制平面锤头和承载夹具。根据英斯特朗9350HV型落锤试验机的控制特性,选择冲击能量和落锤点,客户能够系统地增加每个试样的载荷量级。这样就能收集人造椎间盘受到不同冲击时的应变数据,然后形成产品的冲击性能记录。除上述应用场景外,英斯特朗试验机也可应用在其他高性能陶瓷材料或结构的测试中。SiC陶瓷具有高强度、高硬度、可靠的化学稳定性、良好抗热冲击性能,在国防、核能和空间技术、汽车工业及海洋工程等领域获得了广泛应用。Instron试验机可对SiC陶瓷材料的抗弯强度性能进行检测,测出其三点抗弯强度。另外,英斯特朗试验机也可以应用在双重固化树脂陶瓷粘接耐久性测试上。将样品通过502胶水固定在自制器具上,然后将器具安装在Instron万能材料试验机上,使用缝合线(直径为0.3~0.349mm)沿着树脂柱粘接区的界面,通过抗拉实验模式对树脂柱与陶瓷的粘接界面进行剪切加载,加载速度为1.0mm/min,直至粘接界面断裂,即可测试双重固化树脂陶瓷粘接耐久性。
  • 综述|高导热氮化硅陶瓷基板研究现状
    摘要:为了减少环境污染、打造绿色经济,高效地利用电力变得越来越重要。电力电子设备是实现这一目标的关键技术,已被广泛用于风力发电、混合动力汽车、LED 照明等领域。这也对电子器件中的散热基板提出了更高的要求,传统的陶瓷基板如 AlN、Al2O3、BeO 等的缺点也日益突出,如较低的理论热导率和较差的力学性能等,严重阻碍了其发展。相比于传统陶瓷基板材料,氮化硅陶瓷由于其优异的理论热导率和良好的力学性能而逐渐成为电子器件的主要散热材料。关键词:半导体 陶瓷基板 氮化硅 热导率然而,目前氮化硅陶瓷实际热导率还远远低于理论热导率的值,而且一些高热导率氮化硅陶瓷(>150 W/(mK))还处于实验室阶段。影响氮化硅陶瓷热导率的因素有晶格氧、晶相、晶界相等,其中氧原子因为在晶格中会发生固溶反应生成硅空位和造成晶格畸变,从而引起声子散射,降低氮化硅陶瓷热导率而成为主要因素。此外,晶型转变和晶轴取向也能在一定程度上影响氮化硅的热导率。如何实现氮化硅陶瓷基板的大规模生产也是一个不小的难题。现阶段,随着制备工艺的不断优化,氮化硅陶瓷实际热导率也在不断提高。为了降低晶格氧含量,首先在原料的选择上降低氧含量,一方面可选用含氧量比较少的 Si 粉作为起始原料,但是要避免在球磨的过程中引入氧杂质 另一方面,选用高纯度的 α-Si3N4 或者 β-Si3N4作为起始原料也能减少氧含量。其次选用适当的烧结助剂也能通过减少氧含量的方式提高热导率。目前使用较多的烧结助剂是 Y2O3-MgO,但是仍不可避免地引入了氧杂质,因此可以选用非氧化物烧结助剂来替换氧化物烧结助剂,如 YF3-MgO、MgF2-Y2O3、Y2Si4N6C-MgO、MgSiN2-YbF3 等在提高热导率方面也取得了非常不错的效果。研究发现通过加入碳来降低氧含量也能达到很好的效果,通过在原料粉体中掺杂一部分碳,使原料粉体在氮化、烧结时处于还原性较强的环境中,从而促进了氧的消除。此外,通过加入晶种和提高烧结温度等方式来促进晶型转变及通过外加磁场等方法使晶粒定向生长,都能在一定程度上提高热导率。为了满足电子器件的尺寸要求,流延成型成为大规模制备氮化硅陶瓷基板的关键技术。本文从影响热导率的主要因素入手,重点介绍了降低晶格氧含量、促进晶型转变及实现晶轴定向生长三种提高实际热导率的方法 然后,指出了流延成型是大规模制备高导热氮化硅陶瓷的关键,并分别从流延浆料的流动性、流延片和浆料的润湿性及稳定性等三方面进行了叙述 概述了目前常用的制备高导热氮化硅陶瓷的烧结工艺现状 最后,对未来氮化硅高导热陶瓷的研究方向进行了展望。关键词:半导体 陶瓷基板 氮化硅 热导率00引言随着集成电路工业的发展,电力电子器件技术正朝着高电压、大电流、大功率密度、小尺寸的方向发展。因此,高效的散热系统是高集成电路必不可少的一部分。这就使得基板材料既需要良好的机械可靠性,又需要较高的热导率。图 1 为电力电子模块基板及其开裂方式。研究人员对高导热系数陶瓷进行了大量的研究,其中具有高热导率的氮化铝(AlN)陶瓷(本征热导率约为320 W/(mK))被广泛用作电子器件的主要陶瓷基材。图 1 电力电子模块基板及其开裂方式但是,AlN 陶瓷的力学性能较差,如弯曲强度为 300~400 MPa,断裂韧性为 3~4 MPam1/2,导致氮化铝基板的使用寿命较短,使得它作为结构基板材料使用受到了限制。另外,Al2O3 陶瓷的理论热导率与实际热导率都很低,不适合应用于大规模集成电路。电子工业迫切希望找到具有良好力学性能的高导热基片材料,图 2 是几种陶瓷基板的强度与热导率的比较,因此,Si3N4 陶瓷成为人们关注的焦点。图 2 几种陶瓷基板的强度与热导率的比较与 AlN 和 Al2O3 陶瓷基板材料相比,Si3N4 具有一系列独特的优势。Si3N4 属于六方晶系,有 α、β 和 γ 三种晶相。Lightfoot 和 Haggerty 根据 Si3N4 结构提出氮化硅的理论热导率在200~300 W/(mK)。Hirosaki 等通过分子动力学的方法计算出 α-Si3N4 和 β-Si3N4 的理论热导率,发现Si3N4 的热导率沿 a 轴和 c 轴具有取向性,其中 α-Si3N4 单晶体沿 a轴和 c轴的理论热导率分别为105 W/(mK)、225W/(mK);β-Si3N4 单晶体沿a轴和c轴方向的理论热导率分别是 170 W/(mK)、450 W/(mK)。Xiang 等结合密度泛函理论和修正的 Debye-Callaway 模型预测了 γ-Si3N4 陶瓷也具有较高的热导率。同时 Si3N4 具有高强度、高硬度、高电阻率、良好的抗热震性、低介电损耗和低膨胀系数等特点,是一种理想的散热和封装材料。现阶段,将高热导率氮化硅陶瓷用于电子器件的基板材料仍是一大难题。目前,国外只有东芝、京瓷等少数公司能将氮化硅陶瓷基板商用化(如东芝的氮化硅基片(TSN-90)的热导率为 90 W/(mK))。近年来国内的一些研究机构和高校相继有了成果,北京中材人工晶体研究院成功研制出热导率为 80 W/(mK)、抗弯强度为 750 MPa、断裂韧性为 7.5MPam1/2 的 Si3N4 陶瓷基片材料,其已与东芝公司的商用氮化硅产品性能相近。中科院上硅所曾宇平研究员团队成功研制出平均热导率为 95 W/(mK),最高可达 120 W/(mK)且稳定性良好的氮化硅陶瓷。其尺寸为 120 mm×120 mm,厚度为 0.32 mm,而且外形尺寸能根据实际要求调整。目前我国的商用高导热 Si3N4 陶瓷基片与国外还是存在差距。因此,研发高导热的 Si3N4 陶瓷基片必将促进我国 IGBT(Insula-ted gate bipolar transistor)技术的大跨步发展,为步入新能源等高端领域实现点的突破。近年来氮化硅陶瓷基板材料的实际热导率不断提高,但与理论热导率仍有较大差距。目前,文献报道了提高氮化硅陶瓷热导率的方法,如降低晶格氧含量、促进晶型转变、实现晶粒定向生长等。本文阐述了如何提高氮化硅陶瓷的热导率和实现大规模生产的成型技术,重点概述了国内外高导热氮化硅陶瓷的研究进展。01晶格氧的影响氮化硅的主要传热机制是晶格振动,通过声子来传导热量。晶格振动并非是线性的,晶格间有着一定的耦合作用,声子间会发生碰撞,使声子的平均自由程减小。另外,Si3N4 晶体中的各种缺陷、杂质以及晶粒界面都会引起声子的散射,也等效于声子平均自由程减小,从而降低热导率。图 3 为氮化硅的微观结构。图 3 氮化硅烧结体的典型微观结构研究表明,在诸多晶格缺陷中,晶格氧是影响氮化硅陶瓷热导率的主要缺陷之一。氧原子在烧结的过程中会发生如下的固溶反应:2SiO2→ 2SiSi +4ON+VSi (1)反应中生成了硅空位,并且原子取代会使晶体产生一定的畸变,这些都会引起声子的散射,从而降低 Si3N4 晶体的热导率。Kitayama 等在晶格氧和晶界相两个方面对影响 Si3N4晶体热导率的因素进行了系统的研究,发现 Si3N4晶粒的尺寸会改变上述因素的影响程度,当晶粒尺寸小于 1μm时,晶格氧和晶界相的厚度都会成为影响热导率的主要因素 当晶粒尺寸大于 1μm 时,晶格氧是影响热导率的主要因素。而制备具有高热导率的氮化硅陶瓷,需要其具有大尺寸的晶粒,因此通过降低晶格氧含量来制得高热导率的氮化硅显得尤为关键。下面从原料的选择、烧结助剂的选择和制备过程中碳的还原等方面阐述降低晶格氧含量的有效方法。1.1 原料粉体选择为了降低氮化硅晶格中的氧含量,要先得从原料粉体上降低杂质氧的含量。目前有两种方法:一种是使用低含氧量的 Si 粉为原料,经过 Si 粉的氮化和重烧结两步工艺获得高致密、高导热的 Si3N4 陶瓷。将由 Si 粉和烧结助剂组成的 Si的致密体在氮气气氛中加热到 Si熔点(1414℃)附近的温度,使 Si 氮化后转变为多孔的 Si3N4 烧结体,再将氮化硅烧结体进一步加热到较高温度,使多孔的 Si3N4 烧结成致密的 Si3N4 陶瓷。另外一种是使用氧含量更低的高纯 α-Si3N4 粉进行烧结,或者直接用 β-Si3N4 进行烧结。日本的 Zhou、Zhu等以 Si 粉为原料,经过 SRBSN 工艺制备了一系列热导率超过 150W/(mK)的氮化硅陶瓷。高热导率的主要原因是相比于普通商用 α-Si3N4 粉末,Si 粉经氮化后具有较少的氧含量和杂质。Park 等研究了原料Si 粉的颗粒尺寸对氮化硅陶瓷热导率的影响,发现 Si 颗粒尺寸的减小能使氮化硅孔道变窄,有利于烧结过程中气孔的消除,进而得到致密度高的氮化硅陶瓷。研究表明,当 Si 粉减小到 1μm 后,氮化硅陶瓷的相对密度能达到 98%以上。但是在 SRBSN 这一工艺减小原料颗粒尺寸的过程中容易使原料表面发生氧化,增加了原料中晶格氧的含量。Guo等分别用 Si 粉和 α-Si3N4 为原料进行了对比试验。研究发现,以 Si 粉为原料经过氮化后能得到含氧量较低(0.36%,质量分数)的 Si3N4 粉末,通过无压烧结制得热导率为 66.5W/(mK)的氮化硅陶瓷。而在同样的条件下,以 α-Si3N4 为原料制备的氮化硅陶瓷,其热导率只有 56.8 W/(mK)。用高纯度的 α-Si3N4 粉末为原料,也能制得高热导率的氮化硅陶瓷。Duan 等以 α-Si3N4 为原料,制备了密度、导热系数、抗弯强度、断裂韧性和维氏硬度分别为 3.20 gcm-3 、60 W/(mK)、668 MPa、5.13 MPam1/2 和 15.06 GPa的Si3N4 陶瓷。Kim 等以 α-Si3N4为原料制备了热导率为78.8 W/(mK)的氮化硅陶瓷。刘幸丽等以不同配比的 β-Si3N4/α-Si3N4 粉末为起始原料,制备了热导率为108 W/(mK)、抗弯强度为 626 MPa的氮化硅陶瓷。结果表明:随着 β-Si3N4 粉末含量的增加,β-Si3N4柱状晶粒平均长径比的减小使得晶粒堆积密度减小,柱状晶体积分数相应增加,晶间相含量减少,热导率提高。彭萌萌等研究了粉体种类(β-Si3N4或 α-Si3N4)及 SPS 保温时间对氮化硅陶瓷热导率的影响。研究发现,采用 β-Si3N4粉体制备的氮化硅陶瓷的热导率比采用相同工艺以 α-Si3N4为粉体制备的氮化硅陶瓷高 15% 以上,达到了 105W/(mK)。不同原料制备的Si3N4材料的热导率比较见表1。表 1 不同原料制备的 Si3N4材料的热导率比较综合以上研究可发现,采用 Si 粉为原料制得的样品能达到很高的热导率,但是在研磨的过程中容易发生氧化,而且实验过程繁琐,耗时较长,不利于工业化生产 使用高纯度、低含氧量的 α-Si3N4粉末为原料时,由于原料本身纯度高,能制备出性能优异的氮化硅陶瓷,但是这样会导致成本增加,不利于大规模生产 虽然可以用 β-Si3N4 取代 α-Si3N4为原料,得到高热导率的氮化硅陶瓷,但是 β-Si3N4的棒状晶粒会阻碍晶粒重排,导致烧结物难以致密。1.2 烧结助剂选择Si3N4属于共价化合物,有着很小的自扩散系数,在烧结过程中依靠自身扩散很难形成致密化的晶体结构,因此添加合适的烧结助剂和优化烧结助剂配比能得到高热导率的氮化硅陶瓷。在高温时烧结助剂与Si3N4表面的 SiO2反应形成液相,最后形成晶界相。然而晶界相的热导率只有 0.7~1 W/(mK),这些晶界相极大地降低了氮化硅的热导率,而且一些氧化物烧结添加剂的引入会导致 Si3N4晶格氧含量增加,也会导致热导率降低。目前氮化硅陶瓷的烧结助剂种类繁多,包括各种稀土氧化物、镁化物、氟化物和它们所组成的复合烧结助剂。稀土元素由于具有很高的氧亲和力而常被用于从 Si3N4晶格中吸附氧。目前比较常用的是镁的氧化物和稀土元素的氧化物组成的混合烧结助剂。Jia 等在氮化硅陶瓷的烧结过程中添加复合烧结助剂 Y2O3-MgO,制备了热导率达到 64.4W/(mK)的氮化硅陶瓷。Go 等同样采用 Y2O3-MgO为烧结助剂,研究了烧结助剂 MgO 的粒度对氮化硅微观结构和热导率的影响。研究发现,加入较粗的 MgO 颗粒会导致烧结过程中液相成分分布不均匀,使富 MgO 区周围的 Si3N4晶粒优先长大,从而导致最终的 Si3N4陶瓷中大颗粒的 Si3N4晶粒的比例增大,热导率提高。然而,加入氧化物烧结助剂会不可避免地引入氧原子,因此为了降低晶格中的氧杂质,可以采用氧化物 + 非氧化物作为烧结助剂。Yang 等以 MgF2-Y2O3为烧结添加剂制备出性能良好的高导热氮化硅陶瓷,发现用 MgF2可以降低烧结过程中液相的粘度,加速颗粒重排,使粉料混合物能够在较低温度(1600℃)和较短时间(3 min)内实现致密化,而且低的液相粘度与高的 Si、N 原子比例有助于 Si3N4 的 α→β 相变和晶粒生长,从而提高 Si3N4 陶瓷的热导率。Hu 等分别以 MgF2-Y2O3和 MgO-Y2O3为烧结助剂进行了对比试验,并探究了烧结助剂的配比对热导率的影响。相比于 MgO-Y2O3,用 MgF2-Y2O3作为烧结助剂时 Si3N4陶瓷热导率提高了 19%,当添加量为 4%MgF2 -5%Y2O3时,能达到最高的热导率。Li 等以 Y2Si4N6C-MgO 代替 Y2O3 -MgO 作为烧结添加剂,通过引入氮和促进二氧化硅的消除,在第二相中形成了较高的氮氧比,导致在致密化的 Si3N4 试样中颗粒增大,晶格氧含量降低,Si3N4 -Si3N4 的连续性增加,使Si3N4 陶瓷的热导率由 92 W/(mK)提高到 120 W/(mK),提高了 30.4%。为了进一步提高液相中的氮氧比,降低晶格氧含量,通常还采用非氧化物作为烧结助剂。Lee 等研究了氧化物和非氧化物烧结添加剂对 Si3N4 的微观结构、导热系数和力学性能的影响。以 MgSiN2 -YbF3 为烧结添加剂,制备出导热系数为 101.5 W/(mK)、弯曲强度为822~916 MPa 的 Si3N4 陶瓷材料。经研究发现,相比于氧化物烧结添加剂,非氧化物 MgSiN2 和氟化物作为烧结添加剂能降低氮化硅的二次相和晶格氧含量,其中稀土氟化物能与 SiO2 反应生成 SiF4,而SiF4 的蒸发导致晶界相减少,同时也会导致晶界相 SiO2 还原,降低晶格氧含量,进而达到提高热导率的目的。不同烧结助剂制备的氮化硅陶瓷热导率比较见表 2,显微结构如图 4所示。表 2 不同烧结助剂制备的 Si3N4材料的热导率比较图 4 氧化物添加剂(a)MgO-Y2O3 和(d)MgO-Yb2O3、混合添加剂(b)MgSiN2 -Y2O3 和(e)MgSiN3 -Yb2O3 、非氧化物添加剂(c)MgSiN2 -YF3 和(f)Mg-SiN2 -YbF3 的微观结构目前主流的烧结助剂中稀土元素为 Y 和 Yb 的化合物,但是有些稀土元素并不能起到提高致密度的作用。Guo等分别用 ZrO2 -MgO-Y2O3和 Eu2O3 -MgO-Y2O3作为烧结助剂,制得了氮化硅陶瓷,经研究发现 Eu2O3 -MgO-Y2O3的加入反而抑制了氮化硅陶瓷的致密化。综合以上研究发现,相比于氧化物烧结助剂,非氧化物烧结助剂能额外提供氮原子,提高氮氧比,促进晶型转变,还能还原 SiO2 起到降低晶格氧含量、减少晶界相的作用。1.3 碳的还原前面提到的一些能高效降低晶格氧含量的烧结助剂,如Y2Si4N6C和 MgSiN2 等,无法从商业的渠道获得,这就给大规模生产造成了困扰,而且高温热处理也会导致高成本。因此,从工业应用的角度来看,开发简便、廉价的高导热 Si3N4 陶瓷的制备方法具有重要的意义。研究发现,在烧结过程中掺杂一定量的碳能起到还原氧杂质的作用,是一种降低晶格氧含量的有效方法。碳被广泛用作非氧化物陶瓷的烧结添加剂,其主要作用是去除非氧化物粉末表面的氧化物杂质。在此基础上,研究者发现少量碳的加入可以有效地降低 AlN 陶瓷的晶格氧含量,从而提高 AlN 陶瓷的热导率。同样地,在 Si3N4 陶瓷中引入碳也可以降低氧含量,主要是由于在氮化和后烧结过程中,适量的碳会起到非常明显的还原作用,能极大降低 SiO 的分压,增加晶间二次相的 N/O 原子比,从而形成双峰状显微结构,得到晶粒尺寸大、细长的氮化硅颗粒,提高氮化硅陶瓷的热导率。Li 等用 BN/石墨代替 BN 作为粉料底板后,氮化硅陶瓷的热导率提升了 40.7%。研究发现,即使 Si 粉经球磨后含氧量达到了 4.22%,氮化硅陶瓷的热导率依然能到达 121 W/(mK)。其原因主要是石墨具有较强的还原能力,在氮化的过程中通过促进 SiO2 的去除,改变二次相的化学成分,在烧结过程中进一步促进 SiO2 和 Y2Si3O3N4 二次相的消除,从而使产物生成较大的棒状晶粒,降低晶格氧含量,提高 Si3N4 -Si3N4 的连续性。研究表明,虽然掺杂了一部分碳,但是氮化硅的电阻率依然不变,然而最终的产物有很高的质量损失比(25.8%),增加了原料损失的成本。Li 等发现过量的石墨会与表面的 Si3N4 发生反应,这是导致氮化硅陶瓷具有较高质量损失比的关键因素。于是他们改进了制备工艺,采用两步气压烧结法,用 5%(摩尔分数) 碳掺杂 93%α-Si3N4 -2%Yb2O3
  • 全国首台最大腔体古陶瓷检测仪问世
    由重庆市硅酸盐研究所投资50万余元,与生产厂家共同研制的全国首台最大腔体古陶瓷检测仪,24日将随该研究所的古陶瓷检测中心正式挂牌亮相。

陶瓷抗弯强度检测仪相关的方案

陶瓷抗弯强度检测仪相关的资料

陶瓷抗弯强度检测仪相关的试剂

陶瓷抗弯强度检测仪相关的论坛

  • 【资料】多孔陶瓷抗弯强度试验方法 GB 1965-80

    多孔陶瓷抗弯强度试验方法 GB 1965-80 本方法适用于测定多孔陶瓷制品的室温抗弯强度。一、仪器设备 1.水泥抗折、抗张杠杆试验机 夹具要求如下: 名 称 制造尺寸(毫米) 加荷及支撑刀口的直径 10±0.1 支撑两个刀口的中心距离 50±0.1 两个支撑刀口须在同一水平面内,并且互相平行。加荷刀口应处在两个支撑刀口 的正中央。2.卡尺:应能读到0.01厘米。二、试样制备3.试样规格为厚10±1毫米,宽20±1毫米,长120±2毫米。每组试样不得少于 五块。4.对于直接切取上述试样有困难的试验制品,可以用与制品生产相同的工艺制 作试样。5.试样必须研磨平整,不允许存在制样造成的缺边或裂纹。试验前,必须将试 样表面的杂质颗粒清除干净。三、试验步骤 6.使用水泥抗折、抗张试验机前,须清除夹具圆柱刀口表面上的粘着物,并使 杠杆在无负荷情况下呈平衡状态。7.放入试样,使试样长棱与刀口垂直,两支撑刀口与试样端面距离相等。8.对于杠杆比为10的杠杆试验机,试验时铅弹流速为100±20克/秒。 试样折断后称量铅弹及小桶的重量,精确至10克。 9.测量试样折断处的厚度和宽度,精确至0.01毫米。 四、结果计算及数据处理 10.将测量数据代入下式计算抗弯强度,结果保留三位有效数字。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705202346_52420_1625938_3.gif[/img]式中:Rf——多孔陶瓷抗弯强度(公斤/厘米2);Pb——试祥折断时的负荷(公斤);L——支撑刀口之间的距离(厘米);b——试样断口处宽度(厘米);h——试样断口处厚度(厘米)。对于杠杆试验机 Pb=GK? 式中:G——试样折断时铅弹重量(公斤);K——杠杆比。11.数据处理按以下原则进行(1)当所有试样的强度观测值的最大相对误差≤15%时,以它们的平均值作为 试验结果。[img]http://ng1.17img.cn/bbsfiles/images/2007/05/200705202346_52421_1625938_3.gif[/img](2)最大相对误差>15%时,舍弃相对误差最大的观测值,然后将剩余观测值 再接上述方法计算验证,直到符合规定为止。 (3)舍去的观测值数目,若达到试祥总数的40%时,应重新取样试验。五、试验记录 试验记录应包括下列内容: 试样名称、试样编号、负荷增加速度、支撑两刀口间距、折断时负荷、断面厚度、 断面宽度、数据舍弃情况、最终结果、试验日期和人员。

  • 【分享】GBT 4741-1999 陶瓷材料抗弯强度试验方法

    GB/T 4741-1999 陶瓷材料抗弯强度试验方法 简介: 本标准规定了用三点负荷法测定陶瓷材料室温抗弯强度的试验设备、试样、试验步骤、结果计算及数据处理。本标准适用于陶瓷材料及匣钵等陶瓷器辅助材料。 STANDARD test method for bending strength of ceramic materials发布部门: 国家质量技术监督局 提出单位: 国家轻工业局 陶瓷材料的抗弯强度试验方法范围  本标准规定了用三点负荷法测定陶瓷材料室温抗弯强度的试验设备,试样、试验步骤、结果计算及数据处理。 本标准适用于陶瓷材料及匣钵等陶瓷器辅助材料  2 定义  本标准用下列定义。 抗弯强度极限   试样受静弯曲力作用到破坏时的最大应力,用试样破坏时所受弯曲力距断裂处的断面模数之比来表示。   3 设备   3.1 弯曲强度试验机:相对误差不大于1%,能够等速加荷,加荷及支撑刀口直径为10mm±0.1mm。  3.2 游标卡尺:精度为0.2mm。  3.3 烘箱:能在110℃±5℃保温。  3.4 干燥器   3.5 天平:感量为0.1g。   4 试样   4.1 长120mm,宽厚比为1∶1的长方体试样10根    4.2 试样的制备采用与该材料在实际生产中相同的工艺条件。  4.3 试样必须加工规整,不允许存在明显缺陷。  5 试验步骤  5.1 将试样置于温度为110℃±5℃的烘箱中,烘干至恒重,然后放入干燥器中冷却至室温。  5.2 将试样安放在支撑刀口上,调整支撑刀口间距,使支撑刀口以外试样的长度为10mm, 两个支撑刀口必须在同一平面内且互相平行,并使加荷刀口位于两支撑刀口的正中。  5.3 开启弯曲强度试验机。注意加荷刀口接触试样时不得冲击,以平均10~50N/s的速度等速加荷,(弯曲强度较小的试样,请选择较低的加荷速度)直至破坏。记录试样破坏时的最大载荷。  5.4 用游标卡尺测量试样断裂处的宽度和厚度,精确到0.1mm。6.2 数据处理  6.2.1 最大相对偏差大于10%时,舍去相对偏差最大的试样,然后将剩余值再计算,直至符合规定为止,最大相对偏差按式(2)计算6.2.2 舍去的样品,若达到试样总数的4%,应重新制样测试。  6.2.3 用有效样品的算术平均值作为该试样的抗弯强度值,数据修约到0.1MPa。  7 测试报告  7.1 送样单位、试样名称、试样编号。  7.2 试样跨距、加荷速度、断面厚度、断面宽度。  7.3 数据舍弃情况、抗弯强度值。  7.4 试验日期、试验人员、试验单位。 测定吸水率.显气孔率.容重等    1 范围   本标准规定了陶瓷砖吸水率、显气孔率、表观相对密度和容重的测定方法。祥品的开口气孔吸入饱和的水份有两种方法:煮沸和真空下浸泡。煮沸法水份进入容易浸入的开口气孔;真空法水份注满开口气孔。  煮沸法适用于陶瓷砖分类和产品说明,真空法适用于除分类以外的显气孔率、表观相密度和容重的测定。   2 原理   干陶瓷砖吸饱水后吊挂在水中。用于干质量、饱和后质量和吊挂质量之间相互关系参数的计算。   3 仪器  3.1 能在(110±5)℃温度下工作的烘箱。能获得桢栓测结果的微波、红外或其他干燥系统也可适用。   3.2 供煮沸用适当的情性材料制成的加热器。   3.3 热源。   3.4 能称量精确到试样质量0.01%的天平。   3.5 去离子水或蒸馏水。   3.6 干燥器。   3.7 麂皮。   3.8 吊环、绳索或篮子:能将试样放入水中悬吊称其质量。   3.9 玻璃烧杯或者大小和形状与其类似的容器。将试样用吊环(3.8)吊在天平的(3.4)一端,使试样完全浸入水中,试样和吊环不与容器的任何部分接触。   3.10 能容纳所要求数量试样的足够大容积的真空箱和真空系统,而且能达(100±1)Kpa的真空度并保持30min。   4 试样   4.1 每种类型的砖用10块整砖测试。   国家质量技术监督局1999-11-01批准 2000-01-01实施  4.2 如每块砖的表面积大于0.04m2时,只需用5块整砖作测试。如每块砖的表面积大于0.16m2时,至少在三块整砖的中间部位切割最小边长为100mm的五块试样。  4.3 如每块砖的质量小于50g,则需足够数量的砖使每种测试样品达到50-100g。  4.4 砖的边长大于200mm时,可切割成小块,但切割下的每一块应计入测量值内。多边形和其他非矩形砖,其长和宽均按矩计算。   5 步骤   将砖放在(110±5)℃的烘箱中(3.1)干燥至恒重,即每隔24h的两次连续质量之差小于0.1%。砖放在有硅胶或其他干燥剂的干燥气内(3.6)冷却至室温,不能使用酸性干燥剂。每块砖按表1的测量精度称量和记录。5.1 水的饱和  5.1.1 煮沸法   将砖竖直放在盛有去离子水或蒸馏水的加热器中(3.2),使砖互不接触。砖的上部应保持有5cm深度的水(3.5)。在整个试验中都应保持高于5cm的水面。将水加热至沸腾并保持煮沸2h。然后切断热源(3.3),使砖完全浸泡在水中冷却4h±15mm至室温。也可用常温下的水或制冷器将样品冷却至室温。将一块浸温过的麂皮(3.7)用手拧干。并将麂皮放在平台上轻轻地依每块试样的称量结果。保侍与干燥状态下的相同精度(见表1)。  5.1.2 真空法   将砖直放入真空箱中(3.10),使砖互不接触。抽真空至(100±1)Kpa),并保持30min。并保持真空的同时,加入足够的水覆盖并高出5cm,停止抽真空,让砖浸泡15min,将一块浸湿过的麂皮(3.7)用手干。将麂皮放在平台上依次轻轻擦干每块砖的表面,对于凹凸或有浮雕的表面应用麂皮轻快地擦去表面水份,然后立即称重,记录每块试亲友的测量结果。保持与干燥状态下的相同精度(见表1)。  5.2 悬挂称量    称量真空法吸水后、悬挂在水中的每块试样的质量(M3),精确至0.01g.。称量时,将样品挂在天平(3.4)一臂的吊环、绳索或篮子上(3.8)。实际称量前,将安装好并浸入水中的吊环、绳索或篮子放在天平上,使天平处于平衡位置。吊环、绳索或篮了在水中的深度与放试样称量时的相同。    6 结果表示    m1 -干砖的质量    m2b —在沸水中饱的砖的质量    m2 —真空法吸水饱和的砖的质量    m3 —真空法吸水饱和后悬挂在水中的砖的质量    在下面的计算中,假设1cm3水重lg,此假设室 温下误差3%以内。6.1 吸水率   计算每一块砖的吸水率F(b,v),用于砖质量的百分数表示。计算公式如下:    式中:m1—干砖的质量    m2—湿砖的质量    Eb表示用m2b测定的吸水率,Ev表示用m2测定的吸水率。Eb代表水仅注入容易进入的气孔,而Ev代表水最大可能地注入所有气孔。    6.2 显气孔率   6.2.1 用下面关系式确定表观体积V(单位cm2)   V=m2v – m3    6.2.2 用下面关系式确定开口气孔部分V0和不透水部分V1的体积(单位cm3)    V0=m2v – m1    V1=m1 – m3    6.2.3 显气孔率P用试样的开气孔体积与表观体积的关系式的百分数表示。计算公式如下:    6.3 表观相对密度    计算试样透水部分的表观相对密度T。计算公式如下:      6.4 容量    试样的容易B(g/cm3)试样的干重除以表观体积(包括气孔)所得的商表示。计算公式如下:     试验报告包括以下内容: 参照本标准; 砖的说明; 每一块砖各项试验性能的试验结果; 各个试验性能结果的平均值。

  • 【分享】抗弯强度 - 名词解释

    抗弯强度 - 名词解释 抗弯强度是指材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度。一般采用三点抗弯测试或四点测试方法评测。其中四点测试要两个加载力,比较复杂;三点测试最常用。其值与承受的最大压力成正比。抗弯强度(弯曲强度)bendingstrength又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。 1. 抗弯强度 - 特点机械性能(machnicalproperties):当材料受外力时表现出来的各种力学性能。2.应力(stress):当材料受外力时材料内部对外力的反应。应力的大小用下述公式表示:应力(δ)=作用(F)/材料单位面积(A),单位为Pa。3.应变(strain):当材料受外力作用时引起的形变。应变的大小用下述公式表示:应变(ε)=变化长度(△L)/初始长度(L)。4.拉应力或张应力(tensilestress):材料受到拉伸时的内部应力。5.压应力或压缩应力(compressivestress):材料受到压缩时的内部应力。6.剪应力(shearstress):材料受到切错作用力时,相互平行的部分发生滑动时的内部应力。但当某一段材料或修复体受力时,往往是三种应力形式同时存在。例如咀嚼压力作用于固定桥时,桥体倪面受到的力为压应力,桥体的龈底则为拉应力,基牙修复体与桥体连接处为剪应力。7.抗拉强度或抗张强度(tensilestrength)8.压缩强度或抗压强度(compressivestrength):在试件上施加压缩载荷,至试件破坏时的单位面积载荷值。9.弯曲强度(bendingstrength):又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。10.硬度(hardness):材料抵抗其它硬物压入引起凹陷变形的能力。常用的硬度单位有布氏硬度(HB或BHN),维氏硬度(Hv或VHN),洛氏硬度(HRA、HRC或RHN)奴氏硬度(HK或KHN)。材料的表面硬度是其强度、比例极限、韧性、延展性及抗磨损、抗切割能力等多种性质综合作用的结果。11.冲击强度(impactstrength):材料在冲击力作用下折断所需的能量。12.延性和展性(ductilityandmalleability):延性是材料在拉力作用下不折断而经受恒久变形的能力。展性是材料在压力作用不折断而经受恒久变形的能力。13.比例极限(proportionallimit):材料经受外力时,应力和应变能保持比例关系时的最大应力值。14.弹性模量(modulusofelasticity):在比例极限内,应力和应变之比(E=(δ/ε)。15.流变(flow):非晶体结构的物质在持续应力作用下持续恒久变形的性质。液体和糊剂的流变通常用粘稠度来测量。16.蠕变(creepage):晶体结构的物质在持续应力作用下恒久变形的性质。蜡和汞合金的蠕变容易发生,并随时间延长而增加。17.热膨胀系数(a)(coefficientofthermalexpension):温度每变化1度而引起物体单位长度的增加,即a=△L/Lo/△T℃-1。热膨胀系数关系到热运动大小,与金-塑、金-瓷及界面稳定性、持久性有关,也关系到包埋材料的膨胀量是否能补偿铸件或塑料的收缩。18.润湿性(wetting):液体或糊剂在固体表面上的分散能力。它通常用接触角“θ”表示,代表表面渗透能力,它与表面能有关。19.粘着和内聚(adhesionandcohesion):两种材料的表面附着为粘着,而同种材料间的结合为内聚。编辑本段 回目录 抗弯强度 - 英文解释bendingstrength flexural strength bending resistance bendingstrength

陶瓷抗弯强度检测仪相关的耗材

  • 陶瓷研钵
    刚玉研钵、陶瓷研钵基本性能 品名:研钵 化学成分: Al2O3 ≥99 R2O :≤0.2 Fe2O3 :≤0.1 SiO2 :≤0.2 体积密度(g/cm2): ≥3.80 显气孔率(%):<1 抗弯强度(Mpa):>350 抗压强度(Mpa):>12000 介电常数∑(1MHz): 2 硬度(HRA):88 特性强度高,耐腐蚀,耐磨性好。 规格:直径(mm) <∮300 、∮250、∮200、∮150、∮120、∮100 备:可根据用户需求定制各种非标异型研钵!
  • N15 六孔陶瓷板
    N15六孔陶瓷板/氧化铝陶瓷/良好的耐化学性/多孔陶瓷/真空镀膜陶瓷氧化铝陶瓷Al2O3作为应用最广泛的先进陶瓷材料,氧化铝陶瓷具有优异的电绝缘性、耐腐蚀性、耐磨损性和良好的机械性能,被广泛应用于电子医疗行业及机械工业零件等。材料性能表:氧化铝(A-95)氧化铝(A-99)密度:≥3.63 g/cm3≥3.9 g/cm3颜色:白色象牙白导热率:18 W/m..K27 W/m..K抗弯强度:≥280 Mpa≥360 Mpa体电阻率:>10∧14 Ω.cm>10∧14 Ω.cm热膨胀系数:7.2 (10-6/℃)8 (10-6/℃)最高使用温度:1200℃1200℃0.1:材料解决方案电绝缘,热膨胀,硬度,导热系数等。对于任何其他要求,我们建议将材料与加工各种材料的经验相匹配。0.2:支持产品开发从提供样品到批量生产,我们将为您提供服务,我们还可以提供有关设计,交货日期的建议,以使客户的产品更好。0.3:快速交货我们内部拥有各种各样的材料和工具,这使得我们能够快速加工并交付给您。0.4:质量保证XMCERA的技能是通过严格的质量保证来控制和建立的,基于ISO9001:2015,我们承诺提供满足客户需求的产品。
  • 南光六孔陶瓷板
    南光六孔陶瓷板/电子枪瓷片/真空镀膜陶瓷/耐高温1200℃ 氧化铝陶瓷Al2O3作为应用最广泛的先进陶瓷材料,氧化铝陶瓷具有优异的电绝缘性、耐腐蚀性、耐磨损性和良好的机械性能,被广泛应用于电子医疗行业及机械工业零件等。材料性能表:氧化铝(A-95)氧化铝(A-99)密度:≥3.63 g/cm3≥3.9 g/cm3颜色:白色象牙白导热率:18 W/m..K27 W/m..K抗弯强度:≥280 Mpa≥360 Mpa体电阻率:>10∧14 Ω.cm>10∧14 Ω.cm热膨胀系数:7.2 (10-6/℃)8 (10-6/℃)最高使用温度:1200℃1200℃0.1:材料解决方案电绝缘、热膨胀,硬度,导热系数等。对于任何其他要求,我们建议将材料与加工各种材料的经验相匹配。0.2:支持产品开发从提供样品到批量生产,我们将为您提供服务,我们还可以提供有关设计,交货日期的建议,以使客户的产品更好。0.3:快速交货我们内部拥有各种各样的材料和工具,这使得我们能够快速加工并交付给您。0.4:质量保证XMCERA的技能是通过严格的质量保证来控制和建立的,基于ISO9001:2015,我们承诺提供满足客户需求的产品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制