当前位置: 仪器信息网 > 行业主题 > >

石墨铝锭恒温消煮炉

仪器信息网石墨铝锭恒温消煮炉专题为您提供2024年最新石墨铝锭恒温消煮炉价格报价、厂家品牌的相关信息, 包括石墨铝锭恒温消煮炉参数、型号等,不管是国产,还是进口品牌的石墨铝锭恒温消煮炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨铝锭恒温消煮炉相关的耗材配件、试剂标物,还有石墨铝锭恒温消煮炉相关的最新资讯、资料,以及石墨铝锭恒温消煮炉相关的解决方案。

石墨铝锭恒温消煮炉相关的资讯

  • 祝贺上海沛欧红外石英消化炉SKD-08S2入围国产好仪器
    国产仪器腾飞行动”将通过企业自愿免费申报,活动主办方将组织专业编辑及行业资深专家深入调研,实地走访考察用户单位和国产厂商,让广大用户对国产科学仪器进行网上讨论、评议,以“用户说好才是真的好”为宗旨,从科学仪器的可靠性、稳定性、售后服务等方面筛选出具有代表性,经过用户的使用检验,好用、够用,并可对进口仪器形成一定竞争优势的“国产好仪器”。上海沛欧消化炉SKD-08S2的入围,显示了产品实力的重要性,也体现了广大用户超群的眼光,您的选择是对上海沛欧最好的支持!! 红外石英程序升温8孔消化炉特点1、加热体(模块)采用红外石英管,耐强酸强碱、防爆裂,寿命长,2、炉孔温度连续可调,升温速度快3、消化管受热面积大、温差小,样品消化一致性好,有利于样品的消煮4、仪器具有过流保护和漏电保护5、采用双开关,电源和加热单独控制,便于安全参数设置6、仪器有不锈钢排污罩,使消化管内逸出的SO2等有害气体,通过排污管经抽吸泵从水中排入下水道,有效地抑制有害气 体的外逸*杜绝挂壁*一、概述: 红外石英程序升温8孔消化炉SKD-08S2可用于农业、林业、环保、地质、化工、食品等部门以及高等院校、科研部门对植株、种子、饲料、食品、土壤、矿石等消化二、技术指标: 红外石英程序升温8孔消化炉型号 SKD-08S2控制方式 数控 (定时+64阶程序升温) 加热方式 红外石英辐射加热 炉孔数量 8孔 控温范围 室温-680℃ 升温速度 0分钟(室温到400℃) 温度波动 1%(超调后2度) 电 压 AC220V 功率 1600W 消化炉在蛋白质检测中起到了很重要的作用,选择一台合适的消化炉是准确检测的前提。消化炉指标要注意几点:1 温度要恒定,波动要小,每个样品可以有一致的消化时间,2 每一个样品孔温度要一致,以免样品消化时间相差太大。3 能有效的控制温度变化的过程,以免消化时的样品挂壁。4 效地保温措施,以提高炉腔内温度的恒定性所以消化炉的考察需要注意 :* 有效地温度控制,使得消化能按需要控制温度,如果有程序升温控制就能有效达到所需。* 很好的保温措施,如果保温材料势单力薄,必造成温度不稳定。仪器较厚的保温层是温度稳定的需要。故保温材料的厚度和材质是一个重要的指标、* 加热体和热载体的选择,可以根据用户的需要选择不同的热载体。下面我们来讨论加热体和热载体的选择。现在加热主要有三种方式比较好的。# 红外加热,靠热辐射来加热样品,特点是:升温快,热惯性小,温控准确。一般应用于有高要求样品的消化。例如:有较快的升温和降温速度。程序升温可以使用户更具自己样品的特点来选择升温曲线,或选择分段式的升温,更有利益样品的消化,从而杜绝样品的挂壁现象、进而使得样品消化效率的大大提高# 铝锭加热,靠铝锭传导热给样品,特点:升温较慢,热惯性较大,温度较稳定,还由于铝锭的良好的热传导性,每个样品孔间的温度一致性好。广泛应用于消化炉的热载体,但也要注意:一片薄薄的铝锭也不能保持温度的恒定,所以选择铝锭消化炉,铝锭厚度也是一个考察指标。# 石墨加热,靠石墨传导给样品热量,特点:热惯性大升温较慢,由于石墨热传导性较差(相比较铝锭),使得样品孔间温度不均匀,容易造成样品间消化时间拉大。但是由于石墨成本较低,石墨消化炉成本便宜,对部分低端用户有一定的吸引力。(并不可取) 其余要注意消化炉的保护功能:温度稳定均一保护,过流和短路保护。
  • 戏说纵向加热石墨炉(收官之作)
    前 言:  自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。  遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!  (一)纵向石墨炉的历史:  1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。  1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。  由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。  (二)纵向石墨管的结构:  首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:  图-1 纵向加热石墨炉示意图  纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:  图-2 纵向石墨炉外观图(Z-2000)  图-3 纵向石墨炉结构示意图  图-4 纵向石墨炉实体分解图(Z-2000)  从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。  由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。  (三)纵向石墨管的种类:  无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。  图-5 形形色色的纵向石墨管  不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!  (1)筒形石墨管:  纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:  图-6 几种进口仪器使用的筒形石墨管  最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:  图-7 传统筒形石墨管的剖面图  可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。  为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中   那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:  图-8 改良后的筒形石墨管示意图  图-9 改良后的筒形石墨管剖面实体图  (2)鼓形石墨管:  改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:  图-10 鼓形石墨管外观  看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?  下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:  图-11 鼓形石墨管的剖面实例图  从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:  图-12 鼓形石墨管在原子化阶段升温瞬间的状态  图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态  从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。  此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。  (3)异形石墨管:  这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。  (4)双进样孔鼓型石墨管:  这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:  图-14 双孔石墨管的外观图 图-15 双孔石墨管剖面图  (5)平台石墨管:  此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:  图-16 平台石墨管  (四)纵向石墨炉的特点:  (1)升温速率:  众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。  为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。  那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:  表-1  而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:  表-2  对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:  图-17 PE公司横向石墨管剖面图  图-18 Jena公司横向石墨管侧面图  图-19 GBC公司横向石墨管侧面图  所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。  (2)温度梯度:  自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。  前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。  但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:  图-20 筒形石墨管原子化阶段的升温模型  图-21 鼓形石墨管原子化阶段的升温模型  从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。  那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:  图-22 横向石墨炉工作原理  图-23 横向石墨管原子化阶段的升温模型  从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?  现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:  图-24 鼓形石墨管原子化瞬间的升温模型图  通过上面的模型图不难看出几点:  1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。  2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。  3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?  4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。  5)石墨环的质量越小,温度梯度的影响也就越小。  6)石墨炉电路采用温控方式可以减少温度梯度的影响。  (3)零点漂移:  纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:  图-25 纵向石墨管受热膨胀方向与光轴的关系  但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:  图-26 横向石墨管受热膨胀方向与光轴方向的正交关系  实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。  (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。  而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!  图-27 PE800石墨管  备 注:  (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。  (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • 李昌厚:横向加热石墨炉AAS的特点研究
    李昌厚(中国科学院上海生物工程研究中心上海 200233)摘要:本文根据分析工作的实际需要和作者的实践,从原子化温度、扣背景、原子化时间、重复性和灵敏度等几个方面研究了横向加热石墨炉原子吸收分光光度计(AAS)的特点,并对横向加热和纵向加热AAS的有关问题进行了讨论。0、前言 石墨炉AAS的加热方式有两种:一种是沿光轴方向加热,叫做纵向加热;另一种是与光轴垂直方向加热,叫做横向加热[1]。从仪器学理论[1]的角度来看,横向加热石墨炉AAS有十大优点[2](适合复杂体系、温度均匀、消记忆效应、消拖尾、对试样要求低、原子化温度低、降低炉体要求、温度梯度小、原子化时间短、灵敏度高)。从仪器学和应用的实际要求来看,横向加热石墨炉AAS的十大优点是纵向加热石墨炉AAS 无可比拟的。目前,因为横向加热的AAS难度大、成本高,所以,全世界只有6家[2]AAS生产企业能够生产横向加热的AAS。但是有人说:纵向加热石墨炉AAS的原子化温度最高可达3000℃,而横向加热AAS最高只能达到2650℃,所以纵向加热石墨炉AAS比横向加热石墨炉AAS好。也有人说:氘灯扣背景是横向加热石墨炉AAS一种很好的扣背景方法,但是也有人说:只有具有塞曼扣背景的横向加热石墨炉AAS才能叫横向加热石墨炉的AAS,氘灯扣背景的石墨炉AAS仪器,不能算是横向加热石墨炉的AAS仪器。本文将从仪器学理论和分析化学应用实践的角度,讨论这些问题。作者抛砖引玉,希望引起业内同仁对这个问题的重视和讨论,以帮助广大科技工作者正确理解这个问题,共同努力来提高我国各类AAS仪器及其应用的水平。1、关于AAS的原子化温度1)AAS的基本原理是先将被测物质由分子变成原子,随后原子蒸气中的原子对入射产生吸收,通过检测入射光和出射光的变化来分析元素的含量。横向加热AAS加热温度的最大特点是石墨管里温度基本均匀、原子蒸气浓度基本均匀。AAS的使用者不应一味追求原子化温度高,不是纵向加热的3000℃就比横向加热的2650℃好。只要原子化后,原子蒸汽浓度能满足AAS检出限(或灵敏度)的要求就可以了;并且,要求在相同温度下,原子蒸汽的浓度越高越好、原子蒸汽浓度越均匀越好。一般元素在1500℃-2500℃都能开始原子化;而有些元素1500℃以下、甚至几百度就能开始原子化[2]。目前还没有发现温度必须达到2600℃以上才能开始原子化的元素。纵向加热石墨炉的AAS,即使制造商说仪器能提供3000℃的原子化温度,也只是说石墨管中心这一点处的温度是3000℃,并非整个石墨管里(包括两端)的温度都能达到3000℃;实际上,纵向加热石墨管中心点的温度达到3000℃时,两端的温度只有1600℃左右。原子蒸气的浓度也和温度一样,并且呈正太分布[2]。而横向加热石墨炉AAS的最高加热温度是2650℃,是指石墨管里中心点处的温度是2650℃时,两端的温度可以达到2000℃,比纵向加热高出400℃;并且,横向加热时原子蒸气浓度在石墨管中的分布基本上是均匀的。从整个石墨管里的温度、原子蒸气浓度来看,横向加热优于纵向加热。因为横向加热石墨炉AAS仪器原子化器的温度均匀,所以石墨管内原子化蒸汽浓度均匀,在石墨管中心温度为2650℃的情况下,石墨管里整个空间的原子蒸汽浓度高。因为纵向加热AAS石墨管内的原子化器的温度不均匀,在石墨管中心温度为3000℃情况下,石墨管里两头的原子蒸汽浓度比较低;从下面的图表,可以清楚看出;当加热温度为2000℃时,横向加热时石墨管里的温度基本上为均匀分布的2000℃,而同样情况下,纵向加热时石墨管里的温度不均匀,呈正态分布,石墨管中心温度为2000℃时,两端的温度只有1600℃。2)一般元素对原子化温度的要求[3] 据文献报道[3]、[4]:很多元素1000℃左右就开始原子化(大多如此);各元素原子化温度不同,第一族至第八族元素共61种, 1000℃以下没有能较好原子化的元素。值得提出的是:纵向加热时石墨管中心的温度3000℃时,两端的温度只有℃1600℃[2],石墨管里的温度呈正态分布,原子蒸汽也是呈正态分布;横向加热2650℃,整个石墨管里的温度基本上是平坦的,原子蒸汽的分布基本上也是平坦的。所以,从仪器学角度看,如果只是石墨管中心温度高,而两端的温度梯度太大,说明石墨管里的原子蒸汽也是梯度分布,这样会影响AAS的灵敏度、稳定性、峰拖尾等等。特别应该指出的是:从仪器学理论来讲,Campbell[7]等提出的“原子化起始温度”概念、马怡载等[8] 和王平欣等[9]定义的“原子化出现温度”的概念都非常重要;马怡载等说的是产生0.004吸光度(即:产生1%吸收)时所对应的温度为“原子化出现温度”;王平欣等说的是指产生2倍噪声的吸光度时所对应的原子化温度为“原子化出现温度”。这些概念,对理解石墨管里的原子化温度非常重要。一般来讲,他们说的这些温度基本上都是指在一定条件下,这些温度下产生的原子蒸汽浓度能够测出它们对光的吸收(或者说能产生1%吸收)。也就是说,在这个温度下元素开始原子化产生的原子蒸汽浓度,就能满足检测到2倍噪声的吸光度值的要求。这也就是我们说的原子化温度。马怡载等测出的54种元素的“原子化出现温度”中,最高的为2573K(Tu),其余53种都在此温度以下。所以,横向加热石墨炉AAS的2650℃,完全能满足分析工作的要求。不会有2600℃以上才能开始原子化,更不会有3000℃才会产生“原子化出现温度”的元素。根据李攻科[5]、[6]等人报道,“元素的理论原子化效率,是原子化温度的函数;在一定的原子化温度范围内(如:900℃ -2300℃),理论原子化效率与原子化温度呈线性递增关系”;“… … 在一定的原子化温度范围内,理论原子化效率随原子化温度变化的斜率是相近的”。所以,在同一种加热方式下,AAS仪器能给出温度高者为好;但是,纵向加热的理论极限值是3000℃,横向加热是2650℃,如果温度再增高就会产生多布勒增宽,使谱线变宽,再以峰高计算时会降低灵敏度。上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2、关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]1)原子化时间比较(数据来自各厂商当时市场在用仪器的使用手册)上表中的温度不是绝对数值,只能供读者参考;因为随着仪器不同、仪器条件选择的不同、环境的不同等等,数字可能会有变化。2)关于横向、纵向加热的原子化时间、原子化温度、灵敏度和重复性与纵向加热的比较[2]由表所述,在相同条件下,同一种元素的同样原子蒸气浓度的情况下,横向加热比纵向加热温度低。3)灵敏度比较(数据来自各厂商当时市场在用仪器的使用手册)综上所述,横向加热的灵敏度比纵向加热高。但是,有些AAS使用者在仪器条件的选择、样品前处理上没有认真思考,没有根据仪器学理论要求,没有选择仪器在最佳条件下工作,所以,有些人用横向加热仪器做出的灵敏度不如纵向加热仪器,就误认为横向加热石墨炉AAS的灵敏度不如纵向加热石墨炉AAS的灵敏度高。对于仪器学理论和仪器条件的学习是值得AAS使用者应该特别注意、应该认真研究的问题,所有AAS的使用者都应该对此引起高度重视。4)重复性[2]试样在石墨里的位置、均匀程度等状态,会直接影响其原子化程度,即原子蒸汽浓度;而横向加热试样处在石墨管内的平台上,纵向加热试样处在石墨管内壁上(凹面上)。二者的加热效率是横向加热大大优于纵向加热。因此二者的RSD明显不同。如表所述,横向加热的RSD优于纵向加热的RSD。结论:综上所述,可以得出横向加热AAS与纵向加热AAS优缺点的比较结论如下:(1)横向加热石墨炉AAS的原子化时间短,利于保护炉体、延长炉体寿命;纵向加热石墨炉的原子化时间长,不利于保护炉体、容易损坏炉体;(2)横向加热AAS的灵敏度比纵向加热的灵敏度高;主要是因为前者温度均匀,原子蒸汽浓度均匀所致;(3)横向加热AAS的重复性(RSD)优于纵向加热的AAS;也是因为石墨管内温度均匀所致;3、关于横向加热氘灯扣背景和塞曼扣背景[2]1)横向加热AAS氘灯扣背景的优缺点:优点:空心阴极灯的光不分束(总光能量强大);紫外区光强度大;制造难度小、价格便宜;缺点:只能适用于UV区(但是AAS主要用在紫外区)2)横向加热塞曼扣背景的优缺点:优点:全波段扣背景(但AAS可见区很少使用全波段,基本上使用在紫外段) 缺点:空心阴极灯的光要分成两束光;紫外区光能量弱(AAS主要用在紫外区);制造难度大;价格贵!3)氘灯扣背景的横向加热AAS与塞曼扣背景AAS灵敏度(特征质量)的比较:国产的氘灯扣背景横向加热(某国产)与美国塞曼扣背景横向加热(某国产)灵敏度(特征量)的比较(数据来自有关商家的用户手册);共21个元素;国产TAS-990的灵敏度有19个元素优于美国AA-800。4、结论: 综上所述,可以得出以下结论:1)石墨炉横向加热AAS优于纵向加热的AAS,理由如下:①横向加热石墨炉AAS,其石墨管内原子蒸汽浓度均匀、温度曲线平坦;纵向加热石墨炉AAS的原子蒸汽浓度不均匀、温度曲线呈正态分布;②没有或很少元素要求3000℃才能够开始原子化;③ 使用者不能盲目追求原子化的温度(高);温度过高时会产生多普勒增宽,使谱线变矮、变宽,降低灵敏度,还会可能损坏炉体;④ 横向加热石墨炉AAS有十大优点[2];特别是灵敏度、重复性、原子化时间、原子化温度等技术指标都优于纵向加热石墨炉AAS;2)氘灯扣背景的横向加热AAS,在检测一些元素的灵敏度优于塞曼扣背景的横向加热AAS;并且性价比高、结构简单、操作简便。3)塞曼扣背景只是AAS扣背景的方法之一,有一定优势;氘灯扣背景也是横向加热AAS扣背景的方法之一,也有一定优点;所以,不能简单的说氘灯扣背景的AAS不是横向加热的AAS。4)横向加热AAS最主要的缺点是:仪器结构比较复杂、加工难度大;这也是为什么目前全世界只有六家公司能够生产横向加热AAS仪器的主要原因。5、主要参考文献[1]李昌厚著,仪器学理论与实践,北京:科学出版社,2006 [2]李昌厚著,原子吸收分光光度计仪器及其应用,北京:科学出 版社,2006[3]邓勃等编著,原子吸收光谱分析,北京:化学工业出版社,2004[4]邓勃著,原子吸收光谱分析的原理、技术和应用,北京:清华大学出版社,2004 [5]李攻科等,杨秀环,张展霞, GFAAS中理论原子化效率与原子化温度的关系研究光谱学与光谱分析,2001, 20(l),76 [6]李攻科等,杨秀环,张展霞,原子吸收光谱分析中石墨炉的原子化效率,光谱学与光谱分析, 2002,22(1),278[7] Campbell W C ,Ottaway J M.Atom –formation processes in carbon-furnaceatomizers used in atomic absorption spectrometry .Talanta ,1974,21(8):837[8] 马怡载等,石墨炉原子吸收光谱法,北京:原子能出版社[9] 王平欣等,“出现温度”观念及其在考察原子化机理过程中的应用,光谱学与光谱分析,1986,5(6),56Abstuact:According to the theory of instrumention and analysiss chemistry, The characteristics for Graphite fumace atomic absorption transverse heating and Longitudinal heating of graphite fumace atomic absorption in atomization temperature ,background correction ,atomization time ,repeatability and sensitivity aspect etc compared .Meanwhilsomproble discussed in this paper.作者简介李昌厚,男,中国科学院上海生物工程研究中心原仪器分析室主任、兼生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授,终身享受国务院政府特殊津贴。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家级和省部级科技成果奖5项(含国家发明奖1项);发表论文183篇,出版专著5本;现任中国仪器仪表学会理事、《生命科学仪器》付主编;曾任中国仪器仪表学会分析仪器分会第五届、第六届付理事长;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组成员或组长、上海市科学仪器专家组成员、《光学仪器》副主编、《光谱仪器与分析》副主编、《生命科学仪器》副主编、上海化工研究院院士专家工作站成员等十多个学术团体和专家委员会成员等职务。
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 爱丁堡稳态瞬态光谱仪助力石墨烯科研大潮
    p  石墨烯是从石墨材料中剥离出来的,由碳原子组成的只有一层原子厚度的二维晶体,是目前人类已知的最薄、最坚硬、导热率最高、电阻率最小的纳米材料。2004年,英国曼彻斯特大学物理学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫,成功从石墨中用胶带分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。石墨烯被认为是可以引发现代电子技术和信息技术革命的材料届的一颗璀璨的新星,越来越多的研究聚焦在石墨烯制备和应用上,而先进的检测仪器是研究石墨烯必不可少的武器。/pp style="text-align: center " img title="1.png" src="http://img1.17img.cn/17img/images/201512/uepic/c2c66ebc-5956-4d7f-8659-cff61e14183f.jpg"//pp 爱丁堡仪器仪器公司携其主打产品稳态/瞬态荧光光谱仪加入了这支浩浩荡荡的石墨烯研究大军中,凭借其多年领跑荧光市场的技术优势,助力于石墨烯的科学研究。/pp  爱丁堡公司目前的稳态瞬态光谱仪系列有FLS980模块化结构搭建荧光光谱仪,一体化、功能丰富的FS5荧光光谱仪,专门用于寿命测试的零时间色散的LifeSpec II和经济适用型的Mini-Tau荧光光谱仪;瞬态吸收测试有基于泵浦-探测光技术的LP980激光闪光光解光谱仪。/pp  本文将带来使用爱丁堡荧光光谱仪在石墨烯测试中的应用。(以下测试所使用的光谱仪为Edinburgh Instrument FLS920/FLS980/LP980)/ppstrong石墨烯纳米复合材料(Graphene-Based Nanocomposites)/strong/pp  石墨烯掺杂纳米复合材料,因其高效俘获、传输光生电子及提高对光能的吸收及污染物的吸附性能,在环境有机污染物治理中表现出十分出色的光催化活性。/pp  下图是二氧化钛掺杂的石墨烯氧化物在光催化降解亚甲基蓝中的应用。(Zhixing Gan, etal, ACS NANO ,2014, VOL.8, NO.9, 9304–9310)/pp style="text-align: center "img width="500" height="143" title="2.png" style="width: 500px height: 143px " src="http://img1.17img.cn/17img/images/201512/uepic/bfe91a81-b9aa-4d3b-82ce-1ded16052810.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongMechanism of MB degradation over P25-rGO And Emission Spectra/strongbr//pp  氧化石墨烯作为石墨烯的前体及ZnS的模板,合成了ZnS–GR 纳米复合结构,通过合成机理的研究,可以为以后合成金属硫化物掺杂的石墨烯提供有用的信息(Linhui Yu etal, Nanotechnology 24 (2013) 375601 )/pp style="text-align: center " img width="500" height="135" title="3.jpg" style="width: 500px height: 135px " src="http://img1.17img.cn/17img/images/201512/uepic/6c08130f-132c-488a-ba09-3062d54f8a12.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongThe possible mechanism of photocatalytic degradation of MB on ZnS–5%GR-120 nanocomposite/strong/pp  以磺化石墨烯为Pt载体,合成了小粒径的GSO3Pt复合结构, 可以作为有效的催化剂,将产氢反应的效率提高18倍 (Hui-Hui Zhang, Catal. Sci. Technol., 2013, 3, 1815 )/pp style="text-align: center " img width="500" height="291" title="4.png" style="width: 500px height: 291px " src="http://img1.17img.cn/17img/images/201512/uepic/982990d5-8249-4360-a9c1-0b9a333b7377.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongA schematic illustration of photocatalytic H2 evolution from GSO3Pt/strong/pp style="text-align: center "strongnanocomposites photosensitized by EY/strongbr//ppstrong石墨烯量子点(Graphene Quantum Dots)/strong/pp  石墨烯量子点(GQDs)是因其受到量子局限效应和边界效应的影响,具备独特的光电磁性质,GQDs从石墨烯二维的结构变成受到三维空间限制的量子点,展现出更多新特性,成为石墨烯家族里的一员,备受研究者青睐。/pp  下图是双层氢氧化物中形成的单层石墨烯量子点。 (Liqing Song, etal, Chem. Sci., 2015, 6, 484)/pp style="text-align: center "img width="500" height="179" title="5.png" style="width: 500px height: 179px " src="http://img1.17img.cn/17img/images/201512/uepic/6d9e1179-f4f7-4324-ab8c-550795f335e4.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongSchematic illustration of the formation of S-GQDs in the confined space of LDH/strong/pp  过渡金属离子可以导致石墨烯量子点光致发光的淬灭,因此GQDs可用于金属离子的传感器。(Hongduan Huang, etal, Talanta 117 (2013) 152–157)/pp style="text-align: center "img width="500" height="163" title="6.png" style="width: 500px height: 163px " src="http://img1.17img.cn/17img/images/201512/uepic/feec013d-7240-4dba-80ed-fb98410b6225.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "stronguenching and recovering effect of transition metal ions on the photoluminescence of GQDs./strongbr//ppstrong石墨烯材料相关机理研究(Mechanism)/strong/pp  目前,也有大量研究工作是针对石墨烯在化学反应及催化反应中所起到的作用, 通过机理研究可以为某一类反应提供指导性建议;/pp  石墨烯量子点上转化发光机理的研究,证明了用氙灯激发石墨烯量子点产生上转换荧光是假象, 用脉冲激光才可以观察到真正的上转换信号 ( Zhixing Gan, etal. Adv. Optical Mater. 2013, 1, 554–558 )/pp style="text-align: center " img width="500" height="192" title="7.png" style="width: 500px height: 192px " src="http://img1.17img.cn/17img/images/201512/uepic/ecd04113-8540-49c2-b103-f9872964ad95.jpg" border="0" vspace="0" hspace="0"//pp strong (a) UCPL spectra obtained from GQDs under excitation of a femtosecond pulsed laser at 800 nm. (b) UCPL integrated intensity as a function of laser power/strong/pp  氧化石墨烯在化学反应中的作用;研究了氧化石墨烯,还原型氧化石墨烯,及功能化的还原型氧化石墨烯随着构型改变对光谱的影响;(Zhixing Gan, etl. Adv. Optical Mater. 2013, 1, 926–932 )/pp style="text-align: center "img width="500" height="400" title="8.png" style="width: 500px height: 400px " src="http://img1.17img.cn/17img/images/201512/uepic/c80e118d-dbf6-48b8-95ed-f7c5d7a9cb7e.jpg" border="0" vspace="0" hspace="0"//pp style="text-align: center "strongSchematic illustration of the PL emission mechanism/strong/ppstrongspan style="color: rgb(255, 0, 0) "更多详细应用请见下列文献:/span/strong/pp1] Zhixing Gan, Xinglong Wu, Ming Meng, Xiaobin Zhu, Lun Yang, and Paul K. Chu, ACS NANO, VOL. 8, NO. 9, 9304–9310, 2014/pp2]Hongduan Huang, Lei Liao, Xiao Xu a, Mingjian Zou, Feng Liu, Na Li, Talanta 117, 152–157, 2013/pp3] Liqing Song, Jingjing Shi, Jun Lu and Chao Lu, Chem. Sci., 6, 4846, 2015/pp4] Linhui Yu, Hong Ruan, Yi Zheng and Danzhen Li, Nanotechnology 24, 375601, 2013./pp5] Zhixing Gan, Xinglong Wu, Gengxia Zhou, Jiancang Shen, and Paul K. Chu,Adv.Optical Mater. 1, 554-558 , 2013./pp6] Zhixing Gan, Shijie Xiong, Xinglong Wu, Tao Xu, Xiaobin Zhu, Xiao Gan, Junhong Guo, Jiancang Shen, Litao Sun, and Paul K. Chu, Adv. Optical Mater. 1, 926-932, 2013./pp7] Zhixing Gan, Xinglong Wu and Yanling Hao, CrystEng Comm, 16, 4981-4986, 2014./pp8] Hui-Hui Zhang, Ke Feng, Bin Chen, Qing-Yuan Meng, Zhi-Jun Li, Chen-Ho Tung and Li-Zhu Wu, Catal. Sci. Technol., 3, 1815-1821, 2013./pp style="white-space: normal "span style="color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) "br//span/pp style="white-space: normal "span style="color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px background-color: rgb(255, 255, 255) "关于天美:/spanbr//pp style="padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。/pp style="padding: 0px color: rgb(68, 68, 68) line-height: 26px font-family: Simsun font-size: 14px margin-top: 0px margin-bottom: 0px white-space: normal background-color: rgb(255, 255, 255) "  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn/pp style="text-align: center "img width="500" height="313" title="微信长按二维码.gif" style="width: 500px height: 313px " src="http://img1.17img.cn/17img/images/201512/uepic/85e4ed3b-7c8f-40af-a8c1-d173db17c4be.jpg" border="0" vspace="0" hspace="0"//p
  • 美国对华石墨电极作出反倾销裁决
    2009年2月5日,美国国际贸易委员会发布通知,对原产于中国的炉用小口径石墨电极作出肯定性反倾销产业损害裁决。美国国际贸易委员会的6位委员投票决定,原产于中国的炉用小口径石墨电极的倾销行为给美国国内产业造成了实质性损害或实质性损害威胁。根据美国国际贸易委员会的肯定性损害裁决,美国将按照商务部裁定的倾销幅度对原产于中国的涉案产品征收反倾销税。 2008年2月7日,美国商务部对原产于中国的炉用小口径石墨电极进行反倾销调查。涉案产品海关编码为85451100.00。 2009年1月14日,美国商务部对原产于中国的炉用小口径石墨电极作出反倾销终裁,裁定中国涉案产品的倾销幅度为132.90%~159.64%。
  • 中科奥博发布SM石墨加热板新品
    石墨电热板 石墨电热板用途 SM石墨电热板适用于工矿企业、食品、药品、质检、环保、疾控、化工、高校、科研院所等行业的样品加热消解、煮沸、蒸酸、恒温、烘烤、微波消解前预处理、赶酸处理、原子吸收、原子荧光、ICP-AES等分析仪器的理想配套产品。 石墨电热板优点1、SM石墨电热板采用新型加热布局方式 导热体选用导热性能优越的等静压高纯石墨,具有升温快速、温度均衡等优点能保证各个点间的温度均匀性,耐高温、易清洁。2、采用智能PID程序控温,控温精度±1℃,可调节升温速率,和保持时间,完成加热程序后自动停止。3、节能高效 双层外壳设计,空气隔热层与硅酸铝隔热层双重隔热效果,更加节能。超大加热面板,可解决实验室单次处理多个样品的问题。4、防腐处理 石墨导热材料,耐强酸强碱腐蚀。整机防腐喷塑处理,保证仪器在酸环境下48小时以上连续正常工作。 --可根据客户需求定制不同规格尺寸加热板 石墨电热板产品参数: 产品型号SM35-45SM55-45板面规格400×300mm600×400mmzui高使用温度450℃工作电压AC220V 50HZ功率3500W5500W板面材质高纯等静压石墨板面厚度30mm控制方式PID精密程控控温精度±1℃外形尺寸(D×W×H)300×500×225mm400×750×225mm重量15kg25kg 创新点:板面厚度30mm高纯等静压石墨,镶嵌埋入式均匀布局发热体,温度均匀性1-2.比传统远隔离热辐射温度更均匀。发热体采用ci20ni80无磁性高温发热体。使用寿命长,可以单独更换。采用智能程序30段控温,可设定升温速率恒温时间SM石墨加热板
  • 28万!台山市中医院石墨炉原子吸收分光光度计采购
    项目概况台山市中医院石墨炉原子吸收分光光度计项目 招标项目的潜在投标人应在江门市深联招标有限公司会议室(地址:江门市华园路21号101)获取招标文件,并于2022年02月18日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:JMSL2022-002项目名称:台山市中医院石墨炉原子吸收分光光度计项目预算金额:28.0000000 万元(人民币)最高限价(如有):28.0000000 万元(人民币)采购需求:合同包1(台山市中医院石墨炉原子吸收分光光度计采购):合同包预算金额:280000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他货物石墨炉原子吸收分光光度计一套详见采购文件280000.00280000.00 合同履行期限:合同签订生效后30个工作日内完成交货及安装调试本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目3.本项目的特定资格要求:合同包1(台山市中医院石墨炉原子吸收分光光度计采购)特定资格要求如下:(1)投标人应当具备《中华人民共和国政府采购法》第二十二条规定的条件;1)投标人应当是具有独立承担民事责任能力的在中华人民共和国境内注册的法人、其他组织或者自然人;(提供有效的营业执照或相关单位登记证书复印件(若法人或者其他组织投标的),自然人有效的身份证明复印件(若自然人投标的)。若分支机构投标的,应当取得总公司(总所)出具给分支机构的有效授权,并同时提供总公司(总所)的营业执照、总公司(总所)出具给分支机构的有效授权书及分支机构的营业执照复印件)2)投标人应当具有良好的商业信誉和健全的财务会计制度;(提供2020年度或2021年1月至今任意1个月的财务状况报告或银行出具的资信证明复印件)3)投标人应当具有履行合同所必需的设备和专业技术能力;(提供《关于资格的声明函》)4)投标人应当有依法缴纳税收和社会保障资金的良好记录;(提供2021年1月至今任意1个月的依法缴纳税收和社会保障资金的相关材料复印件;如依法免税或不需要缴纳社会保障资金的,应当提供相应证明文件复印件)5)投标人参加招标采购活动前三年内,在经营活动中没有重大违法记录;重大违法记录是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚,较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定;(提供《关于资格的声明函》)6)投标人应当符合法律、行政法规规定的其他条件。(提供《关于资格的声明函》)(2)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间;(以开标当日采购代理机构通过“信用中国”网站(www.creditchina.gov.cn)、中国政府采购网(www.ccgp.gov.cn)查询投标人信用记录为准,如相关失信记录已失效,应当提供相应证明文件复印件)(3)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同包项下的招标采购活动;(提供《关于资格的声明函》)(4)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动;(提供《关于资格的声明函》)(5)本合同包不接受联合体投标。(提供《关于资格的声明函》)三、获取招标文件时间:2022年01月20日 至 2022年01月26日,每天上午9:00至12:00,下午14:30至17:30。(北京时间,法定节假日除外)地点:江门市深联招标有限公司会议室(地址:江门市华园路21号101)方式:现场购买或邮购(详见其他补充事宜)售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年02月18日 10点00分(北京时间)开标时间:2022年02月18日 10点00分(北京时间)地点:江门市深联招标有限公司会议室(地址:江门市华园路21号101)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜(一)本次招标采购内容中的核心产品为石墨炉原子吸收分光光度计,同一品牌的核心产品可有多家投标人参与竞争,但只作为一个投标人计算。投标人所投报的产品必须是本国产品,本项目不接受所投报产品为进口产品的投标。(本招标文件中所称进口产品是指通过中国海关报关验放进入中国境内且产自关境外的产品)(二)购买招标文件时需核对以下文件:1、营业执照或相关单位登记证书(若法人或者其他组织投标的),自然人的身份证明(若自然人投标的);2、总公司(总所)的营业执照及总公司(总所)出具给分支机构的有效授权书(若分支机构投标的);3、法定代表人/负责人证明书或授权委托书。供应商购买招标文件时应当将前2项的复印件和第3项(法定代表人/负责人证明书或授权委托书)的原件交我单位核对。我单位在核对后会收取前2项的复印件和第3项(法定代表人/负责人证明书或授权委托书)的原件。所有复印件应当加盖供应商的单位公章。(三)接收投标文件时间:2022年2月18日9时30分至10时00分(北京时间)。提前、逾期递交或不符合规定的投标文件恕不接受。(四)需落实政府采购政策为:促进中小企业发展政策、支持监狱企业发展政策、支持残疾人福利性单位发展政策、采购节能产品、环境标志产品、商品包装政府采购需求标准、快递包装政府采购需求标准等相关政策。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:台山市中医院     地址:广东省台山市沙岗湖路100号        联系方式:罗先生;0750-5559676      2.采购代理机构信息名 称:江门市深联招标有限公司            地 址:江门市蓬江区华园路21号101            联系方式:吴燕玲,0750-3503829            3.项目联系方式项目联系人:吴燕玲电 话:  0750-3503829
  • 期待新国标,康塔仪器赞助石墨烯创新大会
    2016年9月22日-24日,中国石墨烯产业技术创新战略联盟和青岛国家高新技术产业开发区将在青岛国际会展中心联合举办“2016中国国际石墨烯创新大会”。美国康塔仪器公司展位号12,展会期间,我们将举行“微信摇一摇,红包天天送”活动,以欢迎每一位莅临康塔展台的朋友。8月12日,我国首项石墨烯国家标准《石墨烯材料的术语、定义及代号》在常州预审,主要规定了石墨烯材料领域的核心术语及相关术语,列举了石墨烯材料常见制备方法、检测方法以及石墨烯材料产品代号,适用于石墨烯材料的生产、应用、检验、流通、科研等领域。康塔仪器的比表面测定仪和振实密度仪等产品,广泛应用于英国曼彻斯特大学、国家石墨烯产品质量监督检验中心、第六元素等全球顶级石墨烯科研、检测及生产重点单位。 Autosorb-iQ物理化学吸附分析仪-多种配置选择可扩展测量能力,即超低比表面,微孔和化学吸附测量。基本型autosorb-iq可升级 -精确的微孔分析能力,极限高真空达10-10 mmhg -最完全数据分析方法,包括nldft,qsdft和gcmc孔分布模型 -精细的压力传感器,可分辨2.5x10-7mmhg的压力变化 -独特的串联系统确保分析条件下的真空脱气 -自动液位传感器控制冷阱自动升降,确保样品在冷阱中的深度及环境始终如一 -样品管及p0各自独立的压力传感器提高了小体积样品室的压力分辨能力 -90小时杜瓦瓶 NOVAtouch全自动比表面积及孔径分析仪全自动比表面积和孔径分析仪novatouchtm 系列是康塔仪器nova系列的最新一代气体吸附仪,更快速高效、稳定可靠。novatouchtm比表面仪共有八个型号,完全自动化,可以充分满足科研或质量控制实验室的需求,具备如下创新功能: 全自动多点bet,分析时间低至8分钟,包括实时检测和记录等温线和进行bet计算 无氦专利技术no void analysis(nova)分析模式 novatouch 4/lx4可同时分析四个样品,提高了分析效率 样品分析时,可同时使用流动法制备四个样品,同时进行四个样品的脱气 样品分析时,可随时进行脱气的开始/结束设置 包括经典氦气死体积测量模式,无需样品管校准 专有的p0站和压力传感器具备更高的分析分辨率和更快的分析速度 程序控温真空脱气 仪器操作者既可以用本机控制(彩色触屏),也可以远程操作 各种规格样品管可选,满足不同样品分析需求 内置脱气站和紧凑型台式设计,节省更多实验室空间 旋转保护门增强了隔离性,紧密性和安全性 充分吸附平衡技术:通过选择压力公差,平衡时间和相对压力(p/p0)点来实现 美国康塔仪器美国康塔仪器(quantachrome instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及极佳的性能价格比。康塔公司不仅通过了iso9001及欧洲ce认证,也取得了美国fda iq/oq认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、竞争性气体吸附、真密度、堆密度、开/闭孔率、粒度粒形、zeta电位、孔隙率、压汞仪、大孔分析、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问题的根源通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 2.15亿元多晶硅还原炉订单成交
    近日,双良节能官网发布公告称,继之前中标的新疆大全29,220万及云南通威17,670万项目后,双良节能再获大单,中标新疆东方希望新能源有限公司6万吨/年多晶硅项目多晶硅还原炉设备,金额15,876万元;以及中标青海亚洲硅业半导体有限公司60000t/a电子级多晶硅一期项目多晶硅还原炉设备及撬块,金额5,658.422万元。两大订单合计金额高达2.15亿元。据了解,多晶硅还原炉是发生氢还原反应的场所,是直接产出多晶硅的设备。在多晶硅还原炉内,精制氯硅烷和高纯氢气在1000~1200℃下发生化学气相沉积反应,生成多晶硅沉积在载体硅芯上,随时间增长直径逐渐变大,长成多晶硅棒。新疆东方希望新能源有限公司办公室地址位于古代举世闻名的丝绸之路昌吉,新疆昌吉州准东经济技术开发区,于2016年05月05日在昌吉州工商行政管理局新疆准东经济技术开发区分局注册成立,要经营生产及销售:多晶硅;销售:硅片、铝锭、铝合金、氧化铝、PVC等。亚洲硅业(青海)股份有限公司成立于2006年12月,是全球领先的高纯硅材料供应商,国家高新技术企业。目前拥有19,000吨/年高纯多晶硅及9,000吨/年光纤级四氯化硅生产能力和185MW并网光伏电站。 先后成为国家知识产权优势企业、国家级绿色工厂、国家两化融合贯标试点企业、国家智能光伏试点示范企业、工信部绿色制造和智能制造双项支持企业、工信部工业企业知识产权运用试点企业,建有国家企业技术中心、博士后科研工作站,多晶硅产品进入工信部绿色设计产品名单。公司以数字化研发建成了全球首条全48对棒加压还原炉万吨级单体生产线,该项目获得了青海省科学技术进步一等奖。
  • 如何为石墨烯研究降本增效?—访苗雁鸣博士
    2004年,英国曼彻斯特大学的Geim等使用将胶带粘在一块石墨上然后再撕下来的简单方法,首次制备并观察到单层石墨烯,开启了石墨烯材料的研究热潮。石墨烯具有理想的单原子层二维晶体结构,由六边形晶格组成,这种特殊的结构赋予了石墨烯材料独特的热学、力学和电学性能。10多年来石墨烯的研究及其制备快速发展,应用日益广泛。石墨烯材料的制备和加工技术不论是实验室制备还是大规模商业化生产,始终受到高度关注。仪器信息网特别采访了QUANTUM量子科学仪器贸易(北京)有限公司(暨Quantum Design中国子公司,以下简称QD中国)销售总监苗雁鸣博士。苗雁鸣 博士Quantum Design中国子公司销售总监石墨烯制备和加工技术研发的现状和挑战在石墨烯材料的研究热潮下,石墨烯制备技术的研究也在不断吸引着科研人员的探索。苗雁鸣博士谈到,经过几年的发展,石墨烯在制备技术上已经取得了较大的进步。石墨烯的研究离不开材料制备设备,据介绍,微机剥离是最早的石墨烯制备方法,制备的石墨烯质量也较高,但其可控性较差,制得的石墨烯尺寸较小且制备效率较低,不适合大规模生产。外延生长法需要超高真空和较高的温度,条件较为苛刻,且难以控制石墨烯的吸附能量和附生形态。氧化石墨还原法是大量制备石墨烯的手段之一,但是由于强酸的氧化性也会引入很多缺陷,影响石墨烯的性能。CVD制备石墨烯工艺仍有待进一步的提高,以降低生产成本,但是CVD仍被广泛认为是最有可能大规模商业化生产石墨烯的手段。传统的大型薄膜生长设备价格昂贵,单价甚至高达数百万,用户预算压力大。即使用户购买了小型设备,薄膜生长条件的摸索往往也需要耗费大量时间,对使用人员提出了较高的要求。苗雁鸣博士表示,即便是国产设备也以大型生产设备为主,小型台式设备较少,即使有所涉及,也因市场和投入原因在产品性能,如控制、自动化及薄膜生长精度方面都有所欠缺。除了石墨烯的制备技术外,石墨烯以及二维材料的应用和加工技术也是研究重点。例如,在石墨烯的逐层刻蚀、二维材料层内量子点的制备,以及精准刻蚀方面,传统硅基半导体的刻蚀工艺功率较大,容易导致材料刻蚀边缘部分变性而影响性能,因此还有待进一步的优化和调整。针对二维材料的精准刻蚀和加工技术在未来的新型材料和器件方面必定会有更广泛的应用。QD中国联合Moorfield为用户提供台式高精度薄膜制备与加工系统QD中国基于对国内已有用户群体的了解,认识到目前国内对高性能的小型薄膜制备设备是有广泛需求的。QD中国最终选择了英国Moorfield nanotechnology 公司作为战略合作伙伴。Moorfield公司已经成立26年,他们在欧洲为科研用户和企业用户提供多种产品和技术服务,其生产的设备已经进入了欧洲的顶级实验室,诸如曼彻斯特大学、剑桥大学、帝国理工学院、诺森比亚大学、巴斯大学、埃克塞特大学、伦敦玛丽女王大学、哈德斯菲尔德大学、亚森工业大学、西班牙光子科学研究所和英国国家物理实验室等都是Moorfield的用户和长期合作者。Moorfield台式系列产品有石墨烯/碳纳米管快速制备CVD系统、磁控溅射和金属/有机物热蒸发系统、精准刻蚀和热处理系统,包含了从材料制备到加工的整个过程。QD中国会根据用户的具体研究方向和内容推荐最为适合的设备和制备方案。相对于同类产品,Moorfield所开发的设备具有小巧,智能,灵活的特点,但性能已经可以和大型设备相媲美。在性能优良的基础上让用户有更好的使用体验。台式高性能CVD石墨烯/碳纳米管快速制备系列—nanoCVD苗雁鸣博士表示,Quantum Design以测量起家,产品追求自动化和智能化,以解放用户。Moorfield的台式设备为完全触屏,可以通过屏幕设定进行自动生长薄膜,沉积的薄膜能够贴合用户需求。薄膜生长往往需要摸索条件,耗费大量时间,而nanoCVD针对常见的几种应用,内置部分可自动控制氛围、生长时间等参数,设置自动进行薄膜沉积,中间各种操作流程切换也无需用户干预,从开始制备到取出样品最快只要30分钟。在探索制备工艺以及研究石墨烯应用方面为用户节省了大量时间。nanoCVD不仅是为用户提供了一台设备,更是为用户提供了石墨烯的制备方案。台式超精准二维材料等离子软刻蚀系统—nanoETCH在石墨烯加工方面,Moorfield软离子刻蚀设备nanoETCH可以实现对石墨烯的逐层刻蚀、层内缺陷制造、石墨基材的表面处理等精准的加工。苗雁鸣博士介绍,相对于传统硅基材料的快速刻蚀,nanoETCH的特点主要体现在“精准”和“软”上,传统硅刻蚀的功率较大,称之为硬等离子体,mW级输出功率的nanoETCH则称之为软等离子体,对刻蚀功率的精准控制可以实现对石墨烯的逐层刻蚀,在刻蚀的边缘部分也不会对材料的物理性质造成影响,并且不会使光刻胶变性,出现难以去除的残留物。在二维材料的层内制造点缺陷可以调节材料能带结构,对于材料在器件应用方面的研究是有很大帮助的。对于石墨基材表面的处理有利于使石墨基材的表面更为干净、一致,有利于剥离出更大尺寸的石墨烯。台式精准气氛\压力控制高温退火系统—ANNEAL为制备高质量的样品,Moorfield推出台式精准气氛\压力控制高温退火系统。退火和热处理大家首先想到的就是管式炉或者箱式炉,但是这些比较粗放的热处理方式在条件的控制上不够精准,对于很多条件要求苛刻的材料只能是大量退火“择优”挑选,并且可重复性较差。而对真空或者特殊气氛有要求的材料就更难以处理了。Moorfield台式精准气氛\压力控制高温退火系统是利用薄膜材料生长的理念来对材料进行热处理,将退火上升到样品制备的高度和精度。将材料放入真空腔体,系统可配分子泵满足高真空的要求,系统还可以配备“尾气”稀释处理模块,可满足包括氢气在内的各种气氛的要求。不止于石墨烯研究的薄膜沉积技术2020年底推出的nanoPVD和nanoCVD在引入国内一年的时间中就受到了广泛关注,已经有诸如西湖大学、宁波大学、大连理工以及一些企业用户等多个项目成交,还有一些项目正在进行中。从开始摸索到略有门路,苗雁鸣博士深感这一市场广大,因为二维材料本身应用很广,不光是科研,还有一些研究所、研发单位以及一些公司等方方面面都会涉及。各行各业几乎都会用到这种镀膜的设备,苗雁鸣博士感叹道。薄膜生长技术可以应用在各行各业,石墨烯只是其中比较受关注的领域。苗雁鸣博士表示,石墨烯其实只是其中的一个方面,因为石墨烯是比较热门的,所以专门研发了一套系统,其他的薄膜,包括金属薄膜、半导体薄膜等,都可以用PVD和CVD的方法生长,台式nanoPVD可以帮助用户进行新材料、新体系的探索,为用户提供更多可能。苗雁鸣博士提到,最近Moorfield薄膜生长设备的用户英国剑桥大学christopher j. russo教授研究组利用高质量的薄膜生长与加工技术制备了用于冷冻电镜样品制备的“hexaufoil”金属网,该金属网使得冷冻电镜观察生物大分子样品时样品的位置漂移小于1Å,进一步提高了冷冻电镜的成像质量,成果刊登在2020年10月的science杂志上。Moorfield台式设备的推出完善了QD中国在材料领域从制备、加工到测量的服务。苗雁鸣博士表示,如果客户有特别的需求,Moorfield也可以进行定制,根据用户需求进行设计加工,生产贴合用户需求的设备。设备的开发要与市场结合,nanoCVD是针对石墨烯的专用设备,如果有市场需求,未来还将开发更多其它类型的专用设备。如今,Moorfield薄膜生长设备已在材料领域中逐渐崭露头角。
  • 上海光谱悬浮进样石墨炉原吸技术获新进展
    悬浮液进样技术是固体进样方法之一。许多新型陶瓷材料难于在常规条件下用酸来溶解,而熔融方法会引入高空白和高背景,导致痕量元素难于测定,因此很难用常规方法(制备成溶液)进行原子光谱分析。进样技术和方法依然为原子光谱分析的瓶颈。将固体样品直接引入原子光谱分析系统则可有效地克服试样分解过程所带来的缺陷,如污染、转移损失、分析时间长、空白高及试剂和人力的消耗。  2009年11月10日,由上海市科委资助、中国科学院上海硅酸盐研究所承担的《国产石墨炉原子吸收光谱用于新型陶瓷材料分析的方法研究》(项目编号:08142201500),顺利通过专家组验收。  本项目基于上海光谱仪器有限公司SP-3802型石墨炉原子吸收光谱仪,研究了新型陶瓷材料(氧化铝和碳化硅)样品的高温、高压消解和悬浮液制备等两种前处理方法,建立了相应自吸背景校正——石墨炉原子吸收法对氧化铝中痕量元素(Cu 、Fe、 Na)、碳化硅中痕量元素(Cu 、Mn、Ni 、Cr)的分析方法。本方法具有灵敏度高、检出限低、快速和简便的优点,并具有绿色环保的特点,可推广应用到高纯陶瓷材料及其产品的质量控制分析。  2009年BCEIA展会,上海光谱仪器有限公司将展出了SP-3802、SP-3803原子吸收分光光度计及国内外首台SP—3880型全自动交直流塞曼原子吸收最新产品,欢迎从事相关行业用户、专家莅临展台指导和交流。
  • 石墨炉原子吸收法测定不同溶剂中的铜
    原子吸收分光光度计多用于测定水溶液样品,但有的时候也需要用有机溶剂来制备样品。下面就来介绍使用日立偏振塞曼原子吸收分光光度计ZA3000,测定不同溶剂中铜的实验。实验分别以水、甲醇、乙醇、丙酮、4-甲基-2-戊酮 (MIBK)为溶剂制备样品,采用石墨炉法测定样品中的铜(Cu)。u 样品处理向水溶液中加入0.5 %的硝酸溶液,得到待测样品。向有机溶液(甲醇、乙醇、丙酮、MIBK)中加入0.5 %的硝酸溶液,得到待测样品。加入0.5 %的硝酸溶液,目的是为了维持铜在溶液中的稳定性。u 实验条件使用有机溶剂时,干燥温度可以稍微设置低一些。使用有机溶剂时,洗涤液可以用有机溶液,但在测定完成后,应使用纯水清洗或更换石墨管。u 实验结果? 原子吸收曲线图? 标准曲线即使溶剂使用有机溶液,也可在与水溶液基本相同的测量条件下准确测定样品。五种溶剂的铜溶液在0μg/L~20μg/L浓度范围内r2 ≥0.9997, 线性关系良好。 从上面这个实验表明,日立偏振塞曼原子吸收分光光度计采用双检测器系统,即使测定有机溶剂样品,基线也十分稳定,可以得到高精度的测定数据。
  • 国际石墨烯创新大会在即 我国将参与国际石墨烯标准制定
    据悉,由青岛国家高新技术产业开发区和中国石墨烯产业技术创新战略联盟共同举办,青岛国际石墨烯创新中心承办的“2016中国国际石墨烯创新大会”将于9月22日在青岛国际会展中心召开。本次展会将围绕石墨烯新能源、环保、润滑剂等领域集中开展,同时我国石墨烯标准委员会将参与国际石墨烯的标准制定,成为展会一大亮点。  吸引30多个国家和地区企业  为期3天的活动中,来自30多个国家和地区的600家公司、2000多位石墨烯行业人士,将通过40多场分会对石墨烯的基础研究、应用技术及产业化推广展开交流和探讨。大会还将同期举办“2016中国国际先进碳材料应用博览会”,吸引了国内外优秀的石墨烯原材料供应商、制备及检测设备供应商及下游应用领头企业前来参展。  9月22日上午,在青岛国际会展中心5号馆5307会议室,还将举办石墨烯大会青岛专场活动。活动涵盖中国石墨烯产业技术创新战略联盟理事单位授牌、石墨烯创新项目落户签约仪式等,突出展示青岛地区间石墨烯产业发展创新合作成果,推动青岛国际石墨烯创新中心建设成为“技术领先、科研集中、产业集聚、辐射全球”的高水平石墨烯技术研发和产业应用平台。  石墨烯标准制定成亮点  在青举办的2015中国国际石墨烯创新大会上,石墨烯发现者、2010年诺奖得主安德烈海姆教授应邀出席做了主题演讲,并受聘为 “青岛市经济顾问”和“青岛高新区石墨烯工程技术研究中心名誉主任”。本届大会上,安德烈海姆教授将继续参会并带来更精彩的主题报告,参会代表将现场聆听顶级学者对石墨烯产业未来发展的独到见解。  本届大会上,中国石墨烯产业技术创新战略联盟标准化委员会参与国际石墨烯标准制定是一大亮点。大会期间,中外将联合举办国际石墨烯标准化论坛,标志着中国在联合制定国际石墨烯标准方面迈出关键一步。欧盟石墨烯旗舰计划负责人将与中方共同布局全球石墨烯知识产权合作,讨论合作开展知识产权保护、交易等促进企业技术发展的平台建设工作。  石墨烯:“新材料之王”  据从事多年石墨烯研究的青岛华高墨烯有限公司总经理钟成介绍,石墨烯其实是一种新型的纳米材料,本来就存在于自然界。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯,但难以剥离出单层结构。 2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010 年诺贝尔物理学奖。  作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”。
  • 皖仪“高性能石墨炉原子吸收分光光度计”荣获国家重点新产品
    热烈祝贺安徽皖仪&ldquo 高性能石墨炉原子吸收分光光度计&rdquo 荣获国家重点新产品近日,由国家科学技术部等相关部门组织的&ldquo 2012年国家重点新产品评选&rdquo 结果揭晓,我公司申报的《高性能石墨炉原子吸收分光光度计》项目荣获&ldquo 国家重点新产品证书&rdquo 荣誉称号。&ldquo 石墨炉原子吸收分光光度计&rdquo 是由安徽皖仪科技有限公司自主研发、自主设计、自主生产的一种高档分析仪器,它是指通过石墨炉高温使待测元素原子蒸汽化,利用待测元素原子的共振吸收,通过测定蒸汽化原子吸光度来实现对待测元素的定性与定量分析。它主要用于痕量元素的分析,具有灵敏度高及选择性好两大主要优点。石墨炉原子吸收分光光度计,是现代重要的元素定量分析仪器之一,可直接测定金属和类金属的元素达70多种,是一种高档分析仪器。可广泛应用与生物、食品、地质、冶金、建筑、材料、医药、环境、石油、化工、机械等各个分析领域。此款原子吸收分光光度计具有6灯座同时工作或者预热、先进的元素灯切换装置、新型双灯双原子化器一体化、高可靠性自动进样器、快速波长扫描机构、高精密度、高安全性能等产品特性。它作为国内自主研发、生产的原子吸收光度计的升级换代产品,将解决国内产品在石墨炉固体进样技术方面和国外产品的差距,也将进一步打破外国仪器及分析技术的技术壁垒,提升国产分析仪器的核心竞争力。同时将改变我国此类产品长期依赖进口的现状,实现国产科学仪器设备市场份额大幅度提升,对提高我国的科研水平以及中小企业的产品工艺水平和产品质量有着深远意义。
  • Agilent用石墨密封垫,短型,100%石墨促销
    产品名称:Agilent用石墨密封垫,短型,100%石墨,用于FID检测器和进样口端 (货号:GGEQ-690505) 型号规格:密封垫内径 0.5mm,适用色谱柱内径 0.1mm-0.32mm,10个/包 品牌:CNW 产品价格:310元促销价格:232.5元促销时间:2011年3月7日至2011年3月20日 更多产品促销请进安谱公司网站 www.anpel.com.cn
  • 力学所发现三维石墨烯泡沫材料中的电导率极大现象
    p 在传统泡沫材料中,电学性能通常不是最关键的性能。但是,三维石墨烯泡沫材料则截然不同,电学性能对于该材料在功能器件方面的应用尤为重要。事实上,合成三维石墨烯泡沫材料的一个重要目的就是为了继承单层石墨烯卓越的电学性能。尽管实验上一直尝试研究甚至改进石墨烯泡沫材料的电学性能,但理论研究的缺乏制约了该方向的进一步发展。这一尴尬局面主要源于石墨烯泡沫材料的复杂性,如石墨烯薄片的多重自由度(层数、尺寸)以及该问题的多尺度特性(涉及到电子德布罗意波长、石墨烯薄片尺度、石墨烯薄片相互接触的特征尺度)。/pp 近期,中国科学院力学研究所副研究员刘峰与王超合作提出了一种理论框架,系统研究了三维石墨烯泡沫的导电性能,并在该体系中发现了电导率极大现象。在该理论框架中,导电过程被分为两个等级。第一级,即最底层,利用介观输运理论结合紧束缚模型研究石墨烯薄片间的电导。第二级,通过分子动力学模拟研究三维石墨烯泡沫材料的网状结构,并提取平均接触面积、平均接触点密度等几何特征。结合这两方面信息即可理论计算石墨烯泡沫材料的电导及电导率。该研究发现石墨烯泡沫材料存在电导率极大现象(即随石墨烯薄片层数的增加,电导率先增大后减小),并进一步揭示了该现象的物理机制。/pp 众所周知,在传统泡沫材料中,存在一个优化泡沫密度使热绝缘能力达到最强,这源于固体中热传导与热辐射之间的竞争。而该研究首次在理论上提出存在一个优化层数使三维石墨烯泡沫材料电导率达到最大,并对其物理机制进行了系统研究。该工作为优化三维石墨烯泡沫材料的导电性能提供了理论基础,并将促进该材料在功能器件方面的应用。/pp 进一步,该研究还分析了变形下三维石墨烯泡沫材料的导电性能。在循环加载下,电阻的变化逐渐趋于稳定,同时伴随有滞回环的出现,这与实验观测定性一致。由于大变形是泡沫材料的一个重要特性,研究大变形下石墨烯泡沫材料的导电性能对于应变传感、应变调控等方面的实际应用具有重要的指导意义。/pp 相关结果发表在Small上(F. Liu, C. Wang, Q. Tang, Conductivity Maximum in 3D Graphene Foams,Small2018, 1801458)。该工作获得国家自然科学基金、中科院B类先导项目的支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/5addedc1-a85f-428b-8e87-abb19fb9b6da.jpg" title="9.jpg"//pp/pp图1.理论框架。(a)第一级:研究石墨烯薄片间的电导。(b)第二级:提取平均接触面积、平均接触点密度等几何特征。(c) 理论计算结果表明存在电导率极大现象。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/b3859686-a4f8-4a85-bfb6-528a3612ed53.jpg" title="29.jpg"//pp图2. 外载作用下,三维石墨烯泡沫材料的电阻变化规律。(a)不同应变下,三维石墨烯泡沫材料的结构演化。(b)电阻随应变的变化。(c)循环加载下电阻的变化。(d)第七次循环加载下电阻随应变的变化。/ppbr//p
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • 106万!昆明海关石墨炉原子吸收分光光度计等采购项目
    项目编号:CG2022-WT-GK-HW-030项目名称:昆明海关2022年技术中心实验室仪器设备采购项目预算金额:106.8000000 万元(人民币)采购需求:(一)货物内容包件号序号品目名称数量交货期交货地点质保期包件11全自动高压灭菌器201包产品合同签订后90日内交货。02包产品合同签订后90日内交货。海关指定地点 01包产品安装调试经用户验收合格当天起,质保期1年,并提供仪器终身维修服务。02包产品中全自动凯氏定氮仪安装调试经用户验收合格当天起,质保期2年,并提供仪器终身维修服务;石墨炉原子吸收分光光度计安装调试经用户验收合格当天起,质保期1年,并提供仪器终身维修服务。2全自动立式高压灭菌器2包件21石墨炉原子吸收分光光度计12全自动凯氏定氮仪1 (二)行业类型:工业(三)其它要求1.投标人必须对所投标包中的所有货物进行投标,不允许拆包投标。2.针对同一包,一个投标人不得提交两个或两个以上不同的投标文件或投标报价。3.各品目产品的响应报价不能超过本品目预算(品目预算详见项目需求书中的分配表),否则视为无效响应。合同履行期限:详见招标文件本项目( 不接受 )联合体投标。
  • 石墨炉AAS法测定土壤和沉积物铊国标获批
    7月8日,湖南省环保厅透露,湖南省环境监测中心站申请的国家环境保护标准《土壤和沉积物铊的测定石墨炉原子吸收分光光度法》,近日成功获批。  湖南省环保厅介绍,目前我国暂无配套的土壤环境质量标准对铊的浓度限值提出要求,土壤和沉积物中铊的分析方法标准和相关质量标准的缺失,已无法满足环境管理工作的需要。  湖南省环境监测中心站的有关分析技术人员针对重金属铊的特征,开发了土壤中铊的石墨炉原子吸收分光光度法测定方法,并进行了条件优化,为标准方法的开发积累了理论基础和科研经验,从而成功获得该项目,为在全国范围内开展土壤和沉积物中重金属铊的监测提供技术依据,为铊的相关环境质量标准的制订提供科学支撑。
  • 石墨炉原子吸收法分析高盐样品中的锑元素
    三价锑有毒性,对人体的危害极大,因此对于该成分的测定显得尤为重要。可以通过原子吸收分光光度法对可能含有锑元素的样品进行定量分析。但对于一些高盐且目标元素含量很低的样品,例如尿样,高盐背景会影响检测灵敏度。下面给大家介绍一种使用石墨炉原子吸收分光光度法测定高盐样品的方法:将60μL样品和20μL基体改进剂,共80μL试剂注入石墨管,测定样品中微量锑元素。即使大量注入样品,也可实现高灵敏度、高精度的定量分析。高盐样品中锑元素的条件设置■ 样品制备模拟尿液:参照JIS T 3214 膀胱留置用导尿管*模拟尿液中钠浓度:5.4 g /L*样品:将模拟尿液稀释2倍,并向其中加入锑元素(硝酸5%)■ 基体改进剂配置选择Pd1000 mg/L(硝酸10%)和Pd+Mg 1000 mg/L(硝酸10%)两种基体改进剂进行比较,如下图所示,Pd1000 mg/L(硝酸10%)作为基体改进剂的吸光度更高,因此选择Pd1000 mg/L(硝酸10%)作为基体改进剂。 ■ 加热后注入条件设置什么是加热后注入?对于大进样量的情况,可将石墨管加热至预设温度后再注入样品,这样可抑制样品散开,使样品停滞在石墨管中央,由此提高重现性,增加了进样量。通过优化,加热注入温度设置为80℃。 另外对于大量进样的情况,还可以选择日立DII型双注入技术热解石墨管来进行测试。■灰化、原子化温度设置—温度程序自动生成功能【灰化温度设置】背景吸收现象主要是由尿样中的钠元素(5000 mg/L左右)引起的。灰化温度≤1000℃时,背景吸收值偏高,以至于很难准确测定样品。通过温度程序自动生成功能可得到如下图所示的温度和吸光度关系图,由图可见灰化温度为1300℃时样品吸光度值最高,背景吸光值低,因此灰化温度设置为1300℃。【原子化温度设置】不同的原子化温度,原子吸收信号强度也不相同。通过温度程序自动生成功能可获得最佳原子化温度,如下图可见,原子化温度≤2500℃时,信号强度较弱。最终原子化温度设置为2800℃。分析高盐样品中的锑元素按JIS T 3214 膀胱留置用导尿管说明,配置模拟尿液样品。标准液是将关东化学社配置的原子吸光用标准液使用0.1%的硝酸稀释而成。■ 测定条件■ 测定结果上述是模拟尿样测定的结果:线性良好,回收率为97.3%,结果准确可靠。使用日立偏振塞曼原子吸收分光光度计ZA3000系列进行高盐度样品分析时,先加热石墨管再注入样品,不仅可以增加进样量(最多可注100μL),而且分析灵敏度高;配合日立原吸软件的温度程序自动生成功能,可方便快速地对干燥、灰化、原子化温度进行优化,得到最优的温度程序。
  • 上海光谱通过“高性能石墨炉原子化器”子课题技术测试
    由上海光谱仪器有限公司承担的&ldquo 高效原子化器&mdash &mdash 高性能石墨炉原子化器&rdquo 项目是 &ldquo 十一五&rdquo 科技支撑计划项目《科学仪器设备研制与开发》课题&ldquo 高稳定度光源的研究与开发&rdquo 的子课题,2010年10月15日,科技部、国家质检总局测试专家组在上海对该课题联合承担单位上海光谱进行了现场技术测试。专家们认真听取了课题组的研究工作汇报,审查了相关的技术资料、文档,依据课题任务书中规定的考核指标要求逐项进行了审核及测试,现场测试与审查结果表明,课题组成功地完成了任务书规定的考核任务及各项技术指标,上海光谱仪器有限公司作为该课题技术测试的第一站圆满完成了任务,为大课题顺利验收奠定了良好基础。市场部2010年10月18日
  • 关注近期国际行业形势 助力石墨烯产业发展
    pstrong  一、行业动态(六月汇总)/strong/pp  (1)中国太阳能组件制造商Znshine Solar宣布,与阿联酋阿提哈德能源服务公司(Etihad Energy services)签署一份100兆瓦石墨烯增强型太阳能组件供应协议。/pp  (2)黑龙江大学陈志敏教授团队在Energy & Environmental Science杂志上发表文章,介绍了一种利用氢键组装的超分子体系灵活调控氮磷共掺杂石墨烯中杂原子配置(如比例和含量等)的方法,实现了NHDG催化剂在酸性条件下HER活性的新突破。/pp  (3)上海交通大学高分子系郑震副教授带领博士生雷昆在美国化学会旗下知名期刊ACS Omega上发表关于基于氧化石墨烯与苯乙烯类树脂的有机-无机层层组装杂化膜的界面作用研究的研究成果。/pp  (4)由挪威科技大学(NTNU)的教授Helge Weman和Bj?rn-Ove Fimland领导的研究小组成功地在石墨烯表面产生紫外线,该紫外线可以消除紫外线装置中的有毒汞。/pp  (5)来自韩国的明知大学(Myongji University)、成均馆大学(Sungkyunkwan University)、 嘉泉大学(Gachon University)、韩国技术研究院(KIST) 和美国维拉诺瓦大学(Villanova University)的研究人员开发出一种基于石墨烯的生物传感器来检测细菌的存在。/pp  (6)山西煤化所在三维石墨烯基热界面材料研究方面取得进展。/pp  (7)日本名古屋工业大学(NITech)的研究团队将单层石墨烯应用于氮化镓并通过在紫外线照射下表征器件来确定石墨烯和氮化镓异质结的界面特性,该研究为了解各种二维和三维异质结构的界面,以开发具有石墨烯的新型光电器件提供可能。/pp  (8)杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证。/pp  (9)位于葡萄牙米尼奥大学的国际伊比利亚纳米技术实验室(INL)和生命与健康科学研究所(ICVS)的研究人员将开发一种基于石墨烯的设备,该设备能够以快速、可靠的方式并以可获得的成本进行疟疾的早期诊断。/pp  (10)Proactive investors发布新闻称GrapheneCA利用其专有技术,使用低温工艺将其高品质石墨烯与各种凝胶混合,该公司有望利用其颠覆性的石墨烯技术改变世界。/pp  (11)美国麻省理工学院的Jing Kong教授等人提出利用石蜡转移石墨烯的技术,解决了石墨烯转移中支撑层污染和起皱问题。/pp  (12)来自中国、美国和日本的一组研究人员开发一种方法,通过用纳米管增强用于海水淡化项目的石墨烯基膜。/pp  (13)First Graphene(ASX: FGR)披露其PureGRAPH石墨烯产品,该产品通过改善聚氨酯材料的阻燃性,提高了聚氨酯材料的安全性 /pp  (14)武汉大学袁荃和湖南大学/UCLA段镶锋等团队合作,报道了一种新型的厘米级纳米多孔石墨烯的制备方法,有望更容易实现石墨烯纳滤膜的规模化生产。/pp  (15)澳大利亚阿德莱德大学乔世璋教授课题组报道了层间距可调控的富氮薄层石墨烯(N-FLG),通过石墨烯扩层实现了钠离子的高效存储。/pp  (16)中国科学院国家纳米科学中心张勇课题组前期成功实现了过渡金属二硫族化合物本征量子片的规模制备。/pp  (17)Verditek和Paragraf宣布,他们已经成功地将石墨烯应用到光伏电池上,目前正在继续工作,目标是实现超过25%的效率。/pp  (18)加拿大石墨烯领导集团(GLC)宣布获得35万加元的拨款, 这笔资金将支持GLC“氧化石墨烯的规模化”,用于开发GLC的产品环境平台。/pp  (19)Haydale和国家物理实验室(NPL)共同参与一项为期12个月的关于改进石墨烯功能和应用的项目,该项目由英国创新署( Innovate UK )进行资助。/pp  (20)北京大学刘忠范院士团队开发了一种垂直石墨烯纳米片作为散热器的蓝宝石衬底氮化铝紫外LED器件,有效提升了紫外LED的散热性能。/pp  (21)中科院重庆研究院与新加坡国立大学合作,研制了三维微纳共形石墨烯柔性力敏电极,并应用于高灵敏柔性压容式触觉传感,主要指标已超越人类触觉感知水平。/pp  (22)大阪大学的研究人员发明了一种基于石墨烯的生物传感器,用来检测那些攻击胃壁的细菌,这些细菌与胃癌有关。/pp  (23)德克萨斯大学奥斯汀分校的研究人员开发了一种基于石墨烯的可穿戴设备,可以准确、舒适地监测心脏活动。/pp  (24)在美国能源部埃姆斯实验室和美国东北大学的合作中,科学家们开发了一个模型,用于预测夹在石墨烯等二维或二维以下材料之间的金属纳米晶体或“岛屿”的形状。/pp  (25)上海兆芯集成电路有限公司在中央处理器创新技术产业生态发展论坛上,发布了新一代16nm 3.0GHz x86 CPU产品——开先KX-6000和开胜KH-30000系列处理器。/pp  (26)XG科学近期宣布与中化集团和余姚PGS合作开发石墨烯增强热塑性复合材料。/pp  (27)石墨烯旗舰合作伙伴布鲁塞尔自由大学、比萨大学和剑桥大学与欧洲航天局(ESA)和瑞典太空公司(SSC)合作,最近向太空发射材料科学实验火箭(MASER),目的是测试在零重力条件下在硅衬底上打印石墨烯图案效果。/pp  (28)中国科学技术大学朱彦武教授课题组以碳材料的基本结构单元——单层石墨烯作为研究对象,利用原位拉曼光谱和傅里叶变换红红外光谱探究了单层石墨烯电极/电解质界面在电化学循环中的演变过程。/pp  (29)宁波材料所在推进石墨烯超级防腐涂层领域取得进展。/ppstrong  二、联盟动态(六月汇总)/strong/pp  (1)6月1日,国家石墨烯产品质量监督检验中心发布《产业质量发展分析报告》 /pp  (2)6月1日,2019中国福建(永安)石墨烯创新创业大赛在福建永安成功举办 /pp  (3)6月2日,2019中国福建(永安)6· 18项目成果对接会顺利召开。/pp  (4)6月5日,中国邮政集团公司与华为签署战略合作协议 /pp  (5)6月5日,济南圣泉集团荣获“2019年度环保社会责任企业”称号 /pp  (6)6月5日,首届西安哈工大校友创新创业大赛暨“迎哈工大百年华诞”创新创业大赛在西安高新区成功举办 /pp  (7)6月6日,石墨烯领域传出重大喜讯!杭州高烯科技有限公司建成全球首条纺丝级单层氧化石墨烯十吨生产线并试车成功,所产单层氧化石墨烯及其应用产品——多功能石墨烯复合纤维通过国际石墨烯产品认证中心(IGCC)产品认证 /pp  (8)石墨烯联盟(CGIA)联合国内外多家石墨烯领域产学研单位,共同倡议将每年6月6日设立为“国际石墨烯日International Graphene Day”。/pp  (9)6月10日,宝泰隆石墨烯公司被七台河市科学技术局授予科技型中小企业称号 /pp  (10)6月10日,5G助力“泛在电力物联网” 中兴通讯与许继电气签署战略合作协议 /pp  (11)6月10日,华为与马来西亚运营商TIME签署MoU,共建领先的10G PON超宽接入网实验局 /pp  (12)6月12日,圣泉集团又一生物质石墨烯材料研发及产业化应用项目在京通过鉴定 /pp  (13)6月12日,广州特种承压设备检测研究院圆满完成普莱克斯华南区3市4厂654只安全阀现场校验服务工作。/pp  (14)山西煤化所碳纤维表面工程课题组在表面改性方面取得新进展 /pp  (15)6月13日,菏泽市政协副主席、教科卫体委员会主任黄秀玲来山东玉皇新能源科技有限公司调研 /pp  (16)6月13日,济南圣泉集团荣获“济南市劳动关系和谐企业”称号 /pp  (17)6月13日,佛山市基金业协会、佛山力合创新中心和广东金睿和投资管理有限公司一行赴广东墨睿科技有限公司参观考察 /pp  (18)6月13日,双星集团获首批市级双创示范基地授牌 /pp  (19)6月14日,朗丰石墨烯润滑油获得中国环境标准Ⅱ型产品认证。/pp  (20)6月20日,“新华社民族品牌工程?服务产业新锐行动”启动仪式暨首批入选企业签约仪式在京举行,东旭光电旗下子公司明朔科技作为首批入选的六家企业之一受邀参会 /pp  (21)6月20日,陕西省商业联合会组织会员代表一行20余人到访西安丝路石墨烯创新中心考察交流 /pp  (22)6月20日,中兴通讯视频算法荣获IEEE CVPR超级挑战赛冠军,关键技术助力5G大视频业务发展 /pp  (23)6月21日,由西安石墨烯产业联盟主办的“2019第二期西安石墨烯项目对接沙龙”在西安丝路石墨烯创新中心成功举办。/pp  (24)6月21日,中核投资公司领导一行到宝泰隆新材料股份有限公司考察 /pp  (25)6月25日,超威集团连续7年上榜中国轻工百强 /pp  (26)6月25日,国家新材料产业发展专家咨询委员会在中国工程院召开重点领域专项调研总结汇报会,专家咨询委员会李义春委员等石墨烯调研组专家参会,并汇报了石墨烯领域专项调研情况 /pp  (27)6月25日,华为与网易成立5G云游戏联合创新实验室 /pp  (28)6月26日,中兴通讯助力中国移动演示全球首个面向5G的边缘开放硬件加速平台。/pp  (29)6月26日,美国NANOGRAF公司嘉宾到访墨西科技 /pp  (30)6月26日,广州特种承压设备检测研究院研发的《拉伸测试设备》喜获国家实用新型专利授权 /pp  (31)6月28日,石墨烯在汽车领域应用发展论坛暨西安新三力石墨烯汽车应用研发中心揭牌仪式在西安高新区圆满举行 /pp  (32)6月28日,北京联通联合华为成功完成全球首个5G承载随流检测方案iFIT试点 /pp  (33)6月28日,中兴通讯“ATG空中宽带”获亚洲最佳互联生活移动应用大奖。/pp  “2019中国国际石墨烯创新大会” 将于2019年10月19-21日在西安陕西宾馆召开,免费参会。详情可登录大会官网(官网:www.grapchina.cn详细了解)。/pp  电话:400-110-3655/pp  官网:www.grapchina.cn/pp  邮箱:meeting01@c-gia.org/pp  QQ群:296531551 397051421/pp  微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群)/pp  微信订阅号:CGIA2013(支持在线咨询)/ppbr//p
  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 超级恒温油浴特价销售,速速订购
    一:简介 是在HH-S电热恒温油浴的基础上的改进产品、广泛应用于蒸馏、干燥、浓缩以及浸渍化学药品或生物制品。是各大中专院校、环保、科研、卫生、防疫、石油、冶金、化工、医疗等单位实验室化验人员必备的理想工具。(1) 增加了循环泵、提高工作温度的一致性和精度(2) 智能化的控温仪表、使仪器加热和恒温更加稳定!(3)有内循环和外循环二种方式、用户可以根据自己的需要在采购时、提出要求。二:性能1:电 源:220V± 10V 50Hz2:控温范围:0-300℃3:控温精度:± 0.5℃3:加热功率:2000W4:带循环泵:5:有内循环和外循环二种方式6:循环泵的流量:&ge 8升/分7:工作室尺寸:280× 280× 300mm 三: 用法 使用时必须先将油加入锅内,再接通电源,数字温度控制表显示实际测量温度,调节旋钮开关,同时观察读数至所需设定温度值,当设定温度值超过油的温度时,加热指示灯亮,表明加热器已开始工作,当油的温度达到您所需的温度时,恒温指示灯亮,加热指示灯熄灭.应注意锅内的油不能使用电热管露出油面,以免烧坏电热管,造成漏电现象. 四: 注意事项 1: 为了确保安全,使用时请接上地线. 2: 严禁不加油,干烧.3 :不工作时,应切断电源,以免发生意外.
  • 霍尔德发布|石墨COD回流消解器采用石墨面均匀加热
    化学需氧量(COD)是一个重要的水质指标,用于衡量水中有机物污染的程度。COD值越高,说明水中含有的需要被氧化的还原性物质越多,也就是有机物污染越严重。在河流污染和工业废水性质的研究中,COD可以作为一个重要的参数来评估水体的污染状况。同时,在废水处理厂的运行管理中,COD也是一个关键的指标,可以用来监测处理效果,确保出水达到环保标准。石墨COD回流消解器主要由主机、冷却装置、加热装置、玻璃器皿等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对12个回流装置同时进行加热。石墨面加热,均匀度更好,更加安全。石墨COD回流消解器采用玻璃毛刺回流管代替球形回流管,并以风冷加水冷技术取代自来水冷却方式。冷却部分主要由毛刺冷凝管和双风机完成,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却。符合水质cod《水质化学需氧量的测定重铬酸盐法》HJ828-2017标准。 产品参数1、测量范围:5~800mg/L,800~10000mg/L (经稀释) 2、同时加热样品数量:8-10-12个3、测量时间:不大于2小时 4、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L),相对标准偏不大于5.0%,工业有机废水(500mg/L),相对标准偏不大于8.0%5、环境温度:0~45℃6、准 确 度:COD与经典回流法比对,结果在正常偏差范围内7、加热功率:3000W平均功率:1600W8、温度可调范围:32-400℃9、恒温精度:±2℃10、升温时间:室温至180℃<30min11、采用石墨材质加热板,温度更均匀。
  • 北京海光推出石墨炉原子吸收新品——BCEIA 2011视频采访系列
    仪器信息网讯 2011年10月12-15日,第十四届北京分析测试学术报告会及展览会(BCEIA 2011)在北京展览馆隆重举行。为让广大网友及仪器用户深入了解BCEIA 2011仪器新品动态,仪器信息网特别开展了以“盘点行业新品 聚焦最新技术”为主题大型视频采访活动,力争将科学仪器行业最新创新产品、最新技术进展及最具有代表性应用解决方案直观地呈现给业内人士。以下是仪器信息网编辑采访北京海光仪器公司总经理张雪松先生。  北京海光仪器公司成立于1988年,坐落于中关村电子城科技园区,是以原子荧光光度计、原子吸收分光光度计、等离子体发射光谱等分析仪器为主要产品,集研发、制造、销售和售后服务为一体的高新技术企业,隶属于中国地质装备总公司北京地质仪器厂,具有近四十年光谱分析仪器研发、制造历史,是中国知名的光谱分析仪器制造厂商。北京海光仪器公司总经理张雪松先生在视频中为网友介绍了最新推出的石墨炉原子吸收光谱仪及辐射监测仪。  “GGX-700石墨炉原子吸收分光光度计是根据用户的需求推出的产品,使用简单方便,原子化器的更换采用前后推拉的方式,把电源放在了主机的旁边,对仪器的软件进行了改观,减轻使用者的劳动强度。”  张雪松先生也谈到了海光未来的发展思路:“我们今后进一步加强新产品基础性的研发,在产品的耐用性、便利性、持久性等方面缩小与国际高端产品的差距,提升服务质量,想用户之所想,急用户之所急,为广大用户排忧解难。”
  • 鼎泰恒胜发布全自动石墨消解仪 DTI-60TⅡ新品
    一、产品独特优势及亮点1、全机身表面特氟龙防腐蚀处理,加液臂使用聚四氟材料,无任何传动部件外露,长久抵抗酸雾腐蚀;2、双臂支撑结构,保持超声波传感器水平高度长久稳定,准确定容;3、双加热温控,两个石墨体独立加热,独立控制;4、可选蠕动泵和注射泵互补、协同加液,发挥两种泵的加液优势;5、通过触屏电脑、台式机、笔记本无线操控;6、声音提醒功能,实验进度显示,试剂声音报警;7、突发断电时,实验断点闪存,接断点继续水解;8、脱离控制器仍可离线运行,继续消解二、产品特点自动消解全自动加酸、混匀、消解、赶酸、冷却、定容声音提醒实验进度提示,试剂空、管架不平行等声音性能稳定密闭封装防酸设计,仪器持久耐用放心消解脱机运行、断电闪存技术均匀加热石墨体加热批量样品均匀、立体加热消解准确定容超声波传感器准确定容0~100mL定容体积12个加液通道12种试剂选择添加、定容温控范围室温~260°C,PID程序控温实时温度显示石墨体加热至少两个石墨体加热,可适用50mL、100mL消解管,多种加热组合,独立控制,可同时或独立消解整体混匀非样品接触式机械震荡批量样品整体混匀自由选配集成式自动排风系统、平板电脑、聚四氟乙烯回流漏斗无线控制通过触屏电脑、台式机、笔记本无线操控,通过软件调用实验室方案,随时查看仪器状态,检查运行情况。存档运行日志定期拷贝,为实验室数据溯源做好存档工作外形特点外形精致,小巧轻便可选配双加液定容系统实现两个样品同时加热、定容、快速操作创新点:全机身表面特氟龙防腐蚀处理,加液臂使用聚四氟材料,无任何传动部件外露,避免酸雾直接熏蒸,持久耐用。全自动石墨消解仪 DTI-60TⅡ
  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 众多顶级专家将共赴南京国际石墨烯创新大会 探讨全球化合作与分工
    p  近年来世界各国纷纷出台相关政策支持石墨烯产业,全球石墨烯产业发展风起云涌,而中国蕴藏着石墨烯应用的巨大市场空间,已为全球所有石墨烯研发机构、企业所共识。中国民间投资活跃,应用创新成果“遍地开花”,产业发展“一枝独秀”,已经发展成为全球石墨烯产业的“领头羊”。全球化新形势下,如何推动中国以及世界石墨烯产业的健康发展,成为众多业界人士所关注的核心问题。/pp  为了打造“优势互补,合作共赢”的全球石墨烯产业发展共同体,中国石墨烯产业技术创新战略联盟将于2017年9月24日至26日在六朝古都南京举办“2017’(第四届)中国国际石墨烯创新大会”。届时,包括2010年诺贝尔物理学奖获得者、英国曼彻斯特大学的安德烈· 海姆在内的多位国际知名专家,将莅临在南京国际展览中心开幕的2017中国国际石墨烯创新大会(GRAPCHINA 2017),共同探讨石墨烯产业的全球化合作与分工。/pp  据介绍,联盟在南京政府及众多合作伙伴的鼎力支持下,除诺奖得主外,还邀请到欧盟石墨烯旗舰计划执行委员会主席、剑桥大学石墨烯研究中心主任安德里亚· 法拉利和意大利工业技术研究院石墨烯中心主任Vittorio Pellegrini教授等众多国际知名专家出席,为中国乃至全球石墨烯产业的发展出谋划策。届时来自20多个国家的3000多位参会代表将出席本届石墨烯全球盛会。/pp  据了解,与以往不同的是本届大会将设立三大平行会议,分别为石墨烯及二维材料前沿研究、石墨烯新兴产业、石墨烯在传统产业应用,会场全部配置同声传译。与此同时,“2017中国国际石墨烯材料应用博览会”也将同期举行,展览面积增加到15000平米,数百家国内外石墨烯知名企业将向全世界展示他们最新的应用技术及创新成果。届时,与会者将有机会在各个时段与众多国内外顶级专家及知名企业进行面对面地深入交流,了解世界最前沿的石墨烯科技及市场信息,找到亟需的合作伙伴。/pp  业内专家称,相信此次大会将加快我国石墨烯产业创新发展,促进石墨烯产业化应用与开发,加强国际合作,打造“优势互补,合作共赢”的全球石墨烯产业发展共同体,为全球石墨烯产业发展迎来新篇章。/pp  温馨提示:/pp  1、凡是学生提交的海报摘要经组委会学术委员会评审通过后,该学生可免会议注册费!/pp  2、去年的老用户, 如果您去年在创新大会官网注册参会,今年您的帐号依然有效,可以正常登录不需要重新注册。如果密码丢失 :a、可以使用“密码找回”功能 b、提供正确的邮箱(注册时使用的)发给会务组(邮箱:meeting@c-gia.org),进行邮箱密码重置。/pp  3、团队参会一次应付金额在¥ 20,000.00以上的可享受九折优惠。¥ 40,000.00以上的可享受八折优惠。(仅限大会官网在线报名)/pp  联系方式:/pp  咨询热线:400-110-3655/pp  官方网站:http://www.grapchina.org(9月24日前,仅限官网在线报名)/pp  官方邮箱:meeting@c-gia.org/pp  微信公众平台:CGIA2013(支持在线咨询)/pp  QQ群: 296531551 397051421/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制