当前位置: 仪器信息网 > 行业主题 > >

生物组织冷冻包埋机

仪器信息网生物组织冷冻包埋机专题为您提供2024年最新生物组织冷冻包埋机价格报价、厂家品牌的相关信息, 包括生物组织冷冻包埋机参数、型号等,不管是国产,还是进口品牌的生物组织冷冻包埋机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生物组织冷冻包埋机相关的耗材配件、试剂标物,还有生物组织冷冻包埋机相关的最新资讯、资料,以及生物组织冷冻包埋机相关的解决方案。

生物组织冷冻包埋机相关的资讯

  • 祝建:关于原位冷冻电镜技术的一点想法
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。  上海同济大学生命科学学院祝建教授作了题为&ldquo 关于原位冷冻电镜技术的一点想法&rdquo 的报告。祝建教授  祝建介绍说:&ldquo 冷冻电镜技术可以分为单颗粒冷冻电镜技术和原位冷冻电镜技术。其中单颗粒冷冻电镜技术目前国际上做了许多工作,近来也比较火。近年来,我国为了开展这方面工作,购置了许多相关的高端仪器设备。该技术需要将细胞内的活性蛋白分子提纯后在体外分析,但是在体外做的不错的结构最终还需要到体内去验证,如在体内蛋白质是否也是按照相应的结构来执行功能。所以这方面的工作还需要进一步深入。&rdquo   祝建表示,原位冷冻电镜的最终目的是研究大分子的结构、功能和机制统一的问题,从而解释生命现象。原位冷冻电镜技术包括冷冻固定、超薄切片,再加上电镜分析、数据采集、三维重构等。冷冻固定可以分为快速冷冻和高压冷冻。高压冷冻技术就是为了使组织的冷冻成为可能而问世,可以冷冻200&mu m厚的样品。而快速冷冻技术只能冷冻30&mu m厚的单细胞层。从冷冻速度来看,快速冷冻的速度稍快一些。  祝建说:&ldquo 目前,国内购买了多台高压冷冻仪。其实并不是所有的样品都适合高压冷冻,大组织块、一定厚度的样品用高压冷冻最好,其他的单细胞样品用快速冷冻一样能达到很好的效果,而且快速冷冻技术更简便。&rdquo   &ldquo 冷冻固定之后,如果在冷冻电镜下分析需要与冷冻超薄切片技术相结合。如果在常温电镜下分析,则还需要冷冻置换、包埋、切片等步骤,现在买高压冷冻仪的单位基本都是要和冷冻置换结合起来。冷冻置换是冷冻固定之后非常必要的低温脱水技术,脱水过程中脱水剂中所含有的固定成分还将在合适的低温温度下对样品进行二次固定。如果要减少样品收缩,则需要快速冷冻固定,慢慢脱水。&rdquo 祝建说道。  另外,祝建还谈道:&ldquo 原位分析的另外一种途径是标记,通过标记实现定位、定性、定量分析。因为我们无法看到一些结构细节和大分子,所以用抗体来标记连接我们能看到的荧光分子或金颗粒来实现间接原位分析。&rdquo   最后,祝建总结说,在实际应用中,要根据样品的特点,从快速冷冻、高压冷冻、冷冻置换、超薄切片、冷冻超薄切片、离子束切片等制样技术中选择合适的组合方法来制样。还有我们要考虑将原位冷冻电镜与单颗粒冷冻电镜结合起来获取有效的分析结果。撰稿:秦丽娟
  • iCEM 2016特邀报告:高压快速冷冻电镜固定技术及在生命科学中的应用
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong高压快速冷冻电镜固定技术及在生命科学中的应用/strong/pp style="TEXT-ALIGN: center"img title="personalfoto.jpg" style="HEIGHT: 299px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201609/insimg/8161dc5a-ce0a-4fad-b46b-7088733e4181.jpg" width="200" height="299"//pp style="TEXT-ALIGN: center"strong赵善廷 教授/strong/pp style="TEXT-ALIGN: center"strong西北农林科技大学动物医学院/strong/ppstrong报告摘要:/strong/pp  电镜技术在生命科学中的应用已有六十多年的历史,为生命科学在形态结构方面的研究带来了一场革命,突触(synapse)的发现就是一个典型的例子,它结束了自十九世纪末至二十世纪五十年代近半个世纪有关神经元之间是否有直接联系的神经生物学世纪之争。/pp  生命科学常规电镜技术需要先用甲醛、戊二醛等化学试剂对样品进行化学固定,但化学固定有以下三个方面的缺点,一是固定过程至少需要数分钟,而机体内的许多生理过程都非常短暂,仅持续数秒甚至毫秒,如神经元突触小泡内神经递质的释放,用传统化学固定方法无法扑捉到这些生理过程的形态学变化和特征,而且植物细胞有细胞壁,昆虫如线虫等体表有几丁质,化学固定剂很难渗透,严重影响固定的效果 二是包埋前需要用酒精等有机溶剂对样品进行脱水,这一过程会造成细胞和组织皱缩,使其形态和大小发生改变 三是化学固定剂特别是戊二醛可引起蛋白质变性,造成蛋白质抗原特性改变,使其与相应抗体的结合能力下降甚至丧失,导致电镜免疫组化染色失败。/pp  为克服化学固定以上缺点,科学家发明了一种新的物理性电镜固定技术,称为高压快速冷冻电镜固定技术,利用该技术可以在不使用任何化学固定剂的条件下在五十毫秒之内将组织和细胞完全固定,然后既可通过常规电镜包埋和超薄切片后进行超微结构观察和研究,也可通过冰冻替代技术包埋和切片后进行包埋后免疫胶体金染色(post-labeling),对蛋白质进行超微结构下的定位定量研究。/pp  虽然高压快速冷冻固定技术克服了化学固定的三大缺点,但它本身也有一个缺点,即固定的样品非常小,直径不能超过1毫米,厚度不能超过200微米,限制了它在神经生物学研究中的应用。为了克服高压冷冻固定技术的缺点,将其应用到神经生物学研究中,赵善廷教授与该技术的发明者Studer博士合作,将器官型脑片培养技术(organotypic slice culture)和高压快速冷冻固定技术相结合,成功地研究了与学习和记忆密切有关的长时程效应(long-term potentiation, LTP)对突触的影响。/pp  结果显示与化学固定相比高压冷冻固定后细胞和组织的超微结构更加清晰完整,LTP十分钟后突触小泡的数量明显下降,突触结构明显改变。结合包埋后免疫胶体金技术我们发现高压冷冻固定可明显提高胶体金标记的阳性率和特异性。因此,高压快速冷冻电镜技术为研究突触小泡递质释放和再循环机制及相关蛋白在突触上的超微结构定位和定量等神经生物学方面的研究提供了有利条件。/pp  参考文献:/pp  1, Studer D*, Zhao S*(equally contributed), Chai X, Jonas Peter, Graber W , Nestel S, Frotscher M. Capture of activity-induced ultrastructural changes at synapses by high-pressure freezing of brain tissue. Nature Protocols. 2014 9(6):1480-95./pp  2,Zhao S, Studer D, Chai X, Graber W, Brose N, Nestel S, Young C, Rodriguez EP, Saetzler K, Frotscher M. Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing. J Comp Neurol. 2012 520(11):2340-5./ppstrong报告人简介:/strong/pp  赵善廷,西北农林科技大学动物医学院“后稷学者”特聘教授,博士生导师,陕西省“百人计划”入选者,德国汉堡大学客座研究员。/pp  主要学习经历/pp  1980.9-1985.7: 滨州医学院,临床医学专业,获学士学位/pp  1985.9-1988.7: 新疆医科大学,组织胚胎学专业,获硕士学位/pp  1998.10-2001.1:德国Freiburg大学医学院, 解剖研究所,获医学博士学位/pp  2001.1-2004.9: 德国Freiburg大学医学院, 解剖研究所,博士后/pp  主要工作经历/pp  1988.8-1998.9: 新疆医科大学,组织胚胎学教研室,助教,讲师,副教授/pp  1997.5-1998.4: 德国Freiburg大学医学院,解剖研究所,访问学者/pp  2004.10-2010.12:德国Freiburg大学医学院,解剖研究所,助理教授/pp  2008.12-2011.3:兰州大学生命科学学院,“萃英学者”特聘教授,博士生导师/pp  2011.1-至今:西北农林科技大学动物医学院“后稷学者”特聘教授,博导,/pp  陕西省“百人计划”入选者,德国汉堡大学客座研究员/pp  工作简介/pp  在德国Freiburg大学医学院,赵善廷主要以子宫内电击转染、器官型脑片培养、荧光免疫组化、电镜、激光共聚焦显微镜等形态学技术和原位杂交、Western-blot等分子生物学技术对大脑发育,成体神经干细胞及突触可塑性与学习和记忆的机制等神经生物学热点问题进行了深入和细致的研究。/pp  回国后,在继续进行以上研究方向的基础上,赵善廷开展了环境和疫病对动物和家畜神经系统的影响、应激和动物福利对畜禽免疫力和健康养殖的影响及与食品安全的关系、中药对神经系统的影响及对老年性疾病的预防和治疗等方面的研究。先后发表学术论文90余篇,其中在“Nature”子刊、“Journal of Neuroscience”、“Development”等国际著名学术杂志上发表SCI论文53篇,累积影响因子超过250,其中17篇影响因子在5以上,一篇影响因子高达31.7 。/pp  自2002年以来作为主要人员参与德国及欧共体重大科研项目4项(相当于中国973项目),并主持一项子课题。回国后主持2项国家自然科学基金面上项目和2项省部级项目。/ppstrong报告时间:/strong2016年10月26日上午/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a/p
  • 【瑞士步琦】冷冻干燥含酵母菌的微球应用
    瑞士步琦冷冻干燥含酵母菌的微球应用冷冻干燥应用”益生菌是一种有益于人体健康的微生物,常被用于改善肠道菌群。微胶囊包埋技术可以帮助保护菌株,延长其在体内的存活时间,不易受外界环境的影响而失活。因此,在生产益生菌产品时,需要考虑选择合适的微胶囊技术,以确保益生菌的稳定性和活性。下面这篇应用非常好的结合了微胶囊包埋和冷冻干燥技术,证明菌种经过包埋干燥后仍具有生物活性,为发酵工艺和食品转化等领域开辟新的可能性。1介绍冷冻干燥,也称为冻干是一种非常通用的脱水方法,常用于保存微生物、食物或药物,如蛋白质类药物。它将冷冻和干燥结合在一个独特的操作中,可以创造出高质量的干燥终产品。冷冻干燥通常用于保存微生物培养物,因为它具有不可忽视的优点:储存的方便性和增加邮寄微生物的可能性。此外,制得的产品只需要少量维护,培养基在储存过程中不会受到污染,微生物可以长时间保持活力。然而,众所周知,冷冻干燥技术对微生物至关重要,因为它对微生物的生存能力和生理状态都有负面影响。根据方法和生物体的不同,微生物存活率也各有不同;然而,活力水平明显低于液氮储存 2。观察到的活力下降主要是由于一些不良副作用引起的,例如细胞内冰晶的形成1、敏感蛋白的变性或在此过程中膜脂质的物理状态发生一些不可逆的变化 3,5。为了防止这种影响,通常在冷冻或冷冻干燥前使用脱脂牛奶、蔗糖、甘油、 DMSO 或海藻糖等作为冻干保护物质1,3。据报道,海藻糖在干燥、冷冻、渗透胁迫和热休克等极端环境下对酵母和细菌具有保护作用。这些保护效果与膜的稳定和酶活性的保存有关。关于海藻糖的保护作用,已经报道了几种假设。一些报道认为它的作用是通过多个外部氢键取代参与维持蛋白质三级结构的水分子,另一些报道认为它形成玻璃态结构以确保物理稳定性。除了发酵过程或食品转化,酿酒酵母或乳酸菌等微生物在益生菌膳食食品和饲料补充剂领域具有重要的经济意义。然而,这些应用需要在储存过程中保持细胞活力。通过造粒和冷冻干燥技术相结合,可以得到大小和组成均匀的无尘颗粒。由于具有更高的颗粒表面积,这使得产品将具有良好的颗粒流动性,更容易掌握的剂量和更快的产品复原性。尽管存在上述挑战,冷冻干燥仍然是一种酵母、孢子真菌和细菌的方便保存方法,因为它们的长期生存能力通常保持得相当好,而且菌株的储存和分发要求也很简单。因此,本应用旨在生产酿酒酵母颗粒作为模型微生物,使用微胶囊造粒仪 Encapsulator B-390 作为造粒机,将酵母悬浮液挤压进入液氮中形成单分散球体,然后使用冷冻干燥机 Lyovapor&trade L – 200 进行冷冻干燥处理。2仪器,试剂和器材仪器:ESCO NordicSafe, Biosafety Cabinet Class IIBUCHI 微胶囊造粒仪 Encapsulator B-390BUCHI 冷冻干燥机 LyovaporTM L-200 Pro,干燥腔体搭配可加热搁板BUCHI LyovaporTM Software试剂:YPD 培养基, Sigma Aldrich海藻糖, Sigma Aldrich脱脂奶粉琼脂去离子水液氮器材:玻璃培养皿液氮杜瓦瓶3实验本应用中描述的工作是在无菌条件下进行的。将 84g 市售面包酵母悬浮溶解在 50mL 无菌 YPD 培养基(Sigma Aldrich)中。在酵母悬浮液中加入 50mL 无菌冻干保护剂培养基(5g 海藻糖(Sigma Aldrich)和 5g 脱脂牛奶溶于去离子水中),然后用微胶囊造粒仪 B-390 进行制粒(表1)。将挤压后的液滴收集在液氮浴中冷冻,然后转移到不锈钢托盘中,保存在 -25°C 的冰箱中进行冷冻干燥。表1:微胶囊包埋参数_300μm 喷嘴1mm 喷嘴频率[Hz]68060电压[V]7502500压力[mbar]500500冷冻干燥步骤(初级干燥和次级干燥)使用 LyovaporTM 编程软件,如表 2 所示。使用 LyovaporTM L-200 Pro 干燥腔体、可加热的搁板和环境空气。表2:初级干燥和次级干燥冻干参数无酵母菌微球采用与含酵母菌微球相同成分培养基和参数进行制备。冷冻干燥后,将 1mL 无菌水加入 1mL 微球中,用以复原样品。对于含有酵母菌的菌珠,对每个重组溶液进行10倍、100 倍和 1000 倍的连续稀释。将复原后的溶液和稀释液分别涂于 YPD 琼脂平板上,如图 1 所示。琼脂板在 28℃ 培养 24h,评价细胞活力。▲ 图1:琼脂平板上的酵母活力测试4结果与讨论含有酵母的微球可以通过使用微胶囊造粒仪 B-390 进行包埋制备,结果表明:用微胶囊造粒仪 B-390 将酵母滴入液氮中,可使酵母迅速颗粒化;用 300μm 的喷嘴和 1mm 的喷嘴分别制备了 700μm 和 1500μm 左右的微球。仅使用含冻干保护剂介质的溶液也得到了类似的结果。如图 2 所示,冻干后的微球在形状和大小上与湿冻微球保持相似。▲ 图2:用微胶囊造粒仪 B-390 制得的 300μm 酵母微球,在冻干前(左)后(右)的对比通过扫描电镜对其结构进行分析。在图 3 中,可以观察到含有酵母的球珠(下两图)和仅由冻干保护剂培养基制成的球珠(上两图)在形态上的差异。含有酵母菌的微球具有由 5μm 颗粒组成的粗糙结构,可以认为是微生物,而只含有冻干保护剂的微球具有更光滑的结构。▲ 图3:含酵母菌的冻干微球(下)和不含酵母菌冻干微球(上)的结构对比当冷冻干燥时,考虑到膜中脂质物理状态的变化或由于某些蛋白质结构的变化,生物系统可能受到破坏3,9。为了验证酵母菌的活力,将酵母菌重新水合,稀释,并在 28°C 的 YPD 琼脂板上培养 24 小时。图 4 证实了文献报道的内容,即便失去了部分活力,酵母在冻干后仍然可以生长2,4,6,10。▲ 图4:在 28℃ 琼脂板中培养 24 小时后的酵母菌活力5结论含有酵母菌的微粒可以很容易地用微胶囊造粒仪 B-390 进行制备,并使用冻干机 LyovaporTM L-200 进行冷冻干燥处理。B-390 的喷嘴直径分别为300 μm和1000 μm,制得的微粒直径分别为 700μm 和 1500μm。冷冻干燥后,珠粒的大小和形状没有变化。该颗粒流动性好,容易掌握使用剂量,且与水混合后溶解速度快。冻干后的微生物在贮藏过程中仍能保持良好的活力,并能在复水化后成功生长。在本应用中,造粒包埋和冷冻干燥的结合显示出了非常好的实验结果。它可以在发酵工艺和食品转化等领域开辟新的可能性,有利于生产制备剂量易控制和重组的培养发酵剂;另外,在益生菌和食品补充剂领域中获得无尘且可自由流动的粉末,同时保证产品颗粒大小和组成的均匀度。6参考文献N’Guessan, F. K. Coulibaly, H. W. Alloue-Boraud, M. W. A. Cot, M. Djè, K. M. Production of Freeze-Dried Yeast Culture for the Brewing of Traditional Sorghum Beer, Tchapalo. Food Sci. Nutr. 2016, 4 (1), 34–41.Bond, C. Freeze-Drying of Yeast Cultures. In Cryopreservation and Freeze-Drying Protocols Day, J., Stacey, G., Eds. Methods in Molecular BiologyTM Humana Press, 2007 pp 99–107.Leslie, S. B. Israeli, E. Lighthart, B. Crowe, J. H. Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ.Microbiol. 1995, 61 (10), 3592–3597.Miyamoto-Shinohara, Y. Imaizumi, T. Sukenobe, J. Murakami, Y. Kawamura, S. Komatsu, Y. Survival Rate of Microbes after Freeze-Drying and Long-Term Storage.Cryobiology 2000, 41 (3), 251–255.Wolkers, W. F. Tablin, F. Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002, 131 (3), 535–543.Lodato, P. Huergo, M. S. de Buera, M. P. Viability and Thermal Stability of a Strain of Saccharomyces Cerevisiae Freeze-Dried in Different Sugar and Polymer Matrices. Appl. Microbiol. Biotechnol. 1999, 52 (2), 215–220.Strasser, S. Neureiter, M. Geppl, M. Braun, R. Danner, H. Influence of Lyophilization,Fluidized Bed Drying, Addition of Protectants, and Storage on the Viability of Lactic Acid Bacteria. J. Appl. Microbiol. 2009, 107 (1), 167–177.Miyamoto, T. (Kyushu U. Kawabata, K. Honjoh, K. Hatano, S. Effects of Trehalose on Freeze Tolerance of Baker’s Yeast. J. Fac. Agric. - Kyushu Univ. Jpn. 1996.Giulio, B. D. Orlando, P. Barba, G. Coppola, R. Rosa, M. D. Sada, A. Prisco, P. P. D. Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21 (5), 739–746.Cerrutti, P. Huergo, M. S. de Galvagno, M. Schebor, C. Buera, M. del P. Commercial Baker’s Yeast Stability as Affected by Intracellular Content of Trehalose, Dehydration Procedure and the Physical Properties of External Matrices. Appl. Microbiol. Biotechnol. 2000, 54 (4), 575–580.
  • 四大常见电镜制样方法简介:TEM、SEM、冷冻、金相
    应用电子显微镜高分辨本领和高放大倍率,对物体组织形貌和结构特征进行分析和研究的近代材料物理测试方法。但样品的制作直接影响着结果的准确性,所以制作满足要求的样品就成了整个试验的重点。现将一些常见电镜制样方法简介如下。透射电镜(TEM)TEM放大倍数可达近百万,可以看到在光学显微镜下无法看清的0.1~0.2nm的细微结构。它的样品制备工作量非常大,约占全部测试工作的半数以上或90%以上,是十分关键的。图 透射电镜样品台常用样品台分为两种:顶入式样品台和侧插式样品台顶入式样品台要求样品室空间大,一次可放入多个(常见为6个)样品网,样品网盛载杯呈环状排列,使用时可以依靠机械手装置进行依次交换。优点:每观察完多个样品后,才在更换样品时破坏一次样品室的真空,比较方便、省时间。缺点:但是需要的空间过大,使样品远离下方物镜,不宜减小物镜焦距而影响电镜分辨力。侧插式样品台样品台制成杆状,样品网载放在前端,只能盛放1~2个铜网。优点:样品台体积较小且占用空间较少,可布置于物镜内上部,利于提高电镜分辨率。缺点:不可能一次投入多个样品网中,每换一个样品都要打破一次样品室内真空,稍有不方便。支撑网的选择:支撑网有多种材质如Cu、Ni、Be、尼龙等,选择时要与待分析样品的成分分开。图 筛网尺寸制备原则• 简单• 不破坏样品表面• 获得尽量大的可观测薄区主要制备方法• 支持膜法:• 复型法:• 超薄切片法:• 薄膜试样(电解双喷减薄,离子减薄,FIB等)1. 支持膜法适用范围:纳米颗粒(防止样品从铜网缝隙中漏出)支持膜种类:• 微栅膜• FIB微栅膜• 纯碳微栅膜• 多孔碳膜• Quantifoil规则多孔膜• C-flat纯碳多孔支持膜等图 筛网尺寸制备过程:• 制备支持膜:在铜网上覆盖一层有机膜后喷碳• 选择分散剂:根据样品性质选择,常用无水乙醇• 分散:使用超声波或搅拌将粉末分散成悬浮液液滴上支持膜(两种方法):(a)滴样:用镊子将覆盖支持膜的铜网夹住,并用滴管向支持膜上滴入数滴悬浮液,使其保持夹持状态直至干燥为止(推荐)(b)捞取:用镊子夹持载网浸入溶液捞取液滴(缺点:双面挂样制备关键和注意事项:• 样品粉末能否在支持膜上均匀分布• 确保实验过程中未带入污染物2.复型法基本原理:利用电子束透明膜(碳、塑料、氧化物薄膜)复制材料表面或者断口形态的间接试样制备方法。适用范围:在电镜中易起变化的样品和难以制成薄膜的试样。样品要求:非晶态、分子尺寸小、导电性、导热性良好,耐轰击,有足够的强度和刚度。复型法分类:塑料一级复型、碳一级复型、塑料-碳二级复型、萃取复型。(1)塑料一级复型样品上滴特定溶液,溶液在样表面展平,多余的用滤纸吸掉,溶剂蒸发后样品表面留下一层100nm左右的塑料薄膜。图 塑料一级复型(2)碳一级复型利用真空镀膜装置将碳膜蒸镀于试样表面,将试样置于真空镀膜装置内,将试样置于所配的分离液内经电解或者化学分离得到分离碳膜便可应用于分析。图 碳一级复型(3)萃取复型图 萃取复型(4)塑料-碳二级复型通俗地说,塑料的一级复型中又制造出碳复型即为二级复型。分辨率相当于塑料的一级复型,对试样无损害,耐电子束辐照,复型带重金属投影。图 碳二级复型3. 超薄切片法适用范围:生物组织、较软的无机材料等。1.取材 2.固定 3.漂洗 4.乙醇或丙酮系列脱水 5.渗透 6.包埋 7.聚合 8.修块 9.切片 10.捞片染色 11.电镜观察注意事项:• 迅速:最短时间内取样,投入固定液• 体积小:所取样品体积不超过1mm3• 轻:轻轻操作,使用锋利器械,避免拉、锯、压• 准确:所取部位有代表性• 低温:在0~4℃内操作4.离子剪薄法适用范围:用于非金属材料或非均匀金属制备过程:• 预处理:按预定取向切割成薄片,机械抛光减薄到几十μm,把边长/直径切割至3mm。• 装入离子轰击装置:• 抛光:获得平坦而宽大的薄区。图 离子剪薄法5.电解双喷减薄法适用范围:只能制备金属试样,首选大块金属。样品准备:• 磨抛厚度均匀,避免穿孔偏• 样品保证清洁• 多准备一些试样,试合适的条件制备步骤:• 样品接正极、电解液接负极,电解液从两侧喷向样品• 样品穿孔后,自动停机• 获得中间薄,边缘厚,呈面窝状的TEM薄膜样品电解液选择:根据样品;不损伤仪器优点:条件易控制,快速,重复性好,成功率较高。图 电解双喷减薄法原理图6. 聚焦离子束法(FIB)适用范围:适用于半导体器件的高精度切割与线路修复。原理:采用从液态金属镓中提取离子束,并通过调节束流强度对指定区域进行快速精细处理。方法:铣削阶梯法,削薄法(H-bar)铣削阶梯法:• 预处理:铣削出两个反向的阶梯槽,中间留出极薄的TEM试样• 标记:刻蚀出定位标记• 定位:用离子束扫描定位标记,确定铣削区域• 铣削:自动或手动完成铣削加工图 铣削阶梯法制备的样品TEM照片削薄法(H-bar):• 使用机械切割和研磨等方法将试样做到50-100μm厚• 使用FIB沉积一层Pt保护层• 使用FIB铣削掉两侧的材料图 削薄法工作示意图扫描电镜(SEM)扫描电镜样品制备比透射电镜样品制备简单,无需包埋和切片。样品要求:样品须为固体;达到无毒、无放射性、无污染、无磁性、无水分、组分稳定。制备原则:• 表面受到污染的试样,要在不破坏试样表面结构的前提下进行适当清洗,然后烘干;• 新断开的断口或断面,一般不需要进行处理,以免破坏断口或表面的结构状态;• 要侵蚀的试样表面或断口应清洗干净并烘干;• 磁性样品预先去磁;• 试样大小要适合仪器专用样品座尺寸。常用方法:块状样品块状导电材料:无需制样,用导电胶把试样粘结在样品座上,直接观察。块状非导电(或导电性能差)材料:先使用镀膜法处理样品,以避免电荷累积,影响图像质量。图 块状样品制备示意图粉末样品直接分散法:• 双面胶粘于铜片表面,借助棉球使被测样品颗粒直接撒布于其上,并用洗耳球对样品进行轻吹以去除粘附的、没有被牢固地固定的粒子。• 将装有颗粒的玻璃片翻起,对着已准备好的试样台用小镊子或者玻璃棒轻敲,使细颗粒能够均匀地落入试样台上。超声分散法:将少量颗粒放入烧杯内,加乙醇适量,超声震荡5分钟,然后用滴管加入铜片内,使其自然干燥。镀膜法真空镀膜真空蒸发镀膜法(简称真空蒸镀)就是将蒸发容器内需要成膜的原材料在真空室内进行加热,将蒸发容器内的原子或分子气化并从表面逸出,一种形成蒸气流并将其射入固体(称为衬底或基片)的表面以冷凝成固态薄膜的工艺。离子溅射镀膜原理:离子溅射镀膜在局部真空溅射室内辉光放电生成正向气体离子;在阴极(靶)与阳极(试样)之间电压加速时,荷正电离子轰击阴极表面并原子化阴极表面材料;生成的中性原子,向四面八方飞溅,射落在样品表面,从而在样品表面生成了均匀的薄膜。特点:• 对任何待镀材料来说,溅射都是可能的,只要它能够制成靶材即可(适用于难蒸发材料和不容易获得高纯度化合物的相应薄膜材料的制备);• 溅射所获得的薄膜和基片结合较好;• 消耗贵金属少,每次仅约几毫克;• 溅射工艺具有良好的可重复性,膜厚可控,同时能在大范围基片表面得到厚度均一的膜。• 溅射方法:直流溅射、射频溅射、磁控溅射、反应溅射。1.直流溅射图 直流溅射沉积装置示意图已经很少使用了,由于沉积速率过低~0.1μm/min、基片加热、靶材导电、直流电压和气压都必须很高。优点:装置简单,容易控制,支模重复性好。缺点:工作气压高(10-2Torr),高真空泵不起作用;沉积速率低,基片升温高,只能用金属靶(绝缘靶导致正离子累积)2.射频溅射图 射频溅射工作示意图射频频率:13.56MHz特点:• 电子作振荡运动,延长了路径,不再需要高压。• 射频溅射可制备绝缘介质薄膜• 射频溅射的负偏压作用,使之类似直流溅射。3.磁控溅射原理:用磁场使电子移动方向发生变化,电子移动轨迹被束缚与拉长,工作气体中电子电离几率增加,电子能量得到高效利用。由此使得正离子轰击靶材产生的靶材溅射变得更高效,可以在更低气压下溅射,而被正交电磁场捆绑的电子则会被束缚于靶材周围,仅能在它们能量消耗殆尽后沉积下来的基片中溅射。图 磁控溅射原理示意图特点:低温,高速,有效解决了直流溅射中基片温升高和溅射速率低两大难题。缺点:• 靶材利用率低(10%-30%),靶表面不均匀溅射;• 反应性磁控溅射中的电弧问题;• 薄膜不够均匀• 溅射装置比较复杂反应溅射溅射气体添加氮气、氧气、烷类等少量反应气体,反应气体和靶材原子共同沉积于衬底上,对于某些不容易发现块材而制造靶材的物质,或者溅射时薄膜成分易偏离靶材原成分,均可用此法进行。反应气体:O2,N2,NH3,CH4,H2S等镀膜操作将制备完成的样品台放置在样品托上,放入离子溅射仪,加盖,旋紧螺丝并开启电源抽真空。当真空趋于稳定时,在5 X10-1mmHg左右,按下“启动”键,用调节针阀把电流调节到6~8mA,开始镀金,镀金1分钟后即自动停止镀金,关好电源、打开顶盖螺丝、放掉气体、取下试样即成。图 Cressington 108Auto高性能离子溅射仪冷冻电镜制样冷冻电镜是扫描电镜超低温冷冻制样传输技术(Cryo-SEM)可以实现液体,半液体和电子束敏感样品的直接观测,例如生物和高分子材料。样品经超低温冷冻,断裂和镀膜制样(喷金/喷碳)后可由冷冻传输系统置于电镜中的冷台上(温度可至-185°C)观察。适用范围:塑料,橡胶及高分子材料,组织化学,细胞化学等样品制备要求:能够保持本身的结构,又能抗脱水和电子辐射方法:(a)通过快速冷冻使含水样品中的水处于玻璃态,也就是在亲水的支持膜上将含水样品包埋在一层较样品略高的薄冰内。图 液氮冷冻(b)采用喷雾冷冻装置(spray-freezing equipment),结合基质混合冷冻技术(spray-freezing),可在极短时间内将两种溶液(如受体和配体)混合(ms量级),然后快速冷冻。图 喷雾冷冻装置金相制样金相分析是材料研究领域中非常重要的一个环节,也是材料内部组织研究的一种主要方法。利用定量金相学原理通过对二维金相试样磨面或者薄膜进行金相显微组织测量与计算,确定合金组织在三维空间中的形态,进而建立合金成分,组织与性能之间定量关系。制样过程:样品切割、镶嵌样品、机械制样、检验样品样品切割方法:金相最适合的切割方法是湿式切割轮切割法。优点:所造成的损伤与所用的时间相比是最小的切割片的选择:主要依据材料的硬度和韧性进行选择。图 砂轮片的选择• 陶瓷和烧结碳化物:金刚石切割片• 钢铁材料:氧化铝(Al2O3)切割片和CBN切割片• 有色金属:碳化硅(SiC)切割片镶嵌样品金相样品镶嵌技术(以下简称镶样)是将试样尺寸小或形状不规则造成研磨抛光痛苦时镶嵌或夹持,以便于试样抛磨,提高工作效率和实验精度的一种工艺方法。镶样一般分为冷镶和热镶。冷镶应用:对于温度和压力极为敏感材料、和微裂纹试样要进行冷镶,会使试样组织不发生改变。图 冷镶示意图冷镶材料:一般包括环氧树脂、丙烯酸树脂、聚脂树脂。• 环氧树脂:收缩率低,固化时间长;边缘保护好,用于真空浸渍,适用于多孔性材料;• 丙烯酸树脂:黄或白,固化时间较短,适合批量大、形状不规整样品镶样;对于含裂纹或者孔隙的试件渗透性更好;尤其是对印刷电路板的封装;• 聚酯树脂:黄色、透明、固化时间较长;适用于大批量无孔隙的试样制样,适用期长;真空浸渍:多孔材料(如陶瓷或热喷涂层)需真空浸渍。树脂能增强这些脆弱材料并能尽量减少制备缺陷(例如抽出,开裂或未开孔等)。只有环氧树脂由于其低粘度、低蒸汽压的性质,才能在真空浸渍中使用。荧光染料和环氧树脂可以被混合以方便地发现荧光灯中所有被充填的孔隙。图 冷镶制样 图片来源:司特尔公司热镶应用:适用于低温及压力不大的情况下不发生变形的样品。图 热镶示意图镶材料:目前,通常多用塑料做镶嵌材料。镶嵌材料包括热凝性塑料(如胶木粉),热塑性塑料(如聚氯乙烯),冷凝性塑料(环氧树脂加固化剂)和医用牙托粉与牙托水。胶木粉不透光、色泽多样、且较坚硬、样品不易倒角、但抗强酸、强碱耐腐蚀性较差。聚氯乙烯呈半透明或透明状,抗酸碱耐腐蚀性能良好,但柔软。热镶试样图片来源:司特尔公司机械制样机械制样可分两种操作:研磨和抛光1.研磨研磨的终极目标就是要得到损伤最小的平表面。这些小损伤会在后续抛光中短时间内被去除。研磨分为粗磨和细磨两个过程。• 粗磨粗磨过程就是把全部试样表面变成一个类似的面,用比较粗的固定研磨颗粒就能快速磨去材料。• 精磨 精磨会使样品有些微变形,但这些变形在抛光过程中就会消除掉。2.抛光抛光就像研磨,还得除去前道工序造成的伤害。它可以分为金刚石抛光与氧化物抛光两大工序。• 金刚石抛光唯有把金刚石当作研磨料来抛光才有可能在最快的时间内得到最佳研磨平面。其原因是金刚石非常坚硬,几乎能切割所有的物质和相态。• 氧化物抛光 对于特别软、韧性的样品,须采用氧化物抛光法。抛光在抛光布上完成。金刚石抛光时还须用到润滑剂。研磨和抛光设备检验样品打磨后的检测部位变的发亮,在观察组织的时候需要先将试样的检测部位腐蚀掉,做好之后使用酒精冲淋,使用吹风机吹扫。
  • 【莱恩德新品】生物病理冷冻切片机的性能特点
    点击此处可了解更多产品详情:生物病理冷冻切片机  生物病理冷冻切片机 ,是对人体及动植物组织作快速病理切片分析的设备。 它广泛应用于医院、 医学院、法医、动植物科研单位作病理诊断、分析、研究之用。    生物病理冷冻切片机的性能特点:  1、彩色液晶触摸显示屏,可分别显示切片总数量和切片总厚度、切片厚度、标本回缩值、温度控制及日期、 时间、温度、定时休眠开关机、手动及自动除霜等功能。  2、人性化休眠功能:在选择休眠状态后,冷冻室温度可自动控制在-5 至-15℃之间,取消休眠后,可以在 15 分钟内达到切片温度。  3、温度传感器自检功能 ,可自动检测传感器工作状态。  4、双压缩机为冷冻箱、冷冻台、刀架及样本夹头、组织压平器五点分别制冷。  5、刀架配彩色刀片推进器及护刀杆覆盖刀片全长 ,安全保护使用者。  6、配置:X 轴 360° .Y 轴 12°万向旋转卡扣式组织夹头 ,安装组织更加快捷。  7、防粘组织压平器加入制冷 ,温度可达-50° ,方便急冻组织 ,节省操作时间。  8、单层加热玻璃视窗 ,有效防止水雾凝结。  9、手轮定位 360°任意点锁紧功能。  10、消毒方式: UV 紫外线消毒。    生物病理冷冻切片机的主要组成部分:  1. 该机上部分为微机控制部分及面板操作 ,温度显示 ,工作状态显示部分。  2. 中间部分为低温冷冻室 ,为活检组织速冻 ,切片操作部分。  3. 下半部分为压缩机组制冷部分。  4. 中后部分为机械传动、 电机驱动部分。【莱恩德新品】生物病理冷冻切片机的性能特点
  • 汗诺真空冷冻干燥机现货供应,现在购买即送专用预冻架
    汗诺仪器专用生产恒温制冷、样品处理设备,汗诺品牌真空冷冻干燥机,进口品牌压缩机,可快速制冷到-50°C;高品质橡胶密封圈,耐用不漏气,真空度高。汗诺冷冻干燥机以其优越性能深得用户信赖,为回馈新老客户,为用户提供更好的服务,现在购买汗诺真空冷冻干燥机FD系列,即可赠送冷井专用预冻样品架一个,让用户操作更方便,离开低温冰箱一样可以冷冻干燥。 详情致电:18621653239 薄利明真空冷冻干燥技术,简称冻干,又称升华干燥。广泛应用于药品、生物制品、化工及食品工业。对热敏性物质如抗生素、疫苗、血液制品、酶激素及其他生物组织,冻干技术非常适用。技术参数:【1】冷凝温度: -50℃【2】真 空 度: 20Pa【3】冻干面积:0.12㎡【4】盘装物料:1.2 升【5】捕水能力:3kg/24h【6】样 品 盘:Φ200mm×4层【7】电源要求:220V 50Hz 850W【8】主机尺寸:380×600×345mm标准配置台式主机、2升国产真空泵、普通干燥装置(样品盘4个)产品特点: 【1】数字显示温度及真空度。【2】台式设计,紧凑,占用台面小。【3】透明钟罩式干燥室,安全直观。【4】冷阱开口大,带样品预冻功能。【5】外形美观,人体工学设计,操作方便。【6】原装进口全封闭压缩机,高效可靠,噪音低。【7】原装进口充气阀,可充干燥氮气或惰性气体。【8】冷阱为全不锈钢,冷阱内无盘管,光洁耐腐蚀。【9】专利设计导流筒,提高冷阱有效面积,快速冻干。【10】国际标准真空接口,可与多种真空泵联用。【11】样品温度显示(可选配)。 价格:22800元
  • 中科院研究发展出结构无损的高质量冷冻电镜晶态冰样品
    近日,Structure在线发表了中国科学院生物物理研究所章新政课题组完成的研究论文(Addressing Compressive Deformation of Proteins Embedded in Crystalline Ice)。该研究发现了晶态冰包埋的冷冻电镜样品会产生收缩形变,且形变随降温速率的增加而减少,并从晶态冰形成的降温速率出发发展了新型的无收缩形变的立方晶系晶态冰样品制备方法。   该工作发现结构无损的立方晶系晶态冰样品不仅消除了电子束诱导的快速漂移现象,而且显示出明显优于普通冷冻电镜玻璃态冰样品的数据质量,进一步为冷冻电镜实现原子分辨率奠定了基础。   大量实验数据证明,低降温速率制备的冷冻电镜样品有助于恢复数据采集时样品的束诱导漂移,但降温速率过低经常导致晶态冰的形成。传统认为晶态冰在生物样品冷冻过程中会对其结构造成破坏,故在冷冻电镜样品制备过程中一直避免使用。晶态冰的形成具体对蛋白质产生了什么破坏尚不清楚。   课题组系统性地将蛋白质在不同条件下包埋在晶态冰中,并通过冷冻电镜技术解析了晶态冰中的蛋白质三维结构。研究发现,在低降温速率形成的晶态冰中,蛋白质结构会产生收缩形变(图a),且收缩量和蛋白质本身性质相关,越为刚性的蛋白质收缩量越小。另外,在一些蛋白质柔性区域,低降温速率晶态冰中的蛋白质存在密度畸变的问题(图a)。同时,二者随着晶态冰降温速率的增加显著变小,甚至无法探测(图b)。基于上述发现,研究发展了结构无损的立方晶系晶态冰样品的制备方法。通过该方法制备得到的晶态冰样品,其三维重构和玻璃态冰样品一致,不会对蛋白质结构造成可检测的破坏,且成像质量显著提高,不仅没有束诱导漂移(图c),而且显著提高蛋白样品的分辨率。同样条件下,B-因子反映了样品的信噪比(图d),人源去铁-铁蛋白晶态冰样品的B因子显著好于玻璃态冰样品。此外,在醛缩酶和谷氨酸脱氢酶上B因子也获得显著提升。   研究工作得到国家自然科学基金、国家重点研发计划、中科院战略性先导科技专项(B类)和中科院前沿科学重点研究计划的支持。冷冻电镜晶态冰样品性质。a、与玻璃态病毒样颗粒(VLP)样品(粉色)相比晶态冰样品(绿色)产生收缩形变,且严重形变时密度图出现断裂。b、提高降温速率,晶态冰样品的收缩形变减弱。c、在人源去铁-铁蛋白,醛缩酶和谷氨酸脱氢酶上,晶态冰样品恢复束诱导的快速漂移,前几帧样品分辨率明显恢复。d、B因子曲线斜率越大代表数据质量越好。与玻璃态冰样品(蓝色)相比,人源去铁-铁蛋白晶态冰样品(红色)有更好的B因子,展现出更高的数据质量。
  • 研究成果:低降温速率冷冻制样消除蛋白质快速漂移
    近期,QRB discovery在线发表了中国科学院生物物理研究所研究员章新政课题组题为Low-cooling-rate freezing in biomolecular cryo-electron microscopy for recovery of initial frames的研究论文。研究发现了在冷冻电镜成像过程中导致电子束诱导蛋白质样品快速漂移的新机制,并提出通过降低冷却速率制备无快速漂移的冷冻电镜样品的新方法。该方法可以有效恢复辐照损伤最少,含最多高分辨信号的成像数据质量,提升重构分辨率,实现辐照损伤敏感氨基酸的高分辨重构,高分辨信号的恢复也为冷冻电镜达到原子分辨率奠定了基础。  1980年代,有科学家把含水样品快速投入到-183℃的液态乙烷中,制备包埋在玻璃态冰中的低温样品来减少生物样品受高能电子束照射产生的损伤。一般认为,降温速率越快越容易产生玻璃态冰,但是玻璃态冰中的蛋白质在电子束照射初期会产生快速漂移,无法矫正,使冷冻电镜前几帧成像模糊而无法有效应用于三维重构。电子束曝光初期的冷冻电镜数据具有最小的辐照损伤,含有最主要的高分辨信号,所以电子束诱导的快速漂移是实现原子分辨率结构解析以及易辐照损伤氨基酸高分辨重构所需要克服的壁垒,有科学家称其为冷冻电镜中的“Key outstanding problem”。  经过近5年的攻关,研究人员发现快速漂移源自玻璃态冰在急速冻结时产生的应力,该应力和过高的降温速率相关,可以通过降低冷却速率来减少。通过优化冷冻制样技术,降低冷冻过程中样品的降温速率,研究实现了蛋白质快速漂移的消除(如图)。在降低冷却速率制备得到的冷冻样品中,数据分析展示出冷冻电镜前几帧数据被有效恢复,从恢复的电子密度图中可以清晰看到在普通冷冻样品结构中无法得到的辐照损伤敏感的氨基酸侧链信息。  研究工作得到国家重点研发计划、国家自然科学基金委员会重点项目、中科院战略性先导科技专项(B类)、中科院基础前沿科学研究计划项目的支持。  论文链接 降低样品冷却速率消除快速漂移示意图。a.通过降低样品冷却速率,冷冻电镜前几帧数据明显恢复。b-c.增加载网与镊子的传热在载网形成的冷却速率梯度和在不同冷却速率下GDH样品前几帧的恢复情况。d-e.提高液态乙烷温度至-110℃时制备的铁蛋白样品,以及在不同温度下铁蛋白前几帧的恢复情况。f.冷冻电镜前几帧恢复后,易受辐照损伤的氨基酸侧链密度图对比
  • 重磅出炉:冷冻电镜技术摘得2017年诺贝尔化学奖
    p  北京时间10月4日下午5点45分,2017年诺贝尔化学奖揭晓,Jacques Dubochet, Joachim Frank和Richard Henderson获奖,获奖理由是“研发出冷冻电镜,用于溶液中生物分子结构的高分辨率测定”。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/625c0b71-5e7f-41ad-9d31-c320ca1bbc44.jpg" title="1_副本.jpg"//pp style="text-align: center "2017年诺贝尔化学奖授予三位冷冻电镜领域的学者/ppspan style="color: rgb(255, 0, 0) "strong  获奖人简介/strong/span/pp style="text-align: center "strong约阿基姆· 弗兰克(Joachim Frank)/strong/pp  德裔生物物理学家,现为哥伦比亚大学教授。他因发明单粒子冷冻电镜(cryo-electron microscopy)而闻名,此外他对细菌和真核生物的核糖体结构和功能研究做出重要贡献。弗兰克2006年入选为美国艺术与科学、美国国家科学院两院院士。2014年获得本杰明· 富兰克林生命科学奖。/pp style="text-align: center "strong理查德· 亨德森(Richard Henderson)/strong/pp  苏格兰分子生物学家和生物物理学家,他是电子显微镜领域的开创者之一。1975年,他与Nigel Unwin通过电子显微镜研究膜蛋白、细菌视紫红质,并由此揭示出膜蛋白具有良好的机构,可以发生α-螺旋。近年来,亨德森将注意力集中在单粒子电子显微镜上,即用冷冻电镜确定蛋白质的原子分辨率模型。/pp style="text-align: center "strong雅克· 迪波什(Jacques Dubochet)/strong/pp  Jacques Dubochet, 1942年生于瑞士,1973年博士毕业于日内瓦大学和瑞士巴塞尔大学,瑞士洛桑大学生物物理学荣誉教授。Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。/pp  span style="color: rgb(255, 0, 0) "strong冷冻电镜技术为何摘得2017年的诺贝尔化学奖/strong/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文 | 何万中(北京生命科学研究所研究员)/span/pp  ● ● ●/pp  2013年,冷冻电镜技术的突破给结构生物学领域带来了一场完美的风暴,迅速席卷了结构生物学领域,传统X射线、传统晶体学长期无法解决的许多重要大型复合体及膜蛋白的原子分辨率结构,一个个被迅速解决,纷纷强势占领顶级期刊和各大媒体版面,比如程亦凡博士、施一公博士、杨茂君博士、柳正峰博士所解析的原子分辨率重要复合体结构,震惊世界。/pp  这场冷冻电镜革命的特点是:不需要结晶且需要样品量极少,即可迅速解析大型蛋白复合体原子分辨率三维结构。这场电子显微学分辨率革命的突破有两个关键技术:直接电子相机(其中算法方面程亦凡博士和李雪明博士有重要贡献)和三维重构软件。/pp  引领这些技术突破的背后离不开三位冷冻电镜领域的开拓者:理查德· 亨德森(Richard Henderson)、约阿希姆· 弗兰克(Joachim Frank)和 Jacques Dubochet分别在基本理论、重构算法和实验方面的早期重要贡献。/pp  我本人与这三位科学家都有曾过面对面的交流,也是读他们的文章进入这个领域的,下面简要谈谈他们的贡献。/pp  电子显微镜于1931年发明,但在生物学领域的应用滞后于材料科学,原因在于生物样品含水分才会稳定,而电子显微镜必须在高真空下才能工作,因此如何制作高分辨率生物电镜样品是个技术瓶颈。传统的重金属负染技术,可以让重金属包被蛋白表面,然后脱水干燥制作适合真空成像的样品,但这会导致样品分辨率降低(至多保存1.5纳米)。/pp  1968年,英国剑桥大学MRC实验室的Klug博士和他的学生DeRosier开创了基于负染的噬菌体病毒的电镜三维重构技术(Klug 博士获1982年诺贝尔化学奖)。但如何保持生物样品原子分辨率结构又适合电镜成像呢?加州大学伯克利分校的Robert Glaeser博士和他学生Ken Taylor 于1974年首次提出并测试了冷冻含水生物样品的电镜成像,可以有效降低辐照损伤对高分辨率结构破坏和维持高真空,实现高分辨率成像的新思路,这就是冷冻电镜(CryoEM)的雏形。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201710/insimg/442c7203-8a0f-4566-88dc-f8fb79e6316a.jpg" title="2_副本.jpg"//pp style="text-align: center "冷冻电镜样品制作流程,图片来自creative-biostructure.com/pp  1982年,Dubochet 博士领导的小组开发出真正成熟可用的快速投入冷冻制样技术制作不形成冰晶体的玻璃态冰包埋样品,随着冷台技术的开发,冷冻电镜技术正式推广开来。/pp  在Klug博士提出的三维重构技术基础上,MRC实验室的Richard Henderson博士(物理学及X射线晶体学背景)跟同事Unwin 博士1975年开创了二维电子晶体学三维重构技术,随后应用该技术技术解析了第一个膜蛋白细菌视觉紫红质蛋白的三维结构,1990达到3.5埃,这是一个非常了不起的工作,但是第一个类似的膜蛋白结构的诺贝尔奖还是被X射线晶体学家米歇尔于1988年夺走了。二维晶体最大问题在于很难长出二维晶体,因而应用范围很窄,且容易被X射线晶体学家抢了饭碗(本人刚入行第一个薄三维晶体项目就被抢了)。/pp  上世纪90年代,Henderson博士转向了刚兴起的另一项CryoEM三维重构技术,即Joachim Frank 博士发展的单颗粒分析重构技术,无需结晶就可以对一系列蛋白或复合体颗粒直接成像,对位平均分类,然后三维重构。Henderson 博士凭借他深厚的物理学及电子显微学功底,以及非凡的洞察力,提出实现原子分辨率CryoEM技术的可行性,在理论上做了一系列超前的预见,比如电子束引起的样品漂移必须解决才能实现原子分辨率,为后期直接电子相机的突破指明了方向,他本人也投身于直接电子相机的开发。/pp  因此,在这场电镜分辨率的革命中,Henderson博士是个不折不扣的发起者。另外,三维重构新算法的突破也有Henderson 博士的独具慧眼有关,Sjors Scheres博士在没有很强论文情况下被他看中招募到MRC后因为开发经典的Relion 三维重构算法大放异彩。/pp  最后,我们再介绍一下发展冷冻电镜单颗粒三维重构技术的Joachim Frank博士,他也是物理学背景。Frank 博士是单颗粒分析鼻祖,单颗粒三维重构算法及软件Spider的作者。/pp  Frank 师从德国著名的电子显微学家Hoppe博士,Hoppe学派主张对任意形状样品直接三维重构,后来的电子断层三维重构及cryoEM三维重构技术都与他的早期思想有关。Frank博士提出基于各个分散的全同颗粒(蛋白)的二维投影照片,经过分类对位平均,然后三维重构获得蛋白的三维结构,发展了一系列算法并编写软件(SPIDER)实现无需结晶的蛋白质三维结构解析技术。尤其在核糖体三维重构方面有一系列的重要开创性工作,可惜当年核糖体结构诺贝尔奖没有给他。现在给他在cryoEM单颗粒三维重构的一个诺贝尔奖,实至名归。/pp  span style="color: rgb(255, 0, 0) "strong“不务正业”的诺贝尔化学奖/strong/span/pp  诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德· 贝恩哈德· 诺贝尔的部分遗产作为基金创立的5个奖项之一,从1901年至2016年,共颁发了108次,拥有175位获奖者。/pp  2007年-2016年的诺贝尔化学奖的获奖情况如下:/pp  2007年:诺贝尔化学奖授予德国科学家格哈德· 埃特尔,以表彰他在“固体表面化学过程”研究中作出的贡献。/pp  2008年:美国Woods Hole海洋生物学实验室的下村修、哥伦比亚大学的Martin Chalfie和加州大学圣地亚哥分校的钱永健因发现并发展了绿色荧光蛋白(GFP)而获得该奖项。/pp  2009年:英国生物学家万卡特拉曼· 拉玛克里斯南(Venkatraman Ramakrishnan)、美国科学家托马斯· 斯泰茨(Thomas A. Steitz)和以色列女生物学家约纳什(Ada E. Yonath)因在核糖体结构和功能研究中的贡献共同获该奖。/pp  2010年:美国德拉威尔大学的Richard F. Heck、普渡大学的Ei-ichi Negishi以及日本仓敷艺术科学大学的Akira Suzuki,他们发明了新的连接碳原子的方法,获得2010年诺贝尔化学奖。/pp  2011年:以色列科学家达尼埃尔· 谢赫特曼因准晶体的发现而获得2011年的诺贝尔化学奖。/pp  2012年:美国科学家罗伯特· 莱夫科维茨和布莱恩· 克比尔卡因“G蛋白偶联受体研究”获诺贝尔化学奖。/pp  2013年:诺贝尔化学奖授予美国科学家马丁· 卡普拉斯、迈克尔· 莱维特和阿里耶· 瓦谢勒,以表彰他们在开发多尺度複杂化学系统模型方面所做的贡献。/pp  2014年:诺贝尔化学奖授予了美国科学家埃里克· 贝齐格、威廉· 莫纳和德国科学家斯特凡· 黑尔,以表彰他们为发展超分辨率荧光显微镜所作的贡献。/pp  2015年:瑞典科学家托马斯· 林达尔、美国科学家保罗· 莫德里奇和土耳其科学家阿齐兹· 桑贾尔因在DNA修复的细胞机制研究上的贡献而获得2015年的诺贝尔化学奖。/pp  有意思的是,自1901年首次颁奖以来,诺贝尔化学奖被多次颁发给生物、生物化学、生物物理、物理等领域,可谓是“不务正业”。据统计,2001年至2016年,在已颁发的15个诺贝尔化学奖中,与生物相关的化学奖达10次之多。/p
  • 冷冻干燥机应用范围
    冷冻干燥机是目前较为先进的一种物质脱水干燥的设备,其原理是将含水物质在低温下冻结,而后使其中的水份在真空状态下直接升华,并用冷凝的方法捕凝升华的水汽,达到物质脱水干燥的目的。冷冻干燥机也因此被广泛应用到各行各业. 冷冻干燥机应用范围: 食品行业:冷冻干燥机常用于果蔬、肉禽、水产、调味品、方便食品及名优特产等干燥,因此冷冻干燥机也称为食品冻干机,保持食品原有的色、香、味、形、新鲜度不变的目的,且复水性好,成品便于储存和运输,费用降低,保存期延长。 药材保健:在干燥蜂王浆、人参、龟、鳖、蚯蚓等营养保健品,采用真空冷冻干燥工艺,更好的保留了原有的营养价值,更使人们相信该营养品纯真自然。 制药行业:用于血清、血浆、疫苗、酶、抗生素、激素等中西药品的脱水与保存。 生物研究:利用真空冷冻干燥技术长期保存的血液、细菌、动脉、骨骼、皮肤、角膜、神经组织和各种器官,在使用时只需供给水份即可再生,仍保持其生物理特性。 文章原创:上海田枫实业有限公司 www.tfsye.com上海田枫实业有限公司,专业生产各类制冷设备,包括层析冷柜,冻干机,冷水机,超低温冰箱,恒温槽等,一流的专业,一流的服务,上海田枫是您的最佳选择!
  • 上海交大曹骎团队成功解析额颞叶变性病人脑组织冷冻电镜结构
    近日,《Nature》以“Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43”为题在线发表了上海交通大学Bio-X研究院长聘教轨副教授曹骎与美国加州大学洛杉矶分校David Eisenberg课题组等的合作研究成果,解析了额颞叶变性病人脑组织中提取的淀粉样纤维的高分辨率结构,为该疾病的病理机制研究提供了重要信息。图1 Nature文章封面淀粉样纤维(amyloid fibrils)是由蛋白质发生液-固相变生成的聚集产物,与人类疾病,尤其是神经退行性疾病有着紧密的联系,如Aβ和tau纤维之于阿尔兹海默症,α-synuclein纤维之于帕金森氏症等。额颞叶变性(frontotemporal lobar degeneration, FTLD)是仅次于阿尔兹海默症及帕金森氏症的第三大神经退行性疾病,早先的研究指出FTLD病人脑组织中也存在淀粉样纤维,然而这一结论并未得到分子层面的证实,同时形成这些纤维的蛋白也未得到鉴定。图2 TMEM106B纤维结构解析(a)本研究中FTLD病人的脑切片免疫用诊断(上)及提取的淀粉样纤维的负染电镜照片(下)。(b)纤维冷冻电镜数据处理,包括二维分类(左)和三维重构(右)。(c)解析的纤维结构。为揭示FTLD与淀粉样纤维的关联,此项工作尝试从40个患有FTLD-TDP(一种FTLD的主要亚型)的捐献者脑组织中提取淀粉样纤维,最终在其中38个患者中发现了纤维,成功从其中4个患者中提取了纤维,并使用冷冻电镜三维螺旋重构的技术解析了这些纤维的近原子分辨率的结构(最高分辨率为0.29纳米)。出人意料的是,纤维的结构显示,这些纤维来自于一种从未被报道可以发生淀粉样聚集的蛋白—TMEM106B。此工作证实了FTLD是一种淀粉样纤维相关疾病,为淀粉样纤维蛋白家族拓展了一个全新的成员,同时为FTLD的病理机制提出了一个全新的假说,即TMEM106B的纤维化参与了FTLD的发病过程,并可能通过抑制TMEM106B的纤维化治疗这一疾病。曹骎博士为论文的共同第一作者,另一位第一作者是Eisenberg课题组博士研究生江逸潇。论文的合作单位有美国加州大学洛杉矶分校、霍华德-休斯研究所、上海交通大学以及美国Mayo Clinic研究所。曹骎博士2008年毕业于上海交通大学生物工程专业,获工学学士学位;2013年毕业于北京大学生物化学与分子生物学专业,获理学博士学位;2013年至2021年在加州大学洛杉矶分校从事科学研究,任博士后及助理研究员;2021年5月全职回国工作,加入上海交通大学Bio-X研究院,任长聘教轨副教授、课题组长、博士生导师。主要研究方向为蛋白相分离相变的分子机理研究及抑制剂设计,代表性论著包括Nature Chemistry (2018), Nature Structural & Molecular Biology (2018, 2019, 2020, 2021)等。论文链接:https://www.nature.com/articles/s41586-022-04670-9
  • 【瑞士步琦】巴爷爷的博客——喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用
    喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用蛋白多肽应用”Bart 的第 100 篇博客文章!在这个很有纪念意义的时间点,Bart 继续对喷雾干燥和冷冻干燥技术在蛋白多肽领域的应用进行剖析,完成他的蛋白多肽三部曲《如何让您的蛋白质配方稳定持久更持久?》和《当你制定蛋白质和多肽配方时,你是“喷雾干燥党”还是“冷冻干燥党”呢?》,让我们一同看看这次 Bart 给我们带来哪些应用干货吧!亲爱的读者们,我简直不敢相信,但我正坐下来写博客的第 100 篇文章!我们在这里涵盖了色谱,旋转蒸发,冷冻干燥和喷雾干燥的主题,我希望我们在接下来的 100 篇文章中继续这样做。由于这是一个有点特别(好吧,非常特别)的帖子,我决定做一些与往常不同的事情。我想和大家分享一下我最近读到的一篇非常有趣的研究论文中的发现,我认为把这篇文章专门献给我们的新成员:喷雾干燥。首先,文献链接如下:文献链接https://www.mdpi.com/2227-9717/9/3/425/htm(Sweeny C, et al. Using Peptidomics and Machine Learning to Assess Effects of Drying Processes on the Peptide Profile within a Functional Ingredient. Processes 2021, 9(3), 425 https://doi.org/10.3390/pr9030425)其次,让我告诉你他们所发现的令人兴奋的事情,是关于冷冻干燥和喷雾干燥对生物活性肽的影响以及为什么你首先应该关注这部分。 高蛋白成分因其在食用时的营养和功能益处而越来越受欢迎。然而,这些蛋白成分及其酶解产物在加工处理中可能会碰到问题,特别是在干燥过程中,因为这一步有可能会导致蛋白质变性和肽聚合。 问喷雾干燥和冷冻干燥是将一种成分转化为粉末的常用方法?提高产品稳定性提供更有效的运输选择 由于减少了水分活性,提高了产品的保质期在之前发布的一篇文章中,我已经解释了喷雾干燥和冷冻干燥的工作原理。但我将在这里再次总结这些技巧:_喷雾干燥 冷冻干燥 工作原理将溶液或悬浮液从液体转化为干燥状态,其中液体悬浮液在热干燥腔体中雾化,蒸发液滴并产生低水分含量的细颗粒水通过升华在低压环境中以冰冻状态被去除 优势快速 简单 制备定制尺寸的颗粒 包埋成分以保护其免受环境影响的可能性 相对便宜 有助于保持多肽的物理化学和生物活性的稳定性技术限制可能导致关键活性物质损失 可能导致原料中存在的营养价值成分损失 会破坏热敏性蛋白 在技术上具有挑战性 相对来说成本更高 实验过程漫长 需要较少的监督和管理 应用推荐适合低成本、高规模生产适用于关注产品稳定性和较小产品体积的应用范畴其他考虑因素包括物化性质,如溶解度、味道、密度和颜色等,需要评估冷冻干燥和喷雾干燥效果,以确定符合最终产品所需的配方。 现在,上面提到的文献中, 研究者使用肽组学和机械学习技术来观察植物蛋白水解物的干燥方法是否会影响肽谱和随后的预测功能。 研究者想要研究冷冻干燥和喷雾干燥技术不仅对样品的物理特性和蛋白质含量有影响,而且还会对肽含量产生影响。生物活性肽是活性成分功能的组成部分。天然多肽具有抗衰老、抗癌、抗炎、抗氧化、降胆固醇等特性。许多多肽物质已被证明具有一种及以上的生物活性。 有趣的是,研究者没有发现喷雾干燥和冷冻干燥制备的产品在肽谱成分和功能上有很大差异。 他们确实指出了他们在自己的研究和现有的科学工作中注意到的不同点,关于冷冻干燥和喷雾干燥对制剂的几个影响差异,包括:影响差异喷雾干燥样品颜色稍深 部分报道称喷雾干燥中随着干燥温度升高热诱导蛋白质聚集(多肽数量减少) 与喷雾干燥相比,冷冻干燥制剂中含有Asp、His 和 Lys 氨基酸的肽有所增加(如先前报道的那样,Lys 在喷雾干燥过程中特别容易受到损害) 制备得到的冷冻干燥制剂稍趋向于链更长、分子量更高、带更多正电荷的肽(可能会考虑到冷冻干燥比喷雾干燥更温和) 与冷冻干燥制剂相比,喷雾干燥制剂所得的是具有更大比例的负电荷肽(通常与喷雾干燥粉末相关的是可能有助于增加粉体溶解度) 冻干制剂制备的多肽所带负电荷略少,为0.24,这与多肽长度、分子量和物理特性的增加相关,可能导致与冻干粉末相关的溶解度降低 当使用生物信息学方法时,预测喷雾干燥的疏水性增加了 1.74%,这可能与喷雾干燥制剂里多肽中疏水氨基酸(Ala, Met, Phe, Pro, Try和Val)的轻微增加有关 根据预测,喷雾干燥和冷冻干燥的抗炎生物活性相当 以上就是冷冻干燥和喷雾干燥一个很好的对比,主要重点针对生物活性成分多肽成分。 下次见!
  • 且看冷冻电镜如何应用在神经生物学研究中
    pstrong仪器信息网、中国电子显微镜学会、中国电镜网联合报导/strongstrong:/strong2015年10月18日第四届全国激光共聚焦显微技术理论与应用学术交流研讨会圆满闭幕。/pp  在14日下午的会议中,有一个特邀报告格外地引起了笔者的注意,来自西北农林科技大学动物医学院的赵善廷教授提到他曾与高压冷冻固定技术的发明者瑞士科学家Studer博士合作,将该技术与器官型脑片培养技术(organotypic slice culture)相结合,成功地研究了与学习和记忆密切有关的长时程效应(long-term potentiation, LTP)对突触的影响。/pp style="TEXT-ALIGN: center" dir="ltr"img style="WIDTH: 450px HEIGHT: 300px" title="00.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201510/insimg/2f90df00-d7ca-416b-bd07-44431d4c22cd.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"strong西北农林科技大学动物医学院的赵善廷教授/strong/pp  据了解,以往的常规a href="http://www.instrument.com.cn/zc/1139.html" target="_self" title="" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "电镜/span/a技术需要先用甲醛、戊二醛等化学试剂对样品进行化学固定,但这种固定方法有三个缺点包括:/pp  一、无法扑捉短暂生理过程的形态变化和特征,如神经元突触小泡内神经递质的释放;二、脱水过程用酒精等有机溶剂会造成细胞和组织皱缩,使其形态和大小发生改变;三、化学固定剂特别是戊二醛可引起蛋白质变性,使其与相应抗体结合能力下降甚至丧失,导致电镜免疫组化染色失败。/pp  为克服化学固定的这些缺点,上世纪九十年代末,瑞士科学家Studer博士发明了一种新的物理性电镜固定技术,即高压冷冻电镜固定技术,该技术可以在不使用任何化学固定剂的条件下五十毫秒以内将组织和细胞完全固定。/pp  虽然高压冷冻技术克服了化学固定的三大缺点,但它本身也有一个不足之处:固定的样品非常小,直径不能超过1mm,厚度不能超过& #956 m,从而限制了它在神经生物学研究中的应用。/pp  为了克服高压冷冻固定技术的缺点,将其应用到神经生物学研究中,2002年,该技术发明者Studer博士与当时正在德国弗莱堡大学医学院做博士后的赵善廷博士合作,将器官型脑片培养技术和高压冷冻固定技术相结合固定神经纤维,历时五年的不断摸索,到2007年两种技术终于完美地结合在一起。赵教授在接受本网记者采访时表示,希望能够与国内相关课题组合作,为这种样品制备方法寻找更多的应用领域。/pp style="TEXT-ALIGN: right"撰稿:史秀明/p
  • 视角:双非高校亿元购买冷冻电镜,“向颜宁看齐”有错吗?
    近日,山东农业大学宣布将斥资近1亿元购买最新款的冷冻电镜,此举引起了广泛关注。01事件回放2023年11月20日,山东省政府采购网公开了一则中标信息:山东农业大学以9970万元的金额采购冷冻电镜系统,建发(北京)有限公司中标。信息如下:此消息一出,立刻引起了网友的热烈讨论。02关于冷冻电镜冷冻电镜在学术界,几乎成了每位高端学者的“标配”,有了它,学术研究之路似乎更加平坦。冷冻电镜在生物学、化学、材料科学等领域具有广泛的应用。它可以帮助科学家直接观察到蛋白质复合物、细胞器、病毒等生物大分子的空间结构,进一步了解生命现象的本质。同时,冷冻电镜还可以应用于新型材料的发现和设计,为材料科学的发展提供理论基础。冷冻电镜被誉为当前分子生物学研究的“利器”。众所周知,施一公在德裔美籍科学家发明冷冻电镜后,请清华大学花费巨资购买了大量昂贵的冷冻电镜,并利用这些设备解析了很多蛋白质结构,每解析一个蛋白质结构就能发表一篇顶刊论文,最终发表了很多顶刊论文。同样,施一公的学生——刚刚当选院士的颜宁也是依托学校电镜中心的各类电镜设备,在细胞生物学和神经生物学领域取得了一系列原创性研究成果。可以说,冷冻电镜为她的科研生涯提供了有力支撑。冷冻电镜的引入,无疑是山东农大科研实力的大幅度提升,未来该校会在细胞生物学、遗传学等前沿领域有更多原创性成果问世。这不仅会提升校名声,也会进一步推动我国生命科学事业的发展。02网友态度由于这台电镜的购买刚好在颜宁当选院士前后,所以山东农大此次购买冷冻电镜,被外界解读为向颜宁“看齐”的举措。一些网友认为:购买冷冻电镜是山东农大力求提升科研实力的手段,是与国际先进水平接轨的举措,非常有必要。还有一些人则认为:一家双非高校不脚踏实地的发展,为什么要花重金购买高端仪器设备追求遥不可及的目标?更何况电镜的使用和维护还需要更多的人力和成本,学校是否都有所考量。在全国范围内,这股冷冻电镜的购买潮是否过热,确实值得学术界深思。小谱君是这样看的:首先,是否要购买仪器设备,还是要看科研需求。在合理的范围内提升科研支持能力不容质疑,但盲目跟风追诺实不可取。如果每所高校都跟风采购“科研神器”,不就和国家一直大力推动的大型科研仪器共享机制不就渐行渐远了?其次,用一家高校是否是双非来判断是否应该采购冷冻电镜甚至高端仪器设备,是完全不理性的。不是优等生就不能有好文具?一摸成绩不好就没有资格报考清北了吗?在理智的基础上,梦想还是要有的,科研领域容不得咸鱼。一家双非高校采购冷冻电镜,到底惹了谁?
  • 真空冷冻干燥机在生物制品行业的需求和优势
    真空冷冻干燥机在生物制品行业中有着广泛的应用,其需求和优势主要体现在以下几个方面:1. 需求:保存生物制品的活性成分: 生物制品,如蛋白质、酶、细胞等,具有特定的生物活性。真空冷冻干燥可以在较低的温度下将水分脱除,从而保留这些生物制品的活性成分。 延长生物制品的稳定性: 生物制品通常在液态状态下容易受到氧化、降解等因素的影响。冷冻干燥过程可以有效降低水分含量,延长生物制品的稳定性和保存寿命。 提高生物制品的储存和运输效率: 冷冻干燥后的生物制品更轻便、易于储存和运输。这对于生物制品的分发、贮存和运输等环节非常重要。2. 优势:保留生物活性: 真空冷冻干燥技术通过控制温度和压力,将水分从冰固态直接升华为水蒸气,避免了液态水分对生物制品的影响,保留了其天然的活性。 维持生物制品的结构和形态: 由于真空冷冻干燥是在较低的温度下进行的,因此生物制品的结构和形态往往能够得到较好的保持,减少了冻融损伤的风险。 提高溶解度: 冷冻干燥过程能够使得水分以固体的形式存在,这有助于提高生物制品的溶解度。在制备药物或其他生物制品时,提高溶解度是一个重要的考虑因素。 降低水分活性: 冷冻干燥后的生物制品中水分活性较低,使得其在储存期间不易受潮,有助于维持产品的质量和稳定性。 适用于多种生物制品: 真空冷冻干燥机广泛适用于不同种类的生物制品,包括药物、疫苗、酶、细胞、抗体等,使其成为生物制品行业中一种通用的制备和保存技术。总体而言,真空冷冻干燥技术在生物制品行业中的应用为这些生物制品的稳定性、保存和运输提供了高效可靠的解决方案。
  • 生物电镜冷冻制样:做了才知道有多难
    p strong 仪器信息网讯/strong 2015年5月29日-6月2日,“2015全国生物医学农林a href="http://www.instrument.com.cn/zc/1139.html"电镜/a技术研讨会暨生物电镜前沿技术培训班”在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。/pp  台湾中央研究院植物暨微生物学研究所简万能博士作了题为“Ultrastructure of plant cells using high pressure freezing and freeze substitution”的报告。/pp style="text-align: center"img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/201565105212.jpg" style="width: 500px height: 333px"//pp style="text-align: center"strong简万能博士/strong/pp  据介绍,由于早年看到所有的教科书都说想要获得更好的电镜观察结果,就要用冷冻制样技术,简万能便开始了这方面的研究,然而不做不知道,一做才知道有多难。冷冻制样对于动物来说比较简单,而对于植物来说由于细胞壁的影响却非常难。20年来,在研究当中,他碰到的失败的次数永远比成功多。“但是当你成功后,你会发现你的眼界比以前做化学固定大得多。”简万能这样说道。/pp  “电镜是生物学研究非常有用的工具。由于生物细胞的含水量可以达到80%-90%,所以制样能否成功主要是解决水的问题。传统的透射电镜制样技术,对样品损伤最大的步骤是脱水,往往使得细胞结构发生很大的变化。而利用冷冻制样最大的优点就是可以保持细胞原来的结构,并保持一些可溶性的物质。如果要做溶在细胞质里的元素分析,一定要采用冷冻制样技术。”/pp  由于水在冷冻的过程中会形成冰晶影响观察,所以在如何避免形成冰晶是冷冻制样的一个关键点。简万能表示:“在制样中一定要注意一些关键的温度节点。如-137℃是水的重结晶点,如果能迅速降低到这一温度,样品中的水就会形成玻璃态的冰。如果超过-70℃,玻璃态的冰就会形成二次冰晶。”/pp  在报告中,简万能介绍了目前常用的冷冻方法,如投入式冷冻、冷金属块撞击式冷冻、丙烷喷射冷冻、高压冷冻等。并指出高压冷冻的优点是可以做活的生物样品,可以做超过200& #956 m厚的样品。/pp  此外,简万能还介绍了在冷冻固定之后,如何更好的实现冷冻置换。他表示,如果要做超薄切片,高压冷冻和冷冻置换是最好的选择,可以获得非常好的样品形态,会有更多的信息被保留。/pp  在研讨会之后,简万能博士亲自指导参加培训的学员,进行了投入冷冻、高压冷冻、冷冻置换等实验操作。/pp style="text-align: right "撰稿:秦丽娟/pp style="text-align: left " 第一届电镜网络会议:a href="http://www.instrument.com.cn/webinar/icem2015/" _src="http://www.instrument.com.cn/webinar/icem2015/"http://www.instrument.com.cn/webinar/icem2015//a/p
  • 冷冻电镜:结构生物学研究的利器——访中国科学院生物物理所朱平研究员
    4月25日,Science杂志以长幅研究论文(Research Article)形式发表了中科院生物物理所朱平研究组和李国红研究组合作利用冷冻电镜三维重构技术解析的30nm染色质左手双螺旋高清晰三维结构这一重要研究成果。  在这项研究当中,朱平研究员长期从事冷冻电镜三维重构应用研究,李国红研究员长期从事30nm染色质及表观遗传调控研究,他们二人通过多年的紧密合作,发挥各自专长和优势,在国际上率先解析了30nm染色质的高清晰三维结构,使我国在相关领域的研究处于世界前列。  日前,仪器信息网编辑特别采访了从事冷冻电镜(注:下文提到的冷冻电镜特指300kV和200kV场发射冷冻透射电子显微镜)应用研究的朱平研究员,请他为我们介绍了自己与冷冻电镜结缘的故事,以及冷冻电镜的特点和应用情况,希望使广大网友能对冷冻电镜有更多的了解。中国科学院生物物理所朱平研究员  因对三维重构技术的喜爱,与冷冻电镜结缘  Instrument:朱老师,您好!首先请您为我们介绍一下您和冷冻电镜结缘的故事。  朱平:其实我并不是生物专业出身,我的本科是在浙江大学学习金属材料热处理,1990年毕业后,我被保送到西安交通大学断裂疲劳国家重点实验室读硕士研究生,博士研究生期间又到清华大学机械系开始学习焊接专业,研究焊接接头断口分析,当时有一个很热门的研究方向是断裂表面的分形研究,断裂表面的分形维数和断裂性能被认为是密切相关的。开始我们只是做断口轮廓线的分形研究,但发现由于断裂表面不是各向同性的,不同的方向可能会对应不同的分形维数,所以我们就尝试利用扫描电镜立体对照相方法将断裂表面三维形貌重构出来,来研究断裂面的二维分形维数。  博士毕业后我在清华做了一年讲师,由于对电镜三维重构比较感兴趣,我就据此联系国外的进一步研究机会。恰好这时美国佛罗里达州立大学一个研究艾滋病毒结构的实验室需要做电镜三维重构的人员,于是我就将在材料研究中积累的关于电镜和三维重构的知识转到了对生物样品的研究,从而有机会开始接触冷冻电镜。  Instrument:到美国佛罗里达州立大学后,您主要开展了哪些方面的研究工作?  朱平:当时,我所在的实验室是比较早开始艾滋病毒表面包膜蛋白结构重构研究的单位。开始我们只是想通过电镜技术来研究艾滋病毒表面很重要的一个包膜蛋白gp120的结构。后来,研究者发现虽然不同的艾滋病毒抗体具有毒株特异性,但有几种抗体它们对于多种艾滋病毒都有中和活性,所以我们也开始研究这些广谱中和抗体的结构特点。  在最初的研究中,我们主要利用普通电镜,通过负染色方法研究表达纯化出来的艾滋病毒表面包膜蛋白gp120以及它们与不同的中和抗体形成的复合物的结构。后来我们的研究发现这些包膜蛋白在真实病毒表面的三维结构及分布对艾滋病毒的感染非常重要,所以就转向研究整个艾滋病毒颗粒及表面蛋白的三维结构。我们是最早将电子断层成像方法应用于艾滋病毒三维结构重构的研究组,并利用负染色电子断层成像方法获得了艾滋病毒表面的包膜蛋白的一个高清晰三聚体结构和分布图,发在美国科学院院刊上。由于负染色法对病毒结构影响很大,虽然观察到了艾滋病毒表面的gp120蛋白的结构为三聚体,但同时结构信息损失也很多。所以之后我们逐渐开始采用冷冻电镜电子断层成像法来开展研究,并做出了一个艾滋病毒冷冻电镜三维重构图像,于2006年在Nature上发表了一篇文章,也产生了较大影响。  Instrument:2008年您以&ldquo 百人计划&rdquo 身份加入到生物物理所生物大分子国家重点实验室,请问促使您回国发展以及加入生物物理所的原因主要有哪些?  朱平:在美国待了几年后,我也有了回国工作的念头,于是就开始和国内的相关研究单位联系。结构生物学研究是生物物理所的传统优势研究学科,所里也非常看好冷冻电镜在结构生物学研究方面的发展前景,已经在采购相应的设备,可以说这里有一个非常好的平台。  回国后,我们依然做一些艾滋病毒及疫苗的研究工作,同时也开展一些其他病毒的研究,如高对称性病毒的高分辨结构解析等。  另外,回国后我参加了以&ldquo 千人计划&rdquo 身份回国的许瑞明老师主持的科技部的一个&ldquo 973&rdquo 项目,其中我负责的一个课题就是利用冷冻电镜研究染色质的结构。后来,李国红老师回国,我们一起开始做染色质的冷冻电镜三维重构研究。  冷冻电镜是结构生物学研究的重要手段,但入门和上手都有一定难度  Instrument:请问和普通电镜技术相比,冷冻电镜在生物研究当中有哪些特点和优势?  朱平:普通电镜主要用于观察样品形貌,要看到原子分辨率的细节很难做到 另外制样方法如染色、固定等对样品的结构破坏很严重。而冷冻电镜可以将样品瞬间冻成玻璃态,冷冻速度平均可达以几万摄氏度每秒,这样样品所有的结构细节则都被保留下来。但是由于没有经过染色,直接观察样品的衬度就会差很多,所以需要三维重构来慢慢挖掘它的结构信息。  另外,结构生物学研究当中最常用的方法蛋白质晶体学的一个很大的瓶颈就是样品结晶,如将蛋白质产生结晶,需要各种各样的条件 此外在生物体中蛋白质往往不是单独起作用,而是多个蛋白质结合到一起的超大分子复合体,这样的超大分子复合物要长晶体就更难。但冷冻电镜不需要长晶体,直接将样品冰冻即可进行分析。300kV Titan Krios场发射冷冻透射电子显微镜  Instrument:目前,国际上冷冻电镜研究的热点主要集中在哪些方面?  朱平:这两年冷冻电镜的应用主要集中在结构生物学研究,分析的样品类型从病毒、核糖体扩展到了其它蛋白。冷冻电镜三维重构早期比较多的应用是病毒分析,因为病毒结构比较对称,可以得到比较高的分辨率。近年来,随着仪器硬件及软件性能的提升,冷冻电镜结构解析的分辨率越来越高,现在我们可以做到近原子级别的分辨率。对于一些不对称的样品也能获得比较高的分辨率,所以冷冻电镜三维重构在其它蛋白质的结构分析研究上也比较热。  Instrument:冷冻电镜技术应用的难点有哪些?要让冷冻电镜更好的在科学研究当中发挥作用,需要哪些积累?  朱平:冷冻电镜的操作程序比较多,入门和上手都有一定的难度。先从制样来说,单冷冻这一步,就有许多的玄机在其中。冻的冰层太厚,电子束穿不过去,冰层太薄又会被完全蒸发 而冷冻的速度如果慢了就会形成冰晶,冰晶遇到电子束发生衍射,我们就无法观察到样品 此外,环境的变化,如空气的温度和湿度变化,甚至每次使用的滤纸如果不同都会对制样效果有影响。  在照片的拍摄中,要调节好电镜的状态,掌握照相的细节,这样才能拿出一张好的二维冷冻电镜照片。如,电子束照射在样品表面时,如果调节不好很可能就把样品轰坏了。所以需要调焦,找准位置,然后慢慢放大。得到好的二维照片后,接着还有一大堆的图像处理工作。  当然现在软件自动化程度更高了,仪器的操作也比以前容易了。比如制样,有专门的制样设备,通过计算机控制温度、湿度、滤纸吸收的时间长短,使制样的可重复性高了很多。不过要使用好电镜,还是有许多的经验在其中。北京大学丁明孝老师正在组织国内优秀的专家撰写一部电镜实验操作手册,虽然这本书以普通电镜为主,但其中至少会有一章来介绍冷冻电镜的基本情况,以及如何使用好冷冻电镜,希望更多的人了解这一技术。  Instrument:请问目前我国冷冻电镜的研究和应用水平怎么样?  朱平:近年来,为推动我国生物学快速发展,国家不断加大投资力度。一方面引进了不少人才,另外在仪器配置方面,我国不少单位已经或将要建设国际一流的冷冻电镜设备平台,如清华大学、生物物理所、北京大学、上海生命科学研究院等。  其实十几年前,我们就有很多优秀的电镜人才,只是国家没有这么大的投入。就是在&ldquo 小米加步枪&rdquo 的条件下,他们也做的非常好。现在我们的高端电镜配置已在世界前列,但人才依然是最重要的,目前国内在冷冻电镜研究方面确实也没有那么多的人才,希望有更多的年轻人被培养出来。  科学的竞争也很残酷,团队合作才能走得更快更远  Instrument:最后,请问对于在高水平期刊上发表文章,您有哪些心得体会,以及团队合作在科学研究当中的重要性。  朱平:一是要有好的项目,好的科学问题 二要有好的设备 三要有好的团队 最后还要坚持。首先要敢于挑战科学难题,另外也要敢于面对挑战中的困难,要耐得住性子去做,要有长时间做不出来的准备。我们这个项目,前后花了5年时间,期间遇到了很多的困难。  在30nm染色质结构解析研究中,不同的研究组分工合作,发挥各自的特长也是我们这个项目的重要特点。在我们的研究当中,染色质样品的组装非常重要,我们需要均一的样品,否则电镜状态再好,再会调节操作和计算处理,也无法获取样品真正的结构信息。  我对组装染色质样品没有太多的经验,而李国红老师长期从事30nm染色质及表观遗传调控方面的研究,但冷冻电镜三维重构也需要一个较为长期的积累和经验,面对30nm染色质这么一个复杂的超大分子复合体,其结构解析有很多技术上的困难和挑战,若要让李老师重头来学电镜也不是很容易的事。还有许瑞明老师参加了我们很多的项目讨论,给了我们很多的鼓励,这也很重要。  科学的竞争也很残酷,我们知道世界上还有其他的团队也在做同样的研究,而我们能够先做出来,一个重要的因素就是我们是几个团队一起在做。采访编辑:秦丽娟  附录:朱平研究员个人简历  1986.9-1990.6 浙江大学 学士  1990.9-1993.6 西安交通大学 硕士  1993.9-1997.6 清华大学 博士  1997.7-1998.12清华大学 讲师  1999.3-2008.5 美国佛罗里达州立大学生物系 博士后、助理研究员、副研究员(Non tenure-track faculty系列)  2008.6-至今  中国科学院生物物理研究所课题组长、&ldquo 百人计划&rdquo 研究员
  • 冷冻电子显微学与结构生物学
    冷冻电子显微学近年来在电子显微镜的硬件设备及结构解析的软件算法等方面取得了多个重要的技术突破, 正在成为结构生物学研究的重要技术手段, 为越来越多的生物学研究者所重视. 冷冻电子显微学的技术特点决定了它所具备的一些独特优势和发展方向, 同时作为一个正在迅速发展的科学技术领域, 需要多学科的交叉促进.   近期来自清华大学生科院的王宏伟发文介绍了冷冻电子显微学的研究现状及面临的技术挑战, 并提出未来可能实现结构生物学与细胞生物学不同尺度的研究在冷冻电子显微学技术上融合的新方法.  结构生物学是 20 世纪后半叶, 尤其是在 80~90年代蓬勃发展起来的重要学科. 通过对生物大分子(蛋白质、核酸及其复合体)的三维空间结构的测定, 结构生物学可以在微观尺度上精确地描述复杂生物大分子的形状, 原子与分子组合方式, 及其表面带电、亲疏水等物理性质, 从而为生物大分子发挥生物学功能的机理提供关键的解释. 进入 21 世纪以来, 结构生物学研究的技术手段日益成熟, 在现代生物学研究的各个分支领域中均发挥着重要的作用. 至今为止, 国际蛋白质结构数据库中的结构数据已经超过 100000, 其中绝大部分结构由 X 射线晶体学及核磁共振波谱学解析而来.   近年来, 技术的进步使得结构生物学新的研究手段取得了长足的进展. 2013 年 12 月份发表在Nature 上的利用冷冻电子显微学解析获得 TRPV1 原子分辨率结构的两篇文章, 在结构生物学领域造成了巨大的反响. 美国加州大学旧金山分校的程亦凡研究组与 Julius 研究组合作, 利用冷冻电子显微学技术首次获得了 300 kD膜蛋白 TRPV1的 3.4 Å 分辨率的三维结构, 并建立了该分子的原子模型.  其实在过去的几年间, 已经有若干工作报道了利用冷冻电子显微学解析病毒、蛋白酶体复合物、核糖体等近原子分辨率模型. 这些工作的里程碑式意义在于: 高分辨率结构解析过程不需要生长三维晶体, 样品用量非常少, 而且可以在短时间内同时获得多个复合体状态的三维结构. 短短一年里, 冷冻电子显微学技术作为直接解析生物大分子原子分辨率结构的技术手段受到人们的广泛关注.  事实上, 电子显微学是结构生物学研究中的老兵. 该技术自从 20 世纪 50~60 年代以来, 一直在研究细胞、 亚细胞及生物大分子结构的研究中扮演着独特的角色, 揭示了很多重要的细胞内精细结构. 在研究生物大分子的结构方面, 该技术采取与 X 射线晶体学及核磁共振波谱学迥然不同的原理, 在过去的几十年里逐渐建立了成熟的图像处理及分析算法, 成为结构研究的一种独特技术手段. 近 10 年来, 该领域的日臻成熟以及科研团队的扩大更快地催生了冷冻电子显微学成像技术与结构解析技术的革命性突破. 自从 2008 年以来, 冷冻电子显微学已经连续获得多种生物大分子复合体的原子分辨率结构, 而且高分辨率结构的解析速度正在呈现迅速上涨的趋势。  冷冻电子显微学从 20 世纪中叶开始, 经历了 80年代到 90 年代的技术方法建立时期, 21 世纪初的技术成熟期, 在过去的两年里发生了革命性的技术进步, 进入了快速发展期. 结构生物学和细胞生物学研究者如何抓住这个契机, 如何尽快适应新的局面, 掌握新的技术, 充分发挥该技术的优势从而更加更深入地研究生命现象, 将是未来几年里的一个主题. 数学、物理学、计算机科学、材料科学、化学等众多领域的研究者们必将在未来冷冻电子显微学的新技术新方法的开发中发挥重要的作用, 成为该技术的进一步完善与成熟的重要力量.  冷冻电子显微学领域研究者们则需要以主动开放的态度吸引其他领域研究者的合作, 并积极迎接来自更多领域研究者的挑战, 保持并发展自己的技术特长, 站在技术发展的制高点上选准研究方向, 始终在冷冻电子显微学的技术前沿上开疆拓土.  原文检索:  王宏伟. 冷冻电子显微学在结构生物学研究中的现状与展望. 中国科学: 生命科学, 2014, 44: 1020&ndash 1028  Wang H W. Current status and future perspective of cryo-electron microscopy in structural biology. SCIENTIA SINICA Vitae, 2014, 44: 1020&ndash 1028 doi: 0.1360/052014-140
  • 生物物理所开发冷冻结构光照明与电镜关联成像新技术
    面向原位结构解析的冷冻电子断层成像(cryo-ET)是研究生物大分子复合物的原位高分辨率结构及其相互作用关系的关键技术。但受限于电子束穿透能力,需要先利用聚焦离子束(cryo-FIB)将细胞和组织样品减薄成200纳米左右的薄片后才能进行cryo-ET数据采集。冷冻光电关联成像技术可以为cryo-FIB精准制备包含特定目标结构的冷冻含水切片提供荧光定位指导,但是冷冻荧光显微镜的光学分辨能力以及光镜、电镜图像的对齐精度是制约冷冻光电关联实验成功率的关键因素。  为了解决上述技术瓶颈,中国科学院生物物理研究所蛋白质科学研究平台生物成像中心一直致力于开发新型冷冻光电关联成像技术,在前期自主研发的冷冻光电关联成像高真空光学冷台HOPE(Journal of Structural Biology,2017)基础上,通过引入结构光照明成像技术,成功研制了冷冻结构光照明成像系统HOPE-SIM,实现了横向优于200纳米的光学分辨率,以及优于150纳米的光镜-聚焦离子束三维关联对齐精度,相关研究成果于4月29日在线发表在《通讯-生物》(Communications Biology)上。   光镜-电镜关联成像技术(Correlative Light and Electron Microscopy,CLEM),是利用荧光特异标记对特定生物大分子或亚细胞结构进行荧光示踪,实现对整个细胞的三维荧光定位成像,之后通过荧光图像和电镜图像的配准,获得荧光标记信号和电镜超微结构的关联信息。冷冻光电关联成像技术的应用方向之一,是通过关联图像,指示出荧光标记的结构在电镜图像中的具体位置,实现对荧光示踪目标物的电镜高分辨率结构解析。而得益于光镜成像对生物样品的无损特性,可以在不损伤样品的前提下获得样品内部的三维荧光定位信息,再通过光电关联成像流程和关联对齐软件,将三维荧光图像与扫描电镜图像关联匹配,实现在荧光信号的指导下进行cryo-FIB对目标区域的减薄加工。如此,便可以避免“盲切”,实现对荧光指示目标物的指导切割,以期提高冷冻聚焦离子束技术用于电子断层成像切片样品制备的效率。   目前,光电关联成像指导cryo-FIB减薄技术流程的实现方式有多种类型,根据系统构成可以分为光镜电镜分体式光电关联成像系统和集成型光电关联成像系统。生物成像中心技术团队自2013年开始专注于冷冻光电关联成像技术方法学研究,在光镜电镜分体式光电关联成像系统研制方面, 于2017年自主研制了一款可搭载在倒置荧光显微镜上的高真空光学冷台HOPE(High-vacuum Optical Platform for cryo-CLEM),HOPE可与透射电镜冷冻样品杆适配连接,完成荧光定位后样品将随冷冻样品杆被转移进电镜当中进行高分辨率数据采集,同时结合光电关联定位软件,可以实现大视野光学定位成像与电镜成像的匹配。HOPE采用冷冻样品杆来实现冷冻光镜成像、冷冻传输以及冷冻透射电镜成像,有效避免了光电关联成像过程中对冷冻载网的反复夹取,保证了冷冻样品的完整性和同一性,有效提高了关联成功率和实验效率。  然而,基于宽场成像技术的HOPE系统受限于光学衍射极限和冷冻光学成像装置的空间限制等,仅能使用长工作距离、低数值孔径的冷冻荧光成像系统,所能达到的横向分辨率约为400-500纳米,纵向分辨率则达微米级,这对于精准捕获数微米厚度细胞内百纳米尺度的目标结构而言,是非常不利的。  结构光照明超分辨荧光成像技术在能提高宽场荧光显微镜一倍分辨率的前提下,还具备不需要特殊的荧光探针、成像速度快、辐照密度低等技术优势,是所有超分辨成像技术中最适合应用到冷冻环境中对冷冻样品进行高分辨率成像的技术。因此,研究团队选择了结构光照明成像技术作为提高冷冻荧光成像分辨率的手段,基于倒置荧光显微镜自主研制了大腔室高真空冷台,腔室内置0.9NA长工作距离光学物镜和防污染器系统(ACS和cryo-box)、外接真空传输系统(TPS)以及冷冻电镜样品杆(cryo-holder)适配器。同时,借助三维结构光照明(SIM)光路,实现了真空环境下对冷冻样品的三维结构光照明成像,在提高冷冻光镜分辨率的同时,有效增强了光电关联成像样品传输过程中对冷冻样品的保护。图1 冷冻结构光照明成像系统HOPE-SIM。a.HOPE-SIM硬件组成,b. HOPE-SIM设计原理图,c. HOPE-SIM光路原理图   借助HOPE-SIM高分辨率冷冻光电关联成像系统以及自主编写的三维关联对齐软件3D-View,团队成功制备了包含宿主细胞内鼠疱疹病毒(图2)和海拉细胞内荧光标记的中心体(图3)的细胞切片样品,通过冷冻电子断层原位结构分析图像处理流程和软件分析其在原位结构。实验结果表明,基于HOPE-SIM技术的高精度冷冻光电方法可以实现优于150nm的三维对齐精度,为尺寸较大、胞内丰度高的目标物的原位捕获提供了一种高效、精确的靶向冷冻聚焦离子束减薄技术方案。图2 基于 HOPE-SIM冷冻光电联技术捕获宿主细胞中的MHV-68病毒颗粒。a.冷冻明场透射光图像;b.HOPE-SIM荧光图像的z投影。绿色,荧光微球。红色,MHV-68病毒;c将b中的荧光图像与a中的明场图像合并,以显示目标信号的位置;d.冷冻SIM和冷冻FIB图像之间的三维关联匹配;e.对目标区域减薄后的冷冻FIB图像;f.减薄后冷冻扫描电镜图像,与b中冷冻SIM图像的融合;g.制备的冷冻含水切片的冷冻透射电镜显微照片(3600倍);h.冷冻断层扫描成像,放大倍率为64000倍,显示了被捕获的病毒颗粒。 图3 基于HOPE-SIM技术流程精准捕获海拉细胞内红色荧光标记的中心体。a.3D-View光-电关联软件获得的冷冻结构光-cryo-FIB关联配准图;b.cryo-FIB对红色荧光标记所在区域进行减薄;c.cryo-FIB减薄获得的200nm冷冻含水切片;d.冷冻含水切片在透射电镜下8700倍成像,黄色框线内为目标中心体;e.目标中心体的cryo-ET数据采集(53000倍)激光指向位置主动稳定系统示意图。   相关研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(B类)等项目的资助。  值得一提的是,在集成型光电关联成像系统研制方面, 2023年1月,《自然-方法》(Nature Methods)报道了中科院院士、生物物理所研究员徐涛和研究员纪伟团队研发的cryo-CLIEM系统和生物成像中心技术团队自主研发的三束共焦成像系统ELI-TriScope系统,在双束扫描电镜真空腔室内集成了光学成像系统,避免了样品传输过程,有效提高了冷冻光电关联成像的精度和成功率。其中生物成像中心技术团队自主研发ELI-TriScope系统集成了一个基于冷冻样品杆的传输系统(cryo-transfer system),并在冷冻样品下方嵌入了一个倒置荧光成像系统(cryo-STAR system),从而实现电子束(E)、光束(L)和离子束(I)被精确地聚焦到同一点上,可以在cryo-FIB减薄的同时实时监控目标分子的荧光信号,显著提高了cryo-FIB减薄技术对特定目标物的捕获精度,将制备冷冻含水切片的时间成本从每片2-2.5小时降低到约0.8小时。   生物成像中心技术团队研发的基于结构光照明技术的HOPE-SIM系统可以实现三维高分辨率冷冻荧光成像,同时还可以通过冷冻样品杆直接衔接三束共焦光电关联成像系统ELI-TriScope,实现高分辨三维冷冻荧光成像的同时,完成后续原位荧光实时监控聚焦离子束减薄全技术流程,有效提高了冷冻聚焦离子束减薄的效率、准确性、成功率和样品制备通量,为原位结构解析研究提供了成功的解决方案,在未来的原位结构生物学中有巨大应用潜力。
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • 冷冻电镜技术“接管”结构生物学
    p style="text-align: center "img src="https://img1.17img.cn/17img/images/202002/uepic/a30b56e7-51e3-4fed-aa1a-7c72bf69ff0e.jpg" title="1.jpg" alt="1.jpg" style="text-align: center max-width: 100% max-height: 100% "//pp style="text-align: center "span style="color: rgb(0, 176, 240) "英国剑桥分子生物学实验室的冷冻电子显微镜图片/spanspan style="color: rgb(127, 127, 127) "来源:剑桥MRC分子生物学实验室/span/pp  一项革命性的蛋白质三维形状测定技术正在蓬勃发展。上周,一个收集由冷冻电子显微镜(cryo-EM)测定的蛋白质和其他分子结构的数据库,获得了第10000个数据条目。/pp  据《自然》报道,近年来,各实验室向电子显微镜数据库(EMDB,由欧洲生物信息研究所建立,旨在满足学术界对于冷冻电镜数据的需求)提交的数据呈指数级增长,这主要因为全世界实验室cryo-EM数量的爆发式增长。尽管数据库也接收其他电子显微镜结构分析的数据,但其中绝大部分数据来自cryo-EM。/pp  cryo-EM通过将蛋白质或其他生物分子急速冷冻,并用电子对其轰击,从而生成单个分子的显微图像。它们被用来重建分子的三维形状或结构。这有助于揭示蛋白质如何工作、它们在疾病中如何发挥作用,以及如何用药物靶向它们。/pp  此前几十年,X射线晶体衍射一直是备受结构生物学家青睐的研究方法,该方法首先使蛋白质结晶,然后用X射线对其连续打击,并根据衍射光的信号模式重建它们的形状。/pp  X射线晶体衍射法虽然能够生成高质量的分子结构,但并不是所有蛋白质都可轻易使用,因为有些蛋白质可能需要数月或数年才能结晶,而有些甚至根本无法结晶。/pp  这便体现出cryo-EM的优越性,该方法无需蛋白质结晶,但这项技术也存在局限,比如它经常生成低分辨率结构。/pp  2012到2013年,由于在硬件和软件方面的突破,催生了更灵敏的电子显微镜和可将拍摄到的图像转换成分辨率更高的分子结构的复杂软件。/pp  该项技术专家、英国剑桥MRC分子生物学实验室(LMB)结构生物学家Sjors Scheres说,这为cryo-EM的迅猛发展铺平了道路。/pp  LMB结构生物学家Richard Henderson因对cryo-EM技术发展的贡献获得了2017年诺贝尔化学奖。他说,即使在这项技术取得进步后,最初的增长也很缓慢,因为只有少数实验室配置了该设备。但当他们开始使用冷冻技术绘制分子的详细结构图像时,比如被称作蛋白质制造机器的核糖体,这项技术很快就引起了其他科学家及其所在机构和资助者的注意。/pp  Henderson说:“所有投资于其他研究和做出错误决定的人,花了一年的时间才赶上来。”/pp  他预计,到2024年,利用冷冻电镜技术测定蛋白质结构的数量将超过X射线晶体衍射法。cryo-EM已经取代了X射线晶体衍射,成为科学家特别感兴趣的研究嵌入细胞膜的蛋白质的工具。许多膜蛋白与疾病有关,可为药物提供靶点。/pp  此外,Henderson还认为cryo-EM的发展将在某个时期开始放缓。他说,影响其快速增长的一个因素是成本高,一台如此强大的显微镜其成本可能超过500万英镑(700万美元)。而它们每天的运行成本也高达数千英镑,并且需要专门的实验室来安置,以降低震动。/pp  Henderson正在努力说服相关公司开发性能好且价格更便宜的cryo-EM,以进一步推广这项技术。(徐锐)/ppbr//p
  • “冷冻电镜理论与技术在结构生物学中应用”研讨会举行
    p  11月25日,由上海市科学技术协会主办的“冷冻电镜理论与技术在结构生物学中应用”研讨会在蛋白质中心顺利举行。本次会议由上海市生物物理学会和蛋白质中心共同协办,会议邀请了国内冷冻电镜知名专家学者、电镜工作者和学生近60余人参会。/pp  同济大学祝建教授主持会议,他代表大会主办方热烈欢迎各位专家以及与会人员的到来,希望大会能够在理论与技术上给国内科研工作者提供帮助。/pp  蛋白质中心丛尧研究员回顾了蛋白质中心电镜系统创立的过程。她谈到,作为国家蛋白质科学研究(上海)设施的核心技术力量,电镜系统旨在满足国内外科研用户在蛋白大分子复合物方面的结构解析需求。随后,她还介绍了课题组最新研究成果,在最新的蛋白结构解析工作中分辨率成功突破了3埃,达到世界先进水平。随后,围绕“冷冻电镜单颗粒重构技术以及电子断层三维重构技术在结构生物学中的应用”这一主题,中山大学张勤奋教授、第二军医大学杨勇骥教授、浙江大学洪健教授、浙江大学博士研究生王春艳和蛋白质中心博士研究生曹龙兴依次登台作了精彩的学术报告。”/pp  后基因组时代,蛋白组学研究是生命科学研究焦点,蛋白质的空间结构往往决定其功能,因此揭示蛋白质的空间结构是一项非常有意义的工作。近些年,冷冻电镜技术的快速发展,为蛋白结构解析提供了一个强有力的手段,大大推动了结构生物学的发展。本次会议的成功举办有效促进了冷冻电镜技术在中国的推广,将进一步发挥蛋白质中心冷冻电镜设施的示范窗口作用。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201512/noimg/4ea9bc7b-37d8-4b5a-8d53-b21d6419f9d0.jpg" title="图.jpg"//p
  • Science:冷冻电镜助力结构生物学发展
    图中展示的就是构成酵母线粒体大核糖体亚单位(yeast mitochondrial large ribosomal subunit)的各个组成蛋白质。Amunts等人根据利用低温冷冻电镜技术获得的酵母线粒体大核糖体亚单位及完整核糖体的结构图谱,一个个地合成出了上述这些组分蛋白。这个经过不断完善的结果与根据X线晶体成像技术获得的原子模型非常吻合。  先进的低温冷冻电镜(cryo&ndash electron microscopy)技术让我们获得了大量高分辨率的蛋白质结构图。  结构生物学(structural biology)研究的主要目的就是获得用于构成活体细胞的各种各样大分子(macro-molecules)生物组件的高分辨率图像信息。该研究主要依赖的技术手段就是X线晶体照相术(x-ray crystallography)以及核磁共振光谱分析检测技术(nuclear magnetic resonance spectroscopy, NMR spectroscopy)。不过这两种技术都有各自的局限性,比如X线晶体照相术只能够对生长得极为有序的三维结晶进行观察,而核磁共振光谱分析检测技术则要求被检测样品的纯度非常高,不能够有重叠峰出现。有很多生物大分子相互结合、组装之后形成的都是非常大的,或者非常不稳定、比较罕见的结构,都不太适合用上述这两种技术进行分析和检测。单粒子电子显微镜技术(Single-particle electron microscopy, EM)则能够观察少量非结晶样品,获得高分辨率的结构图谱。  使用单粒子电子显微镜技术可以获得任意排列方向的分子复合体( molecular complexes)的结构图像。该技术会从每一幅图像中选出单个的复合体(粒子),然后借助计算机来判断它们的排列方向。最后将各个不同视角的图像组合在一起,得到该分子的三维立体图像。不过由于高能电子束会对生物大分子起到破坏作用,打断分子内的共价键(covalent bonds),并且诱发一系列级联式的有害化学反应,所以这种放射性损伤效应给单粒子电子显微镜技术带来了极大的局限性,在实验时用来记录影像的电子束的能量受到了非常大的约束。  20世纪80年代,Dubochet等人报道了一种单粒子电子显微镜技术革新成果,将该技术引向了高分辨率成像之路。他们在低温条件(cryogenic conditions)下将待检样品放在一层薄薄的、透明的冰上用单粒子电子显微镜进行成像观察。这种方法就是所谓的&ldquo 低温冷冻电镜技术(cryo&ndash electron microscopy, cryo-EM)&rdquo ,他能够对含水的粒子(hydrated particles)进行直接成像。低温除了具有这些优势之外,还能够减少电子束对样品产生的放射性损害。不过电子束的照射量还是不能够太大,只有这样才能够清晰地反映出分子结构的细节,获得高质量的、低信噪比(signal-to-noise ratio, SNR)的三维结构图像。由于将每个分子的多张图像信息组合在一起能够更进一步地降低图像的信噪比,所以,对数万、乃至数百万个蛋白质复合体进行分析就会产生数十万张图像。  不过依靠低温冷冻电镜图像来判断生物大分子的结构给计算机处理分析工作带来了一大挑战。在借助多图像组合平均手段来改善信噪比时,必须知道每一颗粒子的方向,但是由于信噪比太低,我们对这些粒子方向的判断又明显感觉准确性不够,这就形成了一个矛盾。要解决这个问题,最成功的方法就是&ldquo 重复(iterative)&rdquo ,质量高的图像能够给出更准确的方向信息,而这些方向信息又可以帮助我们获得更高质量的图像。  直到最近这一段时间,绝大部分单粒子低温冷冻电镜图片的分辨率都非常低,连10埃都达不到,所以很多人都将这种技术嘲笑为 &ldquo 一团浆糊学(blob-ology)&rdquo 。蛋白质二级结构中的&alpha 螺旋(&alpha helices)结构只有在分辨率达到9~10埃,甚至更高分辨率的情况下才能够看清 而另外一种二级结构,&beta 折叠(&beta strands)结构则只有在分辨率达到4.8埃以上时才能够看清。达到3.5埃的分辨率,就可以为蛋白质或核酸等生物大分子构建原子模型(atomic models),将各种目前已知的核酸结构或氨基酸结构填入其中了。如果要了解蛋白质复合体形成时发生的各种化学变化,就必须获得原子级别分辨率的细节信息。低分辨率的结构信息也不是一无是处,当在与高分辨率结晶图像相互配合、印证,用来判断组成复合体的各种不同组分时更加有意义。因此,即便分辨率较低,低温冷冻电镜技术也还是帮助科学家们解决了很多生物学难题,比如解析出了与其他辅因子共同结合的核糖体的结构问题,以及构象只能够维持片刻时间的核糖体瞬时结构等问题。  在过去的三十年,低温冷冻电镜设备取得了长足的进展,在样品制备、成像、计算机处理等实验技术方面有了一定的提升,这些使低温冷冻电镜成像技术的分辨率有了极大的提高。高度连贯的场发射电子枪(Highly coherent feld-emission electron guns)也使保留焦点以外的图像的高分辨率信息成为可能,这对于单粒子低温冷冻电镜非常有帮助。这种技术创新帮助科研人员获得了20面体病毒粒子(icosahedral virus particles)的图像,而且清楚地看到了其中的&alpha 螺旋结构。由于这种病毒是高度对称的,所以比较容易生成高质量的、最佳分辨率的低温冷冻电镜图像。  随着研究人员不断地开发出更稳定的载物台、更好的显微镜抽真空技术,以及自动化的数据采集系统,这一切的技术进步都让我们能够获得更多、质量更好的电镜图像,因此才能够得到高质量的、能够对其中的氨基酸侧链进行解析的二十面体病毒粒子三维结构图像,以及分辨率达到5埃的核糖体结构图像。不过在对更小一点的非对称粒子的解析工作中还是很难解析到&alpha 螺旋结构。  最近在低温冷冻电镜设备领域取得的最大进展就是引入了直接检测设备(direct detector device, DDD)照相机。这种DDD设备能够直接在传感器上记录图像,从而绕过了传统的、需要闪烁设备和光纤的电荷耦合装置(charge-coupled device, CCD)探测器,以及其他一些在用摄影胶片(photographic film)记录图像时必须要经过的繁杂的处理过程。因此,图像的信噪比也得到了极大的提升。在分辨率方面的提升也与之前的一些革新手段相当。在使用了DDD设备之后,还有可能在电镜图像中直接构建原子模型,甚至能够在最具挑战性的检测工作中进行&alpha 螺旋和&beta 折叠的解析工作。  DDD设备的引入还在另外一个方面对低温冷冻电镜的图像起到了改善作用,凭借的就是该设备极快的读出速度(readout rate),该读出速度能够发现被冰包裹的被观测粒子在电子束中的运动情况。使用DDD设备不仅能够发现这种问题,还能够解决这种问题,因为现在的电镜就好像是一台摄像机,可以拍摄一段录影,记录整个过程,而不再像以前那样,只是一台照相机,只能够拍摄出一张张固定的图像。  有了高质量的图像,又有可以借助计算机对因为电子束而移位的粒子进行矫正的工具,我们就可以获得大量高质量的低温冷冻电镜图像,比如本文开头展示的那张分辨率高达3.2埃的线粒体核糖体亚单位图像,以及下图那张分辨率达到3.3埃的20S蛋白酶体图像和哺乳动物感受器通道TRPV1的图像。 TRPV1的图像尤其值得一提,因为TRPV1蛋白是一种膜蛋白,只有四级对称性(four-fold symmetry),比核糖体要小一个数量级。所以之前大家一直都认为很难用低温冷冻电镜对该蛋白进行结构解析的研究工作。有了 DDD成像技术、更好的计算机辅助和生物化学技术之后,Liao等人终于在某些区域获得了分辨率高达3.4埃的图像,从而有机会开展原子建模工作,在整个结构生物学(structural biology)发展历史上写下了重重的一笔。  单粒子低温冷冻电镜结构解析图。左图展示的是随机排列的蛋白质粒子在电镜下的图像,这些图像经过计算机处理之后可以用来计算大分子复合物的三维立体结构图像。由于有了DDD技术,左边的这些图像信息就可以构建出右图中展示的原子模型。图中展示的就是20S蛋白酶体的结构图。  乍一看上去,这些成果都好像是特例。比如核糖体里由于含有大量的RNA,所以是一幅高度紧缩的图像,非常紧密,不太容易受到辐射的损失。而20S蛋白酶体拥有14级对称性,所以也非常适于进行低温冷冻电镜成像操作。即便是TRPV1通道蛋白也都拥有一定的内部对称性。但是最近刚刚成功获得的一幅电镜图像就完全不具备上述这些&ldquo 先天优势&rdquo ,这就是分辨率达到4.5埃的人&gamma 分泌酶复合物(&gamma -secretase)的结构图。人&gamma 分泌酶复合物是一种更小的膜蛋白复合体,完全没有对称性。该成果说明,只要待测样品能够准备得恰当,尽可能减少其在结构上的异质性,我们就完全有可能利用低温冷冻电镜技术获得各种蛋白质的三维立体结构图。  这些科研新进展恰好出现在低温冷冻电镜技术的低谷期。最近刚刚获得的HIV-1病毒糖蛋白三聚体结构模型就引起了极大的争议,因为多位电镜专家都坚持认为,这个结构模型不仅在结构上不准确,就连用来进行分析的原始图像也都没有真实地反映该三聚体的真实信息。这场争论也让我们意识到,我们目前的确没有太多的手段对低温冷冻电镜图像的质量进行验证,虽然有一些手段,但是都没有得到广泛的推广和应用,另外也缺乏一套规范,图像的信号非常差,所以也很难判断最终得出的结构图是否就是被测样品的结构。这是一个非常值得关注的问题,不仅仅是因为这次的HIV-1病毒糖蛋白三聚体结构模型具有重大的科研价值,比如在HIV疫苗的开发工作中会起到非常重要的指导作用等。  在结构解析方面还有大量的工作需要我们去完善:方便使用的显微镜相板(phase plates)有助于更好地聚焦,获得高对比度的图像,就好像相衬光学显微镜(phasecontrast light microscopy)那样,这能够让对图像进行信息采集的工作更加简便,而且质量更高。另外在探测器方面也可以进一步提高图像的质量。即便是最先进的探测器也达不到符合理论要求的表现。各种用来进行图像分析的计算机软件,比如用来矫正电子束相关移位的软件,或者对各种粒子进行分类、解读的软件也将会变得越来越强大。新型的样品承载系统会进一步减少电子束对样品的位移作用。更加可靠的、更加强大的验证工具可以让我们更有信心,保证不会纳入质量不高的原始图片素材。虽然现在还不知道低温冷冻电镜技术未来会走向何方,但是有一点是可以肯定的,那就是低温冷冻电镜图像绝对不再是一团浆糊了。  原文检索:  Martin T. J. Smith, John L. Rubinstein. Beyond blob-ology. Science 8 August 2014 DOI: 10.1126/science.1256358
  • 中科院生物物理所蛋白质科学研究平台在原位冷冻电镜技术开发领域取得新进展
    2021年7月8日,国际结构生物学领域权威期刊《Journal of Structural Biology》在线发表了由中国科学院生物物理研究所蛋白质科学研究平台生物成像中心与孙飞研究组合作的技术创新成果《VHUT-cryo-FIB, a method to fabricate frozen hydrated lamellae from tissue specimens for in situ cryo-electron tomography》,针对组织样品原位结构生物学研究的技术瓶颈开发了组织样品冷冻含水切片制备技术VHUT-cryo-FIB,这是该中心在2016年开发的细胞样品冷冻含水切片制备技术(Journal Structural Biology, 2016,194:218-222)后的又一技术创新,将原位结构生物学的研究对象从单细胞拓展到更接近于生理状态的组织样品。  冷冻电子断层成像技术(cryo-electron tomography,cryo-ET)是一项重要的冷冻电镜技术,可以获得细胞和组织样品原位三维高分辨率超微结构、生物大分子的原位结构信息以及蛋白质机器原位相互作用信息。该技术被认为是分子生物学和细胞生物学联结的桥梁,被称为"可视化蛋白质组学"。然而该技术要求样品的厚度必须在300nm以下,获取高分辨率信息则需要更薄的样品(150nm以下),但是大多数生物样品厚度都在数微米以上,无法直接应用该技术进行研究。此外,为了研究生物组织样品更接近生理状态的结构,通常需要利用高压冷冻技术对生物组织样品进行冷冻固定,但是高压冷冻后的样品厚度一般都在100μm以上,如何制备出适合冷冻电子断层成像技术研究的高质量的生物组织样品切片是原位结构生物学领域面临的一个重要技术问题。  本项技术研究基于最新的冷冻聚焦离子束技术(cryo-FIB),设计和研制了一套冷冻传输硬件,有效将振颤切片技术、高压冷冻技术、冷冻修块技术和冷冻聚焦离子束减薄技术结合起来,创新冷冻聚焦离子束切割工艺,形成了一套完整高效的组织样品冷冻含水切片制备技术流程VHUT-cryo-FIB。利用该技术流程可以高效制备出厚度在150-300nm之间的组织样品冷冻含水切片。本研究中应用VHUT-cryo-FIB方法分别制备了菠菜叶片、小鼠骨骼肌、肝脏和心肌的冷冻含水切片,并成功解析了菠菜胞质核糖体(34 Å)和小鼠肝脏胞质核糖体(18 Å)的原位三维结构(图1)。这些结果证明VHUT-cryo-FIB方法可以广泛应用于各种生物组织样品的冷冻含水切片制备,为原位结构生物学研究提供有力的样品制备方法。  孙飞研究员为该论文的通讯作者,高级工程师张建国、孙飞研究组张丹阳博士(已毕业)和高级工程师孙磊为共同第一作者。蛋白质科学研究平台生物成像中心的多位工程师季刚、黄小俊、牛彤欣为该项成果贡献了力量,徐伟研究员为实验的设计和方向提供建议。北京大学生命科学学院的高宁教授和马成英博士在小鼠肝脏核糖体数据分析方面给予了帮助。  该工作受到国家自然科学基金委、科技部重点研发计划、北京市科委等的资助。图1. Cryo-FIB方法制备的冷冻含水切片样品,Cryo-ET 方法解析菠菜叶片和小鼠肝样品中核糖体三维结构。a菠菜叶片重构后的细胞内部结构,其超微结构包括细胞壁、细胞质、叶绿体、囊泡、核糖体和基粒。b三维渲染后的图a,黄色,核糖体 淡粉色,细胞壁 橙色,细胞膜 紫色,囊泡 绿色,叶绿体膜 青色, 叶绿体基质。菠菜核糖体的原位结构,大亚基蓝色的,小亚基黄色。c Subtomo average得到小鼠肝脏核糖体的原位结构(左),与通过单粒子重构得到小鼠胞质核糖体密度图(右)。d小鼠肝脏核糖体原位结构密度图,大亚基和小亚基分别为蓝色和黄色。红色(P/E位点)和紫色(A/P位点)显示了两个tRNAs。Scale bar:150nm。  文章链接:https://www.sciencedirect.com/science/article/pii/S104784772100068X?dgcid=coauthor#s0075
  • iCEM 2016特邀报告:生物冷冻电镜大数据中的高效处理方法
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong生物冷冻电镜大数据中的高效处理方法/strong/pp style="TEXT-ALIGN: center"img title="张法-CCF.jpg" style="HEIGHT: 267px WIDTH: 200px" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201609/insimg/dc7fdb41-74c6-43cb-b460-d66b7a4118a0.jpg" width="200" height="267"//pp style="TEXT-ALIGN: center"strong张法 副研究员/strong/pp style="TEXT-ALIGN: center"strong中国科学院计算技术研究所/strong/ppstrong报告摘要:/strong/pp  近年来,随着成像设备和处理方法的飞速发展,冷冻电镜三维重构技术已成为确定生物大分子三维结构的第一选择,生物学家利用冷冻电镜解析了大量生物大分子的高分辨率三维结构。我国已具有全世界最先进和最大规模的冷冻电镜硬件实施,这些设施每天都在产生海量的生物大数据。如何对冷冻电镜大数据进行高效处理已成为计算科学所面临的关键科学问题。本报告将从科学计算的角度讨论冷冻电镜数据处理中的科学问题,并介绍本领域最近的研究成果。/ppstrong报告人简介:/strong/pp  张法,博士,中国科学院计算技术研究所副研究员,博士生导师。CCF生物信息学专业组委员,秘书长。中国生物物理学会冷冻电镜显微学分会理事。2002-2005年,作为国际交换学生在美国俄亥俄州立大学(Ohio State University)客座访问,2009-2010年,在西班牙胡安卡洛斯国王大学(Universidad Rey Juan Carlos)进行客座访问。/pp  长期从事生物信息学和高性能计算方面的研究,目前主要从事生物大分子冷冻电镜三维重构方面的研究。作为项目负责人和主要参与人主持和参与了多项国家自然科学基金重点项目、国际合作重大项目、中科院知识创新重大项目、中科院战略性先导项目(B类)等多项国家项目,作为第一作者或通信作者在国内外著名期刊和国际会议上发表论文60余篇。开发完成了国内首款冷冻电镜三维重构系统AuTOM,其中电子断层数据对位软件Markerauto 和三维重构软件ICON已成为本领域知名软件,帮助生物学家取得了重要的生物学发现。/ppstrong报告时间:/strong2016年10月26日下午/ppspan style="COLOR: #ff0000"strong报名链接:/strongstronga title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_blank"http://www.instrument.com.cn/webinar/icem2016/index2016.html/a/strong/span/ppa title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_self"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a/p
  • 案例:冷冻干燥机冻干蛋白酶的操作流程
    冷冻干燥蛋白酶是在生物制药、生物化学实验和分子生物学研究等领域中常见的操作,该过程能够保留蛋白酶的活性,延长其保存时间。以下是冷冻干燥蛋白酶的一般操作流程:1. 准备工作:选择蛋白酶: 根据实验需求选择合适的蛋白酶,确保其适用于冷冻干燥的过程。准备样品: 准备含有蛋白酶的溶液。注意溶液的浓度和成分,确保其适用于冷冻干燥处理。 2. 冷冻:样品冷冻: 将蛋白酶溶液以合适的体积倒入冷冻盘或其他冷冻容器中,然后放入冷冻设备冷阱室中,确保冷冻过程中样品均匀冷却。冷冻温度: 控制冷冻温度,通常是零下温度,使蛋白酶迅速冻结。 3. 冷冻干燥:转移: 将冷冻的样品迅速从冷阱室内转移到冷冻干燥机的干燥架上。真空抽气: 启动冷冻干燥机的真空泵,建立真空环境,抽除样品中的水分。升温阶段: 开始升温(提供样品中水分升华时所需的热量),使蛋白酶在真空条件下升华,从而去除水分。等温阶段: 在升温后的一定温度下保持稳定,确保样品中的水分充分升华。 4. 收集和存储:冷冻干燥结束: 当冷冻干燥结束后,停止真空,关闭冷冻干燥机。收集样品: 从冷冻干燥机中取出样品。注意避免受潮,尽快妥善保存。存储: 将冷冻干燥后的蛋白酶样品存储在防潮、密封的容器中,最好在-20°C以下的低温环境中保存,以确保长期稳定性。 注意事项:操作过程中要防止样品过度升温,以免影响蛋白酶的活性。确保冷冻干燥机和其他设备的清洁和维护,以保证实验的准确性和重复性。操作过程中要避免样品受到空气湿度的影响,尽量在湿度低的环境中进行。这个操作流程是一般性的指导,具体操作可能因使用的冷冻干燥机型号和蛋白酶种类而略有不同。在操作过程中,请参考设备和试剂的使用说明书,确保按照正确的步骤进行操作。
  • “单颗粒冷冻电镜之父” Joachim Frank
    祝冷冻电镜之父Joachim Frank82岁生日快乐!约阿希姆弗兰克,德裔生物物理学家,美国国家科学院院士,现任美国哥伦比亚大学教授,研究领域包括生物化学、分子生物物理学等。1975年到2008年间,弗兰克教授完善了电子显微镜图像处理的单颗粒算法,发明了SPIDER软件,该软件至今为全世界上百家实验室广泛使用。弗兰克教授应用冷冻电镜和单颗粒技术,在解析原核和真核细胞核糖体结构和功能领域做出了非凡的贡献。2017年10月,弗兰克教授与雅克杜波谢、理查德亨德森共同获得诺贝尔化学奖,以表彰他们在“冷冻电镜用于生物分子结构的高分辨率解析领域”做出的巨大贡献。本期水木视界对约阿希姆弗兰克教授的诺奖感言自传进行翻译,期望更多冷冻电镜领域的同僚们能够了解这位冷冻电镜之父的传奇过往。原文:"Joachim Frank Biographical"Copyright The Nobel Foundation 2017“Normally, my dog wakes me up in the morning. But today, it was the Nobel Prize!”—Joachim Frank以下内容为弗兰克教授诺奖感言:我于1940年9月12日出生在德国的魏德瑙镇。自1972年以来,魏德瑙镇一直是锡根市的一部分。锡根市拥有约10万左右的居民,位于北莱茵威斯特法伦州的南端。它周围的山区被称为锡格兰,在过去的几个世纪,锡格兰的铁矿开采、加工和冶炼行业都欣欣向荣。作为传统技术,铁矿的开采可以一直追溯到两千年前的凯尔特人。不过,在采矿和加工业转移到发达的鲁尔区后,留给锡格兰的任务就只剩钢铁的冶炼了:锅炉、铁管、铁轨、铁桶和许多其他由铁和钢制成的部件。魏德瑙镇的地标是“富士山”,一个巨大的铁矿渣堆,与日本的名山形状一致。此外,锡根也是奥兰治拿骚家族的所在地,他们是荷兰皇室的血脉。作为画家彼得保罗鲁本斯的出生地,锡根市为此而自豪。然而,画家彼得在锡根出生的原因则是一场闹剧:他的父亲与有身孕的母亲从科隆出发,在乘坐马车途径锡根时被逮捕。三个城市,锡根、科隆和安特卫普都声称彼得是他们的儿子,城市之间的争执是锡根上城区喷泉的永恒主题:在雕塑上,三位母亲一同抱着婴儿彼得保罗,并为之争吵。彼得保罗鲁本斯(Sir Peter Paul Rubens)1577年6月28日-1640年5月30日比利时画家,巴洛克画派早期的代表人物我的父亲威廉弗兰克是锡根法院的一名法官。他于1896年出生在魏德瑙。不过,他并没有完成全部的法律学业:他被征召并参加了一战中的凡尔登战役,并由于受伤而失去了大半个左手。他的母亲,也就是我的奶奶,出身于当地的一个富裕家族:施莱芬鲍姆家族,他们经营着繁荣的钢铁企业。我的爷爷是一名高中教师,来自锡根郊区的一个乡村家庭。我的母亲夏洛特来自杰出的曼斯科普夫家族,该家族在锡根的渊源可以追溯到15世纪。在18世纪,曼斯科普夫家族的一个分支在法兰克福定居,并通过国际葡萄酒贸易获得了无尽的财富和声誉。而在19世纪初,他们则与歌德的家族关系密切。左侧:1940年,与我的母亲夏洛特、父亲威廉、他的妹妹伊丽莎白、我的祖母阿玛莉-施莱芬鲍姆、哥哥赫尔穆特和妹妹英格伯格在一起。我的妹妹雷娜特将在四年后出生。右侧:我父母在魏德瑙的家,恩格斯巴赫大街3号,1905年的建筑图纸显示了原来的两层楼的阳台。我的母亲毕业于Stift Keppel高中,这是一所创办于13世纪的女子高中。婚后,她留在家里照顾她的四个孩子:我、我四岁的妹妹雷娜特和两个哥哥姐姐,英格伯格和赫尔穆特。我们的家宅大而庄严,是我的祖父母在1905年用红色双层玻璃砖建造的,极为坚固。它坐落于一块大小适中的土地上,与街道接壤的地方有一道锻铁栅栏。家宅的一楼和二楼有阳台,可以俯瞰后院。外侧的步道上铺满了装饰性碎石,并种着几颗黄杨树。[战争年代]锡根市,北莱茵威斯特法伦州,德国我出生于二战期间,而战争影响了我的整个童年。由于锡根市发达的钢铁制造业,它是盟军空袭的首要目标。在战争结束时,锡根市80%的建筑物都被夷为了平地。大约是我四岁的时候,一些邻居的房屋被陆续地炸毁了。在1944年2月的一次凌晨空袭中,我父母的房子也被炸毁。由于屋顶和上层被毁,其余的部分也因漏水而无法居住,我们不得不搬到北部20公里左右的希尔兴巴赫镇,在那里,我父亲的同事为我们提供了一套公寓。这套公寓位于威廉斯堡,它是一座18世纪依水而建的城堡,也是当时的法院大楼。在我的记忆中,我当时坐在城堡地下室的防空洞里,周围萦绕着婴儿的哭闹,飞机、空袭和无线电广播声,这些声音充斥着我青少年时期的噩梦。战争结束后的那段时间尤为艰难。母亲常常会乘坐去往乡下的火车,用我们家中剩余的铁制品换取黄油、火腿、面包、面粉和鸡蛋。“天然的黄油”来之不易,母亲会把它们搅拌进人造黄油中,但并不会稀释太多,这样我们就能尽可能长地记住黄油真正的味道。我们也有一个很大的花园,种植了苹果树、梨树和樱桃树。有一段时间,我们为了制作糖浆而种植了一些甜菜,并种植了烟草来满足父亲的吸烟习惯。我们还会在后院养鸡,甚至一度在阳台下面养了一头小猪。这些花园中的时光,使我得以近距离欣赏大自然。附近烧毁和倒塌的房屋瓦砾对我有一种错综复杂的吸引力,令我既恐惧又着迷。恐惧是对混乱和破坏的自然反应,特别是对一个孩子来说,这意味着危险无处不在。着迷的部分源自和其他同龄男孩一起在荒凉的土地上玩耍的经历,到处都堆满了砖头、罐子、扭曲的电线和塑料碎片。我们经常能发现老鼠窝,里面有一些尚处目盲的粉红色鼠崽。[启蒙教育]锡根市,北莱茵威斯特法伦州,德国我的小学就在家的街道对面,在那里我度过了四年的启蒙时光。八岁时,在还没有任何科学概念的时候,我在阳台下面的阴凉处开始了第一次实验,是天生的好奇心驱使我这样做的:我搭了一个架子,收集了一些利口酒的酒瓶,并用它们去装满我能得到的每一种液体:食用油、水、汽油,以及我长大一点之后得到的盐酸。凭着直觉,我把这些液体混合起来,把金属置入其中,并记录结果。我看着碳化钙在水中溶解,并着迷于激烈的反应和逸出气体的气味;我看着锌在盐酸中溶解并冒出气泡;我在一个与管子相连的金属容器中加热煤,因为我听说会有可燃的气体冒出来。迈耶百科词典,这是我在被毁的老房子里发现的一套20卷百科全书,每卷约1000页。这套百科全书登陆了海量的学术文章、技术图纸、彩色照片和世界各地的地图。在我识字之后,它们陪伴我度过了整个童年和青少年时期。我花了几年的时间把它们都读完了。这套出版于1905年的百科全书信心满满地宣称:人类已经把世上所有的东西都研究得不能再透彻,不过,1905年恰好也是爱因斯坦发表光电效应论文的一年,那篇论文证明了能量的量化,也就是量子力学的前身。对于那套百科全书来说,这还是挺讽刺的。如今,这套书的内容并没有太多的参考价值了,却对我来说有相当的纪念价值:它们被我视作纪念那套祖宅的传家宝。高中的科学课。在我身后右侧的两个身位处,他们是霍斯特施密特博金和乌尔里希梅博尔德。在未来,他们将成为物理学家。照片由@弗里德海姆施克提供。从五年级开始,我转学到了莫里茨文理中学,这是以奥兰治拿骚家族一位著名公爵命名的学校,而我是小学班20名学生中仅有的4名升学者之一(在德国的体系中,文理中学将初中和高中合并到一起)。在那里,我对科学课,特别是物理课产生了强烈的兴趣。同时,我扩大了实验范围,并在阁楼开辟了第二个试验场地。在那里我会尝试修补一些小玩意,例如用废弃或邮购的零件组装收音机:哥哥曾向我演示过如何组装一个水晶收音机,而我很快就痴迷于这些精巧的小物件,不可自拔。之后,我制作了几个花哨的微型收音机,并装在肥皂盒里。我的大部分零花钱都用在了阀门、晶体管、电阻器和电容器的购买上,而阁楼上则充满了松香焊接时产生的"蒸汽"味。幸运的是,我在学校里结识了一个志同道合的朋友,他就住在街对面。这时我应该补充一下,我的三个兄弟姐妹都在同一所文理中学上学。在获得高中毕业证后,我的哥哥去攻读并完成了工程博士学位,成为了一名职业安全领域的公务员。我的两个姐姐都在高中二年级时转去了职业学校,进行理疗师的就职培训。在结婚并将几个孩子拉扯大之后,长姐完成了她中断的高中学业,并进入大学,获得了生物化学的博士学位。而二姐从理疗师转型成了一位艺术家,她制作了许多漂亮的被子,直至1998年她因癌症早逝。[进入大学]弗赖堡市,巴登符腾堡州,德国我始终觉得,在大学里我注定会选择物理专业。而我的父亲常常质疑这个选择,理由是这个专业并不能糊口。1960年,在完成高中学业后,我去了弗赖堡大学(University in Freiburg),并从省会城市搬到了僻静的小镇,镇上有一些大型哥特式教堂和许多迷人的中世纪建筑,这令我恍如隔世。我学习了微积分和线性代数,并学会如何去撰写严格的数学证明。此外,我也学习了数学物理学科的特殊函数和统计力学的课程。我视在亚琛攻读工程博士的哥哥为榜样,加入了著名的弗莱堡大学Suevia兄弟会,结识了一些朋友。但后来,受60年代政治动荡的影响和启发,我逐渐意识到了那些扎根于德国学生组织中的民族主义和右翼思想,并退出了兄弟会。当时的弗莱堡大学校长,臭名昭著的马丁海德格尔(Martin Heidegger)公开地支持元首。我曾经看到年迈但瘦小的海德格尔在大学门口发表公开演讲,这一举动在外界看来极为罕见。不过,他被一群学生簇拥着,我几乎看不到他。由于在学士毕业考试中表现突出,我得到了德国学术研究基金会的提名:这是一项特殊的奖学金,并在日后极大地拓宽了我的视野,使我能了解其他学科和人文领域。通过组织科学前沿会议,基金会促进了跨学科的讨论。在1964年的一次会议上,我第一次了解到 "中央教条"原则和DNA结构。也是在这里,我和神经生理学家沃尔夫辛格(Wolf Singer)初识,并开启了直至如今的长远友谊。我和辛格,以及志同道合的学生们一起成立了讨论小组,专注于当时的热门话题—“控制论”。[硕士与博士]慕尼黑市,巴伐利亚州,德国为了得到硕士学位,我前去慕尼黑大学物理系做毕业论文相关的工作。论文项目与液态金上的电子后向散射有关,这个深奥的课题与当时新兴的高能电子束技术息息相关。我的导师恩斯特金德(Ernst Kinder)曾在早期使用电子显微镜做了一些工作:他发现蝴蝶翅膀的彩色图案源自于微小鳞片处于亚显微排列时产生的光干扰。现在,他的办公室里仍然保留着一台古老的电子显微镜。这段经历让我对涉及电子显微镜的项目颇有好感。最终,我选择了沃尔特霍普(Walter Hoppe)作为我的博士导师,他是马克思普朗克蛋白质皮革研究所的X射线晶体学家,后转为电子显微镜专家,该研究所后来迁至马丁斯里德(Martinsried),更名为马克思普朗克生物化学研究所(Max Planck Institutes)。霍普的研究内容是利用电子显微镜对生物分子进行三维成像的方法。我的论文则侧重于利用统计光学等领域的方法探索电子显微照片的特性。我在Optik杂志上发表的第一篇论文,研究了样品漂移对显微照片的光学衍射图案产生的影响,并以傅里叶理论解释了观察到的条纹。当霍普承认这是一项完全独立的工作,拒绝在作者栏签署他的名字时,我无比自豪。我的首次计算机编程使用了ALGOL编程语言,每次编译和运行新写的程序之前,我都要花费20分钟左右步行到大学。后来我学会了用FORTRAN语言进行编程,所使用的设备是IBM1130,它建造于我们研究所的一个小地下室里,我有时会在那里工作到深夜。研究所的生活方式十分独特,具有明显的巴伐利亚色彩,只需要步行短短的几分钟,就能从研究所步行到举办啤酒节的大草坪。在蘑菇生长的季节,人们会在清晨组织采摘蘑菇的活动。三至四名学生会组成户外小组,与一位对蘑菇了如指掌的专家一同出发,带回许多真菌和鸡油菇。我们会用锥形瓶和烧瓶将它们煮熟,撒上盐,与巴伐利亚面包一同食用。我们也曾在图书馆中用一桶啤酒和大块的肉饼来庆祝论文的刊登。当时的慕尼黑和现在一样,是一个文化活动丰富的城市,到处都是娱乐场所:每天去听一场古典音乐会算得上是日常了。我的一个古典音乐爱好者朋友也从弗莱堡搬到了慕尼黑,并邀请我去看了许多出色的演出。耳濡目染下,只靠几个开场音符,我就能辨认出许多古典交响曲。此外,慕尼黑歌剧院的票价平易近人,却总能提供宏大的体验。在那段时间里,我主要有两批朋友,一批是扬格罗内博格等人,格罗内博格是一位具有乌托邦思想的大学辍学生,住在慕尼黑郊外的小屋里。另一批是沃尔夫辛格等人,我通过学术研究基金会认识了他们,靠着沃尔夫辛格的介绍,我认识了我的第一任妻子凯茜恩格伯格。我们于1969年结婚,但这段婚姻只维持了不到10年。1968年,一次在希尔谢洛镇的会议让我有机会认识了几个未来在这个领域举足轻重的人。这次研讨会是由瓦尔特霍普和剑桥MRC分子生物学实验室的马克斯佩鲁茨(Max Perutz)共同组织的,佩鲁茨因在蛋白质X射线晶体学方面的开创性工作而闻名。在那里,我遇见了哈罗德埃里克森、理查德亨德森、肯霍姆斯、休赫胥黎和奈杰尔昂温等人。在下午,与会者们可以自由地滑雪,而上午和晚上都保留给讲座和讨论,其形式类似于戈登会议。与我的论文相关的两篇德文论文后来发表在了会议记录中,载于Bunsengesellschaft für Physikalische Chemie特刊。[博士后阶段]加利福尼亚州,美国1970年初夏,在慕尼黑工业大学的论文答辩结束后,我获得了哈克尼斯奖学金(Harkness Fellowship),这使我可以前往美国两年,并自行决定进入哪些实验室。我选择了加州理工大学的喷气推进实验室(JPL)、加州大学伯克利的唐纳(Donner)实验室、和康奈尔大学。来自欧洲的我,却搬去了帕萨迪纳这样好莱坞一样的地方,那里有繁华的高速公路、紧靠棕榈树的小房子以及穿着网球鞋的小老太太,这种文化冲击难以言喻。事后看来,这三个实验室都给了我未来方向的重要推动力。当时的JPL拥有世界上最好的图像处理设备,并开发了一个模块化的图像处理系统VICAR,我可以将自己的程序挂在上面。这个软件包后来成为我开发SPIDER系统的模型。在唐纳实验室,我和鲍勃格莱泽的小组在一起,他专注于用电磁波进行结构研究的两个典型问题:样品的辐射损伤和对水合环境的需求。他和他的学生肯泰勒(Ken Taylor)已经在试验冷冻水化样品的制备,但当时雅克杜博歇(Jacques Dubochet)决定性的玻璃态冷冻技术还没有被发明出来。在康奈尔大学的本杰明西格尔小组里,我认识了肯唐宁(Ken Downing)和威廉戈德法布(William Goldfarb)。后来我邀请威廉加入了我在奥尔巴尼的团队。这时我需要提一句,1972年我在康奈尔大学时,我的儿子霍西亚扬弗兰克(Hosea Jan Frank)出生了。从美国回来后,我在1972年的冬天短暂地回到了马克思普朗克研究所,研究电子显微镜的部分相干性理论。这项工作使我与世界级的电子光学专家彼得霍克斯(Peter Hawkes)有了接触。1973年,我加入了剑桥大学卡文迪许(Cavendish)实验室的弗农埃利斯科斯莱特(Vernon Ellis Cosslett)小组,担任高级研究助理。与我往来的人中有欧文萨克斯顿(Owen Saxton)和彼得霍克斯(Peter Hawkes)。在卡文迪许的几年里,我进一步研究了部分相干理论,并找到了一种方法:通过计算同一区间的两个连续图像的互相关性来获得电子显微照片的信噪比。这时,单颗粒平均和重建的设想在我的脑海中占据了一席之地:将电子剂量分散到网格上随机排列分子的多个"副本"中。1975年,我发表了一篇概念性的论文,提出了利用溶液中重复出现的分子来检索分子结构的想法。之后,我和欧文一起研究了生物分子的明场图像,并确定了它们在特定的条件下能够以足够的精度排列,从而使图像达到了一定的平均分辨率,这项研究的结果在1977年共同发表。自此我开始相信,单颗粒的方法即使在弱原生对比度的条件下(即蛋白质与水)也能发挥作用。[Wadsworth研究中心]奥尔巴尼市,纽约州,美国1975年,我收到了纽约州Wadsworth研究中心的唐帕森斯(Don Parsons)发来的工作邀请。在那里,我最初的任务是细胞切片的断层重建,但我继续将研究重心放在了单颗粒方法的应用上。这两个领域的交叉使我意识到,我需要一个程序框架来确保后续程序设计的灵活性。因此,我开始对SPIDER进行开发,这是一个模块化的图像处理系统。随着单颗粒技术的发展,SPIDER成为向社会传播单颗粒技术的工具。它最初采取了买断制,只收取一次性费用,后来,它补充了创意共享许可,能够被免费地使用。之后,过了很多年的时间,单颗粒概念才得以被证明有效,我们收到了生物分子的实际图像:由加州大学洛杉矶分校的大卫艾森伯格(David Eisenberg)提供的谷氨酰胺合成酶,戈廷根大学的彼得辛斯海姆(Peter Zingsheim)提供的乙酰胆碱受体,以及罗氏的米罗斯拉夫布布里克(Miloslav Boublik)提供的核糖体。我的朋友马丁凯塞尔也利用休假的时间帮助我进行了一些研究。在每个案例中,二维平均数的可重复性证明了这种方法是合理的。然而,电子显微镜业内仍有不少人持怀疑态度。转折点出现1980年,我和荷兰学生马林范海尔(Marin van Heel)共同开发了一种解决异质性问题的方法。为了寻找具有挑战性的合适分子来尝试这项技术,我开始与法国图尔的让拉米(Jean Lamy)以及他的学生尼古拉斯博伊赛(Nicolas Boisset)合作,对各种节肢动物的血蓝蛋白进行成像。多年来我一直与尼古拉斯保持联系,直到他于2008年不幸去世。他的记录方式一丝不苟,并为单颗粒重建的原理制作了精美的幻灯片。奥尔巴尼镇是纽约州的首府,却淹没在了纽约市的光辉下。该镇被美丽的乡村所包围,仅靠步行便能进入阿迪朗达克山脉。搬到奥尔巴尼不仅让我得到了第一个独立职位,还释放了我在科学之外的领域进行创造性表达的冲动。我加入了一个艺术家集体,名为WORKSPACE,由杰西加雷特(Jacy Garrett)创立。当时,行为艺术正在全美范围内被重新定义,艺术家组织也如雨后春笋般出现。激浪派(FLUXUS)运动将大众的注意力引向了一些边缘的、偶然的东西。我并没有艺术相关的文凭,却凭借创造性的贡献成功地被WORKSPACE接纳了,这让我感觉不错。我参加了他们的邮件通信,并在几年内为一本名为PROP的小型文学杂志提供编辑工作。70年代末,我的第一次婚姻结束了。离婚协议使我们拥有对儿子的共同监护权,这让我在城里呆了相当长的一段时间,并见证我的儿子霍西安成长为一个多才多艺的艺术家,他之后将名字中的扬(Jan)改名为了泽(Ze)。1982年,我在奥尔巴尼遇到了我现在的妻子卡罗尔萨吉诺(Carol Saginaw)。卡罗尔最初在纽约州心理健康办公室工作,并在多年以来担任纽约州几个非营利组织的执行董事,从事心理健康工作,后来,她又从事了早期护理和教育工作。卡罗尔来自密歇根州的一个犹太家庭,她的许多家庭成员都在我祖国建造的毒气室中丧生了。尽管我们之间不同的背景带来了很多麻烦,但我们还是在1983年完婚,并幸福地生活到现在。在很大程度上,是卡罗尔的支持和对我的信任使我取得了胜利,并走到了我职业生涯的今天。同时,我也开始尝试用英语写小说,当威廉肯尼迪,以及后来的史蒂文米尔豪斯和尤金加伯对我的手稿给予非常积极的反馈时,我感到受宠若惊。对我来说,用第二语言去创造性地表达自己的想法是令人兴奋的,因为我当时并不确定未来是否会回到德国生活。在纽约州立大学的尤金加伯(Eugene Garber)教授的小说写作课程结束后,他班上的学员,包括我在内,决定继续以作家小组的形式聚会。这个小组内的一些建设性批评,以及我后来加入的其他小组,都磨练了我的写作,帮助我认识到“自己的声音”。自此,写作成为了我生活的一部分。现在回过头来看,我早期对单颗粒冷冻电镜的贡献主要是由三个因素促成的:我工作的地方安静祥和,也没有任何教学要求,此外,美国国立卫生研究院的稳定支持也必不可少。这种支持一直持续到了今天。我很幸运地在1982年邀请到迈克尔雷德马赫加入了我的团队,他是一名德国学生,也曾师从于沃尔特霍普,在任意几何形状的三维重建方面颇有建树。在我的实验室里,迈克尔一手设计了随机圆锥形重建程序,在1986年完成了第一个完全不对称分子的三维重建,即大肠杆菌核糖体的大型亚单位。采用雅克杜波谢的新型快速冷冻和玻璃化技术,我们很快就能重建水合、原生状态的生物分子。从那时起,也就是20世纪80年代末,我们一直努力研究的技术逐渐走向了成功,尽管我们并不能确定单颗粒冷冻电镜技术是否能够在分辨率方面和产生原子结构的倾向性方面与X射线晶体学竞争。1985年,在第一届戈登3DEM会议上,以前和现在的实验室成员在奥尔巴尼重聚。从左到右:马林范海尔,让皮埃尔布雷图迪尔,阿德里安娜弗尔肖尔,布鲁斯麦克伊文,约阿希姆弗兰克,泰瑞瓦根克内西,迈克尔拉德马赫,马丁凯塞尔在1985年,我们的女儿玛丽尔贝丝出生,并成为了我们生活的中心。在她两岁的时候,我收到了在英国剑桥的分子生物学实验室(MRC-LMB)休假的邀请,邀请者是理查德亨德森。我们在小谢尔福德村(Little Shelford)的国王小屋租了一个迷人的小房子,小屋后有一个花圃,女儿玛丽尔会在那里与其他孩子玩耍。我们在康河上划船,并在剑桥周围美丽的公园里散步。在实验室里,我的大部分互动对象都是赵华(Wah Chiu),他是我第一次访问罗伯特格雷瑟(Bob Glaeser)的实验室时遇到的学生,也和我在同一个时间段加入了分子生物学实验室。利用赵华收集到的响尾蛇毒素二维晶体数据,并在他的帮助下,我成功开发了斑块平均法,这是一种结构重建的方法,利用了晶体小区间的"局部"平均数:基本上是应用于晶体碎片的单颗粒方法。在奥尔巴尼,我们重建的第一批分子是血蓝蛋白,这是我们与法国的让拉米研究小组合作的延续。与范德比尔特大学的悉尼弗莱舍(Sydney Fleischer)的另一项合作,使我第一次有机会研究鱼尼丁(Ryanodine)受体的结构。不过,关于核糖体结构的工作仍然最让我着迷。早在1990年,我就深信自己的实验室能够对核糖体的结构和功能作出重大贡献,我开始招募有核糖体背景的生物化学家。阿金德拉阿格瓦尔(Rajendra Agrawal),他在贝拿勒斯印度大学的缅甸实验室接受过培训,是第一个将"核糖体专家级"的知识带入实验室的人。其他人后来也陆续地加入进来,其中包括在柏林Knud Nierhaus实验室受训的克里斯蒂安斯佩恩(Christian Spahn)。三维电子显微镜戈登会议(3DEM)是促进冷冻电镜社区讨论和传播样品制备、仪器和数据处理新技术的重要会议。该会议成立于1985年,最初每两年召开一次,后来改为现在的年度会议。我在1987年当选为会议的副主席,随后在1989年与David DeRosier一起当选为主席,这标志着单颗粒技术得到了整个学界的认可。1994年,马克思普朗克医学研究所的肯霍姆斯和拉斯姆施罗德为我提供了再次在德国工作的机会。通过我的研究生朱军(音译)和博士后帕维尔潘切克的努力,在X射线结构出来之前,我们得到了大肠杆菌核糖体的第一个高清密度图。也是在海德堡,我写出了一本关于三维电子显微镜的书,该书于1996年出版,并在和2006年第二次出版。1998年,我被任命为霍华德休斯医学研究所(HHMI)的研究员,并在之后任职了19年,直到最近我才退休。在这些年里,我的实验室继续开发冷冻电镜,并与几个合作者实现非常具有挑战性的生物项目,这都离不开霍华德休斯医学研究所的资助。也是在那个时候,Wadsworth中心与纽约市的八个机构一起组成了一个结构研究的联盟,称为纽约结构生物学中心,该中心支持核磁共振、X射线晶体学和冷冻电镜。这让我能够与哥伦比亚大学和纽约的其他领先机构建立密切的联系。2005年3DEM戈登会议上的奥尔巴尼团聚照片。从左到右:比尔巴克斯特,马丁凯塞尔, 尼古拉斯博伊塞,约阿希姆弗兰克,克里斯蒂安斯帕恩,坦维尔谢赫,帕维尔佩内泽克,阿金德拉阿格拉瓦尔,刘铮(音译),何塞玛利亚卡拉索2000年,在我60岁生日的时候,我在伦斯勒维尔镇(Rensselaerville)组织了一次会议,以延续安德斯利尔哈斯(Anders Liljas)在瑞典发起的一系列关于翻译功能的结构基础相关会议。会议的地点坐落在一个美丽的公园里,离奥尔巴尼有一个小时的车程。在这次会议期间,我和曼斯艾伦伯格(Mns Ehrenberg)花了不少时间,就核糖体结构和功能的合作制定了具体计划。这开启了一个令人振奋的研究旅程,并一直持续到现在,我们研究了启动、解码、mRNAtRNA转位、终止和循环过程的结构基础,为关于翻译机制的丰富知识库做了很多的贡献。2017年夏天,我的家人在我们位于伯克希尔的阿尔福德的房子里。上方,从左到右:霍西阿(泽)和他的儿子约拿,汤姆墨菲(玛丽尔的丈夫),约阿希姆弗兰克下方,从左到右:泽的妻子乔迪布兰特和他们的女儿罗丝,玛丽尔,我的妻子卡罗尔萨吉诺。这时,我的孩子们都长大成年了,有着自己的生活。我的儿子泽弗兰克在布朗大学主修神经科学,并出于弹吉他的爱好成立了一个乐队。他在音乐和艺术方面的特殊才能在少年时期就得到了体现。后来他搬到了纽约,开始做网页设计。通过一个偶然的途径,他登上了TED演讲的舞台,随后在一夜之间成为了一个互联网人物。最近,他任职于Buzzfeed,职位是媒体总监。他现在与妻子和两个孩子住在洛杉矶。我的女儿玛丽尔弗兰克在巴纳德学院主修语言学。她会说多种语言,在日本教过英语,还曾为一个拉丁裔非营利组织工作,现在是代码学院的程序员和课程开发人员。她已经结婚了,并定居在纽约布鲁克林。[哥伦比亚大学]纽约州,纽约市,美国2008年,我加入了哥伦比亚大学,成为生物化学、分子生物物理学系和生物科学部门的职员。在30多年的奥尔巴尼牧区生活后,重返纽约是相当令人兴奋的,这为我提供了许多合作机会。我带来了HHMI的FEI Polara显微镜,连同后期购买的FEI F20显微镜一起,在哥伦比亚大学建立了冷冻电镜实验室。之后,我立刻被单分子FRET合作领域所吸引,这是由斯坦福大学Puglisi实验室的鲁本冈萨雷斯建立的领域。在哥伦比亚大学的头四年里,我们的冷冻电镜项目进展缓慢,因为它仍然受到记录介质的限制。当直接电子检测相机被商业化后,发生了翻天覆地的变化,冷冻电镜领域被彻底改变了,也为我的实验室开辟了许多新的合作途径,特别是在通道结构方面。最近,哥伦比亚大学建立了一个冷冻电镜设施,由于捐助者的慷慨,以及和三个校区院长的合作,哥伦比亚大学现在正朝着成为世界领先的冷冻电镜中心之一前进。看着新技术在整个工业化领域广泛传播,我十分振奋,单颗粒冷冻电镜现在能够填补分子结构研究的巨大空白:膜结合的通道和受体,以及许多高柔性的大分子结构都可以被解析。冷冻电镜技术有望在未来几年大大增加人类医学的成就。[末尾致谢]诺贝尔颁奖典礼,斯德哥尔摩市,瑞典在过去五年中,一些实验室陆续解析了许多近原子结构,这引起了全世界对冷冻电镜领域之前数十年工作的关注,这些工作不仅仅归功于受到表彰的诺贝尔奖获得者和他们的小组,更是整个冷冻电镜领域的成就。因为从长远来看,自1990年冷冻电镜技术开始得到认可,许多团体在各个方面都做出了重大贡献:样品制备、数据收集自动化、计算、验证和原子模型的建立。这些贡献不胜枚举。在走到这一步的整个过程中,我受到了不少眷顾。我想对我的家人们表示感谢,特别是我的妻子卡罗尔,感谢她/他们在漫长时间里的稳定支持。我的妹妹英格伯格接受过生物化学方面的培训,她是我家庭中唯一能够理解我工作内容的人。在我的朋友中,我需要特别指出马丁凯瑟(Martin Kessel)对我早期工作的鼓励和支持,以及何塞玛丽亚卡拉索(Jose-Maria Carazo)对我一路走来的许多启发。最后,得到诺贝尔奖的认可令我激动,且受宠若惊。用阿尔弗雷德诺贝尔遗嘱中的话来说,诺贝尔奖的得主将是那些造福全人类的终身成就者,只有少数人能够达到这个目标。那些先行者,欧内斯特卢瑟福、莱纳斯鲍林、玛丽居里...他们的成就是难以逾越的。于我而言,一夜之间,我的人生被完整地定义了,或者说,许多与我未曾谋面的人能够了解我的经历,听我用自己的言语讲述我的故事,我感激这个机会。引用资料1. Frank, J. (1975). “Averaging of low exposure electron micrographs of non-periodic objects.” Ultramicroscopy 1, 159–162.2. Frank, J., Shimkin, B., and Dowse, H. (1981). “SPIDER — A modular software system for image processing.” Ultramicroscopy 6, 343–358.3. Frank, J. (2006). Three-Dimensional Electron Microscopy of Macromolecular Assemblies (New York, Oxford U. Press).4. Frank, J. (2015). “Generalized single-particle cryo-EM – a historical perspective.”再次祝愿Joachim Frank教授生日快乐!
  • 柠檬片冷冻干燥机
    柠檬片冷冻干燥机|柠檬片冻干机|柠檬冷冻干燥机| 柠檬冷冻干燥机| 柠檬片冻干设备 近年来,柠檬片受到众多消费者的青睐,但目前市面上销售的柠檬片多为烘干或晒干品,不仅出现干缩及褐变现象,维生素、生理活性成分等热敏性营养素也大大损失。而以冻干机生产出色泽、风味、营养物质都得到较好保存且安全卫生的冻干柠檬片。故此,也被成为柠檬片冷冻干燥机或柠檬片冷冻干燥机。 用柠檬片冷冻干燥机加工的柠檬冻干片没有涩味,没有苦味(柠檬子含有柠檬苦素,是抗癌非常珍贵的产品。这儿说的没有苦味并非指柠檬本身带有的,是没有加工形成的苦味)。 柠檬片冷冻干燥机技术参数: 型号TF-SFD-75 有效干燥面积7.5㎡ 隔板层数7+1 隔板温度范围 -50℃至+70℃ 隔板温差 1℃ 隔板间距100mm 隔板尺寸915*1210*25mm 冷阱温度 -70℃(空载) 捕水能力75KG/24h 真空度 10Pa 整机功率 40KW(含电加热10KW) 柠檬片冷冻干燥机优势: 一.柠檬片冻干是在低温下进行,微生物之类不会发生变性或失去生物活力。 二.在低温下干燥时,柠檬片中的一些挥发性成分损失很小。 三.在冻干过程中,微生物的生长和酶的作用无法进行,因此能保持原来的性状。 四.加水后溶解迅速而完全,几乎立即恢复原来的性状。 五.由于干燥在真空下进行,氧气极少,因此一些易氧化的物质得到了保护,随时享受鲜果的感觉! 转载请注明出处---上海田枫实业有限公司www.tfsye.com
  • 冷冻离心机何时实现“进口替代”
    因为技术原因,长期以来,进口冷冻离心机一直占据我们大部分市场,分布在全国各地的实验室,以及高校和相关企业中,像岛津、安捷伦等长期占领我国主流市场。蜀科仪器近几年来一直致力于冷冻离心机的技术创新和升级,小编今天来简要分析下冷冻离心机何时实现“进口替代”。 目前国产冷冻离心机已经到达进口仪器的相同功能,许多产品已被国内科研组织普遍运用。特别在中档设备上,国产设备和进口设备几乎没有差异,完全能够满足运用。花钱是买有用,而不是买功能指标,但一些单位用公款购买,不惜本钱,乃至以具有进口仪器为荣。  与此同时,与面临国外设备的剧烈竞赛比较,国产仪器内部处于低档同质化竞赛状况也是一个不争的现实。据了解,现在大多数国产冷冻离心机公司在走“低报价市场竞赛”道路,对商品本钱投入不行,技术水平较差。公司为了抢夺市场,降低收购零部件本钱,加之中国精细加工和元器件商品基础薄弱,直接影响仪器的检查能力,反映在仪器稳定性不高等方面。  国家统计局数据显示,2014年,中国仪器仪表全职业共有规划以上公司4116家,近1100家首要公司是仪器仪表协会会员单位。职业规划小,专业涣散,有95%的公司年经营收入在亿元以下,没有过10亿元的公司。绝大部分公司的商品会集在低端,还处于“满足于自个过小日子”的阶段。  有专家表示,将来几年间,中国检查组织(实验室)、工业项目、重大科技专项(集成电路)、新药研发还将收购很多进口仪器。假如这些检查数据、技术参数等信息均被国外很多把握,对中国的信息安全不利。  因而,专家建议,提升职业整体竞赛力,继续缩短中国冷冻离心机技术与国外先进技术水平的距离,争取提前实现“进口替代”。
  • 冷冻电子显微学与“细胞器、亚细胞及原位结构生物学研究”专题报告会召开
    pstrong仪器信息网讯/strong 第六届全国冷冻电子显微学与结构生物学专题研讨会在北京隆重召开,研讨会由中国生物物理学会冷冻电子显微学分会(以下简称:中国冷冻电镜分会)主办,北京大学承办,中国电子显微镜学会低温电镜专业委员会协办。19日下午,“细胞器、亚细胞及原位结构生物学研究”作为大会三大专题之一,在中科院生物物理所孙飞研究员主持下,顺利召开。会议围绕“细胞器、亚细胞及原位结构生物学研究”共安排了6个专题报告,吸引了来自海内外400多名代表与会。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/6d2dd523-e8dd-419b-b1a2-47d32db518f5.jpg" title="全景小.jpg" alt="全景小.jpg"//pp style="text-align: center "  研讨会现场/pp  中国科学技术大学毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告,分享在A型γ-氨基丁酸受体(GABAARs)的原位结构和组织研究方面的成果。毕国强用高分辨率冷冻电子断层扫描(Cryo-CLEM),确定了GABAARs在培养的海马神经元的抑制性突触中的结构。定位分析显示,GABAARs超复合物具有固定的11nm受体间距离但相对角度可变。这些超级复合物形成多受体网络,与随机分布的受体相比具有更低的Voronoi熵。受体网络进一步组织成具有~18nm的相界的中间组件。这种分层的自组织既保持规律性又灵活性,从而可以在突触信息处理中实现平衡的可靠性和可塑性。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/26ffc5a5-9914-4e50-a103-e06077a70894.jpg" title="毕国强.jpg" alt="毕国强.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  毕国强作《Structure and mesophasic organization of GABAA receptors in situ revealed by cryo electron tomography》报告/pp  染色质结构的高度动态变化在基因转录调控过程中起重要作用,并受多种表观遗传调控因子,如DNA 的甲基化、组蛋白的化学共价修饰、组蛋白变体置换、染色质结构蛋白的动态结合、ATP 依赖的染色质重塑以及非编码RNA 等的调控。中国科学院生物物理研究所朱平的《细胞核内染色质的电镜结构研究》报告介绍了利用冷冻切片、电镜和电子断层成像、CLEM等技术,在体外组装的染色质纤维纤维结构、以及用不同方法制备的细胞核内染色质结构研究的一些初步结果。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/4ed382f4-dba9-497e-ad1b-0a2ccab43a89.jpg" title="朱平.jpg" alt="朱平.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  朱平作《细胞核内染色质的电镜结构研究》报告/pp  中国科学院生物物理研究所纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告。报告内容中展示了所开发的冷冻和干涉单分子定位成像技术、冷冻超分辨光电融合成像技术。展示了使用csCLEM(cryogenic super-resolution correlative light and electron microscopy)精确确定蛋白质与其天然细胞结构之间的空间关系的研究过程和成果。在构建冷冻超分辨成像系统时,发现几种荧光蛋白(FP)是光可切换的并且发射更多的光子,可以得到更高的、与超分辨率成像相当的定位精度。引入冷冻切片,将csCLEM扩展到哺乳动物细胞,并观察到线粒体蛋白与线粒体外膜在三维纳米分辨率下的良好相关性。纪伟分享了最新工作进展,借助新设计的超稳定冷台,将冷冻超分辨成像系统升级为超稳定的超分辨荧光冷冻显微镜。该冷冻显微镜具有出色的热稳定性和机械稳定性,10小时内的温度波动小于0.1K,并且在5小时内三维机械漂移小于200nm。报告中的应用实例表明,超分辨荧光冷冻显微镜系统适合长时间观察和csCLEM实验。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 283px " src="https://img1.17img.cn/17img/images/201906/uepic/76fdeaad-1028-4e9b-a7bb-b3164af3baac.jpg" title="纪伟.jpg" alt="纪伟.jpg" width="450" vspace="0" height="283" border="0"//pp style="text-align: center "  纪伟作《Three-dimensional super-resolution protein localization correlated with vitrified cellular context》报告/pp  此外还有,生物化学与细胞生物学研究所何勇宁作《Architecture of cell–cell adhesion revealed by electron microscopy》报告,北京生命科学研究所何万中作《Direct synthesis of EM-visible gold nanoparticles on genetically encoded tags for single-molecule visualization in cells》报告,清华大学李赛作《Three-dimensional imaging by Cryoelectron tomography and subtomogram averaging at sub-nanometer resolution》报告。虽然是研讨会的最后一场,但全场观众依然聚精会神,台上台下展开了热烈交流。/pp  会议期间,借助冷餐会及会议间隙,特别设立了Poster交流环节,并在19日现场颁发了Poster奖。清华大学田元元、北京大学程稼萱、中国生物物理所吴春玲、浙江大学黄子惠、清华大学徐魁、中山大学邵千芊、中国生物物理所黄小俊、北京大学康云路获得Poster奖。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201906/uepic/ea3738f8-7e43-4327-9700-90aaccbf460a.jpg" title="poster.jpg" alt="poster.jpg"//pp style="text-align: center "  孙飞教授、高宁教授与Poster奖获得者合影留念/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制