当前位置: 仪器信息网 > 行业主题 > >

生化需氧量测定系统

仪器信息网生化需氧量测定系统专题为您提供2024年最新生化需氧量测定系统价格报价、厂家品牌的相关信息, 包括生化需氧量测定系统参数、型号等,不管是国产,还是进口品牌的生化需氧量测定系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合生化需氧量测定系统相关的耗材配件、试剂标物,还有生化需氧量测定系统相关的最新资讯、资料,以及生化需氧量测定系统相关的解决方案。

生化需氧量测定系统相关的资讯

  • 赫施曼助力生活饮用水中生化需氧量指标的测定
    生化需氧量是指在一定条件下,微生物分解存在于水中的可生化降解有机物所进行的生物化学反应过程中所消耗的溶解氧的数量。它是反映水中有机污染物含量的一个综合指标。根据GBT5750.7-2023,测定生活饮用水中生化需氧量指标的方法有:容量法。其原理为:生化需氧量是指在有氧条件下,微生物分解水中有机物的生物化学过程所需溶解氧的量。取原水或经过稀释的水样,使其中含足够的溶解氧,将该样品同时分为两份,一份测定当日溶解氧的质量浓度,另一份放入20℃培养箱内培养5d后再测其溶解氧的质量浓度,两者之差即为五日生化需氧量(BOD₃ )。方法如下:1.溶解氧固定:立即将分度吸管插入溶解氧瓶液面以下,用瓶口分液器加1mL硫酸锰溶液(480g/L),再按同方法加入1mL碱性碘化钾溶液。盖紧瓶塞(瓶内勿留气泡),将水样颠倒混匀一次,静置数分钟,使沉淀重新下降至瓶中部。2.用分度吸管沿瓶口加入1mL硫酸(ρ20=1.84g/mL)盖紧瓶塞,颠倒混匀,静置5min。3.滴定:将上述溶液倒入250mL碘量瓶中,用纯水洗涤溶解氧瓶2~3次,并将洗液全部倾入碘量瓶中,用赫施曼opus电子滴定器和光能滴定器经过硫代硫酸钠标准溶液(0.02500mol/L)滴定至溶液呈淡黄色,用瓶口分液器加入1mL淀粉溶液,继续至蓝色刚好褪去为止。记录用量(V₁ )。移取液体的一般是量筒和移液管,存在三个缺点:一是敞口操作,对强腐蚀、有毒有害、挥发性的液体,存在安全隐患;二是操作上环节多,需目视确认凹液面,实现精度难以保证;三是效率较低,无法满足日益增加的液体移取的工作需求。瓶口分配器和电子移液器是目前较为普遍的量筒和移液管的替代升级,将目视凹液面定容改为调整数值/刻度来确定体积,能够大大提升液体移取的效率和安全性,实现精度也更有保证。滴定法一般使用的是玻璃滴定管,对试验人员的技术水平、实操经验和耐心的要求较高,还有灌液慢、控速难,读数乱(不同人次、位置的凹液面读数可能出现偏差)三大痛点。赫施曼的光能滴定器可抽提加液、手转硅胶轮控制滴定速度和体积;而opus电子滴定器可通过触屏来进行灌液、预滴定(设定单次添加的体积)、快速滴定和半滴滴定等功能。两种滴定器均为屏幕直接读数,可提高工作效率、降低目视误差,无需大量实操经验,降低了培训成本和人员个体差异,所得数据也更加准确、稳定。
  • 废水监测:从生化需氧量BOD/化学需氧量COD到总有机碳TOC分析的转变
    图片来源:Avatar _023/Shutterstock.com随着全球人口水平的上升,包括制药、炼油和制造在内的各个行业也在不断发展和扩张。尽管存在差异,但每一个行业都应对所产生的水污染负责,并确保水质质量。无论是市政还是工业废水,都对人类健康构成很大风险并危害环境;因此,所有废水在排放前都必须经过仔细处理和密切监测。随着公众对健康和环境保护的不断推动,废水排放法规变得越来越严格。每个国家都有自己的废水管理机构和各种排放限制,因而开发和使用了各种监测方法。快速准确识别污染物的方法对防止有害物排放到公共水源中至关重要。世界卫生组织(WHO)于1948年应运而生,旨在帮助和促进全球健康[6]。2017年,WHO开展了一项涉及100个国家和275个国家标准的废水排放质量要求的研究。该研究确定了废水中五类最常见的污染物,即化学品、营养物、有机物、病原体和固体,其中有机物是最常监测的类别[28]。有机化合物占废水污染的很大一部分,并已监测了100多年。世界上测量有机物含量最常用的分析技术是生化需氧量BOD。[43]随着技术进步,法规允许使用其他方法,例如化学需氧量COD[44]和总有机碳TOC[45]来评估有机污染物。尽管BOD被普遍使用,但为了满足合规性和过程控制的要求,从BOD/COD转向TOC是一个新的趋势。有机污染参数有机污染物是一类污染物,由于其重要性,需要在废水中进行监测。然而,因为有多种有机化合物,单独测量它们中的每一种不切实际。因此,“总和参数”的概念用于将许多具有相似质量的化合物归为一类:BOD、COD和TOC是最常用于有机污染物检测的参数。生化需氧量BOD20世纪初期,大量污水和有机物释放至泰晤士河中,从英国排至大海大约需要五天时间。当微生物分解所含的有机物时,它们也会消耗水中的溶解氧含量,危害水生生物。[1, 48]因此,1908年发明了为期五天的生化需氧量BOD5测试,作为衡量水中有机污染物的一种方法。BOD5是用于确定废水中有机污染物含量最常用的总和参数之一。该技术依赖于微生物通过消耗样品中的氧气来分解有机物。水样中的大量有机物导致溶解氧消耗更大。BOD5测试通过测量20°C下五天培养期所消耗的氧气量,提供了有机污染物的间接指示。[43]BOD测试的需氧量通常包括碳质生化需氧量CBOD和含氮生化需氧量NBOD,这是由氨或其他含氮化合物的分解而产生的。氮需求会阻碍BOD5测试,因此通常使用替代的CBOD方法,这需要添加抑制性化合物。[43]由于该测试在过去的一个世纪中得到了长久认可,BOD5参数已纳入几乎所有全球废水法规中。虽然得到广泛使用,但生化需氧量仍存在许多问题。BOD5的一个主要缺点是取样和获得结果之间需要五天时间。该测试的持续时间使BOD5无法成为用于过程控制的参数。[2, 8]当污水处理厂意识到其已经超过了污水排放限定值时,实际上其不合规的排放已经经过了几天时间。[42]BOD5测试的另一个主要缺点是它依赖于微生物的生长。因此,阻碍生物生长的化合物(包括氯、重金属、碱或酸)都会影响结果。[8, 39]BOD仅测量可自然降解的物质,但有几种微生物无法分解的有机化合物,因此BOD5无法测定水中所有有机污染物。[8]由于取决于生物生长,该测试不仅遇到精度和准确度问题[8, 42],且灵敏度较差。[42]化学需氧量COD化学需氧量COD是另一种间接方法,用于确定废水中的有机污染物含量。在该测试中使用化学氧化分解水中的污染物,然后测量在该过程中排出的氧气。与BOD5测试类似,氧气消耗量的增加通常意味着样品中存在更高含量的有机物。[3]有许多不同的COD测试方法已获批准。开放式回流法要求样品在重铬酸钾强酸中回流。由于与氧化剂短暂接触,挥发物可能无法有效氧化。当样品中挥发物含量增加时,密闭滴定回流是一种令人满意的方法,因为它们与氧化剂长时间接触。任何可以吸收可见光的物质(例如不溶性悬浮固体和带色组分)都会影响结果。[44]与BOD5相比,COD测试有一些优势。其中一大优势是缩短了测试所需时间。BOD需要五天才能获得结果,但COD通常只需几个小时。[2, 44]另一个好处是该测试不需要微生物生长进行氧化,因此产生相对可靠和可重复的结果。[2]与BOD只能测定可生物降解有机物的需氧量不同,COD氧化的更为彻底,几乎可以氧化样品中的所有有机物。因此,COD测试结果更高,也提供了对水中有机物含量更准确的评估。COD测试的主要缺点是需要使用有毒化学品,并会产生更多危废,包括银、六价铬和汞:氯化物和其他卤化物会在不添加银或汞离子的情况下严重干扰测试。吡啶和类似的芳香族化合物可能会排斥氧化并导致假的低测量结果。[44]总有机碳TOC多年来的技术进步,诞生了总有机碳TOC分析仪,它提供了一种测量水中有机物含量的直接方法。与BOD5或COD不同,BOD5或COD使用需氧量来确定有机物含量,而TOC分析仪直接测量并定量分析样品中所含的碳。[42, 44, 45]所有TOC分析仪都是将有机物氧化成CO2,然后可以使用电导法或非色散红外检测(NDIR)对其进行测量。[45]样品氧化的不同方法包括燃烧、紫外线过硫酸盐和超临界水氧化 (SCWO)。[45]与传统的需氧量测试相比,TOC分析有许多优势。BOD5只能测量可生物降解的有机物的需氧量。TOC分析仪可快速氧化所有有机化合物,以测定样品中存在的有机物。与COD测试不同,TOC分析可以识别有机碳和无机碳之间的差异,包括碳酸盐、碳酸氢盐和二氧化碳。如果样品中挥发性有机物含量降低,分析仪可以酸化并置换出无机碳以定量分析不可置换的有机碳(NPOC)。[43]分析仪还可以独立评估总碳(TC)和总无机碳(TIC)以计算总有机碳。TOC分析仪的显着优势是具有更高的灵敏度和多功能性,它可以测定低至0.03 ppb和高达50000 ppm的有机物浓度。与传统的BOD和COD实验室方法相比,TOC可在短短几分钟内产生准确的结果。TOC仪器通常有实验室和在线型号,这使得它们成为合规性和过程控制中必不可少的工具。[43]标准方法5310指出,“总有机碳TOC是总有机物含量更方便和直接的表达方式… … TOC的测量对于水处理和废物处理厂的运行至关重要”。[45]全球有机物监测法规的转变每个地区或国家的管理机构都制定了废水排放中有机污染物可接受的排放限值。BOD5自1908年开始推广使用,几乎包含在全球所有法规中。然而,随着监测技术的进步,法规也在不断发展。一些国家允许使用BOD与TOC的相关性[4]甚至声明TOC将用作最佳可用技术。[7]北美的废水法规1999年,加拿大环境保护法(CEPA,Canadian Environmental Protection Act)实施,以管理污染和废物。根据渔业法案,还通过了废水系统排放法规。[13]也称为SOR/2012-139,该文件强调了排放限值并详细说明了监测和报告所需的条件。有机污染物的当前限值在碳质BOD参数中有详细说明。[13, 34]SOR声明:“废水中碳质生化需氧物质的数量,必须根据具有硝化抑制作用的五天生化需氧量测试来确定需求量。”[34]该文件确定了25 mg/L的CBOD限值,并要求运营商必须对废水样品建立一致的CBOD,但取样频率可以根据装置规模而波动。[34]在美国,由于公众对水污染的日益关注,制定了《1972清洁水法案》。该法案授权美国环境保护署(USEPA,US Environmental Protection Agency)确定废水标准并制定污染管理计划。[17, 29]该《清洁水法案》促成了美国污染物排放消除制度(NPDES,National Pollutant Discharge Elimination System)的建立,以规范排放污染物的点源。这些许可证制度建立了有关排放限值、监测和报告的要求。[26, 27]目前,根据《清洁水法案》第304(a)(4)节,BOD5归类为常规污染物。[22]尽管排放要求可能因行业和NPDES许可的不同而不同,但《联邦法规》40 CFR 133.102详细规定了公有处理厂的污水排放限制(表1),指出“根据NPDES许可机构的选择,代替参数BOD5… … CBOD参数可被代替...”[3]表1. 美国公有处理厂的排放限制资料来源:苏伊士水务技术与方案尽管美国NPDES允许将BOD5确定为标准测试,但40 CFR 133.104规定“当证明BOD:COD或BOD:TOC具有长期相关性时,化学需氧量(COD)或总有机碳(TOC)可以取代BOD5”。[4]目前,美国的许多工厂已经设计了长期相关性关系,利用TOC分析来跟踪其废水排放水平。[42]亚洲的废水法规中华人民共和国环境保护部制定中国的环境政策和法规。[25]中国综合废水排放标准(GB 8978-1996)的出台是为了管理水污染水平以保证健康和环境。2002年,环境保护部发布了GB 18918-2002,这是专门为控制污水处理厂排放而制定的。[49]中国的法规允许使用BOD和COD,GB 8978-1996确定了制药和石化等行业的COD限值。该法规还确定了合成脂肪酸行业和脱胶行业的TOC限值。[20, 23]表2列出了各行业污染物的允许废水排放量。表2. 中国工业废水允许排放量资料来源:苏伊士水务技术与方案1974年9月,印度环境、森林和气候变化部成立了中央污染控制委员会(CPCB,Central Pollution Control Board)来管理空气和水中的污染排放。[5]1986年,印度标准局(BIS,Bureau of Indian Standards)成立,以纳入许多可接受的测试方法和标准。在BIS 3025第44部分中,详细介绍了生化需氧量的方法。该标准指出,与在20°C下进行的传统BOD5测试相比,在27°C下进行的3天BOD测试更适合炎热的气候条件。[1]BIS 3025第58部分详细说明了化学需氧量的适当方法。该标准强调了COD测试相对简单和准确,并且比BOD干扰更少。[2]尽管印度严重依赖BOD测量,但CPCB制定了“在线连续污水监测系统指南”(OCEMS),其中对TOC技术进行了讨论。在第4.6节中,该文件指出:“TOC是一种比BOD或COD更方便、更直接的总有机含量表达方式。”与美国指南类似,该文件允许使用TOC估算伴随的BOD或COD一起使用,“如果建立了可重复的经验关系”。[16]欧洲的废水法规1991年,欧盟(EU)制定了城市污水处理指令(UWWTD,Urban Waste Water Treatment Directive)。该文件的制定是为了保护环境,避免城市污水处理厂、食品加工厂和雨水径流造成的严重排放。表3详细列出了该文件中对城市污水处理厂BOD和COD的要求。表3.欧洲城市污水处理厂的排放要求资料来源:苏伊士水务技术与方案该文件规定,对于BOD5,“该参数可以用另一个参数替代:总有机碳(TOC)… … 如果可以在BOD5和替代参数之间建立关系”。[14]2000年,欧盟发布了水框架指令(2000/60/EC),确定了欧盟的水质目标和参数。[30]2010年发布了工业排放指令(2010/75/EU),重点是减少工业对环境的排放。该文件确定了能源、金属生产、化学品和废物管理等行业类别。[15, 18]2016年,根据指令2010/75/EU,公开了文件2016/902,以详细说明工业部门废水的最佳可用方法(BATs,best available methods)和相对排放限值(AELs,relative emission limits)。根据工业排放指令,这些BAT-AEL做法将在四年内纳入。该文件确定应每天监测TOC或COD,以符合EN标准。引用标准EN 1484作为测量TOC的技术。[7]表4突出显示了TOC和COD直接排放到接收水体的通用BAT-AEL。表4.欧洲TOC和COD直接排放的BAT-AEL资料来源:苏伊士水务技术与方案该文件规定,“BAT-AEL不适用生化需氧量(BOD)。作为指示,生物废水处理厂污水年平均BOD5含量通常≤20 mg/L。”它还提到TOC或COD限值都适用,但规定“TOC是首选选项,因为它的监测不依赖于使用剧毒化合物。”[7]开发TOC与BOD5的相关性虽然BOD5测试范围广且不具专属性,但当涉及到取代这样一个成熟的行业标准时,大多数监管机构都会感到担忧。但,包括美国和印度在内的一些国家/地区了解其他测试参数的价值,并允许将BOD应用于与TOC的相关性。正如标准方法5310A所述,“如果在特定源水的BOD、AOC或COD之间建立了可重复的经验关系,则TOC可用于估算伴随的BOD、AOC或COD。必须为每组矩阵条件独立建立这种关系”。[42, 45]制定BOD与TOC的相关性通常需要与当地管理机构合作设计一项长期研究。由于BOD5结果往往是含糊不清的,需要几个数据点来产生适合于制定这种相关性和随后的回归曲线方程的信息。许可或管理机构必须签署相关性。美国的许多工厂已经开发了具体工厂的相关性,现在利用TOC来监测其废水排放。[16, 42]Inland Empire Utilities Agency是一家位于圣贝纳迪诺县(San Bernardino County)的废水处理设施,它使用TOC来监测其水质。颁发给其的NPDES证书和废物排放许可证规定:“排放者已证明废水中的生物需氧量(BOD5)和总有机碳(TOC)浓度之间的相关性,令执行官满意。”[12]这使得Inland Empire Utilities Agency能够根据TOC分析确定BOD5合规性。对于进水监测和三级出水监测,许可证需要每周进行一次BOD和TOC的综合分析结果,说明“BOD5是根据区域水务局批准的BOD/TOC相关性计算的”。[12, 31]加利福尼亚州的圣克鲁斯市(Santa Cruz County)也为其污水处理厂建立了一项长期的TOC相关性研究。NPDES水排放要求文件强调了工厂对传统污染物的排放限制,声明“排放者已证明该设施的TOC和BOD之间具有充分可靠的统计相关性”[32],并批准利用TOC相关性来满足BOD5排放限制。经批准的圣克鲁斯市具体现场的TOC相关性是:TOC=0.4141(BOD)+4.3937。表5显示了基于相关性的批准TOC限值。[32, 36]表5. 圣克鲁斯市平均每周和每月排放量资料来源:苏伊士水务技术与方案圣克鲁斯市发布的题为“更快更智能”的文章称,“这项研究证明了通过公有处理厂为污水开发具体现场TOC值的可行性。”由于TOC可带来更短的停工检修时间,此项开发还通过在工厂过程控制中用TOC分析代替BOD,提高了操作效率。”[36]随着技术进步,世界各地的管理机构将继续在法规中引入更准确和精确的参数。原文英文版于2021年4月发表在www.azosensors.com/article.aspx?ArticleID=2188,作者:Amanda Scott(Sievers分析仪全球产品经理),本文有所修改。◆ ◆ ◆联系我们,了解更多!参考文献:“3025 Part 44 Biochemical Oxygen Demand.” Bureau of Indian Standards, https://archive.org/details/gov.law.is.3025.44.1993/page/n3“3025 Part 58 Chemical Oxygen Demand.” Bureau of Indian Standards, https://archive.org/details/gov.law.is.3025.58.2006/page/n3“40 CFR 133.102 Secondary Treatment.” Electronic Code of Federal Regulations, https://www.law.cornell.edu/cfr/text/40/133.102“40 CFR 133.104.” Electronic Code of Federal Regulations, https://www.ecfr.gov/cgibin/textidx? SID=4f99ad02644fb790819e9af0dabed218&mc=true&node=pt40.24.133&rgn=div5#se40.24.133_1104“About Us.” Central Pollution Control Board, http://cpcb.nic.in/Introduction/“About WHO.” World Health Organization, https://www.who.int/about/whoweare“BAT 2016/902” https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:32016D0902&from=EN“Biochemical Oxygen Demand (BOD).” Pennsylvania Department of Environmental Protection, https://www.watereducation.org/sites/main/files/file attachments/pennsylvania_department_of_environmental_protection_biochemical_oxygen_demand.doc“Biochemical Oxygen Demand and Chemical Oxygen Demand.” Caltest Analytical Labs, https://www.caltestlabs.com/Services/BODandCOD.aspx“Biological Oxygen Demand.” Encyclopedia of Public Health, Encyclopedia.com, 2019, www.encyclopedia.com/science/dictionariest hesaurusespicturesandpressreleases/biologicaloxygendemand0.“Bottling company uses Sievers InnovOx Online TOC analyzer to Optimize Membrane Bioreactor Wastewater System” Suez Water Technologies and Solutions https://www.suezwatertechnologies.com/node/1708“California Regional Water Quality Control Board NPDES Permit Order No Ca8000409.” Inland Empire Utility Agency, 20 July 2009, https://www.ieua.org/wpcontent/uploads/2014/09/ConsolidatedNPDESPermitOrderNo.R820090021.pdf“Canadian Environmental Protection Act Registry.” Government of Canada, 24 April 2019, https://www.canada.ca/en/environmentclimate change/services/canadianenvironmentalprotectionactregistry.html“Council Directive concerning urban wastewater treatment (97/271/EC).” Official Journal of the European Communities, https://eurlex.europa.eu/legalcontent/EN/TXT/PDF/?uri=CELEX:31991L0271&from=EN“Directive 2010/75/EU Of European Parliament on Industrial Emissions.” 24 November 2010, https://eurlex.europa.eu/legalcontent/EN/TXT/?uri=celex%3A32010L0075“Guidelines for Online Continuous Effluent Monitoring.” Central Pollution Control Board, July 2018“History of the Clean Water Act.” United States Environmental Protection Agency, 8 August 2017, https://www.epa.gov/lawsregulations/historycleanwateract“Industrial Emissions Directive.” European Commission, 25 March 2019, http://ec.europa.eu/environment/industry/stationary/ied/legislation.htm“Industry Effluent Standards.” Central Pollution Control Board, http://cpcb.nic.in/industryeffluentstandards/“Integrated Wastewater Discharge Standard – GB 89781996.” National Standard of the people’s republic of China, Chinese Standard, https://www.chinesestandard.net/PDF.aspx/GB89781996“Introduction to Activated Sludge.” Wisconsin Department of Natural Resources. December 2010 https://dnr.wi.gov/regulations/opcert/documents/WWSGActSludgeINTRO.pdf“Learn about Effluent Guidelines.” United States Environmental Protection Agency, 21 November 2018, https://www.epa.gov/eg/learnabouteffluentguidelines“Maximum Allowable Discharge Concentrations for Other Pollutants in China.” China Water Risk, http://www.chinawaterrisk.org/wpcontent/uploads/2011/05/MaximumAllowableDischargeConcentrationsForOtherPollutantsinChina.pdf“Method 410.3: Chemical Oxygen Demand (Titrimetric, High Level for Saline Waters) by Titration.” United States Environmental Protection Agency, https://www.epa.gov/sites/production/files/201508/documents/method_4103_1978.pdf“Ministry of Ecology and Environment of the People’s Republic of China.” www.mee.gov.cn“National Pollutant Discharge Elimination System (NPDES) – About NPDES." United States Environmental Protection Agency, 29 November 2016, https://www.epa.gov/npdes/aboutnpdes“National Pollutant Discharge Elimination System (NPDES) – NPDES Permit Basics." United States Environmental Protection Agency, 25 July 2018, https://www.epa.gov/npdes/npdespermitbasics“Progress on Wastewater Treatment.” World Health Organization, 2018, https://www.who.int/water_sanitation_health/publications/progressofwastewatertreatment/en/“Summary of the Clean Water Act 33 U.S.C. §1251 et seq. (1972).” Laws and Regulation, United States Environmental Protection Agency, 11 March 2019, https://www.epa.gov/lawsregulations/summarycleanwateract“The EU Water Framework Directive.” European Commission, 6 August 2018, http://ec.europa.eu/environment/water/waterf ramework/index_en.html31. “Title 22 Engineering Report.” Inland Empire Utilities Agency, January 2010, http://www.ieua.org/wpcontent/uploads/2014/09/RP1Title22EngineeringReportJanuary2010.pdf“Waste Discharge Requirements for the City of Santa Cruz Wastewater Treatment Plant.” California Regional Water Quality, https://www.waterboards.ca.gov/rwqcb3/board_decisions/adopted_orders/2010/2010_0043_Santa_Cruz.pdf“Wastewater Regulations Overview.” Government of Canada, 7 February 2007, https://www.canada.ca/en/environmentclimatechange/services/wastewater/regulations.html“Wastewater Systems Effluent Regulations SOR/2012139”. Justice Laws Website, Government of Canada, https://lawslois.justice.gc.ca/eng/regulations/sor2012139/fulltext.htmlAssman, Celine, et al. “Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization.” Drinking Water Engineering and Science. August 2017 https://www.researchgate.net/publication/318976763_Online_total_organic_carbon_TOC_monitoring_for_water_and_wastewater_treatment_plants_processes_and_operations_optimizationBaba, Akin and Tianfei Xu. “Faster and Smarter A BODtoTOC conversion enables quick response to process control needs.” City of Santa Cruz Water environment laboratory October/November 2010, http://www.cityofsantacruz.com/home/showdocument?id=21451Bengtson, Harlan H. “Biological Wastewater Treatment Processes III: MBR Processes.” CED Engineering https://www.cedengineering.com/userfiles/02%20%20Biological%20WWTP%20III%20%20Membrane%20Bioreactor.pdfBengtson, Harlan H, “Biological Wastewater Treatment Processes III: MBR Processes” CED Engineering.com https://www.cedengineering.com/userfiles/02%20%20Biological%20WWTP%20I%20%20Activated%20Sludge.pdfDelzer, G.C. and S.W. McKenzie. “Five Day Biochemical Oxygen Demand.” United States Geological Survey, November 2003, https://water.usgs.gov/owq/FieldManual/Chapter7/NFMChap7_2_BOD.pdfHazma, Rania Ahmed, et al. « Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.” Membranes (Basel). June 2016. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931528/Muro, Claudia, et al. “Membrane Separation Process in Wastewater Treatment of Food Industry.” Institute Technology of To luca http://cdn.intechweb.org/pdfs/29163.pdfNutt, Stephen G. and John Tran of XCG Consultants Ltd. “Addressing BOD5 limitations through Total Organic Carbon Correlations: A Five Facility International Investigation.” Pensacola, Florida: water & Wastewater Instrumentation Testing Association of North America (ITA). January 2013.Rice, E.W. et al. “5210 Biochemical Oxygen Demand.” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association. Print.Rice, E.W. et al. “5220 – Chemical Oxygen Demand.” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association, Print.Rice, E.W. et al. “5310 – Total Organic Carbon” Standard Methods for the Examination of Water and Wastewater. 22nd ed. 2012. Washington, DC: American Water Works Association, Print.Shon, H.K et al. “Membrane technology for organic removal in wastewater.” Faculty of Engineering, University of Technology, Sydney Australia, Dec 2007 https://pdfs.semanticscholar.org/0818/e843ada017587afdc653a438fe45801b6614.pdf (D)Toit, Wynand du. “Use of total organic carbon on a wastewater treatment plant.” Tshwane University of Technology, September 2006 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.8456&rep=rep1&type=pdfZainudin, Zaki bin. “The Many Intricacies of Biochemical Oxygen Demand.” Research Gate, January 2008, https://www.researchgate.net/publication/271019944_The_Many_Intricacies_of_Biochemical_Oxygen_DemandZhou, Yuhua, et al. “COD Discharge Limits for Urban Wastewater Treatment Plants in China Based on Statistical Methods” Agricultural Green Infrastructure for Nutrient Reduction in Watersheds – Volume 10,
  • 总有机碳TOC与生化需氧量BOD/化学需氧量COD间的相互关系
    背景一百多年来,人们用生化和化学需氧量的测量结果来确定和量化城市和工业废水的被污染程度。生化需氧量(BOD5)是五日实验室测量值,是世界上最为广泛使用的废水水质参数之一,也是城市污水处理的标准参数。化学需氧量(COD)是两小时测量值,被广泛应用于工业领域。人们经常同时采用这两种实验室方法,进行测量、记录和比较。1-3在各类水、城市污水、工业废水的水质测量应用中,TOC分析是众所周知的分析方法。有很多实验室和在线配置的TOC测量方法,典型的分析时间为3至10分钟,具体时间取决于分析模式。TOC仪器的快速分析和在线操作模式,能够为事件监测和过程控制提供接近实时的分析,因此优于需氧量测量法。此外,TOC是水中有机物量的直接测量值,而COD和BOD是间接测量值。人们能够根据废水的成分和稳定性,来建立样品的有机碳和需氧量之间的关系或相关性。监管框架 美国所有的工业废水处理厂和公共污水处理厂(Publicly Owned Treatment Works,POTW)都有自己的预处理标准。根据清洁水法案(Clean Water Act)和随后的立法,美国环境保护局(EPA)建立了“国家污染物排放消除制度(National Pollutant Discharge Elimination System,NPDES)”。通常来说,NPDES是管理工业废水或城市污水排放到公共水域时的排放限值或出水限制准则(ELG)的主要制度。4-7美国清洁水法案规定,违反者每案每天须支付最高民事罚金25,000美元。根据联邦法规第403.12款,每天流量(MGD)高于5百万加仑的公共污水处理厂必须制定预处理方案。9在亚洲台湾环保署根据BOD5浓度来确定河流污染程度。5至15毫克/升浓度被视为中度污染,大于15毫克/升浓度被视为严重污染。10在欧洲法国的公共水域排放限值为:BOD小于100毫克/升,COD小于300毫克/升。德国允许基于4×TOC的最高COD值:“如果总有机碳(TOC)的4倍量(以毫克/升计)未超过化学需氧量(COD),应视为满足排水中的COD允许值。”12TOC值同需氧量之间的相互关系TOC分析比两种需氧量方法更快、更精确,而且是有机物的直接测量值。两种需氧量都是间接测量值。TOC方法的测量时间为3至10分钟,3次重复测量时间不超过30分钟,而COD的测量时间为2小时,BOD5的测量时间为5天。NPDES制度允许采用其他“批准的方法”来替代需氧量方法,例如采用同需氧量相关的TOC测量法,以使操作人员能够更快、更精确地进行监测和工艺控制。如此一来,需要处理废水的工业设施(非城市污水排放设施)往往就能在超过许可限值之前掌握需氧量的发展趋势。13预处理设施应同所在州的NPDES管理部门合作,进行长期的相关性测试,用TOC代替BOD或COD作为主要排放参数。监管机构(如美国环保局、各州环境规划支持部门)都对样品数量和测试时间有具体要求。“北美仪器测试协会(Instrumentation Testing Association of North America,ITA)”的一项研究报告“建议城市污水处理厂每周进行样品分析,为期至少一年(包括四季),以获得排放许可。”14在全球范围内,城市生活污水处理厂和工业废水处理厂可以通过短期和长期研究来确定TOC和需氧量之间的关系。印度环境和森林部中央污染控制委员会(Central Pollution Control Board,CPCB)认为:“……可以根据TOC:BOD和TOC:COD的观察比例来确定相关系数……。当在线监测TOC时……根据特定废水源的TOC、BOD或COD之间建立的可重复经验关系,可根据记录的TOC值来估算相关的BOD或COD。”15CPCB还规定,相关性必须基于样品基质,并需要定期验证。由于TOC方法和需氧量方法有本质区别,历来人们对TOC同需氧量关系的怀疑都在于工艺流变化对比例关系稳定性的影响。随着时间的推移,有机物的变化可能会改变同需氧量之间的数学关系。样品基体、颗粒或固体成分、粘度、浊度的变化都可能影响相关系数。每10分钟测量TOC,并应用相关系数:★相比于传统测试,对COD的估算频率可提高12倍。★相比于传统测试,每天可估算BOD5 288次。如何确定相关系数有多种方式来正确确定TOC和需氧量(BOD5或 COD)之间的相关系数。北美仪器测试协会(ITA)的测试报告中详述了各种统计分析方法,请参阅“实施协议(Implementation Protocol)”。ITA推荐的协议详述了4个步骤及建议,并参考了已发表的分析方法:01长期进行TOC和BOD5分析取样,取样点位置范围包括从进水到排放。a.建议取样后立即进行BOD5分析b.建议取样或酸化和冷冻后立即进行TOC分析c.建议将10%的样品“用于质量保证和质量控制”02进行数据组之间的有效相关性的统计分析。03如果确认相关性,应建立相关方程,并计算相当于BOD5限值的TOC。14无论采用哪种程序,都应当用目前最佳做法和科学方法来确保内部和外部统计的有效性。统计过程控制和分析的一些有效性考虑包括:在确定工艺稳定性之前的数据组的最少数据点、数据正态分布、工艺能力、确定对数据相关性影响的标准。关于实验设计,应咨询质量和工程技术人员、应用统计人员、六西格玛专家,并遵循公司的工艺和程序。表1是ITA测试报告中确定的第一阶相关方程的例子。报告总结了所有的相关性测试统计数据结果。表1:ITA测试报告中确定的第一阶相关方程14结论在亚洲、欧洲、美洲,同BOD5相关的TOC方法已为人们所熟知,正成为废水水质和处理应用中的最佳方法。更快、更准确地测量TOC,能够改进工艺控制、提供接近实时的排放检测以减少超标。BOD5相关的TOC分析方法可以降低运营成本,节省化学品和能源需求,有助于避免因超过排放限值而造成的罚款。目前已有成熟的分析和统计程序和方法来进行相关性研究、验证数据、确定相关性方程。高等院校、研究机构、环保部门、私人企业都了解TOC分析方法的优点,即快速监测和预测需氧量,以改善废水水质,同时降低成本和风险。参考文献1."Pacific Southwest, Region 9 - Quality Assurance",美国国家环境保护局。最近更新:2016 年 5 月 20 日。2016 年 8 月 24 日 www.epa.gov/region9/qa/2."BIOCHEMICAL OXYGEN DEMAND (BOD) -Standard Method 5210 B (5-day BOD Test) ",美国国家环境保护局。最近更新:2016 年 5 月 20 日。2016年8月24日www.epa.gov/region9/qa/pdfs/5210dqi.pdf3.ASTM D1252 - 06(2012)水的化学需氧量(重铬酸盐需氧量)的标准测试方法。4."NPDES Permit Program Basics",美国国家环保局。2016 年 8 月 24 日https://cfpub.epa.gov/npdes/docs.cfm?document_type_id=8&view=Permit%20Applications%20and%20Forms&program_id=45&sort=name5."Water Permitting 101",美国国家环境保护局,废水管理办公室。最近更新:2014 年 7 月 15 日。2015 年 4 月 21 日。6."State Program Information",美国国家环境保护局。最近更新:2016 年 2 月 19 日。2016 年 8 月 24 日https://www.epa.gov/npdes/npdes-state-program-information7."State NPDES Program Authority",美国国家环境保护局。最近更新:2016 年 2 月 19 日。2016 年 8 月 24 日https://www.epa.gov/npdes/npdes-state-program-information8."Code of Federal Regulations (CFR) 40 Part 122 EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM",部分 C - 许可条件 122.41(a)(2),联邦注册登记局(OFR)和政府出版局。引用版本:2016 年 8 月 22 日。2016 年 8 月 24 日http://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr122_main_02.tpl9."Code of Federal Regulations (CFR) 403 Part 12 Reporting requirements for POTW's and industrial users",联邦注册登记局(OFR)和政府出版局。2016 年 8 月https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol30/pdf/CFR-2012-title40-vol30-part403.pdf10."Environmental Water Information - Water Quality Standards - River Pollution Index (RPI) ",台湾环保署。2010 年,2015 年 4 月 21 日http://wq.epa.gov.tw/WQEPA/Code/Business/Standard.aspx?Languages=en11."Arrêté du 26 mars 2012 relatif aux prescriptions générales applicables aux installations classées relevant du régime de l'enregistrement au titre de la rubrique n° 2710-2 (installations de collecte de déchetsnon dangereux apportés par leur producteur initial) de la nomenclature des installations classées pour la protection de l'environnement",第 35 条:排放限值。引用版本:2012 年 3 月 26 日。2015 年 4 月 21 日http://legifrance.gouv.fr/eli/arrete/2012/3/26/DEVP1208907A/jo/ar- ticle_3512."Promulgation of the New Version of the Ordinance on Requirements for the Discharge of Waste Water into Waters",第 5 页第(3)部分第 6 条,德国环境、自然保护和核安全部。引用版本:2004 年 6 月 17 日。2016 年 8 月 24 日http://www.bmub.bund.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/wastewater_ordinance.pdf13."Central Tenets of the National Pollutant Discharge Elimination System (NPDES) Permitting Program",第2 页。美国国家环境保护局。最近更新:2015 年 4 月 7日。2015 年 4 月 21 日http://water.epa.gov/polwaste/npdes/basics/upload/tenets.pdf14.Nutt, Stephen G. 和 Tran, John,XCG Consultants Ltd. "Addressing BOD5 limitations through Total Organic Carbon Correlations: A Five Facility International Investigation",佛罗里达州彭萨科拉:北美水和废水仪器测试协会(ITA), 2013 年 1 月。15."Guidelines for Online continuous monitoring system for Effluents",第 12 页,出水水质实时监测系统指南。印度德里:中央污染控制委员会(CPCB)。2014 年 11月 7 日。2016 年 8 月 24 日http://mpcb.gov.in/images/FinalGuidelinse.pdf◆ ◆ ◆联系我们,了解更多!
  • CTG发布便携式荧光生化需氧量(BOD)检测仪新品
    便携式荧光BOD检测仪SMF4对河流、河口及沿海区域废水排污进行有效监测。SMF4测量原理是通过检测废水中荧光蛋白色氨酸,建立色氨酸荧光强度和生物需氧量之间相关性,从而输出BOD当量。SMF4可实时、现场监测,测量范围广,能够在几小时内进行大规模的调查,记录和分析,同时也提供实时污染问题的实时数据信息。仪器特点测量水中有机污染物,提供BOD当量;现场即时读数,无需实验室分析成本和时间;追踪污染物源头;数据记录和远程监控功能;可以由不熟练的实验员进行日常监控; 不需要消耗品或试剂;技术参数(1)仪器尺寸尺寸包括把手:18 x 30 x 15厘米;总重量包括电池:2.2公斤;防溅密封型;(2)仪器特点液晶显示器93 x 70毫米;可控背光;内部可充电电池;键盘字母数字和导航;比色皿座和盖;内部存储器数据捕获多达2000个采样记录(内部存储器可以通过RS232端口下载,提供9针RS232至RS232 / USB输出,以将SMF4连接到PC或数据记录器,PC需要Windows 98/2000 / XP / 7);自动采样数据记录;2秒快速测出结果;(3)技术参数参数BOD激发波长(nm)280发射波长(nm)360灵敏度(mg/l)0.05测量范围(mg/l)0.05~50(4)电池特征 SMF4由镍氢可充电电池供电,工作周期可以使用约30小时。当每小时间隔记录睡眠模式时,电池寿命约为4周。 使用提供的充电器需要8小时充满电。电池电量由LCD显示屏上的电量图标显示。(5)样品池比色皿座是按照标准荧光比色皿尺寸10 x 10 x 40 mm;比色皿座和盖将通过荧光比色皿进行自动取样;样品池是流动石英比色皿,样品体积1.8毫升,实验需要小量程的蠕动泵和硅胶管,硅胶管通过仪器盖子中的孔放入比色皿中,通过蠕动泵抽取样品送到比色皿中进行测量。 案例应用 SMF4 BOD检测仪应用在英国Bude进行河流监测。实验结果显示高于正常背景的读数代表河流受有机物污染,如下图所示河流监测BOD数据、SMF4荧光强度和BOD之间线性相关图。 创新点:可实时、现场监测,测量范围广,能够在几小时内进行大规模的调查,记录和分析,同时也提供实时污染问题的实时数据信息。便携式荧光生化需氧量(BOD)检测仪
  • 什么是生物需氧量 BOD 罗威邦 BD600
    Lovibond德国罗威邦水质分析 罗威邦 BOD 生物需氧量 压差法 BD600BOD(Biological/Biochemical Oxygen Demand)即生物需氧量,也叫生化需氧量。需氧微生物分解含碳有机物质以获得代谢所需的能量,消耗溶解氧。通过测量氧浓度可计算成可生物降解有机碳浓度。微生物消耗的氧气越多,水样的可生物降解有机碳浓度越高,污染就越严重。BOD 测试需要将水样温度保持在 20 °C,每天测试氧气消耗量,BOD5(五日生物需氧量)即第 5 天测得的耗氧量,结果为每升样品消耗的氧气毫克数(mg/L O2)[3]。BOD5 测量最早用于河水的污染等级分类,现还用于测试污水厂和工业工厂的进水和出水。由于污水中的有毒物质会抑制甚至阻止微生物生存繁殖,导致测试结果低于实际 BOD5,BOD5 的应用是在城市生活污水处理厂或作为判断污水是否含有毒物质的方法。两种常用 BOD5 测试方法:BOD5 测试有两种方法,都需要将水样温度保持在 20 ℃ 保持 5天,在密闭条件下测试。稀释法:顾名思义,水样需要先稀释。稀释水需要将微生物过滤掉,并达到氧饱和状态,将水样稀释到一定微生物浓度范围内。稀释后的水样在 20°C 下保持 5 天,每天用溶解氧仪手动测量溶解氧,第 5 天的溶解氧与初始溶解氧差值即为 BOD5。呼吸法/压差法:在一个密封瓶中,装有特定体积的污水。微生物分解有机物消耗污水中的氧气,产生的 CO2 被橡胶垫圈中的 KOH 吸收剂捕获并产生K2CO3。瓶内压力降低,传感器测量瓶内的负压,压力越低,BOD数值越高。此外,在水样中添加硝化抑制剂可抑制氨氧化作用,磁力搅拌器确保水样保持均匀。与稀释法相比,压差法的优点有:• 不需要稀释样品,操作简便;• 测量自动进行,减少人工操作;• 连续显示 BOD 数值,结果直观实时评价。
  • 《化学品 降解筛选试验 化学需氧量》等化学品国标预审
    全国危险化学品管理标准化技术委员会化学品毒性检测分技术委会(SAC/TC251/SC1)在广州召开了对2008年制定的《化学品 降解筛选试验 化学需氧量》等13项化学品国家标准的预审会议。来自全国危标委、中国人民解放军军事医学科学院毒物药物研究所、中国科学院华南植物园、中山大学、暨南大学、中科院广州地球化学研究所、中国检科院多位专家到会出席了此次会议。  与会专家听取了标准编制单位的汇报,审议了提交的标准初稿,对标准预审稿进行了认真地讨论,并按照GB/T1.1-2009有关规定,就标准编制中的有关问题提出了修改意见和建议。请各标准起草单位按照预审专家组提出的要求和建议进行修改,提交技术委员会正式审定。标准分别是:  一、20080040-T-469化学品危险性分类试验方法 鱼类急性毒性试验  二、20080444-T-469化学品 降解筛选试验 化学需氧量  三、20080446-T-469化学品 生物降解筛选试验 生化需氧量  四、20080451-T-469土壤/污泥吸附常数估测试验 高效液相色谱法(HPLC)  五、20080453-T-469土壤中好氧厌氧转化试验  六、20080890-T-469水 沉积物系统中好氧厌氧转化试验  七、20081305-T-469化学品 快速生物降解性通则  八、20080448-T-469化学品 土壤微生物 碳转化试验  九、20081303-T-469 沉积物-水系统中摇蚊毒性试验 加毒于沉积物的方法  十、20081304-T-469沉积物-水系统中摇蚊毒性试验 加毒于水的方法  十一、20080445-T-469化学品 陆生植物测试 生长活性试验  十二、20080447-T-469化学品 土壤微生物 氮转化试验  十三、20080449-T-469化学品 有机化合物在消化污泥中的厌氧生物降解性 气体产量测定法
  • 赛普推出BOD5自动测量分析系统 三大亮点抢先看
    p  在水质检测中,五日生化需氧量(BOD5)的实验室分析始终是环境实验室的分析难点,存在操作过程繁琐,且分析数据的合格率低等诸多问题。/pp  近日赛普仪器全新推出BODAutoTM系列自动分析仪,针对以上问题提出自动化、智能化、模块化三大创新改进,实现在提升工作效率的同时,大幅度提升数据合格率。/pul class=" list-paddingleft-2" style="list-style-type: disc "lip  span style="color: rgb(0, 112, 192) "strong自动化设计/strong/span/p/li/ulp  机械臂全自动操作,可按程序设置自动完成稀释水加注、接种液加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等功能。span style="text-indent: 2em "内置液位自动检测传感器,/spanspan style="text-indent: 2em "可配置专用生化培养箱实现实验全流程无人值守,并可通过远程查看实验过程及实验数据。/span/pul class=" list-paddingleft-2" style="list-style-type: disc "lip  span style="color: rgb(0, 112, 192) "strong智能化/strong/span/p/li/ulp  依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。/pul class=" list-paddingleft-2" style="list-style-type: disc "lip  span style="color: rgb(0, 112, 192) "strong模块化样品盘设计/strong/span/p/li/ulp  每批次可容纳54个BOD瓶子,用户可根据需求增加样品盘及样品瓶数量,分析仪允许用户自定义运行程序和步骤,例如自动样品稀释,自动开取及闭合瓶盖,添加试剂等。/pp style="text-indent: 2em "BODAutoTM系列自动分析仪使繁琐的生化需氧量分析简单化,通过智能机械臂协作替代人力的方式,自动化处理繁琐工序,实验人员只需要将样品移入样品瓶中推入系统,即可自动开始检测,大大降低了劳动强度,提高准确率。/ppscript src="https://p.bokecc.com/player?vid=8E4F8A53BB5D8F8E9C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=350&playerid=621F7722C6B7BD4E&playertype=1" type="text/javascript"/script/pp style="text-align: center "span style="color: rgb(63, 63, 63) "strong现场展示/strong/span/ppstrong此项方法符合中国环境标准及多项国际标准:/strong/pp 中国环境标准:/pp  HJ 506—2009《水质溶解氧的测定电化学探头法》/pp  HJ 505—2009《水质五日生化需氧量(BOD5)的测定稀释与接种》/pp 日本工业标准:/pp  JIS K—0102—32.3 工场排水试验方法BOD的测定/pp 美国环境标准:/pp  EPA METHOD 405.1 BiochemicalOxygenDemand(BOD) 5Days/pp 国际ISO标准:/pp  ISO 5815—1水质.n日生化需氧量(BODn)的测定。第1部分:加烯丙硫脲的稀释和接种法/pp  ISO 5815—2水质.n日生化需氧量(BODn)的测定。第2部分:未稀释样品的测定法/p
  • 浅谈影响BOD5测定结果准确性的几个因素
    浅谈影响BOD5测定结果准确性的几个因素张建新,王宏,谭瑞冰(通辽市环境保护监测站,内蒙古通辽028000)摘要:对水样BOD;指标测定过程中,影响测定结果准确性的水样保存-与/g*g、稀释水与接种稀释水配制等几个主要因素进行了论述.关键词:BOD;测定;准确性;影响因素中图分类号:X8 文献标识码:A 文章编号:1673&mdash 260X(2009)05一0072一02 水作为一种资源,根据其用途,不仅有量的要求,还必须有质的要求,人类在生产与生活活动中,将大量的工业废水、生活污水及其他废弃物排入水体,造成地表水和地下水等水源的污染,引起水质恶化,从而影响人体健康.所以,人们在水环境方面所面临的问题是必须充分合理地保护、使用和改善水资源,使其不受或少受污染.水质监测正是以此为目的,以海洋、江、河、湖泊、水库、地下水等水体和工业废水、生活污水的排放口为对象而进行监督、检测,以检查水的质量是否符合国家规定的有关质量标准及排放标准要求,为控制水污染、保护水资源提供依据.1五日生化需氧量概述水污染主要包括无机物污染、耗氧有机物污染、痕量有害有机物污染.其中,耗氧有机物污染是大量耗氧有机物排入水域后,分解消耗大量溶解氧,从而破坏水体中氧的平衡,使水质恶化.人们常常利用水中有机物在一定条件下所消耗的氧,来间接表示水体中有机物的含量.生化需氧量是指在规定条件下,微生物分解存在于水中的某些可氧化物质、特别是有机物所进行的生物化学过程中消耗溶解氧的量.此生物氧化全过程进行的时间很长,如在20。C培养时,完成此过程需100多天,目前国内外普遍规定于20± l℃培养5天,分别测定样品培养前后的溶解氧,二者之差即为BOD,,以氧的毫克/升(rag/L)表示.2 BoD5指标监测结果准确性主要影响因素2.1水样的保存与运输各种水质的水样,从采集到分析的过程中,由于物理的、化学的和生物的作用,会发生各种变化,而影响BOD的测定结果.因此,必须在采样时针对水样的不同情况和待测物的特性实施保护措施,并力求缩短运输时间,尽快将水样送到实验室进行分析,当待测物的浓度很低时,更要注意水样的保存.用于分析BOD,指标的水样最好采用玻璃或聚乙烯容器盛装,并在采集时充满容器并密封,防止由于路途颠簸、水样振荡、与空气接触而加快水样中微生物对某些可氧化物质的分解作用.水样的运输过程中应最好进行冷藏(2&mdash 5。C暗处进行保存),配备专用隔热容器,放入致冷剂,将样品置于其中保存,这样也可以抑制微生物的活动,减缓物理作用和化学作用的速度,保证水样采集时的原始状况.水样采集后,应尽早进行测定,一般应在6h内进行分析,若需要远距离转运,在任何情况下,贮存时间不应超过24h.在测定条件及其他因素不允许的特殊情况下,可将水样进行冷冻(一20。C,一般不使用),但最长时间不可超过1个月.2.2稀释水与接种稀释水生化需氧量的经典测定方法,是稀释接种法,方法适用于测定BOD,大于或等于2mg/L,最大不超过6000mg/L的水样,当水样BOD5大于6000mg/L时,会因稀释带来一定的误差.当水样稀释倍数超过100倍时,应预先在容量瓶中用蒸馏水初步稀释后,再取适量进行最后稀释培养.因此,对稀释水及接种稀释水的要求就相当严格,也是关系到实验测定成败,影响测定结果准确性的主要因素.2.2.1稀释水对某些地面水及大多数工业废水,因含有较多的有机物,需要经稀释水稀释后再培养测定,以降低其浓度和保证培养过程中有充足的溶解氧.首先,在5-20L玻璃瓶内根据水样稀释倍数及平行样的要求装入一定量的蒸馏水,控制水温在20。C左右,然后用无油空气压缩机或薄膜泵,将吸人的空气先后经活性炭吸附管及水洗涤后,导入稀释水内曝气2&mdash 8h.停止曝气亦可导入适量纯氮,使稀释水中的溶解氧接近于饱和,保证水样稀释后有足够的溶解氧.然后,瓶口盖以两层经洗涤晾干的纱布,置于20℃培养箱中放置数小时,使水中的溶解氧含量达到8meJL左右,临用前还应在每升稀释水中加入氟化钙溶液、氯化铁溶液、硫酸镁溶液、磷酸盐缓冲液各lml,并混合均匀,以保证微生物生长的需要.稀释水的pH值应为7.2,其BOD5应小于0.2mg/L.这样才能保证经稀释后的水样在5天的培养过程中有足够的溶解氧,并保证微生物分解水中某些可氧化物质时有足够的养分.2.2.2接种稀释水水样的培养过程中,要有一定数量的微生物来分解水样中的有机物,但对于不含或少含微生物的工业废水,其中包括酸性废水、碱性废水、高温废水或经过氯化处理的废水,在测定BOD,时应进行接种,以引入能分解废水中有机物的微生物,当废水中存在着难于被一般生活污水中的微生物以正常速度降解的有机物或含有剧毒物质时,应将驯化后的微生物引人水样中进行接种.实际工作中,两个或三个稀释比的样品,凡消耗溶解氧大于2mg/L,和剩余溶解氧大于l mg/L的样品,计算结果时,应取其平均值.因此,接种液加入的多少对实验测定结果准确性有着举足轻重的作用.溶解氧消耗量小于2mg/L,有两种可能,一是稀释倍数过大;另一种可能是微生物菌种不适应,活性差,或含毒物质浓度过大,这时可能出现在几个稀释比中,稀释倍数大的消耗溶解氧反而较多的现象.这就要求在实践工作中不断总结工作经验,并根据接种液中菌群数量浓度、菌群的适应性、水样特征来控制接种液加入量的多少,以便提高测定水样BOD,指标数值的准确性.2.3其他影响因素在水样BOD,指标测定过程中还存在着其他一些影响结果准确性的因素.包括实验测定过程中所涉及的玻璃器皿应彻底洗净,先用洗涤剂浸泡清洗,然后用稀盐酸浸泡,最后依次用自来水、蒸馏水洗净,尤其在培养过程中盛装水样的溶解氧瓶应保证洁净;待测水样的pH值应在6.5&mdash 7.5之间,若水样的酸度或碱度过高,可用高浓度的碱或酸液进行中和,但用量不要超过水样体积的0.5%;从水温较低的水域或富营养化的湖泊中采集的水样,可遇到含有过饱和的溶解氧,此时应将水样迅速升温至20cc左右,在不使满瓶的情况下,充分振摇,并时时开塞放气,以赶出过饱和的溶解氧,等等一些其他影响因素.BOD,属于水体污染物的中一类比较重要的有机污染物指标,其数值的高低直接关系到水体水质.因此,我们应在今后的工作中对各类水体及污染源进行认真、细致地调查研究,通过可靠、准确、先进的测定手段和经过培训持证上岗的专业技术人员为保证,注意水质监测过程中各类指标监测结果的准确性控制,做好实验内及实验室间的质量保证工作,实现监测分析方法的标准化、逐步建立起完善的环境监测网络,提供出代表性、准确性、精密性、可比性及完整性的监测数据,为科技生产服务、为企业技术改造、清洁生产服务、为环境保护主管部门监督管理服务.参考文献:C1]魏复盛,齐文启,等.水和废水监测分析方法.北京:中国环境科学出版社.2002.[23章亚麟.环境水质监测质量保证手册.北京:化学工业出版社.1994.[3]黄秀莲.环境分析与监测.北京:高等教育出版社.1996.
  • 赛普仪器发布BOD5机器人自动测量分析系统新品
    标准化:符合中国和国际相关标准,5日生化培养+溶解氧电极法测定。自动化设计:机械臂定位,实现自动样品稀释、试剂加注 、自动开盖、自动加盖及加水封和溶氧电极自动测量及清洗等自动功能。智能化:依照国家标准方法,程序自动计算BOD5。样品量:单组54位瓶位,可多组测量。操作简单:HMI交互界面,触摸屏全程操控,也可通过微机软件操控。自动校正:电极自动校正,校正数据自动保存。数据存储:数据实时存储,系统数据及测量数据掉电不丢失。安全:无危险试剂,排出液体无害测量范围:2~6000mg/L电极测量范围:0-20mg/L分辨率:0.01 mg/L重现性:0.1Mg/L(单组)电极校正:智能薄膜校正(IQMC)技术使用过程无需校正自动稀释:提供多通道自动稀释功能。稀释水采用蠕动泵智能自控加注系统,流量1.2L、min接种液采用高精度注射泵自动加注系统,加液范围0-100ml丙烯基硫脲采用高精度注射泵自动加注系统,加液范围0-100ml自动清洗: 管路和溶解氧探头可进行自动定时清洗。样品数:多组重复不限量。单组实现54瓶位样品的测量。模块化样品盘设计:3*6样品瓶/盘。样品容器:标准玻璃培养瓶300ml。盖瓶盖/开瓶盖:由机械臂附加装置自动完成,瓶盖加水封密封。运动模块:全电控模组定位准确,多轴联动,柔性稳定。电源要求:AC220V 50HZ电源功率:350W 外形尺寸:1500*650*650mm环境要求:5~45℃ ,无腐蚀性气体。高灵敏全极霍尔定位自动搅拌功能保持样品溶解氧均匀,也可赶出过饱和溶解氧。溶解氧膜电极具有自动温度补偿、自动盐度补偿和自动气压补偿的功能。测量范围:(0 ~ 20.00)mg/L(ppm) (0 ~ 200.0)%分辨率:0.1/0.01 mg/L(ppm) 1/0.1 %响应时间:≤30 s(25℃, 90%响应)准确度:≤0.1 mg/L温度补偿范围:(0 ~ 45)℃(自动)盐度补偿范围:(0 ~ 45)ppt(自动)气压补偿范围:(80 ~ 105)kPa(自动)创新点:自动化设计:机械臂定位,可按程序设置自动完成稀释接种水加注、营养盐加注、硫脲加注、开取及闭合瓶盖、溶氧自动测量、溶氧电极自动清洗及加水封等自动功能。内置液位自动检测电极。智能化:依照国家标准方法,用户可自行定义分析流程,程序自动计算BOD5。产品完全符合 HJ505-2009《水质 五日生化需氧量(BOD5)的测定 稀释与接种》 BOD5机器人自动测量分析系统
  • 涨知识丨水质指标-化学需氧量COD检测专题
    化学需氧量COD是一个重要的且能较快测定的有机物污染参数,常以符号COD表示。化学需氧量COD越高,就表示水样中的有机物污染越严重,如果不进行处理,许多有机污染物就会对水生生物造成持久的毒害作用,在水生生物大量死亡后,河中的生态系统即被摧毁。人若以水中的生物或灌溉的农作物为食,则会大量吸收这些生物体内的有害物质,可能产生致癌、致畸形、致突变等负面影响,对人和其他生物造成非常大的危害。因此,检测水中化学需氧量COD对环境综合治理具有不可或缺的意义。化学需氧量COD定义化学需氧量COD的概念是氧化水中还原性物质所消耗氧化剂的量转化成氧的量。通常是指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量(重铬酸钾的量),以氧的mg/L来表示(也就是消耗的重铬酸钾K2Cr2O7的量转化成氧分子O2的量)。监测目的COD是水体有机物污染的一项重要指标,能够反映出水体的污染程度。COD越高,说明水体受有机物的污染越严重,水体自净需要把这些有机物给降解,好氧微生物在降解COD过程中会消耗水中大量的溶解氧DO,而水体的恢复溶解氧能力不足时,水中溶解氧DO就会降为0,成为厌氧状态,在厌氧状态也要继续分解(厌氧微生物的厌氧作用),水体就会发黑、发臭,对生态环境造成巨大的影响。检测方法测定标准:《HJ828-2017 水质 化学需氧量的测定 重铬酸盐法》《HJ/T399-2007 水质 化学需氧量的测定 快速消解分光光度法》常用测定方法:1、国标法:重铬酸盐法(标准HJ828-2017)优点:再现性好,测量准确可靠,是仲裁方法。缺点:回流装置占据空间大,水、电消耗大,试剂用量大,操作不便,批量检测难。2、行标法:快速消解分光光度法(标准HJ/T399-2007)优点:占用空间小,能耗小,试剂用量小,操作简便,安全可靠,适用于大批量检测。缺点:对实验人员要求较高,与国标法数据略有差异。其他测定方法:微波消解法、节能消解法、高锰酸盐指数、总有机碳(TOC)、总耗氧量(TOD)研发阶段检测仪器《国标法:重铬酸盐法》仪器示例:连华科技LH-6F化学需氧量(COD)智能回流消解仪LH-6F化学需氧量(COD)智能回流消解仪是完全按照国家新标准《HJ 828-2017 水质 化学需氧量的测定 重铬酸盐法》原理设计制造,同时该仪器兼顾原国标。仪器采用独特的黑晶加热组件及保温措施,可同时消解6个水样,每个加热单元均可独立控温,加热效率更高,控温能力更强,节能的同时,使仪器安全性能大大提高。功能特点1、符合国标,应用广泛:兼顾新旧国标,适用各类水质检测;2、独立控温,节能环保:6个加热单元可单独控温,降低整机功耗;3、黑晶面板,安全可靠:采用黑晶加热组件,耐高温、耐腐蚀、易清理,安全性高;4、智能模式,操作简单:内置智能操作模式,一键自动完成消解冷却过程;5、双冷系统,省时省力:水冷与风冷相结合,快速降低消解瓶温度,节约检测时间;6、人性化设计,便于使用:整体高度65cm,降低了高度空间要求,可在大部分通风橱内使用。技术参数《行标法:快速消解分光光度法》仪器示例:连华科技5B-3C(V10)COD氨氮双参数快速测定仪2021年2月1日,连华科技正式推出5B-3C(V10)COD氨氮双参数测定仪,新产品在操作面板、检测项目、内置曲线、标准配件等方面进行了全新升级,大幅优化了用户在水质检测过程中的操作体验,对提升工作效率及水质检测效率提供了更多支持,进一步满足不同领域的水质检测需求。功能特点1、5.6吋彩色触控屏,配置全面升级采用5.6吋彩色触控屏,界面更加清晰美观,操作设置一目了然,标配5B-1(V8)16孔智能多参数消解仪,满足用户大批次样品检测的需求,新产品仪器内置打印机,检测数据实时打印,新增1套1cm比色皿、1套3cm比色皿,多重升级进一步提升工作效率,优化用户使用体验。2、新增多项测量模式,测定更多项目可直接测定化学需氧量(COD)、氨氮,内置多种方法曲线,浓度直读,新增氨氮水杨酸方法高低量程测量项目及610、420nm拓展测量模式,可以测定更多项目。测量模式丰富多样,用户可根据检测需求选择对应模式,化学需氧量(COD)检测<20分钟,氨氮检测<15分钟,操作简单,检测快捷,极大提升水质检测效率。3、践行研发设计理念,智造优质产品内存170条曲线,其中153条标准曲线和17条回归曲线,可根据需要调用相应的曲线,精确存储1.2万个测定数据,每条数据信息包含检测日期、检测时间、检测时仪器参数、检测结果,可向计算机传输当前数据和所有存储的历史数据,支持USB传输、红外无线传输(可选)。标配5B-1(V8)16孔智能多参数消解仪消解功率随负载数量自动调整,实现智能恒温控制,具有延时保护功能。新产品从软硬件层面都进行了更新升级,连华科技始终践行“简单、快速、智能、精确”的研发设计理念,力求打造出让用户用的舒心、放心、安心的满意产品。4、严格执行国家标准 适用更多领域按照国家新标准《HJ 924-2017 COD光度法快速测定仪技术要求及检测方法》原理设计制造,所有检测项目符合国家行业标准:COD-《HJ/T399-2007》、氨氮-《HJ535-2009》,氨氮亦可选择《HJ536-2009》标准。仪器适用于污水处理工程企业、环境监察部门、应急检测部门及对下属部门监察、工业废水排放检测单位或科研院校等各种生活用水和工业废水的检测需求。技术参数《行标法:快速消解分光光度法》仪器示例:连华科技5B-3F(V10)化学需氧量(COD)快速测定仪5B-3F(V10)化学需氧量(COD)快速测定仪是连华科技推出的普通经济型COD测定仪,标配LH-9A型9孔智能消解仪,具有操作简单,测量准确的优点。外观升级,配套齐全,操作方便,配制试剂后即可对COD指标进行准确测量,是一款性价比极高的产品。功能特点1. 外观简洁大方,整机轻巧简洁,功能简单实用;2. 3cm皿比色,直读浓度,测定结果准确;3. 冷光源、窄带干涉、光源寿命10万小时;4. 内存标准曲线,可一键校正,具有断电保护功能;5.配套LH-9A智能消解仪,可批量检测9支水样。技术参数《行标法:快速消解分光光度法》仪器示例:连华科技LH-COD2M(V11)便携式COD测定仪LH-COD2M(V11)型野外应急COD测定仪,采用全新光路设计理念,测值范围广,配合智能化程序设计,测值准确、便捷。本套仪器专门配备了外置便携式热敏打印机,比色管架等辅助设备和配件,方便用户进行野外测试使用。功能特点1、校准功能:仪器自备校准功能,可根据标准样品校准仪器内置曲线,无需手动制作曲线;2、配备专用配件:配备专用便携式消解仪、消解管组合架,整体消解、冷却,操作便捷;3、配备专用试剂:采用预制试剂管比色方式,消解比色一体,测量更加安全、简单、快捷、准确,测量范围更广;4、创新光路设计:全新的便携光路设计,测试方便快捷,可浓度直读,测量结果更精确;5、数据存储功能:具有数据存储功能,并配备USB接口,可查看并上传存储的数据;6、打印功能:具备打印功能,可连接外置便携式打印机实现数据打印功能;7、轻便美观:机身采用高分子工程塑料注塑成型,轻便、美观、防腐蚀;8、防震防水:高强度便捷主机箱,防震、防水,保护仪器不受伤害;9、中文操作:全中文操作,符合日常操作习惯,更便于掌握。技术参数检测试剂试剂配置:1、LH-D-100试剂100个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入75mL蒸馏 水,加入5mL分析纯硫酸后不断搅拌直至全部溶解。2、LH-D-500试剂500个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入348mL蒸馏水,加入22mL分析纯硫酸后不断搅拌直至全部溶解。3、LH-D3-100试剂100个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入72mL蒸馏水,加入8mL分析纯硫酸后不断搅拌直至全部溶解。4、LH-D3-500试剂500个样:将整瓶的粉末状晶体试剂倒入烧杯中,加入333mL蒸馏水,加入37mL分析纯硫酸后不断搅拌直至全部溶解。5、LH-E-100试剂100个样:将整瓶的粉末状晶体试剂,全部溶解于500mL分析纯硫酸中,不断搅拌或隔夜放置,直至试剂全部溶解。6、LH-E-500试剂500个样:将整瓶的粉末状晶体试剂,全部溶解于2500mL分析纯硫酸中,不断搅拌或隔夜放置,直至试剂全部溶解。7、抗高氯试剂LH-Eg配置方法同LH-E试剂配置方法。8、保质期:固体试剂2年,配置成液体后保质期1个月;液体试剂3个月。标液配置:准确称取在105℃下烘干2小时后在干燥器中放冷却的邻苯二甲酸氢钾(HOOCC6H4COOK),0.4251g,溶于蒸馏水中,然后将该溶液用蒸馏水定溶在1000mL容量瓶中并混匀。此标准溶液COD浓度为500mg/L。使这1升水中0.4251g的邻苯二甲酸氢钾完全分解需要消耗500mg的氧。COD试剂示例(温馨提示)使用试剂前,请务必仔细阅读使用说明书功能特点连华科技液体试剂:1、整合配方,精简测定步骤2、节省成本,试剂用量小3、直接量取使用,省略繁琐的试剂配制过程连华科技固体试剂:1、高稳定性,高精确度,测量范围广2、粉末状密封包装,易运输,易保存,保质期长3、电话防伪查询原厂专用试剂,保证测量精确度4、定量的试剂包装,用户无需再次称重,配制方法简单连华科技预制试剂:1、直接将水样加入即可消解2、可直接用于比色出值3、密封效果好,携带方便4、非常适合野外操作实验步骤COD高量程皿比色实验操作流程(点击查看大图)COD预制试剂实验操作流程(点击查看大图)注意事项1、器皿清洗干净。2、样品取样前根据实际需要将水样均质化。3、2.5ml样品取准,稀释建议容量瓶稀释。4、试剂加入注意安全与平行性。5、样品放入消解器前摇匀样品。6、放入消解孔与取出时注意垂直,轻拿轻放。7、加入2.5ml水摇匀后再冷却。8、比色时数值稳定后再按空白键。9、比色时严禁溶液撒入比色池内。10、实验完成后及时清洗器皿。11、废液收集集中处理,严禁外排。企业简介连华科技是一家创新型实体,总部位于北京,在全国16个地区设立分公司及办事处。在近40年的研发与发展过程中,连华科技始终保持水质分析测试领域的核心竞争力,研发出多参数、COD、氨氮、BOD、总磷、总氮、重金属等水质分析仪二十余系列及丰富的专业化配件、试剂,可测定百余项水质指标,已发展成为一家集研发、生产、销售、解决方案服务为一体的复合型企业。连华科技致力于解决当今人类生存环境所面临的一些重大挑战,同时十分注重用户的需要,积累了环保监测、科研院所、石油化工、食品酿造、医药卫生、纺织印染、电镀电力等不同行业的模型与数据,产出更富效率与价值的解决方案,与20余万家的客户和机构共同发展。连华科技已于2017年入驻京东、天猫等线上商城,满足不同用户的多样化体验。我们始终牢记我们的使命:让人类环境更加美好。
  • 一文秒懂TOD, BOD 和COD区别
    表示水中有机物含量的综合指标有两类,一类是以与水中有机物量相当的需氧量(O2)表示的指标,如生化需氧量BOD、化学需氧量COD和总需氧量TOD等;另一类是以碳(c)表示的指标,如总有机碳TOC。对于同一种污水来讲,这几种指标的数值一般是不同的,按数值大小的排列顺序为TODCODBOD5TOC。 1.总需氧量TOD 总需氧量TOD是指水中的还原性物质在高温下燃烧后变成稳定的氧化物时所需要的氧量,结果以mg/L计。TOD值可以反映出水中几乎全部有机物(包括碳C、氢H、氧O、氮N、磷P、硫S等成分)经燃烧后变成CO2、H2O、NOx、SO2等时所需要消耗的氧量。 2.总有机碳TOC 总有机碳TOC是间接表示水中有机物含量的一种综合指标,其显示的数据是污水中有机物的总含碳量,单位以碳(c)的mg/L来表示。一般城市污水的TOC可达200mg/L,工业污水的TOC范围较宽,最高的可达几万mg/L,污水经过二级生物处理后的TOC -般50mg/L。 3.生化需氧量BOD 生化需氧量全称为生物化学需氧量,简写为BOD,它表示在温度为20℃和有氧的条件下,好氧微生物分解水中有机物的生物化学氧化过程中消耗的溶解氧量,也就是水中可生物降解有机物稳定化所需要的氧量,单位为mg/L。BOD不仅包括水中好氧微生物的增长繁殖或呼吸作用所消耗的氧量,还包括了硫化物、亚铁等还原性无机物所耗用的氧量,但这一部分的所占比例通常很小。 在20℃的自然条件下,有机物氧化到硝化阶段、即实现全部分解稳定所需时间在100d以上,但实际上常用20℃时20d的生化需氧量BOD20近似地代表完全生化需氧量。生产应用中仍嫌20d的时间太长,一般采用20℃时5d的生化需氧量BOD5作为衡量污水中有机物含量的指标。 4. 化学需氧量COD 化学需氧量COD是指在一定条件下,水中有机物与强氧化剂作用所消耗的氧化剂折合成氧的量,以氧的mg/L计。当用重铬酸钾作为氧化剂时,水中有机物几乎可以全部(90%一95%)被氧化,此时所消耗的氧化剂折合成氧的量即是通常所称的化学需氧量,常简写为CODcr。污水的CODcr值不仅包含了水中的几乎所有有机物被氧化的耗氧量,同时还包括了水中亚硝酸盐、亚铁盐、硫化物等还原性无机物被氧化的耗氧量。 5.BOD5与COD的关系 BOD5不仅仅是一个重要的水质指标,更是污水生物处现过程中的一个极为重要的控制参数。但是由于测定时间较长(5d),不能及时反映和指导污水处理装置的运行,只能用于工艺效果评价和长周期的王艺调控。对于特定的污水处理厂,可以建立BOD5和COD的相关关系,用COD粗略估计BOD5值来指导处理工艺的调整。有时会因为某些生产污水不具备微生物生长繁殖的条件(如存在有毒有机物),无法准确测定其BOD5值。 化验污水的化学需氧量COD值可以较准确地测定水中有机物含量,但化学需氧量COD不能区别可生物降解有机物和不可生物降解的有机物。人们习惯于利用测定污水的BOD5/COD来判断其可生化性,一般认为,污水的BOD5/COD大于0.3就可以利用生物降解法进行处理,如果污水的BOD5/COD低于0.2.则只能考虑采用其他方法进行处理。 化学需氧量COD值一般高于生化需氧量BOD5值,其间的差值能够大概反映污水中不能被微生物降解的有机物含量。对于污染物成分相对固定的污水来说,COD与BOD5之间一般都有一定的比例关系,可以互相推算。加上COD的测定所用时间较少,按回流2h的国家标准方法来化验,从取样到出结果,只需要3~ 4h,而测定BOD5值却需要5d时间,因此在实际污水处理运行管理中,常利用COD作为控制指标。 为了尽快指导生产运行,有的污水处理厂还制定了回流5min测定COD的企业标准,测得结果虽然与国家标准方法有一定误差,但由于误差为系统误差、连续监测的结果可以正确地反映水质的实际变化趋势,测定时间却可以减少到1h以内,对及时调整污水处理运行参数和防止水质突变对污水处理系统造成冲击,提供了时间上的保证。
  • 盛奥华发布盛奥华SH-860型(V10)BOD测定仪新品
    可广泛应用于大专院校、科研院所、污水处理厂、环保监测站、石化、造纸、制药、印染、纺织、皮革、酿酒、乳业、电子、市政工程等行业SH-860型(V10)BOD测定仪生化需氧量是指水样在20℃±1℃条件下培养所设定时间,微生物分解存在水中的某些可氧化物质,特别是有机物所进行的生物化学过程中消耗溶解氧的量。根据国家标准《HJ 505-2009 5日培养法》,本公司设计研发出SH系列BOD测定仪。※本款设备结合恒温培养箱,可模拟自然界中有机物的生物降解过程※人性化设计,操作简单,使用方便※采用无汞压差法测量水中的BOD,全智能化操作,安全可靠※无需值守,实验结束可查询历史数据※采用进口压力传感器组件,有效地保证了数据准确性※彩色液晶屏显示,每个培养瓶独立工作,单独控制型号SH-860型SH-890型SH-812型量程范围0-4000mg/L0-4000mg/L0-4000mg/L样品数量6/批9/批12/批分辨率0.1mg/L准确度±8%测试周期1-30天量程选择8组数据直读只读背光可调电池寿命1年温度显示显示数据记录2小时/次测定原理无汞压差法培养温度20℃±1℃搅拌速度100-500转/min搅拌方式电磁式搅拌电源AC220V±10%/50-60HZ额定功率20W24w28W仪器尺寸300*250*105343*300*105393*343*105培养瓶、电源线、说明书等凡是我方提供的仪器,运输、包装等费用均由我方承担;一年之内免费保修,一年后进行有偿服务。凡是我方提供的仪器一年以后均按照供货范围表的报价进行有偿服务。 创新点:此款BOD测定仪采用无汞压差法测量水中的BOD,采用进口压力传感器组件,全智能化操作,安全可靠;彩色液晶屏显示,每个培养瓶独立工作,单独控制无需值守,实验结束可查询历史数据。盛奥华SH-860型(V10)BOD测定仪
  • BOD的检测方法和常用设备有哪些?
    在污水处理过程中,为了使处理后的水,实现达标排放,在污水处理的每个环节都会用水质监测设备检测水质,根据水质监测设备测得的数据,采用相应的处理方法,使本环节水质指标达到要求,再进入下一个处理环节。在这些水质监测指标中,BOD是其中一项重要的检测指标。那么BOD是什么?BOD的测定方法有哪些?BOD检测设备有哪几种??BOD是什么?BOD(生化需氧量):是指在有氧的条件下,水中微生物分解有机物的生物化学过程中所需溶解氧的质量浓度。为了使BOD检测数值有可比性,一般规定一个时间周期,并测定水中溶解氧消耗情况,一般采用五天时间,称为五日生化需氧量,记做BOD5,经常使用五日生化需氧量。BOD数值越大证明水中含有的有机物越多,因此污染也越严重。BOD是一种环境监测指标,用于监测水中有机物污染情况,有机物都可以被微生物分解,此过程中需要消耗氧,如果水中溶解氧不足以供给微生物的需要,水体就处理污染状态。BOD的测定方法有哪些?目前检测BOD的方法通常有以下几种: 1.1 标准稀释法 将水样稀释至一定浓度后,在20℃恒温下培养5d,测出培养前后水中溶解氧量,便可计算出BOD值(即BOD5)。该方法1936年被美国公共卫生协会标准方法委员会采用,ISO/TC-147也推荐该法,成为国际上约定俗成的分析方法。我国颁布的水质分析方法GB7488-87亦采用该方法。在水环境的各类污染物中耗氧污染物仍是当前影响水体水质的重要因素,其主要危害是消耗水中溶解氧,导致水质恶化。BOD能相对表示微生物可分解的有机物量,即水中有机物分解时所消耗的溶解氧,符合水体自净的实际情况和大部分污水处理技术工艺路线,因此,BOD的测定对控制水体污染具有更重要的意义。目前检测BOD的方法通常有以下几种: 1.2 微生物电极法 其原理是以一定的流量使水样及空气进入流通测量池中与微生物传感器接触,水样中溶解性可生化降解的有机物受菌膜中微生物的作用,使扩散到氧电极表面上氧的质量减少,当水样中可生化降解的有机物向菌膜的扩散速度达到恒定时,扩散到氧电极表面上的氧的质量也达到恒定并产生一恒定电流,由于该电流与水样中可生化降解的有机物的差值与氧的减少量存在定量关系,据此可换算出水样的生化需氧量。通常采用BOD5标准样品比对,以换算出水样的BOD5值。1.3 活性污泥曝气降解法 控制温度为30℃~35℃,利用活性污泥强制曝气降解样品2h,经重铬酸钾消解生物降解前后的样品,测定生物降解前后的化学需氧量,其差值即为BOD。根据与标准方法的对比实验结果,可换算为BOD5值。1.4 测压法 在密闭的培养瓶中,水样中溶解氧被微生物消耗,微生物因呼吸作用产生与耗氧量相当的CO2,当CO2被吸收剂吸收后使密闭系统的压力降低,根据压力计测得的压降可求出水样的BOD值。 BOD检测设备常用的有哪几种?1五日培养法BOD5测定仪根据国家标准《HJ 505-2009 5日培养法》,盛奥华设计研发出SH系列BOD测定仪,此设备结合恒温培养箱可模拟自然界中有机物的生物降解过程,采用无汞压差法原理测量水中的BOD值。培养箱SH系列BOD5测定仪1疑难提问?你好,BOD测定仪有哪些特点啊?您好,特点很多奥,比如:采用进口压力传感器,性能稳定,漂移少,维护率低;整机全智能化设计,采用先进的研发工艺设计制造,实验过程无需实验人员值守,操作简单,安全可靠......那它还需要手动计算吗?不需要啊,仪器内置智能算法,结果直读,不同浓度、稀释倍数可自动计算,很方便呢那做实验时一批能做几个样品呢?6、8个都可以,而且每个测试个体都是独立的,互相之间是不影响的。另外SH-850和SH-860A仪器内嵌打印机,数据可以直接查询和打印出来奥嗯,很不错呢谢谢,有什么问题都可以咨询我奥2微生物电极法BOD测定仪SHB-1型■液晶大屏幕LCD显示工作状态及测量结果,微机储存并自动打印数据■仪器操作简单、使用方便、测量范围大、检测精度高■采用微生物电极法,公司拥有生物膜制备技术■符合国家BOD测量方法标准:HJ505-2009■检测速度快,8分钟快速出结果■由蠕动泵驱动恒速流通连续进样■微电脑操作,可进行人工测量/自动测量模式切换
  • 盛奥华发布盛奥华SH-860A型(V10)智能BOD测定仪新品
    可广泛应用于大专院校、科研院所、污水处理厂、环保监测站、石化、造纸、制药、印染、纺织、皮革、酿酒、乳业、电子、市政工程等行业SH-860A型(V10)BOD测定仪生化需氧量是指水样在20℃±1℃条件下培养所设定时间,微生物分解存在水中的某些可氧化物质特别是有机物所进行的生物化学过程中消耗溶解氧的量,根据国家标准《HJ 505-2009 5日培养法》,本公司设计研发出SH系列BOD测定仪。1、采用安全可靠的无汞压差法测量水中的BOD值2、此设备结合恒温培养箱可模拟自然界中有机物的生物降解过程3、内置智能算法,结果直读,不同浓度、稀释倍数可自动计算4、自动记录测量数据,记录频率可选择,自动绘制数据分析曲线并保存5、实验过程无需人员值守,可实时查询保存的历史数据6、采用进口压力传感器组件,可有效地保证数据准确度7、采用彩色液晶独立显示、独立工作,培养瓶之间互不影响8、具有温度自动补偿功能,待样品温度平衡后自动开启测量9、测量、稀释倍数量程范围广,可根据范围选择不同量程10、智能化、人性化设计,使得操作更简单方便11、可实现无线数据传输USB接口,无线数据打印(选配)型号SH-860A型量程范围0-4000mg/L样品数量6个/批显示方式彩屏工作方式独立运行分辨率0.1mg/L准确度±8%测试周期1-30天量程选择8组数据直读只读背光可调电池寿命1年温度显示显示数据记录2小时/次测定原理无汞压差法培养温度20℃±1℃搅拌速度100-500转/min额定功率20W搅拌方式电磁式搅拌电源AC220V±10%/50-60HZ仪器尺寸300*250*105培养瓶、电源线、说明书等凡是我方提供的仪器,运输、包装等费用均由我方承担;一年之内免费保修,一年后进行有偿服务。凡是我方提供的仪器一年以后均按照供货范围表的报价进行有偿服务。 创新点:内置智能算法,结果直读,不同浓度和稀释倍数可自动计算;实验过程无需人员值守,可实时查看数据;采用进口压力传感器组件,采用彩色液晶独立显示;智能化设计,培养瓶独立工作,互不影响;自动记录测量数据,自动绘制数据分析曲线并保存;盛奥华SH-860A型(V10)智能BOD测定仪
  • BOD测量数据无线传输!动态过程,一目了然!
    生化需氧量(Biochemical Oxygen Demand,BOD),是指水体中的好氧微生物在一定温度条件下,一定时间内,将水中有机物分解成无机质,在此过程中所需要的溶解氧量。 BOD可反映水体被有机物污染的程度,水体中所含有机物越多,则需要消耗的溶解氧量也越多,BOD值也越大。 图1 健康水体中的有机物含量少,溶解氧多,可供鱼类等水生生物呼吸之用(源/Quikr Exam) 为了使样品具有可比性,我们常用一个时间段内的溶解氧量的消耗量来表征BOD值。例如,我们通常设定实验温度为20℃,用水样培养微生物,测定水中溶解氧的消耗情况。如果这一时间段是5天,就称为5日生化需氧量,记做BOD5,单位一般用mg/L来表示。数值越大,说明水中含有的有机物越多,污染也越严重。表1 受有机物污染程度不同的水体测量得到的BOD值 人们通常用稀释接种法来测量生化需氧量,计算公式如下: BOD=(D1-D2)/ P 其中,BOD是生化需氧量(mg/L);D1是稀释水样的初始溶解氧量(mg/L);D2是稀释水样经20℃恒温培养箱培养n天之后的溶解氧量(mg/L);P是稀释因子,表示为水样体积(mL)与稀释后水样体积(mL)的比值。 这种测量方法有不足之处。例如,只有“点”上的数据,无法获得变化“过程”中的BOD数据;另外,如果想继续测量水样BOD在其他时间点的数据,如BOD20,样品测量瓶需取出恒温培养箱,测试样品就会被干扰,导致后续的测量数据准确度下降。而且,样品BOD的平台期是在什么时间达到的也不清楚。 针对这一测量难题,意大利VELP公司推出了BOD EVO无线传输自动测定仪。 BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。 这种测量方法有其一系列独到优点。 模拟自然条件,结果更真实可靠传统方法,样品接种稀释后满瓶测量,不再为样品提供多余氧气,且静置放置数天,这样瓶内微生物代谢产物容易集结,易产生区域性溶解氧匮乏,生化反应受抑制可能性加大;BOD EVO培养瓶内样品上方所含21%氧气不断溶入水样中,搅拌子连续搅拌,可为微生物生长提供充分的溶解氧和有机物。测量结果更真实可靠。 操作简单,测量方便传统法操作繁琐、准备样品时间长,量程窄,一般BOD值大于100mg/L时需稀释,且需人工测量初始、终止溶解氧量,在培养过程中需要专人看管。BOD EVO操作简单,软件功能强大,可预先设置好采样时间间隔,自动连续测量溶解氧。无线数据盒能自动接收传感器发送的数据,并将其传输到计算机中。整个测量过程,无需专人看管。专业软件允许实验员对数据进行监控、记录和分析,可自动生成实验报告。 无线数据传输BOD EVO可连续显示记录生化需氧量数据传统方法监测到的是“点”上的数据,如BOD5。若想了解整个过程的动态数据,几乎无法实现。BOD EVO连续显示各时间点的耗氧量并存储BOD数据,从而直观了解样品耗氧动力学过程。 BOD EVO可深入研究样品有机物生化降解过程根据水样耗氧曲线,可深入研究水样有机物生化降解反应过程中的“滞后现象”等。不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。
  • Proteus BOD-提供实时,低维护的BOD监测的突破性产品
    Proteus BOD-提供实时,低维护的BOD监测的突破性产品 Proteus Instruments已通过新的Proteus BOD发起了一场被誉为测量生化需氧量(BOD)的全新革命。最先进的监控平台采用了最新技术,可提供对BOD的准确,可靠和免维护的监控。 BOD的问题污水处理厂的有机物数量的浓度和组成会明显影响污水处理的流程和时间;并反映在不同的处理过程或阶段(原水–最终出水)和人口需求。 BOD是一种可追溯至1917年的实验室生物测定法,目前仍然是测量活性有机质的行业标准。目前,BOD用于评估污水处理厂(WWTW)的效率是为了确保:(1)针对成本和能耗优化流程,以及(2)最终废水指标低于规定的限值或规定,否则会造成环境的破坏。布尔乔亚等人在2001年指出了该测试的众多问题(关键点摘要请参见方框1)。样品收集与结果之间的时间差是一个主要缺点,它禁止实时警报和控制,从而可能为行业节省大量成本。 解决方案荧光光谱法是一种选择性和灵敏的光学技术,可以对溶解的有机物进行原位实时测量。分子吸收特定波长的光,并且轨道电子被激发到更高的能量状态。然后,电子发射特定波长的光以返回到基态。雷诺兹和艾哈迈德(Reynolds&Ahmad,1997)首次提出将荧光光谱技术用作快速评估废水中有机物的质量和数量的技术,最近该技术已被强调为监测处理过程和评估效率的有效工具(Bridgeman等人,2013年)。这两项研究都强调,色氨酸样荧光(TLF)是一种与氨基酸,蛋白质和酚有关的荧光信号,在整个污水处理过程中与BOD浓度密切相关。 TLF峰通常与?280nm处的激发和?350nm处的发射相关,请参见激发发射矩阵上的红框(荧光光学空间图)。但是,直到最近,TLF的分析仍需要将样品收集并运输到实验室,以便在昂贵耗能的大型荧光分光光度计上进行分析。 在过去三年中,Proteus Instrument开发并严格测试了Proteus BOD;基于荧光的实时BOD监控平台。通过结合基于LED的微型TLF传感器,热敏电阻和浊度传感器,Proteus BOD能够为用户提供高度准确和可靠的实时BOD指标。 Proteus BOD之所以独特,是因为它具有强大的科学基础,并在国际科学期刊上发表了多篇研究论文(例如Khamis等,2015,2017)。此外,该传感器还嵌入了强大的校正算法,以解决与温度和浊度可变性相关的信号干扰,从而提供了无与伦比的准确性和可重复性。 Proteus BOD还配备了标准的工厂BOD校准,该校准源自各种应用场合的安装,可以针对特定的监视站点进行调整,以实现最佳精度。 Proteus Instrument为安装和校准的各个方面提供咨询,并努力为所有客户提供最佳解决方案。此外,Proteus BOD还具有集成的自清洁装置,用于清洁所有光学镜头以减少恶劣环境下的污染问题,从而减少了用户维护的需要,并确保了长期安装的稳定可靠性。 应用领域Proteus BOD已在废水排放问题(即CSO和交叉连接)存在的城市河流系统中长期安装使用。在这些系统中,Proteus BOD能够在基础流量和暴风雨条件下非常准确地测量BOD(见图2)。 在各种WWTW处扩展安装传感器也产生了出色的效果。一种应用涉及通过WWTW(?50,000 PE)在3个阶段(原始进水口,沉淀池和最终废水)安装的传感器。其他安装还涉及在大型污水处理厂( 150,000 PE)的最终出水管线上进行部署,并具有特别严格的排放许可。在所有地点收集平行获取样品,并在认可的实验室中对BOD5进行分析。在各种装置中(见图3),该传感器可在各种BOD浓度范围内提供准确而可靠的读数(见图4)。 除工业应用外,许多研究机构还购买了传感器套件,并正在使用它来增进对反应性有机物动力学的理解。伯明翰森林研究所(BIFOR)为长期监测项目购买了两套装置,并对传感器的稳定性和准确性感到非常满意:Phillip Blaen博士BIFOR研究研究员要求使Proteus成为长期监测有机物的理想选择” Proteus BOD的其他优点实时数据-轻松连接到遥测和SCADA,以达到指定限值超出的警报/报警(SDI 12,RS232,MODBUS)易于安放–适用于各种环境(包括进水口,污水,水库或管井)多功能-模块化设计可同时记录广泛的其他参数(例如温度,浊度,pH,电导率,光学DO,叶绿素a,ORP,氨水)便携式-蓝牙选项可用灵敏-可以检测出非常低的浓度,可用于清洁水系统维护成本低-配备自清洁装置进行自我清洁,每6-12个月进行简单的校准维护。 众多应用:监测废水是否达标污水处理厂工艺的优化(即曝气–节能)开发过程的控制算法管理混流式下水道的交叉污染控制联合污水溢流监控 总结新型Proteus BOD是一种多功能的传感器平台,可以提供实时BOD数据以及传统参数(pH,电导率等);因此,将您的所有传感器需求集合到一个易于安装且维护成本低的监视平台中。与Proteus BOD相关的节省是全面的,包括:1.降低实验室成本; 2.减少排污罚款和社会责任风险的可能性; 3.通过流程优化节省能源; 4.与BOD采样相关的任何其他成本节省。 Proteus BOD可以改变活性有机物负荷的监测方式,从而提高可靠性,准确性和分辨率。参考文献Bourgeois W等,2001。在线监测废水的质量?综述。 J Chem Technol Biotechnol 76:337–348。 布里奇曼J等,2013。通过使用荧光光谱法的处理工作确定废水质量的变化。环境技术34:3069–77。 Khamis K等,2015。原位色氨酸类荧光计:评估淡水应用中的浊度和温度影响。环境科学。流程与影响17:740–52。 Khamis K等,2017。使用双波长荧光,浊度和温度对溶解有机碳浓度和生化需氧量进行连续现场估算。水文过程31:540-555。 雷诺DM,艾哈迈德SR,1997年。使用荧光技术快速直接测定废水中的BOD值。水研究31:2012-2018。
  • TOC时代-TOC vs. BOD & COD
    TOC时代-TOC vs. BOD & COD总有机碳(TOC)作为一种面向未来、更安全、更环保的测量废水的生物和化学需氧量(BOD和COD)的替代品。测定废水中有机污染物的方法有很多种。最常见的三种是5天生化需(BOD5)、化学需氧量(COD)和总有机碳(TOC)。但是,BOD5在可重复性方面存在问题,而且它需要很长的时间来生成结果,而这些结果在获得时可能已经超时了。这就是为什么COD最常用于废水监测、设计、建模和运行分析,因为分析结果可以更快地获得。然而,COD有很大的缺点,例如会产生汞、六价铬、硫酸、银和其他有毒化学品等危险废物。虽然在开发更清洁的化学需氧量分析方法方面已经取得了一些进展,但由于分析实验室需要消除废物和处理成本,人们对不使用有害化学物质的替代化学需氧量测量产生了极大的兴趣。总有机碳(TOC)可以与COD和BOD5一起使用,在某些情况下作为一种替代品,因为它更快、更精确、更清洁,而且不依赖于危险化学品。此外,越来越精确的高温燃烧TOC分析仪已经被开发出来,使TOC更加可靠和准确。此外,与传统的实验室BOD5和COD分析方法相比,TOC能在几分钟内提供准确的结果。TOC仪器可在实验室中使用,可全天候运行,这使得它们在法规遵从和过程控制方面都是不可或缺的。TOC分析可以在3至10分钟内完成,而COD分析需要两个多小时,BOD5需要五天。因此,如果TOC每10分钟测量一次,应用相关计算因子,我们就可以同样频繁地得出COD的预估值。德国元素作为1973年世界上第一批将高温燃烧法引入TOC分析的厂家,在TOC分析仪方面具有几十年的分析经验。德国元素最新款的enviro TOC总有机碳分析仪,作为vario TOC总有机碳分析仪的升级版,专为废水、污水、环境水样、浸提液、土壤、沉积物、降解材料等而设计,集液体与固体分析为一体,解决客户多样化测试需求。
  • 赛普环保发布BOD快速测定仪新品
    新型SPN BOD-220A快速测定仪 ------低浓度地表水BOD检测的创新与突破? 自我公司220系列微生物电极法BOD快速测定仪问世以来,得到广大用户的支持与信任,在此向所有支持过我们的行业专家、提出宝贵意见的产品使用老师表示由衷的感谢!产品发展历程2002年推出半自动BOD快速测定仪2006年推出24位全自动型BOD快速测定2010年推出便携式BOD快速测定仪2012年完成全系列产品的品质提升及性能优化用户意见及反馈我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。)3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作)4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8)5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。 处理方案:(根据上述反馈的情况和建议,我公司从检测原理上的完善、微生物筛选及成膜技术、零部件的质量性能提高、软件的人性化及用户体验等诸方面进行了改进。)第一、地表水测定值的原因分析及解决方案 经我公司技术人员分析研究,造成地表水BOD测量数值偏低的最主要的原因在于样品中的溶解氧高于清洗缓冲液中的溶解氧,这是BOD快速测定仪的测量原理不同于传统五日生化法之所在。 五日生化法是计算待测水样中消耗的溶解氧,而微生物电极快速测定法是以清洗缓冲液中的溶氧水平为基准,因此待测水样的溶氧水平会影响微生物传感器的BOD测量精度。原来以前的研究认为,通过气泵曝气可以保证进入微生物传感器的样品中溶解氧可以保持恒定,现经分析发现:当待测水样溶氧偏低时由于仪器有气泵曝气,不影响BOD测量精度;但是当待测水样中溶解氧偏高甚至过饱和时,一般需经过长时间回温才能消除,气泵曝气未能消除过高的溶解氧、而过高的溶解氧会给微生物传感器叠加一个溶氧变化值,给BOD的测量带来负偏差,这就是地表水BOD测定值偏低的根本原因。解决方案: 据此,我们在微生物传感器前增加了一只溶解氧电极,待测水样先进入溶氧电极的流通池再进入微生物传感器的流通池,将待测水样的溶氧绝对值及与清洗缓冲液间的溶氧差值作为函数变量对微生物传感器所测BOD值进行修正,大量实验数据表明,经过修正仪器的BOD测定值与五日生化法数据更为接近,突破了低浓度地表水的BOD测定的瓶颈。建立的修正函数关系表述如下:BOD(修正值)=F(DO) +F(ΔDO)+ BOD 备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。 F(DO)-----根据待测水样溶氧绝对值建立的修正函数 F(ΔDO)------根据待测水样中溶氧与清洗缓冲液的溶氧之差值建立的修正函数 BOD------微生物传感器的BOD实测值 原理示意图新型BOD快速测定仪的原理流程如(图一)所示:其中器件8为突破创新点--流通式溶解氧测量装置。第二、微生物菌种的培养及制膜工艺优化根据用户意见,我公司通过长期探索,使用BOD专用菌种,通过与国家级科研院所合作,采用高通量筛选技术,菌种制备中 ,改进了微生物培养的培养基质、乳化剂材料、分离及干燥工艺,通过先进的克隆制备技术和转接种技术,使新的微生物菌种既具备高效的生化降解能力,又具有良好的耐毒性抗干扰适应性, 同时制订相关技术路线和批次检验方法标准,有效保证菌株的有效性和一致性。在微生物膜的制备中采用比浊分光检测技术控制菌量,保证了微生物膜中菌量的一致性。另外通过二次低温冷冻干燥,保证微生物膜可长期保存,微生物的复水活化率达到98%以上, 微生物膜的活化时间也大为缩短,现仅需两天左右 测量稳定性及使用寿命亦有所提高。第三、零部件性能提高 1、液量控制: 所采用蠕动泵具有更高的流量控制精度2、气量控制: 加装气体质量流量传感器,实时监测气体流量,气量可调节且确保恒定,可实现气量流量 异常实时报警功能。3、传感器结构的小改进带来性能的大提高: 专用的生物膜弹性支撑装置,更大增加了微生物膜的活化效率,有效提高了测量精度以及稳定性。同时缩短了上机活化时间4、全自动进样器(24位)的性能提高: 定位系统采用光耦和伺服电机闭环系统,保障进样器具有更稳定的性能及更低的故障率;按顺序采样,样品无遗漏。第四、全新的软件设计1、七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作。嵌入式32位闪存微控制器,操控方便灵活。2、计算机上位机软件设计更加人性化,可人机对话方式设定及调整各项参数,可将检测数据与LIMS系统对接。整机也已申请已向国家知识产权局申请专利保护。申请号或专利号:201920122590.3。发明创造名称:BOD快速测定仪。 创新点:我公司对用户反馈的BOD快速测定仪产品本身及使用中遇到的问题进行了总结归纳,集中在以下几方面1、地表水监测数据偏低,特别是冬季低温环境下地表水BOD测定值甚至为零。(自主研发的溶氧补偿电极:能同步测量溶氧绝对值和溶氧变化值,校正了以往测样过程中水样溶解氧过饱和所带来的测量误差,从而消除待测水样中溶解氧绝对值变化的影响。更有效的保证了BOD测量结果的准确性)备注:已向国家知识产权局申请专利保护。申请号或专利号:201910069593.X。发明创造名称:BOD快速测定仪以及精确补偿测定方法。2、微生物膜活化需要更加快捷,同时使用人需要仪器更加快速响应。(专用生物膜弹性支撑装置: 加快了微生物膜的活化效率,缩短生物膜的上机活化时间;独特的结构设计消除了测样时气泡等带来的负面干扰,同时溶氧绝对值更高,从而有效提高了测量精度以及稳定性。)3、电脑控制软件的设置及操作需要更加简便(更美观的外观设计,操作更方便。七寸全彩高清触摸屏,既可电脑软件控制,也可实现脱机操作)4、微生物传感器改用固态导电凝胶替代Kcl电解液,响应速度不变,性能更加稳定,延长电极使用寿命(专利号:ZL 2014 2 0278587.8)5、全新的智能操作软件,可兼容WIN7~WIN10系统,具有故障报警功能,降低意外故障对仪器造成的损失6、定位系统采用光耦和伺服电机闭环系统,保障进样时更稳定的性能及更高的精度,按顺序采样,样品无遗漏7、加装气体质量流量传感器,实时监测气体流量,确保进气量恒定;并实现了气量流量异常报警实时反馈。BOD快速测定仪
  • VELP Academy Webinar预告 | Efficient & Innovative BOD Analysis
    意大利VELP公司推出了BOD EVO无线传输自动测定仪。BOD EVO无线传输自动测定仪采用压强传感器对样品生化需氧量进行测量。经稀释接种或含菌的水样被置于密闭的培养瓶中,水样中溶解氧不断被消耗,使得密闭样品瓶内的压强降低,仪器内置的压强传感器可一直监测此压强变化,根据压差变化,计算水样的BOD值。这种测量方法有其一系列独到优点。模拟自然条件,结果更真实可靠操作简单,测量方便无线数据传输BOD EVO可深入研究样品有机物生化降解过程不得不说,BOD EVO是生化需氧量测量领域的一款革命性产品。想了解它的更多信息?机会来了,力高泰邀请了意大利VELP公司分析部Stefania Corti博士,她将为大家带来一场有关BOD EVO的讲座~时间: 2020年4月8号下午三点整【在线讲座内容提要】BOD analysis principle(原理)BOD5,BOD7,ultimate BODStandard reference methodsVELP Solutions(VELP BOD 解决方案)BOD Sensor System 6 or10BOD EVO Sensor System 6 with BODSoftTM and Wireless DataBoxTMIncubatorsReagents preparation(试剂准备)Analytical procedure(分析流程)Q&A请点击这里报名,谢谢!欢迎参加!
  • BOD和COD的关系是什么?
    在污水处理项目中,为了达到处理后的水的标准排放,使用了水质监测设备来检测每个污水处理阶段的水质。根据水质监测设备测量的数据,采用了相应的处理方法。在这些水质监测指标中,两个重要的指标是bod和cod。  由于有机物废水中的内容和更多的类型,包含了十几个,几十个,甚至上百个的有机物,一些废水如果由一个定性和定量分析,在废水一个有机物质,既费时,消费。你不能只用一个污染指标来表示所有的废水中的有机物和它们的数量呢?谁已经发现,所有的有机物质环境科学有两个共同的:它们至少一种烃组合物由 第二是绝大多数的有机材料可以与氧形成无毒的二氧化碳和水进行化学氧化或微生物的氧化,碳和氢分别它们。有机废物,在氧化过程中的化学或生物氧化是否消耗氧气,废水中的多种有机物质,而且还消耗的氧的更多的量,这两者之间的关系成正比。因此,使用的化学需氧量(COD),生化需氧量(BOD)代表废水中的还原性物质的内容!  什么是cod和bod?  BOD生化需氧量:指微生物在需氧条件下分解水中有机物的生化过程中所需要的溶解氧的质量浓度。为了使bod检测值具有可比性,一般规定了一个时间段,并测量了水中溶解氧的消耗。一般使用五天的时间,称为五天生化需氧量。它被记录为bod5,并且经常使用五天的生化需氧量。bod值越大,水中所含的有机物就越多,因此污染就越严重。有机污染物监测是一种用于监测水中有机物污染的环境监测指标。有机物可以被微生物分解。在这个过程中会消耗氧气。如果水中的溶解氧不足以供应微生物,则由水体处理污染状态。  COD(化学需氧量):在一定条件下,用某种强氧化剂对水样进行处理时,需消耗氧化剂的用量。它反映了水体中物质污染的程度,化学需氧量越大,水中有机物污染越严重。COD以mg/L表示,水质监测仪检测到的COD值可分为5类,其中水质可分为5类,一级和二级水质为15 mg/L,基本达到饮用水标准,大于二级的水不能作为饮用水,其中三种COD为20 mg/L,4种COD为30 mg/L,COD值越高,COD值越高,污染越严重。  BOD和COD有什么关系?  由于cod(化学需氧量)和bod(生化需氧量)能综合反映水中所有有机物的含量,因此检测仪器众多,检测方法简单,检测结果可在短时间内得到,因此在水质检测分析中得到了广泛的应用。成为水质监测的重要指标,也是水体环境监测和污水处理的重要依据。我们都听说了更多。事实上,cod(化学需氧量)不仅反映了水中的有机物,还代表了水中具有还原性的无机物,如硫化物、亚铁离子、亚硫酸钠等,如污水中的亚铁离子在中和池中没有完全去除,生化处理出水中含有亚铁离子,出水cod(化学需氧量)可能超标。  有些污水中的有机物可以生物氧化(如葡萄糖和乙醇),有些只能部分生物氧化(如甲醇),有些有机物不能生物氧化。并有一定的毒性(一些表面活性剂)。这样,污水中的有机物质可以分为两部分,即可生物降解的和不可生物降解的有机物质。传统上,cod(化学需氧量)基本上代表了污水中的所有有机物,而bod(生化需氧量)则是污水中可生物降解的有机物。因此,cod和bod之间的差异可以代表污水中可生物降解的有机物质。
  • 伟业计量8月13日BOD和COD的检测要点及方法详解研讨会
    伟业计量线上研讨会,老时间,老地方,每周五上午九点半伟业计量官网来相见!2021年8月13日(周五)上午9:30分,由北京北方伟业计量技术研究院主办的“BOD和COD的检测要点及方法详解研讨会”即将开启,欢迎大家锁定伟业计量直播间!直播当天,研讨会讲师、助教将进行在线答疑,您有任何关于课程、研讨会以及伟业计量的问题,都可以在留言区进行提问。另外,我们还为当天参会的观众准备了惊喜活动,让您在兼具趣味性与创意性的视频教学中吸收知识。“BOD和COD的检测要点及方法详解研讨会”课程表09:30-10:20 林庆宇 《生化需氧量(BOD)原理及检测方法》讲师简介:林庆宇,副教授,专注于分析仪器领域;主持国家自然基金及成都市等各级科研项目。国家重大科学仪器研发专项项目主要完成人,所主研多款科学仪器已在不同行业的多家应用单位开展应用示范,社会经济效益显著。主编《激光诱导击穿光谱分析技术及其应用》专著1部,在本领域知名期刊发表SCI论文30余篇,授权发明专利10余项。课程简介:本章节课程主要介绍BOD的概念,相关检测方法及检测过程中的一些注意事项。同时拓展描述最新检测方法及相关仪器。10:20-10:30 互动答题,礼品抽取10:30-11:20 赵益杰 《化学需氧量(COD)的检测要点》讲师简介:大型国有环保企业集团检测公司总工程师,硕士,CNAS审核员,培训师,专家委员会委员。在水处理、固废处理和化工行业分析检测领域工作20年,熟悉环境监测中的自来水、污水,工业废水和垃圾渗滤液分析检测工作,从事过药物生产检测和无机化工检测。熟悉实验室一般设备和常用的光谱、色谱仪器。从事实验室管理工作多年,对实验室质量控制有丰富经验。编有《集团水质工作手册》一书,在《环境卫生工程》《化学分析计量》等杂志上发表论文数篇。课程简介:化学需氧量是环境水质检测的一个重要指标,它反应水体受还原性物质尤其是有机物污染程度的。但它并不能完全准确反应有机物的浓度而是一个通过条件氧化间接测定的指标,所以,控制氧化反应的条件,排除非有机物的干扰,才能得到可靠的检测结果。本课程讨论了化学需氧量检测的一些重要的影响因素和控制方法。11:20-11:30 互动答题,礼品抽取(关注伟业计量公众号(微信号bzwzcom),免费观看线上研讨会)温馨提示:伟业计量线上研讨会将于每周五上午09:30(节假日除外)定期举办。如果您是食品/环境/微生物等检测相关专业老师,有相关检测类课程想与我们交流分享,欢迎您加入伟业计量讲师团队,共享学术赋能,课酬丰厚,期待您的加入!联系助教:手机微信同号:15637658007
  • 长春应化所研发出快速BOD检测仪 检测仅需1小时
    近日,中科院长春应用化学研究所自主研发的快速生化需氧量检测仪主要性能指标均达到国际先进水平。该所采用新型的有机—无机杂化膜固定化材料,通过微生物现场培养的方法,实现了生化需氧量(BOD)的快速检测,该创新方法从传统的BOD检测时间5—7天缩短为1小时左右,并以此为基础开发出快速BOD检测仪。  此外,该所研制开发的微型USB2.0接口电化学系统,在电位控制精度、数据传输速度等主要指标上大大超过以往仪器,而体积仅如同一个手指大小,比传统仪器小2—3个数量级,又可方便地集成到各种分析仪器内,实现多种分析方法和电化学方法联用,具有较好的可扩展性,适用于野外和各种现场使用。
  • 涨知识丨关于COD与BOD,不得不说的事
    说起COD和BOD从专业术语上来说一个姓“C”一个姓“B”定义上确有不同COD英文名Chemical Oxygen Demand中文名:化学需氧量BOD英文名Biochemical Oxygen Demand中文名:生化需氧量COD与BOD有一个共同的特点那就是可作为反映水中有机污染物的含量的综合指标二者对于有机物氧化的态度可谓是天差地别COD:豪放派一般以高锰酸钾或重铬酸钾作为氧化剂辅以高温消解讲究一个快、准、狠短时间内把所有有机物统统氧化完事后通过分光光度法、重铬酸盐法等检测方法统计消耗的氧量根据氧化剂不同分别记作CODcr和CODmn通常情况下重铬酸钾一般用于测污水平时常说的COD值其实就是CODcr值高锰酸钾则用于饮用水和地表水测出来的值称为高锰酸盐指数也就是CODmn值不管用哪种氧化剂测CODCOD值越高则说明水体的污染情况越严重COD分光光度法仪器示例高锰酸盐指数仪器示例COD经典国标法仪器示例BOD:温婉型在特定条件下依靠微生物分解水中可生化降解的有机物计算生化反应中消耗溶解氧的量讲究一个循序渐进例如进行生物氧化的时间为5天就记为五日生化需氧量(BOD5)相应地还有BOD10、BOD30BOD反映的是水中可生物降解的有机物量相对于COD的暴力氧化微生物很难将部分有机物氧化因此BOD值可看成是污水中能被生物降解的那部分有机物浓度对于污水处理、河流自净等具有重要参考意义BOD无汞压差法仪器示例(点击图片查看)BOD微生物电极法仪器示例COD和BOD都是表征水中有机污染物浓度的指标根据BOD5/COD的比值可以得出污水可生化降解性的指标公式为:BOD5/COD=(1-α)×(K/V)当B/C>0.58 完全可生物降解B/C=0.45-0.58 生物降解良好B/C=0.30-0.45 可生物降解 0.1 B/C<0.1 不可生物降解 通常以BOD5/COD=0.3定为污水可生化降解的下限关于COD与BOD今天就讲这么多你学会了吗?
  • COD(化学需氧量)的含义及其排放标准
    COD( 化学需氧量) 经常伴随着环保、污染这些词汇出现, 大家大概都能猜到, COD 是个和污染有关的词汇, 那么, 它的含义究竟是什么呢?正像人们熟知的WTO ( 世界贸易组织) 是World TradeOrganization 的缩写一样, COD 也是Chemical Oxygen Demand 的缩写,即第一个英文字母的组合, 翻译过来就是化学需氧量。那么化学需氧量又究竟是什么意思呢?常用的化学需氧量( 即CODcr) , 是指在强酸并加热的条件下, 用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量, 以氧的mg/l 来表示。化学需氧量反映了水中受还原性物质污染的程度。水中还原性物质包括有机物、亚硝酸盐、亚铁盐、硫化物等。水被有机物污染是很普遍的, 因此, 化学需氧量也作为有机物相对含量的指标之一, 但只能反映能被氧化的有机物污染, 不能反映多环芳烃、PCB 等的污染状况。CODcr 是我国实施排放总量控制的指标之一。CODcr 数值越小, 说明水被污染的越轻。水样的化学需氧量, 可由于加入的氧化剂的种类及浓度, 反应溶液的酸度、反应温度和时间, 以及催化剂的有无而获得不同的结果。因此, 化学需氧量亦是一个条件性指标, 必须严格按操作步骤进行。《水质化学需氧量的测定重铬酸盐法GB 11914- 89》是国家规定的水中化学需氧量的测定标准。标准中定义化学需氧量是在一定条件下, 经重铬酸钾氧化处理时, 水样中的溶解性物质和悬浮物所消耗的重铬酸盐相对应的氧的质量浓度。原理是: 在水样中加入已知量的重铬酸钾溶液, 并在强酸介质下以银盐作催化剂, 经沸腾回流后, 以试亚铁灵为指示剂, 用硫酸亚铁铵滴定水样中未被还原的重铬酸钾由消耗的硫酸亚铁铵的量换算成消耗氧的质量浓度。在酸性重铬酸钾条件下, 芳烃及吡啶难以被氧化, 其氧化率较低。在硫酸银催化作用下, 直链脂肪族化合物可有效地被氧化。我们也经常听到或看到CODcr 是多少, 和CODcr 严重超标的话。那么, CODcr 排放标准是多少呢? CODcr 到底多大才是国家允许排放的呢? 我国现行的有国家综合排放标准和国家行业排放标准。并且国家综合排放标准和国家行业排放标准不交叉执行。下列行业执行各自的排放标准:造纸工业执行《造纸工业水污染物排放标准(GB3544- 2001)》, 该标准按生产工艺规定了造纸工业吨产品日均最高允许排水量, 日均最高允许排放浓度和吨产品最高允许水污染物排放量。废纸制浆企业的废水排放按有、无脱墨工艺分别执行漂白木浆和本色木浆标准。化学机械制浆企业的废水排放按有、无漂白工艺分别执行漂白木浆和本色木浆标准。单纯制浆或浆纸产量平衡的生产化学需氧量的标准比较高, 木浆漂白的为400mg/l, 非漂白的为350mg/l。非木浆漂白的为450mg/l, 非木浆本色的为400mg/l。单纯造纸或纸产量大于浆产量的造纸生产化学需氧量的标准较低为100mg/l。纺织染整工业执行《纺织染整工业水污染物排放标准(GB4287-92)》, 该标准按纺织染整工业建设项目立项及投产的年限不同, 对化学需氧量的排放标准作了不同的规定。1992 年7 月1 日起立项的纺织染整工业建设项目及其建成后投产的企业一级标准为100mg/l, 二级标准为180mg/l, 三级标准为500mg/l。肉类加工工业执行《肉类加工工业水污染物排放标准(GB13457-92)》, 本标准按废水排放去向, 分年限规定了肉类加工企业水污染物化学需氧量的最高允许排放浓度。按肉类加工企业的加工类别分为:畜类屠宰加工 肉制品加工 禽类屠宰加工。按排入水域的类别不同分别执行一、二、三级标准。1989 年1 月1 日之前立项的建设项目及其建成后投产的企业执行的一、二、三级标准分别为120mg/l、160mg/l、500mg/l。1989 年1 月1 日至1992 年6 月30 日之间立项的建设项目及其建成后投产的企业一、二、三级标准分别为100mg/l、120mg/l、500mg/l。1992 年7 月1 日起立项的建设项目及其建成后投产禽类屠宰加工的企业一、二、三级标准分别为70mg/l、100mg/l、500mg/l, 畜类屠宰加工的企业一、二、三级标准分别为80mg/l、120mg/l、500mg/l。合成氨工业执行《合成氨工业水污染物排放标准(GB13458-2001)》, 本标准按生产工艺和废水排放去向, 分两个时间段规定了合成氨工业化学需氧量最高允许排放浓度。2000 年12 月31 日之前建设( 包括改、扩建) 的大、中型合成氨企业化学需氧量最高允许排放浓度为150mg/l。小型合成氨企业的一级标准为150mg/l, 二级标准为200mg/l。2001 年1 月1 日之后建设( 包括改、扩建) 的大型合成氨企业化学需氧量最高允许排放浓度为100mg/l, 中型化学需氧量最高允许排放浓度为150mg/l。钢铁工业执行《钢铁工业水污染物排放标准(GB13456- 92)》, 本标准适用于钢铁工业的企业排放管理, 以及建设项目的环境影响评价、设计、竣工验收及其建成后的排放管理。按照生产工艺和废水排放去向, 分年限规定了钢铁企业的吨产品废水排放量和主要污染物最高允许排放浓度。化学需氧量标准比较繁琐, 在此就不一一赘述了。航天推进剂使用执行《航天推进剂水污染物排放标准(GB14374-93)》, 本标准按照废水排放去向, 分年限规定了航天推进剂水污染物最高允许排放浓度。兵器工业执行《兵器工业水污染物排放标准(GB14470.1~14470.3-2002》, 即《GB14470.1- 2002 兵器工业水污染物排放标准火炸药》、《GB14470.2 - 2002 兵器工业水污染物排放标准火工药剂》和《GB14470.3- 2002 兵器工业水污染物排放标准弹药装药》。三个标准分年限和生产工艺分别规定了化学需氧量的最高允许排放浓度。烧碱、聚氯乙烯工业执行《烧碱、聚氯乙烯水污染物排放标准GB15581- 95》, 本标准按生产工艺和废水排放去向, 分年限规定了化学需氧量的最高允许排放浓度。其他的水污染物排放都执行《污水综合排放标准GB 8978-1996》。《污水综合排放标准GB 8978- 1996》规定: 甜菜制糖、焦化、合成脂肪酸、湿法纤维板、染料、洗毛、有机磷农药工业一级标准为100mg/l, 二级标准为200mg/l, 三级标准为1000mg/l。味精、酒精、医药原料药、生物制药、苎麻脱胶、皮革、化纤浆粕工业的一级标准为100mg/l, 二级标准为300mg/l, 三级标准为1000mg/l。石油化工工业(包括石油炼制) 一级标准100mg/l, 二级标准为150mg/l, 三级标准为500mg/l。城镇二级污水处理厂一级标准60mg/l, 二级标准为120mg/l。其他排污单位一级标准100mg/l, 二级标准为150mg/l, 三级标准为500mg/l。污水排放具体执行哪一级标准, 要根据该水排入的具体水域或海域来定。排入III 类水域( 划定的保护区和游泳区除外) 和排入二类海域的污水, 执行一级标准。排入IV、V 类水域和排入三类海域的污水执行二级标准。排入设置二级污水处理厂的城镇排水系统的污水执行三级标准。各地可以制定严于国家标准的COD 排放标准。根据《地表水环境质量标准》水域环境按功能高低依次划分为五类: I 类主要适用于源头水、国家自然保护区。II 类主要适用于集中式生活饮用水地表水源地一级保护区、珍惜水生生物栖息地、鱼虾类产卵场、仔稚幼鱼的索饵场等。这两类水域的COD 排放上限都是15。III类主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、洄游通道、水产养殖区等渔业水域及游泳区。这类水域的COD 排放上限为20。IV 类主要适用于一般工业用水区及人体非直接接触的娱乐用水区。这类水域COD 排放上限是30。V 类主要适用于农业用水区及一般景观要求水域。COD 排放上限为40。各地可以制定严于国家标准的COD 排放标准。例如, 由山东省环境保护局和山东省质量技术监督局联合颁发的山东省强制性地方标准《山东省海河流域水污染物综合排放标准》中规定: 2007 年7 月1 日起至2008 年6 月30 日化学需氧量的标准为: 焦化、合成脂肪酸、湿法纤维板、染料、洗毛、有机磷农药、医药原料药、生物制药、酒精、皮革、化纤浆粕工业、味精, 一级标准为100mg/l,二级标准为200mg/l。2008 年7 月1 日起至2009 年6 月30 日一级标准为100mg/l, 二级标准为150mg/l。2007 年7 月1 日起至2008 年6 月30日木浆造纸工业一级标准为100mg/l, 二级标准为150mg/l 草浆造纸工业一级标准为200mg/l, 二级标准为300mg/l 其他造纸工业执行标准为100mg/l。2008 年7 月1 日起至2009 年6 月30 日木浆造纸工业一级标准为80mg/l, 二级标准为120mg/l 草浆造纸工业一级标准为150mg/l, 二级标准为200mg/l 其他造纸工业一级标准为80mg/l, 二级标准为100mg/l。石油化工2007 年7 月1 日起至2009 年6 月30 日一级标准为60mg/l, 二级标准为100mg/l。其他排污单位2007 年7 月1 日起至2008年6 月30 日一级标准为100mg/l, 二级标准为120mg/l。2008 年7 月1日起至2009 年6 月30 日一级标准为80mg/l, 二级标准为100mg/l。2009 年7 月1 日起一切排污单位执行一级标准为60mg/l, 二级标准为100mg/l。【参考文献】[ 1] 《水和废水监测分析方法》( 第四版) 中国环境科学出版社.[ 2] 《环境影响评价技术导则与标准》中国环境科学出版社.
  • YSI公司推出低价实验室BOD测量仪
    2006年初,可在实验室测量BOD(生化需氧量)的EcoSense 200-BOD探头正式进入中国市场。YSI DO200手持式仪器配上200-BOD探头是一个性价比极高的实验室BOD测量方案,适合于经费紧张而又需要测量BOD的单位。 YSI DO200是一款轻巧、便携式的溶解氧、温度测量仪;200-BOD是一个带自搅拌的探头。200-BOD配合DO200主机可轻松建立实验室BOD系统。DO200还可以作为野外仪器使用,只需把BOD探头换成野外探头(200-4或200-10)即可。 200-BOD探头标配300毫升BOD瓶,并带有一个强力自搅拌器。为防止探头消耗主机电源,探头采用墙插型电源。另外,探头还配备了一个快速反应旋式盖膜。· 久经考验的BOD探头设计 · 探头交流供电,节约主机电池 · 获取读数快捷(10秒内) · 搅拌棒可更换应用:污水和地表水的采样处理。200-BOD是YSI 经济型产品 EcoSense系列的又一个新产品。其它产品包括手持式仪器,如YSI pH100型 酸碱度、氧化还原电位和温度测量仪,YSI DO200型 溶解氧、温度测量仪,YSI EC300型盐度、电导和温度测量仪,YSI pH10型 笔式酸碱度、温度计。 YSI公司在数据采集、分析方面所提供的技术方案与服务处于世界领先地位。YSI的使命——谁在关注我们的地球?——这迫使YSI公司 向用户提供完整的数据,为建设生态可持续性发展社会提供关键元素。
  • “浙江测试”团体标准《水质 化学需氧量(COD)测定 预制试剂分光光度法》通过专家评审
    p  2020年6月21日,浙江省分析测试协会组织专家在浙江省生态环境检测中心,召开了由浙江省生态环境监测中心和浙江迪特西科技有限公司牵头起草的《水质 化学需氧量(COD)测定 预制试剂分光光度法》“浙江测试”团体标准评审会。由环境监测技术专家和标准化专家组成的专家组听取了标准制订小组关于该标准的编制背景和目的、核心内容和编制过程、先进性说明等汇报,经质询讨论,一致认为该标准按照相关国家和行业标准技术导则编制,结构合理、内容叙述正确、层次清晰,符合《浙江省分析测试协会“浙江测试”团体标准管理办法》的要求。标准在分析方法的抗氯离子干扰能力和实验室的质量控制的应用方面取得了创新和突破,主要技术指标达到国内一流、国际先进水平。专家组对标准编制单位的工作予以充分肯定。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 450px " src="https://img1.17img.cn/17img/images/202006/uepic/45e11f63-9859-446e-9865-13e9410db004.jpg" title="1.jpg" alt="1.jpg" width="600" height="450" border="0" vspace="0"/ /pp style="text-align: justify "  该“浙江测试”团体标准由浙江省生态环境检测中心和浙江迪特西科技有限公司于2018年12月向浙江省分析测试协会提出立项建议,经评审后正式立项,牵头单位联合杭州市环境监测中心站和台州市环境监测中心站共同承担本标准的制定。浙江省舟山海洋生态环境监测站、金华市环境监测中心站、湖州市环境保护监测中心站、杭州市环境监测中心站、台州市环境监测中心站、浙江环境监测工程有限公司、武汉华正检测技术有限公司等7家单位参加了本标准的方法验证,对检出限、精密度、准确度、抗干扰等技术指标进行了验证,为标准编制提供了充分的科学依据。 /pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 319px " src="https://img1.17img.cn/17img/images/202006/uepic/e2910e9c-7c15-4e56-824d-f010f61c7bf6.jpg" title="2.jpg" alt="2.jpg" width="600" height="319" border="0" vspace="0"//pp  预制试剂方法是将某项检测所需的化学试剂,预先由工厂采用标准化工艺进行计量、溶解、混合、分装,得到直接用于样品检测的制成品,在检测过程中省去了大量试剂配制工作,仅需简单的步骤,即可获得准确可靠的检测结果。预制试剂易于保存,即开即用,一致性好,劳动效率高,且能有效减少废液产生、避免直接接触化学物质,是绿色检测理念的重要成果。浙江迪特西科技有限公司作为水质检测预制试剂的国内领头企业,近年来研发生产了多种预制试剂。该标准的制订,有利于提升环境监测实验室的市场竞争力,有利于提高环境监测行业的分析测试技术水平,有利于促进预制试剂行业的发展,提升“浙江测试”品牌形象。 /pp  “浙江测试”团体标准是根据国家团体标准管理规定,由浙江省分析测试协会提出经批准后设立的,并制定了《浙江省分析测试协会“浙江测试”团体标准管理办法》。本着必要性、先进性、可操作性和公益性等原则,浙江省分析测试协会至今已受理并立项了有关单位提出的十余项标准的制定。《水质 化学需氧量(COD)测定 预制试剂分光光度法》是首批通过标准评审的“浙江测试”团体标准。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 298px " src="https://img1.17img.cn/17img/images/202006/uepic/f6fb6b3d-1d63-4f58-a67c-e3ccd78dab32.jpg" title="3.jpg" alt="3.jpg" width="600" height="298" border="0" vspace="0"/ /pp  本次会议还通过了对浙江省生态环境检测中心和浙江迪特西科技有限公司提出的《水质 氨氮测定 预制纳氏试剂分光光度法》、《水质 总磷测定 磷钼黄预制试剂分光光度法》和《水质 总氮测定 铬变酸预制试剂分光光度法》三项“浙江测试”团体标准的立项申请。/p
  • 盛奥华SH-812型BOD测定仪在生物医药行业的应用
    生物医药行业应用案例 —SH-812型BOD5测定仪随着我国医药工业的发展,制药污水已逐渐成为重要的污染源之一。生物制药行业污水主要包括抗生素生产污水、合成药物生产污水、中成药生产污水以及各类制剂生产过程的洗涤水和冲洗污水四大类。其污水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放属难处理的工业污水。▍项目背景客户是上海某生物科技公司,主要生产修饰性核苷、核苷酸、亚磷酰胺基因单体、靶向示踪剂和生物酶等各个系列产品,该企业车间生产用水、废水统一排放在排放口按当地环保要求进行各项水质指标的检测,为工艺及时调整、污水排放的处理能力提升和符合达标排放的政策要求提供有力支持。▍应用情况仪器型号:SH-812型BOD5测定仪 SH-100L型智能培养箱测量项目:BOD采购时间:2023年12月▍项目验收2023年12月,盛奥华技术工程师开车抵达客户公司,现场讲解、培训操作了仪器的使用操作和注意事项。客户对仪器的性能、智能化的操作及测量数据准确度很满意,表示12孔位的样品数测量,且能每个培养瓶独立控制,满足了他们日常不同的样品检测频次需求,大大提升了他们的工作效率。▍仪器特点采用7英寸触摸主屏及1.5英寸全彩副屏显示,多屏联动,支持自动息屏和一键唤醒功能;每个培养瓶可随时独立操作、运行、显示结果;内置大容量锂电池,可进行独立充电,也可同时充电工作;采用智能控制系统,连续采集、连续分析、自动记录数据,培养过程无需专人值守,全程自动完成;无汞压差法,实验过程安全可靠,测量结果准确度高;测量结果无需换算,直接显示BOD浓度,自动打印检测结果;量程范围广,内置10条分段量程,用户可自行选择调用;预留自定义参数,可根据需求进行标定;自动生成彩色数据图谱,检测过程更加直观清晰;自动记录测量数据,方便实时查看当前及历史数据;无线数据汇总,可通过大屏查看历史数据、实时图谱;仪器内置APP小程序,可以通过手机实时获取、查看数据;测量周期、延时时间可调节,用户可根据实际情况进行调整;总结BOD测定仪作为水质检测的重要仪器,具有广阔的应用前景和重要性。它可以准确地测量水样中的BOD值,为水质评价、污水处理、水源开发等方面提供科学依据和支持,为水资源管理和环境保护的发展提供技术支持。盛奥华新款SH系列智能BOD测定仪可满足用户的各项检测需求,未来我们也会继续创新研发,不断技术升级,为祖国的青山绿水环保事业贡献一份力量。
  • 现场直击:奥谱天成参加《光谱法水质在线监测系统》国家标准起草
    水质监测,是监视和测定水体中污染物的种类、各类污染物的浓度及变化趋势,评价水质状况的过程。监测范围十分广泛,包括未被污染和已受污染的天然水(江、河、湖、海和地下水)及各种各样的工业排水等。主要监测项目可分为两大类:一类是反映水质状况的综合指标,如温度、色度、浊度、pH值、电导率、悬浮物、溶解氧、化学需氧量和生化需氧量等;另一类是一些有毒物质,如酚、氰、砷、铅、铬、镉、汞和有机农药等。为客观的评价江河和海洋水质的状况,除上述监测项目外,有时需进行流速和流量的测定。 环境保护已经越来越受到国家的重视,我国已将环境保护列为一项基本国策,狠抓环境质量,作为环境保护细分领域的水质监测行业,也受到了各级政府部门的重视。奥谱天成做为行业中的一员,很荣幸能参加《光谱法水质在线监测系统》国家标准起草。
  • 能终结检测水中化学需氧量(CODcr)之五大痛点的全自动分析仪器研制出来了?
    对于从事检测化学需氧量(CODcr)的实验室人员来说:有五大痛点!第一:样品量大。铬法化学需氧量的检测是各级水质监测单位日常必检项目之一,用家常便饭来形容毫不为过;第二:耗时长。目前实验室检测化学需氧量常用的标准是HJ828-2017,水样需要先消解120分钟,然后再冷却、再逐一滴定,判断终点,计算结果,每天这种重复性的劳动让人崩溃;第三:实验过程中的环境污染。如消解过程中硫酸的挥发等,消解过程中酸气弥漫在整个实验室空间,对实验室人员、物品危害极大。第四:检测数据误差大。由于国内各型号消解器的差别,很多存在消解不均匀等现象,导致检测结果出入较大,平行性差;第五:极度浪费淡水资源。传统的COD消解需要用自来水冷却,由于检测时间耗时过长,近130多分钟,期间自来水需要保持常开状态,造成大量的淡水资源浪费。 痛苦,痛苦,痛苦,但又不得不做?奈何?如之奈何? 一款终结检测化学需氧量之五大痛点的神器终于问世了!它的发明,实现了检测水中化学需氧量的全流程、高度自动化的操作。从试剂的自动添加、自动消解、自动冷却回流120min、自动滴定、自动识别滴定终点、自动核算检测结果、自动清洗冷凝管等等。。。,是的,没错,全部是自动化。 产品突出优势:第一:高度集成一体机。即:集成了主机、操控平台、冷却系统与一身。操控平台与主机一体式设计,搬个凳子就可以一边操作一边监测整个流程,是不是很方便哦?而且我们这台神器居然连冷水机都省了,我们不需要,不需要!因为是一体机啊,偷偷告诉您还是大功率内置压缩机哦,冷却效果杠杠滴!!! 第二:检测样品多。主机一批次可连续检测近50个水样,而且支持中途添加,连续做样; 第三:我们是模组化操作。即:一次性可以连续移动6个水样,自动去加试剂、消解、冷却、滴定,不需要一个个去移动抓取,更节省时间; 第四:也是最最重要的,全面符合标准流程。跟人工操作流程全部一样,避免了非标准仪器的尴尬,只是流程全部自动化而已; 第五:数据准确,准确,准确!!!可以同时测定高低浓度样品,可穿插进行互不影响。平行性、准确度全部在标准范围内。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制