当前位置: 仪器信息网 > 行业主题 > >

神经外科手术显微镜

仪器信息网神经外科手术显微镜专题为您提供2024年最新神经外科手术显微镜价格报价、厂家品牌的相关信息, 包括神经外科手术显微镜参数、型号等,不管是国产,还是进口品牌的神经外科手术显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合神经外科手术显微镜相关的耗材配件、试剂标物,还有神经外科手术显微镜相关的最新资讯、资料,以及神经外科手术显微镜相关的解决方案。

神经外科手术显微镜相关的论坛

  • 液体敷料和聚氨酯凝胶垫在神经外科手术患者压疮预防中的应用

    【序号】:4【作者】: 黄洁影【题名】:液体敷料和聚氨酯凝胶垫在神经外科手术患者压疮预防中的应用【期刊】:中国医药指南. 【年、卷、期、起止页码】:2015,13(20)【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2015&filename=YYXK201520102&uniplatform=NZKPT&v=4zj6HFmNJbl0YuWvtFiMGbCga33D1TQY-EUV0a68XVQnhKew2PyM42M-Jlxb5cun[/url]

  • 显微镜摄像的新用途

    生物摄影师,也为医学或生物医学摄影师,是与某些科学领域的详细的知识熟练的摄影师。 他们利用高质量的设备,在医学,生物学和化学等领域的照片。 生物摄影师医疗学校,医院, 出版公司,药品生产企业和其他组织的工作。 插图 生物摄影师拍照提供科学出版物,医学期刊,教材,教具和研究报告的插图。记录医疗程序 一种生物摄影师的职位描述可能包括采取外科手术或尸体解剖图片或视频。显微摄影 生物摄影师可能需要使用显微摄影,采取微观物体的全面详细的照片,人们可以不用显微镜。解剖照片 生物显微镜摄影师还可以创建在不同的个体不同解剖区的照片,以便研究人员和学生,可以增加他们的知识。取证 一些生物摄影师在取证工作,在刑事和民事诉讼证据的照片。

  • 【原创】蔡康显微镜极品

    【原创】蔡康显微镜极品

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。 1.双目体视显微镜 双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。

  • 腋臭外科手术治疗概况

    【序号】:1【作者】:田小磊周荣新高凤【题名】:腋臭外科手术治疗概况【期刊】:临床皮肤科杂志. 【年、卷、期、起止页码】:2023,52(10)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=-93ivAxQXRqVRxVqOxNU8Fb3Uih0j7bXisFtpwRC3G-x1bS2g0l97EQ0L7jocCKbd6STAVF3jbs8G2immRHM8uGfK2mKs4lH85Ub9o5O1vb9CDn25zcTIDEliLveiS0JG2ZQb4_ZCoWRtdIaeKcrrg==&uniplatform=NZKPT&language=CHS

  • 【原创】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。

  • 【资料】体视显微镜的结构原理、特点和应用范围

    体视显微镜的结构原理、特点和应用范围 体视显微镜又可称为:实体显微镜或称操作和解剖显微镜。是一种具有正像立体感的目视仪器。其光学结构原理是由一个共用的初级物镜,对物体成像后的两个光束被两组中间物镜亦称变焦镜分开,并组成一定的角度称为体视角一般为12度--15度,再经各自的目镜成像,它的倍率变化是由改变中间镜组之间的距离而获得,利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。其特点为:视场直径大、焦深大这样便于观察被检测物体的全部层面;虽然放大率不如常规显微镜,但其工作距离很长;像是直立的,便于实际操作,这是由于在目镜下方的棱镜把象倒转过来的缘故。根据实际的使用要求,目前的体视显微镜可选配丰富的附件,比如若想得到更大的放大倍数可选配放大倍率更高的目镜和辅助物镜,可通过各种数码接口和数码相机、摄像头、电子目镜和图像分析软件组成数码成像系统接入计算机进行分析处理,照明系统也有反射光、透射光照明,光源有卤素灯、环形灯、荧光灯、冷光源等等。根据体视显微镜这些光学原理和特点决定了它在工业生产和科学研究中的广泛应用。比如在生物、医学领域用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。 武汉仪器仪表-吴欣民 027-62411040,027-82429843 E-mail:zpzgwd@126.com http://zpzgwd.blog.bokee.net

  • 【讨论】各种显微镜(贴图及说明)

    【讨论】各种显微镜(贴图及说明)

    1.体氏显微镜,也就是解剖显微镜,进行显微操作用 http://ng1.17img.cn/bbsfiles/images/2011/05/201105171212_294583_1643453_3.jpg2.普通生物显微镜,用途最广,各种常规染色,免疫组化,原位杂交等结果观察http://ng1.17img.cn/bbsfiles/images/2011/05/201105171212_294584_1643453_3.jpg3.相差显微镜是用来观察组织培养中活细胞形态结构的。活细胞不同厚度及细胞内的各种结构对光产生的不同折射作用,转换微光密度差异,使镜下结构反差明显,影响清楚。相差显微镜的研发获得诺贝尔物理学奖。http://ng1.17img.cn/bbsfiles/images/2011/05/201105171214_294585_1643453_3.jpg4.倒置显微镜也是用来观察组织培养中活细胞形态的,原理与相差楼上差不多,就是光源方向相反。光源在载物台的上方,物镜在下方,便于观察贴附在培养皿底壁上的活细胞。 http://ng1.17img.cn/bbsfiles/images/2011/05/201105171214_294586_1643453_3.jpg5.荧光显微镜,用来观察组织中的荧光物质(自发的、诱发的、标记的),。标本中的荧光物质在紫外线的激发显产生各种颜色的荧光。目前主要在免疫细胞化学研究中。常用的荧光素有红色:TRITC,Rhodamin,绿色:FITC http://ng1.17img.cn/bbsfiles/images/2011/05/201105171215_294587_1643453_3.jpg6.最早的列文.胡克制作的显微镜 http://ng1.17img.cn/bbsfiles/images/2011/05/201105171208_294582_1643453_3.jpg7.最早的罗伯特.胡克制作的显微镜http://ng1.17img.cn/bbsfiles/images/2011/05/201105171216_294588_1643453_3.jpg8.神经外科专用显微镜 http://ng1.17img.cn/bbsfiles/images/2011/05/201105171217_294590_1643453_3.jpg9.妇产科专用显微镜 http://ng1.17img.cn/bbsfiles/images/2011/05/201105171217_294591_1643453_3.jpg10.整形外科专用显微镜http://ng1.17img.cn/bbsfiles/images/2011/05/201105171218_294592_1643453_3.jpg

  • 【讨论】光学显微镜的分类

    [font=宋体][size=3][b]光学显微镜有多种分类方法:[/b][/size][/font][font=宋体][size=3] 按使用目镜的数目可分为双目和单目显微镜;[/size][/font][font=宋体][size=3] 按图像是否有立体感可分为立体视觉和非立体视觉显微镜;[/size][/font][font=宋体][size=3] 按观察对像可分为生物和金相显微镜等;[/size][/font][font=宋体][size=3] 按光学原理可分为偏光、相衬和微差干涉对比显微镜等;[/size][/font][font=宋体][size=3] 按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;[/size][/font][font=宋体][size=3] 按接收器类型可分为目视、数码(摄像)显微镜等。[/size][/font][font=宋体][size=3] 常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。[/size][/font][size=3][b][font=Times New Roman]1[/font][font=宋体].双目体视显微镜[/font][font=Times New Roman] [/font][/b][/size][size=3][font=宋体] 双目体视显微镜又称[/font][font=Times New Roman]"[/font][font=宋体]实体显微镜[/font][font=Times New Roman]"[/font][font=宋体]或[/font][font=Times New Roman]"[/font][font=宋体]解剖镜[/font][font=Times New Roman]"[/font][font=宋体],是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角[/font][font=Times New Roman]--[/font][font=宋体]体视角(一般为[/font][font=Times New Roman]12[/font][font=宋体]度[/font][font=Times New Roman]--15[/font][font=宋体]度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。[/font][/size][size=3][font=宋体] 目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜[/font][font=Times New Roman]----[/font][font=宋体]变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为[/font][font=Times New Roman]"[/font][font=宋体]连续变倍体视显微镜[/font][font=Times New Roman]"[/font][font=宋体]([/font][font=Times New Roman]Zoom-stereomicroscope[/font][font=宋体])。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。[/font][font=Times New Roman] [/font][/size][size=3][b][font=Times New Roman]2[/font][font=宋体].金相显微镜[/font][font=Times New Roman] [/font][/b][/size][font=宋体][size=3] 金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。[/size][/font]

  • 徕卡显微系统(上海)贸易有限公司刚刚发布了(高级)销售工程师-北京市职位,坐标北京市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-82455.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b](高级)销售工程师-北京市[b]职位描述/要求:[/b]工作内容:1.负责相关区域外科,骨科和眼科的医疗显微镜的销售工作2.管理经销商岗位要求:1.2年以上医疗临床领域销售及大客户管理经验,熟悉神经外科/骨科/眼科客户,熟悉手术显微镜者优先2.本科及以上学历3.有经销商和直销经验[b]公司介绍:[/b] 公司简介徕卡仪器有限公司是德国著名的光学制造企业,具有160年显微镜制造历史,现主要生产显微镜、照相机及照相机镜头, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公司历史及荣誉产品1847年 成立光学研究所1849...[url=https://www.instrument.com.cn/job/position-82455.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 徕卡显微系统(上海)贸易有限公司正在寻找(高级)销售工程师-上海市职位,坐标上海市,谈钱不伤感情!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-82456.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b](高级)销售工程师-上海市[b]职位描述/要求:[/b]工作内容:1.负责相关区域外科,骨科和眼科的医疗显微镜的销售工作2.管理经销商岗位要求:1.2年以上医疗临床领域销售及大客户管理经验,熟悉神经外科/骨科/眼科客户,熟悉手术显微镜者优先2.本科及以上学历3.有经销商和直销经验[b]公司介绍:[/b] 公司简介徕卡仪器有限公司是德国著名的光学制造企业,具有160年显微镜制造历史,现主要生产显微镜、照相机及照相机镜头, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公司历史及荣誉产品1847年 成立光学研究所1849...[url=https://www.instrument.com.cn/job/position-82456.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【资料】揭密如何用电子显微镜描绘神经回路(组图)

    【搜狐科学消息】 据美国《连线》杂志报道,美国编码人员和神经学家正联手绘制出兔眼的超显微图像,此图像涉及每一个细胞,其大小可达20万亿字节。通过比较正常与损坏视网膜的图像,科学家从而揭示导致失明的原因,或许从中能找到治愈损伤眼睛的好办法。  这是一项伟大的创新工程,得借助专业软件、电子显微镜和特别锋利的刀才能完成。如果一切顺利,该科研组将成为第一个制作出哺乳动物眼睛的神经回路图。  罗伯特马克领导的科学家小组希望分享他们的技艺。在最新出版的《公共科学图书馆生物学》杂志上,他们罗列了用特殊工具绘制感觉器官图并用特殊工具收集数据的方法。这个软件是免费的,最终将收入大量的数据,从而使它成为一种网络应用。下面是这些视觉探索家所利用的工具以及他们所制作的一些非常令人震惊的图片。[color=#DC143C][size=4]下面就带您来揭密如何用电子显微镜描绘神经回路吧[/size][/color]

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【资料】光学显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.[b]双目体视显微镜[/b]双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.[b]金相显微镜[/b]金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.[b]偏光显微镜[/b](Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.[b]荧光显微镜[/b]荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.[b]相衬显微镜[/b](Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.[b]微分干涉对比显微镜[/b](DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.[b]倒置显微镜[/b](Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.[b]数码显微镜[/b]数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 徕卡显微系统(上海)贸易有限公司刚刚发布了(高级)销售工程师-广州市职位,坐标广州市,敢不敢来试试?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-82457.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b](高级)销售工程师-广州市[b]职位描述/要求:[/b]工作内容:1.负责相关区域外科,骨科和眼科的医疗显微镜的销售工作2.管理经销商岗位要求:1.2年以上医疗临床领域销售及大客户管理经验,熟悉神经外科/骨科/眼科客户,熟悉手术显微镜者优先2.本科及以上学历3.有经销商和直销经验[b]公司介绍:[/b] 公司简介徕卡仪器有限公司是德国著名的光学制造企业,具有160年显微镜制造历史,现主要生产显微镜、照相机及照相机镜头, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公司历史及荣誉产品1847年 成立光学研究所1849...[url=https://www.instrument.com.cn/job/position-82457.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 激光扫描共聚焦显微镜在细胞生物学中的应用

    激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图像。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+ 、pH值,Na+、Mg2+等影响细胞代谢的各种生理指标,对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。1. 定量荧光测量ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。2. 定量共聚焦图像分析借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。3. 三维重组分析生物结构ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。4. 动态荧光测定Ca2+、pH 及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF 、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。5. 荧光光漂白恢复(FRAP)——活细胞的动力学参数荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。6. 胞间通讯研究动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+、PH和cAMP水平对缝隙连接的调节作用。7. 细胞膜流动性测定ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。8. 笼锁-解笼锁测定许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。9. 粘附细胞分选ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法: ① Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。 ② 激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。10. 细胞激光显微外科及光陷阱技术借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。

  • 国家药监局废止YY/T 0684-2008《神经外科植入物 植入式神经刺激器的标识和包装》等 5项医疗器械行业标准

    近日,国家药监局官网发布公告,为进一步优化医疗器械标准体系,国家药品监督管理局决定废止YY/T 0684-2008《神经外科植入物 植入式神经刺激器的标识和包装》等5项医疗器械行业标准,现予以公布(见附件)。[align=center][img=image.png,600,217]https://img1.17img.cn/17img/images/202403/uepic/fbf2cb4c-c8e6-4327-93a7-ea8d81bed02d.jpg[/img][/align]  附件:医疗器械行业标准废止信息表[align=right]国家药监局[/align][align=right]  2024年3月26日[/align][img]https://img1.17img.cn/17img/images/202101/pic/3961461f-2698-4217-8a94-55eaaa9d6966.gif[/img][url=https://img1.17img.cn/17img/files/202403/attachment/5ab1d2f3-995c-4af8-aa54-f2960bea0c99.docx]1711586821097014327.docx[/url][来源:仪器信息网][align=right][/align]

  • 双光子显微镜——THG成像

    [b]摘要[/b]在神经科学和神经外科中对活体大脑组织中神经元的成像能力是一项基本要求。尤其是需求一种具有测微计尺分辨率的大脑形态学的非侵入探针的开发,因为它可以在临床诊断上提供一种非侵入式光学活体组织检查的手段。在这一领域,双光子激光扫描显微镜(2PLSM)是一个强大工具,并已成为活体生物样品最小侵入性损害的高分辨率成像的标准方法。但是,(2PLSM)基于光学方法提供足够分辨率的同时,对荧光染料的需求妨碍了图像对比度的提高。本文中,我们提供了一种活体大脑组织以细胞分辨率的高对比度成像方法,无需荧光探针,使用光学三次谐波发生进行成像。我们利用细胞水平的特殊几何学和大脑组织的液体内容物来获取THG的部分相匹配,提供了一种荧光对比度机制的替代方法。我们发现THG大脑图像允许快速、无侵入性标记的神经元、白质结构、血管同时成像。而且,我们利用THG成像来引导微吸管指向活体组织中指定的神经元。这个工作是一个无标记活体大脑成像的主要步骤,并开启了活体大脑中激光引导的微注射技术发展的可能性。[b]材料与方法[/b]THG成像对于THG成像实验,我们使用了一台商业化双光子激光扫描显微镜([color=#ff0000]TrimScope, Lavision BioTec[/color])。光源是一个光学参量震荡器(Mira-OPO,APE),810nm泵浦光来自一个Ti:Sa锁模激光器(Coherent Chameleon Ultra II)。使用一个20X,0.95N.A水浸物镜(Olympus XLUMPFL-IR)将光聚焦到样品上。使用epidetection几何学描述THG实验。使用分光镜(Chroma T800lpxrxt)将背景散射THG光子从入射激光束中分离出来,用一个THG波段的带通滤波器(Chroma HQ390-70X)过滤。检测器是GaAsP高灵敏度光电倍增管(Hamamatsu H7422-40),400nm处量子效率为25%。最高分辨率成像(1024×1024像素)的典型获取时间为1.6s,我们用于目标定向实验的512 X 512像素成像时间为0.6s。 为与前向端口比较,使用了一个定制的投射端口。这个端口使用了一个1.4N.A油浸物镜,一个长波分光镜(UQG optics)和一个400nm的相干窄带滤波器。对于THG与SR-101联合实验我们用1200nm的OPO来同时产生两种信号。使用一个594nm带通和561nm隔断的分光镜将SR-101荧光从THG信号中分离。SR-101信号使用一个PMT检测(Hamamatsu H6780-20)。Nile Red和THG成像也是由1200nm的OPO同步激发。在这个案例中THG信号由投射端口测量,Nile Red荧光通过一个593∕40 nm的带宽滤波器检测。对于THG和GFP联合成像,用来泵浦OPO的Ti:Sa激光被调谐到970nm并耦合到显微镜中。组织块的GFP和THG信号使用同一个检测器连续测量。但使用一个不同的(561∕40 nm)带通滤波器检测GFP。使用显微镜软件(Imspector Pro)获取图像并以16bit 的tiff格式存储,图像分析使用Image J(MacBioPhotonics)进行。[b]主要结果[/b] [img=,575,768]http://qd-china.com/uploads/bio-product/21.jpg[/img]Fig. 1.无标记活体大脑的三次谐波显微成像(A)脑组织THG成像的epidetection几何学图示。插图:THG原理。注意基质中没有光学激发发生。(B) 树突处的聚焦激光束。通过将激光聚焦体积设定到树突直径的几倍大小,可以获得部分相匹配,显著的THG信号将会产生。(C)细胞体内的聚焦激光束。由于不好的结构相匹配状态,没有THG信号产生。(D) 小鼠大脑组织的活神经元成像。体细胞以暗影存在。 [img=,466,500]http://qd-china.com/uploads/bio-product/22.jpg[/img]Fig. 2.活体大脑组织的THG成像(A)小鼠皮质的THG图像 (B) 与A同位置的Nile Red染色的双光子荧光图像 (C) 大鼠凹陷的脑回THG图像(水平切面) (D)小鼠脑胼胝体THG图像,轴突纤维束被清晰得分辨。Movie S1是这个结构的一个3D投影 (E)小鼠大脑纹状体的THG图像(冠状面)。白质和神经元细胞清晰可见。明亮的粒状结构是垂直穿行图像平面的轴突纤维。Movie S2是这个区域的3D投影。(F)麻醉活小鼠的脑皮质上层的血管THG图像(z栈平均投影密度是50um) [img=,510,767]http://qd-china.com/uploads/bio-product/23.jpg[/img]Fig. 3. THG与双光子成像的叠加 (A)小鼠额前叶脑皮质的THG图像 (B)SR-101标记的星细胞双光子图像 (C) A、B的叠加提供了神经网络中星细胞的分布信息 (D) 小鼠额前叶皮质的THG图像 (E) GFP标记的生长抑素神经元的双光子荧光图像 (F)D、E的叠加显示了生长抑素神经元在脑前叶皮质结构中的分布 [img=,461,768]http://qd-china.com/uploads/bio-product/24.jpg[/img]Fig. 4.THG成像深度与自动化细胞检测 (A-C) 小鼠额前叶皮质的THG图像,成像深度分别为100, 200, and 300 μm 。每幅图像都是3个以2微米深度间隔独立图像的最大密度投影(D) 110 μm深度处神经元细胞的自动检测THG图像。细胞检测的运算法则定义为以红色显示的神经元 (E)红色标记:来自A-C的图像栈的细胞可见性对比。黑色标记:作为一个深度功能的平均检测到的THG密度。 [img=,531,768]http://qd-china.com/uploads/bio-product/25.jpg[/img]Fig. 5. 无标记目标定向和细胞活性(A)小鼠新大脑皮层的THG图像 (B) 在对一个神经元进行THG引导膜片钳之后同一位置的THG图像 (C)一个200um深处钳住神经元的大视野THG图像(5幅深度间隔2um的图像平均) (D)记录以100pA电流脉冲刺激B中被钳住的神经元的动力势训练 (E) 测量在THG扫描期间静止膜电位的改变。即使以最高的能量,也只观察到4%的电压变化,保持了完全的可逆性。0.8秒的周期相应于图像扫描时间。(F)最大观察到的静止膜电位Vs扫描时的激光能量。没有非线性效应出现。

  • 激光扫描共聚焦显微镜在医学领域中的应用

    一、在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量 共聚焦显微镜的分辨率超过普通光学显微镜,染色过程简便,可以在活细胞上进行无创伤性的染色,最大程度地维持细胞的正常形态。多种自发性的荧光染料,已被广泛地用于诸如RNA、DNA细胞核、线粒体、内质网、肌动蛋白、细胞膜等结构的标记。运用免疫荧光技术,将不同波长的两三种荧光物质标记在内部不同结构的相应抗体上,以这几种荧光物质特定的光谱特性选择激发光和滤光片,则可以观察到细胞内部各结构间的毗邻关系。特别是在荧光着丝点易被遮盖(如荧光原位杂交实验)的情况下,这种三维图像的多角度观察提供了极大的优越性。细胞有丝分裂中细胞核内染色体数目(双倍体、多倍体)、形态和位置的变化,一直是细胞生物学肿瘤研究中的热点。着丝点是细胞核内的重要结构,被认为在有丝分裂中起重要的作用,应用共聚焦显微镜的定量测量技术,可以较精确地测定着丝点在不同分裂期的位置。共聚焦显微镜生成厚度小于0.2微米的依次相连的光学切片,即使较厚的组织的三维数据也可被计算机获取,运用适当的图像分析软件,可以测量并确定所观察结构的表面特征,体积等参数,为相互结合定量测量提供了新手段。2. 活细胞生理信号的动态监测:活细胞的功能监测在细胞生物学、神经生理学、药理学等领域都有重要意义。许多荧光染料可以聚集在细胞的特定结构,而对细胞的活性基本上不产生影响。可以利用这一特性来反映细胞受到刺激后形态或功能的改变。如亲脂性染料DiOC6(3)主要聚集在内质网,且对细胞的毒副作用极小。肌细胞中的肌浆网与ER有相同的属性,是胞内钙库,应用共聚焦显微镜,就可以动态观察肌细胞兴奋时SR的变化。许多参与神经元兴奋传导的离子如K+、Na+、Ca2+及H+、Cl-、Mg2+ 等,都有其自发性的荧光染料。Ca2+ 在细胞的兴奋、分化、死亡等过程中都起重要作用,是许多生理反应的胞内第二信使,是目前研究得最为充分的离子; 通过激光扫描共聚焦显微镜对胞内、核内钙转移的研究、对心肌细胞的钙变化研究、免疫细胞钙信号的研究、对Ca2+信号在凋亡细胞中作用的研究都取得了可喜的结果,而更多的研究则是将激光扫描共聚焦显微镜应用于神经生物学中对神经元Ca2+动态测量的研究。目前激光扫描共聚焦显微镜以其独特的优势成为钙研究中的重要手段之一。3. 粘附细胞的分选(adherent cell sorting) 对特异细胞的分选和克隆,是研究单个细胞或细胞系生物特性的先决条件。 将细胞贴壁培养在特制培养皿上,培养皿底部有一层特殊的膜,用高能量激光在欲选细胞四周切割成八角形几何形状,掀去培养皿底部的膜,非选择细胞则被去除。目前对粘附细胞分选方法多用于对杂交瘤和突变细胞的分选,也有用于对经转化的平滑肌细胞,卵巢癌细胞及人畸胎瘤干细胞等的分选和克隆,还可用于基因调控、基因治疗等研究。4. 细胞激光显微外科和光陷阱功能: 激光扫描共聚焦显微镜可将激光当作一把“光刀子”使用,完成诸如细胞膜瞬间穿孔,染色体切割,神经元突起切除等一系列细胞外科手术。光镊是利用激光的力学效应,将一个微米级大小的细胞或其它结构钳制于激光束的焦平面上,也称为光陷阱。光镊可以用来进行细胞融合(如卵细胞受精)、机械刺激或细胞骨架弹性测量等,特别是在测量植物细胞的细胞骨架时很有意义。5. 光漂白后的荧光恢复(FRAP): 细胞在相互接触后彼此间即有低阻抗的通道形成,以进行细胞间通讯;被经合成肽测试法证明只允许低于1.5KD分子通过的通道被称作缝隙连接。缝隙连接是存在于相邻细胞间的一类蛋白通道,普遍认为缝隙连接通过介导细胞间的信息传递,在诸如增殖、分化、代谢等过程中发挥极其重要作用。FRAP技术借助脉冲式激光照射细胞的某一区域,从而该区域荧光分子的光淬灭,该区域周围的未淬灭的荧光分子将以一定速率向受照区域扩散,而此扩散速率可通过低强度激光扫描探测。在研究细胞骨架构成、跨膜大分子迁移率、细胞膜流动性、胞间通讯等领域中有较大的意义。6. 在细胞凋亡研究中的应用细胞凋亡是由体内外因素触发细胞内预存的死亡程序而导致的细胞死亡过程,细胞凋亡作为生理性、主动性过程,能够确保正常发育、生长、维持内环境稳定,发挥积极的防御功能。用激光扫描共聚焦显微镜观察凋亡细胞,可见凋亡细胞体积变小,细胞质浓缩,细胞核变小,出现染色质沿核膜内侧排列的核边聚集现象。细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。细胞凋亡(Apoposis)是生物体内广泛存在的,由细胞特定基因控制,以细胞DNA 降解为特征的细胞自发过程,与机体中多种生理及病理过程密切相关。因而,对Apoposis 的研究现已成为研究细胞生物学研究的热点之一。而激光扫描共聚集显微镜结合众多荧光探针的应用,成为细胞Apoposis超微结构及分子水平变化的有力手段。二、在神经科学中的应用1. 定量荧光测定:对活细胞进行定量测定,具有很好的重复性,分析神经细胞和胶质细胞的某些物理及生物化学特性;监测抗原表达,细胞结合和杀伤等特征。在多发性硬化病人大脑活检标本上观察病变组织的微血管内皮细胞特异性地表达。2. 细胞内离子的测定:使用多种荧光探针,对神经细胞的Ca2+、PH及其它各种细胞内离子进行定量和动态分析。3. 神经细胞的形态学观察:激光扫描共聚焦显微镜使用模拟荧光处理,可将系列光学切片的数据合成三维图像,并可从任意角度观察。如Joshi等观察了细胞突触的骨架的三维图像。三维重建图像可使神经细胞及细胞器的形态学结构更加生动逼真。三、在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用:1993年Ikeda等应用激光扫描共聚焦显微镜研究内耳毛细胞的亚细胞结构,用Rhodamine 123染色,见线粒体分布于表皮板下和核下,加入1mmol/L三硝基酚使线粒体膜电位减小,荧光强度明显减弱。用DIOC6(3)染色,观察到内质网分布于表皮板下直至细胞核区域,呈网状、核下及侧膜下也有分布,胞质中则极少,探讨了蛋白激酶(PKC)在三磷酸肌醇/钙信号系统中的作用。2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用钙离子在细胞的生命活动中起着重要作用,它参与调节细胞功能,如肌肉收缩,细胞运动,递质合成与释放,信息传递,细胞换能等。激光扫描共聚焦显微镜的荧光测钙技术可探测到细胞内钙浓度的细微变化,当内耳毛细胞受到各种生理及病理因子刺激时,可用荧光测钙技术观察细胞内钙离子浓度的变化。为研究毛细胞的机能提供了新的手段。3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用Issa等用膜片钳的全细胞记录法将Fluo-3已导入毛细胞,用激光扫描共聚焦显微镜观察,当毛细胞去极化时其底部侧膜上平均有18个亮点(钙内流所至),然后对同一毛细胞进行连续超薄切片电镜观察,证明这些亮点即为突触前活性区。4. 激光扫描共聚焦显微镜在嗅觉研究中的应用:Schild等用激光扫描共聚焦显微镜和钙荧光探针研究嗅觉感受器神经元的钙通道分布,以Fluo-3和Fura-red 染色后行双发射比例测量,测出其胞内游离钙呈不均匀分布,观察显示嗅觉感受器神经元的钙通道位于胞体部,与同一部位的钾通道一起构成适应性调节机制,而对树突尖端纤毛的钙依赖性换能过程无干扰。四、在肿瘤研究中的应用激光扫描共聚焦显微镜的出现,在一定程度上推动了肿瘤的研究进展。它为肿瘤细胞生物学、分子生物学、细胞通讯、细胞形态学研究、细胞的抗药物代谢、细胞膜及其受体等领域的研究,提供了有效手段。1. 定量免疫荧光测定:激光扫描共聚焦显微镜采用免疫荧光对肿瘤细胞的抗原表达、细胞结构特征、抗肿瘤药物的作用及机理等方面进行定量的观察和监测,为较理想的形态学观察方法。先采用荧光标记特异性抗原或抗体,使其与特异性抗体或抗原结合,再采用激光扫描共聚焦显微镜对其进行定性、定量和形态学分析。近年来报道较多的是P53肿瘤相关抗原等的定位、定性和定量分析。采用荧光标记某些蛋白分子,然后测定其平均荧光强度和积分荧光强度,从而对某些细胞结构蛋白分子进行定量分析。2. 细胞内离子分析激光扫描共聚焦显微镜可以准确地测定细胞内Ca2+ 、 K+ 、 Na+ 、 Mg2+ 、 pH等

  • 【原创大赛】【我爱学习】纺织品实验室恒温恒湿系统变频器的‘外科手术‘

    【原创大赛】【我爱学习】纺织品实验室恒温恒湿系统变频器的‘外科手术‘

    纺织品实验室恒温恒湿系统变频器的‘外科手术’恒温恒湿室大家都不会陌生,很多行业的实验室都必须配备这样的标准检测环境,因为不同的温湿度对样品有较大的影响,检测结果也是影响较大,特别是处于不同地点的实验室,比如新疆,海南,北京这三地的实验室,他们三地的温度和湿度相差很大,在不同的地区和环境下对样品检测分析肯定是没有可比性的,所以要想实验室都能做出满意的结果,那就需要建造标准的恒温恒湿室。 我们纺织品实验室也有一个恒温恒湿室,纺织品很多都是纤维素纤维,对温度尤其敏感,不同的温湿度下他们的含水率是不相同的,所以更加需要一个恒定的环境对其进行检测分析,这样才能得到一个准确的结果。我们纺织品实验室温控系统是有一个高精密的恒温恒湿空调控制,其原理和一般空调有相似之处,主要有压缩机和变频器控制,说起变频器,这个是我们最头疼的一个部分,因为每个月总有几次是变频器报警,有时是变频器通讯故障,有时只显示变频器报警,处理方式一般是关机重启,有时是可以的,有时不行,只能找供应商来维修,这样的情况每个月都有好几次,不厌其烦的出现同样的故障.这一次因为控制系统出了问题,湿度突然无限制的增加,导致不仅恒温室内湿漉漉的,变频器也‘水漫金山’了,维修工程师打开侧板一看,整个变频器都水汪汪的,好像从水中拿出来的一样,把工程师都吓坏了,说可能不行了,要换新的了,最后先用干净的布擦干净,然后把用吹风机吹干,没有想到还能用,真是奇迹。虽然结果还是满意的,但出现这样严重的事情,我还是心有余悸,就和工程师商量,变频器这样老出异常的部位,能不能有个好办法,解决这个隐患,因为变频器在侧板内,不好观察,每次出现异常都要想法打开侧板才能观察变频器状态,因为变频器是在高精密的恒温恒湿空调的侧边接近顶部的位置,很不方便,我就和工程师说们能不能把变频器这一块拆下来,放在仪器外面,独立出来,然后再把接线增长是不是就可以了,和工程师探讨一会,工程师打电话给他们负责人,经过他和他们负责人的沟通,最终成行。[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070855_01_2154459_3.jpg[/img][img=,480,640]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070855_02_2154459_3.jpg[/img][img=,640,480]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070855_03_2154459_3.jpg[/img]首先关机,帮助维修工程师把变频器卸下来,然后观察线路,经过观察发现,只有一个线必须从正面走,其他线路都可以走高精密的恒温恒湿空调的后面,甚至底下,这样就省事了,经过工程师半个多小时的奋斗,初步完成,就等开机验证了[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070855_04_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070856_01_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070856_02_2154459_3.jpg[/img][img=,690,517]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070856_03_2154459_3.jpg[/img][img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070856_04_2154459_3.jpg[/img]开启电源,然后开机,观察频现,刚开机的温湿度肯定是一个室内的温湿度,需要一个满满的调节过程,继续观察,加湿符号出现,温湿度都有变化,向设定值一点点的靠近,又等半个小时后,屏显数据在设定值‘徘徊’,基本上都在设置值20±2℃,相对湿度65%±3%的允许范围之内。持续观察,一直到下午下班,状态都比较稳定,满足标准要求。[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070857_01_2154459_3.jpg[/img][img=,690,1226]http://ng1.17img.cn/bbsfiles/images/2017/09/201709070857_02_2154459_3.jpg[/img]变频器放在高精密的恒温恒湿空调的外面,可以避免以下尴尬:1. 变频器一般看不到,侧板打开时要需要专用的工具,专用工具我们实验室没有,用螺丝刀也行,但比较费劲,经常打开很麻烦。2. 变频器侧板较重,我们的女测试员上次就很吃力了,但是恒温室物理测试都是女孩子,他们想看一下变频器更费劲了3. 变频器位置很高,男测试员都要翘脚才能看到,女测试员要搬个凳子才能看到,特别不方便4. 维修人员也不是很方便,他们每次也是踩着凳子才能观察维修,但是实验室凳子大家知道,基本是都是带轮子,这样根本站不稳,要一个人甚至两个人扶着才行。总结:变频器我要求并说服工程师放在高精密的恒温恒湿空调外部,主要是以下几点首先变频器放在外面,不影响使用效果,而且更容易观察状态;再者变频器放在外面,由于面积小,并不占到少空间,没有影响;最后变频器很安全,就是开机状态下,手摸上去也没有任何问题,所以从安全角度上说也无碍

  • 欣觉神奇的医学作品

    科之父亚萨吉尔教授(Mahmut Gazi Yasargil)的个人传记,记述了亚萨吉尔教授由一名土耳其年轻学子成长为全球神经外科大师的传奇经历,全景式描绘了亚萨吉尔教授的个人特质、学科贡献、手术哲学和家庭生活,尤其着墨于筚路蓝缕的显微神经外科开创之路。全书精彩纷呈、人物众多,时间跨度近一个世纪,真实再现了以亚萨吉尔教授为首的一代神经外科医生推动学科发展的历史。本书文笔平实,医学人士及非专业背景读者均可借此了解大师生平,获得启发![img]https://ng1.17img.cn/bbsfiles/images/2024/05/202405240933224494_5055_1642069_3.png[/img]

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 【原创大赛】【开学季】 纺织检测仪器中最简单的一次仪器‘外科手术’

    【原创大赛】【开学季】 纺织检测仪器中最简单的一次仪器‘外科手术’

    纺织检测仪器中最简单的一次仪器‘外科手术’ 纺织品是我们衣服的主要原料,不但为我们的穿着增添了不少色彩,也为爱美人士增色了不少,纺织品的多样化,受到了我们大家的喜爱,也为我们的日常生活增加了更多的选择机会。纺织品与我们生活息息相关,每天我们穿的衣服,用的毛巾,睡的床上用品都属于纺织品,也是我们生活必须品,在某种程度上来说,纺织品甚至比食品更重要。更应该受到关注,但是食品行业确实比纺织行业关注度高,但是随着人们对纺织行业的需求不断有要求,纺织品也是在不断受到关注!纺织品的检测标准也是在这样的情况下不断的完善和更新,其中日晒色牢度也是纺织品检测的一部分,但是很多的纺织品对此要求不高,但总算有所要求,我们的日晒色牢度试验机利用率不高,主要就是测定纺织品耐气候色牢度及光老化试验,一周也就是2-3次,所以平时也没有过多的进行关注,这不,四天没有用,就出问题了,辐照度竟然偏低,怎么整也没有高起来的迹象没有办法了,有问题找厂家千唤万呼,厂家在一周后才到,还是催促的结果首先看一下主要配件,看看这些吧我们测试一般采用GB/T8427-2008《纺织品色牢度试验、耐光色牢度:氙弧》方法3,试用的这个仪器型号为YG611E型日晒色牢度机,技术要求:1氙弧灯额定功率:2.5KW2氙弧灯辐照度3试样架回转速度5r.p.m4试样夹中心距:162mm5试样夹数:10只仪器厂家工程师首先接通电源,开机界面出现仪器名称和生产厂家的资料,在开机界面上任何一个地方点一下,就切换到运行监控显示界面。点击‘首页’地方,显示界面切换到开机显示界面。点击‘设置’地方,显示界面切换到参数设置显示界面。按‘运行’地方,‘运行’地方由绿色变为橙色,再按‘日晒’地方,‘日晒’地方由绿色变为橙色,‘日晒’有效,试验仓内氙灯点亮;再按‘转动’地方,‘转动’地方由绿色变为橙色,‘转动’有效,试验仓内转盘转动厂家工程师查看了氙弧灯的运行总时间,时间在正常范围内,当然也有可能氙弧灯达不到标准的使用时间,提前‘报废’的可能,检查灯管的亮度,颜色,都算正常,可是辐照度还是只有三十多,标准是四十二,这就奇怪,首先厂家工程师怀疑就是氙弧灯的问题,问我有没有备用灯管,换一个就可以了,大家知道这个氙弧灯管比较贵,我还是要求先用排除法,查看一下其他原因,然后都排出了,再换灯管也不迟其实这个原因好排查,主要的几个刚面,一个是紫外表,就是辐照度那个传感器,正常情况下如果坏了,辐照度一般显示为0,这个可初步排除,玻璃罩是不是很脏,这个一个月前乙醇擦洗的,表面也没有看到有污染,紫外玻璃片是不是有问题,这个是半个月前更换的,目测问题不大,接着就是氙弧灯了。但是亮度正常,是不是这个原因呢,换灯管比较麻烦,厂家工程师也不是很愿意换,就一直盯着灯管和玻璃罩http://ng1.17img.cn/bbsfiles/images/2014/09/201409301846_516641_2154459_3.jpg忽然,厂家的那个工程师说有了,然后停机,本来要等5分钟冷却灯管的,但是等不及了,打开试验仓就双手开始转动玻璃罩,当转了半圈时,停止,关闭试验仓,开机,竟然,看看吧,辐照度正常http://ng1.17img.cn/bbsfiles/images/2014/09/201409301846_516643_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409301846_516644_2154459_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/09/201409301847_516645_2154459_3.jpg工程师说,原因就是玻璃罩卡扣没有卡住,在仪器转动的时候,也转动了半圈,紫外玻璃片偏离的紫外表的位置,且玻璃罩外面的不锈钢轴有一个挡在了那个位置,导致实际的辐照度是对的,显示不正常。原来如此小结:仪器是我们的‘伙伴’,就像军人手中的钢枪一样,我们不但要熟练的掌握使用仪器的方法,还要对仪器有一个基本的了解,有些小的问题,我们要有一个基本的检查和判断,不能一有问题就手足无措了,什么都不做就推给仪器厂家,这样既耽误时间,又浪费成本,就像这次这么简单的‘故障’,仪器厂家出场费最最低1000元/次,还是优惠价,针对这次维修,是不是挺浪费的

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 光学显微镜物镜基础知识

    物镜((objective)对于传统显微镜来说应算最贵重的部件。一只高性能物镜的价格占这类显微镜本身的1/3-1/2。因为显微镜的最基本性能—成像和分辨本领决定于物镜。为了消除成像过程中的球面差和色差、物镜的透镜组由单透镜发展为许多层次的复合透镜组.由3-4透镜已增加到7-9片透镜或透镜复合体。物镜的镜体上都刻有物镜的性能,物镜的镜口率、放大倍数以及特殊物镜的标记字样。 消色差物镜的外壳上刻有英文,德文,法文Achromat字样或俄文AXP字样。这种物镜能够消除光谱中的红光和青光所造成的色差而不能消除其他色光形成的色差。 复消色差物镜是性能最好,价格最贵的物镜.其外壳上刻有英、德、法文Apochromat 字样或俄文字样。其透镜质料好,透镜组层次最多,组合得精确能够消除红光、黄光、蓝光造成的色差。这种物镜配用补偿目镜时能够发挥光学显微镜的最高性能。 荧石物镜外壳刻有英、德、法文Fluormat(或Flur)字样.这是能透过紫外光的专用于荧光显微镜的物镜。如果当普通物镜使用,则分辨率太低. 平像场系列物镜刻有Planochromat字样。Opton公司出售的有平像场荧石消色差物镜(Plan-Neofluor),平像场复消色差物镜(Plan-Achromat),平像场荧石消色差偏光物镜(Plan-Neofluor pol)等。 相差显微镜必须配备相差物镜.这种物镜刻有英、德、法文Pha或俄文0字样。单色物镜(monochromat)是全部透镜用融熔水晶制成的贵重物镜。这种物镜是透过紫外线的专用于紫外光干涉显微镜或用于紫外光显微分光光度计上。如果这种物镜不能到手时,可用复消色差物镜代替。 带有可变光栏的物镜的镜体上装有螺纹转动圈。转动圈的标号可移动在0.5-1.0之间.这种物镜是适用于暗视野显微镜.倒置显微镜的物镜是长焦距物镜。其他种类的物镜焦距短要求盖玻片的厚度不能过大(ti I 7pm)。倒置显微镜的物镜可以观察培养瓶壁上的贴壁生长细胞。

  • 迷你显微镜植入老鼠大脑“观察”其思维运行

    2013年02月27日 来源: 腾讯科学 作者: 悠悠/编译 腾讯科学讯(悠悠/编译) 据国外媒体报道,目前,科学家将迷你显微镜植入基因改良老鼠的大脑之中,有助于研究人员洞悉老鼠的思维运行。 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130226/0022fa99dc6c129708fa1b.jpg科学家最新研制一种迷你显微镜,可植入老鼠大脑之中,洞悉老鼠的思维变化,未来该装置有望用于治疗老年痴呆症 这个工具以空前的视角呈现出老鼠大脑结构,研究小组能够记录老鼠1000多个神经原的激活状况,并持续观测数个星期,使科学家能够研究老鼠大脑活动的历史进化过程。 美国斯坦福大学生物和应用物理学副教授马克-施尼策称,这种类型的问题,此前并未在行为自由的老鼠个体上进行测试。他和同事将这项研究报告发表在本月初发行的《自然神经科学》杂志上,并成立一家公司,生产销售迷你显微镜用于研究阿尔茨海默症和其它大脑紊乱等神经变性疾病。 施尼策解释称,我们将老鼠颅骨打开,把这种迷你显微镜植入一个小型圆圈之中,这个显微镜就像是给老鼠戴一个帽子。老鼠海马体的神经组织关联着空间记忆,通过基因改良可将这些神经呈现为绿色荧光蛋白质,特别是在钙质存在的时候。当神经细胞被激活,它们将自然地释放大量的钙离子,从而荧光效应就变得更加强烈。 迷你显微镜与一个相机芯片建立连接,能够将拍摄到的神经细胞的荧光闪烁状况传输至计算机屏幕,从而获得接近实时的老鼠大脑活跃性视频。 对于未经训练的眼睛,激活神经细胞变得随机无序,但是研究人员能够识别。特殊的神经细胞对应于圆圈中的特殊区域。施尼策解释称,个别神经细胞可能对老鼠大脑位置具有一定的选择性。该装置有能力实时绘制数百个神经细胞的活动状况,并长时间观测大脑组织的发展变化,未来它将用于监控研究阿尔茨海默症等大脑疾病的形成。

  • 几种特殊显微镜的应用

    几种特殊显微镜的应用

    1.荧光显微镜 (fluorescence microscope)是用来观察标本中的自发荧光物质或以荧光素染色或标记的细胞和结构。荧光显微镜是以高压汞灯产生的短波紫外线为光源,并配有激发、阻断、吸热和吸收紫外线等滤片系统,标本中的荧光物质在紫外线激发下产生各种颜色的荧光,借以研究该荧光物质在细胞和组织内的分布。组织中的自发性荧光物质如神经细胞和心肌细胞等内的脂褐素呈棕黄色荧光,肝贮脂细胞和视网膜色素上皮细胞内的维生素A呈绿色荧光,某些神经内分泌细胞和神经纤维内的单胺类物质(儿茶酚胺、5-羟色胺、组胺等)在甲醛作用下呈不同颜色的荧光,组织内含有的奎宁、四环素等药物也呈现一定的荧光。细胞内的某些成分可与荧光素结合而显荧光,如溴化乙锭与吖啶橙可与DNA综合,进行细胞内DNA含量测定。荧光显微镜更广泛用于免疫细胞化学研究,即以异硫氰酸或罗丹明等荧光素标记抗体(一抗或二抗),用该标记抗体直接或间接地与细胞内的相应抗原结合,以检测该抗原的存在与分布。http://ng1.17img.cn/bbsfiles/images/2011/12/201112151345_338335_2023037_3.jpg2.相差显微镜 (phase contrast microscope)是用于观察组织培养中活细胞形态结构的。活细胞无色透明,一般光镜下不易分辨细胞轮廓及其结构。相差显微镜的特点是将活细胞不同厚度及细胞内各种结构对光产生的不同折射作用,转换为光密度差异(明暗差),使镜下结构反差明显,影像清楚。组织培养研究常用的是倒置相差显微镜(inverted phase contrast microscope),它的光源和聚光器在载物台的上方,物镜在载物台的下方,便于观察贴附在培养器皿底壁上的活细胞。http://ng1.17img.cn/bbsfiles/images/2011/12/201112151345_338338_2023037_3.jpg3.暗视野显微镜 (dark-field microscope)主要用于观察因反差或分辨力不足的微小颗粒。此种显微镜主要是有一个暗视野集光器,使光线不直接进入物境,故呈暗视野。而标本内的小颗粒产生的衍射光或散射光进入物镜,暗视野中的颗粒呈明亮小点,如同在暗室可见一束光线中的微小尘粒一般。普通通光镜最大分辨率为0.2μm,暗视野显微镜则可分辨0.004~0.2μm的微粒,适用于观察细胞内线粒体运动及标本中细菌等微粒的运动等。http://ng1.17img.cn/bbsfiles/images/2011/12/201112151350_338342_2023037_3.jpg4.共集激光扫描显微镜 (confocal laser scanning microscope,CLSM)是近10年研制成的高光敏度、高分辨率的新型仪器。它以激光为光源,光束经聚焦后落在样品(组织厚片或细胞)不同深度的微小一点,并作移动扫描,通过电信号彩色显像,经过微机图像分析系统进行二维和三维分析处理。CLSM可对细胞进行三维结构图像分析,细胞内各种荧光标记物的微量分析,细胞内Ca2+、pH值等的动态分析测定,细胞的受体移动、膜电位变化、酶活性和物质转运的测定,并以激光对细胞及其染色体进行切割、分离、筛选和克隆。因此,CLSM是一种高技术产品,可对细胞的多种功能进行全自动、高效、快速的微量定性和定量测定。其他如偏光显微镜用于研究组织晶体物质及纤维等的光学性质,紫外光显微镜用于研究细胞内核酸的分布与定量等。http://ng1.17img.cn/bbsfiles/images/2011/12/201112151350_338343_2023037_3.jpg

  • 活体显微镜

    [url=http://www.leica-microsystems.com/cn/%E4%BA%A7%E5%93%81/%E5%85%89%E5%AD%A6%E6%98%BE%E5%BE%AE%E9%95%9C/%E7%94%9F%E5%91%BD%E7%A7%91%E5%AD%A6%E7%A0%94%E7%A9%B6/%E5%80%92%E7%BD%AE%E6%98%BE%E5%BE%AE%E9%95%9C/the-leica-dmi8]活体显微镜[/url]用于对小动物活体进行观察,其可对小动物活体进行细胞级的研究。该显微镜可以将探头以满足微创的方式插入到动物体内任何部位进行观察,有些甚至可以在动物清醒的时候进行实验。该显微镜避免了做解剖切片的繁琐步骤,可以一直对同一动物进行研究,免除了因不同动物个体差异给实验带来的误差,简化并优化了实验步骤。目前该显微镜已应用于肿瘤,周围和中枢神经系统,心血管,干细胞,消化道以及药物研究等多个领域,很多著名高校和知名研究院所已经配备了这种高级显微镜。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制