当前位置: 仪器信息网 > 行业主题 > >

深水位地下水采样泵

仪器信息网深水位地下水采样泵专题为您提供2024年最新深水位地下水采样泵价格报价、厂家品牌的相关信息, 包括深水位地下水采样泵参数、型号等,不管是国产,还是进口品牌的深水位地下水采样泵您都可以在这里找到。 除此之外,仪器信息网还免费为您整合深水位地下水采样泵相关的耗材配件、试剂标物,还有深水位地下水采样泵相关的最新资讯、资料,以及深水位地下水采样泵相关的解决方案。

深水位地下水采样泵相关的资讯

  • 水位|高海拔地区的地下水监测
    如果问你监测水质意味着什么时,您会想到哪些参数?温度、电导率、pH值、溶解氧和浊度这“五大”参数吗?追踪有害藻华的叶绿素和藻蓝蛋白?以我作为水质仪器经理的经验来看,每当我问这个问题时,“水位”很少是我得到的第一个答案。实际上,在一些圈子中,水位根本不被认为是水质的衡量,而是水量的衡量,被当作一个完全独立的话题来对待。无论你是否相信水位是一个水质参数,水位可能是最重要的,当然也是最广泛的。今天测量的参数,准确的水位测量对于地下水监测、河流和河流测量、湖泊/池塘水位分析、洪水水位记录、灌溉渠道、波浪和潮汐分析都非常重要...不胜枚举。我最近写了气候变化教育的重要性,而水位也与之息息相关。伴随气候变化引发极端天气事件,各地区应对暴雨和洪水、干旱和缺水、海平面上升以及其他与气候相关的问题。此系列文章将重点介绍凭借 Xylem的水位测量实现重要应用的以下三个项目: 地下水监测暴雨监测洪水监测01地下水监测第一个例子来自于我的同事James Chen。James作为YSI的资深水质监测专家,提供从现场应用到销售和业务开发的全方位服务,并曾在世界上最迷人的地方开展工作。例如,James在西藏的拉萨开展过一个项目,监测地下水。出于多种原因,监测地下水水位非常重要,其中包括了解在静态条件和抽水条件下的蓄水层水位、确定水位与当地地表水源的相互作用以及了解地表开发对蓄水层的影响。拉萨被称为“亚洲水塔”,在这样的情况下,James将协助客户监测拉萨的自然资源- 尤其是水质。James用一台EXO1透气式水位主机来完成这项任务。这种仪器的选择至少说明了关于地下水监测的两个非常重要的原则。在传统意义上,水质监测也是一个优先事项。为什么客户要求测量诸如比电导、温度、pH/ ORP和浊度等水质参数,而不仅仅是测量地下水水位?主要原因就是,水量丰富并不代表水源适合饮用。雨水或地表水在渗入地下时会接触受污染的土壤,从那一刻起,雨水或地表水就可能会被污染,并将污染从土壤带到地下水蓄水层。而当液态有害物质通过土壤或岩石渗入地下水时,地下水也可能受到污染。还存在许多其他类型的地下水点源和非点源污染,而在这个项目中,客户需要监测这些威胁。连续监测标准水质参数的变化是一种很好的方法,同时也证明了相比于水位记录仪,使用窄小直径 EXO1进行地下水监测的关键优势。第二个原则,该项目揭示了在某些情况下使用透气式水位深度传感器的重要性。拉萨是世界上海拔最高的城市之一。海拔超过3650米,拉萨的气压比海平面的气压低约35%。正如以下James提供的数据所示,这对水位的测量产生了巨大影响,尤其是在不使用透气式水位传感器的情况下。所以...什么是透气式水位测量,它和深度传感器有哪些区别?02深度vs.透气式水位YSI EXO配备的传感器分为深度和透气式水位两种。深度由一个非透气式的应变传感器进行测量的,这里我们将其称为压力传感器(也称之为“深度传感器”)。压力传感器与电阻相连接,当传感器隔膜片上的压力变化时就会发出电信号。隔膜的一侧暴露在水中,另一侧暴露于真空中。在真空侧,压力恒定不变。在水侧,压力随水压(Pw)的变化而变化,水压与水深成正比。因此,水量越多意味着压力越大,信号被转换成工程单位(磅/平方英寸-PSI 或深度,单位为m、ft或bar)。据此,您就可以知道压力传感器上方的水深。有时,这些测量值被称为绝对深度。我不是特别喜欢“绝对”这个词。因为我始终认为有可能存在极低的测量误差。我认为“绝对”代表的含义是:所有对传感器隔膜施加的压力都会被转换成电信号,然后这些信号由仪器的固件转换成深度,但如果是这样,情况就变得复杂了...如您所见,Pw则不再仅代表水施加的压力。它也代表大气施加在水面的压力,甚至水的密度,受诸如盐等溶质以及诸如温等环境条件的影响。对于许多应用,这些其他因素可以忽略不计。但是在浅水应用中,有两个因素可能会产生严重影响:盐度(也可解释为水的比重ρ)和大气压。在室温1个大气压(即海平面)下,纯水的比重为1。海水的比重则要高 50%,甚至还取决于温度。因此,考虑温度的盐度测量可用于补偿水位测量。其中一个重要的例子是与海平面上升相关的气候变化研究,如在佛罗里达州Clam Bayou案例的经典文章关于海平面上升的YSI应用指南所描述的。Clam Bayou案例研究也描述了第二个关键变量–大气压。特别是在水深较浅的应用中(YSI认为10 m为浅水),大气压波动会影响水位测量的准确性。正因为如此,我们推荐您使用透气式水位主机。透气式水位主机中的压力传感器通过透气管与大气联通。当使用压差传感器时,这确保了整个测量中自动补偿了大气压力(Pair) 。有时气压会发生剧烈波动,例如在暴风雨期间。在生活中,您甚至可能认识一些可以感知这些变化的人,——也许他们会患上气压性头痛。海拔变化也会影响气压,这也是拉萨气压如此低的一个重要原因。因此,让我们从Clam Bayou向上爬升3,650米,看看大气压补偿有多重要。03高海拔水位的气压补偿 我的同事James在西藏拉萨的客户现场安装了一台 EXO1透气式水位主机。之后他的一位合作伙伴也访问了该地点,并在同一口井中安装了一台配有非透气式压力传感器的EXO2主机,他们也想在那里观察水质。这台非透气式主机的深度传感器只是在出厂前进行了校准。工厂校准可能仍然非常好(深度传感器相当稳定)。但是,俄亥俄州的金泉市海拔为260米,实际的传感器本身是在压力控制室中校准的。这也就是在部署之前深度传感器通常应该在室外现场进行校准的原因。在深水应用中,Pw远大于Pair,这可能无关紧要。但如果是在地表水应用,且使用我们的垂直剖面仪进行深度测量的情况下,则一定要进行现场校准。然而,James的合作伙伴起初并不想测量深度,因此他没有校准深度传感器。尽管如此,深度传感器仍在部署过程中进行了记录。10周后,James查看和分析数据时他注意到了一些显著的差异,如下图所示。James比较了他的EXO1主机和合作伙伴的EXO2主机的测量值。在下图中,左侧Y轴表示EXO1水位值,右侧Y轴表示EXO2深度值,两者均以米为单位:从另一个角度来看数据,James绘制了两条线之间的差值,且还是使用米作为Y轴上的度量单位。该图显示了两台主机所测得的水位值之间相差约6.5-6.85米,此外更重要的是它还显示了值在6.67至6.84 米之间的波动。这一点很有趣引起我们的注意,并还会在我们的最终分析中再次出现。我们已经暗示过,拉萨的低气压可能是引起两个探头测得的数据之间的波动和差值的一个原因,但是这一假设是否得到有力证据的支持?James在右侧Y轴上绘制了以百帕斯卡 (hPa) 为单位的气压测量值,并在左侧Y轴上绘制了两个探头所测的深度差 (m)。作为参考,海平面上的1个标准气压为1013.25hPa。除了这两条线看起来相互跟踪程度外,该图的右轴数据还显示出了气压非常之低,与拉萨的高海拔相对应。James继续评估了两个主机所测的深度差值(X轴、ΔDepth,以m为单位)与Y轴的气压之间的相关性。通过线性回归分析,大多数环境科学家认定它们之间存在非常强的相关性:这为在高海拔地区使用透气式水位测量进行地下水监测这一假设提供了有力的依据。04准确度规格当我看到这些数据时,我想到,如果想知道水是什么时候抽出或流入的,主要的深度测量可能不是最重要的,而是检测变化的能力。换句话说,假设EXO2主机测得的起点为9m实际上是错误的,但我仍然能够检测到几厘米的变化,就像我使用透气式水位主机一样。那么如果我有一台EXO2,又不想再买另一台主机,这样够用了吗?以下为来自EXO用户手册的规格信息:这项研究中使用的EXO2是中等深度 (100m) 主机,其准确度规格约为满量程的±0.04% ,即±4cm。相比之下,EXO1浅水透气式主机 (10m) 的准确度规格为满量程的±0.03% ,即±0.3cm。准确度足足提高了10倍以上!然而... 如果James的同事部署的并不是100m量程的主机,而是浅水不透气的EXO2主机,由于浅水非透气式主机(EXO1或EXO2)在10m量程范围内的准确度为±0.4cm,所以所得测量结果可能会与EXO1透气式水位主机的测量值更接近。当然,前提是已经在现场正确校准了EXO2。假设您打算进行校准,您可能会想,为什么还要这么费心使用透气呢?0.4cm我听着挺好的!请记住这些准确度规格是在受控的海平面条件下测得的。气压仍然是必须考虑的干扰因素。使用透气式水位主机,气压补偿将自动完成。但对于非透气式标准主机,必须从外部完成气压补偿,现在有另一个测量误差被引入总误差预估。这就意味着,在这个高度偏远的地区,气压的一些单独测量必须与探测器的水位测量同时进行,气压测量是可靠的,以最终进行大气压补偿,从而完成最终的水位测量。如果这听起来有点混乱,那是因为确实如此。当在拉萨James现场的百帕的变化相差2-4% (16hPa) 时,要做到这一点颇为困难:最后,相对于含水层的总体积,水位变化所代表的估计体积对于选择仪器时的理解也很要,这将提高应用所需的整体准确度。最终分析:这些有关系吗?所以在这个故事中,我们遇到了不同的状况。有两种不同类型的测量值:深度和透气水位。另一个现实是,EXO2主机没有进行现场校准,这进一步增加了深度测量的误差。但是,总体来说,如果James的客户选择信任这台EXO2主机的深度测量结果,而不是EXO1的透气水位测量结果,会发生什么?再看上图,气压变化在 648-632hPa之间波动,EXO1报告的水位变化约为6cm(3.045-2.985m)。但是EXO2报告的水“位”变化为20cm (9.98-9.68)。我们可以估计出,EXO2报告的约17cm的差异是由缺乏气压补偿导致(6.84-6.670m,来自上面的差异图)。如果未进行此补偿,操作人员怎么知道地表水流入、流出或其他因素正在发生呢?如需更多讨论和信息,请联系James.Chen@xylem.com 。05 Case Study此案例研究说明了为什么YSI建议您使用经过适当校准的透气式水位主机进行地下水水位测量。针对地下水监测的YSI标准建议如下:大多数地下水应用,需要使用高准确度的透气式水位传感器。无论是自动(通过透气)还是手动补偿,都建议在高海拔或气压易于出现明显波动的地方实施大气补偿。如果优先考虑其他水质参数,尤其是在可能需要盐度或比重补偿也是必要的,那么透气式水位的主机(而不是压力传感器)是最正确的解决方案。
  • 发布G.O.Sampler智能化地下水低速采样系统新品
    《地块土壤和地下水中挥发性有机物采样技术导则》(HJ1019-2019)提出了地下水采样的几条具体操作要求。(1)洗井低速抽水。开始洗井(采样前洗井,并非成井洗井)时,以低流量抽水,速率应在100~500ml/min,洗井过程应实时测定地下水位,确保水位降幅<10cm。(2)洗井过程中连续三次测定的水质稳定。记录抽水开始时间,同时洗井过程中每隔5分钟读取并记录pH、温度、电导率、溶解氧、氧化还原电位及浊度,连续三次采样达到以下要求(表1)即可结束洗井。检测指标稳定标准pH±0.1以内温度±0.5℃以内电导率±10%以内氧化还原电位±10mV以内,或在±10%以内溶解氧±0.3mg/L以内,或在±10%以内浊度≤10NTU,或在±10%以内(3)取样过程避免样品与空气接触。地下水洗井和采样都应避免对井内水体产生气提气曝等扰动,尤其是以VOC为分析目标的采样。各种对水体的扰动,都会引起溶解氧的变化和水中挥发性物质的散逸,导致样品分析结果不准确。因此,尽量避免取水全过程中水样与空气的接触。智能化地下水低速采样系统布设在采样井中,通过气囊泵采样、水质参数监控和智能化控制的系统,实现地下水自动化和定制化采样目标,完全符合HJ1019-2019的技术要求。现场布设完成后,即可实现自动化和标准化操作,大大提高了采样效率。主要原理智能化地下水低速采样系统,采用带有泄降控制单元的气囊泵,固定在地下水位以下,水体在水位压力的作用下自动充满气囊。地面智能控制器内的高压充气泵提供气源动力,对泵体内气囊进行挤压,将气囊中的水样提升至地面的水质智能检测单元,对pH、温度、电导率、氧化还原电位、溶解氧和浊度等6个参数进行实时监测。当6个参数的变化符合HJ1019-2019的技术要求时,水样自动流入样品收集器。采样过程中,地下水位的变化由泄降控制单元进行监控,当水位下降超过10cm时,控制器自动停止工作,当含水补给水位恢复到10cm以内时,控制器自动启动采样。水样与空气全过程无接触,气囊和水样管路均采用特定材料,对VOC没有化学吸附,最大程度地保留水样的原来状态。技术优势G.O.Sampler智能化地下水低速采样系统属于创新型产品,多项技术在国内属于首创,具有独特的技术优势。l 完全符合规范HJ1019-2019的标准化采样(低速、无扰动、洗井监测),全过程自动化。l 水位泄降控制单元与气囊泵一体化设计,具有大气压补偿功能,水位测量更准确。l 水路管道均为特定材料,无化学吸附,最大程度保持样品原状。l 采样信息自动记录。l 采样频次和监测频次可调节。l 洗井完成后水质数据可作为现场测量的指标存储和传输。l 多种数据协议接口,兼容第三方数据平台。l 系统维护频率低。主要构成G.O.Sampler智能化地下水低速采样系统主要包括:气囊泵、水位泄降控制单元、水质智能监测单元、智能控制器、管路系统。(1)气囊泵气囊泵(图1)是一种低流速、无扰动式地下水洗井及采样设备,适合于各类地下水尤其是VOC类污染物样品的采集,适于各种大小监测井。泵体内有气囊,上端连接进气管和出水管,分别与控制器和水质智能监测单元连接,全过程空气与水样无接触。气囊泵的应用,可以大大减少洗井水量,与传统的抽水泵洗井采样方式相比,具有低流量、低速率、无扰动的优势。(2)泄降控制单元泄降控制单元用于地下水采样中的水位降幅监测,通过地面的智能控制器内大气压力补偿,获取精准的地下水动态水位。泄降控制单元集成于气囊泵泵体,采用一体化设计,完全实现水位变化与泄降控制的协同自动化。(3)水质智能监测单元水质智能监测单元包括一个特定材料的流速池和多个水质测量传感器,可以对水样中的pH、温度、电导率、氧化还原电位、溶解氧和浊度等6个参数进行实时测量,用于采样条件的自动判定。同时也可以作为地下水水质连续监测的水质数据,为后续地下水水质监测大数据平台提供支撑。(4)智能控制器智能控制器是整个采样系统的中控枢纽,可实现提供气源、泄降控制启停、采样间隔设置、水质参数读取存储、洗井结束提示、废水管与样品出水管的自动切换、采样记录的显示与传输等多个功能。同时预留多种数据接口,可匹配接入大数据平台;还具有无线传输和手机App同步功能,可实现数据平台和手机的反向控制。智能控制器和水质智能监测单元作为一体化组合元件,设置在自动监测站内。(5)管路系统管路系统包括气路、水路和电路。其中,水路与气路相互独立,样品全程不与外源气体接触,确保样品的合规性。技术参数单元指标描述气囊泵泵身316不锈钢气囊材料惰性材料最小监测井内径5cm最大操作压力100 psi最小操作压力5 psi最大采样深度61m水质传感器pH范围0~14,精度±0.01温度精度±0.1℃溶解氧范围0~20mg/L,精度±0.2%FS电导率范围1~2000μS/cm,精度±1μS/cm浊度范围0~400NTU,精度±1.0%FS氧化还原电位范围-2000~2000mV,精度±0.01mV智能控制器RS-485通讯接口支持标准的Modbus RTU控制协议,最高支持不低于50Kbps的无差错传输速率。Modbus TCP控制协议以太网口支持标准,传输速率可达到100Mbps4G无线模块支持MQTT标准协议,传输速率5Mbps窄带物联网模块以NB模块为标准,带宽为180KHZ。支持移动、联通NB-IOT卡。创新点:智能化地下水低速采样系统布设在采样井中,通过气囊泵采样、水质参数监控和智能化控制的系统,实现地下水自动化和定制化采样目标,完全符合HJ1019-2019的技术要求。现场布设完成后,即可实现自动化和标准化操作,大大提高了采样效率。G.O.Sampler智能化地下水低速采样系统
  • 新品速递 加拿大Solinst105型测井深仪-低流量采样获得高质量地下水样品
    加拿大Solinst105型测井深仪一、仪器创新点●105型测井深仪是一种简单可靠的测量金属井壁和总井深的测量装置。它可以同时提供两种测量数据而不需要更换探头。●105型测井深仪用来检测金属井壁的顶端和末端,可用于新建和已有井的施工,水裂作用测试,安装阻隔器或其他沉井仪器。●105型测井深仪使用双模式的不锈钢探头,连接清晰读取的扁平测量尺,配有高质量的卷轴。●测井深仪的探头内置高磁性组件来侦测井壁,当探头靠近金属时,探头立刻输出到面板上的声光报警器,发出蜂鸣和闪烁的红灯。当探头远离井壁时,信号停止,从而可以读取记录深度数值。●探头底部的一个活塞装置用于测量总井深,当活塞到达井底时,声光报警信号触发,活塞被推入探头并形成一个回路信号(间隔较长的声光报警信号),总井深可以读取并记录。●卷轴面板上有电池测试按钮,可以检测电池电量,抽屉式的电池仓方便电池更换。二、仪器特性、应用【105型测井深仪的特性】一个探头可以同时测量金属井壁的起始位置和总井深;使用抗拉伸,精准易读的激光刻度测量尺;最大测量尺长度达到600米(2000英尺);可更换的测量尺设计;超长3年保修期;【105型测井深仪的应用】测量总井深;安装地下水井;检测井壁裂缝;安装伸缩式井壁筛网;阻隔器和沉井设备的安装;水裂作用;已有监测井的施工;废弃井的停用;三、仪器规格105 型 测 井 深 仪 规 格 卷轴使用温度 : -20°C 到 +50°C 水下温度(探头和测量尺): -20°C 到 +80°C 浸湿测量(探头和测量尺): PVDF, Santoprene, Delrin, Viton, 316 stainless steel 探头压力等级: 水下最大 1650英尺 (500 米) 探头重量: ~10 盎司(280 克) 探头尺寸: 22 mm x 193 mm 尺寸: ±0.2 英尺 (0.06 米) 卷轴IP等级: IP64 (防尘和防泼溅) 电源: 标准9V碱性电汇 激光刻度的扁平测量尺 LM2:英尺和十分位单位,每1/100英尺标记。LM3:米和厘米单位,每毫米标记。最大600米(2000英尺)长度105型测井深仪探头——探头为316不锈钢材质,水下最大深度500米,内置强磁性组件。测量尺长度选择小轴:30米, 60米, 100米 中轴:150米,250米,300米 大轴:400米,500米,600米 四、低流量采样如何获得高质量地下水样品?自 1996 年以来,低流量采样已成为一种越来越被认可的获取高质量地下水样本的方法。 通过 Puls 和 Barcelona 的工作,美国 EPA 发布了低流量采样的标准操作程序 (EPA/540/S-95/504)。 遵循此类指南可确保收集到的样本能够代表实际现场条件。低流量净化和采样涉及以与周围地下水流量相当的速率(通常小于 500 毫升/分钟)抽取地下水,以便将水位下降降至最低,并将死水与来自经过筛选的取水区的水混合 一口井减少。在取样之前监测净化水的参数(pH、D.O.、电导率、温度等)和浊度的稳定性,因此低流量方法促进与周围地层的平衡并产生真正代表地层水的样品 .低流量方法允许在 40 毫升玻璃瓶中收集高质量、有代表性的地下水样品,用于 VOC 分析。全自动可能不是最佳选择由自动泵控制器操作的气动气体驱动泵通常被选为低流量吹扫和采样的理想设备; 然而,自动化这些采样器可能不是最好的方法。对于补给缓慢的井来说,自动化抽水率或水位下降通常不是一个好主意。 当补给速率低于泵送速率时,可能会发生不需要的瞬时清洗,而不是接近井采收率的首选缓慢而稳定的泵送速率。 快速去除低水力传导率地层中的水会增加水流回井中的速度,从而在井补给时产生湍流和浑浊。一旦水位低于传感器,一些自动泵送控制设备就会停止驾驶循环; 传感器再次检测到水(井已恢复)后,将重新启动驱动循环。 这可能会导致不完整的驱动循环和不一致的流速,而不是首选的缓慢温和泵送速率。合适的系统应允许水缓慢下降至最大落差小于 0.1 米(或立柱水柱的 1%),同时监控整个泵送过程。在快速恢复/补给井中,设置自动泵控制器以保持最小压降(小于 0.1 米)是非常可行的。 正确的驱动和排气时间很容易确定和设置。最后,与任何现场设备一样,最佳做法是让现场采样员或技术人员调整设备以适应每口井的泵送特性,而不是依赖自动化设备。Solinst 低流量的设备Solinst 气囊泵是低流量采样的理想选择。 泵为不锈钢材质,直径为 1.66 英寸(42 毫米)或 1 英寸(25 毫米)。 气囊有 PTFE 或 LDPE 可供选择。 提供各种用于低流量应用的设备。 使用 Solinst 电子泵控制单元,双阀泵和气囊式泵能够提供低至 100 毫升/分钟的流速。气囊泵允许在驱动循环期间非常缓慢、稳定地压缩气囊,这与其他一些采样器不同,因为它可以设置为提供与环境地下水流量相当的一致速率。 这会产生具有代表性的高质量未受干扰的 VOC 样品。 使用低流量技术,减少了湍流并最大限度地减少了废气,从而提供更准确和可靠的 VOC 样品收集。与 Solinst Levelogger水位计 应用程序或笔记本电脑一起使用的水下式 Levelogger 水位计可以在现场查看实时水位读数,并允许在清洗和采样期间监控实际下降。 可以根据液位记录器读数手动操作泵。
  • 地下水采样器
    table width="624" cellspacing="0" cellpadding="0" border="1" align="center"tbodytr style=" height:25px" class="firstRow"td style="border: 1px solid windowtext padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果名称/span/p/tdtd colspan="3" style="border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign="bottom" width="491" height="25"p style="text-align:center line-height:150%"strongspan style=" line-height:150% font-family:宋体"地下水采样器/span/strong/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"单位名称/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"北京市水科学技术研究院/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系人/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="168" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"金桂琴/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="161" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"联系邮箱/span/p/tdtd style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="162" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"156116588@qq.com/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"成果成熟度/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/span/p/td/trtr style=" height:25px"td style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="132" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"合作方式/span/p/tdtd colspan="3" style="border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width="491" height="25"p style="line-height:150%"span style=" line-height:150% font-family:宋体"□技术转让 □技术入股 √合作开发 □其他/span/p/td/trtr style=" height:304px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="304"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"成果简介:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/83a0c3da-34fd-42d3-a181-2258f8b30000.jpg" title="16.jpg" style="width: 400px height: 301px " width="400" vspace="0" hspace="0" height="301" border="0"//pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本设备历经近十年的技术攻关和持续研发,突破了输水管线和电缆线缠绕技术瓶颈,研发了地下水取样和地下水水位同步测量技术,开发了人工控制模块,设计集成运输构架,解决了取样器容易前翻问题,实现了全自动、自定深、大样量、全地形的地下水样品采集和地下水水位监测。目前,已研制出第四代产品。/span/pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"主要技术指标:/span/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/c69e93ab-6d0b-44d6-981b-e76dd26bf7ca.jpg" title="002.jpg"//pp style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"技术特点:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本设备采用模块化设计,高度集成各系统功能。包括结构支架系统、控制和操作系统、电力传导系统、机械传动系统、绕线(管)系统、滑轮系统、提水系统、发电机等。通过外带小型发电机或附近的电源电力供给后,调节调速装置将电机的速度调至合适范围,把潜水泵送至指定液面。其后,潜水泵抽水经输水系统将水样输送至地面取样器中;同时,输水系统中的标尺和水位报警探头可以明确告知水泵所处位置,实现取样和水位监测同步。 /span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"1/spanspan style=" line-height:150% font-family:宋体"、控制与操作系统:由电源总开关、电机调速器、水泵上升下降调节器、水泵开关、水位信号等组成。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"2/spanspan style=" line-height:150% font-family:宋体"、电力传导系统:本设备运行是依靠发电机发电或外接电源作为动力。水泵的供电是通过电刷和摩擦板共同来完成,电机供电则通过电机开关控制直接供电。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"3/spanspan style=" line-height:150% font-family:宋体"、机械传动系统:通过涡轮减速机控制速度,并传递给水管绕管器,绕管器中标为中轴,一端连接减速机,一端连接链条轮盘,链盘通过链条将动力传给电缆绕线器的一端链轮,从而带动绕线器盘动电缆。/span/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"4/spanspan style=" line-height:150% font-family:宋体"、缠绕系统:分为绕线系统和绕管系统,均由电机提供动力,缠绕系统主要是由轮盘和中轴组成,提过动力转动轮盘实现线管的缠绕,再通过定滑轮来实现线和管的上下运动,采用分线器解决线管缠绕问题。/span/p/td/trtr style=" height:75px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="75"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"应用前景:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"根据我国行政区划,县级及以上的行政区域达到3000多个,县级及以上的行政区域的水务、环保、国土等部门对地下水资源和地下水环境负有一定职责,存在对产品的需求。此外,国内的部分大专院校、科研机构等对地下水环境研究也存在采样设备需求。另据调查发现,目前国内还未发现同类设备。据此初步估算,国内每年需求量2000台左右,每台按7.5万元计,每年市场需求金额约1.5亿。/span/p/td/trtr style=" height:37px"td colspan="4" style="border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width="624" height="37"p style="line-height:150%"strongspan style=" line-height:150% font-family: 宋体"知识产权及项目获奖情况:/span/strong/pp style="text-indent:28px line-height:150%"span style=" line-height:150% font-family:宋体"本仪器获得实用性新型专利2项(多功能全自动地下水水样采集装置,ZL201620834516.0;便携式自动升降地下水动态采样器,ZL201020574275.3),外观设计专利1项(地下水取样机,ZL201730071804.5),荣获北京市科学技术委员会、北京市发展和改革委员会以及北京市经济和信息化委员会等6部门联合颁发的北京市新技术新产品(证书)1项。/span/p/td/tr/tbody/tablepbr//p
  • 关于地下水监测采样器 你了解多少?
    随着地下水监测技术的不断发展,国内外研制出了适应不同地下水监测井类型、采样目的及要求的多种类型地下水采样设备。根据设备设计结构和采样原理,大致可分为取样筒式采样器、惯性式采样器、气体驱动式采样器和潜水电泵式采样器。  1、取样筒式采样器  取样筒式采样器由一绳索与采样筒组成。根据取样筒取样原理、制作材料,采样筒分为多种类型:(1)在采样筒上安装阀体控制地下水样品的采取,(2)通过液压及取样筒下放速度控制进行地下水样品采取,(3)筒体可采用不锈钢、PVC等多种材料制作,也可直接采用聚乙烯袋替代。采样时通过绳索将采样筒从井口下放至地下水采样层位,采样筒采取目标深度地下水试样,实现地下水采样。该采样器原理简单、制作方便、成本低,且受监测井井径、采样深度影响较小,由于采样器每次只能进行单筒采样,当采样深度较大及井径较小时采样效率较低。  2、惯性式采样器  惯性式采样器由采样管与惯性泵泵头组成。惯性泵泵头内设计有单向进水装置,安装在采样管底部,放入到地下水监测井中指定采样深度,采样管上部露出井口,徒手或者采用机械快速下压提拉采样管,在惯性力作用下快速下压时地下水进入采样管中,提拉时单向阀关闭,使采样管中地下水样品液面逐渐上升至采样管上端口流出。该类采样器外径小,可应用于小口径地下水监测井,采样深度可达到90m。  3、气体驱动式采样器  气体驱动式采样器由气体驱动管、采样管及泵体组成,根据泵体结构设计可分为有气囊泵、U形管采样器等。高压气体经过气体驱动管进入泵体中,驱动地下水进入采样管,然后将高压气体释放,地下水在地层压力作用下进入泵体,如此循环,地下水样品从采样管中返出地面,实现地下水采样。该类采样器结构较复杂,但适用范围广,采样深度可从十几米至几千米,除了极小井径的地下水监测井,可适用于大部分地下水监测井,并且采样效率较高。  4、潜水电泵式采样器  潜水电泵式采样器是将潜水电泵下入至采样层位,通过潜水电泵将地下水样品输送至地面实现采样操作,采样效率很高,但受电线及潜水电泵制作工艺限制,采样器要求井径较大、采样深度相对较浅。
  • 力合科技在“2023地下水污染防治技术与方法学术会议”上隆重推出《地下水监测新模式及数据应用》
    4月13日至16日,2023地下水污染防治技术与方法学术会议在重庆召开,我公司总工程师黄海萍在地下水污染监测、预警与管理技术与方法分会场发表了题为《地下水监测新模式及数据应用》的主题演讲,向与会专家和业界朋友们汇报了公司用于地下水监测的产品和解决方案,并分享多监测模式数据融合支撑地下水评估、污染防治的成功案例和经验。政策背景随着国家相关部委《生态环境监测规划纲要(2020-2035年)》、《地下水污染防治实施方案》、《“十四五”土壤、地下水和农村生态环境保护规划》等针对地下水污染防治工作系列政策和规划的出台,建立地下水监测体系,完善地下水环境监测网络,建立地下水污染防治体系显得尤为重要。解决方案01围绕地下水监测工作的要求开展监测监管能力建设,进一步做好地下水管理的支撑工作,推动解决地下水污染的突出问题。我公司推出地下水环境监测监管整体解决方案,以监测来支撑“评”与“治”,推进地下水污染问题的解决。地下水环境监测模式02力合科技地下水环境监测监管整体解决方案依据地下水业务管理和监测需要,有原位探头监测、抽取式自动监测站、移动监测车监测、采样+实验室分析四种监测模式,符合《地下水环境监测技术规范》(HJ 164-2020)》的相关要求,可根据不同应用场景和实际监测需求选择最佳的地下水监测模式。应用平台03地下水环境监测监管平台是一个基于互联网技术和地下水监测数据的信息化管理系统,主要用于地下水监测数据的采集、处理、分析和共享。通过实时监测地下水质量和水位变化等指标,及时预警并处理地下水污染事件,保障地下水安全。主要有以下特点:(1)基于地理信息系统(GIS)技术,地图可视化能够让使用者更直观地了解地下水质量和水位变化的空间分布情况。(2)通过地下水溶质运动模型和地下水水动力模型,模拟地下水中污染物质的扩散与转移规律,对地下水系统进行分析和预测,预测潜在的污染危害范围,为地下水开发、管理和保护提供科学依据。(4)利用人工智能算法,对地下水监测数据进行处理和分析,识别异常变化和预警地下水污染事件。典型案例04
  • 构建全国地下水环境监测网 《地下水污染防治实施方案》发布
    p  生态环境部、自然资源部、住房和城乡建设部、水利部和农业农村部近日发布了《关于印发地下水污染防治实施方案的通知》。方案对我国地下水的污染监测进行了详细规定,要求2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。/pp  到2020年,初步建立地下水污染防治法规标准体系、全国地下水环境监测体系 到2025年,建立地下水污染防治法规标准体系、全国地下水环境监测体系。/pp  strong我国现行的《地下水质量标准》是2017年发布的,包括常规指标和非常规指标共93项。但地下水环境监测的相关技术指南还缺失中。/strong/pp  地下水的监测主要设备为监测井,目前我国境内有基于各种用途的监测井,如国家地下水监测工程中监测井,建设项目环评要求设置的地下水污染跟踪监测井、地下水型饮用水源开采井、土壤污染状况详查监测井、地下水基础环境状况调查评估监测井、《中华人民共和国水污染防治法》要求的污染源地下水水质监测井等。其中strong国家地下水监测工程是我国投资22亿建设的,其中包括20401个监测站点/strong,但是这些站点配备的仪器设备仅为水位仪和采样器 根据监测井位置不同,每年会对水质进行35项常规监测或者96项全项监测。/pp  此次方案要求,2020年底前,加强现有地下水环境监测井的运行维护和管理,完成地下水监测数据报送制度。2025 年年底前,构建全国地下水环境监测网,按照国家和行业相关监测、评价技术规范,开展地下水环境监测。京津冀、长江经济带等重点区域提前一年完成。/pp  按照“大网络、大系统、大数据”的建设思路,积极推进数据共享共用,2020 年年底前,构建全国地下水环境监测信息平台框架。2025 年年底前,完成地下水环境监测信息平台建设。/pp  span style="color: rgb(255, 0, 0) "以现有地表水监测系统为参考,我国地下水环境监测网很可能采取短期内以手工监测为主,逐步建立自动监测体系的布局。/span/pp  全文如下:img src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style="vertical-align: middle margin-right: 2px "/a href="https://img1.17img.cn/17img/files/201904/attachment/6863833b-dbba-4413-94e9-f0d66b76db35.pdf" title="地下水污染防治实施方案.pdf" style="color: rgb(0, 102, 204) font-size: 18px text-decoration: underline "span style="font-size: 18px "地下水污染防治实施方案.pdf/span/a/ppbr//p
  • 3053万大单!国家地下水监测工程运行维护与地下水质监测(2021-2023)
    项目编号:0733-22171032项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023)预算金额:3053.6900000 万元(人民币)采购需求:1、本次公开招标项目名称:国家地下水监测工程运行维护与地下水质监测(2021-2023),共15包,各包均为2022年和2023年一招两年,合同一年一签。资金来源为中央财政资金,其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。2、招标项目概况和简明技术要求及各包预算等如下表:序号分包编号分包名称2022年分包预算(万元)2023年分包预算(万元)(预计金额)主要工作内容/工作量工作周期2022年2023年2022年2023年10733-22171032/1国家地下水监测工程2022年度运行维护(河北省部分)220.30345.74开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展215处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。开展607处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展607处地下水监测站点样品采集与37项常规指标检测分析。运行河北秦皇岛地下水与海平面综合监测站,确保实验场环境的正常运行。2022年5-12月2023年5-12月20733-22171032/2国家地下水监测工程2022年度运行维护(山西省部分)193.07230.13开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展133处地下水监测站点样品采集与37项常规指标检测分析。开展338处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展338处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月30733-22171032/3国家地下水监测工程2022年度运行维护(内蒙古自治区部分)264.49368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展190处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月40733-22171032/4国家地下水监测工程2022年度运行维护(辽宁省部分)161.13297.14开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展166处地下水监测站点样品采集与37项常规指标检测分析。开展455处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展455处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月50733-22171032/5国家地下水监测工程2022年度运行维护(吉林省部分)213.56339.07开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。开展498处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展498处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月60733-22171032/6国家地下水监测工程2022年度运行维护(黑龙江省部分)234.13365.31开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展192处地下水监测站点样品采集与37项常规指标检测分析。开展496处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展496处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月70733-22171032/7国家地下水监测工程2022年度运行维护(江苏省部分)117.66191.38开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展124处地下水监测站点样品采集与37项常规指标检测分析。开展336处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展336处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月80733-22171032/8国家地下水监测工程2022年度运行维护(安徽省部分)189.42313.68开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展115处地下水监测站点样品采集与37项常规指标检测分析。开展370处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展370处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月90733-22171032/9国家地下水监测工程2022年度运行维护(山东省部分)290.78435.76开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展256处地下水监测站点样品采集与37项常规指标检测分析。开展640处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展640处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月100733-22171032/10国家地下水监测工程2022年度运行维护(河南省部分)226.30330.22开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展187处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。开展485处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展485处地下水监测站点样品采集与37项常规指标检测分析。运行河南郑州地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月110733-22171032/11国家地下水监测工程2022年度运行维护(四川省部分)140.80188.60开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展109处地下水监测站点样品采集与37项常规指标检测分析。开展277处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展277处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月120733-22171032/12国家地下水监测工程2022年度运行维护(陕西省部分)161.60255.13开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展136处地下水监测站点样品采集与37项常规指标检测分析。开展360处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展360处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月130733-22171032/13国家地下水监测工程2022年度运行维护(甘肃省部分)232.77368.25开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展186处地下水监测站点样品采集与37项常规指标检测分析。开展500处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展500处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月140733-22171032/14国家地下水监测工程2022年度运行维护(青海省部分)148.70232.91开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展98处地下水监测站点样品采集与37项常规指标检测分析。开展266处国家地下水监测站点及辅助设施的 看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展266处地下水监测站点样品采集与37项常规指标检测分析。2022年5-12月2023年5-12月150733-22171032/15国家地下水监测工程2022年度运行维护(新疆维吾尔自治区部分)258.98370.40开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展162处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。开展410处国家地下水监测站点及辅助设施的看护、巡查、和维修重建,井深测量与洗井清淤,确保监测站点和监测仪器的正常运行环境,保障水位水温数据的及时性、持续性与准确性,开展410处地下水监测站点样品采集与37项常规指标检测分析。运行新疆昌吉地下水均衡试验场运行维护,确保实验场环境的正常运行。2022年5-12月2023年5-12月合计3053.694631.973、本项目为非专门面向中小企业采购项目,采购标的对应的中小企业划分标准所属行业:《中小企业划型标准规定》(工信部联企业〔2011〕300号)中(十六)其他未列明行业。4、本项目评标、授标均以包为单位。拆包投标或多包合并一个报价投标将被视为无效投标。5、本项目各包均为2022年和2023年一招两年,合同一年一签。其中2022年财政资金已落实,2023年度预算金额为预估金额,最终预算以财政部门最终批复为准。6、本项目为国家财政预算投资项目,如因国家政策调整或其他不可抗拒的因素造成预算调整或取消,采购人和招标代理机构将不对投标人和中标人作出任何补偿,请投标人注意风险。合同履行期限:合同签订之日起至2023年12月。本项目( 接受 )联合体投标。
  • 20469个地下水监测站点!2022年国家地下水监测报告发布
    近日,《国家地下水监测报告2022》正式发布。报告指出:国家地下水监测网设有地下水监测站点20469个,其中自然资源部门10171个。根据地下水赋存介质类型,地下水监测站点可分为三种类型:松散岩类孔隙水监测站点17193个,占比84.0%;基岩裂隙水监测站点1933个,占比9.4%;岩溶水监测站点1343个,占比6.6%。其中,松散岩类孔隙水监测站点可进一步划分为:浅层地下水监测站点12208个,深层地下水监测站点4985个。2022年,国家地下水监测网(自然资源部分)基础设施保持完好监测设备运行稳定,地下水自动监测设备日到报率保持在98%以上,共采集获取水位水温监测数据约8900万余条。其中,自动采集传输接收有效数据8241万条、野外提取补录数据659万条。开展地下水水质年度监测一次,获取37项常规指标数据4479组。此报告监测数据来源于自然资源部门地下水监测站点。根据监测数据显示:全国地下水水位总体稳定,长江中上游地下水受干早影响水位主要呈下降趋势:全国地下水质量保持稳定,影响水质的主要超标组分为锰、铁、总硬度、溶解性总固体、钠、硫酸盐、氯化物、碘化物、氟化物、氨氮等。监测网产生的数据和成果为生态文明建设和自然资源管理提供与地下水相关的科学建议和专项解决方案。研究分析四川、重庆、湖北、湖南、安徽、江西、江苏、贵州和河南旱季地下水动态状况,为国家抗旱工作提供专业建议。开展内蒙古东部宝日希勒等五个矿区地下水监测,分析煤炭开采对生态环境的影响,为矿产资源开发利用提供支撑。分析全国省级行政区地下水质量变化,直接填补可持续发展目标 (SDG)指标监测数据缺失,为服务联合国 2030 年可持续发展议程提供科技支撑。
  • 行业标准:地下水采样技术规程和汞蒸气测量规程
    近日,自然资源部组织有关单位制定并公示了《地下水采样技术规程》和《汞蒸气测量规程》报批稿。《地下水采样技术规程》(点击下载)本文件规定了地下水采样器具、样品容器、采样方法、样品的保存运输与送检、质量控制等方面的 技术要求和操作规定。本文件适用于水文地质、工程地质、环境地质等工作中地下水采样,其他类似工作可参照执行。地下水样品检测种类及常见检测项目见表1。 《汞蒸气测量规程》(点击下载)本文件规定了汞蒸气测量工作的设计书编审、仪器设备、野外测量、室内分析、资料整理与成果图件、异常评价、成果报告编制与资料提交等方面的技术要求。本文件适用于地质调查、矿产资源勘查、环境与灾害调查监测和考古中的汞蒸气测量工作。其它领域进行的类似工作亦可参照执行。汞蒸气测量的目的是通过壤中气汞、大气汞、水中汞、土壤、水系沉积物、底积物和岩石等固体样品中汞量测定,为地质调查、矿产资源勘查、环境与地震等灾害调查监测、古墓和古文化遗址等考古工作提供依据。汞蒸气测量仪器:冷原子吸收式测汞仪和金膜测汞仪。仪器附件:热解炉、饱和汞蒸气瓶、石英舟、微量注射器。
  • 官方拟出地下水新标准 建国家级地下水监测网络
    中国地质环境监测院副院长张作辰29日在京透露,在现行地下水质量标准实施近20年之后,官方拟对其进行修订。目前新标准已完成初稿,待征求相关部门意见、报国家标准化管理委员会审查后出台。  目前中国施行的地下水标准制定于1993年。张作辰在当日国土资源部召开的新闻通气会上表示,随着中国经济社会发展和对地下水状况的认识不断深入,需要对该标准进行重新修订。  他表示,考虑到近20年间国家人类工程活动对地下水环境的影响,新标准将增加和修订一些具体的标准,将比现有标准更加完善。  对于目前中国地下水监测现状,张作辰透露,截至2013年底,中国共有各级各类的地下水监测点约1.6万个,监控面积约110万平方公里,其中包括水位流量监测点2000个,全国地下水监测网的建设初具规模。不过仍存在国家级地下水监测点比较少,自动化监测程度不高,监测能力比较低,不能满足经济社会发展要求等问题。  为此,国土资源部、水利部等相关部门已部署在未来三年建立国家地下水监测工程。其中,国土资源部将建立103个国家级地下水监测点。建成之后将会采集水量,并开展水体的检测,并实现水位、水温等数据的自动的采集和监测。  上述新建工程结合现有的地下水监测站网可以形成比较完整的国家级地下水监测站网,为社会提供及时准确、较为全面的地下水动态信息。  国土资源部今年颁布《地质环境监测管理办法》并且自7月1日起施行。其中就包含地下水、地质灾害、矿山等地质环境监测。  据介绍,这个政策在组织实施、网络建设和监测成果等方面都有相关的规定,同时还明确了各级国土资源主管部门的主要职责。
  • 广电计量守护地下水环境安全 2022年国家地下水监测项目通过验收
    近日,水利部信息中心在北京组织专家组,对2022年国家地下水监测工程(水利部分)监测系统运行维护和地下水水质监测(水质部分第二批)项目召开线上合同验收会。业主单位水利部信息中心和验收专家听取广电计量验收汇报。专家组一致评价:项目采样过程严谨,质量控制措施合理,成果材料完整,同意通过验收。   “十四五”时期,国家明确建立以“水生态系统健康”指标为核心,以“水生态保护”“水环境保护”和“水资源保障”三方面指标为支撑的指标体系,着力推动水生态环境保护由污染治理为主,向水生态、水资源、水环境等要素协同治理、统筹推进转变。   根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文[2022]79号)任务安排,广电计量继圆满完成“2021年北京等17省(市、区)国家地下水监测工程(水利部分)地下水水质监测项目”后,再度承接2022年山西等18省地下水监测、调查与评估工作。任务总计1112眼国家地下水监测工程(水利部分)监测井,主要分布于东北、华南、西南、西北、华中18个省(市、自治区),任务覆盖面积占全国国土总面积71%。   面对点位分布散、时间紧、任务重的挑战,公司的全国一体化管控为项目顺利开展打下了坚实基础。广电计量统一调度8个计量检测基地共计162人组建了项目服务团队,服务过程统一调度、多地协同,为顺利推进实施计划提供了重要技术保障。期间,技术人员克服南方夏季高温酷暑,西藏地区高原反应等自然环境带来的不利影响,经合理安排采样计划,顺利完成安徽、新疆、云南等时值疫情区域的采样任务。   不同于常见的地表水监测任务,地下水监测对在线监测设备的取放方法、洗井设备(泵)的选择及采样时间等都有特殊要求。为确保项目完成质量,保障团队实行“公司、计量检测基地、项目组”三级质量保障措施和综合保障体系,确保各项工作既能严格落实质量控制,保证所得检测数据准确可靠,又能高效协同不误进度。最终,项目采样工作较合同要求时间提早10天完成,为项目后续检测及成果汇总工作提供了时间保障。   作为国有上市的第三方技术服务机构,广电计量在生态环境领域的服务能力覆盖水质、空气废气、噪声、土壤、固废、电磁辐射等领域,可提供全面的环境检测和技术服务,是国家、省部级水质监测分析、土壤修复评估检测服务、农田污染综合管理检测等重大项目的承接和技术支撑单位。   广电计量近年来承担了国家部委及广东、湖南、河南、辽宁、广西、安徽、内蒙古、吉林等多个省份的水资源环境调查服务项目,以强有力的检测技术支撑,为政府部门科学开展水质评价、打赢“碧水保卫战”作出积极贡献。后续,广电计量将继续夯实项目经验及检测能力,为监管部门提供强有力的技术支撑保障,为生态环境管理、区域环境调查提供专业、全面的技术服务,积极履行国企在生态环境保护事业中的责任担当,为守护蓝天、碧水、净土,建设美丽中国贡献技术力量!
  • 国家地下水监测工程全面推进 这两类仪器成最大赢家
    p  今年是国家地下水监测工程实施的关键时期,从今年中旬开始,各个省份纷纷开始了仪器采购工作。据仪器信息网小编统计,此次仪器采购涉及的仪器多样,包括实验室仪器(a href="http://www.instrument.com.cn/news/20161122/206918.shtml" target="_self" title=""国家地下水监测工程1509万元仪器开始招标/a)、在线监测仪器(a href="http://www.instrument.com.cn/news/20160607/193084.shtml" target="_self" title=""水利部11亿元地下水监测工程将开展大批仪器采购工作/a)和现场仪器,而从众多招中标信息中看出,strong水位监测仪器/strong和strong采样器/strong成为采购量最大的两类仪器。/pp  其中水位监测仪器为各个省份单独采购,部分名单如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/0d393e77-4d90-4b67-b64e-1bb31f66571b.jpg" title="QQ截图20161202150902.jpg"//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/28715758-8a85-4607-8f4b-4f41fbc7d22e.jpg" title="QQ截图20161202150934.jpg"//pp  采样器为水利部集中采购,详情如下:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201612/insimg/06044ebe-e576-47cb-8522-639ad25e0297.jpg" title="QQ截图20161202150949.jpg"//pp  据悉,国家地下水监测工程总体建设任务包括1个国家地下水监测中心、7个流域中心、63个省级(含新疆建设兵团)监测中心和信息节点、280个地市分中心;共计20401个监测站点、相应配套地下水位信息自动采集传输设备20401套等;工程总投资为222218万元。其中水利部门投资110262万元,建设10298个监测站点。故除水利部分以外,国土资源部负责部分估计也会很快开始招标,仪器信息网会持续关注!/p
  • 从国家地下水监测中心建设看地下水检测仪器需求
    投资22亿的国家地下水监测工程自2015年开始,已经建设三年多,其中一项重要的工作就是建设国家地下水监测中心1个,用来检测地下水水质。经过这两年招标,目前实验室已经购买大批量仪器,此实验室仪器设备应该算是地下水检测设备最齐全实验之一。  仪器信息网小编从国家地下水监测中心实验室招标过程,盘点了地下水检测仪器需求。  目录如下:序号名称采购数量采购品牌1采水器3台2潜水泵5台3过滤器4台4普通显微镜1台5恒温培养箱1台6恒温干燥箱(小)1台7马弗炉1台8快速制备色谱1台9冷藏柜10台10固相萃取仪2台11强力振荡萃取机2台12超声波清洗器1台13电子天平2台14电子天平(万分之一)1台15电子天平(十万分之一)1台16酸度计2台17大肠菌快速测定仪1台18溶解氧测定仪6台19红外测油仪1台20浊度仪1台21总、测定仪1台22原子荧光分光光度计1台23TOC测定仪1台24紫外-可见分光光度计2台25BOD测定仪3台26电位滴定仪2台27实验室lims数据处理系统1套28超高效液相色谱仪1台UPLCH-Class29超高效液相色谱-串联四极杆质谱仪1台OAUPLCOn-LineSPE/XevoTQD30超高效液相离子淌度四极杆飞行时间质谱联用仪1台UPLCI-Class/VIONIMSQTOF31全二维气相色谱-飞行时间质谱联用仪1台Pegasus4D-C32气相色谱仪3台Intuvo900033气相色谱-串联四极杆质谱仪1台7890B-7000D34顶空/气相色谱-质谱仪1台AtomxXYZ/7890B-5977B35实验室分析级纯水系统1套36微波消解仪1台37真空泵3台38旋转蒸发仪2台39有机分析专用烘箱1台40低温高速离心机(大、小)3台41卡尔费休水分测定仪1台42气体采样器1台43氮气发生器2台44便携式多参数水质分析仪3台45氮吹仪2台46同位素仪1台47原子吸收分光光度计1台48离子色谱仪1台49连续流动分析仪1台50电感耦合等离子体原子发射光谱仪1台51气相色谱-质谱仪1台52电感耦合等离子体串联四级杆质谱仪1台53气相色谱-高分辨磁式质谱仪1台54荧光显微镜1台55便携式低流量采样器1台56便携式电动采样泵1台57高压灭菌锅2台58水浴锅3台59消煮炉3台60电热板2台61洗瓶机2台62涡旋混匀仪5台63摇床1台64天平5台65色度仪2台66COD仪(加消解器)2台67浮游生物网5台68恒温平板振动器1台69全温震荡培养箱1台70超净台2台71有机溶剂移液器1支72无机溶剂移液器1支73标签机3台  公开资料显示,仪器总价达4190万。
  • 地下水现场必检项目如何选仪器?——《地下水环境监测技术规范》(HJ 164-2020)解读
    一、背景介绍地下水的利用与开采是工业用水的重要来源,为了保护地下水水质和防治地下水污染,做好地下水环境的监测工作是重中之重。《地下水环境监测技术规范》(HJ 164-2020)为首次修订,将于于2021-03-01 实施。在《地下水环境监测技术规范》(HJ/T 164-2004)的基础上,结合十余年地下水污染物监测方法的更新情况和全国实际应用经验进行修订完善,增加了监测井布设、建设和管理等适应当前地下水环境监测需求的内容。该标准的发布实施,将进一步规范地下水环境监测工作,为水污染防治提供有力的技术支撑。 二、标准介绍1. 《地下水环境监测技术规范》(HJ 164-2020)地下水环境监测时的气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等监测项目为每次监测的现场必测项目。2. 《地下水质量标准》(GB/T 14848-2017)地下水质量检测指标推荐分析方法(部分)序号检测指标推荐分析方法1浑浊度散射法2pH玻璃电极法3. 《地下水质检验方法》(DZ/T 0064系列)序号检测指标分析方法标准名称1电导率电极法DZ/T 0064.7-19932氧化还原电位电极法DZ/T 0064.7-1993 三、仪器配置方案●《地下水环境监测技术规范》(HJ 164-2020)要求的必检项目:气温、地下水水位、水温、pH、溶解氧、电导率、氧化还原电位、嗅和味、浑浊度、肉眼可见物等。●“雷磁”提供2种现场检测方案:方案1:配置便携式检测箱,现场取样检测。检测箱配置满足水温、pH、溶解氧、电导率、氧化还原电位、浑浊度的测量,可以选配嗅和味、肉眼可见物的检测配置。方案2:配置便携式检测箱,现场原位检测。检测箱内置DZB-715便携式原位水质检测仪和配套试剂,可以直接投入监测点进行原位测定,满足水位、水温、pH、溶解氧、电导率、氧化还原电位和浑浊度的原位检测。现场必检项目雷磁仪器配置方案测试项目检测方法现场监测仪器型号及名称(方案1)现场监测仪器型号及名称(方案2)水位//DZB-715型原位水质监测仪水温电极法DZB-718L型便携式多参数分析仪(选配ORP电极)pH玻璃电极法氧化还原电位电极法溶解氧电极法电导率电极法浑浊度散射法WZB-175型便携式浊度计注:其他监测项目,请联系销售获取具体方案
  • 自然资源部国家地下水监测工程收官
    p  2019年12月29日,自然资源部国家地下水监测工程收官,自然资源部中国地质调查局在京召开了竣工验收会。由袁道先、王浩、王光谦等14位院士专家组成的专家组验收认为,国家地下水监测工程建设竣工,使我国地下水监测事业产生了质的飞跃,是我国地下水领域具有里程碑意义的标志性成果,标志着我国的地下水监测工作迈入国际领先行列。/pp  会上,自然资源部国家地下水监测工程首席专家李文鹏在会上介绍了工程取得的主要成果。他表示,该工程首次构建了国家级地下水三维自动化监测网,以水文地质单元为基本单位,在人口密集区、国家重大工程区、地下水超采区、地面沉降区进行重点监测,实现了对我国主要平原盆地和岩溶含水层地下水水位、水质的有效监测,大幅提高了我国区域性地下水专业监测的能力和水平。/pp  其次,工程运用物联网和北斗通信技术、大数据及云计算技术,研发了集地下水水位水温和大气压监测数据自动采集、自动传输、数据整编、综合分析及数据共享和信息服务为一体的信息应用服务系统。建设完成国家信息中心与省级节点及数据灾备节点之间的专线网络,实现了国家级和省、市等多级地下水监测网的联动管理和数据信息共享服务。/pp  同时,工程建设完成地下水水质测试与质量控制实验室,可分析无机、有机化学指标100余项,满足国家地下水监测网水质测试和质量控制的需求。改建完成的河南郑州地下水均衡试验场、新疆昌吉地下水均衡试验场及秦皇岛海平面综合监测站,将为我国地下水科学和气候变化等综合研究提供科学观测平台和基础数据。/pp  再次,工程编制了地下水水位水质监测网优化、监测井建设材料和工艺等13项地下水监测标准体系,有效带动了省—市级地下水监测网络建设,并将为后续水资源和生态环保监测网的建设提供依据。北京、内蒙古、河南等10个省级监测井建设累计投入资金3.19亿元,建设完成2389个省级监测井。/pp  此外,自然资源部通过工程实施形成了10171个监测站点建设全过程的水文地质勘探成果资料,全面更新了整个监测区的水文地质参数系列,大幅提升了监测区水文地质认识。/pp  据介绍,国家地下水监测工程建设启动于2015年6月,总投资达22亿元,共建设完成20469个监测站点,由自然资源部和水利部共同建设。其中,自然资源部建设完成10171个监测站点。两年试运行结果表明,水位水温自动监测数据到报率保持在95%以上,每年产生8900余万条水位水温数据,水质测试指标从35项扩展到97项,工程总体运行平稳。所获两次全国水质监测数据已应用于并将持续服务于我国地下水保护、国土空间规划和水资源管理,为地下水资源与环境科学研究提供数据基础。/p
  • 国家地下水监测站点超九成已建成
    p  据央视新闻联播报道,经过两年多时间的努力,国家地下水监测工程取得重大进展,90%以上的地下水监测站点建设已经完成。/pp  目前,天津、河南、山东等10多个省(区、市)站点建设已经全部完成,监测站点实现了地下水位、水温监测的自动采集、自动传输,在地下水监测点建设的同时,地下水监测信息应用服务系统已完成总体设计,该系统将开发地下水监测数据管理、综合分析、地下水数值模拟评价与预测等多个子系统。/pp  中国地质调查局地质环境监测院国家地下水监测项目管理办公室副主任李长青介绍说:“比如:在华北平原地区,我们通过地下水的数值模拟,可以获取地下水的动态变化情况,包括水位水量等方面。”/pp  据悉,国家地下水监测工程将全国划分为16个重点监测区,包括1个国家级地下水监测中心、7个流域监测中心、63个省级监测中心,共建设地下水监测站点20401个。今年是该项工程的收官之年。全面建成后,该工程将结合现有监测站网建成较为完整的国家级地下水监测网,形成一个集地下水信息采集、传输、处理分析及信息服务为一体的国家地下水信息中心。届时,国家地下水监测站点监测控制范围将扩大到350万平方公里,站网密度提高到每千平方公里5.8孔(站),将进一步提高地下水监测的自动化和信息化水平,实现对全国地下水的动态有效监控,为地下水资源合理开发、地面沉降防控等提供科学依据和决策支持。/p
  • 国家地下水监测工程建设完成
    p style="text-indent: 2em text-align: justify "从自然资源部中国地质调查局获悉,2018年,由该单位组织实施,31个省级自然资源主管部门和地质环境监测机构配合,自然资源部门国家地下水监测工程建设全面完成,大幅提升了地下水监测的专业化和自动化水平。/pp style="text-indent: 2em text-align: justify "自然资源部门国家地下水监测工程共建成层位明确的国家级地下水专业监测站点10168个,全部安装一体化地下水自动监测设备,实现了全国主要平原盆地和人类活动经济区的地下水水位、水温监测数据自动采集、实时传输和数据接收,与水利部门地下水监测数据实时共享。/pp style="text-indent: 2em text-align: justify "改建完成西北干旱、华北半干旱地区的2个地下水均衡试验场和1个秦皇岛地下水与海平面综合监测站,实现了土壤水负压、潮汐等要素的实时在线监测,提高了土壤水运移、海平面变化等方面的分析研究能力。/pp style="text-indent: 2em text-align: justify "利用云平台和大数据技术,研发了监测信息应用服务系统和三维地下水云计算实时模拟系统,实现了监测数据管理、动态分析、水质水量综合评价与信息发布等功能,建立了国家—省—市县多级数据共享与异地联动的工作模式。/pp style="text-indent: 2em text-align: justify "建成国家地下水监测网络数据中心,与31个省级节点实现互联互通;建成现代化的水质监控实验室,满足《地下水监测网运行维护规范》中规定的100项水质指标测试监控能力,实现对国家地下水质标准93项指标的全覆盖。/pp style="text-indent: 2em text-align: justify "在国家地下水监测工程实施过程中,首次研发并成功实施了承压—自流井监测技术,有效地解决了承压水与无压水转化过程的自动监测问题,有效解决了水样采集、冬季的防冻和洗井清淤难题;完成了基于北斗传输的自动监测站点建设,解决了无移动信号网络覆盖或信号较弱地区监测数据传输问题;编制了12项地下水监测行业标准规范,提出了多要素综合评价的地下水位和水质监测网优化设计方法,总结形成了多层含水层系统的分层监测井建设技术和服务于生态环保的浅部地下水分层监测井建设技术。/pp style="text-indent: 2em text-align: justify "国家地下水监测工程的建设,形成了10168个监测孔的地层编录和抽水试验资料,获取了丰富的水文地质参数,进一步揭示了区域含水层结构特征,深化了区域水文地质条件认识。信息应用服务系统每年产生近9000万条地下水水位、水温、水质数据,将为水资源科学管理、地质环境问题防治、生态文明建设提供重要支撑。/p
  • 多位专家解析华北地下水治污“处方”
    3月22日,又是一年世界水日。  地下水污染问题让每一个中国人揪心。而在华北平原,地下水是居民饮用水的大部分来源,但其污染问题早就受到各方面的关注。如今,有调查显示,在华北平原众多取样点中,大约一半的水样被严重污染,污染物包括了无机盐、有机难降解物以及重金属。  所以,华北平原地下水污染问题几乎成为全中国地下水污染的标本。如何解决这一问题,已经成为中国环境问题的当务之急。  3月8日,环保部公布,《华北平原地下水污染防治工作方案》(下称《方案》)已经得到国务院批复。14日,环保部部长周生贤公开表示“我们有一个治理规划,并向国务院作了汇报”。《方案》是2011年《全国地下水污染防治规划(2011-2020年)》出台以来,环保部给地下水污染开出的第二次“处方”,也是专门为华北地下水治污开出的“第一处方”。  那么,这份华北平原地下水的“第一处方”是如何出台的?它是否将真的对治理华北平原地下水污染有效?科学家、政府和企业家还有哪些担忧?  《中国科学报》记者带着这些问题,探访了多位业内专家。  高分项目这样炼成  “首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用  记者注意到,就在环保部《方案》获批前两个月,中国地质科学院水文地质环境地质研究所公布了“华北平原地下水污染调查评价”项目的评审结果。  评审结果中提到,该项目“首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用,总体达到“国际先进水平”,最终“以94分的优秀成绩”通过评审。  中国工程院院士、中国地质科学院研究员卢耀如是项目评审专家之一。接受《中国科学报》记者采访时,卢耀如透露,《方案》正是基于这个高分项目的一些成果而制定的。  作为一名水文地质专家,卢耀如经常参与科研项目评审,而获得如此高分的项目他也很少遇到。卢耀如说:“这个项目之所以得高分,是因为其在研究问题重要性的指标上得分非常高。”  中国对地下水问题的关注由来已久,上世纪80年代初的“六五”期间,我国设立了若干国家科技攻关项目,其中第38项便是“华北平原地下水污染评价”。  卢耀如告诉《中国科学报》记者:“那时候水质监测标准相对低一些,地下水更突出的问题是硬水、水位下降、地面沉降这些问题。”涉及水质污染的指标只有“三氮”:硝酸盐——氮、亚硝酸盐——氮以及铵氮。  随后,华北平原发展了钢铁、化工企业,加之农业生产中的农药使用,研究者和管理者才开始看重水质污染。  如今,究竟华北地下水污染到了什么程度?有哪些污染物已经进入地下水环境?这些问题仍是个谜。  2006年,中国地质调查局在国土资源大调查项目的资助下,首次在华北平原开展系统的地下水调查。调查的具体工作由地科院水文地质环境地质研究所(简称水环所)承担。  根据地调局对水环工作的记载,2006年3月,项目启动之初,中国地质调查局便和清华大学联合举办了“地下水污染调查评价培训班”。在为期四天的培训里,河北、天津、北京、山东等省市属地调院、地质环境监测总站的业务骨干学习了这一项目有关地下水污染调查评价的技术。  4月,水环所成立了项目综合组,常务办公人员6人,设组长和副组长。综合组经过协商后,将该项目划分为11个工作项目,并确定了2006年该项目的工作重点是在供水水源地进行地下水污染调查,以及一系列的野外取样工作规范。  项目负责人、水环所副所长张兆吉在采访中告诉《中国科学报》记者,希望这个项目发展起来的技术标准能推广到全国。  2009年,该项目已经完成了1比25万区域地下水污染调查15万平方千米。结果发现,所有采样点中,不用任何处理直接可以饮用的地下水(即I到III类)占36%,经适当处理可以饮用的地下水(IV类)占24%,另有39%的地下水(V类)需经专门处理后才可利用。项目还建设了有机污染物的实时质量监控管理系统,研发了中国特色的地下水样品采集设备,并最终入选中国地质学会2009年度十大地质科技进展。  2010年,该项目还实施过一次规模较大的野外验收。当时,专家组历时10天,沿唐山、天津、北京、河北、河南、山东的野外抽查路线,检查了各取样点的采样记录,确定质量符合要求。同年,地下水污染数据库建立。  这个项目还带动了一系列对华北平原地下水污染的研究。例如,2009年,水环所承担了我国第一个地下水“973”计划项目“华北平原地下水演变机制与调控”,由水环所所长石建省担任首席科学家。据悉,项目的起止年限为2010年至2014年,共5年,总经费4500万元,其中国家“973”专项经费3000万元,自筹经费1500万元。  立项之初,卢耀如作为顾问,多次参加了学术研讨会。“这也是为了配合国土部更好地进行调查。”他说。  这个高分项目便这样按部就班地开展了。  从大科学走向大政策  在历时6年的华北平原地下水污染治理科学研究项目基础上,环保部通过《华北平原地下水污染防治工作方案》  2011年10月,项目接近尾声。正在这时,发生了一个插曲。一名记者联系到张兆吉和石建省,对该项目的调查结果进行了采访,报道指出了最终调查结果“因涉及敏感问题不能公开”,一度将项目组置于颇为尴尬的境地。  一时间,这篇报道在各大网络媒体上大量转载,引起公众的巨大反响。其中不乏批评的声音,舆论指责科学研究不能向公众保密,相关管理部门也批评他们未经允许就披露尚未完成的研究结果。作为项目负责人的张兆吉曾向同行倒过苦水,“感到有些委屈”。  不过,调查项目的继续进行并没有因此受到影响。如今,张兆吉和同事们将已经完成的调查结果以学术论文的形式发表在2012年9月的《吉林大学学报》上。这个插曲反而让调查项目的重要性更引人关注。  按照惯例,一些科研项目在研究过程当中,科研者便会将阶段成果以咨询报告的形式递交给决策部门,以推动在科学研究中发现的问题变成具体措施,进而在现实中得到解决。有的甚至还有可能向国家高层领导递交介绍研究重要性和成果的内参。  卢耀如透露,这次调查也不例外。“研究人员给国务院写了报告,强调地下水污染的严重性,希望能从国家层面重视起来。”他说。据卢耀如了解,除了调查中发现的污染日趋严重外,报告中还涉及今年春节前后向地下含水层打排污井的传言。  2012年初,国务院总理的温家宝在沸沸扬扬的舆论声中看到这份报告。很快,总理的批示下来了,提到由国土资源部、水利部、住房城乡建设部和环保部来共同解决华北平原地下水污染的问题。  “最后加了一句,由环保部牵头。”卢耀如说。  这时,华北平原地下水污染治理这项历时6年的科学研究项目彻底从实验室走了出来。  去年3至4月间,得到温家宝总理批示后,环保部开始着手进一步的政策制定。2012年10月,环保部通过《华北平原地下水污染防治工作方案(2012-2020年)》。方案估计,国家为此将投入200亿元专项资金。  该方案最终获得国务院批复,正式成为华北平原地下水治污“第一处方”。《方案》提出两个目标,即2015年初步建立华北平原地下水质量和污染源监测网、摸清华北平原地下水污染情况,2020年全面监控华北平原地下水环境质量和污染源状况、开展地下水污染修复示范。  今年3月8日,环保部网站公布了这一消息。《方案》提出了三个工作任务:一是加强地下水环境监测,建立华北平原地下水质量监测网 二是保障地下水饮用水源安全,严格地下水饮用水源环境执法,分类防治超标的地下水饮用水源 三是强化重点污染源和重点区域污染防治,加大对重点污染源废水排放和堆放场地污染物渗漏等防治力度,积极推进重金属、有机物和氨氮、硝酸盐氮和亚硝酸盐氮等污染较严重区域的地下水污染综合防治。  此外,《方案》还要求,进一步完善地下水法规制度体系,健全投融资机制和经济政策,加大相关科技研发力度,强化企业和地方防治责任。  无疑,正是环保部该方案的出台,华北地下水“第一处方”从“大科学”真正走向了“大政策”。  避免“多头管理”  地下水管理涉及机构多,但权力机构责任不明。各部门应进一步明确责任,将地下水污染防治工作标准化、程序化  谈到《方案》的评价,接受采访的专家纷纷表示没有阅读全文。即使作为国家环境咨询委员会成员的卢耀如,至今也没有见到该方案的全文。  “从目前来看,这份方案只是提出了非常初步的期望,接下来还有很多工作要做。”卢耀如说,“部门之间怎么协作、重要的防治地点对不对、怎么样投入、哪些力量介入,这些问题现在都不清楚。”  记者了解到,《方案》编制由环保部污防司饮用水处处长石效卷主持,环保部环境规划院副院长吴舜泽是主要编制人。记者随后向环保部提出采访《方案》编制者申请,截至发稿日,尚未得到回复。《方案》编写的过程如同一个“黑箱”。  专家们试图就现有的只言片语对这份“第一处方”初步轮廓进行解读。  首先,《方案》由“环保部牵头”,并由国土部、水利部、住建部共同编制,意味着未来的污染防治责任也由这几个部门共同承担。  一直以来,我国对地下水污染问题的管理饱受诟病。对此,中科院地理科学与资源研究所研究员宋献方称:“业内有句话,叫‘环保不下水、水利不上岸’。”在宋献方看来,目前,我国地下水的管理涉及城建、地质、水利、环保等多个部门。  “各个部门都有自己的调查监测系统和标准,信息资料也都分别分布在这些部门中。”宋献方告诉《中国科学报》记者:“涉及机构多,但权力机构责任不明。”  宋献方建议,如果能使各个部门进一步明确责任,将地下水污染防治工作标准化、程序化会更有利于这项工作。他还指出:“环境问题是一个系统问题,正如地下水问题必须与地表水结合起来看,因此,由环保部门统领,各部门的通力合作也是解决这一问题的良药。”  卢耀如也认为:“《方案》计划建设的监测网,如果光靠环保部重新建立一个新的监测网,既浪费又达不到长期积累数据的目的,这就需要利用现有的监测点和数据资料。”  卢耀如强调:“2015年目标的实现,主要取决于这方面的工作。”  另外,现有技术下,有机污染物仍然靠人工取样、化学分析的方式进行检测,实时在线监测尚未实现。宋献方认为:“2015年要实现监测网,我们还要加大传感器的开发力度。”  总之,业内专家一致认可这一点,环保部出台的这份方案仅仅为未来防治地下水污染的蓝图勾画了一个粗略的轮廓,但释放了政府决心从国家层面推动这项工作的信号。  改变政府“一肩挑”  地下水修复费用昂贵,市场规模被业内专家看好。吸引民间资金的进入,无疑是我国环保事业未来发展的趋势  无论《方案》细则如何,市场往往对来自国家层面的信号格外敏感。伊尔姆环境资源管理咨询(上海)有限公司首席顾问彭勇告诉《中国科学报》记者:“尽管没有参与制定《方案》,但作为相关行业的一员,仍然非常关注和期待。”  彭勇所在的公司业务范围是环保咨询。他说:“未来当地下水防治措施实施相对成熟时,环保咨询行业将会更深入地参与进去。”  卢耀如回忆,当“华北平原地下水污染调查评价”刚刚提出要重点调查有机污染时,澳大利亚一家专门做有机分析的公司马上就看到了商机。  “2006年前后,那家公司派人在上海开了个培训班,把专家请到中国来,仪器也搬来了,我们后来用的仪器和技术就是从那里引进过来的。”卢耀如说。  在他看来,光靠政府的力量难以支撑费用如此昂贵的地下水调查乃至修复。 “搞分析和监测的企业在良好的机制下就能进来,从打井、监测到化验都可以让企业来做。”卢耀如建议。  中投顾问产业研究中心环保行业研究员盘雨宏告诉《中国科学报》记者:“水质监测、污染处理、相关设备制造等产业都将受到国家政策的影响,其中水质监测是整个产业链条的关键环节,影响着下游处理环节的发展趋势。”  而我国地下水污染治理产业还处于萌芽状态,重点污染城市仍然缺乏高效完善的水质监测系统。据悉,“十二五”期间,国家将投入27亿元用于建立水质监测系统,尤其对饮用水水源、化工厂、工业园等污染较大的区域进行重点布局。  因此,盘雨宏认为,建立水质监测系统是污染处理产业扩张市场的首要步骤,预计该环节将是未来几年的重要内容。涉足监测设备制造及技术引进、合作的企业前景将被看好。  未来,在更长一段时间内,考虑到地下水修复费用更为昂贵,市场规模便更受到业内专家的看好。业内人士认为,吸引民间资金的进入,改变当前政府“一肩挑”的现状无疑是我国环保事业未来发展的趋势。
  • 多位专家解析华北地下水治污“处方”
    3月22日,又是一年世界水日。  地下水污染问题让每一个中国人揪心。而在华北平原,地下水是居民饮用水的大部分来源,但其污染问题早就受到各方面的关注。如今,有调查显示,在华北平原众多取样点中,大约一半的水样被严重污染,污染物包括了无机盐、有机难降解物以及重金属。  所以,华北平原地下水污染问题几乎成为全中国地下水污染的标本。如何解决这一问题,已经成为中国环境问题的当务之急。  3月8日,环保部公布,《华北平原地下水污染防治工作方案》(下称《方案》)已经得到国务院批复。14日,环保部部长周生贤公开表示“我们有一个治理规划,并向国务院作了汇报”。《方案》是2011年《全国地下水污染防治规划(2011-2020年)》出台以来,环保部给地下水污染开出的第二次“处方”,也是专门为华北地下水治污开出的“第一处方”。  那么,这份华北平原地下水的“第一处方”是如何出台的?它是否将真的对治理华北平原地下水污染有效?科学家、政府和企业家还有哪些担忧?  记者带着这些问题,探访了多位业内专家。  高分项目这样炼成  “首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用  记者注意到,就在环保部《方案》获批前两个月,中国地质科学院水文地质环境地质研究所公布了“华北平原地下水污染调查评价”项目的评审结果。  评审结果中提到,该项目“首次”查清华北平原地下水“有机污染”状况,为全国地下水污染调查评价工作起到了重要的技术支撑和示范作用,总体达到“国际先进水平”,最终“以94分的优秀成绩”通过评审。  中国工程院院士、中国地质科学院研究员卢耀如是项目评审专家之一。接受《中国科学报》记者采访时,卢耀如透露,《方案》正是基于这个高分项目的一些成果而制定的。  作为一名水文地质专家,卢耀如经常参与科研项目评审,而获得如此高分的项目他也很少遇到。卢耀如说:“这个项目之所以得高分,是因为其在研究问题重要性的指标上得分非常高。”  中国对地下水问题的关注由来已久,上世纪80年代初的“六五”期间,我国设立了若干国家科技攻关项目,其中第38项便是“华北平原地下水污染评价”。  卢耀如告诉《中国科学报》记者:“那时候水质监测标准相对低一些,地下水更突出的问题是硬水、水位下降、地面沉降这些问题。”涉及水质污染的指标只有“三氮”:硝酸盐——氮、亚硝酸盐——氮以及铵氮。  随后,华北平原发展了钢铁、化工企业,加之农业生产中的农药使用,研究者和管理者才开始看重水质污染。  如今,究竟华北地下水污染到了什么程度?有哪些污染物已经进入地下水环境?这些问题仍是个谜。  2006年,中国地质调查局在国土资源大调查项目的资助下,首次在华北平原开展系统的地下水调查。调查的具体工作由地科院水文地质环境地质研究所(简称水环所)承担。  根据地调局对水环工作的记载,2006年3月,项目启动之初,中国地质调查局便和清华大学联合举办了“地下水污染调查评价培训班”。在为期四天的培训里,河北、天津、北京、山东等省市属地调院、地质环境监测总站的业务骨干学习了这一项目有关地下水污染调查评价的技术。  4月,水环所成立了项目综合组,常务办公人员6人,设组长和副组长。综合组经过协商后,将该项目划分为11个工作项目,并确定了2006年该项目的工作重点是在供水水源地进行地下水污染调查,以及一系列的野外取样工作规范。  项目负责人、水环所副所长张兆吉在采访中告诉《中国科学报》记者,希望这个项目发展起来的技术标准能推广到全国。  2009年,该项目已经完成了1比25万区域地下水污染调查15万平方千米。结果发现,所有采样点中,不用任何处理直接可以饮用的地下水(即I到III类)占36%,经适当处理可以饮用的地下水(IV类)占24%,另有39%的地下水(V类)需经专门处理后才可利用。项目还建设了有机污染物的实时质量监控管理系统,研发了中国特色的地下水样品采集设备,并最终入选中国地质学会2009年度十大地质科技进展。  2010年,该项目还实施过一次规模较大的野外验收。当时,专家组历时10天,沿唐山、天津、北京、河北、河南、山东的野外抽查路线,检查了各取样点的采样记录,确定质量符合要求。同年,地下水污染数据库建立。  这个项目还带动了一系列对华北平原地下水污染的研究。例如,2009年,水环所承担了我国第一个地下水“973”计划项目“华北平原地下水演变机制与调控”,由水环所所长石建省担任首席科学家。据悉,项目的起止年限为2010年至2014年,共5年,总经费4500万元,其中国家“973”专项经费3000万元,自筹经费1500万元。  立项之初,卢耀如作为顾问,多次参加了学术研讨会。“这也是为了配合国土部更好地进行调查。”他说。  这个高分项目便这样按部就班地开展了。  从大科学走向大政策  在历时6年的华北平原地下水污染治理科学研究项目基础上,环保部通过《华北平原地下水污染防治工作方案》  2011年10月,项目接近尾声。正在这时,发生了一个插曲。一名记者联系到张兆吉和石建省,对该项目的调查结果进行了采访,报道指出了最终调查结果“因涉及敏感问题不能公开”,一度将项目组置于颇为尴尬的境地。  一时间,这篇报道在各大网络媒体上大量转载,引起公众的巨大反响。其中不乏批评的声音,舆论指责科学研究不能向公众保密,相关管理部门也批评他们未经允许就披露尚未完成的研究结果。作为项目负责人的张兆吉曾向同行倒过苦水,“感到有些委屈”。  不过,调查项目的继续进行并没有因此受到影响。如今,张兆吉和同事们将已经完成的调查结果以学术论文的形式发表在2012年9月的《吉林大学学报》上。这个插曲反而让调查项目的重要性更引人关注。  按照惯例,一些科研项目在研究过程当中,科研者便会将阶段成果以咨询报告的形式递交给决策部门,以推动在科学研究中发现的问题变成具体措施,进而在现实中得到解决。有的甚至还有可能向国家高层领导递交介绍研究重要性和成果的内参。  卢耀如透露,这次调查也不例外。“研究人员给国务院写了报告,强调地下水污染的严重性,希望能从国家层面重视起来。”他说。据卢耀如了解,除了调查中发现的污染日趋严重外,报告中还涉及今年春节前后向地下含水层打排污井的传言。  2012年初,国务院总理的温家宝在沸沸扬扬的舆论声中看到这份报告。很快,总理的批示下来了,提到由国土资源部、水利部、住房城乡建设部和环保部来共同解决华北平原地下水污染的问题。  “最后加了一句,由环保部牵头。”卢耀如说。  这时,华北平原地下水污染治理这项历时6年的科学研究项目彻底从实验室走了出来。  去年3至4月间,得到温家宝总理批示后,环保部开始着手进一步的政策制定。2012年10月,环保部通过《华北平原地下水污染防治工作方案(2012-2020年)》。方案估计,国家为此将投入200亿元专项资金。  该方案最终获得国务院批复,正式成为华北平原地下水治污“第一处方”。《方案》提出两个目标,即2015年初步建立华北平原地下水质量和污染源监测网、摸清华北平原地下水污染情况,2020年全面监控华北平原地下水环境质量和污染源状况、开展地下水污染修复示范。  今年3月8日,环保部网站公布了这一消息。《方案》提出了三个工作任务:一是加强地下水环境监测,建立华北平原地下水质量监测网 二是保障地下水饮用水源安全,严格地下水饮用水源环境执法,分类防治超标的地下水饮用水源 三是强化重点污染源和重点区域污染防治,加大对重点污染源废水排放和堆放场地污染物渗漏等防治力度,积极推进重金属、有机物和氨氮、硝酸盐氮和亚硝酸盐氮等污染较严重区域的地下水污染综合防治。  此外,《方案》还要求,进一步完善地下水法规制度体系,健全投融资机制和经济政策,加大相关科技研发力度,强化企业和地方防治责任。  无疑,正是环保部该方案的出台,华北地下水“第一处方”从“大科学”真正走向了“大政策”。  避免“多头管理”  地下水管理涉及机构多,但权力机构责任不明。各部门应进一步明确责任,将地下水污染防治工作标准化、程序化  谈到《方案》的评价,接受采访的专家纷纷表示没有阅读全文。即使作为国家环境咨询委员会成员的卢耀如,至今也没有见到该方案的全文。  “从目前来看,这份方案只是提出了非常初步的期望,接下来还有很多工作要做。”卢耀如说,“部门之间怎么协作、重要的防治地点对不对、怎么样投入、哪些力量介入,这些问题现在都不清楚。”  记者了解到,《方案》编制由环保部污防司饮用水处处长石效卷主持,环保部环境规划院副院长吴舜泽是主要编制人。记者随后向环保部提出采访《方案》编制者申请,截至发稿日,尚未得到回复。《方案》编写的过程如同一个“黑箱”。  专家们试图就现有的只言片语对这份“第一处方”初步轮廓进行解读。  首先,《方案》由“环保部牵头”,并由国土部、水利部、住建部共同编制,意味着未来的污染防治责任也由这几个部门共同承担。  一直以来,我国对地下水污染问题的管理饱受诟病。对此,中科院地理科学与资源研究所研究员宋献方称:“业内有句话,叫‘环保不下水、水利不上岸’。”在宋献方看来,目前,我国地下水的管理涉及城建、地质、水利、环保等多个部门。  “各个部门都有自己的调查监测系统和标准,信息资料也都分别分布在这些部门中。”宋献方告诉《中国科学报》记者:“涉及机构多,但权力机构责任不明。”  宋献方建议,如果能使各个部门进一步明确责任,将地下水污染防治工作标准化、程序化会更有利于这项工作。他还指出:“环境问题是一个系统问题,正如地下水问题必须与地表水结合起来看,因此,由环保部门统领,各部门的通力合作也是解决这一问题的良药。”  卢耀如也认为:“《方案》计划建设的监测网,如果光靠环保部重新建立一个新的监测网,既浪费又达不到长期积累数据的目的,这就需要利用现有的监测点和数据资料。”  卢耀如强调:“2015年目标的实现,主要取决于这方面的工作。”  另外,现有技术下,有机污染物仍然靠人工取样、化学分析的方式进行检测,实时在线监测尚未实现。宋献方认为:“2015年要实现监测网,我们还要加大传感器的开发力度。”  总之,业内专家一致认可这一点,环保部出台的这份方案仅仅为未来防治地下水污染的蓝图勾画了一个粗略的轮廓,但释放了政府决心从国家层面推动这项工作的信号。  改变政府“一肩挑”  地下水修复费用昂贵,市场规模被业内专家看好。吸引民间资金的进入,无疑是我国环保事业未来发展的趋势  无论《方案》细则如何,市场往往对来自国家层面的信号格外敏感。伊尔姆环境资源管理咨询(上海)有限公司首席顾问彭勇告诉《中国科学报》记者:“尽管没有参与制定《方案》,但作为相关行业的一员,仍然非常关注和期待。”  彭勇所在的公司业务范围是环保咨询。他说:“未来当地下水防治措施实施相对成熟时,环保咨询行业将会更深入地参与进去。”  卢耀如回忆,当“华北平原地下水污染调查评价”刚刚提出要重点调查有机污染时,澳大利亚一家专门做有机分析的公司马上就看到了商机。  “2006年前后,那家公司派人在上海开了个培训班,把专家请到中国来,仪器也搬来了,我们后来用的仪器和技术就是从那里引进过来的。”卢耀如说。  在他看来,光靠政府的力量难以支撑费用如此昂贵的地下水调查乃至修复。 “搞分析和监测的企业在良好的机制下就能进来,从打井、监测到化验都可以让企业来做。”卢耀如建议。  中投顾问产业研究中心环保行业研究员盘雨宏告诉《中国科学报》记者:“水质监测、污染处理、相关设备制造等产业都将受到国家政策的影响,其中水质监测是整个产业链条的关键环节,影响着下游处理环节的发展趋势。”  而我国地下水污染治理产业还处于萌芽状态,重点污染城市仍然缺乏高效完善的水质监测系统。据悉,“十二五”期间,国家将投入27亿元用于建立水质监测系统,尤其对饮用水水源、化工厂、工业园等污染较大的区域进行重点布局。  因此,盘雨宏认为,建立水质监测系统是污染处理产业扩张市场的首要步骤,预计该环节将是未来几年的重要内容。涉足监测设备制造及技术引进、合作的企业前景将被看好。  未来,在更长一段时间内,考虑到地下水修复费用更为昂贵,市场规模便更受到业内专家的看好。业内人士认为,吸引民间资金的进入,改变当前政府“一肩挑”的现状无疑是我国环保事业未来发展的趋势。
  • 南方科技大学郑春苗:全球地下水加速枯竭,我国地下水何时会枯竭?
    嘉宾简介:  郑春苗,现任宁波东方理工大学(暂名)讲席教授、创校副校长,南方科技大学讲席教授、深圳可持续发展研究院院长。曾任南方科技大学环境学院创院院长、校长办公会成员 (国际事务),北京大学讲席教授、水科学研究中心首任主任,美国阿拉巴马大学地质科学系乔治林达尔冠名讲席教授,国际水文科协(IAHS)国际地下水委员会主席。研究涉及地下水污染机理与修复技术、流域生态水文过程、以及新污染物生态环境健康风险等。  划重点:  1.地下水是人类未来的生存之本,人类可以利用的液态淡水99%来自地下水。  2.地下水资源枯竭将会带来生存危机、粮食危机、生态退化、海水倒灌、生物多样性减少等严重后果。  3.总体来说我国水资源使用量已接近最大值了,如果水资源需求持续扩大,到2030-2040年,中国可能真的没有更多的水可用了。  4.地下水过量开采之后要很长时间才能恢复,数年到几十年不等,甚至需要万年以上。  5.地下水储存量消耗超出降雨补给、不合理的开采方式、以及环境破坏等原因都会导致水资源枯竭。  出品|搜狐科技  作者|周锦童  地下水是人类未来的生存之本,因为人类可以利用的水是液态淡水,而99%的液态淡水就是地下水。  近日,美国加州大学领导的一项研究表明,在全球范围内,地下水正在快速枯竭,最近几十年速度加快,在某些地方,地下水甚至以每年超半米的速度下降,其中包括中美印等地。  地下水枯竭会带来哪些严重后果?什么原因会导致地下水枯竭?按照这个速度,我国地下水究竟何时会枯竭?带着这些问题,本文对话了宁波东方理工大学(暂名)/南方科技大学讲席教授郑春苗。  对此,他表示:“研究表明我国每年最大可利用水资源量仅为8000-9000亿m³,但2022年我国用水总量大约为6000亿m³。据预测,到2030-2040年,我国用水总量将接近极限,那时我们可能就真的没有额外的水可用了。”  而地下水资源枯竭将会带来非常多的严重后果。“比如生存危机和冲突、粮食危机、生态退化、海水倒灌、生物多样性减少等问题都会接踵而至。”郑春苗如是说。  虽然地下水可再生,但含水层枯竭想要恢复需要非常久的时间,郑春苗表示,由于地下水补给速度较慢,恢复时间可能要数年到几十年不等,甚至像缺水的华北平原,抽空的深部含水层要上万年甚至更久才能恢复。  谈及目前我国地下水面临的问题时,郑春苗表示:“我国地下水目前面临着许多危机和挑战,比如地下水的超采、地下水水质污染、生态破坏、城市和农村缺水等。”  因此,我们要建立完善的监测网对地下水进行监测,加强地下水资源的管理,实施喷灌、滴灌等农业灌溉节水措施,通过雨水收集、洪水资源化利用等方式增加地下水的补给量,加强水污染治理,并针对可能出现的水资源危机,制定应急预案等。  以下为对话实录(经整理编辑)  搜狐科技:您觉得地下水枯竭会给人类带来哪些比较严重的后果呢?  郑春苗:首先会给人类生存造成危机和冲突,我们要知道全球有50%的人口饮用地下水,干旱半干旱地区比例更大,像中国华北很多地方达到70%或更多。地下水一旦枯竭,会对这部分人的生存造成直接威胁,并可能导致对有限水资源的竞争和对水资源获取的潜在冲突。  其次会造成粮食危机,全球70%的粮食生产需要依赖地下水作为灌溉水源,地下水一旦枯竭,将影响农业生产力,导致食物短缺。此外,全球淡水用水量1/3来自地下水,地下水资源量减少,可能引发水资源短缺,人们不得不抽取更深层的地下水,导致地下水资源进一步枯竭。  此外,还可能引发一系列生态环境问题,比如地面沉降,破坏建筑物、道路和管道等基础设施,北京就存在这个问题,虽然毫米、厘米级别我们感受不到,但根据中国地调局数据,华北平原最严重的地面沉降累计3-4米之多。中国西安等一些地方还有地裂缝等现象。当然还可能导致沿海地区海水入侵,湿地和生态系统退化,生物多样性减少等问题。  搜狐科技:按照目前枯竭速度来说,您觉得这个地下水哪一年会彻底枯竭?  郑春苗:据最新的调查显示,中国地下水总储量大概有52万亿立方米,但由于埋藏深度和地理位置等原因许多地下水资源都很难开采,而且空间分布极其不均匀。根据中国2022年水资源公报显示,当年地下水开采量大约为830亿立方米。这表明近几年国家为避免地下水枯竭而严格控制地下水超采,使得地下水开采量占全国用水总量的比例在逐年下降。  如果包括地表水和地下水,研究表明我国最大可利用水资源量大约8000-9000亿m³,但截至2022年我国用水总量大约6000亿m³。据预测到2030-2040年,我国总用水量将接近最大可利用水资源量了。  我们真的要小心,到2030-2040年,那时中国可能真的没有更多的水资源可用了,而且可利用总量里还要考虑水污染的问题,所以说中国的水问题还是非常严峻的,我们必须要考虑各种各样的措施和办法。  搜狐科技:地下水是可再生的,含水层枯竭多久可以恢复?  郑春苗:虽然地下水是一种可再生资源,但补给速度往往较慢,恢复时间可能需要数年到几十年不等,甚至可能需要更长时间,比如华北平原深部地下水年龄有达到几万年的。  开采几万年的地下水其实就和采矿类似了,这些地下水开采之后需要很长时间恢复,具体的恢复时间因地区而异,主要取决于地质条件、地下水补给情况以及人类活动对地下水的影响程度。  搜狐科技:您觉得有哪些原因会造成地下水枯竭呢?  郑春苗:包括内在和外在两个因素。内在因素主要是地下水资源储存量的消耗,导致地下水位持续下降,形成区域性地下水位降落漏斗,引起一系列环境地质问题。  比如华北平原,本身就处在我国降雨补给较少、水资源相对短缺的北方,同时该地区又大量开采地下水资源,长时间的地下水超采,引发了地下水资源的持续减少。  外在因素包括不合理的开采方式、开采层位以及开采时间过分集中等。此外,生态环境破坏也是导致地下水枯竭的一个重要原因,比如山林植被减少、人类活动的干扰以及地下爆破钻凿工程等都可能造成地下水源的断流,导致地下水枯竭。  搜狐科技:目前地下水快速枯竭,您觉得这一趋势是否有办法可逆呢?  郑春苗:地下水枯竭是一个严重的问题,但是在采取适当的管理和保护措施的情况下,快速枯竭的趋势是可逆的。  我们可以合理管理和规划地下水资源。例如,可以设定合理的开采限额、建立水权制度、制定地下水保护区,从用水总量上进行管理 可以提升用水效率,促进水资源节约,从用水需求侧进行管理 也可以发展和利用雨水、中水等多元化的水资源,增加水资源供应量,从用水供给侧进行管理。  搜狐科技:您觉得目前我国地下水面临哪些危机和挑战?是否有防治手段?  郑春苗:我国地下水目前面临着许多危机和挑战,比如地下水的超采、地下水质污染、生态破坏、城市和农村缺水等诸多问题。  针对上述问题我们要建立完善的地下水监测网进行监测,加强地下水资源的管理,推广喷灌、滴灌等节水措施提升用水效率,加强污染治理,通过雨水收集、洪水资源化利用等方式增加地下水补给量,通过海水淡化、废水利用等手段扩大水源,并针对可能出现的危机,制定应急预案等。  搜狐科技:生活中由于地下水看不见,往往会被我们忽视,从个人角度来讲,我们又能做些什么呢?  郑春苗:我觉得作为个人,在日常生活中节约用水,养成节水习惯是最重要的,尤其是在我国北方,饮用水源就是广泛采用地下水,节约用水才能减小地下水开采量,使地下水资源维持在一个合理的平衡状态。  其次也要尽量减少对地下水的污染,比如像废旧电池之类的废弃物会释放污染物会并渗入地下,污染地下水资源。日常生活中我们要多参与地下水保护的宣传活动和志愿服务工作,协助有关部门加强水污染监督、劝阻水资源浪费行为,共同保护地下水资源。  我觉得人们应该对地下水引起足够的重视,因为地下水是人类未来的生存之本,地下水和地表水是一个统一的整体。 地下水的开发与保护要秉承可持续的理念,在污染修复方面要考虑我们国家的碳达峰与碳中和的“双碳”目标,达到减污降碳协同。  搜狐科技:您觉得目前我国在地下水研究领域处于怎样的地位?  郑春苗:这个问题不好定量回答。可以说,欧美发达国家在地下水研究方面应该比中国领先了几十年,他们在80、90年代以来就特别重视地下水研究,在地下水污染和修复等方面,投入了大量人力物力,设置各种政府专项基金,调查、监测和防治地下污染。  但我现在可以很高兴地说中国发展很快,经过十几年的努力我们已经建立了全国地下水监测网,许多高校里有地下水相关的研究团队,我们在不断追赶,但总体来说还没有领先发达国家。在某些领域,比如环保材料、新污染物健康风险评估与管控等方面我们已经做得很不错了,虽然他们起跑比我们早很多,不过我相信不用太久我们就可以做的很好。
  • 国家投20亿元用于地下水监测工程建设
    据中国政府采购网消息,中国地质环境监测院发布关于国家地下水监测工程(国土资源部分)初步设计的招标公告。根据招标内容可知,国家地下水监测工程建设内容主要由地下水监测中心、监测站点、信息传输系统和应用服务系统等组成。该工程估算总投资为204042.60万元.  其中,国土资源部门102472.58万元,建设五大区16个重点区(水文地质单元)共10103个地下水监测站点(包括30个泉流量监测站点),改建2个地下水监则(均衡)试验场、改建1个地下水与海平面综合监测站,建立31个省级地下水监测信息节点。10103个地下水监测站点,包括新建地下水监测站点7141个(包括泉流量监测站点18个),改建现有地下水监测站点2962个(包括泉流量监测站点12个)。钻探总进尺649502m,配备地下水水位信息自动采集设备10103台套,泉流量站水位与流量监测仪器30台套。  项目详情请见招标公告。中国地质环境监测院关于国家地下水监测工程(国土资源部分)初步设计招标公告(招标编号:0733-146220821801)  按照《中华人民共和国招标投标法》、《中华人民共和国招标投标法实施条例》的有关规定,中信国际招标有限公司受中国地质环境监测院委托,对国家地下水监测工程(国土资源部分)初步设计进行国内公开招标。请愿意承担本项目的投标人投标。  一、资金来源  本项目资金来源于中央预算内投资。  二、项目概况  国家发展和改革委员会下达了《国家发展改革委关于国家地下水监测工程可行性研究报告的批复》(发改投资[2014]1660号),要求据此编制工程初步设计,初步设计投资概算由发改委核定后由水利部和国土资源部联合审批。工程建成后,可扩大国家地下水监测站点的控制范围和站网密度,进一步提高地下水监测的自动化、信息化水平,基本实现对全国地下水动态的有效监控,对大型平原、盆地和岩溶山区地下水动态的区域性监控及地下水监测点的实时监控,基本满足当前水资源管理和地质环境保护的需要。建设内容主要由地下水监测中心、监测站点、信息传输系统和应用服务系统等组成。该工程估算总投资为204042.60万元,所需资金全部由中央预算内投资负责安排,具体投资数额在初步设计阶段进一步核定。  其中,国土资源部门102472.58万元,建设五大区16个重点区(水文地质单元)共10103个地下水监测站点(包括30个泉流量监测站点),改建2个地下水监则(均衡)试验场、改建1个地下水与海平面综合监测站,建立31个省级地下水监测信息节点。  1.国家地下水监测中心建设  与水利部门合并建设国家地下水监测中心,国土资源部门负责建设面积4585㎡,信息系统建设配备各种硬件设备196台套,水质测试实验室配备各种测试仪器26台套。  2.地下水均衡试验场及地下水与海平面综合监测站建设  修复改造河南郑州均衡试验场(代表中国东部平原半湿润、半干旱气候区孔隙地下水类型)、新疆乌鲁木齐昌吉均衡试验场(代表中国西北内陆盆地干旱气候区孔隙地下水类型)。修复改造河北秦皇岛地下水与海平面综合监测站。总共配备各种试验仪器10台套。  3.省级地下水监测信息节点建设  完善全国31个省(市、区)地下水监测信息系统,建设省级地下水信息采集节点,配备217台套信息设备。  4.地下水监测站点建设  建设地下水监测站点10103个,包括新建地下水监测站点7141个(包括泉流量监测站点18个),改建现有地下水监测站点2962个(包括泉流量监测站点12个)。钻探总进尺649502m,配备地下水水位信息自动采集设备10103台套,泉流量站水位与流量监测仪器30台套。  三、招标内容  国家地下水监测工程(国土资源部分)初步设计。主要内容包括站网布设、土建工程、技术装备、地下水资源信息服务和业务系统、施工组织、工程管理、招投标设计、环境影响分析与保护措施、设计概算、资金筹措及效益评价等方面的设计工作。  设计工期:合同签订后的30个日历日内完成全部设计工作,并将设计成果文件交付招标人。  四、投标人资格要求  1. 投标人必须是在中华人民共和国境内注册的具有独立法人资格的企业或事业单位   2. 投标人必须具有住房和城乡建设部颁发的工程勘察综合甲级资质或住房和城乡建设部颁发的工程设计综合甲级资质或国土资源部颁发的水文地质、工程地质、环境地质调查甲级资质或国土资源部颁发的液体矿产资源勘查甲级资质   3. 本项目不接受联合体投标。  五、投标报名须知  1. 本次招标将采用资格后审   2. 法定代表人为同一个人的两个及两个以上法人,母公司、全资子公司及其控股公司,都不得同时投标,否则取消其投标资格 招标人及招标代理机构的附属机构不得参与本招标项目投标,否则取消其投标资格   3. 投标人必须向招标代理机构购买招标文件并登记备案,未向招标代理机构购买招标文件并登记备案的潜在投标人均无资格参加投标   4. 投标报名时间:2014年10月10日至2014年10月15日止,每天9:00-16:00(北京时间)   5. 投标报名地点:北京市朝阳区新源南路6号京城大厦A座8层   6. 投标报名须出示:营业执照副本(复印件加盖公章) 组织机构代码证(复印件加盖公章) 资质证书(复印件加盖公章) 法定代表人授权委托书(原件) 被授权人身份证(原件及复印件加盖公章)。  六、招标文件获取  招标文件于投标报名时获取,招标文件售价1000元人民币,售后不退。招标文件获取地点为北京市朝阳区新源南路6号京城大厦A座8层。  七、投标截止时间和开标时间  2014年10月31日上午9时30分整(北京时间)。届时请参加投标的代表出席开标仪式。  八、开标地点  北京市朝阳区新源南路6号京城大厦A座8层会议室1。  九、投标文件的递交  投标文件须密封后于开标当日投标截止时间前递至开标地点。逾期送达或不符合规定的投标文件恕不接受。  招标人名称:中国地质环境监测院  地 址: 北京市海淀区大慧寺路20号  电 话: 010-62135242  传 真: 010-62182412  联 系 人:叶林  招标代理机构名称:中信国际招标有限公司  地址:北京市朝阳区新源南路6号京城大厦A座8层  电话:010-84865168-135 010-84865168-179  传真:010-84865255  联系人:陈俊良、付强  开户银行及帐号:  户 名:中信国际招标有限公司  开户银行:中信银行北京京城大厦支行  帐 号:7110210182600030709
  • 水利部自然资源部发布《地下水保护利用管理办法》
    为贯彻落实《地下水管理条例》,加强地下水保护开发利用管理,保障地下水可持续利用,水利部自然资源部研究制定了《地下水保护利用管理办法》。具体内容如下:地下水保护利用管理办法第一章 总则第一条 为加强地下水保护和开发利用管理,保障地下水资源可持续利用,推进生态文明建设,根据《中华人民共和国水法》《地下水管理条例》《取水许可和水资源费征收管理条例》等有关法律法规,制定本办法。第二条 开发利用地下水的单位和个人,以及从事地下水节约保护、开发利用管理、地下水资源调查评价等活动的水行政、自然资源主管部门和水利部所属流域管理机构(以下简称流域管理机构)及其工作人员,应当遵守本办法。第三条 水利部负责全国地下水统一监督管理工作。自然资源部按照职责分工做好地下水调查、监测等相关工作。流域管理机构依照法律法规和水利部授权,负责管辖范围内地下水有关监督管理工作。按照省、自治区、直辖市人民政府规定的分级管理权限,县级以上地方人民政府水行政主管部门负责本行政区域内地下水统一监督管理工作,县级以上地方人民政府自然资源主管部门按照职责分工做好本行政区域内地下水调查、监测等相关工作。第二章 调查评价与规划第四条 县级以上人民政府水行政、自然资源等主管部门应当按照职责分工,依法开展地下水资源调查评价工作。地下水资源调查评价可开展年度调查评价和周期调查评价。周期调查评价中,地下水超采治理地区可每五年开展一次,其他地区可每十年开展一次。第五条 县级以上人民政府水行政主管部门应按照本级人民政府和上一级人民政府水行政主管部门部署,会同同级自然资源部门编制地下水保护利用规划,依法履行征求意见、论证评估等程序并报告本级人民政府或其授权的部门后向社会公布,并报上一级人民政府水行政主管部门备案。省级人民政府水行政主管部门编制的地下水保护利用规划,应征求所涉流域管理机构的意见。地下水保护利用规划需要修订的,按原程序批复实施。第六条 地下水保护利用规划应当服从水资源综合规划、流域综合规划和上一级地下水保护利用规划。地下水保护利用规划应包括地下水资源及其开发利用现状、区域水文地质条件、存在问题、地下水保护利用目标、主要任务和措施等,对辖区地下水合理利用、有效保护及治理修复等作出系统部署。地下水保护利用规划一经批准,必须严格执行,确需修改的,按照规划编制程序报原批准机关批准。第七条 区域经济和社会发展规划、国土空间规划、重大建设项目的布局等开发利用地下水,应当与地下水资源条件、地下水保护要求相适应。区域工业、农业、畜牧业、林草业、市政、能源、交通运输、旅游、自然资源开发等专项规划涉及开发利用地下水的内容,应当与地下水保护利用规划相衔接。区域工业、农业、畜牧业、林草业、市政、能源、交通运输、旅游、自然资源开发等专项规划和开发区、新区规划等,涉及地下水开发利用的,应当进行规划水资源论证,对地下水需水规模及其合理性、水资源配置方案的可行性和可靠性、对地下水环境和重要生态系统的影响等进行分析评估,提出论证意见和规划优化调整的建议。第八条 水利部会同自然资源部等部门制定地下水储备有关制度、标准、规程规范。县级以上地方人民政府水行政主管部门会同本级人民政府自然资源等主管部门,明确地下水储备布局,划定储备范围,明确储备含水层位、储备量及水质状况,制定动用地下水储备预案。特殊干旱年份以及重大突发事件时动用地下水储备应由县级以上地方人民政府水行政主管部门报本级人民政府批准后实施,并报上一级水行政主管部门及流域管理机构备案。第三章 节约保护与开发利用第九条 设区的市级、县级行政区域内地下水取水总量不得超过省、自治区、直辖市水行政主管部门会同本级自然资源等有关部门制定,经省、自治区、直辖市人民政府批准后下达实施的地下水取水总量控制指标。超采区地下水水位控制指标的制定应统筹考虑不同来水情况,以及地下水水位变化可能引起的地下水污染、生态和地质环境影响。水利部负责组织制定地下水取水总量控制指标和地下水水位控制指标确定技术标准。流域管理机构对流域内属于同一水文地质单元的相邻省、自治区、直辖市的地下水取用水总量控制指标和地下水水位控制指标协商确定情况予以指导和监督。县级以上人民政府水行政主管部门,应根据管理工作需要,编制地下水取水总量控制、水位控制管理方案。第十条 县级以上人民政府下达的地下水取水总量控制指标和地下水水位控制指标,应作为地下水目标责任制、考核评价、地下水取水许可管理和地下水超采综合治理的重要依据。县级以上人民政府水行政主管部门会同同级自然资源主管部门对指标实施情况进行监测。流域管理机构对流域管理范围内有关省、自治区、直辖市的指标实施情况进行监督管理。第十一条 不符合地下水取水总量控制、地下水水位控制要求的地区应当暂停审批新增取用地下水,开展本行政区域内地下水取水工程布局分析评估及优化调整,制定区域地下水取水总量压减方案,逐步削减地下水取水量,限期整改。第十二条 取用地下水的取水许可证有效期届满需要延续的,取水许可审批机关应当对原审批的许可取水量、实际取水量、节水水平、当地水资源供需状况等情况进行评估。有《地下水管理条例》第二十五条规定的六种情形之一的,不予延续。《地下水管理条例》实施前已取得取水许可证,但不符合《地下水管理条例》第二十五条规定的,有管辖权的水行政主管部门应责令限期整改,逾期整改不到位的,不予延续。第十三条 以监测、勘探为目的的地下水取水工程,不需要申请取水许可,建设单位应当于施工前报县级以上地方人民政府水行政主管部门备案。备案应当包括以下材料:(一)取水单位或者个人的法定身份证明文件;(二)取水工程建设方案;(三)水文地质条件;(四)取水地点、取水的目的;(五)取水的起始时间、取水量;(六)退水地点、退水方式、退水量;(七)防止对地下水产生不利影响的措施;(八)水利部规定的其他事项。第十四条 建设需要取水的地热能开发利用项目,应开展水资源论证,向具有管理权限的水行政主管部门申领取水许可。第十五条 县级以上地方人民政府水行政主管部门负责本行政区域内地下水备用水源取用水管理,制定应急预案,明确应急备用水源取水情形、取水量、取水用途、取水地点、取水层位、保护和管理措施等。应急备用水源取水工程应当依法办理取水许可手续,按要求安装计量设施,定期维护,应急备用水源应当建立完整详细的维护、运行、用水记录台账。应急备用地下水水源结束使用后,应当立即停止取水,经当地水行政主管部门检查后按要求封存或热备。不得擅自将应急备用水源转为常态化取水。确有必要将应急备用水源转为常态化取水的,应按照有关规定重新申请取水许可。第十六条 县级以上地方人民政府水行政主管部门应定期组织开展本行政区域内地下水取水工程核查,根据其使用情况按在用、封填、应急备用(封存)、应急备用(热备)等进行分类登记,并按要求纳入相关信息系统,对不符合管理要求的取水工程应责令整改或关停。第十七条 县级以上地方人民政府水行政主管部门应当加强地下水超采区内自备井管理,建立自备井台账,提出应予关停清单,制定限期关停计划,并定期开展核查。第十八条 地下水取水工程报废、未建成或者完成勘探、试验任务的,工程所有权人或管理单位应当在停止取水、施工或者勘探、试验任务结束之日起15个工作日内按照有关标准规范实施地下水取水工程封存或封填,并到当地水行政主管部门登记。对年久失修、地下水质量较差的取水工程,应当永久封填,并按要求及时注销取水许可证;对条件尚好、水质水量有保证的取水工程经有管辖权的水行政主管部门同意后可封存备用。县级以上水行政主管部门应建立地下水封存备用取水工程启用制度,确保在特殊情况下按照规定程序启用。第十九条 采矿疏干排水管理应纳入区域地下水保护利用规划。除为保障矿井等地下工程施工安全和生产安全必须进行临时应急取(排)水外,开采矿产资源或者建设地下工程需要疏干的地下水量,达到规模的,应当依法申请取水许可,取(排)水纳入区域地下水取水总量控制指标。疏干排水量规模由省、自治区、直辖市人民政府制定、公布。开采矿产资源或者建设地下工程的单位和个人,应当优先利用疏干水作为生产用水,对能利用而不利用的,有管辖权的水行政主管部门,应当对其提出限期整改;对充分利用后仍有剩余且确需外排的疏干水,应经处理满足相关管理要求后排放,需设置入河排污口的,应依法办理入河排污口设置审批手续。为保障矿井等地下工程施工安全和生产安全必须进行临时应急取(排)水,应按要求向有管辖权限的县级以上地方人民政府水行政主管部门备案。备案材料包括:(一)取水单位或者个人的法定身份证明文件;(二)取水地点、取水的目的、取水方式、取水的起始时间、取水量等;(三)取水水质、退水地点、退水方式、退水量。第四章 超采治理第二十条 水利部会同自然资源部组织各省、自治区、直辖市水行政、自然资源主管部门,划定全国地下水超采区,对各省、自治区、直辖市地下水超采划定成果进行审核。通过审核的,由水利部会同自然资源部公布。地下水超采治理地区每五年开展一次地下水超采区划定,其他地区每十年开展一次。水利部组织开展地下水超采区动态评估,跟踪地下水超采变化情况。地下水超采区划定后,省、自治区、直辖市人民政府水行政主管部门可根据地下水超采治理情况,会同本级自然资源主管部门,组织编制地下水超采区调整报告,向水利部提出地下水超采区复核申请。水利部会同自然资源部对省、自治区、直辖市地下水超采情况予以复核确认后,可对超采区进行调整,并依法向社会公布。第二十一条 地下水禁止开采区内,不得新建、改建、扩建地下水取水工程,县级以上地方人民政府水行政主管部门应当限期关闭地下水禁止开采区内已建地下水取水工程。地下水限制开采区,应逐步削减地下水取水量。省、自治区、直辖市水行政主管部门根据区域地下水保护及超采治理要求,制定地下水取水量削减方案。为保障民生需求和支撑高质量发展或者对用水有特殊要求确需取用地下水的新建项目,许可水量或用水指标应通过核减其他取水户地下水取水量或通过用水权交易获得。需要取水的地热能开发利用项目的禁止和限制取水范围由省、自治区、直辖市水行政主管部门按照《地下水管理条例》第五十一条组织划定。第二十二条 省、自治区、直辖市地下水超采综合治理方案应符合国家地下水保护利用规划和地下水管理保护的要求。县级以上地方水行政主管部门应当会同本级有关部门,依据省、自治区、直辖市地下水超采综合治理方案,编制本行政区域地下水超采综合治理方案,报本级人民政府批准后实施,并报上级水行政主管部门备案。第二十三条 区域地下水超采综合治理方案编制应坚持问题导向,提出行政区域地下水超采治理目标、治理措施、保障措施等,明确责任主体和完成时限。区域内与地下水开采密切相关的重要泉域保护和海咸水入侵防治等任务,应一并纳入治理方案。县级人民政府水行政主管部门依据地下水超采综合治理方案编制年度工作计划,并报本级人民政府批准实施。第二十四条 县级以上地方人民政府应加强地下水超采区的节水管理,健全完善节水制度和节水激励机制,落实节水工作责任,地下水超采区内严格限制使用地下水发展高耗水工业和服务业,适度压减高耗水农作物,鼓励通过节水改造、水源置换、休耕雨养、种植结构调整等措施压减农业取用地下水。鼓励和支持地下水超采区内取用地下水的单位和个人开展节水技术研究开发,推进节水科技成果转化应用,推广节水新技术,优先使用先进的节水工艺、设备和产品,提高用水效率,大力推动再生水、海水及淡化海水、集蓄雨水、微咸水、矿坑水等非常规水源利用。第二十五条 存在超采问题的省、自治区、直辖市人民政府水行政主管部门应会同同级自然资源等部门及时总结辖区内地下水超采综合治理成效,将治理成效上报水利部。第二十六条 县级以上地方人民政府水行政、自然资源等主管部门应积极采取措施,在有条件的地区,科学论证地下水回补可行性,依据有关规定标准,合理开展地下水回补、人工回灌,加强地下水水源涵养。第五章 监测计量第二十七条 地下水取水工程应当按照法律、法规的规定和国家、行业技术标准安装满足精度、数据传输上报要求的取水计量设施;已建农业灌溉地下水取水工程暂不具备安装计量设施条件的,可按相关标准规定采用以电折水等方式进行计量。矿产资源开采、地下工程建设疏干排水应当安装计量设施,准确掌握排水量、回用量,并按要求布设地下水位监测设施。建设需要取水的地热能开发利用项目,勘探开发单位应当安装取水和回灌在线计量设施,并将计量数据实时传输到有管辖权限的水行政主管部门。第二十八条 水利部、自然资源部等有关部门,根据地下水控制指标管理、地下水超采治理、地下水储备监督等要求,完善国家地下水监测站网,开展地下水动态监测。省、自治区、直辖市人民政府水行政、自然资源等主管部门根据需要完善地下水监测工作体系,对地下水超采区、生态脆弱区、集中式地下水饮用水水源地、重点泉域、海(咸)水入侵区、地下水储备区、水位变化易导致水质异常的区域等实施重点监测,按上级主管部门要求及时提供地下水水位、水量、水质等监测信息。第二十九条 取水单位和个人应当按有关计量法律法规和标准规定,建立计量设施档案,做好计量器具的检定校准,并向有管辖权的水行政主管部门报备。第三十条 取水单位和个人应当对取用水数据真实性、准确性、完整性和及时性负责,不得篡改、伪造地下水取用水计量监测及统计数据。第六章 监督与考核第三十一条 水利部会同自然资源部建立地下水超采区水位变化通报机制,以国家地下水监测工程监测数据为基础,地方地下水监测工程监测数据为补充,在综合分析超采区地下水位变幅的情况下,按季度对超采区有关地市地下水水位变化情况进行通报。水利部根据水位降幅和排名情况,对相关地市人民政府分别采取点名、会商、约谈等方式,督促指导地下水超采治理工作。省、自治区、直辖市人民政府水行政主管部门会同自然资源主管部门可建立辖区内地下水水位变化通报机制。第三十二条 县级以上地方人民政府水行政主管部门应当加强对行政区域内地下水开发利用的监督检查和水政执法,会同有关部门建立联合查处机制,发现违规取水,责令立即停止违法行为,并依法依规进行查处。被检查单位或者个人应当如实报告情况,并提供必要数据资料。第三十三条 流域管理机构应当依据相关法律法规及水利部授权,加强对流域范围内地方人民政府水行政主管部门地下水节约保护、开发利用、超采治理,以及管理工作情况的监督检查,按发现问题严重程度和出现频次及时向有关水行政主管部门印发问题整改清单,督促整改落实。省、自治区、直辖市人民政府水行政主管部门应加强对辖区内市、县级人民政府水行政主管部门地下水管理与保护工作情况的监督检查,建立问题整改清单,监督整改落实。第三十四条 根据年度监督检查发现问题的数量、性质、严重程度,上级地方人民政府水行政主管部门应按照有关规定对有关责任单位和责任人实施责任追究,或者提出责任追究建议,必要时可向有关地方人民政府通报,并提出责任追究建议。第三十五条 县级以上地方人民政府水行政主管部门应当及时公开本行政区域地下水取水总量控制和水位控制指标等相关信息,为公民、法人和其他组织参与监督地下水管理保护提供便利。第三十六条 水利部会同有关部门把地下水管理与保护工作及目标完成情况纳入最严格水资源管理制度考核,按年度组织实施对各省、自治区、直辖市的考核评价,考核结果按照有关程序报请审定后向社会公告。第七章 罚则第三十七条 水行政、自然资源等主管部门及其工作人员,违反本办法规定的,按照《中华人民共和国水法》《地下水管理条例》《取水许可和水资源费征收管理条例》有关规定予以处理。第三十八条 取水单位或者个人违反本办法规定的,按照《中华人民共和国水法》《地下水管理条例》《取水许可和水资源费征收管理条例》有关规定予以处罚。第八章 附则第三十九条 地方各级水行政主管部门可参照本办法,会同本级人民政府自然资源等主管部门结合工作实际制定相关制度。第四十条 本办法自印发之日起施行。
  • 污染“版图”急剧扩张,地下水将何去何从?
    【污水处理】地下水污染是全球面临的难题,也是中国环境整治里的大命题。2011年,我国提出“十年治理计划”,十年投入346.6亿元防治地下水污染。如今,这个十年计划已够过大半,接下来的5年,地下水处理产业将会有何改变?    污染“版图”急剧扩张 地下水处理将有何改变?    地下水污染已然十分严峻,污染治理的探讨工作正渐渐频繁。    7月14日,首届清华大学工程博士高峰论坛举行,论坛对地下污水处理厂功能及未来发展进行了深入探讨和分析。    不同于地表水,地下水被喻为人类的“生命水”。一旦遭受污染,治理相当麻烦,甚至要花上百年的时间来处理。    不断缩水的地下“版图”    两项最新研究显示,人类正在迅速消耗世界最大的地下水盆地中约1/3的储水,而且没人知道它们将在什么时候干涸。地下水是饮用水的主要来源,也是诸如农业灌溉等商业和工业用水的主要来源。旱区及干旱频发地区尤为依赖地下水。然而测量地下含水层里含有多少地下水以及已经失去或获得了多少地下水并不容易,这取决于这些水量有多大、多难取得。    研究人员首次利用卫星数据对世界上最大的37处盆地的地下水使用情况进行了测量。美国宇航局的重力恢复和气候实验任务中的双卫星观测到了盆地所受重力的细微变化,研究团队因而可以根据这些变化估算出这些盆地的水消耗和水给养的速度。    科学家使用的水模型能表明哪些盆地至少还在接受天然的水补给。该研究小组在日前出版的《水资源研究》杂志上报告说,2003年至2013年间,这37个盆地中的21个出现了水位下降。而且,这21个盆地中有8个已经完全没有天然水补给,而另有5个仅获得些许的天然水补给。而在以上这13个盆地中,那些位于世界上最干旱地区的盆地,例如阿拉伯半岛,情况是最糟的。    我国地下水污染形势严峻    在全球范围内面临地下水迅速枯竭时,中国亦没有幸免。    专家表示,地下水占全国水资源总量的1/3,全国有近70%的人口饮用地下水。目前,随着我国经济的快速发展,工业化和城市化进程的加快,部分地区地下水严重超采。    与此同时,我国地下水污染状况也日趋严重。地下水污染正由点状污染、条带状污染向面状污染扩散,由浅层向深层渗透,污染程度和强度也在不断增加。有关专家认为,全国有90%的地下水都遭受了不同程度的污染,其中60%污染严重。    针对目前我国地下水污染的范围、严重程度,有媒体报道称我国的地下水污染治理需要的时间是——1000年。即使有人觉得其中有危言耸听的成分,却也真正道出了地下水污染治理之艰难。    十年300亿元,未来5年地下水处理将成新增长极    目前针对水污染治理方面的法律法规,往往针对的是地表水污染治理,而对于地下水污染治理方面的制度规定仍然缺乏。    2011年环保部、国土部与水利部联合公布的《地下水污染防治规划》表示,到2020年对典型地下水污染源实现全面监控,地下水污染防治体系基本建成。地下水污染治理方面的资金需求,数字又是巨大的。有报道称,上世纪80年代,日本测算治理地下水污染需要800万亿美元。    为此,国家将在这十年内投入346.6亿元,其中迫切需要开展的优选项目需投资88.8亿元,重点项目需投资257.8亿元。    “由于地下水的修复技术极其复杂,我国地下水修复处理的技术能力相当薄弱。因此《规划》会带动我国相关产业的发展”。环保部污染防治司饮用水处处长石效卷此前表示,“地下水处理的相关产业将成为环保产业一个新的增长点。”    如今这个十年计划已走到了一半,而我国的地下水污染形势仍就十分严峻。根据常理推动,在接下的5年内,地下水污染治理的步伐将有所提速,带动地下水污染治理市场的进一步扩容。    文章整合自中国科学报、中国产经新闻报、21世纪经济报道、新浪环保等相关报道(来源:中国环保在线)文章链接:中国环保在线 http://www.hbzhan.com/news/detail/98417.html
  • 400多个城市地下水污染严重 检出毒物
    4月22日,是世界地球日。图为中国林业大学的师生在北京中国地质博物馆参观。 新华社发 王振摄  今天是第43个世界地球日。地下水的超采与污染问题引发热议。  据国土资源部今天公开的消息透露,在我国北方地区65%的生活用水来自地下水 同时,50%的工业用水和33%的农田浇灌也源自地下水。全国657个城市中,有400多个城市以地下水为饮用水源。  国土资源部认为,超采与污染正在危及地下水安全。  600多城市半数不同程度缺水  由中国国家自然科学基金委和中国地质调查局联合资助的《中国地下水科学的机遇与挑战》研究报告称,在过去的几十年中,我国地下水的提取量以每年25亿立方米的速度增加。  同时,由于城市污水、生活垃圾、工业废弃物污液以及化肥农药等的渗漏渗透,一些地区的地下水品质已经恶化。  我国新一轮全国地下水资源评价成果发现,全国适宜开采或饮用地下水地区,每平方千米年均可开采资源量已由15万立方米减少到6万立方米,北方地下水可采资源量减少了56亿立方米。据专家介绍,这是由于区域降水量变化、人类工程活动导致地下水补给量减少以及部分地区水文地质参数发生变化等原因造成的。  尽管近20年来全国用水量急剧增长,地下水开采量以平均每年25亿立方米的速度增加,但仍有数千万人饮用水问题亟待解决,全国600多座城市中有一半左右不同程度存在缺水,部分省(区、市)存在与饮用水水质有关的地方病区,比如北方丘陵山区,多分布高氧水、高砷水、低碘水和高铁锰水,引发了克山病、大骨节病、氟中毒、甲状腺肿等。  近60个城市地下水严重超采  有统计显示, 全国以城市和农村井灌形成的地下水超采区400多个,总面积达到62万平方公里,主要分布在华北平原(黄淮海平原)、山西六大盆地、关中平原、松嫩平原、下辽河平原、西北内陆盆地的部分流域(石羊河、吐鲁番盆地等)、长江三角洲、东南沿海平原等地,严重超采城市近60个。  地下水超采带来的直接后果,就是地下水位下降,形成地下水降落漏斗,引发地面沉降。  据透露,目前,全国已形成大型地下水降落漏斗100多个,面积达15万平方公里,主要分布在华北、华东地区。中国科学院院士王光谦表示,到目前,北至哈尔滨,南到海口,东达上海,西到乌鲁木齐。几乎所有大中城市都因超采地下水而出现地下漏斗。  由中国地质科学院水文地质环境地质研究所完成的《华北平原地下水可持续利用能力》项目研究显示,华北平原浅层地下水每年超采26.4亿立方米,深层地下水每年超采12.4亿立方米,已无开采潜力。历经近50年的地下水开采和超采,华北平原形成了环渤海复合大漏斗,面积达7.2万平方公里。  不合理开采地下水引发的地面沉降,在全国70多座城市不同程度存在。其中,沉降中心累计最大沉降量超过2米的有上海、天津、太原。在河北平原、西安、大同、苏锡常等地区,过量开采地下水还导致了地裂缝,对城市基础设施构成严重威胁。  此外,地下水超采还引发了岩溶塌陷、海水入侵、土壤盐渍化等问题,西北部分地区由于地下水位下降,出现了植被退化、土地沙化、荒漠化加剧等问题。  地下水检测出微量有毒有机物  国土资源部新一轮全国地下水资源评价成果显示,全国地下水环境品质“南方优于北方,山区优于平原,深层优于浅层”。  按照《地下水品标准》进行评价,全国地下水资源符合Ⅰ类—Ⅲ类水质标准的占63%,符合Ⅳ类—Ⅴ类水质标准的占37%。南方大部分地区水质较好,符合Ⅰ类—Ⅲ类水质标准的面积占地下水分布面积的90%以上,但部分平原地区的浅层地下水污染严重,水质较差。其中,中部平原区水质较差,滨海地区水质最差。根据对京津冀、长江三角洲、珠江三角洲、淮河流域平原区等地区地下水有机污染调查,主要城市及近郊地区地下水中普遍检测出有毒微量有机污染物,但超标率较低。  2009年,经对北京、辽宁、吉林、上海、江苏、海南、宁夏和广东等8个省(区、市)641 眼井的水质分析,水质Ⅰ类—Ⅱ类的占总数2.3%,水质Ⅲ类的占23.9%,水质Ⅳ类—Ⅴ类的占73.8%。全国202个城市的地下水水质以良好——较差为主,深层地下水品质普遍优于浅层地下水。  2010年,国土资源部和水利部联合对全国182个城市开展地下水水质监测工作。结果表明,4110个水质监测点中,较差——极差级的监测点占57.2%。与2009年比较,全国主要城市的地下水水质状况,其中呈变好趋势的城市分布在华东地区,水质呈变差趋势的地区主要集中在华北、东北和西北地区。  地下水一旦污染极难治理  据专家介绍,地下水污染与地表水污染有着明显的不同。污染物进入到地下含水层以及在含水层中运动都比较缓慢,若不进行定期专门监测,很难及时发觉。  专家称,近年来,我国城市急剧扩张,导致城市污水排放量大幅增加,由于资金投入不足、管网建设相对滞后、维护保养不及时等原因,管网漏损致使污水外渗,造成地下水污染。同时,部分行业也对地下水环境安全造成威胁。  此外,土壤中一些污染物易于淋溶,对相关区域地下水环境安全也构成威胁。大量化肥和农药的使用以及部分地区长期利用污水灌溉,对农田及地下水环境也构成危害,农业区地下水氨氮、硝酸盐氮、亚硝酸盐氮超标和有机污染日益严重。  “地下水污染是很难治理的。即使查明污染原因并消除了污染源,地下水质仍需要很长的时间才能恢复。”专家认为,地下水一旦被污染,恢复和治理需要十几年甚至几十年。
  • 17省(区、市)国家地下水监测工程地下水水质监测项目开启招标
    日前,水利部信息中心2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目公开招标公告发布(项目编号:OITC-G220320263-8)。信息显示:根据《水利部办公厅关于做好2022年国家地下水监测工程运行维护和地下水水质监测工作的通知》(办水文函[2022]79号)任务安排,严格执行水利部《水环境监测规范》(SL 219-2013)、《地下水水质样品采集技术指南》(地下水[2018]91号)以及《地下水监测工程技术规范》(GB/T 51040-2014)等有关规定,2022年山西等17省(区、市)国家地下水监测工程(水利部分)地下水水质监测项目共有1112个地下水水质监测站,111个同步监测站,涉及山西省、内蒙古自治区、辽宁省、安徽省、河南省、贵州省、云南省、广西壮族自治区、广东省、海南省、重庆市、福建省、西藏自治区、陕西省、青海省、新疆维吾尔自治区、新疆生产建设兵团等17省(区、市)。具体工作任务和简要技术要求如下:1、1112个监测站采样前抽水等准备工作,准备全部水样容器。2、1112个监测站20项、111个同步监测站93项水质采样。样品的保存及送检要求应满足《地下水质量标准》(GB/T 14848-2017)附录A的相关要求。3、1112个监测站、111个同步监测站水样运输(运送、寄送)。4、1112个监测站水质样品进行1次20项水质检测,检测方法应满足《地下水质量标准》(GB/T 14848-2017)要求,质量控制措施按照《水环境监测规范》(SL 219-2013)中相关要求开展。出具水质评价报告、质控报告、检测报告,提供水质监测数据成果汇总表、采样记录表、采样人员现场采样照片及样品照片等。根据中国政府采购网信息显示,目前天津、江苏、山东、黑龙江、河北、甘肃北京等省市相关的招标信息也已经发布。项目名称:2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-7)2022年天津市国家地下水监测工程(水利部分)地下水水质监测项目共有151个地下水水质监测站,15个同步监测站。项目名称:2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-5)2022年江苏省国家地下水监测工程(水利部分)地下水水质监测项目共有125个地下水水质监测站,13个同步监测站。项目名称:2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-6)2022年山东省国家地下水监测工程(水利部分)地下水水质监测项目共有219个地下水水质监测站,22个同步监测站。项目名称:2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-4)2022年黑龙江省国家地下水监测工程(水利部分)地下水水质监测项目共有222个地下水水质监测站,22个同步监测站。项目名称:2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-3)2022年河北省国家地下水监测工程(水利部分)地下水水质监测项目共有265个地下水水质监测站,27个同步监测站。项目名称:2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-2)2022年甘肃省国家地下水监测工程(水利部分)地下水水质监测项目共有93个地下水水质监测站,9个同步监测站。项目名称:2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目(项目编号:OITC-G220320263-1)2022年北京市国家地下水监测工程(水利部分)地下水水质监测项目共有172个地下水水质监测站,17个同步监测站。
  • 水业速览 ▏地下水管理条例颁布,你准备好了吗?
    水业速览 ▏地下水管理条例颁布,你准备好了吗?2021国务院正式颁布了地下水管理条例(中华人民共和国国务院令第748号)新颁布的《地下水管理条例》深入贯彻落实“节水优先、空间均衡、系统治理、两手发力”的治水思路,规定了地下水节约保护、超采治理、监督管理等制度措施,对区域地下水管控、节约用水、取用水监管等提出明确要求和方向,为加强地下水管理、促进地下水可持续利用提供了重要的法律依据。条例主要内容包括:一严格总量控制,强化区域地下水管控实行地下水取水总量控制实行地下水水位控制严格地下水禁、限采区等重点区域管理二强化节水优先,提高地下水利用效率大力推广应用先进节水技术、工艺、设备和产品。着力提高农业用水效率加快建设节水型社会三严格地下水取水许可和计划管理加强地下水取水工程监管推进地下水取水计量实行特殊类型工程监管强化经济手段运用《条例》针对地下水污染的特点,贯彻预防为主的方针,聚焦以下四方面关键因素,提出管控措施,具有很强的针对性和可操作性。一、实施分区分类防治二、对点源实施严格管控三、加强生产建设活动管理四、加强土壤污染防治条例的颁布,为地下水水位,水量,水质的监测和检测提出了更进一步的要求,其中地下水水位,地下水取水口流量,地下水水体电导率,氮磷等参数的检测,以上4方面是地下水水体质量重要的参考指标。污染防治,检测先行。未来地下水环境监控将提升到更高标准。对相关检测产品的技术、质量有更高要求。地下水现场监测面临着,地域广,覆盖面大,综合影响因素复杂等困难局面,对相应的监测设备提出了更加智能化,小型化,便携化,多参数检测能力的要求。让我们一起用更准确、快速、灵活、便捷的检测手段为地下水质量保驾护航,为国家水安全贡献力量。END
  • 如何防范应对突发性地下水污染
    天津滨海新区危险品仓库集装箱堆场起火爆炸事件发生后,环境保护部部长陈吉宁立即作出安排部署,并委托环境保护部副部长翟青率领环境应急人员和专家组已于13日凌晨赶赴事故现场,与天津市环境监测部门会合查勘现场,了解事故发生后环境污染影响情况,并召开会议提出下一步环境应急要求。突发环境事故不仅影响大气和地表水,也可能污染土壤和地下水。那么,对突发性地下水污染应如何防范呢? 近年来,我国地下水污染事件频发,给社会供水安全造成了严重影响,威胁了人体健康,也给我国环境管理带来了严峻挑战。由于地下水污染事故预警机制不健全,以致地下水污染突发性事件应急处置不及时,从而产生了一些不良社会影响。为了预防突发性地下水污染事件的发生,应尽快建立完善的地下水污染事故预警系统,健全地下水环境管理体系。 突发性地下水污染事件类型划分突发性污染通常是指因设备失灵、生产操作失误、人为破坏或雷电、暴雨、地震等自然灾害影响,而发生的意外事故排放或渗漏,对环境造成突发性污染的现象。根据污染物进入含水层的时间长短和在含水层中的迁移快慢,结合水文地质条件的复杂性、污染物迁移的迟滞性等特点,可将地下水污染突发性事件分为事故型地下水污染突发事件和迟滞型地下水污染突发事件。 事故型地下水污染突发事件 长期以来,人们关注最多的是地表水污染事件,在应急处置时也往往以地表水为保护目标,通常忽视地下水。例如,在福建紫金矿业渗漏事故中,对污染做出快速响应的是下游养殖水域 在青岛石化爆炸事故中,直接见到的污染是河流、海洋等地表水体污染,至于事故中地下水是否受到污染、污染程度如何,并未受到应有的关注。 事故型地下水污染突发事件一般是指由于爆炸、车祸(翻车)、溃坝等事故使得大量污染物迅速进入地下水含水层而造成的地下水污染事件。 由于地下水污染具备迟滞性和隐蔽性的特点,地下含水层之上通常具有包气带作为天然屏障,所以事故发生后污染物直接进入地下含水层而造成事故型地下水突发性污染事件的概率较小。 然而在一些特殊水文地质条件下,该类事故型突发事件仍存在较大可能性。例如,在南方管道型岩溶发育地区,地面或地下装置设备的污染物一旦发生事故,污染物会迅速进入含水层,并快速迁移,影响下游居民工农业用水安全,这种事故型地下水污染突发事件发生的概率将大幅增加。 迟滞型地下水污染突发事件 有些看似突发性的地下水污染事件,其实并非由当时突发意外事故造成,而是由于早期污染事故处理不当或重视不够,当污染积累到一定程度后,在某一特定条件下发生并被发现,而被定性为突发性污染事件,这类污染事件的“突发性”一般只是表象,可称为“迟滞型地下水污染突发事件”。 例如2013年河北沧州“红豆水”事故和吉林松原石油污染事故,2014年4月甘肃兰州自来水苯污染事故和河北无极皮革厂污染事故等,均属于该类型地下水污染事件。迟滞型地下水污染事件是污染物在含水层或地下水中长期积累到一定程度后发生的质变,也是在对地下水环境长期不够重视、地下水环境监测和防治措施不到位、地表污染处理过程中对地下部分忽视等原因的作用下,地下水中污染物积累至某一特定条件或迁移至特定区域时发生的必然现象。 另外,国家地下水质监测资料表明,我国地下水环境总体趋于恶化。对比北京、辽宁、吉林、黑龙江、上海、江苏、海南、宁夏、广东等9省(自治区、直辖市)历年的地下水水质监测结果,地下水Ⅳ~Ⅴ类水从2007年的62.5%上升至2011年的76.8%。全国近20%的城市集中式地下水水源水质劣于Ⅲ类,部分城市饮用水水源不但常规化学指标超标,甚至出现了致癌、致畸、致突变污染指标超标现象。 尽管该类区域地下水水质恶化不会引起地下水污染突发性事故,但全国区域性地下水水质恶化削减了地下水环境容量,降低了地下水污染的阈值,提高了“迟滞型突发性污染事件”发生的概率。突发性地下水污染事件原因分析引发突发性地下水污染事件的原因有很多,其中主要有以下几点: 地下水污染重视程度不够 目前,地下水专业仅是地质资源与地质工程的二级学科地质工程专业下的一个研究方向,在地球科学领域属于小学科,在水利学科中属于边缘学科,在环境科学领域也没有足够地位,使得地下水环境保护相关的研究发展和人才培养相对滞后。此外,我国涉水管理通常偏重于受到外界刺激后具有“立竿见影”效应的地表水污染问题,对具有长期性、隐蔽性、迟滞性的地下水污染不够重视。这也导致地下水环境保护宣传教育不够,公众对地下水的认知严重不足,对肆意污染地下水的行为缺乏应有的警惕,甚至熟视无睹,这无疑在客观上加速了地下水污染。地下水相关法律法规不健全目前颁布实施的法律法规,仅有少数几条条款涉及地下水保护与污染防治,缺乏系统完整的地下水保护与污染防治的法律法规和标准规范,难以明确具体法律责任。即使现有的法律条文有涉及地下水的条款,其对污染地下水的管理措施也不够严格,惩罚缺乏力度,对排污者缺乏威慑力,从而难以形成有效的约束作用。另外,法律上对很多能够造成地下水污染的污废排放,没有形成明确的定义或范围界定,这也导致管理部门监管依据不足,难以“依法办事”。地下水管理体制机制不完善我国对地下水的管理存在职能交叉,涉及地下水管理的有国土、水利、环保等多个部门,尽管职能各有偏重,但对于地下水而言,将其按照含水介质、水位水量、水质等实行分开管理的方式,本身就容易引发地下水管理出现较多“灰色”或“夹心”地带,造成管理不完善,甚至混乱。地下水污染预警机制不成熟近年来,地下水污染的突发性事件表明,我国尚未健全地下水污染预警机制,对于突发性地下水污染事件的应变和处理能力较为薄弱。这类地下水污染事件大多为迟滞型突发污染事件,多是地下水污染长期积累和影响的结果,因此建立健全地下水污染预警机制对于地下水污染防控、提前发现迟滞性突发污染事件而言十分重要。另外,目前科学领域针对地下水污染预警的研究仍停留在区域尺度地下水水质恶化趋势的预警,对于场地型地下水污染事件预警的研究仍鲜有涉及。地下水污染预警机制完善建议由于制度和管理上的不完善,致使地下水污染事故预警机制不健全,无法及时预报地下水污染事件的发生风险,故国家有关部门应予以高度重视,从制度和管理体系上完善地下水污染事故预警机制,降低突发性地下水污染事故发生的风险。健全地下水法律法规体系健全我国地下水环境保护法律体系应从两方面入手 :一是对现有法律体系中已涉地下水部分的进一步修订 二是对现有法律体系中缺失部分的补充。在明确地下水环境管理界限的基础上,修订现行的《水法》、《水污染防治法》等,进一步落实地下水污染责任界定、地下水偷排处罚,并从严管理 完善《环境影响评价法》中地下水环境影响评价部分,提高地下水作为一个重要环境要素在环境影响评价中的内容丰度。对于与地下水含水介质相关的 《固体废弃物污染防治法》也应当明确其造成地下水污染的管理办法。进一步完善法律条款的同时,应制定更详细的实施细则,为执法提供更详实的依据。应该从法律上对地下水环境容量赋予明确定义,明确界定地下水污染的边界。另外,目前法律体系中尚缺失很多地下水相关的法律标准,如地下排污部分等,应当加快地下水立法的进程。明确地下水管理职责权限梳理我国各部委主要职责,不难看出,目前地下水管理的权限分配不尽合理,其中水利部职责为“指导饮用水水源保护工作,指导地下水开发利用和城市规划区地下水资源管理保护工作”,重点放在地下水作为水资源的开发利用和管理保护上。国土资源部职责中,“监测、监督防止地下水过量开采和污染”涉及对地下水污染的监测和监督,但所有污染问题均由环保部管理,即防止地下水污染又是环保部职责,与国土资源部职责有重叠。建议改革相关部委对于地下水管理的职能,合并地下水相关的管理权限,打破现在按照含水介质、水量水位、水质管理与污染穿插管理的职能交叉局面,将水位水量继续交由水利部管理,水质和污染(含水介质)相关交由环保部管理,实现水源、污染源的双重控制与管理。加大地下水环境监测力度早在20世纪六七十年代,我国就已经开始开展地下水水质监测工作,主要针对区域性地下水质恶化的监测 21世纪初,进而将水质监测扩展至地下水环境监测,把地下水污染纳入了地下水环境监测的范畴。2008年,北京耗资8 476万元,实施了平原区污染源监测工程,重点对工业园区下游的地下水水质进行了监控,率先迈开了地下水环境管理的步伐。然而,该项工作的全国性推广工作相对滞后,多项全国性地下水污染调查与防治工程在实施方案中一再强调地下水环境监测,但见效甚微,全国新的地下水环境监测或地下水污染源监测工程鲜有报道。应进一步加强地下水环境监测工作,特别是对石化、重金属、轻纺、制革、垃圾填埋场等污染源进行重点监测。建议通过建立分级管理的地下水污染源监测网络,构建全国地下水环境监测网。分级监测网络构成建议为 :一级监测由国家总体布局,针对国家级工业园区 二级监测由省市级人民政府主导,针对省级及以下工业园区和潜在的污染大户 三级监测由企业自主监测,定期向上级主管部门申报监测数据,并对监测数据真实性负责。完善地下水污染预警机制我国学者在地下水污染预警研究方面已经做了大量工作,但大多均是对区域性水质恶化的预警。应加快对场地型污染预警的研究,制订预警方案,建立预警机制,特别是对于老企业、废弃场址、重污染行业的大企业应重点关注。依据污染源类型、污染强度、污染影响程度,结合地下水污染发生的滞后性特点等,对突发性地下水污染事件进行分类分级,预判污染发生的风险与级别,建立针对性的预警和应急处置措施,提高地下水突发污染事故的处理效率,降低事故的危害性。 来源:中国环境修复网
  • Seametrics发布Seametrics三参数地下水记录仪CT2X 新品
    美国Seametrics公司推出的CT2X可同时监测水位、水温、电导率、盐度、TDS五个参数,产品机身纤小。水位传感器具备特有的线性补偿校准方法,精度更高,电导率采用4电极技术,减少偏振效应误差,内置两节AA电池,用户可非常方便的在维护传感器时自行更换电池。 产品特点测量/记录 电导率,温度,水位、盐度、TDS参数低功耗兼容Modbus及SDI-12协议0-300000μS/cm量程线性温度补偿19mm直径349,000条存储数据 应用领域湿地调查海水侵蚀和土壤盐分监测填埋场、矿坑、垃圾处理场等沥出液监测农业灌溉和雨洪水径流监测污染与修复监测和研究内部存储容量4MB-349,000个数据采样类型可变,用户定义,profiled采样频率4次/每秒, 无最小间隔波特率9600, 19200, 38400软件赠送 Aqua4Plus 2.0组网能力32个可寻地址每网关(地址范围:1 to 255)文件格式.a4d 和 .csv温度水位1电导率敏感元件30K Ω热敏电阻,Epoxy 基底/外壳,Pyrex膜Silicon strain gauge transducer 316 stainless or HastelloyEpoxy/Graphite – 4-电极精度±0.25℃±0.05% FSO(典型,静态)静态:±0.5% 测量值(0 – 100,000μs/cm)分辨率0.1℃0.0001% FS(典型)(32bit内置)0.1 μs/cm,0.001 mS/cm,0.1 mg/L(TDS),0.001 PSU单位Celsius, Fahrenheit, KelvinPSIFtH?O,inH?O,mmH?O,mH?O,inH?O,cmHg,mmHg,Bars,Bars,kPaμs/cm,mS/cm, mg/L, PSU量程-5° to 40℃(23° to 104℉)表压PSI:13,5,7,15,30,50,100,300FtHO:2.33,12,35,69,115,231,692mHO:0.73,3.5,5,10.5,21,35,70,210米电导率2:0-300,000 μs/cmTDS:4.9-147,000 mg/L盐度:2-42 PSU绝压PSI:30,50,100,300FtHO:35,81,196,658mHO:10,24,59,200米补偿范围----0° to 40℃(32° to 104℉)热电阻:无,线性,nLFnWarmup Time------200msec创新点:CT2X地下水电导率存储式传感器,独创模块化设计。摆脱了同类产品电池不可更换,传感器无法维修的问题。CT2X可显示剩余电量,并具备存储和无线模块实时发送监测数据两种监测模式。直接输出5个参数:压力、温度、电导率、盐度、TDS的监测数据和曲线。
  • 2100 | 末次盛冰期以来长江中游沉积环境驱动的地下水流系统演化
    地下水是水文循环的重要组成部分,广泛用于饮用水、工农业活动以及战略储备。然而,人类活动的加剧(如水利工程建设、地下水过度开采、农药和生活污水排放)以及天然劣质地下水在大型流域中的广泛分布,导致地下水环境恶化。因此,水资源的合理管理和水环境的有效保护至关重要,基于地下水流系统(GFS)理论,全面理解地下水流模式(即更新速率、流径及演化趋势)有助于准确评估水文通量和预测污染物分布。汉江平原是长江流经三峡后第一个接收沉积物的大型河湖盆地。复杂的沉积环境、地下水-地表水强烈相互作用以及人为改造自然环境的共同作用,形成了汉江平原独特的GFS格局。了解汉江平原地下水循环演化及其控制机制,对于促进GFS的实际应用和该地区地下水资源保护具有高度紧迫性和挑战性。基于此,在本研究中,来自中国地质大学(武汉)的研究团队在汉江平原腹地和过渡区进行了相关研究,旨在:(1)基于沉积物粒度特征、粘土孔隙水稳定同位素和古气候指标重建汉江平原第四纪含水层系统的沉积环境;(2)深入理解末次盛冰期(LGM)以来沉积环境驱动的GFS演化模式。作者于2015年和2017年在汉江平原腹地和过渡区钻了两个钻孔G01和G05,深度分别为200 m和185 m。从钻孔中收集沉积物样品,分析其粒度分布,地球化学和矿物成分。并从钻孔G01和G05中分别采集了19个和17个粘土样品,利用全自动真空冷凝抽提系统(LI-2100,北京理加联合科技有限公司)提取粘土孔隙水,并进一步分析其δ18O。江汉平原第四纪沉积相、河系和主要钻孔分布。【结果】G01(a)和G05(b)钻孔孔隙水δ18O、沉积物OSL年龄、粘土矿物和地球化学指标的垂向分布以及第四纪古气候演化阶段。古气候阶段G01和G05钻孔孔隙水δ18O值、 粘土矿物和沉积物地球化学指标。【结论】基于水文地质条件、粒度分布特征、沉积物年代学、古气候指标和现存地下水年龄等综合分析,阐明了江汉平原沉积环境驱动的GFS演化模式。该研究的主要发现总结如下:在江汉平原第四纪含水层沉积环境的演化历史中,沉积相主要为河流相、湖泊相和河湖相,由中深层含水层的粗粒相过渡到浅层含水层的细粒相。这意味着水动力条件逐渐减弱并趋于稳定。此外,湖泊相沉积层厚度向平原腹地方向增加。自LGM以来,江汉平原气候演化和沉积相之间具有一定的耦合关系。沉积环境从LGM期间深下切侵蚀环境转变为末次冰消期(LDP)快速冲填粗粒沉积物的河流相环境,然后转变为全新世暖期(HWP)具有细粒沉积物的稳定湖泊相环境。这些变化与长江水位的波动密切相关。基于江汉平原现存地下水年龄的分布,自LGM以来,GFS的演化模式可分为三个阶段。阶段I(22-13 ka B.P.),长江水位急剧下降造成的强水势差增加了地下水的驱动力,极大促进了该阶段区域GFS充分发展,其环流深度达到第四纪底部。随着阶段II地下水驱动力的快速削弱(13-9 ka B.P.),区域GFS再循环深度下降至深层含水层上部,而阶段I的区域GFS逐渐深埋于盆地中。作为阶段III(9 ka B.P.至今)稳定在低水位地下水驱动力,阶段I和阶段II的区域GFS保存在盆地深处,被认为是一个停滞系统(地下水年龄在10 -20 ka之间)。此外,区域GFS(地下水年龄为4-10 ka)和中间GFS(地下水年龄为1-6 ka)共同被认为是稳定体系。随着微地形的充分发育,垂直于河流方向的浅层地下水流形成了活跃的局部GFS(地下水年龄 100 a)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制