当前位置: 仪器信息网 > 行业主题 > >

热电工艺过程恒温器

仪器信息网热电工艺过程恒温器专题为您提供2024年最新热电工艺过程恒温器价格报价、厂家品牌的相关信息, 包括热电工艺过程恒温器参数、型号等,不管是国产,还是进口品牌的热电工艺过程恒温器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电工艺过程恒温器相关的耗材配件、试剂标物,还有热电工艺过程恒温器相关的最新资讯、资料,以及热电工艺过程恒温器相关的解决方案。

热电工艺过程恒温器相关的论坛

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 干式恒温器选购,你需要知道三点

    干式恒温器由模块和主机构成,一般来说各个厂家同一型号的模块差别不大,主要区别就在干式恒温器主机了。首先要确定干式恒温器是那种的?干式恒温器按主机一般分为加热型,加热制冷型和加热制冷振荡型,可以根据实验的用途来选择;加热型的较为便宜,加热制冷贵一些,加热制冷振荡性,功能较全所以也是最贵的。其次是根据干式恒温器主机的控温范围,控温范围通常有0-100℃和0-150℃两种,前种比较常见,而后种少见,选购时可以根据具体的应用情况选择,0-150℃控温范围大价格贵一些,像一般的实验用不了这么高,就没必要选择这种。最后就要选择模块的规格了,最常见的就是0.5ml,1.5ml,0.2ml,要根据试验的内容和要求来选择处理量,另外要看看温度稳定性是模块在加热时各个部分温度的均匀性,就是各个部分最大温差多少,一般在0.1-0.5℃之间,越低越好。如果实验堆温度要求不是太严格的情况下选0.5就可以了,精度越低价格越高。最高温度是仪器所能达到的最高温度,和控温范围事相关的,一般比控温范围高5到10℃。

  • 恒温器购买

    我实验室计划购买ERM参考样品,保存条件为20摄氏度,我们计划购买一台恒温器,但是搜索了很长时间,一直没有非常适合的,各位如有,请推荐。样品只有两小瓶过大的功率和体积都是浪费。

  • 半导体恒温器中配件有哪些?

    半导体恒温器中配件比较多,除了压缩机、换热器、蒸发器、膨胀阀等主要配件之外,储液器、油气分离器、干燥过滤器等也是比较重要的,那么,这三种配件在半导体恒温器众的作用有哪些呢?  油气分离器安装在压缩机和冷凝器之间,压缩机的排气是制冷剂和润滑油的混合气体,通过油分离器的较大的腔体减速,雾状的油就会聚集在冲击的表面上,当聚集成较大的油滴后,流向油分离器的底部,并通过回油装置返回压缩机。  半导体恒温器的过滤器的作用是为了防止制冷剂里含有水分或由于不可减少的元素等原因使系统里进入水分,当从冷凝器出来的高温液体进入膨胀阀后,液体的温度会大幅度的下降,一般都在零度以下,这时如果系统里含有水分的话,由于膨胀阀通过的截面很小,就会易出现冰堵的现象,影响系统的正常的运行。  制冷系统中的高压储液器(也称储液筒)是装在冷凝器和膨胀阀之间的,它的功能可归纳为以几个方面,储存冷凝器的凝液,避免凝液在冷凝器中积存过多而使传热面积变小,影响冷凝器的传热效果,在蒸发负荷增大时,供应量也增大,由储液器的存液补给;负荷变小时,需要液量也变小,多余的液体储存在储液罐里。因为出液管是插在液面下,故可防止高压侧的蒸汽和不凝性的气体进入低压侧。同时,储液器也起到过滤和消音的作用,储液器的形式有多种,有单向和双向之分;有一出口和两出口之分;有立式和卧式之分。  半导体恒温器是目前半导体行业制冷加热控温要求中使用比较多的设备,性能的要求不言而喻,所以,建议向专业厂家购买。

  • 两种型号全封闭式循环油浴恒温器性能指标考核评价——征求意见

    两种型号全封闭式循环油浴恒温器性能指标考核评价——征求意见

    1. 背景 我们在制作生产高温导热系数测试系统中采用的是稳态测量方法,这种方法要求冷板具有室温附近温度,最关键的是要求冷板的长时间温度稳定性优于0.05℃,这样冷板温度控制就涉及到恒温控制。由于在整个导热系数测试过程中,高温热板(最高可达1000℃)上的热量会通过被测试样传递给冷板,使得冷板温度升高。由此要求对冷板温度进行控制的恒温装置具备两个功能:(1)能提供较大制冷量,能快速消除传递给冷板的热量,使得冷板温度始终保持在室温附近。(2)优良的温度稳定性,使得冷板温度长时间(24小时以上)波动不超过±0.05℃。2. 恒温装置选型 冷却与恒温的方式及手段很多,如半导体制冷控温、压缩机制冷控温和低温介质冷却控温等,但最有效和简便的方式是循环冷却液方式,为此我们选择了循环冷却液恒温器方式来实现冷板的恒温控制。循环冷却液恒温方式最常用的是外循环冷水机,冷却和流动介质为水。尽管循环冷水机的制冷量足够大可以满足冷却要求,但循环冷水机的温度稳定性较差,一般温度波动都在±0.1℃以上,这显然不能满足冷板恒温要求。 为此,我们最终选用了具有冷热功能的循环油浴,循环油浴既有较大的制冷功率和泵压,能够快速带走冷板上的热量,同时也具有很高的温度稳定性,温度波动一般都小于±0.05℃。3. 循环油浴恒温器考核 为了确定最终选用那种循环油浴恒温器,我们购置了两个厂家具有近似技术指标的循环油浴恒温器,它们分别是优莱博公司Presto系列动态温度控制系统中的A40高低温动态温度控制系统和胡博公司Unistat系列高精度动态温度控制器中的tango nuevo循环恒温器。 http://ng1.17img.cn/bbsfiles/images/2016/01/201601101540_581467_3384_3.jpgJULABO公司Presto A40循环恒温器http://ng1.17img.cn/bbsfiles/images/2016/01/201601101542_581469_3384_3.jpgHUBER公司tango nuevo循环恒温器下表是这两款恒温器的主要技术指标:http://ng1.17img.cn/bbsfiles/images/2016/01/201601101544_581470_3384_3.png为了更好的确定最终选定那种型号的恒温器与水冷板配套,我们计划对这两款恒温器进行多项性能指标的对比考核,目前主要需要考核的是温度稳定性,验证两款恒温器是否能长时间的温度稳定性达到±0.05℃指标。其它性能如易操作性、电压稳定性影响等性能也将进行考核。如果有使用机构或个人想进行其它性能参数的考核,欢迎大家提出要求,我们将根据可行性进行考核,并将考核结果一并在此公布,欢迎大家参与。

  • 干式恒温器温度校准的必备条件

    [color=#333333][b] 干式恒温器温度校准的必备条件:[/b][/color][color=#333333][/color][color=#333333]1.环境要求。我们要求在环境温度15C~25C下进行温度校准。[/color][color=#333333][/color][color=#333333]2.湿度要求。湿度条件要低于85%下进行[/color][color=#333333][/color][color=#333333]3.温度校准最重要的器具之一:国家二等标准温度计(0.1C刻度),而且必须经过权威部门校验过的国家二等标准温度计。(针对模块孔比较大的模块),普通的温度计或没有校准计量过的高精度温度计都不允许。[/color][color=#333333][/color][color=#333333]4.温度校准最重要的器具之二:高精度热敏电阻等传感器,而且必须经过权威部门校验过的高精度热敏电阻等传感器。(针对模块孔比较小的模块)[/color][color=#333333][/color][color=#333333]5.检测要求:国家二等标准温度计和高精度传感器放入模块孔时,必须要求非常好的接触模块,一般都会在孔内加入导热油(耐高温油,通常燃点必须高于200度)和导热硅脂[/color][color=#333333][/color][color=#333333]6.检测方法:拥有厂家提供的完整的温度校准方法和说明 [/color]

  • 【求助】热电工程师说他们的仪器看到空气峰很大是正常现象,不代表漏气,对吗?

    用的是TSQ Quantum [url=https://insevent.instrument.com.cn/t/Mp]gc[/url],从来没用过,刚开始接触。以前在仪器出问题前手动打开灯丝看到空气峰很大,而且似乎比例一直都维持在3比1,加了调谐液时,更加清晰的能看到空气峰是绝对意义上的基峰,水峰很小。但是问过热电的工程师,说这跟Agilent的不同,是正常的。当时也没见有什么问题,于是也没过多理会。不过其实也没做过多少次,一直都是同事在操作。现在正式开始用它了,就开始出问题了。 自从自动调谐出了问题(一直不给做),怀疑点之一就是漏气(刚洗了离子源),可是实在又看不出来漏气的地方在哪里,丙酮测露也试过了,没见到58峰,不过看到了一个不大不小的40峰。因为热电工程师之前的说法,实在确认不了到底是否漏气。 但是自动调谐就是不给做。找到了一个default的文件夹,想调其中的调谐文件试试,总是失败,估计那个文件有问题。有没有哪位遇到过类似情况的?热电工程师说得有道理吗?难道不同厂家的仪器差别这么大?请问,自动调谐都跟什么设置有关啊?为什么手动进调谐液能看到峰,而且不算很小,但是自动时就是说信号不足呢?请指教啊!这个问题一日不解决,就什么都做不了啊。急啊!极度的困扰中! [em09509]

  • 干式恒温器注意事项

    [align=left][color=#333333](1)每次使用前和使用以后,必须用棉签沾蒸馏水清洗模块的锥孔,以保证试管与锥孔壁接触充分。[/color][/align][align=left][color=#333333](2)在设置新的温度过程中,本机系统是仍然按照上次设定的温度值运行,直至SV窗口闪烁数字停止。[/color][/align][align=left][color=#333333](3)如果显示温度(PV)与第三方测量温度相差0.1℃以上时,本机保管人进行温度误差校正。[/color][/align][align=left][color=#333333](4)在使用仪器的过程中,禁止按压(校准/ADJ)键。[/color][/align][align=left][color=#333333](5)如果使用在4℃恒温4小时以上的实验操作以后,必须清除模块冷凝水。方法是:拔下电源插头切断电源,然后拧开模块上两个黑色旋钮,取出模块,用软布清除各个接触面的冷凝水,然后再将模块安装复位[/color][/align][align=center][color=#333333] [/color][/align]

  • 恒温恒湿试验箱五大核心系统的详细介绍

    恒温恒湿试验箱适用于电工、电子产品整机及零部件进行耐寒试验、温度快速变化或渐变条件下的适应性试验。特别适用于进行电工、电子产品的环境应力筛选(ESS)试验。该设备主要是针对于电工、电子产品,以及其原器件,及其它材料在高温、低温速变的环境下贮存、运输、使用时的适应性试验。下面由小编为大家详细介绍可程式恒温恒湿试验箱的系统结构:  恒温恒湿试验箱控制系统:控制系统不容置疑的成为了恒温恒湿试验箱的核心,控制系统决定了试验箱的升温速率、精度、是否有程序控制等重要指标。现在该设备的控制器大都采用PID控制,也有少部分采用PID与模糊控制相组合的控制方式。  恒温恒湿试验箱制冷系统:要想试验箱内处在低温状态,制冷系统必不可少。制冷系统是可程式恒温恒湿试验箱的关键部分之一,试验箱的制冷方式通常可分为机械制冷和液氮辅助制冷两种。  制热系统:相对制冷系统而言,加热系统比较简单。它主要有大功率电阻丝组成,由于试验箱要求的升温速率较大,因此试验箱的加热系统功率都比较大,而且在试验箱的底板也设有加热器。  恒温恒湿试验箱温度监控系统:要想达到预定的温度,少不了温度监控系统。可程式恒温恒湿试验箱的温度监控主要依靠温度传感器,通过传感器感应箱内温度传达实时信号给控制系统,从而达到预定温度。温度传感器应用较多的是PT100和热电偶。  恒温恒湿试验箱空气循环系统:空气循环系统一般有离心式风扇和驱动其运转的电机构成。它提供了恒温恒湿试验箱内空气的循环。

  • 固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    固化工艺研究和固化过程在线监测——低价、简便、高效的实时热分析技术研究

    [color=#990000]摘要:差示扫描量热(DSC)和调制式扫描量热(MDSC)技术在复合材料固化工艺研究中应用十分广泛,但无法应用于固化过程的在线实时监测。为解决固化过程在线监测难题、提高固化工艺优化效率和实现仿真计算的准确考核,需要在差示扫描量热技术基础上开发低价、简便、高效和实时的新型热分析技术。本文介绍了近些年来在此领域内最具代表性的几篇研究报道,分析这些研究的特点和不足,并提出了后续工作的技术方案。[/color][color=#990000]关键词:固化工艺、固化过程、固化度、差示扫描量热、DSC、调制式差示扫描量热、MDSC、MTDSC、比热容、热扩散系数、导热系数[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][b][color=#cc0000]1.问题的提出[/color][/b] 在复合材料研究过程中,需要对固化工艺进行研究和优化。而在复合材料生产过程中,为保证复合材料成品质量及生产的可重复性,理想方式是对复合材料固化过程进行实时在线监测,确保固化过程中各部分充分固化、累积残余应力和温度非均匀性引起的应变尽可能小、控制复合材料固化温度避免热降解以及降低完全固化的总时间。为了实现固化工艺研究和优化以及固化过程的实时在线监测,需要针对材料固化过程中可监测的物理量,并结合固化过程中出现的物理化学反应特性,采用相应准确有效的测试技术。在固化工艺中,当前常用来判断固化是否完成的直接准则是最能表现固化反应的固化度,但在固化工艺研究和固化度监测方面面临着以下三方面的技术难题需要解决:(1)现有扫描量热技术测试样品小,测试结果与实际生产现场有差异 目前用于研究固化工艺最有效的手段是差示扫描量热(DSC)技术以及灵敏度和精度更高的调制式扫描量热(MDSC)技术,树脂供应商大多采用这两种技术提供树脂固化度信息。这两种技术的局限性是测试样品量很小,与实际固化过程中的产品尺寸和形状有巨大差异,扫描量热技术测试得到的固化工艺过程和参数很难在实际固化工艺中直接使用,还需要进行大量固化工艺优化研究工作。(2)现有扫描量热技术无法应用于在线实时监测 由于基于热动力学原理,并且可以与固化工艺具有完全相同的温度、压力和气氛变化过程,目前的各种扫描量热技术作为最成功的热分析技术,可以说是完美解决了微量样品层面的热分析问题,为固化工艺研究和优化、为固化工艺仿真计算研究提供了准确的基础数据。但目前热分析技术的最大局限性是无法推广应用到产品生产现场,无法采用扫描量热技术对固化过程进行在线实时监测,无法对固化工艺研究和仿真模拟结果进行快速的在线实时验证。(3)现有在线监测技术无法达到扫描量热技术的准确性,未达到实用水平 尽管扫描量热技术无法推广应用到生产现场,但为了满足复合材料研制和生产需要,近些年来开发了许多新技术来进行固化过程的实时在线监测。这些技术大多采用间接方法,而且种类繁多,主要分为光纤法、超声法、电学法和热学法。尽管这些方法都证明了其在监测固化过程中的有效性,但也存在局限性,还都无法替代扫描量热技术的有效性,每一种方法只能监测部分参数,在使用时需要根据具体条件进行选择评估,而且这些测试方法目前大多还都停留在实验室研究阶段,还未看出具有多大的市场使用前景。[b][color=#cc0000]2.解决方案[/color][/b] 综上所述,为了准确了解固化中的吸放热过程、实现固化工艺设计、快速准确寻找最佳固化工艺过程,并能对整个固化过程进行实时在线监测,就需要在扫描量热技术的基础上,开发新的测试技术并应用到实际固化工艺中,所开发的新技术方案主要包括以下几方面内容: (1)首先要解决大尺寸规则形状样品或材料的热分析测试问题,即在各种大尺寸的板状、柱状和球型模具/样品和构件上实现扫描量热测试功能,这相当于把DSC测试功能拓展到大尺寸规则模具/样品和构件上。 (2)解决材料热物理性能测试问题,即在DSC比热容测试能力基础上,增加了在整个固化过程中的热扩散系数和导热系数的连续测量能力,在得到固化特性的同时得到复合材料传热特性,这相当于把MDSC测试功能拓展到大尺寸规则模具/样品和构件上。 (3)最终要解决单样品热分析测试技术问题,一方面要避免像DSC和MDSC那样需要同时进行参考样品测试,另一方面还要避免使用传统热物性测试中那样长时间稳态一维热流测试形式,而是需要仅采用温度传感器测量模具/样品和构件内外的温度和热流变化,并在与固化工艺相同的升温、恒温和降温的动态过程中,同时测量得到多个热物理性能参数,如热扩散系数、热焓、比热容和导热系数,最终得到固化度等相应的固化工艺参数。[b][color=#cc0000]3.本文目的[/color][/b] 上述解决方案是当前复合材料固化度监测及固化反应动力学研究的发展方向,对复合材料研制和生产有着重大意义,特别是热分析技术在固化工艺和固化过程中的应用研究方面,很多研究机构和学校都开展了研究工作,但并没有取得实质性进展,基本还停留在实验室探索阶段。本文将介绍近些年来在此领域内最具代表性的几篇研究报道,分析各种研究的特点和不足,为后续的技术攻关提供参考。[b][color=#cc0000]4.温度调制型DSC:MDSC技术[/color][/b] 经典的DSC技术可以测量微小样品比热容随温度的变化特性,由此常用于固化反应动力学的研究和分析,但无法测量样品的热扩散系数和导热系数,因此采用DSC技术无法对固化过程中的热传递进行研究,无法了解材料内部的温度分布,进而使得无法进行固化工艺的优化。另外,传统的DSC对于微量样品的微弱吸热和放热还是不能提供足够高的灵敏度和精度。 为此,结合传统的Angstrom技术,在DSC技术基础上开发了温度调制型DSC(MDSC)技术,即在以往DSC测试的温度变化曲线上叠加了温度调制波,由此大幅度提高了测量灵敏度和测量精度,同时还实现了热扩散系数的测量。 目前,MDSC技术已经非常成熟,并有相应的商品化测试仪器,如图4-1所示。很多研究机构采用MDSC仪器对固化过程中的热传递进行研究,如侯进森等人对碳纤维/环氧树脂预浸料固化过程中不同纤维方向上的导热系数进行了测量。[align=center][color=#cc0000][img=,690,230]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141816583388_7031_3384_3.png!w690x230.jpg[/img] [/color][/align][color=#cc0000][/color][align=center]图4-1 MDSC测量原理和测试仪器[/align] 尽管MDSC已经具有很高的测量精度和灵敏度,但这种技术复合材料固化工艺研究和在线监测中的应用十分有限,主要因为以下原因: (1)样品量太小,很难保证样品对复合材料的代表性; (2)测试模型假设被测样品始终处于温度均匀状态,这就造成MDSC测试模型无法放大应用到大尺寸样品和固化部件的热分析测试; (3)与DSC一样,MDSC同样需要结合参考材料同时进行测量,这也限制了这种技术的实际应用; (4)为了保证MDSC技术中规定的边界条件,在被测样品周围需要配备复杂的配套装置,这在固化工艺现场根本无法实现。[b][color=#cc0000]5.固化过程的其他热分析技术研究[/color][/b] 到目前为止,固化过程中其他热分析技术的研究,主要侧重于对恒温固化过程中热物理性能变化过程的测量,重点是测量热扩散系数的变化规律,然后用不同阶段的热扩散系数来表征固化度C,即:[align=center][img=,690,57]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817455522_5587_3384_3.png!w690x57.jpg[/img][/align] 式中,B、A和D分别是液态、随时间推移和完全固化状态下的热扩散系数值。[color=#cc0000]5.1. Friis-Pedersen等人的研究工作(2006年)[/color] 较早尝试将DSC热分析技术推广应用到复合材料固化过程在线监测的是德国的Friis-Pedersen等人,他们模仿MDSC技术进行了初步的研究工作。在他们的研究中,模仿MDSC同样采用了Angstrom测量原理进行定点温度交变调制,模仿MDSC仪器结构搭建了一套经典的Angstrom法薄板热扩散系数测量装置,如图5-1所示,可以测量薄板材料(面积为100mm×100mm,厚度约为3mm)在不同恒定温度固化过程中热扩散系数的变化过程,并由此热扩散系数变化过程来表征复合材料固化度特性。[align=center][color=#cc0000][img=,690,226]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141817271162_7843_3384_3.png!w690x226.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-1 试验装置示意图[/color][/align] 尽管采用了已知热扩散系数的硼硅酸盐玻璃对此测量装置进行了测量误差考核,并标称测量误差小于3%,但从文献报道来看,整个装置简陋,重复性测量结果偏差很大。特别是对于低粘度未固化树脂以及厚度的变化情况测试会有很多问题。 Friis-Pedersen等人还分别采用两种DSC仪器分别对微量样品的比热容进行了测量,并结合上述装置测量得到热扩散系数和密度计算得到了导热系数,通过对比证明了固化度与热扩散系数和导热系数的变化密切相关,采用热扩散系数来表征固化度甚至在灵敏度上更优于比热容。 尽管Friis-Pedersen等人的研究工作比较简易,测量误差也较大,但在采用热物理性能参数来表征固化度方面进行了积极的探索,并获得了初步的结果,证明了采用热扩散系数来表征固化度是一种切实可行的技术途径,并具有显著特点。[color=#cc0000]5.2. Rudolph 等人的研究工作(2016年)[/color] 为了实现固化过程的在线监测,基于经典的Angstrom法薄板热扩散系数测试技术,德国的Rudolph 等人搭建了一套更简易的试验装置来测量环氧树脂固化过程中的热扩散系数变化,并基于上述固化度的定义来对固化过程进行表征。 装置的测量原理基于经典的Angstrom法,如图5-2所示,不同之处在于温度的调制不是传统的正弦波,而是采用了三角波,相应的热扩散系数测量公式则采用了参数估计算法获得。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818091906_4688_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-2 基本思想是假设一维热流,评估两个温度信号之间的差异。a)样品描绘,b)顶部和底部温度信号[/color][/align] 为模拟在线固化过程,Rudolph 等人搭建的试验装置模仿了真空袋成型工艺,如图5-3所示,被测环氧树脂样品尺寸为直径29mm、厚度不超过3mm,样品装在外径为30mm、高度为4mm的铝制料盒内。试验参数中设置了温度振荡周期长度为4分钟,振荡幅度被设置为2K。[align=center][color=#cc0000][img=,690,136]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818230117_8499_3384_3.png!w690x136.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-3 实验装置:1)隔离试验箱;2)温度控制器;3)用于温度测量和控制的PC机;4)测量放大器;5)室温显示;6)带有温度传感器的样品;7)铝块;8)珀尔帖元件;9)散热器[/color][/align] 采用这套试验装置,分别在不同温度下进行了固化过程中的热扩散系数测试,热扩散系数转换为固化度后的结果如图5-4所示。[align=center][color=#cc0000][img=,400,300]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818383568_7396_3384_3.png!w690x519.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-4 在不同温度下测量热扩散系数推断出环氧树脂的固化度[/color][/align] 通过上述Rudolph 等人的工作,至少可以看出以下几方面的优缺点: (1)再一次证明了热扩散系数作为固化度评价参数的有效性; (2)对于板材结构的复合材料固化过程,可以用很简易的装置就可以实现固化度的在线监测,特别是仅采用单面加热和厚度方向双点测温的方式,就可以在线实时对整个固化过程的固化度变化进行测试表征,这已经非常接近实用化水平。 (3)出于测试方法需要,样品加热采用的是单面加热三角波温度调制方式,这种加热方式显然不符合常规固化工艺线性加热模式,增加了在线监测设备的复杂程度。同样,这种测试结构并不适合低粘度液体以及厚度变化的固化过程。 (4)Rudolph 等人的工作实际上为今后的实用化研究奠定了一个基础,这种单面加热方式完全可以拓展到常规固化工艺中的线性加热模式,即只需采用一个温度传感器测量板材中心位置在固化过程中的温度变化,就可以实现板材固化过程的在线实时监测。 沈阳航空航天大学的卢少微等人出于对巴基纸(Buckypaper)作为温度传感器在固化工艺在线监测中的应用研究,借鉴了上述Rudolph 等人的工作,直接在真空袋固化工艺中研究固化度与巴基纸的电阻温度系数关系。尽管直接采用温度传感器在线监测固化过程的有效性十分有限,但他们对巴基纸的研究不失为给今后固化工艺中使用的温度传感器增加了一种可选性。[color=#cc0000]5.3. Struzziero等人的研究工作(2019年)[/color] 上述研究工作基本都是基于板材固化工艺的在线热扩散系数测试测试方法,但这些水平结构的固化过程并不适合流动性较强的低粘度液体树脂的固化过程监测,而且监测过程中样品厚度会发生变化而带来测量误差。为了提高材料的适用性,Struzziero等人采用了柱状结构的传热模型报道了在线固化监测的研究工作。 Struzziero等人研究的测试方法还是基于经典的Angstrom技术,在定点温度下交变调制加热温度来测量得到热扩散系数。设计的测量装置包括一个带冷却管的铜块,其中心有一个圆柱孔用于容纳直径为7mm、壁厚为1mm、高度40mm的空心铜管。该装置如图5-5所示。[align=center][color=#cc0000][img=,690,223]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141818568815_9052_3384_3.png!w690x223.jpg[/img] [/color][/align][align=center][color=#cc0000]图5-5(a)实验装置;(b)截面图;(c)俯视图[/color][/align] 液体树脂倒入铜管,然后用软木塞封闭。软木塞在其中心有一个开口,以允许放置在中心的热电偶接触树脂。然后将铜管插入铜块的圆柱形孔中,两块隔热板放置在铜块的上下两侧,一根柔性电热丝缠绕在冷却管周围。铜块温度由温度控制器调节加热软线上的功率进行控制而产生周期性的变化。由于树脂的热惯性,在树脂区域中心测量的温度是相位滞后的周期性曲线,树脂和铜温度的周期性变化信号如图5-6所示,通过相位差的测量可以得到相应的热扩散系数。[align=center][color=#cc0000][img=,600,352]https://ng1.17img.cn/bbsfiles/images/2019/05/201905141819092006_7113_3384_3.png!w690x405.jpg[/img] [/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-6 树脂区域边界和中心的温度变化[/color][/align] 每次测试前,树脂在铜管中的填充量为四分之三左右,用软木密封封闭,并放置在铜块中。随后,外径0.5mm的测量热电偶探针穿过软木塞密封件的中心开口,使热电偶敏感区位于树脂的几何中心位置。在测试过程中,铜块温度调制所采用的幅度为1℃、一个调制周期为4分钟。Struzziero等人采用搭建的测量装置对三类材料进行了测试,第一类是非固化材料甘油作为该方法的考核;第二类包括一种脱气、预混合、单组分树脂,专门设计用于树脂传递模塑工艺的环氧树脂RTM6和另一种为灌注应用设计的低反应性单组分液态环氧树脂890RTM;第三类是采用液体增韧环氧树脂的双组分系统,用于缠绕和拉挤成型的XU3508/XB3473。 Struzziero等人用上述装置测量了上述材料不同温度下的热扩散系数,并采用MDSC进行了比热容测量和固化表征,同时还建立了相应的固化动力学模型,由此来进行相应的对比和验证。 通过甘油的导热系数测量验证了与文献值相差约为8%,需要注意的是这个偏差是包含了测量装置热扩散系数测量误差和MDSC比热容测量误差的合成误差。 Struzziero等人在此测量装置上开展了大量研究,在此就不再详细介绍。总之,Struzziero等人的工作再一次有效证明的热扩散系数表征固化过程的有效性,同时还证明了测量液体热固性塑料固化过程中的热扩散系数方面是可靠的,测量精度由树脂区域中心热电偶放置的精度控制,要求位置精度为0.5mm以将测量误差限制在3%以下。固化环氧树脂的导热系数测试结果显示出对固化度的线性依赖增加和对温度的反向线性依赖,所得结果可以根据声子输运解释为固化材料中的主要热载体。实验装置测量结果可用于生成材料表征数据,这些数据是建立固化模拟所需的精确导热本构模型所必需的。 Struzziero等人的工作最重要的是验证了固化过程中热扩散系数和导热系数变化的准确测量,热扩散系数和导热系数的获得可以更可靠地预测热梯度、放热现象和缺陷,如残余应力,有助于提高固化工艺预测的整体精度。另外,Struzziero等人的圆柱体测试结构,从测试模型上已经完全接近于实际固化工艺,而且还可以进行各种形式的推广应用。[b][color=#cc0000]6.分析[/color][/b] 上述研究工作基本上都是模仿MDSC而采用了Angstrom技术,同时也证明了测量得到的热扩散系数和导热系数完全可以用于固化评价。由于加热方式的复杂性,使得这种Angstrom技术还是无法应用到实际复合材料固化工艺中的在线监测,还只能停留在样品级别的应用。为了真正在复合材料固化工艺中采用热分析技术实现在线监测,依阳公司通过前期的大量研究,做出如下分析: (1)基于MDSC发展历史做出的分析:在DSC测试过程中,由于样品量小,样品的吸热和放热量以及热流信号都十分微弱,而Angstrom温度交变测试是一种灵敏度和精度很高的技术,因此MDSC采用了Angstrom技术实现了灵敏度和精度的大幅度提高,并同时实现了热扩散系数测量,结合已经具有的比热容测试能力,MDSC可用来测量导热系数。 (2)从实际固化工艺做出的分析:在产品生产固化工艺中,产品尺寸普遍较大,吸热和放热量以及热流信号普遍都较大,从信噪比分析来看根本无需高灵敏度的Angstrom技术。另外,在实际固化工艺设备上也很难实现Angstrom技术要求的温度交变调制。 (3)从热扩散系数测试技术做出的分析:尽管上述研究文献报道都是基于交变的Angstrom技术,但不采用这种交变技术,只通过加热变化过程也能准确测量出热扩散系数,而这种加热变化过程与固化工艺中的加热过程完全相同。这也就是说在现有固化工艺设备和固化加热过程中,通过工件中单点温度的测量,可以准确得到整个固化过程中的热扩散系数变化。 (4)从比热容测试技术做出的分析:DSC和MDSC的强大之处在于可以对热流进行测量,从而量化得到吸热和放热变化过程,其技术关键是采用了参考材料的对比测试,这也是限制DSC技术推广应用于在线热分析的主要障碍。这个主要障碍目前也有解决途径,就是设法将参考材料等效到现场固化工艺加热装置上,从而可以具备DSC的所有测试能力。[b][color=#cc0000]7.总结[/color][/b] 通过上述研究文献综述和分析,针对固化工艺研究和固化过程在线监测,可以描绘出这样一个技术愿景: (1)因为都是基于升温和降温过程,可以将差示扫描量热(DSC)技术等效到固化工艺设备上,只通过简单增加相应的温度传感器等,就基本可以实现MDSC的大部分功能,至少能具备热焓、比热容、热扩散系数和导热系数的测试能力,实现高效的固化过程在线监测。 (2)这是一种单点测温和基于一维传热的测试技术,可以应用在各种尺寸和形状的复合材料固化工艺中,造价极低使用便捷,单点植入式温度传感器对复合材料整体性能影响小。 (3)随着分布光纤技术和巴基纸(Buckypaper)技术的发展,温度传感器可以采用分布式植入结构,将会更高效的进行固化工艺现场监测。[b][color=#cc0000]8.参考文献[/color][/b](1)王奕首, 李煜坤, 吴迪, et al. 复合材料液体成型固化监测技术研究进展. 航空制造技术, 2017, 538(19):50-59.(2)侯进森, 叶金蕊, 王长春, et al. 碳纤维/环氧树脂预浸料固化过程中的热导率测定. 复合材料学报, 2012(4):23-28.(3)Friis-Pedersen H H, Pedersen J H, Haussler L, et al. Online measurement of thermal diffusivity during cure of an epoxy composite. Polymer testing, 2006, 25(8): 1059-1068.(4)Rudolph M, Naumann C, Stockmann M. Degree of cure definition for an epoxy resin based on thermal diffusivity measurements. Materials Today: Proceedings, 2016, 3(4): 1144-1149.(5)Lu S, Zhao C, Zhang L, et al. Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Advances, 2018, 8(39): 22078-22085.(6)Struzziero G, Remy B, Skordos A A. Measurement of thermal conductivity of epoxy resins during cure. Journal of Applied Polymer Science, 2019, 136(5): 47015.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 恒温恒湿试验箱在运输过程中为什么不能倾斜(下)

    接上文,上文中讲解了为什么恒温恒湿试验箱在运输过程中不能倾斜,原因是因为一旦倾斜的话很可能会造成试验箱压缩机“油堵”。那么问题来了,如果一旦确认恒温恒湿试验箱出现“油堵”状况的话,我们应该解决呢? 首先应切开工艺管,放掉制冷剂,接好修理表阀,焊脱干燥过滤器;然后经表阀开始充入氮气,再充氮气的过程中,用大拇指堵住干燥过滤器所接的冷凝器管口,当充入0.6MPa左右的氮气时,干燥过滤器所接的毛细管一端有气流流出,维持气流大约1分钟,使流入毛细管中的冷冻油退出;再将堵在冷凝管口的大拇指间断放开3~5次,每次放开约10秒钟左右,让气流冲洗冷凝器管道中冷冻油,其后,放开大拇指,关闭修理阀。经过上面的处理,油堵管道已基本排除,为了保证彻底清除堵塞,可重复一次上面的充气过程。再换上新的干燥过滤器,进行抽空之后,灌入制冷剂,恒温恒温试验箱就可以恢复正常制冷了。

  • 【资料】干燥箱和恒温箱

    干燥箱用于物品的干燥和干热灭菌,恒温箱用于微生物和生物材料的培养。这两种仪器的结构和使用方法相似,干燥箱的使用温度范围为50~250℃,常用鼓风式电热以加速升温。恒温箱的最高工作温度为60℃。 1.使用方法 (1)将温度计插入座内(在箱顶放气调节器中部)。 (2)把电源插头插入电源插座。 (3)将电热丝分组开头转到1或2位置上(视所需温度而定),此时可开启鼓风机促使热空气对流。电热丝分组开头开启后,红色指示灯亮。 (4)注意观察温度计。当温度计温度将要达到需要温度时,调节自动控温旋钮,使绿色指示灯正好发亮,十分钟后再观察温度计和指示灯,如果温度计上所指温度超过需要,而红色指示灯仍亮,则将自动控温旋钮略向反时针方向旋转,直调到温度恒定在要求的温度上,指示灯轮番显示红色和绿色为止。自动恒温器旋钮在箱体正面左上方。它的刻度板不能做为温度标准指示,只能做为调节用的标记。 (5)在恒温过程中,如不需要三组电热丝同时发热时,可仅开启一组电热丝。开启组数越多,温度上升越快。 (6)工作一定时间后,可开启顶部中央的放气调节器将潮气排出,也可以开启鼓风机。 (7)使用完毕后将电热丝分组开关全部关闭,并将自动恒温器的旋钮沿反时针方向旋至零位。 (8)将电源插头拔下。 2.注意事项 (1)使用前检查电源,要有良好地线。 (2)干燥箱无防爆设备,切勿将易燃物品及挥发性物品放箱内加热。箱体附近不可放置易燃物品。 (3)箱内应保持清洁,放物网不得有锈,否则影响玻璃器皿洁度。 (4)使用时应定时监看,以免温度升降影响使用效果或发生事故。 (5)鼓风机的电动机轴承应每半年加油一次。 (6)切勿拧动箱内感温器,放物品时也要避免碰撞感温器,否则温度不稳定。 (7)检修时应切断电源。

  • 印染过程自动配料技术与工艺

    (1) 印花调浆自动配比的技术与工艺方法  印花浆料的配比通常来讲也叫印花调浆,采用自动配比技术后我们也叫自动调浆。自动调浆系统结合印染工艺,应用计算机数据库技术及网络技术对印染调浆实现配方数据库的管理,再通过工业控制计算机对配浆泵与阀门控制,实现自动调浆的过程。整个系统是建立数据库管理系统利用计算机对系统的管理与控制,通过1g精度的大样电子秤和0.1g精度的小样电子秤保证计量的准确性。 系统分糊料调制系统和母色调制系统。  (2) 前处理助剂配送系统基本原理与工艺流程  利用网络技术、嵌入式系统及自动控制技术,将染色机、退浆机、煮炼机、漂炼机(或者退煮漂联合机)、丝光机等的过程中通过温度、蒸汽压力、车速、碱浓度传感器、伺服控制、数据库及数学模型等结合起来,把整个生产工艺过程的温度、速度、溶液的浓度及反应堆置时间等有效地控制起来,达到我们所需的要求,保证产品质量的稳定性,提高发挥机台的效率,降低生产成本。  前处理生产线的退煮漂碱浓度及双氧水的浓度的变化,会影响坯布的白度、上色性、毛效、布面光洁度、缩水率等,因此通过对工艺流程的控制使漂白布的质量保持稳定。  碱液、双氧水、各种其他助剂的集中配送,首先对所配的母液的浓度进行检测,再根据所需的浓度及坯布的消耗预测制订配送方案。  在作业过程中,根据实际动态所测的浓度变化再进行配送方案的细调整,让槽内的保持一定浓度。  其他的生产线也如此,如丝光生产线:要求对强碱的浓度保持恒定,并对布面的含碱率进行控制。

  • 记一次恒温水浴振荡器的升级

    记一次恒温水浴振荡器的升级

    记一次恒温水浴振荡器的升级 我们单位在建实验室时,购买了台恒温水浴振荡器,用于做GB6675、EN71-3的样品萃取,所以这台设备同时具备振荡(按固定频率振荡)和加热恒温功能,其振荡频率在0-160次/分钟之间,为了满足单位的发展,实验室的检测项目的增加,但设备是之前根据当时建实验室时的检测项目购买的,所以设备功能的拓展性不强。这不,最近,领导想测ISO14184-1这个检测项目,让我评估我们实验室能不能开展这个项目,经仔细查阅这个标准,我的初步评估结果是我们实验室具备这个能力,但设备可要买一台具备通断电功能的恒温水浴振荡器。 这就需要评估购买一台具备通断电功能的恒温水浴振荡器的费用,因我们每个月送到第三方测ISO14184-1标准,一个样品才三百元,每月也就一两个样品,所以评估下来的设备购买费用不能太高,当时想,假如能这个设备的电源连接线上增加一个部件,断电5min,再通电5s,这样循环工作两小时,这个问题就解决了,对于这个想法我请教了下,我们单位的电工,电工师傅讲,有这样的控制开关,叫微电脑秒控开关,所以我立马在网上找了一下,才50元一个,经与店家联系这种微电脑秒控开关能够满足我的需求。http://ng1.17img.cn/bbsfiles/images/2014/05/201405270814_500462_1827064_3.jpg 现在还需要考虑这个设备能不能接在这个仪器上(此设备的振荡原理时,变速器接在220V的电源上,经变速器变速,调节输出端的电压和电流,从而升高或降低马达的转速,达到控制振荡频率的作用),变速器和马达为同一厂家,在网上找到了相关厂家的联系电话,与相关技术人员沟通微电脑秒控开关可以变速器和马达的电路上,并告诉我了相关接法。http://ng1.17img.cn/bbsfiles/images/2014/05/201405270816_500463_1827064_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/05/201405270816_500464_1827064_3.jpg 变速器厂家人员让我将微电脑秒控开关接在变速器与马达之间,因变速器的输出端的电压在变化,这就需量一下变压器输出端的电压,我于是找电工帮我量了一下,变速器输出端的电压,结果在80V-160V之间波动,这个电压值太低,不能满足微电脑秒控开关输入端的需求,再量变速器输入端的电压,电压是230V,可以微电脑秒控开关输入端的需求,所以只能将微电脑秒控开关接在变速器之前的电源线上。 即然万事俱备,那就赶紧买微电脑秒控开关,购买后的第三天,微电脑秒控开关就到货了,然后就请电工师傅帮忙装上去,一试用,效果挺好,恒温水浴振荡器能振荡 5S,停5min后,再振荡 5S,如此循环的工作。http://ng1.17img.cn/bbsfiles/images/2014/05/201405270816_500465_1827064_3.jpg设备全图:http://ng1.17img.cn/bbsfiles/images/2014/05/201405271900_500537_1827064_3.jpg

  • 【原创大赛】电热恒温干燥箱的温度控制系统改造

    【原创大赛】电热恒温干燥箱的温度控制系统改造

    针对一些老式电加热恒温设备需要修理、改造而缺乏配件的困难,找出了在仪器设备原有基础上,利用数显温度控制仪表、接触器以及各种功率模块组合,代替原有温度控制部件,实现了更加直观、方便、可靠,精准的温度控制方案。通过几年来改造过的数台电加热恒温设备运行表明,改造方案是成功的,本文以电热恒温干燥箱改造为例,介绍改造原理及过程,以期对大家有所启发。 在实验室有一些老式电热烘箱,这些烘箱控制温度的方式采用热膨胀调温式即在其工作室内安装测温杆,将两种膨胀系数不同的金属片,或膨胀灵敏的金属杆,借热胀冷缩在不同温度下有不同的伸长或缩短长度来控制断电或通电,来达到温度控制的目的,温度显示需借助顶端的玻璃温度计,这种控制方式控温精度低、读数不直观。由于机械磨损,调温装置损坏,造成温度失控,因这种控温器已没有备件出售,有些烘箱已处于停用状态。若能修复这些设备,不仅能延长其使用寿命,还能为单位节约大量采购经费。存在的问题 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530969_1173612_3.jpg 该电热恒温干燥箱1983年生产,它主要由金属箱体、保温材料、电阻性加热部件、控制电路及控制面板等构成。其中箱体、保温材料等的机械结构还是完好的,托架、隔板齐全、完好,而这些又是设备价值较高的部分,但由于使用多年,温度调节器机械磨损严重,无法正常调节温度,找到同型号配件更换,已处于停用状态。 从以上情况来看,只要修复或更新温度控制系统,该电热恒温干燥箱还是可以恢复使用的。改造方案及实施原有的控制线路及原理 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530970_1173612_3.jpg 其控制温度的原理是:操作者将电源开关拨至接通位置,待箱体上面的水银温度计显示的温度值接近工艺温度时,操作者须不断调节温度调节器旋钮,处于“通——断”状态,直至温度计的稳态值刚好等于工艺温度。通常情况下,要调节出工艺温度需要时间较长,而且误差较大。改进前烘箱的控制缺陷分析 原有机械式温度调节方式:由于在控制过程中,设备的加热只有“通——断”两种状态,所以称为二位式机械控温,这种控温方式具有结构简单、价格低廉、使用维修方便的特点。但是调节精度不高,被调温度始终不能定在给予定值上,总是在给予定值上、下周期性的波动,其特性曲线见图 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530971_1173612_3.jpg 由于加热系统的的热惯性,在某一段时间温度仍然在继续下降,直到t4时才回升。这样反映温度变化的是一条在给定温度上、下一定范围内波动的曲线,这表时存在着“动差”。这种调节方式精度较低,对象的热惯性越大,仪表不灵敏区越大,动差就越大。因此,位式调节不适于热惯性较大的系统,也满足有些实验工艺的要求。改造方案 随着电子技术的飞速发展,数显温度控制仪表技术日益成熟,价格低,通用性更好,使用更为简捷和方便,在各种控制领域中应用越来越广泛。因此,可以利用数显控温仪表作为主控部件,针对不同的控制对象、控制要求及控制成本,合理选用接触器、可控硅、固态继电器等各种功率模块作为执行部件与之相配合,替代老设备原有的控制电路,对其进行改造升级,实现更为直观、方便、精准、可靠的温度控制。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021139_530972_1173612_3.jpg 温度控制仪表选择:在改造中我们采用了AI808自整定专家PID控制仪表。AI调节器是控温系统的核心部分,AI仪表首创性地采用了平台概念,将非常专业化的数字调节仪表转为平台化设计的产品,采用的是AI人工智能调节算法是采用模糊规则进行PID调节的一种新型算法,在误差大时,运用模糊算法调节,以消除PID饱和积分现象,当误差趋小时,采用改进后的PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化。 控制元件:电热恒温干燥箱加热功率1000W,工作电流4.5A,工作电压220V。而我们选用的BTA41-600,双向可控硅,工作电流41A,耐压600V,完全能够满足要求,而且体积小,便于安装。 温度传感器:电热恒温干燥箱额度工作温度为200℃, Pt100铂热电阻,它用来测量(-200~850)℃范围内的温度,其物理、化学性能稳定,复现性好,铂热电阻与温度是近似线性关系。所以温度传感器选用Pt100。 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021151_530978_1173612_3.jpg控制电路的设计 http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530975_1173612_3.jpg http://ng1.17img.cn/bbsfiles/images/2015/01/201501021140_530976_1173612_3.jpg安装调试根据设计图纸,完成了安装、接线并进行调试。

  • 钛白粉工艺处理过程是怎样的?

    钛白粉工艺处理工段非常复杂,经过分散湿磨技术、表面工艺处理、过滤洗涤、通风干燥、微粉碎成品包装等几大步骤来组成,这些工序都有着各自的具体作用。在钛白粉的表面处理过程中,需要加入各种表面处理添加剂,这样就可以得到不同品种的钛白粉,在二氧化钛浆液进入料浆罐,需要加入一定量的分散剂搅拌进行分散。钛白粉表面处理工艺之后,需要用泵送至过滤机进行洗涤,送入砂磨机研磨,经分级后除去粗粒子,合格的二氧化钛浆液通过泵送至表面处理罐,洗涤合格后的滤饼卸料至干燥机,在干燥机中,二氧化钛滤饼中水份不断蒸发,产品得以干燥。在获得干燥后的二氧化钛送至汽粉前料仓,通过螺旋给料机连续送入汽流粉碎机中,以过热蒸汽为工质,对粒二氧化钛子进行超微粉碎。粉碎后加分散剂后连同蒸汽一并进入袋滤器,收集下来的经螺旋冷却器冷却后进入成品料仓,而后经包装机包装成袋入库。

  • 企业应选择高低温测试仪器还是恒温恒湿试验箱,只为您抉择

    企业应选择高低温测试仪器还是恒温恒湿试验箱,只为您抉择

    为了把控产品的品质,检测试验设备是企业必不可少,而且高低温测试仪器和[b]恒温恒湿试验箱[/b]都是很多行业都常用的检测试验设备,那企业应选择高低温测试仪器还是恒温恒湿试验箱?[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/05/202105101006283264_9223_1037_3.jpg!w348x348.jpg[/img][/align]  企业在高低温测试仪器与恒温恒湿试验箱之间的选择标准:  一、依据应用行业开展挑选  1、高低温测试仪器是检测商品在高溫、低温综合性自然环境下各类特性的指标值,也有溫度环境破坏后的主要参数转变,现阶段是航空公司、轿车、家用电器、科学研究等行业必需的检测设备。  2、恒温恒湿设备试验箱有很大的温度湿度操纵范畴,能做多种的实验,关键用以实验各种各样原材料耐高温、耐低温、耐干、耐水等不一样自然环境下的特性检验,现阶段适用纺织品贸易、电子电工、食品类、塑胶硫化橡胶、汽车工业、照明灯具、化工厂、装饰建材、化学变化等行业领域。  二、从要求上开展挑选  1、高低温测试仪器只具有调整溫度的作用,可以开展各种各样高溫、低温自然环境下的转变检测,也被称作高低温交替变化试验箱,可是不可以开展环境湿度的检测。  2、恒温恒湿试验箱是既可以测试高温、低温的环境,同时还能加入湿度进行测试,能够同时控制温度和湿度条件,要求温度和湿度按照设定的速率同时变化,营造模拟逼真的环境情况,可以满足品质检验需求。  高低温测试仪器与恒温恒湿设备试验箱很大的不同,就取决于环境湿度的仿真模拟检验层面,二种设备在价钱和应用作用上,是有一定的差别,在购置的全过程,好的是依据本身的具体要求开展挑选。设备现阶段可出示几款高质量的高低温测试仪器,和恒温恒湿设备试验箱的高品质设备,可依据顾客的要求状况推荐适合的设备计划方案。

  • 恒温恒湿箱已达到电子产品的测试要求

    恒温恒湿箱已达到电子产品的测试要求

    [url=http://www.linpin.com/]恒温恒湿箱[/url]的作用是提供高温、低温、恒温、恒湿、交变湿热等试验环境,满足标准对试验设备的要求,主要适用于电工产品、电子产品整机及零配件的耐寒试验、温湿度变化条件下的适应性实验;尤其适合电子、电工产品的环境模拟温湿度试验。本设备系统采用先进环保技术进行设计制造,产品达到标准要求。运用能量调节技术、节能设计、密封性能好、强度高、易清洗、符合审美观的标准化整体结构箱体;具有操作简单、控制系统自动化程度高、系统运行稳定、无故障运行时间长等优点。  该设备适用于各种环境下性能的检测设备和对各种材料进行耐热、耐寒、耐干、耐湿测试。适用于电子、电器、通讯、仪表、车辆、塑胶制品、金属、食品、化学、建材、医疗、航天等产品的检验质量,主要区别是温度和湿度不同,产生的温度也会有所不一样。  供热系统在设备上相对简单,它主要由大功率电阻丝和加热装置组成,由于实验箱对加热速度的要求较高,因此实验箱的加热系统功率都比较大,而实验箱的底部也会有加热器。冷却系统是设备的重要组成部分,设备的制冷方式一般为机械冷,同时辅以液氮冷却,机械冷却采用蒸汽压缩制冷,这两种制冷方式次要由紧缩机、冷凝器、节流机构、蒸发器等组成,因实验所用的温度已达到-55℃,单级冷却难以满足要求,因此试验箱的冷却方式一般采用重复式制冷。  恒温恒湿箱湿度分为加湿和除湿两个分系统,加湿方式有蒸气加湿、淋水加湿、超声波加湿等,其中机器制冷除湿和干燥除湿两种方法是机械制冷除湿,除湿方式为蒸气加湿、淋水加湿、超声波加湿控制器是设备的控制中心,控制系统基本上属于软件的范围,它决定着设备的温升速度、精度、温度等重要目标。目前设备的控制器大多采用PID控制,也有少数局部采用PID和模糊控制相互组合的控制方式。  仪器中的传感器主要是温度湿度传感器,其作用是判别测试箱内温度,温度传感器用的是铂电组和热电偶。测量湿度有两种方法:干球温度计法和固态电子传感器间接测量法。干湿球法测量准确度较低,目前试验箱正在逐步用固态传感器代替干湿球来进行湿度测试。  以上所讲的是恒温恒湿箱,能满足电子产品的测试要求,希望看完后能对您有所帮助,如果您想了解更多仪器的相关信息,欢迎在线客服或拨打本公司服务热线(网站右上角)进行咨询,我们将竭诚为您提供优质的服务!

  • 恒温恒湿试验箱对电子产品试验的原因

    恒温恒湿试验箱对电子产品试验的原因

    恒温恒湿试验箱是环境模拟试验机,是检验电子仪器原件在高低温或者湿热环境下产品性能检测的产品,是检验电子产品,材料、电工、仪器仪表的各种性能指标重要设备。恒温恒湿试验箱作为人工三防的主要试验之一,其应用越来越广泛,也受到越来越多军工产品,科研单位,高校等研究单位的重视。但是近年来科技的不断发展,很多人发现很多电子产品也采用我们的设备来对自己的产品进行试验,引起了很多人的不解,今天我司专业人士就来和各位讲解一下为什么电子产品需要做恒温恒湿环境试验。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/02/202102271050271506_4987_1037_3.jpg!w348x348.jpg[/img][/align]  电子产品为什么要使用恒温恒湿试验箱做恒温恒湿环境试验?电子电工产品的应用领域日益广阔,所经受的环境条件也越来越复杂多样。只有合理地规定产品的环境条件,正确的选择产品的环境保护措施,才能保证产品在储存运输中免遭损坏,在使用过程中安全可靠。  电子产品需要用到恒温恒湿试验箱的四个原因  1.低温会导致电解液冻结,电解液一旦冻结,就会导致电解电容、电池不能正常使用。  2.过于低的温度也会影响电子产品的正常启动,使电子产品的仪表增大误差。  3.弹性元件的弹性和机械性能强度降低,缩短产品的使用寿命。  4.低温同时会导致润滑油粘度增加,甚至冷凝、冻结,影响产品的起动性能。  当今社会科技进步,没有稳定的产品性能,是没有办法推销自己的产品的,所以现在大大小小的电子产品都在试验自己产品性能。由于西方工业标准高于亚洲,他们对电子产品在极恶劣环境检测更为苛刻,所以为了推销自己的产品,各国都在研究开发自己的产品试验设备,提高自己产品性能,所以电子产品的试验离不开恒温恒湿试验箱和环境检测设备。  恒温恒湿试验箱对电子电工产品进行人工模拟环境试验是保证其在生产、运输、使用等各个环节中都安全可靠。出厂前对电子电工产品进行人工模拟环境试验是保证质量所必不可少的重要环节,因此环境试验条件、试验方法、试验设备是否符合标准关系重大。

  • 【分享】高纯度醋酸甲酯精制新工艺

    高纯度醋酸甲酯精制新工艺醋酸甲酯是一种无色的易燃液体,具有芳香气味,能与大多数有机溶剂混溶,广泛用作工业溶剂。它可用于油漆涂料中,还用于人造革及香料的制造以及用作油脂的萃取剂。高纯度醋酸甲酯是用途广泛的重要有机原料,可用于合成醋酸、醋酐、丙烯酸甲酯、醋酸乙烯和乙酰胺等。醋酸甲酯羰基化制醋酐是目前制醋酐工艺中最经济的,这种工艺与传统的烯酮法、乙酰氧化法相比,在降低能耗和减少环境污染等方面有显著的优越性,它摆脱了对石油原料的依赖,是C1化学大型工业化技术开发的重大突破。中国有多家生产醋酸甲酯的厂家,在聚酯生产过程中也副产大量醋酸甲酯,但用各种工艺制造的醋酸甲酯产物中,都存在着未反应的原料及副产物,主要为甲醇和水。醋酸甲酯与甲醇或水会形成具有低恒沸点的混合物,用普通精馏法无法分离,获得高纯度的醋酸甲酯较困难。本文提出了高纯度醋酸甲酯精制的新方案,用盐效分离和精馏相结合的工艺来提纯醋酸甲酯,以聚乙烯醇(PVA)生产中经二塔处理后的醇解废液为原料,其中醋酸甲酯的含量约为93%(质量分数,下同),水含量约为6%,还有微量甲醇。采用无水氯化钙作为盐析剂,先将部分水和甲醇从醋酸甲酯中分离出来,将得到的母液再进行精馏提纯,从而得到高纯度的醋酸甲酯。1 实验部分1.1 试剂与仪器醋酸甲酯原料,石家庄化纤厂提供。CS501型超级恒温水浴,上海锦屏仪器仪表有限公司提供;D-7401型电动搅拌器,天津市华兴科学仪器厂提供。实验精馏塔为高1000mm、内径为22mm的玻璃精馏柱,内装直径为3mm的不锈钢θ环高效填料,塔体外面有电加热保温层,保温层外套加热带。1.2 分析方法采用北京东西电子技术研究所生产的GC4000A型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],进行样品定性和定量分析。用相对保留时间进行定性测定,以醋酸乙酯作为内标物,采用内标法进行定量分析。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析条件:载气为氢气,柱压为0.24MPa;GDX103填充柱,柱长为6m;汽化室温度为180℃,柱箱温度为180℃,热导池温度为160℃。1.3 实验方法称取一定质量的醋酸甲酯原料,放入反应器中,按配比加入一定量的盐,在45℃恒温水浴下通过搅拌使盐溶解,并充分混合10min,静止20min以上,使物系达到平衡。分相,对有机相取样,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析其组成。将盐效分离后的有机相称重,倒入蒸馏烧瓶中,加入少量沸石,通冷却水,打开塔釜加热电源,接通塔体加热带电源,待塔釜物料沸腾后,全回流操作10~2min。调节回流比,观察塔顶温度变化,并取样分析。当塔顶温度达到57.8℃时,停止加热,从塔釜分离出产品。2 实验结果2.1 盐的选择在考察无机盐的盐效应时,所选用的盐析剂应该具备以下特点:1)在水中的溶解度应尽可能大;2)价格便宜,无毒、无害且易于回收。为此选择了氯化钠、氯化钙、碳酸钾几种常见的在水中溶解度较大的无机盐进行了比较。初始水相中,在盐的质量分数接近各自溶解度的条件下,获得了在几种不同的盐作用下醋酸甲酯-甲醇-水体系的分离效果。结果表明:氯化钙的分离效果最好。2.2 氯化钙加入量的影响3 结论盐效分离和精馏相结合精制出高纯度醋酸甲酯的工艺是可行的,控制一定的回流比,分离后的醋酸甲酯纯度可达到99.8%以上,能够满足工业需求实验表明,加入氯化钙后,物系产生明显的盐效应,氯化钙的加入量影响分离效果。2.3 回流比的影响回流比影响塔顶馏出物的最终组成,并且影响醋酸甲酯的收率。中国心

  • 2014化工工艺优化及过程分析技术(PAT)应用交流会

    2014化工工艺优化及过程分析技术(PAT)应用交流会

    梅特勒-托利多自动化化学部、上海张江生物医药职业技能培训中心诚邀您参加2014年化工工艺优化及过程分析技术(PAT)应用交流会。免费报名地址:http://cn.mt.com/cn/zh/home/events/seminars/CN_AC_Pharmaceutical_Chemical_PAT_Seminars_2014.html尊敬的女士/先生您好!梅特勒-托利多自动化化学部、上海张江生物医药职业技能培训中心诚邀您参加2014年化工工艺优化及过程分析技术(PAT)应用交流会,敬请从事化学反应工艺研发和结晶工艺研发、工艺安全评估与放大的专家学者和研发人员参加。时间:2014年3月14日 8:00 - 17:00 (8:00-9:00 报到,9:00正式开始)地址:上海张江生物医药职业技能培训中心 浦东张江蔡伦路781号三楼报告厅研讨会介绍http://ng1.17img.cn/bbsfiles/images/2014/03/201403041547_491818_271_3.jpg近年来,过程分析技术(PAT)在化工、制药行业越来越受到重视,包括美国FDA在内的官方机构正在积极推动应用PAT技术,力图从过程、工艺上保证产品的质量,改变目前只能依靠严格和生硬的认证规范的现状。PAT技术能够带来下列好处:a.消除产品质量隐患;b.提高生产效率;c.实现“产品质量是可以从生产过程中预见的,而不只是检测出来的”;d.节省分析成本。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491819_271_3.jpg梅特勒-托利多提供的过程分析技术(PAT)——全自动实验室反应器技术EasyMaxTM/ OptiMaxTM和反应量热技术RC1eTM,实时在线颗粒分析技术FBRM® 和PVM®和实时在线反应分析技术ReactIRTM,能够帮您充分的理解反应过程,快速的筛选和优化工艺,安全的中试放大,从而提高研发效率、降低研发成本,更快的得到安全、稳定、可靠的生产工艺。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491820_271_3.jpg在过去20年间,我们的技术广泛应用于制药行业、精细化工、石化及特种化学品、学术研究等行业。在全球范围内,越来越多的设备在实验室、工艺开发和生产中体现着优势,丰富的实际经验和全球化的支持帮助您充分了解和优化化工工艺的过程。http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491821_271_3.jpg演讲内容原位红外在过程分析中的应用应用在线结晶监测技术优化收率、产品品质及工艺性能PAT技术在药物结晶过程中的应用---从艺术到科学的蜕变RC1e/OptiMax HFcal反应量热技术优化工艺过程、安全放大工艺EasyMax/OptiMax全自动反应器技术及其应用热分析在制药行业的应用http://ng1.17img.cn/bbsfiles/images/2014/03/201403041548_491822_271_3.jpg演讲者本次交流会专门邀请了华东理工大学的任国宾教授,他将为我们带来当代的PAT技术在结晶中的应用,真正实现结晶工艺研发的科学化;Ben Smith 先生将介绍工艺开发过程中应用在线颗粒分析技术进行结晶过程的开发和优化,以提高收率,产品质量及性能。梅特勒-托利多ReactIR全球市场经理Brain Wittkamp 先生,将介绍在线反应分析技术在高活性反应中的应用,并成功应用于实际工业生产中,为工艺研发人员分享宝贵的应用思路和经验。同时,梅特勒-托利多的技术应用专家也将分享国外工艺研发实例。我们旨在通过面对面的专家交流和案例分析,为您今后的研发工作带来新观念、新思路和新方法。任国宾博士,华东理工大学药学院教授Brian Wittkamp 博士 梅特勒-托利多RA业务全球市场开发经理Ben Smith 先生 梅特勒-托利多PSC 业务全球市场开发经理刘慧敏 博士 梅特勒-托利多自动化化学部 销售市场经理王涛 梅特勒-托利多自动化化学部 高级技术应用顾问孔鹏飞 梅特勒-托利多热分析仪器部 技术应用顾问会务组联系方式何禄 先生电话:13601805504 或者 021-64850435*1100Email:lu.he@mt.com; 丁伟俊 先生 电话:13524428768 Email:dingwj@pvpt.com.cn;演讲者简介任国宾 博士,华东理工大学药学院教授任国宾博士,华东理工大学药学院教授、郑州大学化工与能源学院兼职教授。中国晶体学会会员、中国晶体学会药物晶体学专业委员会常务委员。近年来一直从事药物晶体工程研究,主要研究领域包括固态表征技术、高通量结晶技术、药物结晶工艺优化与在线分析控制技术(PAT)等;曾任上海医药工业研究院药物晶体工程研究实验主任,诺华制药(瑞士)药物多晶型实验室高级研究员,苏州诺华制药科技有限公司高级研究员、药物结晶及成盐实验室主任,诺华(中国)生物医学研究有限公司药化药学研发部高级研究员、专家组成员(药物结晶及固态表征技术专家)。发表论文40余篇,申请专利10项,各种学术报告30余次;获得天津市技术发明奖(一等)、教育部科学技术进步奖(一等奖)、第十三届中国专利优秀奖。Brian Wittkamp 博士 梅特勒-托利多RA全球市场经理博士毕业于美国北达科塔州大学,现任美国梅特勒-托利多公司自动化化学部ReactIR全球市场经理。专注于FTIR与FlowIR在有机化学和石化行业中的应用与研究工作。多次应邀参加国际学术会议作大会报告。在国际知名化学刊物上发表多篇关于ReactIR在环境与流动化学方面的应用文章。Ben Smith 先生 梅特勒-托利多PSC 业务全球市场开发经理Ben Smith 先生专业背景为化学工程,是梅特勒-托利多PSC实时分析业务市场经理。在过去的14年中,他曾领导多个仪器和软件的开发项目和应用开发与推广,目前负责理解、优化和控制颗粒体系的在线分析技术的全球市场开发,擅长应用过程分析技术(PAT),发现并解决制药和化工从实验室到生产的工艺问题,优化工艺过程。刘慧敏 博士 梅特勒-托利多自动化化学部门 销售市场经理博士毕业于天津大学,主要从事有机合成,工艺优化研究。2007年底加入梅特勒-托利多任高级技术应用顾问,一直从事在线分析技术的应用支持工作,并积累了丰富的经验。现任销售市场经理,负责应用于工艺研发和放大生产的在线分析技术以及全自动反应器在中国的销售及市场开发工作。王涛先生 梅特勒-托利多 高级技术应用顾问拥有多年的工艺研发经验,在有机合成、聚合等方面经验丰富,对梅特勒-托利多自动化化学部门的仪器及应用非常了解,目前负责全自动反应器及RC1反应量热等应用的全国范围内的应用支持。孔鹏飞先生 梅特勒-托利多 技术应用顾问毕业于同济大学高分子材料专业。2010年加入梅特勒-托利

  • 插入深度如何影响影响热电偶温度传感器

    热电偶是最常用的测温器件之一,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。因为热电偶温度传感器具有测量范围宽、精度高以及响应时间快等优点,所以得到广泛的使用。本篇文章主要探讨插入深度对热电偶温度传感器的影响。 热电偶测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶温度传感器与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些,陶瓷材料绝热性能好,可插入浅一些。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。

  • 恒温恒湿试验箱的安全保护真的很重要吗?

    恒温恒湿试验箱的安全保护真的很重要吗?

    [b][url=http://www.instrument.com.cn/netshow/C27540.htm]恒温恒湿试验箱[/url][/b]可用于电子电工、汽车零部件等产品。对于这些产品在运输和使用过程中可能遇到的高温、低温和高湿度环境的影响,可以通过环境模拟试验来判断产品的耐高温和高湿度,有效提高产品的质量和使用寿命,实现产品的生产。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/10/202210201649467953_5747_1760631_3.jpg!w600x600.jpg[/img][/align]  电力是一种看不见的东西,不仅会给我们带来好处,同时,还会给我们带来很大的安全隐患。每年都会发生许多触电事故。因此,在恒温恒湿试验箱中安装电源时,必须找专业电工进行安装和操作。其次,总电源的电量应满足设备规定的电源要求;这也是我们很基本的考虑。请不要让非专业人士随意安装。  此外,当设备运行时,用户会将其他产品的电源与设备的电源结合起来,这不是不可能的,也不是电源问题,但如果其他产品在使用过程中短路,恒温恒湿试验箱在使用期间,这无疑会对设备造成一定的影响和伤害,因此我们建议该设备的电源不得与其他产品混合。  此外,准确的电源接地也是电力的基本规定,也可以防止设备泄漏,避免危险,可以在开始时切断电源,从而避免操作人员触电的危险,还要注意,必须避免接触水管或气管,恒温恒湿试验箱必须小心使用,否则会产生安全风险。

  • 【仪器心得】+恒温干燥箱的使用心得

    【仪器心得】+恒温干燥箱的使用心得

    [align=center][size=24px]【仪器心得】+恒温干燥箱的使用心得[/size][/align][size=18px] 恒温干燥箱是实验室常用的设备,经常用来烘试剂、烘干玻璃器皿。常用温度是0~200℃,是每个实验室的必备设备。 我们使用的是上海福玛实验设备有限公司生产的恒温干燥箱,该公司是集科、工、贸于一体的实验仪器、医疗器械、高科技实体。生产的产品主要有二氧化碳培养箱、生化培养箱、真空干燥箱、电热恒温培养箱、恒温摇床、电热恒温水槽等系列。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011600372309_62_1645480_3.jpg[/img][/align][align=center]图1:恒温干燥箱[/align] [size=18px]一、皮实耐用 实验室有两台恒温干燥箱,都是2005年买的,其中一台用到现在17年了,没有出现过任何问题。常用来烘烤氯化钠等试剂,也用来烘烤广口瓶、试剂瓶等玻璃器皿。 二、不升温 其中一台出现过不升温的故障,与厂家联系了,厂家说如果上门维修,维修费比较贵,不划算,我们提出来邮寄,但是它体积大,重量重,从楼上搬到楼下就是一个问题,所以邮寄也不太可能,厂家建议你们找个电工修一修,后来我们也只能找了电工进行修理。[/size][size=18px] 三、温度补偿[/size][size=18px] 恒温干燥箱每年都有质检局进行检定,随着使用年限的增长,恒温干燥箱的设定温度开始出现了上偏差与下偏差,每次我们设定温度时,都要把这个偏差增加或减去,才能设定出真实的温度,很麻烦。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/09/202209011600375480_6169_1645480_3.png[/img][/align][align=center]图2:检定证书[/align] [size=18px] 四、建议 建议厂家五年能有一次上门巡检的机会,针对恒温干燥箱出现的这种情况,可以对里面的温控件进行更换,这样也方便了客户,厂家也可以销售一些备件。 这个问题不仅仅是恒温干燥箱,一些实验室的常用设备,比如说马弗炉等,它们都存在重量太大、邮寄不方便、厂家维修费用高等情况,建议针对这些体积大、皮实耐用的设备,厂家能够5到10年进行一次巡检,发现问题及时解决,备件能够及时更换。[/size]

  • 【仪器心得】+恒温干燥箱的使用心得

    【仪器心得】+恒温干燥箱的使用心得

    [align=center][size=24px]【仪器心得】+恒温干燥箱的使用心得[/size][/align][size=18px] 恒温干燥箱是实验室常用的设备,经常用来烘试剂、烘干玻璃器皿。常用温度是0~200℃,是每个实验室的必备设备。 我们使用的是上海福玛实验设备有限公司生产的恒温干燥箱,该公司是集科、工、贸于一体的实验仪器、医疗器械、高科技实体。生产的产品主要有二氧化碳培养箱、生化培养箱、真空干燥箱、电热恒温培养箱、恒温摇床、电热恒温水槽等系列。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204060930451918_7379_1645480_3.jpg[/img][/align][align=center][size=18px]图1:恒温干燥箱[/size][/align][size=18px] 一、皮实耐用 实验室有两台恒温干燥箱,都是2005年买的,其中一台用到现在17年了,没有出现过任何问题。常用来烘烤氯化钠等试剂,也用来烘烤广口瓶、试剂瓶等玻璃器皿。 二、不升温 其中一台出现过不升温的故障,与厂家联系了,厂家说如果上门维修,维修费比较贵,不划算,我们提出来邮寄,但是它体积大,重量重,从楼上搬到楼下就是一个问题,所以邮寄也不太可能,厂家建议你们找个电工修一修,后来我们也只能找了电工进行修理。 三、温度补偿 恒温干燥箱每年都有质检局进行检定,随着使用年限的增长,恒温干燥箱的设定温度开始出现了上偏差与下偏差,每次我们设定温度时,都要把这个偏差增加或减去,才能设定出真实的温度,很麻烦。[/size][align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204060930456147_746_1645480_3.png[/img][/align][align=center][size=18px]图2:检定证书[/size][/align][size=18px] 四、建议 建议厂家五年能有一次上门巡检的机会,针对恒温干燥箱出现的这种情况,可以对里面的温控件进行更换,这样也方便了客户,厂家也可以销售一些备件。 这个问题不仅仅是恒温干燥箱,一些实验室的常用设备,比如说马弗炉等,它们都存在重量太大、邮寄不方便、厂家维修费用高等情况,建议针对这些体积大、皮实耐用的设备,厂家能够5到10年进行一次巡检,发现问题及时解决,备件能够及时更换。[/size]

  • 【原创】电工仪器论坛推广

    无论电工仪器从种类/厂商/使用范围/及数量占有率都比较大,从业人员也比较多,怎么不见像分析仪器那么火呢?真诚欢迎加入我们电工仪器论坛!

  • 解析恒温水浴锅常出现的问题

    解析恒温水浴锅常出现的问题  1、使用时必须先加适量的洁净自来水于锅内,也可按需要的温度加入热水,以缩短加热时间。  2、接通电源,选择温度。  3、配备电子式恒温器时,将“温度旋钮”顺时针调节到所需要的温度,此时为加热状态,绿色指示灯亮。当加热到所需温度时,红色指示灯亮,此时为恒温状态。  4、配备数显表头时,计数器最大位为十位数,按操作符号为增数,按操作符号为减数。红绿灯随体内温度的变化而转换。同样,绿灯是指示加热器工作,红灯为恒温。  5、使用恒温水浴锅须经过加热、恒温两次以上才能达到正确的温度精度(必须全部封盖、封圈后才能达到)。  6、工作完毕,将温控旋钮、增减器置于最小值,切断电源。  7、如果要恒温水浴锅内水温达100℃,作沸水蒸馏用时,可将调节旋钮调至终点。  8、加水不可太多,以免沸腾时水量溢出锅外,  9、恒温水浴锅内水量不可低于二分之一,不可使加热管露出水面。以免烧坏,造成漏水,漏电。  10恒温水浴锅使用时必须将三眼插座有效接地线

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制