全自动便携式光合仪

仪器信息网全自动便携式光合仪专题为您提供2024年最新全自动便携式光合仪价格报价、厂家品牌的相关信息, 包括全自动便携式光合仪参数、型号等,不管是国产,还是进口品牌的全自动便携式光合仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合全自动便携式光合仪相关的耗材配件、试剂标物,还有全自动便携式光合仪相关的最新资讯、资料,以及全自动便携式光合仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

全自动便携式光合仪相关的厂商

  • 400-860-5168转4713
    北京博普特科技有限公司成立于2008年,公司主要为植物、食品、生态、土壤、环境、气象、遥感行业提供科研仪器以及系统解决方案。涵盖田间表型成像系统、室内表型成像系统、种子表型成像系统、根系表型成像系统、显微表型成像系统等各个领域。公司主营产品有:WIWAM植物表型成像系统(RGB成像模块、多光谱激光雷达模块、叶绿素荧光成像模块、高光谱成像模块、近红外成像模块、计算机断层扫描模块、红外成像模块、3D激光雷达模块等);Videometer植物、种子多光谱表型成像系统、根系多光谱表型成像系统、VideometerLiq液体稳定多光谱成像系统、VideometerMic显微多光谱成像系统、Videometer Minilab 便携式多光谱成像系统、Videometer LabUV紫外光多光谱成像系统、VideometerLab XY高通量种子表型成像系统;Plant-Ditech公司的Plantarray高通量植物生理表型研究平台、植物逆境生物学生理研究平台、植物种质资源精准评价与鉴定平台以及SPAC分析系统;Fraunhofer研究院的便携式植物种子断层扫描系统、台式计算机断层扫描系统、全自动种子断层扫描系统、大型落地式根系表型成像系统;Hiphen 公司Airphen多光谱表型成像系统、Hiphen LITERAL手持植物表型冠层成像系统、Hiphen推车多光谱成像系统、Phenomobile全自动全植株智能表型成像车;HAIP 公司的BlackBird科研级高光谱成像系统、Blackbullet科研级高光谱成像系统、Blackbox科研级高光谱成像系统、BlackIndustry 工业级高光谱成像系统、Black mobile便携式高光谱成像系统;SeQso高通量种子表型与播种一体化系统、CF叶绿素种子成熟度测量仪、自动种子分拣系统(X光、多光谱、高光谱、叶绿素荧光);STEPS公司的植物生理生态监测系统、在线光合生理监测系统、土壤养分测量系统、植物养分测量系统、土壤5合1多参数测量仪、土壤直测PH计、盐度/活度检测仪;Pessl公司的植物生态环境智能传感器平台、植物物候远程监测系统;Inno-concept公司的植物活力胁迫测量系统、植物抗逆研究测量系统、气相离子迁移谱仪;Aquation水陆两用叶绿素荧光检测系统、经典和手持叶绿素荧光仪、Aquation公司的水下光合呼吸测量系统;EMS公司的便携式物联网乙烯气体分析仪、温室气体物联网监测系统;Cleangrow多参数离子测定仪、植物工厂自动8离子测定仪;Schaller全谷物湿度仪;EGC植物生长培养箱和生长室等等。
    留言咨询
  • 留言咨询
  • 留言咨询

全自动便携式光合仪相关的仪器

  • 一、用途:轻便的便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。可在高湿度、高尘埃环境使用,是很好的研究工具。 二、原理:应用IRGA(红外气体分析)原理和双激光调谐快速响应水蒸气传感器,根据精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。 三、特点:◎ 完全自动、独立控制环境参数(控H2O,控CO2,控温,控PAR)◎ 精确测量CO2和水蒸汽◎ 便携式设计,体积轻小,仅重4.4Kg;◎ 人体工程学设计,舒适型肩带,携带操作非常简便;◎ 微型IRGA置于叶室中,反应迅速;◎ 可在恶劣环境下使用,野外工作时间长;◎ 可方便互换不同种类的叶室、叶夹;◎ 叶室材料经精心选择,以确保CO2及水分的测量精度;◎ 数据存储量大,可使用即插即拔的SD卡;◎ 维护方便,叶室所有区域都很容易清洁;◎ 采用低能耗技术,野外单电池持续工作时间长,可达16小时。◎ 实时图形显示功能 四、组成:主机:分析计算系统及气路; 全自动标准叶室:叶室中含有红外CO2分析装置和双激光调谐快速响应水蒸气传感器,可选测多种叶片类型的叶室叶夹;供电系统:12V 7Ah铅酸电池及其充电器;化学试剂、基本备用零件包、使用说明书。 五、可选件:带有光源的可控温叶室、叶夹:l 宽叶叶夹(测量面积6.25cm2,适用于阔叶);l 窄叶叶夹(测量面积5.8cm2,适用于条形叶);l 针叶叶夹(适用于簇状针叶);l 小型叶叶夹(叶室直径为16.5mm,适用于叶片直径在11mm和16mm之间的叶片); l 小型草本植物群落测量室(测量高度低于55mm的整株草本植物光合作用)l 整株拟南芥测量室; l 土壤呼吸室:体积为1L,含土壤温度传感器; l 果实测量室:两部分组成,上部透明、下部为体积为1L;l 荧光仪联用适配器:适用于连接多种叶绿素荧光仪。 六、基本技术指标: ◎ CO2测量范围: 0-3000ppm◎ CO2测量分辨率: 1ppm◎ CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿;◎ H2O测量范围: 0-75 mbar ◎ H2O测量分辨率: 0.1mbar◎ PAR测量范围:0-3000 &mu mol m-2 s-1,余弦校正;◎ 叶室温度:-5 - 50℃ 精度:± 0.2℃;◎ 叶片温度:-5 - 50℃ 精度:± 1.5℃◎ 空气泵流量: 100 &ndash 500ml / min;◎ CO2控制:由内部CO2供应系统提供最高2000ppm;◎ H2O控制:可高于或低于环境条件;◎ 温度控制:由微型peltier元件控制,可高于或低于环境14℃;◎ PAR控制:由高效、低热 红/蓝LED阵列单元控制,最高2000&mu mol m-2 s-1 (针叶最高1500&mu mol m-2 s-1);◎ 数据存储:1G SD卡,可存储16,000,000组典型数据 ◎ Mini-B型USB接口,数据输出◎ RS232九针D型标准接口,采用38400波特率与打印机或PC通讯;◎ 供电系统:内置12V 7AH蓄电池,可持续工作至16小时,智能充电器;◎ 尺寸:主机230× 110× 170mm,测量手柄300× 80× 75mm;◎ 重量:主机4.4Kg,测量手柄0.8Kg◎ 操作环境:5到45℃; 七、产地:英国
    留言咨询
  • LCpro T全自动便携式光合仪 一、用途:新一代智能型便携式光合作用测定仪,用以测量植物叶片的净光合速率、蒸腾速率、气孔导度、胞间CO2浓度等与植物光合作用相关的参数。可在高湿度、高尘埃环境使用,是很好的研究工具。二、原理:应用IRGA(红外气体分析)原理和双激光调谐快速响应水蒸气传感器,根据精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。通过将IRGA直接放置在腔室手柄内,我们将气体交换测量或环境控制中的任何可能的响应延迟最小化。 此外,这种配置可以减少气体“悬挂”或水蒸汽“脱落”,这种情况在长距离的气体管道中会发生。三、特点:? 完全自动、独立控制环境参数(控H2O,控CO2,控温,控PAR)? 4s自动调零循环, 确保长期精确测量CO2和水蒸汽? 便携式设计,体积轻小,仅重4.1Kg;? 即时、彩色触摸屏数据输入? GPS记录采样点位置和高程信息? 人体工程学设计,舒适型肩带,携带操作非常简便; ?微型IRGA置于叶室中,反应迅速;? RGB LED光源和白LED光源可选;? 可方便互换不同种类的叶室、叶夹;? 叶室材料经精心选择,以确保CO2及水分的测量精度;? 数据存储量大,可使用即插即拔的大容量SD卡;? 维护方便,叶室所有区域都很容易清洁;? 采用自动屏幕调光功能和节能组件以节省电力,野外单电池持续工作时间长,可达16小时。? 实时彩色图形显示功能四、组成:? 主机:分析计算系统及气路; ? 全自动标准叶室:叶室中含有红外CO2分析装置和双激光调谐快速响应水蒸气传感器,可选测多种叶片类型的叶室叶夹;? 供电系统:12V 高容量锂离子电池及其充电器;? 化学试剂、基本备用零件包、使用说明书。五、可选更换的叶室类型:宽叶叶室:适用物种最多的标准叶室,它具有一个安装好的叶温传感器和手工安装的外置温度传感器,叶室窗口的面积是6.25 cm2。窄叶叶室:适合宽度小于1cm的窄叶,叶宽大于1cm的叶片使用宽叶叶室较佳。它具有一个安装好的叶温传感器和手工安装的温度传感器,叶室窗口 的面积是5.2 cm2。针叶叶室:透明圆柱形设计,适合像松柏类植物叶等3D的植物组织,也适合测量很小的水果和叶片集合体,叶室的体积是175cm3。 拟南芥/小叶叶室:适合测量拟南芥等非常小的叶片。该叶室具有非常灵活的测量臂,使 您很容易将测量室放置于叶片上,而不损害叶片或其他临近的部分,即使叶片贴近地面。叶室窗口的直径是16mm。小型冠层室:坚固的圆柱形结构,设计用于草皮草和最大高度达55mm的整个植株 的测量。 整株拟南芥室:用于测量整株像拟南芥等生长在一定标准容器中的小型植物,适配器 可直接连接小冠层室。 果实测量室:适用于用于果实的测量。由两部分组成:透明的上层和密封的基部。 测量室的容积为1 L。 荧光仪适配器:适用于同时进行气体交换和叶绿素荧光的研究,该单元具有光纤电缆适配器,允许连接荧光设备。宽型叶室和窄型叶室都可以和主要的荧光仪联用(注意:推荐使用opti-Sciences的OS-5p便携式荧光仪)。 土壤呼吸室:用于土壤呼吸的测量。测量室坚固,适于野外使用,由上部的测量室和下部的箍组成。上部测量室具有压力释放阀,可消除梯度压力影响并对流过的气流敏感,可得到精确的测量结果。总体积为1 L。六、基本技术指标: ? CO2测量范围: 0-3000ppm,CO2测量分辨率:0.1ppm,CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿;精确度: ±1%,响应时间:0.25s;重复性: 0.1% of reading @ 370ppm? H2O测量范围: 0-75 mbar,双激光调谐快速响应水蒸气传感器,H2O测量分辨率: 0.1mbar,重复性: 0.5% R.H.? PAR测量范围:0-3000 μmol m-2 s-1,余弦校正,硅光电池;精度:5μmol/m-2/s-1? 叶室温度:-5 - 50℃ 热敏电阻 精度:±0.2℃; ? 叶片温度:-5 - 50℃ 热敏电阻 精度:±0.2℃;? 叶室空气流速: 100 – 500ml / min;精度:±2% of f.s.d.? 预热时间:20℃时≤5分钟;? CO2控制:由内部安装的纯CO2气瓶提供最高2000ppm可控CO2气体,可以连续提供32小时;? H2O控制:可高于或低于环境条件;? 温度控制:由微型Peltier元件控制,可控制高于环境15℃或低于环境10℃; ? PAR控制:高效、几乎不加热,由RGB LED阵列单元控制,最高2400μmol m-2 s-1 ;由白LED阵列单元控制, 最高2500 μmol m-2 s-1;? 数据存储:SD卡,兼容最大32G ? 自动' A / Ci曲线' 可以通过编程多个具有所需停留时间和自动数据记录的顺序控制级别来轻松完成。 ? 数据输出:Mini-B型USB接口,数据输出;RS232九针D型标准接口,采用9600波特率与打印机或PC通讯;? 显示:彩色LCD触摸屏? 供电系统:内置12V 7.5Ah 锂离子电池,可持续工作至16小时,智能充电器;? 尺寸:主机230×110×170mm,测量手柄300×80×75mm;标准宽叶室:25mm×25mm×10mm? 重量:主机4.1Kg,测量手柄0.8Kg? 操作环境:5到45℃; 七、产地:英国 八、典型应用 1. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422 本研究设计了一个气室装置,用以研究常青栎(Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,发现两种处理都提高了植物的净光合速率。 2. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低。 九、参考文献:(近三年发表近200篇SCI文章,仅列出部分代表性文献)n Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions, Silva Carvalho K, et al. 2013, Acta Physiologiae Plantarum, 35(1), 13-21n Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization, Dias M C, et al. 2013, Biologia Plantarum, 57(1):33-40n Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees, Mengistu T, et al. 2012, Forest Ecology and Management, 278, 1–8n Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine cultivar ‘Touriga Nacional’ growing under field conditions, Moutinho-Pereira J, et al. 2012, 160(3), 237-249n Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, Blanch J. S. et al. 2011, Plant biology, DOI: 10.1111/j.1438-8677.2011.00492.xn Photosynthesis by six Portuguese maize cultivars during drought stress and recovery, Carvalho RC. et al. 2011, Acta Physiologiae Plantarum, 33(2): 359-374n Hydrogen peroxide spraying alleviates drought stress in soybean plants, Ishibashi Y. et al. 2011, Journal of plant physiology, 168(13): 1562-1567n Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands, Mengistu T. et al. 2011, Tree Physiology, 31(7): 740-750n Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422n Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula, Sellin A. et al. 2011, Ecological research, 25(1): 173-183n A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek, Sengupta D. et al. 2011, Planta, 233(6): 1111-1127n Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought, Beis A. et al. 2010, Functional Plant Biology, 37(2): 139-146 n The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Holá D. et al. 2010, Photosynthetica 48(4): 545-558n Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum, Makoi J.H.J.R. et al. 2010, Photosynthetica, 48(1): 143-155n Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species, Cuesta B. et al. 2010, Forest Ecology and Management, 260(1): 71-78n Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69n Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Applied Soil Ecology, 44(2), 176-180n Physiological responses of the tropical tree Tibouchina pulchraCogn under the influence of combustion of crude oil and natural gas at an oil refinery n Gene expression in vessel-associated cells upon xylem embolism repair in Vitis vinifera L. petioles n Exogenous glycine betaine modulates ascorbate peroxidase and catalase activities and prevent lipid peroxidation in mild water-stressed Carapa guianensisplants n Photosynthetic characteristics and quality of five passion fruit varieties under field conditions n 朱玉杰 董希斌 李祥 不同抚育强度对兴安落叶松幼苗光合作用的影响 东北林业大学学报 2015 ,43(10)n 刘红明 ,王绍华 ,郑玉龙 3 种砧木嫁接对柠檬幼树光合特性的影响 经济林研究 2018 ,36(1)n 宋淑珍,熊康宁,池永宽,刘子琦 喀斯特石漠化地区菊苣光合特性年际变化研究 中国草地学报 2017,39(2)n 张宇鹏,周国模,周宇峰,施拥军 5 个常见绿化树种对极端高温的光合响应特征 浙江农林大学学报 2017 ,34(2)n 刘红明,龙春瑞,李进学 3个柠檬品种在云南干热河谷区的光合特性及结果性能分析 果树学报 2017,34(1)n 贾惠文,郭 芳,吴雅文等,不同泡桐无性系光合特征参数差异分析 河南农业大学学报 2016,50(2)n 李虎军,王全九,苏李君等,红提葡萄光合速率和气孔导度的光响应特征 干旱地区农业研究 2017,35(4)n 朱冰兵,陈晶晶,徐惠风等,不同株距及穴播粒数对花生(Arachis hypogea L.)光合日变化的影响 分子植物育种,2017,15(11)
    留言咨询
  • 前言LCpro-T便携式光合仪为新一代智能型便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪器应用时间差分IRGA(红外气体分析)CO2分析模块和双激光调谐快速响应水蒸气传感器精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。通过人工光源、CO2控制单元和温度控制单元可以同时精确调控环境条件,从而测定光强、CO2浓度和温度对植物光合系统的影响。本仪器可在高湿度、多尘等恶劣环境中使用,具有广泛的适用性。 上图左为全套光合仪主机配件及便携箱等,上图中为光合仪主机和手柄,上图右为操作人员进行野外实验应用领域l 植物光合生理研究l 植物抗胁迫研究l 碳源碳汇研究l 植物对全球气候变化的相应及其机理l 作物新品种筛选技术特点l 配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP-test等l 彩色LCD触摸屏,屏幕和控制单元均采用膜封技术,可在高湿和多尘环境下使用l 白光和RGB(Red Gree Blue)光源任选其一l 内置GPS模块,精确获取经纬度及海拔数据l 完全自动、独立控制环境参数(空气湿度,CO2浓度,温度,光照强度)l 精确测量CO2和水汽数据l 便携式设计,体积轻小,仅重4.1Kgl 人体工程学设计,舒适型肩带,携带操作简便l 手柄内置微型IRGA,有效缩短CO2测量时间l 可在恶劣环境下操作,坚固耐用l 可方便互换不同种类的叶室、叶夹l 叶室材料精心选择,确保CO2及水分测量精度l 数据存储量大,使用即插即拔SD卡l 维护方便,叶室所有区域都很容易清洁l 采用低能耗技术,野外单电池持续工作时间长,可达16小时l 实时图形显示功能 上图为英国剑桥大学植物科学系M. Davey博士在南极洲对藻类光合作用研究时的工作图片,因LC系列光合仪轻便小巧,坚固耐用,续航持久等特点被列为首选。技术指标l 测量参数:光合速率、蒸腾速率、胞间CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压、GPS数据等,可进行光响应曲线和CO2响应曲线测量。l 手持叶绿素荧光仪(选配)1. 测量参数包括F0、Ft、Fm、Fm’、QY_Ln、QY_Dn、NPQ、Qp、Rfd、RAR、Area、M0、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等2. 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP-test测量参数包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、M0、Area、Fix Area、Sm、Ss、N、Phi_P0、Psi_0、Phi_E0、Phi-D0、Phi_Pav、PI_Abs、ABS/RC、TR0/RC、ET0/RC、DI0/RC等l CO2测量范围:0-3000ppml CO2测量分辨率:1ppml CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿l H2O测量范围:0-75 mbar l H2O测量分辨率:0.1mbarl PAR测量范围:0-3000 μmol m-2 s-1,余弦校正l 叶室温度:-5 - 50℃ 精度:±0.2℃l 叶片温度:-5 - 50℃ l 空气泵流速:100 - 500ml / minl CO2控制:由内部CO2供应系统提供,最高达2000ppml H2O控制:可高于或低于环境条件l 温度控制:由微型peltier元件控制,环境温度-10℃到+15℃,所有叶室自动调节l PAR控制:RGB光源最大2400μmol m-2 s-1,LED白色光源最大2500μmol m-2 s-1l 可选配多种带有光源的可控温叶室、叶夹1. 宽叶叶室:长×宽为2.5×2.5cm,适用于阔叶及大多数叶片类型2. 窄叶叶室:长×宽为5.8×1cm,适用宽度小于1cm的条形叶3. 针叶叶室:长约69mm,直径47mm,适用于簇状针叶(白光光源) 4. 小型叶叶室:叶室直径为16.5mm,测量面积2.16cm2 5. 土壤呼吸/小型植物室:测量测量土壤呼吸,或者高度低于55mm的整株草本植物光合作用,底面直径为11cm6. 多功能测量室:长×宽×高为15×15×7cm,分为上下两部分,上部测量小型植物光合作用,下部分测量土壤呼吸7. 果实测量室:上下两部分组成,上部透明,下部为金属,可测量果实最大直径为11cm,最大高度为10.5cm8. 冠层测量室:底面直径12.7cm,高12.2cm,适用于地表冠层9. 荧光仪联用适配器:适用于连接多种叶绿素荧光仪 上图从左到右依次为宽叶室、窄叶室、LED光源、荧光仪联用叶室、小型叶室 上图从左到右依次为针叶室、果实测量室、土壤呼吸室、多功能测量室、冠层室 l 显示:彩色WQVGA LCD触摸屏,80 x 272像素,尺寸95 x 53.9 mm,对角线长109mml 数据存储:SD卡,最大兼容32G容量l 数据输出:Mini-B型USB接口,RS232九针D型接口,最大230400波特率PC通讯l 供电系统:内置12V 7.5AH锂离子电池,可持续工作至16小时,智能充电器l 尺寸:主机230×110×170mm,测量手柄300×80×75mml 重量:主机4.1Kg,测量手柄0.8Kgl 操作环境:5到45℃典型应用一Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69 本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低。典型应用二Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422 上图左为本研究设计的气室装置,用以研究常青栎(Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,上图右表明两种处理都提高了植物的净光合速率。产地英国选配技术方案1) 与叶绿素荧光仪组成光合作用与叶绿素荧光测量系统2) 与FluorCam联用组成光合作用与叶绿素荧光成像测量系统3) 可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研究4) 可选配O2测量单元5) 可选配红外热成像单元以分析气孔导度动态6) 可选配PSI智能LED光源7) 可选配FluorPen、SpectraPen、PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生态8) 可选配ECODRONE无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究参考文献(仅列出部分代表性文献)1. Al Kharusi L., Assaha D.V.M, Al-Yahyai R. and Yaish W.M. (2017). Screening of Date Palm (PhoenixdactyliferaL.) Cultivars for Salinity Tolerance. Forests 2017,8, 136 doi:10.3390/f8040136.2. Alsanius, B.W., Bergstrand, K-J., Hartmann, R., Gharaie, S., Wohanka, W., Dorais, M., Rosberg, A.K. (2017). Ornamental flowers in new light: Artificial lighting shapes the microbial phyllosphere community structure of greenhouse grown sunflowers (Helianthus annuus L.) Scientia Horticulturae, Volume 216, Pages 234–247.3. Alvarado-Sanabria,O., Garcés-Varón, G. and Restrepo-Díaz, H. (2017). Physiological Response of Rice Seedlings (Oryza sativa L.) Subjected to Different Periods of Two Night Temperatures. Journal of Stress Physiology & Biochemistry, Vol. 13, No. 1, 2017, pp. 35-43. ISSN 1997-0838.4. Barros, R.E., Fari R.M., Tuffi Santos L.D., Azevedo A.M., Governici J.L. (2017). Physiological Response of Maize and Weeds in Coexistence. Plants Daninha 2017 v35: e017158134.5. Berenguer, H.D.P., Alves, A., Amaral, J. et al. (2017). Differential physiological performance of two Eucalyptus species and one hybrid under different imposed water availability scenarios. Trees https://doi.org/10.1007/s00468-017-1639-y.6. Borja, D., Gonzalez-Gonzalez Nerea Oliveira Isabel Gonzalez Isabel Canellas Hortensia Sixto (2017). Poplar biomass production in short rotation under irrigation: A case study in the Mediterranean. Biomass and Bioenergy, 107, Dec 2017, 198-206.7. WF Dutra, YL Guerra, JPC Ramos, PD Fernandes 2018. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield (2018)- journals.plos.org8. Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? (2018). DD Barbosa, SL Brito, PD Fernandes” – World Journal of”, 2018 ?C Springer9. EG de Sousa, TI da Silva, TJ Dias, DV Ribeiro (2018). Biological Fertilization as an Attenuation of Salinity Water on Beetroot (Beta vulgaris) (2018)- Journal of Agricultural, 2018 – ccsenet.org10. TC Alves, JPAR da Cunha, EM Lemes (2018). Physiological changes in sugarcane in function of air and ground application of fungicide for orange rust control. 2018- Bioscience Journal – seer.ufu.br11. FRM Abreu, B Dedicova, RP Vianello, AC Lanna (2018). Overexpression of a phospholipase (OsPLD|?1) for drought tolerance in upland rice (Oryza sativa L.) (2018) Protoplasma, 2018 ?C Springer12. B Correia, RD Hancock, J Amaral (2018). Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone(2018) Frontiers in plant ”, 2018 – frontiersin.org13. C Ma, H Hu, L Jia, C Zhang, F Li (2018). Effects of Brackish Water Salinity on the Soil Salt and Water Movements and the Cotton Seedling Growth Under Film Hole Irrigation. 2018 Sustainable Development of Water”, ?C Springer14. P Zou, X Lu, C Jing, Y Yuan, Y Lu, C Zhang (2018). Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings (Triticum aestivum L.) to Salt Stress (2018 Frontiers in plant”, 2018 – frontiersin.org15. MEB Brito, LAA Soares, WS Soares Filho (2018). Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress (2018)- Spanish Journal 2018 – revistas.inia.es16. LAA Soares, PD Fernandes, GS Lima (2018). Gas exchanges and production of coloured cotton irrigated with saline water at different phenological stages (2018)- Revista Ci??ncia”, 2018 – SciELO Brasil17. X Zhang, Y Fan, Y Jia, N Cui, L Zhao (2018). Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation (2018- Transactions of the, 2018 – ingentaconnect.com18. JES Ribeiro, AJS Barbosa, SF Lopes (2018). Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman (2018)- Acta Botanica”, 2018 – SciELO Brasil19. TB de Oliveira, L de Azevedo Peixoto, PE Teodoro (2018). The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants (2018)- PloS one, 2018 – journals.plos.org20. A Muthalagu, SJ Ankegowda, MF Peeran (2018). Effect of Natural Growth Enhancer on Growth, Physiological and Biochemical Attributes in Black Pepper (Piper nigrum L.) (2018)- researchgate.net21. W Zhang, XX Chen, YM Liu, DY Liu, YF Du (2018). The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize (2018)- Field Crops ”, 2018 ?C Elsevier22. Carla Barradas, Glória Pinto, Barbara Correia, Cláudia Jesus, Artur Alves. (2019). Impact of Botryosphaeria, Diplodia and Neofusicoccum species on two Eucalyptus species and a hybrid: From pathogenicity to physiological performance. 23. Valéria F. de O. Sousa, Caciana C. Costa, Genilson L. Diniz, Jo?o B. dos Santos, Marinês P. Bomfim, Kilson P. Lopes. (2019). Growth and gas changes of melon seedlings submitted to water salinity. 24. T.Chatzistathis, I.E.Papadakis, A.Papaioannou, O.Dichala, A.Giannakoula S.Kostas, P.Tziachris (2019). Genotypic tolerance of two Punica granatum L. cultivars (‘Wonderful’ and ‘Acco’) to serpentine stress. 25. Cícero F. de Sousa Alvarenga, Evandro M. da Silva, Reginaldo G. Nobre, Hans R. Gheyi, Geovani S. de Lima, Luderlandio de A. Silva. (2019). Morfofisiologia de aceroleira irrigada com águas salinas sob combina??es de doses de nitrogênio e potássio.
    留言咨询

全自动便携式光合仪相关的资讯

  • 轻便自如智测未来——OL1045N便携式全自动紫外测油仪全新上市!
    产品优势Product Superiority 轻量化设计 一体化机身设计,重量仅为14kg,便于携带和移动。 全自动智能 化 配备智能水样检测系统, 实现水样不转移自动检测水样体积。 一键式操 作 操作简单,只需轻轻一 点,即可完成整个测量过程。 拒绝电量 焦虑 采用高续航电池组,确保长时间户 外检测稳定运行。 数据自 动传 输 内置无线 模块,可将检测结果实时 传输到电脑或其他设备上。 场景应用广 泛 可用于地表水、地下水、海洋等环境中 的油类物质检测,满足不同应用需求。 高精度检 测 采用国家标准方法,检测限低至0.005mg/L,线性系数高达0.9999。 人性化界面 可移动显示屏,直观显示检测结果,方 便用户快速解读数据。 OL1045N便携式全自动紫外测油仪是一款革新性的分析仪器,无论是在实验室还是在户外,都能轻松应对各种检测任务。让智能化、便携化的测量技术为您带来快捷、高效、准确的检测体验。
  • DeChem-Tech发布全自动便携式化学分析仪新品
    概述 MeaChemBox是一款全自动便携式多参数水质分析仪,通过精密的自动微流控制方式,将样品和化学试剂依序泵入至分析模块中进行混合、自动比色、数据计算、储存和自检。完成分析后,液压环路自动用清洗液冲洗,然后进入下一次测量。非常适合于野外现场各种类型水样多种营养盐参数的自动快速应急监测。产品特点●技术创新:采用微环流分析技术(Micro Loop Flow Analysis technology,简称pLFA), 极大的提高了工作效率,能够为客户在最短的时间获得更多的分析数据。分析速度是同类产品的两倍,提高了工作效率,能够为客户在最短的时间获得更多的分析数据。●功能强大:MeaChemBox自动化程度高,可以单参数检测、多参数批次检测和多参数顺序检测;既可以满足现场的应急监测,也可以作为一台小型在线监测系统使用。●配置灵活:MeaChemBox分析仪可选择单参数版本,也可以选择多参数版本;支持多种检测参数灵活组合。我们提供多种配置供用户选择。●稳定可靠:MeaChemBox所有附件固定在一个非常坚固适合运输的塑料密闭箱内,密闭箱内置一个试剂架固定所有试剂盒和其它所需液体,其所有组件,可在各种恶劣现场环境中持续使用,坚固耐用,同时运行和维护成本低,使用寿命长。●操作简单:操作程序设计前所未有的简单,只需打开仪器,放入试剂及样品,软件即可指引你进行检测。仪器出厂前已完成所有测试,用户经快速培训就可完成所有操作,只需准备试剂就可快速进行检测。結果存储在仪器内,通过RS232串口或USB可导出数据到电脑,便于数据处理、打印。●自动化程度高:可实现自动抽取样品、自动消解、自动稀释、自动混合、自动比色和自动校正。●实时沟通数据:通过APP应用程序可即时从智能手机查询/发送结果或报告。组合方式 MeaChemBox应用方法多达50多种,常规参数包括:氨氮,磷酸盐,硝酸盐,亚硝酸盐,硅酸盐,总 氮,总磷,COD (UV), BOD,浊度等。MeaChemBox可选单参数配置,也可以多参数组合,其最多可同时检测四个参数。序号类型检测参数1双参数①总磷、总氮;②总氮、氨氮;③总磷、氨氮;④氨氮、磷酸盐;⑤COD、氨氮2三参数①总磷、总氮、氨氮;②氨氮、硝氮、磷酸盐;③总磷、磷酸盐、硅酸盐; ④总磷、氨氮、COD3四参数①氨氮、磷酸盐、硝氮、亚硝氮;②总氮、氨氮、硝氮、亚硝氮其他配置方式可与工程师联系采用定制版本。技术指标测量参数测量方法量程范围测量周期测量误差重复性氨氮OPA荧光法/ 水杨酸钠比色法0-0.5/1,0/5.0mg/L N-NH3 (其他范围可定制)≤ 15分钟硝酸盐氮氯化帆还原NED +SAA比色法0-0.5/5/1 Omg/L N-NO3 (其他范困可定制)≤20分钟0-0.1/0.2/1.0 mg/L N-NO2 (其他范围可定制)≤10分钟磷酸盐磷钥蓝分光光度法0-0.3/1.0/5.0 mg/L P-PO4 (其他范困可定制)≤10分钟≤60分钟比色法0-2.0/5.0/10.0 mg/L N (其他范困可定制)≤40分钟硅酸盐硅钥蓝分光光度法0-1.0/3.0/5.0 mg/L (其他范围可定制)≤20分钟≤10分钟控制界面●8英寸彩色图形显示触摸屏●一键式启动/停止控制及基本参数设置●实时显示所有的基本运行参数●显示当前运行方法●可以编辑和调用方法●多语言界面软件可通过USB端口升级创新点:1、采用微环流分析技术(Micro Loop Flow Analysis technology,简称pLFA), 极大的提高了工作效率,能够为客户在最短的时间获得更多的分析数据。 2、MeaChemBOX自动化程度高,可以单参数检测、多参数批次检测和多参数顺序检测;既可以满足现场的应急监测,也可以作为一台小型在线监测系统使用。 3、可实现自动抽取样品、自动消解、自动稀释、自动混合、自动比色和自动校正。 4、通过APP应用程序可即时从智能手机查询/发送结果或报告。 5、操作程序设计前所未有的简单,只需打开仪器,放入试剂及样品,软件即可指引你进行检测。仪器出 厂前已完成所有测试,用户经快速培训就可完成所有操作,只需准备试剂就可快速进行检测。結果存 储在仪器内,通过RS232串口或USB可导出数据到电脑,便于数据处理、打印。 全自动便携式化学分析仪
  • 新品上市!昂林仪器OL1045N便携式全自动紫外测油仪正式发布
    近日,昂林仪器发布最新OL1045N便携式全自动紫外测油仪,产品情况如下:产品优势Product Superiority轻量化设计 一体化机身设计,重量仅为14kg,便于携带和移动。全自动智能化 配备智能水样检测系统,实现水样不转移自动检测水样体积。一键式操作 操作简单,只需轻轻一点,即可完成整个测量过程。拒绝电量焦虑 采用高续航电池组,确保长时间户外检测稳定运行。数据自动传输 内置无线模块,可将检测结果实时传输到电脑或其他设备上。场景应用广泛 可用于地表水、地下水、海洋等环境中的油类物质检测,满足不同应用需求。 高精度检测 采用国家标准方法,检测限低至0.005mg/L,线性系数高达0.9999。 人性化界面 可移动显示屏,直观显示检测结果,方便用户快速解读数据。OL1045N便携式全自动紫外测油仪是一款革命性的分析仪器,无论是在实验室还是在户外,都能轻松应对各种检测任务。让智能化、便携化的测量技术为您带来快捷、高效、准确的检测体验。

全自动便携式光合仪相关的方案

全自动便携式光合仪相关的资料

全自动便携式光合仪相关的试剂

全自动便携式光合仪相关的论坛

  • 便携式全自动农药残留检测仪优点有哪些

    便携式全自动农药残留检测仪具有多种优点,使其成为食品安全检测领域的得力工具。以下是一些主要的优点:  便携性:仪器设计紧凑,体积小巧,重量轻,方便携带和移动。这使得用户可以在任何需要的地方,如田间地头、批发市场、超市餐馆等,随时随地进行农药残留检测。  自动化操作:全自动化的操作流程大大简化了操作步骤,减少了人为因素的干扰,提高了检测效率和准确性。同时,这也使得检测过程更加快速,适用于大量样品的快速检测。  高灵敏度与准确性:该仪器采用先进的生物传感技术和传感器设计,对特定农药具有很高的灵敏度和准确性。它能够检测出很低的农药残留量,有效保障食品安全。  快速检测:仪器能够在短时间内完成对食品中农药残留量的检测,大大提高了检测效率,有助于及时发现和处理农产品中的农药残留问题。  操作简单:仪器采用智能化的操作系统,一键式操作特点使用户可以快速上手。同时,配有详细的操作手册和视频教程,使得用户能够轻松掌握操作技巧,无需专业技术人员。  应用广泛:该仪器可用于蔬菜、水果、茶叶、粮食、农副产品等多种食品中农药残留的快速检测,满足多种检测需求。  综上所述,便携式全自动农药残留检测仪以其便携性、自动化操作、高灵敏度与准确性、快速检测、操作简单以及广泛的应用范围等优点,为食品安全检测提供了强有力的支持。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404231545147374_905_4214615_3.jpg!w690x690.jpg[/img]

  • 便携式全自动农药残留检测仪可以检测蔬菜农残吗

    便携式全自动农药残留检测仪,作为一种现代化的检测工具,以其高效、便捷的特性,正在逐步改变农产品质量安全监测的传统模式。特别是在蔬菜农残检测领域,其应用日益广泛,为食品安全监管提供了强有力的技术支撑。那么,便携式全自动农药残留检测仪究竟能否检测蔬菜农残呢?答案是肯定的。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/06/202406070923190275_3931_5604214_3.jpg!w690x690.jpg[/img]  首先,我们来了解一下便携式全自动农药残留检测仪的工作原理。这种检测仪主要基于特定的化学反应原理,对蔬菜样本中的农药残留进行快速、准确的检测。在检测过程中,仪器会自动完成样本处理、试剂添加、反应时间控制以及结果分析等步骤,大大提高了检测效率和准确性。  对于蔬菜农残检测而言,便携式全自动农药残留检测仪具有以下几个显著优势:  一是快速性。传统的蔬菜农残检测方法通常需要耗费大量时间,而便携式全自动检测仪则能在几分钟内完成检测,极大地提高了检测效率。这对于现场快速筛查、及时发现问题具有重要意义。  二是准确性。该检测仪采用了先进的检测技术,能够准确识别蔬菜中的农药残留种类和含量。通过与标准值的比对,可以判断蔬菜是否符合食品安全标准,为消费者提供安全可靠的蔬菜产品。  三是便携性。便携式全自动农药残留检测仪体积小、重量轻,方便携带和操作。这使得它可以在田间地头、批发市场、超市等场所进行现场检测,及时发现和处理问题,避免了样品运输过程中的风险。  此外,便携式全自动农药残留检测仪还具有智能化、自动化等特点。仪器可以自动记录检测数据、生成检测报告,并可以通过无线传输等方式将结果实时发送给监管部门或消费者,提高了信息传递的效率和透明度。  总之,便携式全自动农药残留检测仪作为一种现代化的检测工具,在蔬菜农残检测领域具有广泛的应用前景和重要的实际意义。我们应该充分利用这种技术手段,加强农产品质量安全监管,确保人民群众的饮食安全。

  • 便携式全自动农药残留检测仪检测标准

    便携式全自动农药残留检测仪的检测标准通常依据国家标准方法,如GB/T 5009.199-2003,以及世界卫生组织(WHO)、世界粮农组织(FAO)和世界环境保护局(EPA)等相关国际组织的残留农药检测标准来设计。这些标准确保仪器在检测农药残留时具有高度的准确性和可靠性。  此外,不同型号的便携式全自动农药残留检测仪可能具有不同的检测下限和上限。一些仪器能够检测到ppb(parts per billion,十亿分之一)级别的农药残留浓度,而另一些则可以检测到ppt(parts per trillion,万亿分之一)级别的浓度。同时,仪器的检测上限也会受到其动态范围和样品基质等因素的影响,有些仪器可以检测到几十ppm(parts per million,百万分之一)级别的农药残留浓度,而有些则可以检测到几百ppm级别的浓度。  在检测过程中,为了确保结果的可靠性,仪器的测量误差应控制在标准范围内。此外,设备还应具备广泛的检测范围,能够同时检测多种农药残留物,并且要求能够检测到极小量的残留物,以保证对农产品的全面检测。同时,为了确保取样的准确性和可重复性,设备应配备合适的采样系统,并能对样品进行预处理,提高测量的准确性。  总的来说,便携式全自动农药残留检测仪的检测标准旨在确保仪器能够准确、快速地检测农产品中的农药残留,从而保障食品安全和消费者健康。具体的检测标准可能因仪器型号、生产厂家以及应用领域的不同而有所差异,因此在使用时建议参考仪器说明书和相关标准文件。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2024/04/202404261513385075_347_4214615_3.jpg!w690x387.jpg[/img]

全自动便携式光合仪相关的耗材

  • 便携式红外测温仪
    方源仪器长期供应便携式红外测温机,便携式红外测温机适用于包括发动机熄火及排气、冷却、加热和空调等系统的故障诊断。 便携式红外测温机 的详细介绍 便携式红外测温机 温度变化可指示常见的机械和电子问题,通过AutoProST25就可进行快速安全而且方便的诊断。 此型号具有SmartSight---两个激光合并成一单激光指示所测的目标区域为13毫米,红外光斑尺寸特别适合汽车故障诊断中常见的小目标测量。内置照明灯照亮工作区,在暗光下也可精确测量。 AutoProST25还附有带插图的非常具体的操作手册,详细地说明了各种故障的诊断方法,包括发动机熄火及排气、冷却、加热和空调等系统的故障诊断。 测量范围 -32~535℃(-25~999℉) 精度(假定环温为23℃时)  ± 1%或± 1℃取大值 重复精度  ± 0.5%或± 1℃(± 2℉)取大值 响应时间  &le 0.5s(95%响应) 光谱响应  8~14&mu m 发射率  预设0.95 环温工作范围  0~50℃(32~120℉) 相应湿度  10~90% 储存温度  -20~60℃(-13~158℉) 重量尺寸  360g(12oz)205× 160× 55mm(8× 6× 2in) 电源  9V碱性或电池 电池寿命/碱性  带激光,照明灯和背景灯开时,4hrs  带激光,照明灯和背景光关闭时,20hrs 激光(II级)  SmartSight双激光瞄准系统 工作区照明  亮白光LED D:S  好在8inches处使用,焦点处约为16:1 显示高温度值  &radic 显示保持(7s)  &radic LCD背景光  &radic 温度显示  ℃或℉可选 显示分辨率  0.2℃(0.5℉) 硬壳携带报  &radic 三脚架安装  &radic 可移基座  &radic 图表操作手册  &radic 保修  1年 选件/附件  尼龙软包,NIST认证(包括1年保修)
  • 美国维赛 YSI 63 便携式酸碱度/电导率测量仪
    YSI 手提式酸度测量仪(60型、63型)是特别为野外测量而设计的专业酸度测量仪器,它克服了一般酸度计电极在野外应用的缺点。美国维赛 YSI 63 便携式酸碱度/电导率测量仪简介● 使用特殊电缆屏蔽设计,突破传统酸度计电缆长度的限制,测量水深范围达30米 ● 电极接头全封闭防水,整个探头可插入水中测量 ● 探头加固保护,可抵抗轻度的碰撞 ● 可更换式电极,经济、便于现场维护美国维赛 YSI 63 便携式酸碱度/电导率测量仪介绍美国维赛 YSI 63 便携式酸碱度/电导率测量仪针对野外测量而设计的特点完全按照人体工学设计,不论手持、阅读、操作还是携带等细节上均考虑到野外测试的特殊需要特大液晶显示屏,另有背景加光功能,在昏暗的环境下仍能清晰读数探头使用不锈钢制造,电极端外加塑料保护套,确保坚固耐用;另外金属的重量让探头更易于沉入水中所有电缆接头均装有应力舒缓器,减少接线处的物料疲劳,有效延长电缆的使用寿命内置探头存贮室,方便携带并保存探头的正常工作状态,亦可作溶解氧的校准室全按键式操作,一切运作均由微处理器操控自动功能检查,确保开机时系统均正常工作内置非散失性记录器,可储存50组数据,读数不会因断电而丢失 耐固野外探头 一体酸度/电导/温度探头酸度测量复合式玻璃电极,自动温度补偿全水密BNC电极接头电极可于野外自行更换酸度探头保修期一年电导测量使用四纯镍电极,性能稳定,极少需要维护全自动电导量程选择:快速调整有效量程,以达到最高的准确度美国维赛 YSI 63 便携式酸碱度/电导率测量仪 系统规格美国维赛 YSI 63 便携式酸碱度/电导率测量仪参数技术指标参 数测量范围分辨率准确度*酸 度0至140.01±0.1(校准温度10℃内)*±0.2(校准温度20℃内)*电 导0-499.9μS/cm0-4999μS/cm0-49.99mS/cm0-400.0mS/cm0.1μS/cm1μS/cm0.01mS/cm0.1mS/cm量程之±5%*量程之±5%*量程之±5%*量程之±5%*盐 度0至80ppt0.1ppt±2%或±0.1ppt *温 度-5℃至+75℃0.1℃±0.1℃(±1 lsd)** 仪器规格包括仪表和探头的总误差,仪器本身的酸度准确度为±0.02仪器规格酸度校准1点、2点或3点校准选择,自动缓冲液识别电缆长度3米、7.5米、15米和30米酸度电极复合式玻璃电极温度补偿全自动电导参考温度15℃至25℃(可调)电导温度补偿因子0至4%(可调)量程选择自动或手动电导量程选择电 源6节5号碱性电池,操作寿命约100小时;附低电量显示防水等级超越IP65标准尺 寸24.1厘米(长)× 8.9厘米(宽)× 5.6厘米(厚)重 量0.77公斤(3米电缆)选购指南仪 器63-1063-2563-5063-100酸度、电导、盐度、温度测量仪,3米电缆酸度、电导、盐度、温度测量仪,7.5米电缆 酸度、电导、盐度、温度测量仪,15米电缆 酸度、电导、盐度、温度测量仪,15米电缆配 件1311335050 5520酸度更换电极携带箱,硬体 塑料便携箱(能容纳7.5米电缆)校准标准液3167-13168-1 3168-1 3821-1 3822-1 3823-1 5580-1电导标准液,1毫西门子/厘米(475毫升)电导标准液,10毫西门子/厘米(475毫升) 电导标准液,50毫西门子/厘米(475毫升) pH 4 缓冲液(475毫升) pH 7 缓冲液(475毫升) pH 10 缓冲液(475毫升) 酸度、电导、ORP多参数检查液(475毫升)
  • BST602便携式压力控制器
    产品概述:  602便携式压力控制器采用0.01级的硅谐振压力传感器作为内置标准,设备内置气源,全自动控制。设备搭载自动检定软件,可以进行编程控制。设备尺寸小、重量轻,便于携带至各种现场开展检定校准工作。广泛应用于计量、气象、电力、化工、航空、航天等行业。  产品特点:  1、内置气源,压力全自动稳定控制   2、内置压力标准器,提供压力标准   3、具有压力标准器校准功能,输入标准值即可自动修正   4、具有压力变化率控制功能,压力变化率可设,支持空盒气压表检定   5、便携式机箱设计,方便现场使用。  技术指标:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制