当前位置: 仪器信息网 > 行业主题 > >

氰化物酚类氨蒸馏仪

仪器信息网氰化物酚类氨蒸馏仪专题为您提供2024年最新氰化物酚类氨蒸馏仪价格报价、厂家品牌的相关信息, 包括氰化物酚类氨蒸馏仪参数、型号等,不管是国产,还是进口品牌的氰化物酚类氨蒸馏仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氰化物酚类氨蒸馏仪相关的耗材配件、试剂标物,还有氰化物酚类氨蒸馏仪相关的最新资讯、资料,以及氰化物酚类氨蒸馏仪相关的解决方案。

氰化物酚类氨蒸馏仪相关的资讯

  • 流动注射-酒中氰化物的检测解决方案
    前言:  白酒在酿制过程中,由于原料中有含氰甙配糖体,或生产配制酒时原料酒精中含有氰化物,使酒中含有氰化物。氰化物属于剧毒物质,国家对酒中的氰化物有明确限量。目前酒中氰化物的检测方法GB5009.36-2016异烟酸-吡唑啉酮法显色条件较为苛刻,也存在安全、二次污染以及干扰物较多等问题,对酒中氰化物的检测造成一定困难。使用聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)全自动流动注射分析仪测定酒类氰化物含量,不但可以提高氰化物检测的准确度和灵敏度,并且此方法具有检测速度快、重现性好、操作更加安全等特点。同时对异烟酸-巴比妥酸法对酒中氰化物的检测条件进行了优化,可以适用于大部分酒类中氰化物的检测。一、实验目的  建立更加简便、快速、安全、准确的一种检测酒中氰化物的方法体系。二、方法原理  样品经氢氧化钠碱解后,经过在线高温蒸馏将简单氰化物及部分络合氰化物以氢化氰的形式蒸出,经氢氧化钠吸收后,在酸性条件下,氰离子与氯胺T反应生成氯化氰,氯化氰与异烟酸反应,经水解生成戊烯二醛,戊烯二醛与巴比妥酸缩合生成蓝紫色染料,在600nm处进行比色测定。三、实验步骤  样品处理:清香型及浓香型白酒,用适量 NaOH溶液稀释酒样于容量瓶中,摇匀碱解酒样,放置10min,上机测定。若样品氰化物检测较高,应进一步稀释酒样,使得加标回收率合格。  酱香型白酒、蒸馏酒及有色酒:按大于等于100倍比率稀释。四、实验仪器及结果4.1实验仪器:  本实验使用吉天仪器全自动流动注射分析仪iFIA7进行各类酒样品中氰化物含量的检测。iFIA7全自动流动注射分析仪-氰化物通道4.2标准曲线的测定:酒中氰化物工作曲线酒中氰化物标准样品分析图形酒中氰化物工作曲线A.部分样品加标数据酒样加标检测数据B.精密度和检出限检测a.精密度b.浓香型酒检出限c.蒸馏酒酒检出限五、实验结论  将酒样稀释一定倍数后,利用氢氧化钠碱解,iFIA7流动注射仪在线进行氰化物检测,使用此方法所用条件检测酒中氰化物的检测结果准确可靠,重现性较好,分析速度快,是检测酒中氰化物的一种简便快捷的方法。六、参考标准、文献[1] 中华人民共和国国家标准: GB5009.36-2016 食品安全国家标准 食品中氰化物的测定[S].[2] 杨凯,曹巧玲,田葆萍,王京.异烟酸-巴比妥酸分光光度法检测水中氰化物影响因素分析[J].[3] HJ823-2017 水质 氰化物的测定 流动注射-分光光度法.[4] 张文德,孙仕萍,胡志芬,尹璐.酒中微量微量氰化物的测定方法研究[B].中国食品卫生杂志,2004,16(3):232-235.
  • 新国标发布!毒药之王——氰化物检测又添新方法
    近日,GB&ensp 5009.36-2023《食品安全国家标准&ensp 食品中氰化物的测定》正式发布。该标准将代替GB 5009.36-2016,于明年3月6日正式实施。标准调整2023版新标准增加了第三法气相色谱-质谱法、第四法离子色谱法、第五法流动注射/连续流动-分光光度法,删除了2016版的第三法定性法。因此,食品行业用户对仪器的选择也更加全面。离子色谱-安培检测法GB&ensp 5009.36新增离子色谱法-安培检测法,该方法适用于蒸馏酒及其配制酒、食用酒精、包装饮用水、矿泉水和饮料(以杏仁为原料)中氰化物的测定。与2016版方法相比,离子色谱-安培检测法简便快速、线性范围宽、检出限低、灵敏度高、重复性好,可作为配制酒中氰化物检测的首选方法。 氰化物氰化物是一种具有强烈毒性的化合物,在自然界广泛存在,木薯、高梁、玉米、豆类等大量植物中均含有氰化物成分。此外,在牛奶、蒸馏酒、果酒类产品中也常被检测出微量氰化物。食品安全国家标准对食品中氰化物的含量有着有严格的限量要求。GB 2757—2012《食品安全国家标准 蒸馏酒及其配制酒》规定:蒸馏酒及其配制酒中氰化物含量要低于8.0 mg/L。标准验证针对GB&ensp 5009.36标准新增的离子色谱-安培检测法,盛瀚CIC-D100E离子色谱仪实现标准验证,仪器配置及验证效果如下:仪器配置(盛瀚CIC-D100E离子色谱仪)产品介绍CIC-D100E是专为安培检测需求的科学仪器,可有效检测不同基体样品中的硫离子、氰根离子等痕量物质检测,广泛应用于食品、医药、环境、化工等领域,是氰化物检测的不二之选。内置安培检测器具有极高的检测灵敏度和极低的检出限,满足微量和痕量离子的测定;淋洗液预热色谱柱恒温更稳定,保证数据更一致;检测器灵活配置标配直流安培检测器,也可联用紫外、电导等检测器;专属配件包搭配专用淋洗液溶液,避免用户使用过程中交叉污染问题。测试条件:测试谱图:标准溶液色谱图(5 μg/L)白酒样品谱图 盛瀚色谱——离子色谱方案专家,致力于拓宽离子色谱应用场景,为更多领域、更多应用场景提供专业解决方案。值此中国离子色谱40周年,盛瀚将继续发挥行业引领作用,联合合作伙伴和行业友商共建良好产业生态,推动国产离子色谱高质量发展!
  • 【行业应用】赛默飞发布水质中氰化物测定解决方案
    2015年9月2日,北京——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布水质中氰化物测定解决方案。氰化物属于剧毒物质,对人体毒性主要是与细胞色素氧化酶中的三价铁络合,生成氰化高铁细胞色素氧化酶,引起组织缺氧窒息,对人畜具有极低的急性中毒致死量,因此各类氰化物是污水排放和水质检测的重要监测项目。各类国标都对氰化物的含量标准进行了限定,《GB 5749-2006生活饮用水卫生标准》中明确限定饮用水中氰化物不得高于0.05mg/L;《GB 3838-2002 地表水环境质量标准》中限定氰化物在Ⅰ类水中不得高于0.005mg/L、Ⅱ类水中不得高于0.05mg/L、Ⅲ-Ⅴ类水中不得高于0.2mg/L。在《GB/T 5750-2006生活饮用水标准检验方法》等国家标准方法中,推荐采用异烟酸-吡唑酮或异烟酸-巴比妥酸进行氰化物显色反应,对水样中氰化物的测定限值为0.002mg/L。根据对比发现,现行方法对Ⅰ类水质的限值需求仅勉强满足,且测定过程中,往往易受到亚硫酸盐、硫代硫酸盐等其他还原性物质的干扰。同时,诸多毒性较强的显色试剂的使用,也极易造成实验操作人员的二次中毒。在新近发布的水质中氰化物的检测方法,采用Thermo ScientificTM DionexTM ICS-2100 RFIC-EG离子色谱仪,此方法采用基于离子交换分离原理,在Thermo ScientificTM DionexTM IonPacTM AS7 阴离子交换柱上可较好实现氰化物和基体中其它共存阴离子型化合物的分离,再经过安培检测器检测还原性的氰根离子,可以获得μ g/L甚至ng/L的测定下限,而样品仅需简单滤过即可。水样中若是关注游离氰化物可经简单处理后直接分析,若是关注总氰化物,则可以通过酸化蒸馏,再用氢氧化钠溶液吸收后直接进样检测。 ICS-2100 RFIC-EG 离子色谱仪对于食品、纺织品等样品,前处理方法与检测条件与水质原理一致。而对于空气样品,则需以采样泵将空气持续泵入碱性吸收液即可完成采集,简单过滤后即可进样分析。25μ L进样体积为例,氰化物的测定限可达到0.001mg/L。此外通过增大定量环进样体积还可以获得灵敏度的成倍增加。方法将具有独特选择性的离子交换柱将不同价态、形态的离子化合物予以分离,再结合选择性较强的安培检测器,使得方法的选择性和专属性较强。典型水质样品分离分析谱图如下:色谱柱:IonPac AS 7(4 mm×250 mm,10μ m),保护柱IonPac AG7(4 mm×50 mm,10 μ m); 淋洗液:100 mmol/L氢氧化钠溶液-500 mmol/L乙酸钠溶液-0.5%乙二胺溶液,等度淋洗; 流速:1.0 mL/min;柱温:30 ℃;进样体积:25 μ L; 检测器:脉冲安培检测器,银工作电极,Ag/AgCl 参比电极模式,三电位波形,检测池温度为30 ℃。更多产品信息,请访问:Dionex? ICS-2100 RFIC-EG 离子色谱仪www.thermoscientific.cn/product/dionex-ics-2100-integrated-ic-system-electrolytic-eluent-generation-sample-preparation.html解决方案下载,请查看:www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/Corporate/documents/Direct-Determination-Cyanide-Drinking-Water-IC-PAD.pdf ------------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美 元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛 默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为 了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网 站:www.thermofisher.com
  • 【格哈特应用方案】赛默得通氮蒸馏仪—聚焦中草药二氧化硫/粮食磷化物/土壤硫化物等检测,为您提供通氮蒸馏应用方案!
    一、仪器简介基于享誉全球的TURBOTHERM 特博森红外快速加热系统,德国格哈特专门开发了先进的通氮快速蒸馏系统,专业用于样品中二氧化硫、硫化物、氰化物、高氯废水COD、氟化物、磷化物、甲醛、挥发酚、挥发性脂肪酸、二硫代氨基甲酸酯等的检测分析。先进红外加热技术,加热和冷却时间短,蒸馏效率明显提高。整体化设计,结构紧凑,带专业滴漏盘的专用支架放置冷凝管和高效吸收冷阱,操作安全便利,节省空间。独立冷凝系统,确保冷凝效果。可调气体流量计,4个蒸馏管流量可独立精准控制。二、特点1.自动程序控制①自动控制蒸馏时间和加热功率;②先进的程序控温,确保温度稳定,高重现性;③可设定和储存9个程序,每个程序可设定多达9步的加热条件/时间。工作过程可随时手动调整,应用灵活方便;④工作状态液晶清晰显示,随时提示程序步骤。2.仪器组成由红外快速加热系统基本单元、玻璃冷凝管、高效吸收阱、玻璃滴液漏斗、蒸馏管、气体流量计、带滴漏盘的专业支架,磁力搅拌器(可选)等。3.多功能性①批处理4个样品,蒸馏条件一致,稳定可靠;②两种蒸馏管和吸收冷阱可选,满足不同样品不同应用的需求;③磁力搅拌功能可选,提供更灵活应用;④可拓展为凯氏消化系统,可配套各种规格试管。⑤也可扩展作为流动注射的消化系统或湿灰化系统。4.高效吸收冷肼专业设计,无损收集蒸馏产物,极高的回收率,安全环保。三、应用资料基于Gerhardt一百多年专业知识的应用数据库,结合国内相关标准,我们可提供药典中二氧化硫残留量的测定、土壤和沉积物硫化物的测定、粮食磷化物残留量测定等通氮蒸馏应用方案。德国Gerhardt为实验室用户提供最全面的蒸馏解决方案,特点鲜明的“蒸馏家族成员”VAPODEST(维普得)水蒸汽蒸馏仪、THERMODEST(赛默得)通氮蒸馏仪、KJELDEST(凯尔得)直接蒸馏仪,总能满足您各种蒸馏应用需求。更多蒸馏应用方案,欢迎您致电咨询了解!
  • 大连化物所等发展出碱(土)金属钌基配位氢化物合成氨催化剂新体系
    近日,中国科学院大连化学物理研究所复合氢化物材料化学研究组研究员陈萍、郭建平团队,与丹麦技术大学教授Tejs Vegge团队、大连化物所研究员李海洋团队/江凌团队合作,在催化合成氨研究方面取得进展。该研究首次将配位氢化物材料应用于催化合成氨反应中,开发出一类新型碱(土)金属钌基三元氢化物催化剂,实现了温和条件下氨的催化合成。  氨是重要的化工原料和颇具前景的能源载体,实现温和条件下氨的高效合成具有重要科学意义和实用价值。以化石能源驱动的现有合成氨工业是高能耗、高碳排放的过程。因此,在以可再生能源驱动的“绿色”合成氨过程中,低温低压高效合成氨催化剂的开发是核心技术,也是科研工作者追求的目标。  本工作中,科研团队开发的碱(土)金属钌基三元氢化物(Li4RuH6和Ba2RuH6)催化剂材料可实现温和条件下氨的催化合成。该催化剂材料是一种离子化合物,由Ru的配位阴离子[RuH6]4-和碱(土)金属阳离子Li+或Ba2+构成,在低温(573K)、低压(10bar)下具有优异的催化合成氨性能。当反应温度低至100oC时,Ba2RuH6催化剂仍有可检测的催化活性。研究发现,该类三元氢化物催化剂材料的合成氨反应遵循氢助解离式机制,其所有组分均参与合成氨反应,即富电子的[RuH6]4-是N2活化位点,H-是电子和质子传递载体,Li+或Ba2+通过稳定NxHy物种降低反应能垒,通过多组分协同催化,使N2和H2以能量较优的反应路径转化为NH3。  该类三元氢化物催化剂作为独特的化合物催化剂,在组成、结构、反应动力学性质、活性中心作用机制等方面显著不同于常规多相合成氨催化剂,而与均相合成氨催化剂存在一定关联,这为多相固氮和均相固氮研究架起了桥梁。该研究丰富了合成氨催化剂体系,并提出了“富电子、多组分活性位点”合成氨催化剂设计策略,为进一步探寻低温低压高效合成氨催化剂提供了新思路。  相关研究成果以Ternary Ruthenium Complex Hydrides for Ammonia Synthesis via the Associative Mechanism为题,发表在《自然-催化》(Nature Catalysis)上。研究工作得到国家自然科学基金委员会基础科学中心项目“空气主份转化化学”、中科院青年创新促进会等的支持。  论文链接
  • 水质中氰化物测定环保标准发布
    为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,规范环境监测工作,环境保护部批准《水质 氰化物等的测定 真空检测管-电子比色法》为国家环境保护标准,并予发布。  标准名称、编号如下:  《水质 氰化物等的测定 真空检测管-电子比色法》(HJ 659-2013)。   该标准规定了测定水中氰化物、氟化物、硫化物、二价锰、六价铬、镍、氨氮、苯胺、硝酸盐氮、亚硝酸盐氮、磷酸盐和化学需氧量等污染物的真空检测管法。本标准为首次发布,自2013年9月20日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。
  • 响应号召 济南盛泰助力天津爆炸案氰化物检测
    p  天津8.12特大火灾爆炸案发生以后,众多仪器公司纷纷行动起来,为天津支援仪器、技术人员等等。济南盛泰公司是一家生产实验室前处理设备的公司,没有众多大型仪器的济南盛泰能为此次事件做些什么呢?8月18日,济南盛泰接到了天津经济技术开发区环境监测站的电话,对方表示因为氰化物监测任务增加,希望加急采购其“智能一体化蒸馏仪”。/pp  济南盛泰高层当即决定,无偿将仪器赠送给对方,并于当天派专人专车将仪器送至天津。今天上午,济南盛泰营销总监与两名高工携带其智能一体化蒸馏仪器开车抵达天津,在中午之前即将仪器送到了实验室并完成了安装。/pp style="TEXT-ALIGN: center"img title="1.jpg" src="http://img1.17img.cn/17img/images/201508/insimg/31c11b65-f13f-4e5f-9448-224082aade7e.jpg"//pp style="TEXT-ALIGN: center"img title="2.jpg" src="http://img1.17img.cn/17img/images/201508/insimg/70c7e6e6-3a70-48b5-ac1d-1a25cee0fb7f.jpg"//pp  据济南盛泰介绍,天津市环境监测站、开发区环境监测站、天津生态城环境监测中心以及即将支援天津的河南、山东等省环境监测中心、都是其用户,如果这些用户对仪器和耗材有需求,济南盛泰都将提供无偿使用及服务,并且安排专业的售后服务人员24小时驻点服务。同时今天上午由公司总经理亲自带队再次支援塘沽市环境监测站两台智能一体化蒸馏仪用于应急监测的任务。/pp  后记:8月20日,山东、辽宁、河南等省的环境监测支援人员携带仪器陆续抵达天津,据济南盛泰现场人员观察,济南、青岛、河南、辽宁监测站携带的仪器中均有其公司的产品。/p
  • 日本生产用水氰化物超标 数百万份食品被召回
    日本伊藤火腿公司26日宣布召回约270万份火腿肠和比萨。这家日本第二大火腿公司说,公司一处工厂的地下水中检出超标氰化物。  伊藤火腿公司当天在日本各大报纸发布公告,称位于千叶县柏市的一家工厂所用三处井水中查出超出国家标准2至3倍的氰化离子和氯化氰。针对这家工厂所产火腿肠和比萨的污染物检测仍在进行中。  日本共同社报道说,这些氰化物超标井水用于生产火腿肠和比萨,也用于清洗机器。公司一名发言人说,这是建厂40年来首次发现井水中氰化物超标。公司已召回9种火腿肠和4种比萨产品,同时暂停使用这两处井水。  伊藤火腿公司说,尚未接到有关这些食物引起健康问题的报告。
  • 天津港爆炸:事故现场氰化物处置方法及原理
    津港危险化学品仓库“8˙12”瑞海公司爆炸事故发生后,爆炸现场存储的桶装氰化钠大部分保存完好,其中少量因爆炸冲击发生泄漏。氰类剧毒物质会不会对事故隔离区外的空气和水造成污染?会不会对群众生活带来影响?现场处置到底采取了哪些有效措施?一时间,这些问题成为社会各界关注的热点。 对此,事故现场指挥部成立专门处置小组,按照“前面堵、后面封、中间来处理”的原则,紧急采取设置围堰、危险废物集中处置等五项措施,确保事故区域污染不外泄。 氰类剧毒物质会对空气造成污染吗? 天津市环保局局长温武瑞15日下午接受新华社记者专访时说,爆炸事故发生后60小时里,在事故隔离区外仅监测出一次大气中氰化物略有超标,相关部门已经采取有效措施,可以确保封闭隔离区以外的空气安全。 氰化钠能否直接挥发到环境空气中?环保专家解释,氰化钠虽是一种剧毒物质,但在常态下是一种固态晶状体或粉末,不挥发、不易燃、不易爆。只有在其遇水生成的氰化氢进入大气环境后才会短期内对环境造成一定影响,其融入水体中形成氰化物后处理方法成熟,对环境的影响相对易于控制。 12日夜,事故发生后天津环保部门立即启动应急预案。“13日凌晨3时开始,在事故现场隔离区外增加布点监测,共设立17个大气监测点,实行24小时连续不间断监测。隔离区域内的空气质量监测由北京卫戍区某防化团进行。”温武瑞说。 温武瑞说,事故发生后的连续监测数据表明,周边区域环境空气质量相对稳定,16日起还将进一步优化监测点位。 氰化物会对周围水环境造成污染吗? 舆论纷纷表示关注,氰化物会对周围水环境造成污染吗?温武瑞表示,环保部门13日凌晨在事故区域内设立了5个废水监测点位,在2个排海泵站进水口各监测出氰化物超标一次,平均超标10.9倍 14日在一处排海泵站进水口监测出氰化物超标一次,超标2.1倍。 事故发生后,环保部门对事故区域三处入海排水口全部实施封堵,杜绝事故废水对外环境造成影响。同时,对现场隔离区外的雨水口、污水口、污水处理厂、海河闸口进行不间断监测。在事故区域设置围堰,并在污水处理厂前端的雨污池进行破氰处理,处理后排往污水处理厂,进一步深度处理,确保达标排放。 截至目前,天津市环保部门在海河闸口和渤海近海的监测取样均没有发现氰化物。 现场采取的措施能否确保污染不外泄? 针对人们的担心,根据氰类剧毒物质特性,现场指挥部紧急制定了五项措施,保证事故区域污染不外泄: ——事故区域全部雨水、污水外排口全部用水泥封堵,确保区域内各类废水不会排入外环境,确保区域外水体和渤海的环境安全 ——事故区域周边设置围堰,将事故区域与外部隔离,确保降雨时雨水不会溢流出事故区域 ——事故区域内雨水、污水管道内的废水和消防废水全部进入新设置的应急废水处理装置,采取强氧化等方式对废水破氰处理后,再排入天津港保税区扩展区污水处理厂进一步深度处理 ——天津港保税区扩展区污水处理厂在现有处理工艺基础上,在前端增设含氰废水应急预处理装置,实现废水处理的双保险 ——对现场隔离区内水坑、水塘、明渠等低洼汇水处内的高浓度废水由专用罐车收集后,送危险废物处置机构立即进行集中处置。 全国人大代表、天津市环保局环境应急专家组组长包景岭透露,现场处置人员正在集中力量在隔离区内对氰化物污染进行无害化处理,氰化物污染可以得到有效控制。 “鉴于事故现场明火已基本扑灭,再发生大规模爆炸的可能几乎没有,不用担心隔离区外的大气和居民饮用水受到影响。”包景岭说。来源:央视新闻
  • 科普 | 污染源和地表水在线监测:氰化物和总氰化物有差别?
    朗石论坛Labsun Online提问者【求助】氰化物和总氰化物有区别吗?如果监测地表水,是监测总氰化物,还是氰化物呢?提问者【求助】我负责电镀厂的排口监测,这类污染源水质是监测氰化物还是总氰化物呢?朗石最近,有很多客户咨询氰化物和总氰化物的问题,关于两者的定义、存在形态以及其在地表水或污染源排口监测的区别,下面会一一介绍哦!1介绍氰化物是剧毒物质,可在生物体内产生氰化氢,使细胞呼吸受到麻痹引起窒息死亡;一般人一次口服0.1 g左右的氰化钾或氰化钠就会致死,当水体中的氰化物浓度达0.3~0.5 mg/L时,水中的鱼类及其他水生生物将死亡。2存在形态氰化物在水体中存在形态有氢氰酸、氢离子和络合态氰化物。一般来说,环境监测中的氰化物分为两种:总氰化物和氰化物(易释放氰化物)。总氰化物:包括全部简单氰化物和绝大部分络合氰化物,如锌氰络合物、铁氰络合物、镍氰络合物、铜氰络合物等(不包括钴氰络合物)。易释放氰化物:包括全部简单氰化物和锌氰络合物(不包括铁氰化物、亚铁氰化物、镍氰络合物、铜氰络合物、钴氰络合物等)。3水环境中氰化物监测及限值一般来说,在我国水环境监测中,地表水、地下水以及饮用水监测氰化物,污水和废水监测总氰化物。关于氰化物/总氰化物监测朗石公司致力于水质检测核心技术研发,通过技术创新解决客户难题,给客户带来更大价值。针对于地表水、地下水、饮用水以及污染源排口不同的监测需求,我司开发了氰化物自动在线监测仪和总氰化物自动在线监测仪两款产品,欢迎大家前来咨询!
  • 医学研究新福音:检测氰化物中毒只需70秒
    测定氰化物中毒的诊断测试需要花费24小时。  根据美国卫生部的警示,&ldquo 抽取血液或收集尿液进行化验哪怕有片刻的延误,都可能危及病人的生命。&rdquo 这也是医务人员面对疑似氰化物中毒病人时,首先要做的医疗处置方法。  南达科他州州立大学化学与生物化学系的副教授布莱恩 罗格提供了一个解决方法&mdash &mdash 能够在70秒内检测氰化物中毒。通过从美国国防部与卫生研究院获得的资金支持,罗格一直在从事分析氰化物以及它的新陈代谢方式,从而为氰化物接触者提供帮助。  消防员和工厂工人是高风险人群  根据罗格介绍,当工厂发生火灾时,工人和消防员有接触到氰化物的危险。  科学家和医务人员需要一个快速、可靠和便携的设备来识别氰化物中毒,罗格解释道,这也促使美国卫生研究院对他的研究项目进行支持。  根据疾病控制和预防中心的介绍,氰化物中毒的早期症状包括:头痛、头晕、气短、心率快以及恶心和呕吐。  南达科他州州立大学副教授布兰恩 罗格(右),以及博士后研究员兰迪 杰克逊在进行氰化物研究  快速诊断  这个正在申请专利的传感器设计使用了一个两阶段程序,首先将氰化物样本转化为气体,第二步将它密封在容器里。&ldquo 它就像香水一样,&rdquo 罗格说。  然后氰化物与第二种物质发生反应,当暴露在光线下就成为荧光,根据博士后研究员兰迪 杰克逊的介绍。含义氰化物的荧光产物会发出自己的光线,这就可以用来确定分析氰化物浓度了。  虽然检测时间已经从2分钟下降到70秒,罗格指出,&ldquo 我们还没有对检测时间进行优化,我们希望能在一分钟内解决问题。&rdquo   在紧急情况下,从手指上采集血液样本,就像糖尿病人测血糖一样,可用来确定一个人是否氰化物中毒了,杰克逊解释说。  杰克逊将血液样本至于检测盒中,然后将检测盒插入传感器中进行分析  研究人员希望最终能够通过唾液进行检测,因为氰化物通常通过口鼻进入人体引发中毒,罗格解释道。但这只停留在概念阶段,唾液与氰化物中毒二者之间的联系尚未建立。  优化设计,提高准确性  用这个检测方法进行了动物实验,对兔子氰化物中毒检测的准确率是100%,即使氰化物水平低于致死量的200倍。  此外,研究人员将利用工程技术将这个设备小型化,并优化可更换的检测盒,其中包含活性化学物质。这个设备的上市还需要得到联邦药品管理局的批准。  改善设备并将它投入市场是罗格的心愿:我想把这项研究转化成产品,来挽救生命。
  • 水体中氰化物快速检测解决方案
    水体中氰化物快速检测解决方案 8月12日,天津滨海新区危险化学品仓库发生的爆炸震惊全国,牵动了全国人民的关切之心。此次爆炸事故发生突然,危险品类型复杂,应急处置难度大,后果极其严重。事故发生后,爆炸中心区、爆炸区居民楼周边以及海河等处都受到了严重的氰化物污染,特别是对当地的水体造成了严重的污染。含氰化物的废水可通过呼吸道、食道及皮肤浸入而引起中毒。轻者有粘膜刺激症状,唇舌麻木、气喘、恶心、呕吐、心悸。重者,呼吸不规则,意识逐渐昏迷、大小便失禁、可迅速发生呼吸障碍而死亡。氰化物中毒治愈后还可能发生神经系统后遗症,水的氰化物浓度超过0.03mg/l时,鱼类中毒。因此、如何简单、快速的了解当前水体中氰化物的污染状况尤为重要。 近年来,突发性水体污染污染事件时有发生。在此次污染事件中,默克密理博可提供的氰化物现场检测快速测试条、测试盒、仪器等产品的全面解决方案。可以及时准确的掌握最新的水质污染状况提供了可靠的数据。默克密理博开发的一系列专用于水体污染应急快速检测的定性/半定量测试试纸,半定量测试盒等新产品,主要应用于现场应急快速水质分析,便于使用人员采取及时有效的措施来应对突发事件。在全国各个城市的环境监测中心、水文水利监测中心,都可以看到默克密理博产品的身影。 突发性水体中氰化物快速检测方案: 备注:更多测量参数和测量范围,请联系默克密理博各地办事处或经销商。 (1). 氰化物快速测试条操作简介: (2)便携式氰化物检测仪(10 – 350 μ g/l)操作简介:
  • 环保部门:25个水质监测点检出氰化物 最大超标277倍
    p  央广网天津8月19日消息 据中国之声《央广新闻》报道,8月12日晚11:20左右,天津港国际物流中心区域内瑞海公司所属危险品仓库发生爆炸。19日上午,天津市举行天津市8· 12瑞海公司危险品仓库特别重大火灾爆炸事故第九场新闻发布会,回应公众的关注。/pp  天津市环保局环境应急专家组组长包景岭介绍废水和水环境监测结果:8月18日0时至24点期间,水质监测点位40个,其中警戒区内点位26个,警戒区外的点位14个,现场采集各类水的样品70个,对照天津市污水综合排放标准和地表水环境质量标准,累计共有25个点位的氰化物检出,其中8个点位超标,超标点位全部位于警戒区内,最大一个超标点是277倍。这个点位是在我们前两天已经封堵了的一号泵站的雨水排水口,在最短时间内我们的部队一到那儿就把这个封堵上了,避免它向海里排放,离海很近。昨天由于我们要把雨水管道腾空,以利于进一步的雨水进入,所以监测了几个排海口的雨水管道,管道里的水污染严重,有一点污染都不允许排放,现在正把它抽出来拉到污水处理厂进行达标处理。是管道里面的监测点达到比较高的污染浓度。警戒区内14个点尚未发现氰化物超标,其中7号点位有氰化物检出,但浓度较低,仅相当于控制标准的13.6%,事故区临近的近岸海域4个海水监测点位经监测氢化物符合海水水质标准的四类标准,与历史监测数据比较没有异常变化,特征有机污染物均未检出。/pp /p
  • 岛津应用:矿泉水中氰化物和氯化氰的检测
    2014年12月22日,日本颁布了牛奶和奶制品成分标准的相关指令,以及食品、添加物等规格基准的部分修订指令(日本厚生劳动省令第141号、厚生劳动省告示第482号;同日实施),还规定了有关试验方法(食安发1222第4号)。指令中规定,矿泉水中的氰标准值为0.01 mg/L(氰化物离子和氯化氰的总值),试验方法为离子色谱柱后衍生化法。 本文向您介绍按照修订后的清凉饮料水试验方法(以下称为“指令”),使用岛津氰化物分析系统对矿泉水中的氰化物离子和氯化氰进行分析的示例。 按照指令规定,使用离子排斥柱将氰化物离子和氯化氰分离,然后使用4-吡啶羧酸吡唑啉酮法进行柱后衍生化,在波长638nm处进行检测。柱后衍生化反应分两步进行,第一步利用氯胺T 溶液进行氯化,第二步利用 1-苯基-3-甲基-5-吡唑啉酮/4-吡啶羧酸溶液进行显色。 按照指令规定的岛津氰化物系统流路图 了解详情,敬请点击《使用离子色谱柱后衍生化法分析矿泉水中的氰化物和氯化氰》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。 岛津微信平台
  • 中药工艺优化 | 关于分子蒸馏技术在中药分离中的应用
    1月2日,国务院联防联控机制综合组印发了《关于在新型冠状病毒感染医疗救治中进一步发挥中医药特色优势》的通知,确实,经过三年的疫情经验总结,中药对于新冠症状的抑制作用有目共睹。 因此,尽管在1月8日,国家对新型冠状病毒感染已由”防感染”转向实施“乙类乙管”,中医药仍然将在接下来的“保健康、防重症”阶段扮演重要角色。不仅如此,我国对于中医药其实一直保持着相对的关注,这一点从2021-2023年一系列的支持政策也可以看到。 来源:国务院办公厅,国家卫健委,国家药监局等并且,2022年国家药监局就发布了《中药品种保护条例(修订草案征求意见稿)》,明确“一级保护给予十年市场独占,二级保护给予五年市场独占”。天时地利人和,在新的一年,我国中医药的市场预计总规模可能会达到万亿规模。中药新药的研发已成为大势所趋,如何加快中医药研发抢先争取市场份额?这将会成为未来2023年药企需要直面的一个点。中药有效成分提取工艺想要了解如何加快中医药制剂研发,必须从源头出发,深挖工艺环节。本文将先围绕如何优化“从中药中提取有效成分”这一过程,展开讨论。中药有效成分提取 Step1利用有机溶剂进行抽提,得到的是初步的中药精油,纯度很低,含有溶剂、水和杂质,此时需要进一步精制和提纯。Tips:● 目前比较好的方法有CO2超临界萃取技术,利用温度和压力略超过临界的、介于气体和液体之间的流体作为萃取剂,从固体或液体萃取某种高沸点和热敏性成分,介质为CO2。● 像艾草、五味子、川芳、蛇床子等中药都可以通过有机溶剂抽提或者超临界萃取的方式做*步的预处理。中药有效成分提取 Step2利用分子蒸馏技术,根据样品中各组分分子的平均自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,从而达到提纯的目的,因此特别适合高沸点、热敏性的天然药物。 分子蒸馏技术 分子蒸馏又称短程蒸馏,是近年来新兴的并广泛应用的一种在高真空条件下进行高效分离纯化的技术。分子蒸馏由于操作温度低、受热时间短、分离程度高等特点,解决了热敏性、高沸点或高相对分子质量、高黏度、易氧化物料难分离纯化的问题,目前已被广泛应用于制药、石油化工、食品工业、香料香精等方面,具有广阔的发展前景。中药有效成分提取 Step3用GC/MS检测处理后的样品纯度,要求主含量至少在95%以上。气质联用作为表征未知物组成和含量有着很广泛的应用,可以结合红外色谱仪来判断官能团的特征峰,从而再次确定这一组分的真实性。中药有效成分提取 Step4目前中成药制剂大多数以颗粒等固体制剂为主,当然也有类似于精油的剂型,只是储存和运输不便,所以中成药的挥发油一般是单独提取出来,用β-环糊精包合再和其他提取物一起制成固体制剂。 在中药有效成分提取工艺中,我们发现分子蒸馏这一技术,较常规蒸馏具备更显著的优势,如果能不断提升这一技术应用,就能大大提升分离度及效率。——Pilodist团队 分子蒸馏技术基本原理常规蒸馏是利用样品各组分沸点的不同进行分离,而分子蒸馏是在高真空下分离操作的非平衡蒸馏,通过将液体加热,依托混合物组分中不同分子平均分子自由程的差异,在远低于物质常压沸点的情况下将物质进行分离,故分子蒸馏其实质是分子蒸发,是一种特殊的液-液分离技术。分子蒸馏基本原理:把分子连续两次碰撞之间通过的路程称为自由程,分子自由程的平均值称为分子平均自由程。由分子的平均自由程公式可知,不同物质分子由于运动速度和有效分子直径不同,平均分子自由程也不相同,重分子的平均自由程小,轻分子的平均自由程大。在液面上方小于轻分子平均自由程而大于重分子平均自由程处设置冷凝面,使得轻分子不断地落在冷凝面上被冷凝,进而破坏轻分子的动态平衡,而重分子因为到达不了冷凝面就会发生碰撞返回溶液中,*使混合液中的不同成分分离。如下图所示: 在中药分离中的现代化应用随着中药现代化发展,中药有效成分的提取与分离技术朝着高效率且环境友好的方向发展。中药现代化就是指在中药的传统特色优势与现代化的科学技术相结合的基础上研发现代中药。将新兴的分子蒸馏技术应用于中药有效成分提取分离过程中,特别适合含有热敏性、高沸点及易被氧化物质的分离纯化,有利于促进中药有效成分分离技术的现代化。挥发油是中药发挥药效的重要物质基础之一。目前,我国已知有 56 个科 136 种植物含有挥发油。传统的蒸馏加工过程由于受热时间长、温度高等会使得挥发性成分受损,因此,在中药挥发油的分离与精制中引入分子蒸馏技术十分必要。应用一:贵州传统苗药米槁米槁作为贵州传统苗药,其有效成分存在于精油中,采用分子蒸馏技术对米槁精油进行提取分离并系统研究其化学成分,结果表明该技术具有明显的优势,各馏分富集程度高,并可成功保护全部组分。应用二:姜黄挥发油姜黄烯和姜黄酮是姜黄挥发油的主要有效成分,传统蒸馏会使其加热时间较长而氧化,影响产品质量,采用多级分子蒸馏技术对姜黄挥发油进行精制,经5次蒸馏,姜黄挥发油中的姜黄酮与姜黄烯的体积分数提高到80%以上,总得率为 30.29%,有效提高产品附加值。应用三:纯化广藿香挥发油采用正交试验法优化分子蒸馏技术在纯化广藿香挥发油中的应用,以广藿香醇为评价指标,所得产物优于传统水蒸气蒸馏法。通过分子蒸馏技术对苍术油进行精制,得到易挥发的苍术素,体积分数达到 52.17%以上。分子蒸馏技术应用于对高良姜、广藿香、香附、川芎等有效成分的分离,含量测定均达到有效成分用药的要求。随着技术发展,目前的一些分子蒸馏设备已经能够较为成熟的应用这项新兴技术,使蒸发速率更快、分离效率更好。 Pilodist分子蒸馏仪在中药分离中有什么优势? 德国Pilodist分子蒸馏仪SP10001、真空度高SP1000*可到10^(-5)mbar的真空度。Tips:分子蒸馏装置必须保证体系达到高真空,分子蒸馏装置内部压力越低,获得更好的真空度,分离度越好)2、加热温度低,受热时间短SP1000配备了用于操作短程蒸发器的恒温器,加热能力2kW,最高工作温度200°C,配有循环泵和隔离管,模块化的数字PID控制器和高温管。而且分子蒸馏器中蒸发面到冷凝面的距离小于轻分子的平均自由程,轻分子从液面蒸发几乎不发生任何碰撞直接飞射到冷凝面,物料受热的时间较短,在很大程度上能够有效地使液料原本的物质得以保护,即保障物料的原始状态,降低了热损伤。3、Hybrid技术的混合蒸发器蒸发面积1000cm² ,结合了玻璃和不锈钢的所有优点,即可以保证可视化的操作流程,又能保证装置的结实耐用。配备了加热的入口和出口管线,以及用于油浴加热的双层套管,设计紧凑,物料滞留时间短,分离速度快。4、三种刮膜器类型可供选择,适合不同物料 a.通过离心力旋转的PTFE和玻璃刮膜器b.带螺旋传动装置的PTFE刮膜器c.卷筒式PTFE刮膜器5、模块化精密控制单元 集成高精度的数字真空控制器、加热恒温器、真空调节旋钮、刮膜器驱动于一体的控制单元,操作简单,控制精度高。 德国 PILODIST是一家专业从事实验室蒸馏、精馏技术和设备的公司,由原德国 Fischer 公司的主力人员及 Fischer 先生本人一起组建的全新的公司。Pilodist 全面继承了原 Fischer 公司的技术资源,为全球客户提供高品质的实验室蒸馏、精馏技术和设备,产品范围包括蒸馏仪、精馏仪、薄膜蒸发器、溶剂回收、气液相平衡仪及航煤润滑性测试仪等。PILODIST实验室工艺技术在世界范围内被享有盛誉的公司广为应用——德国制药实验室,西班牙香精香料研究实验室,中国精细化工企业及伊朗炼油企业等。在德国波恩总部, 我们为客户量身定做设备,并由经销商销往世界各地,并提供现场服务。我们的员工具有多年的从业经验、引领潮流的理念和丰富的技术知识,是行业内公认的专家。就这方面而言,PILODIST是世界上非常有能力的供应商之一。为了保证产品*的质量和性能,在我们的室内玻璃吹制、电子、软件及机械加工室, PILODIST制造了绝大部分重要的主件和零部件。每一套设备在运往客户之前都经过我们完 整的组装及详尽的测试。我们能提供的让客户满意的实验室生产/研究用产品范围包括: PILODIST产品还包括备件供应及现场为您竭诚服务。参考文献:[1]雷 玲,徐 辉.基于分子蒸馏技术的生物油分离与提取研究[J].化工管理,2018(8):54+56[2]颉东妹,代云云,郭亚菲,魏晗婷,郭 玫.分子蒸馏技术及其在多领域中的应用[J].中兽医医药杂志,2021,40(5)[3]李天祥.米槁精油提取与分离及其化学成分的研究[D].天津:天津大学,2004.[4]韩金历.多级分子蒸馏提取五味子精油控制系统研究[D].长春:长春工业大学,2013[5]陈 慧,张金巍,朱合伟,等.分子蒸馏法纯化广藿香挥发油中广藿香醇[J].中草药,2009,40(1):60-63.[6]高 英,李卫民,倪 晨,等.分子蒸馏技术在分离苍术油有效部位中的应用[J].广州中医药大学学报,2004(6):476-478.
  • 实验室选择意大利VELP蒸馏系统的六大原因
    velp在超过35年的时间里朝着更加创新和高性能的解决方案发展,注重创新、高效、关注细节、可持续性,以满足世界各地实验室的不同技术和分析需求。既包括设计和实施新的解决方案,也包括不断改进现有的解决方案,如不断更新的velp蒸馏系统,其设计具有较高的可靠性、精确性、安全性和用户友好性,适用于各种类型的实验室。为什么选择udk velp蒸馏装置进行凯氏定氮、tkn、蛋白质、氨氮、硝酸氮(devarda)、tvbn、亚硫酸盐、酚类、挥发性酸、酒精含量分析的6个原因。1. velp独特技术带来的耐用和可靠性在可靠性和耐用性方面向前迈进了一大步,新的udk蒸馏仪的所有内部元件都经过了仔细的开发,以提高其性能。新的udk系列的所有型号都配备了独特的velp钛冷凝器,设计用于高效的热交换和低水耗。独特的技术聚合物保护单元的设计具有耐用性和最长的正常运行时间,因为它在维护之前可以承受高达10,000次测试。2. 直观的用户界面,可立即使用仪器并优化数据管理新的udk蒸馏仪,从udk 139开始,具有一个全新的、高度直观的用户界面和简单明了的软件,可以一步一步地指导操作者。非常简单和快速的设置参数和分析结果。通过符合glp和iso标准的用户管理功能,确定谁可以访问仪器和数据。3. 准确性和精确性udk系列提供了最大的应用通用性,即使在分析低氮样品时也具有比较好的准确性和精确性。udk系列的检测限(lod)为0.015 mgn,定量限(loq)为0.04 mgn,是比较好的选择!凯氏的自动分析仪udk 159和169具有集成的比色滴定仪,可以确保准确、精确和长期的高性能。全自动化程序不需要校准不需要维护监测滴定的实时图表4. 符合fda第21章第11部分的规定凯氏定氮分析是质量控制中的一种主要的定氮方法,特别是在制药实验室。大多数公司被要求遵循和遵守法规的指导方针,如美国食品和药物管理局的联邦法规第21章第11部分,其中规定了使用计算机化系统的电子记录和电子签名的要求。必须按照《美国联邦法典》第21章第11部分的基本要求,满足数据的完整性、可靠性和可信性。velp新的udk 159和169确保完全符合21 cfr第11部分的要求。5. 利用velp ermes云平台提高实验室效率从udk 139开始的新蒸馏装置具有连接velp ermes云平台的独特选项,该智能实验室解决方案使您能够减少日常操作并获得专门和高效的支持。通过远程分析和故障排除提供服务和分析支持实时仪器控制和数据库访问软件更新即时通知和警报6. 新的附件使操作更加智能众多附件可用于配置udk蒸馏装置,以满足不同的分析和实验室需求。新的酸泵试剂盒是测定酒精、挥发性酸和苯酚的理想选择。可选的条码扫描器与新的条码管结合使用,简化了蒸馏数据的管理和结果的计算。错误的风险降到最低自动化流程最大限度地提高了效率
  • 天津环境监测中心:海河出现死鱼段未检出氰化物
    这是海河东沽防潮闸附近的死鱼(8月20日摄) 记者从天津市环境监测中心获悉,针对网友反映在海河大闸附近出现大批死鱼现象,该中心20日17时30分对这一河段水质进行了采样分析,结果未检出氰化物。 20日16时左右,记者在离天津港“8-12”瑞海公司危险品特别重大火灾爆炸事故数公里远的海河东沽防潮闸附近见到,一段大约200米堤坝旁漂着大量死鱼,最宽的地方有四五米,数十名群众在围观。正在现场取样的天津市塘沽水产局工作人员告诉记者,这些死亡的鱼名叫刺鱼,遇到夏季高温闷热容易死亡,另外在海淡水带也容易出现死亡情况,往年也曾多次出现死亡的情况。 天津市环保局环境应急专家组组长包景岭表示,氰化物是剧毒物质,一旦对水体产生污染,会导致水体中几乎所有的鱼类死亡。“海河的水不是流动的水,都是闸控的‘死水’,常年处于劣五类水状态,不太适合鱼类生存。夏季天气炎热,水里溶氧量会降低,有些鱼就会因为缺氧死亡。加上近年来海河存在水体富营养化现象,导致浮游生物大量繁殖,这些浮游生物会释放毒素并大量消耗水中的氧气,这也会造成鱼类死亡。”他说。来源:新华网
  • 氢化物发生法测定环境水中的硒Se含量
    氢化物发生法:通过一些元素在一定条件下与还原剂形成气态的自由原子或氢化物或易挥发的气态化合物,与介质分离,然后导入石英管原子化器进行原子化。日立火焰原子吸收法和氢化物发生器联用,可实现独家的偏振塞曼背景校正,从而保证基线稳定,得到更准确的结果,这种原子化法适用于As、Se、Sb等元素。采用氢化物发生法对硒Se进行微量分析,可以达到相当于自来水水质基准值或环境基准值的 1/10,即1 μg /L附近的范围。 硒的预处理硒在河流中以4价或6价形式存在,但6价的硒不生成氢化物,所以要在预处理时统一为4 价的硒,然后进行测定。下面采用JIS K0102 62.7所述硒分析样品的前处理方法,将河水中6价的硒还原为4价。日立氢化物发生器HFS-4下面是测定硒的HFS-4流路图。测定硒时不需要添加预还原剂,所以在HFS-4中流动的是样品、盐酸、硼氢化钠三种液体。样品中的4价硒和硼氢化钠反应,生成硒化氢(H2Se),将其导入到加热石英池中进行分析。分析河流中的硒将河流水认证标准物质稀释2倍,按照 JIS K 0102 67.2 基准方法进行测定。如果在测定砷后再进行硒的测定,由于流路中有碘化钾残留,会造成硒的吸光度降低。所以如果要进行两种元素的测定,请先测定硒。实验方法及结果如下图所示:综上所述,日立原子吸收分光光度计在采用氢化物发生法测定硒时,拥有独家的偏振塞曼背景校正技术;并且日立HFS-4氢化物发生器装载了有8根滚轴的蠕动泵,不需要添加预还原剂,利用3液混合流路就可进行测定。该方法基线稳定,灵敏度高,干扰少,可得到准确可靠的结果。关于日立偏振塞曼原子吸收分光光度计ZA3000系列热分析仪详情,请见: https://www.instrument.com.cn/netshow/SH102446/C170248.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。
  • 环境水质氟化物指标如何用蒸馏装置测定
    咱们各类环境化验室经常回遇到氟化物的测定,氟化物的测定一般是需要依据以下几个标准:1、氟试剂分光光度法:2、离子选择电极法:3、茜素磺酸锆目视比色法:以上这三个目前还有效的标准是实验室主流的测试方法,其中蒸馏这步主要是要求仪器在加热到一定温度后保持温度,同时导入水蒸气,需要蒸馏仪温度监测稳定,在固定条件下维持水蒸气导入,仪器要耐酸碱,要有后台稳定的温度控制程序,因此需要一种符合以上要求的蒸馏仪才能满足,或者就得需要人工搭建加热台,水蒸气来源等等,麻烦,不稳定。推荐的符合此类仪器的蒸馏仪型号是SEHB-1000C型水蒸气蒸馏仪:实物图,包含了温度控制,独立水蒸气来源,自动切换通道,内置制冷水循环,同时还可以做各种类型的蒸馏实验。
  • 杜邦Q4净利润下滑70% 拟出售氰化物业务
    路透纽约1月29日电- - -据熟悉内情的三个消息人士称,杜邦(DuPont)拟出售其氰化物业务,并且已聘请投资银行摩根士丹利负责出售的相关事宜。  据两位消息人士称,该部门主要销售用于金矿开采的有毒化学品,其价值可能超过7亿美元。据预测,利息、税项、折旧及摊销前的利润约1亿美元,该消息人士说。  这个210岁的化工公司在目前的压力下将更侧重于食品和农产品。去年8月,它曾以49亿美元将汽车涂料部门出售给凯雷投资集团(Carlyle Group LP)。  杜邦公司首席执行官Ellen Kullman断言,抗旱AquaMax玉米种子、Curzate马铃薯杀真菌剂、Amylex啤酒酶和其他食品及农产品将使杜邦公司的利润更少的受制于潮起潮落的商品化学品业务(包括氰化物部门与更大的油漆业务)。  杜邦拒绝置评,摩根士丹利也没有立即回应置评请求。  氰化物用于从矿石中浸出金和铜。这个过程需要大量的化学试剂,这也是一种从岩矿中提取各种贵金属及普通金属的最常用的办法。每年需要生产超过20亿磅的氰化物。  第一次世界大战中,氰化物曾被用作化学武器。一些杀虫剂和塑料中也有氰化物的存在。在氰化物业务方面,Mexichem是杜邦的关键竞争对手。  在去年第一季度时高管们还曾说,氰化物销售业务“稳健”。不过,令人失望的是2012年第三季度的盈利报告,当超过2%的员工被解雇, 杜邦选择出售其氰化物部门。  另据媒体报道,杜邦Q4净利润下滑70%,但营收与同期持平。  杜邦在1月22日对外发布了该公司第四季财报。数据显示,由于成本费用水平的增长压低了杜邦公司的盈利空间,该公司在这一财季的净利润水平较上年同期下滑了70%,营业收入与上年同期持平。  对于2013财年,杜邦公司预计,经过调整后的每股盈利将在3.85美元至4.05美元之间,营业收入将为360亿美元。早前汤森路透曾对市场分析师进行了调查,按照他们的测算,预计杜邦在第四财季的每股盈利将为3.84美元,营业收入将为360亿美元。  杜邦在对外发布的一份财报声明中表示,在第四财季里,该公司的盈利水平从上年同期的3.73亿美元下滑至1.11亿美元,每股盈利从上年同期的40美分下滑至12美分。重组费用为6600万美元,消费者索赔的费用为1.35亿美元,而在上年同期,这两项指标分别为1700万美元和1亿美元。  财报数据显示,在不计一次性项目的情况下,杜邦公司的每股盈利为11美元,在上年同期该值为26美分。杜邦还在财报中表示,在第四财季的总销售收入与上年持平,为73.3亿美元。总利润率从上年同期的19.3%收窄至18.3%。总成本费用增长2.8%。  接受汤森路透调查的分析师认为,杜邦在第四财季的每股盈利为7美分,营业收入为72.6亿美元。  在1月18日的交易中,杜邦股价收于每股46.99美元,在盘前交易中未出现明显波动。在过去的12个月里,该公司股价的累计涨幅达到4.9%。
  • 瑞士万通支援天津检测氰化物收感谢信
    pbr//pp 天津港“8.12”危险化学品爆炸事故过去20天了,在环保部启动的国家突发事件应急预案中,清华大学环境学院专家们经过了数日昼夜奋战,已确定含氰废水处置工艺,预案中瑞士万通支援的氰电极在快速筛查灾后水中氰化物起了关键作用,为此,清华大学环境学院给瑞士万通发来感谢信:/pp img title="1.png" src="http://img1.17img.cn/17img/images/201509/uepic/49825547-21cb-4157-ae22-5b85e06ba591.jpg"/ /ppbr//pp strong氰离子电极支援现场的图片/strong:/ppbr//ppimg style="WIDTH: 360px FLOAT: none HEIGHT: 398px" title="3.png" src="http://img1.17img.cn/17img/images/201509/uepic/a2db8c07-2454-453d-bd0f-72bad455e8c2.jpg"//ppbr//ppstrong氰离子选择性电极/strong/pp瑞士万通氰离子选择性电极属于晶体膜离子选择性电极。/pp配合参比电极使用,利用标准曲线法或者标准添加法可以快速测定样品中的氢根离子。/pp检测范围8*10-6-10-2mol/L,样品测量结果准确性高,平行性好。/ppbr//ppimg style="WIDTH: 355px FLOAT: none HEIGHT: 370px" title="2.png" src="http://img1.17img.cn/17img/images/201509/uepic/4583c141-e0d3-46e8-969c-b43037e6991f.jpg"//pp PH-离子计/pp /pp瑞士万通临危受命,担当起社会责任,希望能为天津港受灾人民尽一份薄力、一点心意。/pp /pp瑞士万通氰化物检测解决方案:链接/pp我们在行动--天津港速测含氰水和土壤再添两方案/pp a href="http://www.instrument.com.cn/netshow/SH100311/news_170937.htm" _src="http://www.instrument.com.cn/netshow/SH100311/news_170937.htm"http://www.instrument.com.cn/netshow/SH100311/news_170937.htm/a /pp瑞士万通在行动—助力天津港灾后含氰废水检测/ppa href="http://www.instrument.com.cn/netshow/SH100311/news_170443.htm" _src="http://www.instrument.com.cn/netshow/SH100311/news_170443.htm"http://www.instrument.com.cn/netshow/SH100311/news_170443.htm/a /ppbr//p
  • 分子蒸馏仪出现紧急情况时的应急措施
    分子蒸馏是一种分离工艺,是利用液相中轻重组份分子逸出液相主体时分子自由程的差来实现分离的。而要实现分子蒸馏的基本条件是:轻组份分子逸出的分子自由程等于加热面与冷凝面的距离,能正确地达到内置冷凝器实现捕集;而重组份分子逸出的分子自由程要小于加热面与冷凝面的距离,使其不会达到内置冷凝器,也是内置冷凝器只捕集轻组份的分子,而实现轻重组份的分离。在进行分子蒸馏之前,要认真的检查设备是否有损坏、接口是否吻合,注意拿的时候要轻拿轻放;要保持接口的清洁,可以用软布擦拭,也可以真空脂涂膜都是不错方式。设备的接口不能太紧,所以要保持松动性,否则会影响功能发挥。开始工作时候要保持机械从低向高速运行,同时关机的话可以持机械停止了旋转方可以。每次使用分子蒸馏设备后应该及时的进行清理,保持机械的清洁干净,从而加强机械的工作性能发挥,所以定期对密封圈进行清洁是所需的保养措施,使用过程中要注意防潮防水性能,以免造成导电现象发生。 注意事项:1.短程分子蒸馏与真空泵连接,所以开机时要特别注意检查各组件连接的密闭性 2.进样器、一、二、三级接收瓶均是玻璃磨口,且均有掐口固定,故操作时勿过分用力3.该设备采用外夹层循环热油加热,温度较高,切勿触碰 4.真空泵微调阀构造主要部件为高密度不锈钢针,开启前,必须先将冷凝柱注满液氮。5.若一天内进样量较多,建议一级接收端口连接三口旋转阀,底端使用升降架托住,设备运行中不能停机取样换瓶,若停机,则待第2天再开机。出现紧急情况时的应急措施:1、进样器流速失控此时顺时针拧紧控制阀无明显改善后,切记不能过分用力旋钮,仅关闭真空泵,不要进行其他操作,及时联系仪器负责人或实验室老师进行处理 2、刮膜器声音异常或转速不均匀连续关闭转子和真空泵,联系仪器负责人或实验室老师进行处理
  • 感受蒸馏酒独特风味——海能参加2018(第三届)国际蒸馏酒技术高峰论坛
    10月16日,“2018(第三届)国际蒸馏酒技术高峰论坛”在成都举行,国内政府机构领导、国内外知名高校及科研机构专家及学术团体、国内外著名白酒企业的领导及技术负责人、媒体代表等近400人齐聚成都,共享蒸馏酒领域最新科研动态和技术成果,共促中国蒸馏酒与国际蒸馏酒互动交流,共话蒸馏酒发展未来。 此次论坛由中国酒业协会、中国食品发酵工业研究院、国家酒类品质与安全国际联合研究中心主办,围绕“一带一路下的中国白酒国际化”“基于风味及感官神经生理学的白酒评价”“国际蒸馏酒品质与安全控制及智能制造”三大主题开展学术交流。 海能仪器应邀参加此次论坛,携气相离子迁移谱技术为白酒行业风味评价分析提供技术支持。 酒的风味物质中,除了极少量的无机化合物之外,绝大部分是有机化合物,它们均具有挥发性,并且都具有呈香呈味的特定基团。这些风味物质是构成酒典型特征的物质基础。它们以一定的比例共存于酒体中,互相配合、补充、衬托和制约,发挥各自的特点形成不同香型和不同风格的酒。通过GC-IMS技术对酒中风味物质的检测,以直观可视的指纹图谱形式可用于:1、选择优质的酿酒原材料2、筛选最佳的发酵酒曲3、分辨酒的品牌及存储年限4、优化酒的生产工艺5、白酒的一致性评价 FlavourSpec 风味分析仪 此次论坛对于加强各国蒸馏酒的技术交流与产品交融、提升我国白酒领域科研水平以及提高我国蒸馏酒国际知名度、影响力具有重要意义。未来,海能仪器希望用自己的产品和技术为蒸馏酒风味研究提供支持,为蒸馏酒品质提升提供技术保障!在酒行业中,我们使用FlavourSpec 风味分析仪做过以下应用方案, 如感兴趣,请将方案编号发送至amanda@hanon.cc,我们会尽快给您回复。
  • NA8000在石化行业废水氨氮监测中的应用
    一、背景介绍石化行业生产废水来自各个生产装置,其中常减压蒸馏、催化裂化、重整和加氢装置均会产生大量含硫污水。由于含硫污水含有较多的硫化氢、氨、酚、氰化物和油等污染物,不能直接排至污水处理场。一般污水处理场对进水中硫化氢和氨的浓度要求分别小于 50mg/L 和100mg/L,因此,该股污水需经过气提装置处理达标后才能排放到污水处理场。为了监测气提外排净化水的氨氮含量,石化厂常采用在线氨氮分析仪对排放废水氨氮进行内控监测,保障排放废水氨氮不超标,同时通过废水氨氮的含量变化也可反映装置运行的稳定情况。酸性水气提外排净化水染物物浓度较高,含油、腐蚀性强,对在线氨氮分析仪的稳定运行有比较高的挑战。中石化南京某石化企业脱硫装置排放废水之前采用国外某品牌氨氮分析仪,由于该氨氮分析仪采用的是气敏电极法测量原理,电极容易被污染,维护比较频繁——换膜、换电解液等,仪器测量不准确时维护也繁琐,因此客户更换了 HACH 的 NA8000 新款氨氮分析仪。 二、应用情况主要仪器:NA8000(主机)+CYQ-004P(预处理器)。现场安装照片如图1所示。 NA8000 在线氨氮分析仪安置在正压防爆柜内,为分析仪的正常稳定运行提供了良好的工作环境的同时满足现场防爆要求。考虑到废水水质较为复杂,水样先经换热器降温处理后再进入 CYQ-004P 预处理系统除去水样中油、悬浮物等易堵塞管路的成分,经膜过滤后再送至 NA8000 分析仪溢流杯供分析仪采样分析。 图 2 截取了 2019.8.30~2019.10.8 时间段内 NA8000 连续监测的数据结果。从结果看,NA8000 能够很好的监测废水氨氮的变化情况,且未出现较大的波动。据客户反馈,NA8000性能较好,运行期间质控样比对结果较好,数据偏差小于 10%,满足客户需求;用户对 NA8000的操作和维护等性能均非常满意。三、总结NA8000 在监测脱硫装置外排废水的应用效果比较理想,性能稳定,质控样比对结果达到客户要求,操作和维护得到客户认可,尤其在触摸大彩屏设计、量程自动切换等特点和功能设计方面便于用户学习、操作和维护。 CYQ-004P 预处理器与 CYQ-104C 预处理器相似,采用 PVDF 平板膜对水样进行精密过滤,适用于水质较差的应用工况,能够保障 NA8000 氨氮分析仪的正常稳定运行。此外,CYQ-004P 预处理器适用于工业正压防爆柜或仪表柜内安装要求,便于集成。
  • 雷迪美特中国有限公司:水蒸汽蒸馏法提取名贵沉香木
    沉香木自古以来就是非常名贵的木料,亦是工艺品最上乘的原材料。明、清两代,宫廷皇室皆崇尚用此木制成各类文房器物,工艺精细,与犀角制作相同。由于沉香木珍贵且多朽木细干,用之雕刻,少有大材。因此在拍卖市场上一旦有沉香木制作的大件物品出现,往往会有令人惊讶的表现。  目前沉香木赝品越来越多,真正的沉香木可以随着时间的流逝越来越香,而赝品沉香味不久就消失变淡了。真正的沉香木色泽会随着时间的推移而越来越深,油脂线也会越来越多,这些都是研判真伪的重要标准。  沉香是沉香木树干被真菌侵入寄生,发生变化,经多年沉积形成的香脂,是具有驱秽避邪、调中平肝作用的珍贵药材,如今已很稀少。  古籍中很早就有关于我国海南地区盛产品质上乘的沉香的记载。宋代,海南沉香由朝廷贡品逐渐成为商品,过度开采之势愈演愈烈,“一片万钱”。  沉香按其结成情况不同一般可分为六类:“土沉”、“水沉”、“倒架”、“蚁沉”、“活沉”、“白木”等。沉香神秘而奇异的香味集结着千百年天地之灵气,有的馥郁,有的幽婉,有的温醇,有的清扬等等。沉浸在这种种异香的氤氲中,古人熏香沐浴的恬然,焚香品饮的雅致渐渐浮现脑海,耳边仿佛传来曾被贬居海南的苏东坡对沉香木的涵咏:金坚玉润,鹤骨龙筋,膏液内足……screen.width-300)this.width=screen.width-300" 我们在实验室将收集的沉香木500克研磨成粉放入2升的烧瓶,加入水,加热蒸馏、冷凝,可以看到沉香油在水面凝结,得率在0.2-0.3%。此1-2克的沉香油市场价已经近万元人民币。 screen.width-300)this.width=screen.width-300"[/size][/size]
  • 流动分析技术在《生活饮用水标准检验方法》中的应用
    流动分析技术是20世纪50年代开发的一种湿化学分析技术,该技术自动化程度高,可批量检测样品,解放了劳动力,提高了工作效率,且具有检出限低、重现性好、分析速度快等特点,已广泛应用于环保、水质、烟草、质检及医学检验等行业,测试项目包括总氰化物、氰化物、挥发酚、阴离子表面活性剂、磷酸盐、总磷、总氮、氨氮、硫化物、六价铬、硝酸盐、亚硝酸盐、COD(Mn)、尿素等。目前主流的流动分析技术有两种,即连续流动分析技术(CFA)和流动注射分析技术(FIA)。2023年10月即将实施的生活饮用水标准检验方法GB/T 5750.4-2023中把感官性状和物理指标中的挥发酚类、阴离子合成洗涤剂指标规定了连续流动分析法和流动注射分析法;GB/T 5750.5-2023中无机非金属指标中的氰化物和氨(以N计)规定了连续流动和流动注射分析法。下面小编整理了生活饮用水标准检验方法中涉及到流动分析技术的标准,供大家参考。GB/T 5750.4-2023挥发酚-流动注射法原理:样品通过流动注射分析仪被带入连续流动的载液流中,与磷酸混合后进行在线蒸馏;含有挥发酚类的蒸馏液与连续流动的4-氨基安替比林及铁氰化钾混合,挥发酚类被铁氰化物氧化生成醌物质,在与4-氨基安替比林反应生成红色物质,于波长500nm处进行比色实验。仪器设备:流动注射分析仪:挥发酚反应单元和模块、500nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳加热温度稳定于150℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。 仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023挥发酚-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸化条件下,样品通过在线蒸馏,释放出酚在有碱性铁氰化钾氧化剂存在的溶液中,与4-氨基安替比林反应,生成红色的络合物,然后进入50mm流通池中在505nm处进行比色实验。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、挥发酚反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于145℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.4-2023阴离子洗涤剂-流动注射法原理:通过注人阀将样品注人到一个连续流动载流、无空气间隔的封闭反应模块中,载流携带样品中的阴离子合成洗涤剂与碱性亚甲基蓝溶液混合反应成离子络合物,该离子络合物可被三氯甲烷萃取,通过萃取模块分离有机相和水相。包含离子络合物的三氯甲烷再与酸性亚甲基蓝溶液混合,反萃取洗涤三氯甲烷,再次通过萃取模块分离有机相和水相。于波长 650 m 处对包含离子络合物的三氯甲烷进行比色分析,有机相的蓝色强度与阴离子合成洗涤剂的质量浓度成正比。仪器设备:流动注射分析仪:阴离子合成洗涤剂反应单元和模块、10mm比色池、650nm滤光片、自动进样器、多通道蠕动泵、数据处理系统。仪器参考测试参数:周期时间洗针时间注射时间进样时间出峰时间进载时间到阀时间峰宽200s50s50s80s100s80s80s180s注:不同品牌或型号仪器的测试参数有所不同,可根据实际情况进行调整。GB/T 5750.4-2023阴离子洗涤剂-连续流动法原理:在水溶液中,阴离子合成洗涤剂和亚甲基蓝反应生成蓝色络合物,统称为亚甲基蓝活性物质,该化合物被取到三氯甲烷中并由相分离器分离,三氯甲烷相被酸性亚甲基蓝洗涤以除去干扰物质并在第二个相分离器中被再次分离。其色度与浓度成正比,在650/660 nm处用 10 mm比色池测量其信号值。仪器设备:连续流动分析仪:自动进样器、阴离子合成洗涤剂分析单元(即化学反应模块,由相分离器、多道蠕动泵、歧管、泵管、混合反应圈等组成)、检测单元(检测单元可配备 10 mm 比色池、阴离子合成涤剂检测配备 650/660 nm 滤光片)数据处单元及相应附件。GB/T 5750.5-2023氰化物-流动注射法原理: 在pH为4左右的弱酸条件下,水中氰化物经流动注射分析仪进行在线蒸馏,通过膜分离器分离,然后用连续流动的氢氧化钠溶液吸收;含有乙酸锌的酒石酸作为蒸馏试剂,使氰化铁沉淀,去除铁氰化物或亚铁氰化物的干扰,非化合态的氰在pH8的条件下与氯胺T反应,转化成氯化氰(CNCD);氯化氰与异烟酸巴比妥酸试剂反应,形成紫蓝色化合物,于波长600 nm处进行比色测定。仪器设备:流动注射分析仪:氰化物反应单元及在线加热膜分离器、600nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统。仪器参考条件:自动进样器蠕动泵加热蒸馏装置流路系统数据处理系统初始化正常转速设为35r/min,转动平稳蒸馏部分稳定于120℃±1℃显色部分稳定于60℃±1℃无泄漏、试剂流动平稳基线平直GB/T 5750.5-2023氰化物-连续流动法原理:连续流动分析仪是利用连续流,通过蠕动泵将样品和试剂泵入分析模块中混合、反应,并泵入气泡将流体分割成片段,使反应达到完全的稳态,然后进入流通检测池进行分析测定。在酸性条件下,样品通过在线蒸馏,释放出的氰化氢被碱性缓冲液吸收变成氰离子,然后与氯胺-T反应转化成氯化氰,再与异烟酸-吡唑啉酮反应生成蓝色络合物,最后进入比色池于630 nm波长下比色测定。仪器设备:连续流动分析仪:自动进样器、多通道蠕动泵、氰化物反应单元和蒸馏模块、比色检测器、数据处理系统。仪器参考条件:进样速率进样:清洗比加热蒸馏装置流路系统数据处理系统30个样品/h2:1加热温度稳定于125℃±2℃无泄漏,气泡规则,试剂流动平稳基线平直GB/T 5750.5-2023氨(以N计)-流动注射法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在50℃~60℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:流动注射分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。GB/T 5750.5-2023氨(以N计)-连续流动法原理:在碱性介质中,水样中的氨、铵离子与二氯异氰尿酸钠溶液释放出的次氯酸根反应,生成氯胺。在37℃~40℃的条件下,以亚硝基铁氰化钠作为催化剂,氯胺与水杨酸钠反应形成蓝绿色络合物,在660 nm波长下比色测定。仪器设备:连续流动分析仪:氨反应单元和模块、660nm比色检测器、自动进样器、多通道蠕动泵、数据处理系统、在线蒸馏模块(选配)。仪器参考条件:调整流路系统,载流、缓冲溶液、水杨酸钠溶液、亚硝基铁氰化钠溶液及二氯异氰尿酸钠溶液分别在蠕动泵的推动下进入仪器,流路系统中的试剂流动平稳,无泄漏现象。
  • 院士团队|同时蒸馏萃取结合GC-MS分析酿酒五粮原料蒸煮香气成分分析
    中国白酒风味独特、历史悠久,是我国居民日常生活的重要组成部分。根据生产原料和工艺的不同,中国白酒按香型可分为浓香型、酱香型、清香型和米香型等12 种代表香型。浓香型白酒以绵甜柔和、谐调爽净、余味悠长的特点,深受广大消费者喜爱,且在白酒市场占有率最高。蒸馏萃取(SDE)是一种将水蒸气蒸馏与溶剂萃取相结合,将挥发性成分的提取与溶剂萃取相结合,通过少量溶剂提取大量样品的浓缩方法,具有操作简便且重复性好的优点,是一种分析粮食蒸煮香气有效的前处理方法。北京工商大学,酿酒分子工程中国轻工业重点实验室,北京市食品风味化学重点实验室的廖鹏飞、孙金沅*等采取SDE对蒸酒所用的5 种单粮和混粮中的香气成分进行提取,并结合气相色谱-质谱(GC-MS)对其进行分析;另外,结合香气提取稀释分析(AEDA)和香气活性值(OAV)对混合粮食蒸煮香气中关键香气化合物进行分析,从而确定影响粮香的关键化合物。01 5 种单粮挥发性化合物定性结果如图1所示,高粱蒸煮香气中检测到的挥发性化合物种类数量最多,有108 种;除了酯类和萜烯类外,鉴定到的其余类别的化合物数量均是5 种单粮中最多的。由于高粱是古井贡白酒酿酒原料中比例最高的粮食,可能将更多的粮食香气带入白酒中,丰富白酒粮香。GC-MS结果表明,高粱蒸煮香气中,己酸乙酯、正己醇、己醛等化合物的相对峰面积较大,证明这些化合物相对含量较大。玉米中共检测出93 种挥发性化合物;其中,萜烯类化合物种类显著高于其他单粮,有9 种,芳樟醇是其中相对含量最高的化合物。糯米和大米中检测出的挥发性化合物最少,均为66 种,二者种类相似,重合率为83.3%,且鉴定出的挥发性化合物在其他单粮中均可检出。高粱中检测到其他粮食中没有的挥发性化合物种类最多,有27 种,而玉米和小麦中分别有18 种和12 种。02 混合粮食原料挥发性化合物定性结果由图2可知,在不同极性色谱柱下均检出较多的烷烃类、醛类、酮类和酯类化合物;醇类化合物和芳香类化合物在极性柱条件下检出效果优于非极性柱,分别检出11 种和15 种;酸类化合物在极性柱条件下检出效果更好,检出7 种。烷烃类化合物和醛类化合物在检出数量和相对峰面积两个方面均明显高于其他类别化合物,是组成混合粮食蒸煮香气中最重要的两类化合物。03混合粮食原料中香气活性成分的筛选由表1可知,成功定性的29 种香气化合物中,通过极性柱鉴定出26 种,FD因子≥9的香气化合物有16 种,分别是乳酸乙酯(81,奶油香)、苄硫醇(81,大蒜味)、(E,E)-2,4-癸二烯醛(81,青草香、脂肪味)、4-乙基愈创木酚(81,烟熏、坚果香)、己酸乙酯(27,水果香)、辛酸乙酯(27,果香)、(E)-2-壬烯醛(27,青草、脂肪味)、(E,Z)-2,6-壬二烯醛(27,黄瓜香、脂肪味)、香叶基丙酮(27,叶子、花香)、十八醛(27,奶油香)、(E)-2-辛烯醛(9,青草香、脂肪味)、正庚醇(9,青草香)、(E)-2-癸烯醛(9,腊味、脂肪味)、(E,E)-2,4-壬二烯醛(9,脂肪味、青草香)、正己酸(9,脂肪味)、棕榈酸甲酯(9,油脂味、蜡味),同时除己酸乙酯、十八醛和(E)-2-癸烯醛外均有较高的嗅闻强度。通过非极性柱鉴定出11 种香气化合物,FD因子≥9的香气化合物有7 种,分别为苄硫醇(81,大蒜味)、(E)-2-壬烯醛(81,青草香、脂肪味)、正己醇(27,树脂、植物味)、苯乙醛(27,花香)、4-乙基愈创木酚(9,烟熏、坚果香)、辛醛(9,青椒味)、香草醛(9,蜡质味),除4-乙基愈创木酚外均具有较高的嗅闻强度。未能定性的3 个香气区间的感官描述词分别为绿茶、山楂和土豆。04 混合粮食原料中香气化合物的确定 如表2所示,本实验所得到的标准曲线R2均不低于0.99,表明该曲线具有良好的线性关系;LOD均低于0.909 mg/L,表示仪器灵敏度满足实验的需要;回收率均在80%~120%之间,表明所用定量方法可行。采用上述标准曲线对混合粮食以及5 种单粮中重要的香气化合物进行定量,并根据文献中化合物香气阈值,计算不同原料蒸煮样品中化合物的OAV,如表3所示。不同香气化合物的OAV在不同粮食样品中存在一定差异。混合粮食蒸煮香气中,苄硫醇、(E,E)-2,4-壬二烯醛和(E)-2-壬烯醛等17 种化合物的OAV≥1,被认为是混合粮食蒸煮香气中的关键香气化合物,如图3所示。 05 结论结果表明,5 种单粮中共鉴定出153 种化合物;高粱、小麦、玉米、糯米、大米中分别鉴定出108、93、93、66、66 种化合物,其中鉴定出较多数量的醛类、醇类、酮类、芳香类、酯类等化合物。采用双柱定性,在混合粮食样品中共鉴定出140 种化合物。采用气相色谱-嗅闻-质谱联用法在混合粮食样品中共鉴定出29 种香气活性化合物,结合香气提取稀释分析和香气活性值评价不同化合物对粮食蒸煮整体风味的影响。经计算,苄硫醇、(E,E)-2,4-癸二烯醛、(E)-2-壬烯醛、壬醛、己醛、辛醛、(E)-2-辛烯醛、(E,Z)-2,6-壬二烯醛、正庚醇、(E)-2-癸烯醛、(E,E)-2,4-壬二烯醛、苯乙醛、4-乙基愈创木酚、己酸乙酯、香叶基丙酮、辛酸乙酯、香草醛17 种化合物的香气活性值不低于1,被认为是对粮香有贡献的重要风味化合物,其中苄硫醇和(E,Z)-2,6-壬二烯醛首次在蒸煮粮食香气中被鉴定。原文链接:https://www.spkx.net.cn/CN/10.7506/spkx1002-6630-20220609-091
  • 原油评价好帮手,实沸点蒸馏
    原油是炼化企业最基础、最核心、最根本的生产资料,在原油加工过程中,原油采购成本占总加工成本的90%以上。在生产过程中,原油评价数据不但可以为一次加工提供依据,而且也是二次加工,如重整、加氢、润滑油生产、渣油加工、焦化、沥青生产和科研的技术工作者提供可靠的分析数据。可见原油评价工作在石油加工和石油研究中处于重要的地位。实沸点蒸馏是原油评价的首道工序。是根据原油中各组分的沸点不同,用加热的方法从原油中分离出各种石油馏分。而实沸点蒸馏仪针对实沸点蒸馏,是原油评价中最重要和最基础的设备,能够根据要求对原油进行窄馏分和宽馏分的切割,得到原油各馏分的效率,然后对宽馏分和窄馏分进一步分析,从而*得到全面的原油评价数据。其中TBP系统(常压蒸馏法)最/高切割温度能够达到400℃,蒸馏柱的效率在全回流时具有14 – 18块理论塔板数。根据需要,在回流比5:1的条件下切割出不同的馏分。剩下常压渣油,其中含有沸点较高的蜡油、渣油等组分。将常压渣油经过加热后,送入PS系统(罐式蒸馏法),是常压渣油在避免裂解的较低温度下进行分馏,PS系统最/高切割温度能够达到常压相当温度565℃,分离出润滑油料、催化料等二次加工原料,剩下减压渣油。 PD400CC原油实沸点蒸馏仪德国Pilodist PD 400系列原油实沸点蒸馏仪可分成两部分:原油蒸馏标准试验仪(PD 100系列)和重烃类混合物蒸馏仪(PD 200系列)。☑ PD 100系列符合ASTM D2892标准方法,切割范围从脱丁烷到400℃,他在全回流状态下具有15块理论塔板,蒸馏柱中装满不锈钢填料,在5:1的回流比下蒸馏。☑ PD 200系列符合ASTM D5236标准方法,切割范围从150℃到565℃,压力从10mmHg到0.1mmHg,蒸馏柱较短,没有填料,只相当于一块理论塔板。仪器特点:① Pilodist原油实沸点蒸馏仪完全符合ASTM D 2892和ASTM D5236标准方法;② 蒸馏过程由计算机控制,基于WINDOWS系统的操作软件操作方便,参数设置灵活,通过计算机输入测试运行参数,控制蒸馏运行,记录测试数据,显示测试曲线,蒸馏过程中操作人员可以随时对各技术参数进行修改设置,具有很强的灵活性;③ 蒸馏速率控制:自动闭环控制,根据样品回收质量速率或体积速率控制蒸馏加热功率,严格符合标准方法要求;④ 馏分切割,自动进行减压馏出温度和常压AET温度的换算,并根据预先设置AET切割温度实现自动馏份切割、收集、质量称量和体积测量;⑤ 数据处理:计算机实时显示测试过程数据,测试结果直接用EXCEL文档显示。试验结束显示和打印wt%、vol%实沸点蒸馏曲线。
  • 河南省有色金属行业协会发布《土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法》等36项团体标准征求意见稿
    各会员单位、有关专家:根据《河南省有色金属行业协会团体标准管理办法》的有关规定,我会目前已完成《氧化铝生产球形草酸钠化学分析方法 氢氧化铝含量的测定 EDTA滴定法 》等36项团体标准报批稿。为进一步提高标准质量,现面向社会公开征集意见。征集意见时间截止到2023年12月29日。36项团体标准名称分别为:1-《氧化铝生产球形草酸钠化学分析方法 氢氧化铝含量的测定 EDTA滴定法》,2-《氢氧化铝晶种化学分析方法草酸根的测定离子色谱法》,3-《偕氨肟树脂化学分析方法氮含量的测定元素分析法》,4-《铝土矿物理分析方法比可磨系数的测定球磨法》,5-《预焙阳极生坯实验室焙烧技术规范》,6-《铝电解槽能效综合测试、计算与评价方法 第1部分:磁场测试方法》,7-《二次铝灰生产铝酸钙技术规范》,8-《煅烧白云石分析方法 耐磨指数、细粉率的测定》,9-《铝冶炼生产技术指标元数据规范》,10-《高导热绝缘氧化铝功能填料》,11-《生态地球化学评价动植物样品 锗含量的测定 电感耦合等离子体质谱法》,12-《土壤和沉积物 硒含量的测定 电感耦合等离子体质谱法》,13-《地下水 汞含量的测定 直接测汞法》,14-《生态地球化学评价动植物样品 汞含量的测定 直接测汞法》,15-《石英砂 二氧化硅含量的测定 重量法》,16-《铝土矿 稀土元素含量的测定 电感耦合等离子体质谱法》,17-《生态地球化学样品 银、硼和锡含量的测定 深孔电极发射光谱直读法》,18-《铁矿石 镓含量的测定 电感耦合等离子体质谱法》,19-《银矿石 银含量的测定 火焰原子吸收光谱法》,20-《铜矿石、铅矿石和锌矿石中银、铜、铅、锌含量的测定 火焰原子吸收光谱法》,21-《有色冶炼场地土壤重金属固化稳定化长效修复技术规范》,22-《医药包装瓶盖用铸轧供坯铝合金带材》,23-《隔墙装饰用百叶窗铝合金带材》,24-《铝电解用高导电石墨化阴极炭块标准》,25-《土壤 砷、锑、铋含量的测定 电感耦合等离子体质谱法》,26-《土壤 游离铁含量的测定 电感耦合等离子体发射光谱法》,27-《土壤和沉积物 有机质含量的测定 高频红外碳硫仪法》,28-《土壤 有效硅含量的测定 柠檬酸浸提-电感耦合等离子体质谱法》,29-《土壤 有效铅和有效镉含量的测定 电感耦合等离子体质谱法》,30-《土壤和沉积物 氰化物的测定 水汽蒸馏-流动注射-分光光度法》,31-《土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法》,32-《土壤和沉积物 水溶性硫酸根的测定 水浸取-电感耦合等离子体原子发射光谱法》,33-《土壤和沉积物 六价铬的测定 电感耦合等离子体发射光谱法?》,34-《铝土矿钒含量的测定 分光光度法》,35-《印制电路钻孔盖板用铝合金板》,36-《标签用铝合金箔》。标准详情及意见反馈表见附件。联系人: 张老师 电 话:0371-63829438 13603457970邮 箱:hnys2007@126.com1.报批稿-氧化铝生产球形草酸钠化学分析分析 氢氧化铝含量的测定 EDTA滴定法.docx2.报批稿-氢氧化铝晶种化学分析方法 草酸根的测定 离子色谱法.docx3.报批稿-偕胺肟树脂化学分析方法 氮含量的测定 元素分析法.docx4.报批稿-铝土矿物理分析方法 比可磨系数的测定 球磨法.docx5.报批稿-预焙阳极生坯实验室焙烧技术规范.doc6.报批稿-铝电解槽能效综合测试、计算与评价方法 第1部分:磁场测试方法.doc7.报批稿-二次铝灰生产铝酸钙技术规范.docx8.报批稿-煅烧白云石分析方法 耐磨指数、细粉率的测定.docx9.报批稿-铝冶炼生产技术指标元数据规范.doc10.报批稿-高导热绝缘氧化铝功能填料.doc11.生态地球化学评价动植物样品 锗含量的测定 电感耦合等离子体质谱法(报批稿).doc12.土壤和沉积物 硒含量的测定 电感耦合等离子体质谱法(报批稿).doc13.地下水 汞含量的测定 直接测汞法(报批稿).doc14.生态地球化学评价动植物样品 汞含量的测定 直接测汞法(报批稿).doc15.石英砂 二氧化硅含量的测定 重量法(报批稿).doc16.铝土矿 稀土元素含量的测定 电感耦合等离子体质谱法-(1).docxocx17.生态地球化学样品 银、硼和锡含量的测定 深孔电极发射光谱直读法(报批稿).doc18.铁矿石 镓含量的测定 电感耦合等离子体质谱法(报批稿)(2)(1).d19.银矿石 银含量的测定 火焰原子吸收光谱法(报批稿).doc20.铜矿石、铅矿石和锌矿石中银、铜、铅、锌含量的测定 火焰原子吸收光谱法(报批稿).doc21.报批稿-有色冶炼场地土壤重金属固化稳定化长效修复技术规范.doc22.医药包装瓶盖用铸轧供坯铝合金带材(报批稿).doc23.隔墙装饰用百叶窗铝合金带材团标(报批稿).doc24.铝电解用高导电石墨化阴极炭块标准(报批稿 ).doc25.标准文本-土壤 砷、锑、铋含量的测定 电感耦合等离子体质谱法 报批稿.docx26标准文本-土壤 游离铁含量的测定 电感耦合等离子体发射光谱法 报批稿.docx27.标准文本-土壤和沉积物 有机质含量的测定 高频红外碳硫仪法 报批稿.docx28.标准文本-土壤 有效硅含量的测定 柠檬酸浸提-电感耦合等离子体质谱法 报批稿.docx29.标准文本-土壤 有效铅和有效镉含量的测定 电感耦合等离子体质谱法 报批稿.docx30.标准文本报批稿- 土壤和沉积物 氰化物的测定 水汽蒸馏-流动注射-分光光度法.docx31.标准文本报批稿-土壤和沉积物 挥发酚的测定 流动注射4-氨基安替比林分光光度法.docx32.标准文本报批稿-土壤和沉积物 水溶性硫酸根的测定 水浸取-电感耦合等离子体原子发射光谱法.docx33.标准文本报批稿-土壤和沉积物 六价铬的测定 电感耦合等离子体发射光谱法?.docx34.标准文本-铝土矿钒含量的测定 分光光度法11.27.docx35-印制电路钻孔盖板用铝合金板(2).doc36-标签用铝合金箔(4).doc河南有色协会团体标准征求意见反馈表.doc
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。预 处 理水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。仪 器 100ml具塞量筒或比色管。试 剂(1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。试 剂 水样稀释及试剂配制均用无氨水。(1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。(2) 1mol/L盐酸溶液。(3) 1mol/L氢氧化钠溶液。(4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。(5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。(6) 防沫剂,如石蜡碎片。(7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。步 骤(1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。(2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项(1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。(2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。(3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法 GB7479--87概 述1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。仪 器(1) 分光光度法。(2) pH计。试 剂 配制试剂用水应为无氨水。1. 纳氏试剂 可选择下列一种方法制备。(1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。(2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。步 骤1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。2. 水样的测定(1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。(2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。注意事项(1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。(2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法GB7481--87概 述1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。仪 器(1) 分光光度计。(2) 滴瓶(滴管流出液体,每毫升相当于20±1滴)试 剂 所有试剂配制均用无氨水。1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。步 骤1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。试 剂(1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。(2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。(3)0.05%甲基橙指示液。步 骤1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。计 算氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法概 述1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。仪 器(1) 离子活度计或带扩展毫伏的pH计。(2) 氨气敏电极。(3) 电磁搅拌器。试 剂 所有试剂均用无氨水配制。(1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。(2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。(3) 电极内充液:0.1mol氯化铵溶液。(4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。步 骤1. 仪器和电极的准备 按使用说明书进行,调试仪器。2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。注意事项(1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。(2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。(3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。(4) 水样不要加氯化汞保存。(5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。(6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制