当前位置: 仪器信息网 > 行业主题 > >

气密腔真空腔冷热台

仪器信息网气密腔真空腔冷热台专题为您提供2024年最新气密腔真空腔冷热台价格报价、厂家品牌的相关信息, 包括气密腔真空腔冷热台参数、型号等,不管是国产,还是进口品牌的气密腔真空腔冷热台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气密腔真空腔冷热台相关的耗材配件、试剂标物,还有气密腔真空腔冷热台相关的最新资讯、资料,以及气密腔真空腔冷热台相关的解决方案。

气密腔真空腔冷热台相关的论坛

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    [align=center][size=18px][color=#000099]高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析[/color][/size][/align][align=center][size=18px][color=#999999]Finite Element Thermal Simulation Analysis of the Temperature Uniformity of the Vacuum Chamber of the High-Temperature Hemispheric Emissivity Measurement Device[/color][/size][/align]摘要:在高温半球发射率测量装置中,真空腔体温度均匀性是保证半球发射率测量精度和测试设备安全运行的重要技术参数。本文介绍了采用SolidWorks软件对水冷真空腔体上各处法兰温度分布的有限元计算过程和获得的结果,以指导确定真空腔体设计参数和制造工艺的确定。关键词:半球发射率,有限元,热仿真,温度均匀性,真空腔体,高温,测量装置,法兰, Hemispherical emissivity, finite element, thermal simulation, temperature uniformity, vacuum chamber, high temperature, measuring device, flange[align=center][img=高温发射率测量,690,338]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290630151571_4563_3384_3.png!w690x338.jpg[/img][/align]  [size=24px][color=#000099]1. 问题的提出[/color][/size]  在采用稳态量热法测量材料高温半球发射率过程中,要求被测样品处于高真空环境中,作为量热计的真空腔体始终恒定在较低温度(如水温或液氮温度),真空腔体内表面要保持较高的发射率数值,从而保证作为量热计的真空腔体是一个黑体能吸收样品辐射出的所有热量。  在高温半球发射率测量装置中,真空腔体的冷却和温度控制方式是在真空腔壁内部布置流道让冷却介质(水或液氮)按照一定方式进行流动,并由此带走腔壁吸收的热量并使得腔壁温度始终恒定。但由于真空腔体上还布置有各种法兰(如引线法兰、抽气法兰和炉门法兰等),这使得真空腔壁内部流道就要绕开这些法兰,造成冷却液并不能直接冷却到这些部件,这些法兰吸收和积累的热量就需要通过法兰材料自身的热传导方式将热量传递给冷却液,由此往往会在这些法兰部件上形成比真空腔体其他位置更高的温度。为了保证高温半球发射率测量装置的安全性和测量准确性,在设计过程中需要准确了解这些法兰处的温度分布并进行优化。  本文将介绍水冷真空腔体上各处法兰温度分布的计算过程和获得的结果,以指导确定真空腔体的具体参数和制造工艺设计。[color=#000099][size=24px]2. 热仿真模型[/size][size=18px]2.1. 常规模型[/size][/color]  高温半球发射率测量装置的主要结构是一个卧式水冷真空腔体,双测开门。真空腔体的外径为840mm,长度为800mm,两侧腔门直径为920mm。腔体和腔门都为双层不锈钢结构,中间布置冷却水流道,腔体和腔门的总壁厚都为20mm,腔体和腔门分别独立水冷。被测样品悬挂在真空腔体的中心位置,最大样品尺寸为直径100mm×12mm。  针对上述规格尺寸的高温半球发射率测量装置建立热仿真模型,建模和仿真计算采用SOLIDWORKS软件。为了简化计算工作量,针对此对称结构的真空腔体,在一半真空腔体的基础上建立热仿真模型,如图2-1所示。[align=center][color=#000099][img=高温发射率测量,690,344]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635288234_3762_3384_3.png!w690x344.jpg[/img][/color][/align][align=center][color=#000099]图2-1 仿真模型及其剖面图[/color][/align]  如图2-1所示,在热仿真建模中做了以下几方面的设计假设:  (1)对于外径840mm、长度400mm、壁厚20mm的一半真空腔体,假设水流道直接覆盖的区域长度为350mm,剩余50mm为“侧壁无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (2)同样,对于外径920mm、厚度20mm的腔门,假设水流道直接覆盖腔门的中心区域,此水冷区域直径为720mm,剩余宽度为100mm的实心圆环为“腔门的无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (3)真空腔体和腔门之间设计有一个腔门法兰,用于放置密封圈和安装腔门转动合页。此腔门法兰无任何水冷,热仿真模型设计为宽度为100mm、外径为920mm的圆环。  (4)模型中样品尺寸为直径100mm、厚度6mm的圆片,为实际最大样品尺寸的一半。为计算出样品最大辐射能力时对无水冷部件的影响程度,样品温度设置为最高温度1200℃,样品热辐射面(表面和侧面)的半球发射率设置为1,样品背面为绝热面。  (5)整个真空腔体和腔门的内壁,都涂有高发射率黑色涂料,在热模型中它们的表面发射率也都设置为1。水冷侧壁和水冷腔门温度设置为水冷温度20℃。模型中所有材质设计为304不锈钢,由于真空腔体自身温度不会处于高温状态,所以模型中不锈钢的热物理性能参数都采用常温数据。  (6)对于高温半球发射率测量装置而言,测试过程中真空腔体内部始终为0.001Pa量级的高真空,因此真空腔体内部的传热形式设定为只有辐射传热,样品上的热量只通过热辐射形式传递给侧壁、法兰和腔门。[size=18px][color=#000099]2.2. 简化模型[/color][/size]  为进一步减小网格尺寸和提高热仿真精度,将上述模型进行了简化,即去掉占用面积最大的水冷部件(水冷侧壁和水冷腔门),将于水冷侧壁和水冷腔门接触部件的接触面温度设定为20℃恒温。由此得到的简化后模型如图2-2所示,这种简化后的仿真模型只考虑高温样品对无水冷部件的辐射加热,最终得到无水冷部件在1200℃高温样品辐照下达到的最高温度。[align=center][img=高温发射率测量,690,574]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635418127_4767_3384_3.png!w690x574.jpg[/img][/align][color=#000099][/color][align=center]图2-2 简化后热仿真模型[/align][size=18px][color=#000099]2.3. 增加引线法兰后的模型[/color][/size]  在实际高温半球发射率测量装置中,在水冷腔门上安装有引线法兰和抽气法兰,而循环水冷直接触及这些法兰,在1200℃高温样品辐照时会使得这些法兰温度升高。为了解这些法兰在高温辐照时温度升高的最大温度,专门在上述第二种简化模型的基础上增加了两个引线法兰,如图2-3所示。同样,在此模型中,去掉了面积最大的水冷部件,但水冷接触面处同样需要设定20℃恒温。[align=center][img=高温发射率测量,690,505]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635531233_8765_3384_3.png!w690x505.jpg[/img][/align][color=#000099][/color][align=center]图2-3 增加引线法兰后的简化模型[/align][size=24px][color=#000099]3. 热仿真结果[/color][/size]  对于上述三种仿真模型分别进行了有限元计算。[size=18px][color=#000099]3.1. 常规模型仿真结果[/color][/size]  对于图2-1所示的第一种常规模型,采用稳态形式进行了有限元计算,有限元网格形成则采用标准网格和自动过渡形式,最终热仿真结果如图3-1所示。从图3-1所示仿真结果可以看出,水冷区域温度始终处于20℃,无水冷区域会有一定温升,温升最高处位于腔门和法兰的边缘位置,最高温度为29.5℃,即温度比水冷温度升高了近10℃。[align=center][color=#000099][img=高温发射率测量,690,533]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636108069_1760_3384_3.png!w690x533.jpg[/img][/color][/align][align=center][color=#000099]图3-1常规模型仿真结果[/color][/align][align=center][color=#000099][/color][/align][align=left][size=18px][color=#000099]3.2. 简化模型仿真结果[/color][/size][/align]  对于图2-2所示的第二种仿真模型,采用稳态形式进行了有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-2所示。从图3-2所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有一定温升,温升最高处同样位于腔门和法兰的边缘位置,最高温度为29.3℃,即温度比水冷温度升高不到10℃,与常规模型仿真结果相差0.2℃。[align=center][color=#000099][img=高温发射率测量,630,585]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636218021_996_3384_3.png!w630x585.jpg[/img][/color][/align][align=center][color=#000099]图3-2 简化模型仿真结果[/color][/align][size=18px][color=#000099]3.3. 增加引线法兰后的简化模型仿真结果[/color][/size]  对于图2-3所示的第三种仿真模型,采用稳态形式的有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-3所示。  从图3-3所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有温升。其中腔门法兰和腔门边缘处温升还是与简化模型结果一致,最高温度为29.2℃。增加引线法兰后,中心引线法兰圆心处温度最高,达到了55.5℃,温升达到了25.5℃;而底部引线法兰中心处温度最高为42.4℃,温升达到了22.4℃。由此可见,腔门上的引线法兰会给真空腔体的整体温度均匀性带来严重影响,这就要求在真空腔体法兰的设计中设法规避这种现象。[align=center][img=高温发射率测量,690,634]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636320070_2959_3384_3.png!w690x634.jpg[/img][/align][color=#000099][/color][align=center]图3-3 增加引线法兰后的模型仿真结果[/align][size=24px][color=#000099]4. 总结[/color][/size]  通过对高温半球发射率测量装置中真空腔体的建模,针对不同模型进行了有限元热仿真计算,得到以下结论:  (1)对于现有尺寸和结构形式的双侧开门卧式真空腔体,如果冷却循环水控制在20℃时,样品温度处于高温1200℃,腔门边缘处无水冷区域内的最高温度不会超过30℃,此10℃的温升可以忽略不计,对设备的测试和安全运行没有影响。  (2)为了保证测量装置的加工和运行的便利性,会在两个腔门上布置各种引线法兰和抽气法兰。如果这些法兰的无水冷区域为直径200mm尺寸,那么距离高温1200℃样品最近处的法兰中心温度会达到近56℃,其他位置处的法兰中心温度也会达到42℃左右,这将严重影响真空腔壁温度的整体均匀性,因此在设计和制造中必须设法解决此问题。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 真空腔气流问题

    岛津2010PLUS仪器真空腔门正上方门缝那有气流吹出,以前一直没发现这个问题。这个气流开始还怀疑是真空腔泄漏,但咨询工程师说是那地方有个风扇。这个气流对密封有没影响,每次维护那总是很多灰尘。大家的仪器有这种情况吗

  • SEM真空腔散热

    自己家日立的扫描电镜真空腔用着会产生热量导致拍出来的图像不清晰,请问有什么解决办法或者有哪方面的相关文献吗?

  • 岛津真空腔体

    岛津液相DGU-20A3真空脱气机真空腔体(228-44485)在哪里可以买到,价格?

  • 真空腔里居然有一张滤纸

    公司有一台GCMS.且跟一维修商签了两年的保养合约,其实维修商做的俺都能搞定,上星期五那维修商派了一工程师来保养仪器,我也没太多的在意,到最后弄完了,开机调谐发现水峰很高但是不漏气,502只有2点多一点,他就要回去了,说等先抽几小时再调谐看看,这周一我上班调谐看到502下面只有1.8左右。我想刚洗的透镜,预四级也洗了不至于状态还那差吧?最后关机打开真空腔一看,真空腔里有一张滤纸,真是不幸中的万幸啊,滤纸居然没有燃烧,只是有一点点变黄!真是很恼火啊。开机后502还是只有2.8左右,打电话让他再过来修,我能动我也不动!干这行还真得处处小心谨慎!

  • 关机时间长,真空腔松了怎么办?

    之前关机的时候一般都把真空腔的螺丝拧紧,防止进入灰尘。结果上次有个工程师说不用拧紧,关机就没拧,过了一个月一看真空腔已经松了,肯定会进去灰尘的,怎么办啊?用干净的布擦擦管用吧?

  • 有没有办法由由真空值判断真空腔是油污染或者水蒸汽残留的?

    朋友们好,请问下一清洁真空腔有残存水蒸汽的真空值跟一受到油污染的真空腔真空值是不是同一个区间啊?搞了一个星期,机器真空度不见好转,真空值一直抽不上去,停留在7E-1pa,前一段时间也曾经发生过,但是经过烘烤之后,真空值在10-1pa附近停留了一下后,能攀升真空能达到10-4pa没问题,时间开长点10-5pa也能达到。现在尝试烘烤腔体再抽高真空,分子泵开了一下,提速过程没见到真空度有上升,再坚持开下去,不知道碰到的是水蒸汽量的临界点,还是分子泵的临界点,不敢开了,也仔细的用丙酮擦拭了真空腔,状况依然没有改善,我怀疑是油污染,不过全部清洗工程太浩大。有没有朋友有同样的经历,维持在低真空抽不上去的,有什么建议没有?谢谢大家了。

  • 质谱仪连接到真空腔必须装阀门吗?

    目前质谱仪连接到真空腔,之间有一阀门,等真空度到一定值后才打开阀门,好像说是保护灯丝.现在我们想改变质谱仪的位置,请问阀门必须要吗?不要阀门等真空度很高了才打开灯丝行吗?谢谢!

  • Nexion 真空腔中的结构什么样?

    1. 真空腔中质量过滤四极杆区域,碰撞反应池四极杆区域和偏转区域之间有无阀门隔离?2.这三个区域真空都是靠一个分子涡轮泵维持吗?

  • 真空腔一圈那个黑色的东东是什么???

    昨天清洗离子源时,明明都放空了。可是侧面还是牢牢吸住打不开,后来撬开了用镊子。发现真空腔一圈那个黑色东东(貌似是橡胶的)有了粘性 吸住了侧板。只是即使放空了也不容易打开求大家给个专业名词 或者部件号

  • 气质联用仪四级杆真空腔有亮光?

    气质联用仪四级杆真空腔有亮光?

    [size=24px]刚过完国庆假期,上班就把安捷伦的7890A-5975C开机准备做试验了,开机第三天打算先做个自动调谐,此时,意外情况发生了!质谱提示错误,代码4。立马在论坛里找解决方案,还真找到了两篇。根据帖子分享的手法对仪器进行了一顿折腾。可是不奏效。但是有一个意外的发现,这是我第一次看到刚开始抽真空时,四级杆真空腔内有亮光,刚开始是紫色的光,今天又关机重启了量变,刚开机竟然有紫光和绿光交错出现,短短几秒钟。平时还真是没有细心的留意,朋友们,你们的质谱真空腔有光吗?另外,这个质谱的错误提示,“质量数过滤器电子装置故障”,该怎么维修呀?[/size][size=24px][img=质谱报错,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101516061677_8334_1967303_3.jpg!w690x920.jpg[/img][img=拆开侧板,690,580]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101519164113_4615_1967303_3.jpg!w690x580.jpg[/img][/size][size=24px][img=真空腔内,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101512159413_3156_1967303_3.jpg!w690x920.jpg[/img][img=质谱四级杆,690,920]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101512159813_2858_1967303_3.jpg!w690x920.jpg[/img][/size]

  • 【讨论】质谱仪真空腔侧板螺丝拧紧了会怎样?

    我用的agilent6890/5973 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS,工程师说质谱仪真空腔侧板螺丝不要紧上。这段时间用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS都是把侧板螺丝拧上了,好像也没什么异常,不知道长此以往会有什么不良后果?

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 冷热冲击试验箱产生噪音的原因

    冷热冲击试验箱产生噪音的原因

    近期有些用户反应使用[b]冷热冲击试验箱[/b]过程中发现压缩机振动产生噪音不知道是怎么回事,那接下来小编就来告诉大家冷热冲击试验箱产生噪音主要原因有哪些。[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/08/202108121700240202_2561_1037_3.jpg!w469x469.jpg[/img][/align]  1、减震弹簧疲劳变形造成其调压功能不稳定,因为压力波动而引发的噪声,应该及时的更换弹簧。  2、冷热冲击试验箱针阀在使用过程中因频繁开启而过度磨损,针阀锥面和阀座不能紧密的结合,造成先导流量不稳定、产生压力波动而引发噪声,要及时联系厂家修理更换。  3、油液中混入空气,冷热冲击试验箱在先导阀前腔内形成气穴现象而引发的高频噪声,及时排尽防止空气进入。  正常使用过程中有噪音属于正常,如果发现压缩机异常噪音请随时反馈。

  • 关于三槽式冷热冲击试验箱噪音问题解决说明

    三槽式冷热冲击试验箱在运行的过程中,如果发生噪音过大的话,就需要及时解决,无锡冠亚三槽式冷热冲击试验箱厂家告诉大家,这可能是三槽式冷热冲击试验箱本身存在一定的故障。  三槽式冷热冲击试验箱噪音过高可能是三槽式冷热冲击试验箱吸空现象是造成液压泵噪声过高的主要原因之一。当油液中混入空气后,易在其高压区形成气穴现象,并以压力波的形式传播,造成油液振荡,导致系统产生气蚀噪声。可能是液压泵的滤油器、进油管堵塞或油液粘度过高,均可造成泵进油口处真空度过高,使空气渗入。还有可能是液压泵、先导泵轴端油封损坏,或进油管密封不良,造成空气进入;也可能是油箱油位过低,使液压泵进油管直接吸空。当液压泵工作中出现较高噪声时,应先对上述部位进行检查,发现问题及时处理。  三槽式冷热冲击试验箱内部元件过度磨损,如柱塞泵的缸体与配流盘、柱塞与柱塞孔等配合件的磨损、拉伤,使液压泵内泄漏严重,当液压泵输出高压、小流量油液时将产生流量脉动,引发较高噪声。此时可适当加大先导系统变量机构的偏角,以改善内泄漏对泵输出流量的影响。液压泵的伺服阀阀芯、控制流量的活塞也会因局部磨损、拉伤,使活塞在移动过程中脉动,造成液压泵输出流量和压力的波动,从而在泵出口处产生较大振动和噪声。此时可对磨损、拉伤严重的元件进行刷镀研配或更换处理。  三槽式冷热冲击试验箱液压泵配流盘也是易引发噪声的重要元件之一。 三槽式冷热冲击试验箱在使用中因表面磨损或油泥沉积在卸荷槽开启处,都会使卸荷槽变短而改变卸荷位置,产生困油现象,继而引发较高噪声。在正常修配过程中,经平磨修复的配流盘也会出现卸荷槽变短的后果,此时如不及时将其适当修长,也将产生较大噪声。在装配过程中,配流盘的大卸荷槽一定要装在泵的高压腔,并且其尖角方向与缸体的旋向须相对,否则也将给系统带来较大噪声。  三槽式冷热冲击试验箱的噪音问题需要我们仔细检查并及时解决,避免产生其他的故障,导致三槽式冷热冲击试验箱不可用。

  • 冷热一体机如何对压缩机采取保护?

    冷热一体机在运行的时候,需要注意其中比较重要的一部分——压缩机,作为其运行的主要部分,其保护也是很重要的,那么无锡冠亚的冷热一体机压缩机有什么保护呢冷热一体机压缩机保护之压力保护冷热一体机压缩机的吸排气压力控制,就是高、低压压力控制器,一般来说,由高压控制部分和低压控制部分组成,如果排气压力超过给定值,冷热一体机压缩机高压控制部分切断压缩机电源,压缩机停机,吸气压力低于给定值,低压控制部分切断压缩机电源,使其停机,并发出报警信号。为防止冷热一体机制冷剂泄漏至大气,建议采用闭式安全阀,冷热一体机安全阀设置在冷水机组压缩机排气腔和吸气腔之间的管路上。冷热一体机压缩机保护之内置电机保护为了让冷热一体机压缩机正常使用,需要注意维修外,还可安装过热继电器,另外还有缺相保护,常用的三相电动机缺相的话会导致电动机无法起动或过载,可采用过载继电器避免电动机因缺相损坏。冷热一体机压缩机保护之温度保护冷热一体机压缩机的排气温度保护方法主要是将温控器安放在靠近排气口处,感应到排气温度过高时,温控器动作切断电路,机组的壳体温度过高会影响压缩机的寿命,主要因冷凝器的换热能力不足引起,故要检查冷凝器的风量或水量、水温是否合适。并检查制冷系统内是否混入空气或其它不凝性气体,抑或吸气温度过高等原因,应注意观察并检测。除了这些保护装置,建议各位用户采购冷热一体机的时候,压缩机的品牌也是比较重要的,高品牌保障冷热一体机运行。

  • 高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    高低温(-180~1500℃)和真空环境下的隔热材料热物理性能测试系统初步设计

    [size=14px][color=#ff0000]摘要:针对各种柔性和刚性隔热材料对变温和变真空环境下热物理性能参数的测试要求,本文介绍了采用准稳态法ASTM E2584 进行的测试系统初步设计方案,拟实现的高低温测试温度范围为-180~1500℃,真空度范围为0.05Pa~0.1MPa,样品尺寸为300mm×300mm×50mm,可实现导热系数、热扩散系数和比热容三个热物理性能参数的快速连续测量,并同时可通过热扩散系数的连续测量确定复合材料的固化度及优化固化工艺。[/color][/size][size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#ff0000]一、概述[/color][/size][size=16px]随着空间技术和半导体行业的发展,对各种高温隔热材料的热物理性能测试提出了更高的要求,如温度范围要宽可覆盖高低温、可变真空以模拟空间环境和真空炉气氛环境。在目前的全球商用热物性测试设备中,具有高低温和变真空功能的只有德国耐驰公司和上海依阳公司的产品。如图1所示,采用稳态保护热板法,耐驰公司设备最高温度达到600℃,测试样品冷热面温差为20℃左右的导热系数。如图2所示,采用稳态热流计法,上海依阳公司设备最高温度达到1000℃(热流计法),测试样品冷热面温差最大可达1000℃的等效导热系数,可更接近实际隔热工况的对隔热材料中导热、辐射和对流复合传热机理共同作用结果做出测试评价。[/size][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,460]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101124340854_8773_3384_3.jpg!w690x460.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图1 德国耐驰公司GHP 456保护热板法导热仪[/color][/align][align=center][size=14px][color=#ff0000][/color][/size][/align][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,650,504]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101125290599_6589_3384_3.jpg!w500x388.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图2 上海依阳公司TC-HFM-1000热流计法导热仪[/color][/align][size=16px]目前上述两种设备都在进行繁忙的常规测试,尽管都可以对隔热材料进行准确测试,但面对目前的各种新型高温隔热材料的发展,还是存在以下不足:(1)测试温度范围基本已经达到稳态法的极限,受材料和其他技术限制,再提升稳态法测试温度难度极大,同时会大幅提升造价。(2)稳态法只能测试导热系数一个参数,无法测试存在挥发和相变过程的热物性变化。(3)稳态法测试周期漫长,无法满足高通量隔热材料性能测试需求。为解决上述隔热材料热物理性能测试中存在的问题,本文将介绍采用准稳态法ASTM E2584 进行的隔热材料热物理性能测试系统初步设计方案。[/size][size=18px][color=#ff0000]二、拟达到的技术指标和初步方案[/color][/size][size=16px]拟达到的技术指标如下:(1)测试参数:导热系数、热扩散系数和比热容,测量不确定度±5%。(2)温度范围:-180℃~1500℃,发热体设计温度最高2000℃,测量不确定度±1%。(3)气氛环境:真空度0.01Pa~0.1MPa,可充各种惰性气体。(4)样品尺寸:截面积200×200mm~300×300mm,厚度20~150mm。(5)升降温速度:1~10℃/分钟。(6)测试方法:ASTM E2584。为实现上述技术指标,设计了隔热材料热物理性能测试系统,系统整体结构的初步设计如图3所示。[/size][align=center][size=14px][color=#ff0000][img=高低温隔热材料热物性测试,690,509]https://ng1.17img.cn/bbsfiles/images/2022/05/202205101126124993_1958_3384_3.png!w690x509.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#ff0000]图3 高低温和真空环境下隔热材料热物理性能测试系统[/color][/align][size=16px]整个测试系统设计为高低温分体结构,即分为高温测试和低温测试两套装置,高温覆盖室温~1500℃,低温覆盖室温~-180℃。两套装置分别安装在卧式真空腔体的前后推拉腔门上,公用一个真空腔体,整个真空腔体和前后门通过循环水进行冷却保护,并同时保证环境温度恒定。真空腔体内的气体种类和气压大小通过腔体侧面布置的真空系统进行精确控制。为实现1500℃甚至更高温度2000℃的材料热物性测试,测试系统的高温发热体为矩形钼加热片结构。为实现最低温度-180℃下的测试,采用液氮作为冷却介质,并结合矩形电加热薄膜进行温度精密调节和控制。高温和低温测量装置中的热源和冷源都采用薄片结构,可保证样品表面温度的均匀性和满足一维热流条件,同时可降低侧向高低温热防护装置的复杂程度。在测试系统中,高温加热装置和低温冷却装置都为升降结构,通过升降来完成被测样品的放入、取出和压紧,并实现不同厚度样品的测试。对于柔性隔热材料,可在测试过程中准确恒定样品厚度。在高低温真空试验设备中,高温发热体一般采用极易氧化的高温材料,同时频繁的高低温冷热交变会带来很大的热变形和热损伤等不利影响,这些都要求高低温设备的结构设计要便于维护和维修。因此本文所述高低温测试系统的设计采用了分体结构,非常便于拆装和维护。本文所述的高低温热物理性能测试系统,采用了准稳态测试方法,主要有以下优势:(1)可测量多个热物性参数,如导热系数、热扩散系数和比热容,特别是可以在整个相变过程中测试材料热物性的连续变化情况。同时还可以通过热扩散系数测试来确定固化度。(2)测试温度可以达到很宽的范围,而且测试速度快,通过一个完整的线性升降温过程就可以得到整个温区范围内的热物性随温度变化曲线,大幅缩短测试周期提高测试效率。(3)准稳态法测试原理是基于平板样品的一面线性温度变化,另一面绝热的边界条件,因此会在平板样品厚度方向上会形成更接近实际隔热应用时的较大温差,测试结果会包含导热、辐射和对流的复合传热效应,测试结果更能表征隔热材料的真实性能。[/size][align=center]=====================================[/align][align=center][/align][align=center][/align][align=center][/align][align=center][/align]

  • 冷热冲击试验箱排名的选用原则与操作方法

    冷热冲击试验箱排名的选用原则与操作方法

    [b]冷热冲击试验箱[/b]别名高低温冲击性试验箱此设备分成高温区,低温区,检测区三一部分,选用与众不同之断桥隔热窗结及储热,蓄冷实际效果,冷热冲击试验箱排名选用热冷风路转换方法导进称样中,做热冷冲击性检测。[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/07/202107131116552963_6723_1037_3.jpg!w469x469.jpg[/img][/align]  冷热冲击试验箱是金属材料、塑胶、硫化橡胶、电子器件等原材料制造行业必需的检测设备,用以检测原材料构造或高分子材料,在一瞬间下经极高溫及极低温的持续自然环境下能够承受的水平,足以在短期内内监测试件因热涨冷缩所造成的化学反应或物理学损害。  冷热冲击试验箱排名在应用的那时候,必须注意在使用前检查一下开关电源,并且必须有优良的电线接头,来保证设备的使用安全系数。针对冷热冲击试验箱排名在开展实验的那时候,一些易燃物和挥发物较为强的物件不能放入在其中开展实验。  切忌对冷热冲击试验箱排名內部的元器件开展修改,避免造成一些常见故障,影响设备的使用期時间。小编提示需注意冷热冲击试验箱内的清理、必需的维护保养按时开展实际操作。  检查的检修那时候,必需断开开关电源,避免出现安全事故。冷热冲击试验箱排名的挑选根据其实不是很难,关键的挑选根据是工程项目商品的实验标准和实验规范及其一些标准,那么针对冷热冲击试验箱都是一样。在其中必须遵照的5条标准,包括精准性、重现性、可测控性、排它性、安全性可信性。  (精准性)是:一台冷热冲击试验箱将会用以同一种类商品的数次实验,而一台被试的工程项目商品也将会在不一样的环境试验设备中开展实验,被冷热冲击试验箱设备的地应力水准(如焊接应力、震动地应力、电地应力等)针对同一实验标准的规定是一致的。  (可测控性)是 一切一台自然环境热冷冲击性箱实验设备所出示的自然环境标准务必是可观察的和可操纵的,各种各样实验标准中大致规定主要参数检测的精密度不可小于实验标准容许的偏差的三分之一。  (排它性):每一次开展自然环境或可靠性测试,热冷冲击性箱对环境要素的类型、数值及容差常有严苛的要求,并列除非是实验需要的环境要素渗入在其中,便于在实验中或实验完毕后分辨,和解析商品无效与常见故障方式时,出示准确的根据。  (安全性可信性):冷热冲击试验箱排名的各种各样维护、报警对策及安全性连锁加盟设备应当健全靠谱,以确保实验工作人员、被试商品和冷热冲击试验箱自身的安全性可信性氙灯耐气候试验箱。环境试验设备务必具备运作安全性、实际操作便捷、应用靠谱、工作中长寿命等特性。

  • 冷热冲击试验箱的重要参数有哪些

    冷热冲击试验箱的参数选择,直接决定了试验箱的好坏,下面给大家分析有哪些参数在选购时值得注意:①试验负载。这个参数直接影响能够放置多少测试品。一般说来,这个重量越大越好。②冲击温度。冲击温度是指测试区实际能够跑到的温度最大范围。注意不是预热和预冷室的极限温度。③除霜时间。除霜间隔时间越长越好。现在有写厂家能够做到1000cycles除霜一次,是非常理想的。除霜间隔越短说明该设备的气密性越差!④复归时间。它是指测试品全部从一个温度点切换到另外一个温度点所耗费的时间。我们常见的规范约定≤5min。这个时间越小越好。⑤传感器放置位置。规范要求,冷热冲击试验箱传感器必须放置在测试区内部。有些厂家将传感器放置在风道内部,虽然与测试区只有10cm的距离,但是这个能量差异是相当大的。且不能够真实反映测试品表面的温度变化。

  • 【讨论】显微镜冷热台系统讨论

    显微镜冷热台系统 可编程温度控制,温度范围宽,从-190℃到600℃(700℃可选); 温度控制精度高; 更好的温度均匀性及精确度,可对样品室进行双层加热; 可快速控制升、降温速度; 样品的XY移动精度高,分辩率为10微米; 配备观察视窗; 样品室空间大,并可根据要求加不同的增高器;讨论问题之一,该系统采用液氮制冷,液氮冰点-193℃,因此某些仪器厂家标称能达到-193℃,实际是否达不到。讨论问题之二,该设备除美国一家公司生产外,是否有别的公司生产类似产品。

  • 献上冷热场扫描电镜性能比较,欢迎补充

    冷热场扫描电镜性能比较一.电子发射源 热场在总发射电流(Total emissioncurrent)、最大探针电流(Maximum probecurrent)、电子束噪声(Beam noise)、发射电流漂移(Emissioncurrent drift)、工作真(Operatingvacuum)、阴极还原(Cathoderegeneration)、对外部影响的敏感性(Sensitivity to externalinfluence)等方面都具有绝对的优势。这些参数直接影响电镜的性能,这也是冷场发射所望尘莫及。 在阴极半径(Cathode radius)、有效电子源半径(Effective sourceradius)、发射电流密度(Emission currentdensity)、标准亮度(Normalisedbrightness)等方面,冷场发射略胜一筹。这几个参数总起来说就是冷场发射阴极的面积较小、能量集中,便于将电子束聚焦于一个很小的点,以提高分辨率。但是在现代的电镜技术条件下,热场发射电镜通过采取各种有效措施,也能够将电子束汇聚于一个理想的点,达到冷场发射电镜的分辨率水平。二.电镜性能1.稳定性 冷场发射电镜灯丝会吸附电子枪内的残留气体,随着时间的增长,发射电流越来越不稳定,需要定时(大约8小时一次)进行加热还原(flash,约需半小时),给使用维护带来不便。而热场发射电镜无此烦恼。 热场发射电镜的发射电流稳定度较好,漂移小于0.5%/h(ZEISS电镜可达到0.2%/h),而冷场发射则比这要大一个数量级。2.最大探针电流 热场发射电镜探针电流一般可达10nA,而冷场电镜却要低约1个数量级。3.工作真空度 热场发射电镜电子枪所需的工作真空度较低(≤1x10-8hPa),比较容易达到,一般只用一级离子泵就可以了。而冷场电镜的工作真空度要高2个数量级,一般要用两级离子泵,对真空密封等要求苛刻,娇气,难以维护。冷场发射电镜样品室的真空度要求也较高,这对于不太清洁、含水、含油、有气体析出的样品,抽真空就很困难。有多种型号的热场发射电镜具有低真空方式,而冷场电镜难以达到。

  • 分析未来发展冷热冲击试验机的主攻方向

    艾思荔设备跟随市场需求的不断发展,与人们生涯息息相通的冷热冲击试验机也获得了飞速的扩展,但因为技能等方面的缘故,国内冷热冲击试验机与国外仍有宏大的差距,要害中心技能匮乏,低程度反复,产物的不变性及牢靠性得不到基本的处理,在高端精细仪器上仍严峻依靠进口,很多进口对财产开展形成晦气影响。  而关于冷热冲击试验机将来的开展主攻偏向首要包括几方面:一是增强科学仪器的原始创新,重点环绕国家严重前沿科学需求,展开新道理、新技能、新办法的研讨,力争完成前沿科学仪器设备的严重打破与跨越;二是增强集成创新,出力展开前沿严重科学仪器设备、通用仪器设备、专用仪器设备中具有财产竞争力的仪器设备开拓,还增强科学仪器设备中心要害部件和配套系统的开拓和使用;三是注重对现有商品化科学仪器设备的消化接收再立异,开拓出一批具有自立常识产权的科学仪器设备,提拔下流科学仪器设备的综合运用效益;四是增强具有自立常识产权的科学仪器设备的使用和示范;五是持续推进科学仪器设备财产化基地建立。  为了促进我国冷热冲击试验机自立创新才能的进步,重点支撑原创性科研仪器冷热冲击试验机的研制和具有必然使用前景的严重科学仪器设备产物的开拓使用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制