当前位置: 仪器信息网 > 行业主题 > >

明暗截止线测量系统

仪器信息网明暗截止线测量系统专题为您提供2024年最新明暗截止线测量系统价格报价、厂家品牌的相关信息, 包括明暗截止线测量系统参数、型号等,不管是国产,还是进口品牌的明暗截止线测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合明暗截止线测量系统相关的耗材配件、试剂标物,还有明暗截止线测量系统相关的最新资讯、资料,以及明暗截止线测量系统相关的解决方案。

明暗截止线测量系统相关的资讯

  • 揭秘英国地下800米处暗物质搜寻实验室
    身在波尔比钾盐矿的肖恩帕林和尼尔罗利博士。钾盐矿地下深处就是一座科学实验室。矿井的地道又高又宽,足以并排摆放两辆路虎汽车。 天体粒子物理学家帕维尔马耶夫斯基走进被塑料布包裹的ZEPLIN-III探测器 波尔比钾盐矿位于约克郡荒野北部边缘地带,实验室座落于地下0.68英里(约合1.09公里)处   北京时间1月25日消息,一组天体粒子物理学家正在位于英国约克郡地下超过半英里(约合804米)的实验室搜寻暗物质。暗物质非常神秘,一直就是最大的宇宙谜团之一,即使参加这项实验的科学家也不确定暗物质是否真实存在或者最终能否发现这种物质。3月,实验结果将浮出水面,如果如愿以偿地发现暗物质,这一发现将彻底改变科学界的面貌。   实验室位于地下深处   搭乘一个漆黑一片的狭窄贯笼,感受气流在身边迅速穿过,经过6分半的下降之旅,你便来到这个地下实验室。实验室最深处与地面的距离超过0.5英里,位于北约克郡荒野地下,温度达到40摄氏度。如果出现任何差错,你将困在充满水的岩层下方,深度达到33名智利矿工被困矿井的两倍。庆幸的是,这些矿工最终成功获救。   当然了,在冬季的早晨,搭乘贯笼进入波尔比钾盐矿的科学家并没有这种担忧。如果有此担忧,他们无疑选错了地方。为了成功完成寻找和研究暗物质的这项工作,他们只能进入地下深处,防止遭到轰击地球表面的宇宙射线和辐射的影响。   他们身穿橙色连体工装,佩戴护胫,脚蹬安全靴,头戴安全帽,帽子上装有照明灯,身上还绑着一条大带子,同时配备必需的自救设备 (紧急呼吸器)。虽然从装扮上看,他们与矿工并无差异,实际上,他们的真实身份是物理学家,进入矿井的目的并不是为了寻找这座矿井的主产品——钾盐和岩盐,而是寻找更为难于捉摸的暗物质。迄今为止,还没有人证明暗物质真实存在。   在矿井的底部,矿工朝着一个方向——朝向矿井一面——前进,科学家则朝着另一个方向前进,穿过一条长地道向地下前进。矿井的这部分呈蜂窝结构,地道的总长度超过600英里(约合965公里)。只要不想到上方的岩石和水,你不会得幽闭恐怖症。地道内又高有宽,可并排容纳两辆路虎汽车。据一名煤矿矿工透露,由于地道主要是在岩盐矿脉中挖掘,封闭的速度较为缓慢。这里的温度较为适度,矿井内的盐就在嘴边,呼吸的空气能够感觉到盐的气息。   两个主实验室   科学家爬进一辆使用柴油机的路虎,其在制造上能够在地下使用时保证消防安全。在前行了800码(约合731米)后,他们将车停在旁边的一个小地道内。这条地道通往一个采用胶合板结构的简易交流区。来自上方的压力导致这里开始出现裂缝,现正等待重建。   在交流区暂作休息,喝一杯咖啡之后,他们沿着一条狭窄的通道继续向下前进,进入一个更衣区。在这里,他们换上干净的靴子和帽子,穿上一次性拉链式白色连体工装。地下实验室一定要保持洁净,这也就是为什么他们在进入前就换上干净的工作服。此外,他们还要穿过一个封闭的真空吸尘装置,吸掉身上的每一粒尘土。形象地说,就如同洗了一个澡。完成这些准备工作之后,他们才可以进入实验室。   这个地下实验室并不起眼,长300英尺(约合91米),墙壁采用紫红色防火涂料,看上去有点恐怖。顶部是滑行装置,用于两吨重的起重机运送重型设备,墙边摆着大量测量设备、电脑显示器、表盘、电线和仪表。中央是两个主实验仪器,表面上体现不出它们的重要性。它们将帮助科学家揭开宇宙的一个最大谜团。   其中一个实验仪器主要由一个巨大的盒子构成,体积70立方英尺(约合2立方米),外面包裹着难看的透明聚丙烯塑料布,看起来似乎是最近才运到实验室的,上没来得及拆封。另一个实验设备也是一个立方体,现已被大卸八块,来自加利福尼亚州的一名教授正对其进行维修。这个设备由一系列框架构成,好似一个鸡蛋切片机,它的电线很细,细到让人不敢近距离观察,唯恐一不小心摔倒,压坏这个造价数千英镑的设备。   这两个实验仪器一个是暗物质探测器,被称之为“ZEPLIN-III”,另一个是暗物质望远镜,被称之为“DRIFT-II”,它们均在与时间赛跑,寻找在宇宙中占据重要位置的暗物质。科学家认为暗物质在宇宙的比重高达80%以上。  进气系统,确保超纯氙气供应 研究小组在临时餐室暂作停留,而后穿上工作服进入实验室 矿用卡车搭载液态氮,开往实验室   可能一无所获   在科学界,寻找暗物质是众多物理学家为之奋斗的目标,发现者的名字将被永远载入史册,与牛顿和爱因斯坦齐名。但令人感到备受挫折的是,这种物质非常神秘,参与这一项目的科学家中没有一个人确切知道暗物质是否真实存在。   欧洲核子研究组织耗资60亿英镑(约合96亿美元)的大型强子对撞机座落于瑞士,寻找暗物质也是这一庞大项目的目标之一。此外,美国和欧洲的其他一系列项目也将寻找暗物质作为一个重要目标。英国此次寻找暗物质的努力一年的费用不到100万英镑(约合160万美元)。   加利福尼亚州教授斯诺登伊夫特从洛杉矶的西方学院飞到英国,进入地下实验室修理暗物质望远镜。他表示:“我真的不知道我正在寻找的这种粒子是否真实存在。我们可能只是白费心机,根本找不到暗物质。”   如何成功发现暗物质呢?ZEPLIN-III项目负责人、伦敦帝国学院讲师亨里克阿劳霍博士表示:“如果能够发现暗物质,我们将最终解答物理学上的一个重大疑问。”伊夫特教授脸上的笑容告诉我们,寻找暗物质的努力最终徒劳无功的可能性并不像他开玩笑时说的那么小。在他眼里,这是一个最令人兴奋的科学研究领域。对于此次寻找暗物质的尝试,公众最关心的莫过于结果——究竟是如愿以偿地发现暗物质还是发现其他物质。   他说:“在发明荧光灯之前,没有人知道发现等离子体发出的光线意味着什么。在创立量子力学理论时,科学家最初认为这是一项完全无用的理论。但突然间,他们发现全世界的每一台电脑都立基于这一理论。”在这个地下实验室,伊夫特用外行人能够听得懂的话解释寻找暗物质的重要性。他说:“虽然发现这种物质的可能性很小,但发现的意义非常重大,要知道,暗物质在宇宙质量中的比重高达85%。”   质量失踪问题   我们已经知道其他15%由什么物质构成。我们的身体、我们的家、我们的行星,所有我们能够看到和触摸到的一切都由普通物质构成。物质是引力之源,由原子构成,电子绕着原子核运动,产生一个电磁场。在浩瀚的宇宙,在恒星之间漆黑一片的空间,可能还存在另一种物质——暗物质。不仅仅在太空,地球上也可能存在暗物质,虽然数量较少,在阅读这段文字时,每秒将有100万暗物质粒子穿过你的小指。之所以被称之为暗物质是因为这种物质不会发射光线同时也不可见。暗物质没有电磁场,这也就意味着几乎无法借助任何常规科学测量设备探测到它们的存在。   我们何时发现可能存在暗物质?直到上世纪30年代,还没有人得出这一发现。1933年,加州理工学院的瑞士天文学家弗里兹扎维奇提出了一项非常引人注目的暗物质存在理论。但几十年来,很少有科学家相信暗物质存在的可能性。   扎维奇提出的谜题必须通过研究星系质量加以解答。星系质量计算通常采用两种方式,一种是测量星系的旋转速度,星系旋转速度越快,所拥有的质量越大 另一种是根据星系的亮度进行估计,也就是估计星系的恒星数量。在对后发座星系团进行研究时,扎维奇发现了奇怪的现象。他利用维里定理计算后发座星系团的真实质量,所得出的质量却是视觉观测下的大约400倍。这种现象被称之为“质量失踪问题”。   什么物质导致如此巨大的差异?答案可能就是暗物质。直到上世纪70年代,扎维奇的理论才得到证实。当时,年轻的美国天文学家维拉鲁宾利用其对螺旋星系旋转速度的观测数据得出同样的结论。我们能够观察到的星系区域——明亮区——所拥有的质量似乎只占星系总质量很少的一部分,余下的质量一定存在于我们无法观察到的暗区。 分析暗物质探测器获取的数据 谢菲尔德大学的马克派普为DRIFT-II探测器实施“手术”。这个探测器是世界上最灵敏的暗物质望远镜 液态氮用于冷却ZEPLIN-III探测器中的“靶子”   费用政府买单   此次科学竞赛旨在率先发现暗物质的存在。35年来,没有一个人成功做到这一点,这项任务难度之大我们可想而知。伊夫特表示:“全世界大约有300位科学家一直在搜寻暗物质,这是一项非常艰巨的任务。参与这项工作的人就像着了魔一样研制探测设备,探测自己认为中的暗物质。但这种探测具有极大的不确定性,可能一无所获。”   在难于进入的地下深处进行暗物质研究是一个最基本的要求,这种要求也提高了搜寻暗物质的难度。阿劳霍指出,科学家在矿井内进行研究并不会遭遇危险或者患上幽闭恐惧症,真正让他们感受头疼的是地下研究并不十分便利。他说:“第一周,所有人都喜欢这里,恐惧心理很快烟消云散。但便利性仍旧是一大挑战。”   首先,进入矿井并非易事。科学家要沿着一条沿岸环路驶往怀特比北部地区,有时还会遭遇降雪,而后花一两个小时佩戴各种装备,下降到矿井,随后还要换装,最后进入实验室。这里的工作环境十分恶劣。空气中的盐可能让电气设备陷入混乱,任何体积超过70立方英尺(约合2立方米)的设备都无法借助起重机运进矿井。由于搜寻暗物质项目本身的特殊性,所进行的实验在几个月甚至最后结束时可能不会得出任何令人兴奋的发现。   虽然一些工作可以借助计算机远程完成,但设备的维护和修理工作还是要亲历亲为,这是不可避免的。除了校准机械装置和检查是否出现生锈、破损和裂缝外,工作人员还要定期使用300升液态氮保持ZEPLIN-III内的氙气处于液态。氙气从俄罗斯进口,每公斤1万英镑(约合1.6万美元)。实验室每年的运营成本为30万英镑(约合48万美元),主要是工作人员的工资、电费和设备维护费用,由英国政府买单。   灵敏度就是一切   对于暗物质到底是什么,科学家意见不一。一些科学家认为,暗物质可能是由晕族大质量致密天体构成,这种物质可能来自于黑洞。上世纪70年代,意大利科学家指出暗物质可能由axions粒子构成,axions以一种洗衣粉的名字命名。也有人认为,存在暗物质不过是一种幻想,星系出现“质量失踪问题”的真正原因只能说明牛顿物理学定律存在缺陷。   当前有关暗物质的最流行理论是,这种物质由大质量弱相互作用粒子(WIMPs)构成。之所以取这个名字是因为暗物质据信会与正常物质发生反应,但这种情况非常罕见。世界各地的大量实验都围绕这一理论展开,波尔比矿井内进行的实验便是其中最为先进的一个。阿劳霍表示:“这是一项竞争激烈的竞赛,我们是有望获取胜利的主要选手之一。”   如果按照国际标准,这座地下实验室是使用零星资金建造的,虽然事实如此,但阿劳霍和他的国际粒子物理学家小组——来自伦敦、迪高特、爱丁堡、葡萄牙和莫斯科的研究实验室——却操作着世界上最为灵敏的探测设备。在这场寻找暗物质的竞赛中,灵敏度就是一切。   阿劳霍解释说:“在6个月的实验中,我们预计自己的实验只能探测到少量暗物质事件。但在相同的时间内,我们却可以探测到数百万次背景辐射事件,来自于探测设备和实验室墙壁的痕量放射能,来自于能够穿透到这一地下深度的少量宇宙射线。毫无疑问,探测设备的灵敏度越高,所能消除的背景噪音越多,也就越有可能发现暗物质。”   这也就是为什么ZEPLIN-III探测器被包裹上保护性材料。外层的聚丙烯塑料在设计上用于帮助消除中子,周围厚厚的铅壳则用于消除伽马射线。探测器内部的“靶子”由12公斤纯液态氙构成,一旦核心受到粒子轰击便会发生反应。无论什么时候,只要发生反应便会产生闪光(由光子传感器记录)和电荷,后者在悬于液态氙“靶子”上方薄薄的氙气层中测量。通过测量光脉冲与电荷尺寸的比率,波尔比的研究小组能够确定所探测到的“事件”是否是一次罕见而令人极度兴奋的WIMP交互作用,或者只是一次令人沮丧的伽马射线穿过。   这座科学实验室的主厅 参与这一项目的科学家中没有一个人确切知道暗物质是否真实存在   不管谁获得胜利,都将名垂青史并斩获诺贝尔奖   截至春初,波尔比研究小组将确定他们能否得出令人信服的发现,即在世界上第一次探测到暗物质的存在。“令人信服”非常重要,因为他们必须说服自己,同时还要说服这一研究领域心存怀疑的其他竞争对手。这些竞争对手中有的位于加拿大,有的位于南达科他州,有的则位于意大利大萨索山地下,其中包括他们的主要竞争对手——XENON 100暗物质搜寻实验。XENON项目组最近的一次实验在2010年9月进行,未能发现令人信服的暗物质存在证据,这让波尔比项目组长长地舒了一口气。   出生于波兰的ZEPLIN-III项目负责人帕维尔马耶夫斯基博士指出:“实际上,我们没必要期盼竞争对手遭遇失败,因为发现暗物质的最终受益对象是整个科学界,而不单单是个人。此外,他们使用的是与我们类似的探测设备,如果他们能够取得成功,说明我们也有成功机会。这是一个竞争激烈的研究领域,不管谁获得胜利,都将名垂青史并斩获诺贝尔奖。如果失败降临到其他团队而不是自己团队身上,你同样会感到非常失望。”   如果失败,我们需要制造一台更大的探测器   现在,波尔比矿井内的科学家正朝着实现这一梦想的道路前进。ZEPLIN-III探测器的灵敏度是ZEPLIN-II的10倍,ZEPLIN-II的灵敏度大约也是Mark I的10倍。借助于这种高灵敏探测设备,科学家距离发现暗物质自然更近一步。在打开探测器并在3月进行最终测量时,实验结果将浮出水面。如果ZEPLIN-III能够记录10次事件并证明这些事件并非背景辐射的结果,研究小组便取得胜利。波尔比实验室资深科学家和设施负责人肖恩帕林表示:“这里的每一个人都认为,我们已经处在上演重大发现的边缘。虽然没有一个人观测到非背景辐射事件,但我们可能已经进入上演这种发现的时刻。”   在波尔比的实验中,没有人愿意猜测成功发现暗物质的几率。由于遭受失败的可能性极高,实验室的空气中弥漫着紧张的气氛。DRIFT-II主要由美国大学资助,研究小组希望这个探测器至少可以安全使用3年。ZEPLIN-III的资金将于3月陷入枯竭,政府部门和赞助者——科学与技术设施理事会需要为之提供更多资金。   ZEPLIN-III项目组操作着世界上最灵敏的探测器,在进行旨在寻找暗物质的实验中,他们自然处于有利位置,成功发现暗物质的几率高于其他研究团队。面对这种极富挑战的实验,我们不得不问如果失败了怎么办?伊夫特对此表示:“如果失败,我们需要制造一台更大的探测器,继续进行这种实验。”
  • 文献分享丨灌溉绿洲农业生态系统中土壤呼吸CO2及其Δ13C值随时间变化的测量策略
    土壤呼吸中13C的天然丰度可以为研究土壤-植物大气圈系统中的碳动力学提供有力的工具,并对大气δ13C产生很大影响,因为它是进入大气的最大CO2通量之一。大气δ13C可以进一步反映陆地生态系统的分馏,为生物圈-大气CO2交换提供有价值的示踪剂。此外,使用稳定同位素13C作为示踪剂是划分土壤呼吸成分的极好方法,因为它可以在对土壤环境干扰最小的情况下识别释放的CO2的来源。如果由于缺乏δs数据而导致陆地呼吸的同位素组成参数化不正确,基于呼吸过程中陆地同位素分馏常数的生态系统和全球碳循环模型可能会给出不正确的结果。在现有的δs研究中,最常用的方法是使用静态封闭土壤室,在选定的时间间隔从中收集空气样本,并通过同位素比质谱仪测定进行后分析。在这些实验中,样品采集的频率固有地受到烧瓶采集和离线质谱分析所需的时间和精力的限制。因此,最佳测量时间对于获得日、月或年平均δs非常重要。 基于此,中国科学院地理科学与自然资源研究所温学发等研究人员采用非稳态条件下在线连续多通道双循环观测系统,在中国西北的灌溉玉米生态系统中进行了Rs和δs的原位连续测量。研究过程中,基于连续和高频(1Hz)测量,研究Rs和δs在日、月和季节时间尺度上的最佳测量时间,量化Rs和Δs的最佳测量频率,以在季节时间尺度下达到一定的准确度(±10%、±20%或±30%)。从而评估生长季节土壤呼吸CO2(Rs)及其δ13C(δs)值以及土壤温度(ST)和土壤含水量(SWC)的最佳测量时间和频率。 研究发现,尽管在生长季节,Rs和δs通常随着非生物和生物因素的变化而表现出明显的日变化和季节变化,但在9:00–10:00或此时(如9:00–11:00)的窗口中测得的Rs和Δs通常与日平均值没有显著差异。因此,如果研究人员无法直接测量昼夜模式,建议将这些时间尺度作为气候和植物类型相似地区的最佳测量时间。这项研究的结果为未来在其他灌溉农业生态系统中使用非连续测量提供了指导,可用于选择最佳测量时间并在保证一定精度的同时降低测量频率。试验方案及设备 下图是整套系统的示意图。整个方案由1)分析模块;2)采样模块;3)控制模块和4)校准模块构成。整体采用多通道双循环的设计思路,实现待测气体既能快速周转,又能互不干扰,并且将死体积降至最低水平。下图中蓝色线条代表的气路循环为整套系统的大循环,气体在呼吸室和控制系统内快速循环,能实时反馈气体浓度的变化。黄色线条代表的气路循环为小循环,从大循环中取分析仪需要的气体流量进行分析检测,测试完成的气体再次送回循环气路。原位多通道双循环观测系统示意图(std1, std2, std3:标准气体;MV:3通电磁阀;OF:溢流;V:流量控制阀;P:KNF泵;F:过滤器) 1、降低每一个呼吸室的关闭速度,最大限度减少呼吸室盖紧过程因空气下压产生的土壤呼吸测量的不确定性,保证数据测量结果的稳定性和准确性。 2、缩短每个循环周期的测量时间,尤其有利于土壤呼吸通量较低需要延长单个呼吸室测量时间,以及单次循环土壤呼吸室较多的情况。 3、有利于提高流速较慢分析仪的响应时间。 4、双泵交替工作有利于延长泵的使用寿命。 土壤空间异质性强,即便是同一区块相同土壤类型的土壤呼吸,其通量差异性也非常大。科学家在进行土壤呼吸研究时,通常需要在空间、时间和气体种类上进行多维度的组合研究,才能更好地解释土壤呼吸的内在机制。基于此,普瑞亿科研发了PRI-8600D 多通道土壤呼吸(群落光合)测量系统,能为上述研究提供时间顺序上、不同位点土壤呼吸循环测量解决方案。 PRI-8600D双循环复路系统是普瑞亿科潜心研发多年的土壤呼吸测量多路系统,具有发明专利(专利号:ZL201710784488.5),并在科技部重点研发计划项目支持下,于2023年完成最新一轮的升级。升级完成后,相对其他厂家的同类产品具有以下特点和优势: 1)具有双循环气路设计:设有奇数组和偶数组两个分组,每组均包含1个一体化的汇流排和1一个循环泵,并通过电磁阀组连接在一起交替为分析仪主机提供气源。两组复路系统交替工作,在前一个呼吸室测量结束前,次一个呼吸室开始工作,并在前一个呼吸室测量结束时,切入第二个呼吸室进行测量。 2)升级高度集成的采集汇流排、双路双循环汇流排、标样汇流排,极大的减少了分析气路的“死体积”;而模块化的设计也大大降低了气路泄漏的风险,保证了测量结果稳定可靠。 3)升级每个通道内置的过滤器材质为SUS304,提高了整机的气密性和稳定性,保障了整套系统能靠运行。 4)升级工业级电控逻辑板,即使在极端的工况下,设备也能稳定可靠的运行。MODBUS RTU的RS485通讯为客户大范围远距离应用提供了可能。 5)具有三路标准气接口,这可以实现高校准频率需要的分析仪时间在线校准,比如光谱同位素分析仪。 6)升级的气电混装定制化接头和线缆,设备更简洁/美观和可靠;同时,实现一个较小尺寸的主机箱连接不少于32个土壤呼吸室。 7)标配一个RS-232、一个RS-485 通讯接口,为一个复路系统驳接多个气体分析仪提供可能(可根据客户应用,拓展RS-232、RS-485和TTL通讯)。 8)具有WIFI接口,可以连接触控设备进行测量参数配置;具有双网口,可以进行数据自动上传和远程数据跟踪。 9)可以同时接驳土壤呼吸明室/土壤呼吸暗室/大容量群落光合室等。 10)若只需要CO2 H2O测量,分析仪可以内嵌到一个主机箱内。 8600-2012 全自动土壤呼吸测量暗室具有发明专利(专利号:ZL202021501088.2),该呼吸室升级了气电混装的线缆结构,升级土壤呼吸的防水等级至IP66,升级呼吸室多层采样装置,设备简洁、美观、可靠。 8600-2012 具有动压平衡装置,通过科学的设计,既能保证呼吸室内大气压于外界大气压的平衡,也能在一定限度内消除外界风速对呼吸室内气体的扰动,保证测量结果的准确性。配合PRI-8600D双循环,8600-2012关闭呼吸室的速率可以很低,最大限度消除其对土壤呼吸的扰动。 8600-2012C 是全自动土壤呼吸明室,呼吸室上部没有任何遮挡,考虑到植物生长高度,透明呼吸室高度可以在一定范围内特殊定制。兼容性好,可连接不同的同位素或气体浓度分析仪;双循环气路设计,能提升不同通道之间的切换效率;定制化程度高,通道数量、气路长度、呼吸室种类;标配3路标准气切换模块,可在线进行系统标定;专利的动压平衡装置,能提升通量测量精度和准度。PRI-8600D 多通道土壤呼吸(群落光合)测量系统主要包含多路复路系统主控箱,双循环泵,触屏PAD;可选配 CO2 H2O 分析仪,高精度 CO2 CH4 N2O 气体浓度分析仪,高精度 CO2 CH4 N2O 同位素分析仪;可选各种呼吸室,如土壤呼吸室、群光光合箱,明暗交替呼吸室/箱(含动压平衡装置),空气温度、土壤温度和土壤湿度传感器等;可选配不同长度的气路管线,标配15 m,可以定制长度至100 m。装置,能提升通量测量精度和准度。 PRI-8600D 多通道土壤呼吸(群落光合)测量系统可以满足不同科学研究需要,适用于生态学、农学、林学、肥料学、冻土、地震学研究,以及垃圾掩埋等领域。
  • 基于介质多层薄膜的光谱测量元器件
    近日,南京理工大学理学院陈漪恺博士与中国科学技术大学物理学院光电子科学与技术安徽省重点实验室张斗国教授合作,提出并实现了一种基于介质多层薄膜的光谱测量元器件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。研究成果以“Planar Photonic Chips with Tailored Dispersion Relations for High-Efficiency Spectrographic Detection”为题发表在国际学术期刊ACS Photonics。光谱探测技术被广泛应用在科学研究和工业生产,在材料科学、高灵敏传感、药物诊断、遥感监测等领域具有重要应用价值。近年来,微型光谱仪的研究受到了广泛关注,其优点在于尺寸小,结构紧凑,易于集成、便携,成本低。特别是随着纳米光子学的发展,光谱探测所需的色散元件、超精细滤波元件以及光谱调谐级联元件等,都可以利用超小尺寸的微纳结构来实现。如何兼顾器件的小型化、集成化,与光谱测量分辨率、探测效率一直是该领域的重点和难点之一。截至目前,文献报道的集成化微型光谱仪大多利用线性方程求解完成反演测算,信号模式之间的非简并性(不相似性)决定了重建光谱仪的分辨能力。这种基于逆问题求解的光谱反演技术易于受到噪音的干扰,从而降低微型光谱仪的探测分辨率和效率。近期研究工作表明,通过合理设计结构参数,调控介质多层薄膜的色散曲线,同时借助介质多层薄膜负载的布洛赫表面波极低传输损耗特性,可以实现了光源波长与布洛赫表面波激发角度之间的近似一一对应关系,如图1a,1b所示。它意味着无需方程求解,即可以完成光谱的探测与分析,避免了逆问题求解过程中外界环境噪声对反演过程的干扰,节约了时间成本,提升了探测效率。该介质多层薄膜由高、低折射率介质(氮化硅和二氧化硅)薄膜交替叠加组成,可通过常规镀膜工艺(如等离子体增强化学的气相沉积法)在各种透明衬底上大面积、低成本制备,其制作难度与成本远小于基于微纳结构的光谱测量元件。图1:一种基于介质多层薄膜的光谱探测元件,可用于各类光信号的光谱表征;其核心部件厚度仅微米量级,可附着在常规显微成像设备或微型棱镜上完成光谱测量,实验光谱分辨率小于0.6nm。作为应用展示,该光谱探测元器件被放置于微型棱镜或者常规反射式光学显微镜上,当满足布洛赫表面波激发条件时,即可实现光谱探测。如图1c,当激光和宽带光源分别入射到介质多层薄膜上时,采集到的反射信号分别为暗线和暗带,其强度积分及对应着光源的光谱(图1d,1e所示)。钠灯的光谱测量实验结果表明,该测量器件能达到的光谱分辨率小于0.6 nm (图1f所示)。不同于常规光谱仪需要在入射端加载狭缝,该方法无需狭缝对被测光源进行限制,从而充分利用信号光源,有效提升了光谱探测的信噪比和对比度,因此器件可以应用于荧光光谱和拉曼散射光谱等极弱光信号的光谱表征,展现出其在物质成分和含量探测上的能力,如图1g,1h所示。介质多层薄膜的平面属性,使得其可以在同一基底上加载不同结构参数的介质多层薄膜,从而实现宽波段、多功能光谱探测器件。该项工作表明,借助于介质多层薄膜负载布洛赫表面波的高色散、低损耗特性,可以实现低成本、高效率、高分辨率的光谱测量,为集成化微型光谱仪的实现提供了新器件。该项工作也拓展了介质多层薄膜的应用领域,有望为薄膜光子学研究带来新的生长点。陈漪恺博士为该论文第一作者,张斗国教授为通讯作者。上述研究工作得到了科技部,国家自然科学基金委、安徽省科技厅、合肥市科技局、唐仲英基金会等项目经费的支持。相关样品制作工艺得到了中国科学技术大学微纳研究与制造中心的仪器支持与技术支撑。
  • 西安光机所成功研制出“敏感器光学系统测试设备”
    近日,中科院西安光学精密机械研究所研制成功“敏感器光学系统测试设备”并已正式投入使用。“敏感器光学系统测试设备”系高精度、多功能、全自动化的专用测试设备,可以对各类恒星敏感器、地球敏感器、月球敏感器光学系统及其它小型光学系统的弥散斑、色偏差、畸变、焦距、入瞳、工作距进行测试,测试光谱范围0.3μm~1.5μm,弥散斑测试精度优于0.5μm,色偏差测试精度优于0.2μm,畸变测试精度可达到0.01%。该设备的成功研制,在提高测试精度的同时大大提高了测试效率,原来测试一套常规的敏感器光学系统需要三天左右时间,现在只用一天即可完成测试。   该测试设备的成功研制,填补了国内敏感器光学系统测试设备的空白,必将极大地促进所内创新事业的发展。
  • 重磅|2024年国自然申报通告!3月20日截止
    重要信息速览:《指南》拟于2024年1月中上旬在自然科学基金委网站公布。申报日期:2024年度科学基金项目申请集中接收工作于2024年3月1日开始,3月20日16时截止。初审结果公布:基金委将于2024年4月29日前公布申请项目初审结果,并受理复审申请。申请书撰写:2024年1月15日后,可登录科学基金网络信息系统,按要求撰写申请书。重大变化:2024年,取消面上项目连续两年申请未获资助后暂停一年申请的限制。申请人根据申请书研究内容从“自由探索类基础研究”和“目标导向类基础研究”中选择一类研究属性。原文:关于2024年度国家自然科学基金项目申请与结题等有关事项的通告国科金发计〔2024〕1号国科金发计〔2024〕1号一、项目申请(一) 项目申请接收。1. 2024年度集中接收申请的项目类型包括:面上项目、重点项目、重点国际(地区)合作研究项目、青年科学基金项目、地区科学基金项目、优秀青年科学基金项目、国家杰出青年科学基金项目、国家杰出青年科学基金延续资助项目、创新研究群体项目、基础科学中心项目、外国学者研究基金项目、数学天元基金项目、国家重大科研仪器研制项目(自由申请)和部分联合基金项目等。集中接收工作于2024年3月1日开始,3月20日16时截止。2. 上述项目类型以外的其他项目,自然科学基金委将另行公布指南。对于随时接收申请的国际(地区)合作交流项目等,申请人应尽量避开集中接收期提交申请。(二) 申请人与主要参与者事项。1. 申请人应当认真阅读《国家自然科学基金条例》(以下简称《条例》)、《2024年度国家自然科学基金项目指南》(以下简称《指南》)、相关类型项目管理办法、《国家自然科学基金资助项目资金管理办法》(财教〔2021〕177号,以下简称《资金管理办法》)及有关规定,于2024年1月15日以后登录科学基金网络信息系统(以下简称信息系统),按照各类型项目申请书的撰写提纲及相关要求撰写申请书。没有信息系统账号的申请人请向依托单位基金管理联系人申请开户。2. 2024年,取消面上项目连续两年申请未获资助后暂停一年申请的限制。3. 科学基金项目资金管理方式分为包干制和预算制。2024年,青年科学基金项目、优秀青年科学基金项目、国家杰出青年科学基金项目、国家杰出青年科学基金延续资助项目、试点设立的青年学生基础研究项目实行经费包干制,申请人在项目申请时无需编制预算。其余类型项目实行预算制,申请人应当按照《资金管理办法》及有关规定,根据“目标相关性、政策相符性、经济合理性”的基本原则,结合项目研究实际需要,认真如实编报项目预算。对基础科学中心延续资助项目增设预算评审。严格开展国家重大科研仪器研制项目预算评审,对于申请经费严重超过实际需求的项目将不予资助。项目申请中有合作研究单位的,申请人和合作研究单位的参与者应当根据各自承担的研究任务分别编报项目预算,经所在单位审核后由项目申请人汇总编制。4. 申请人应当根据申请书研究内容从“自由探索类基础研究”和“目标导向类基础研究”中选择一类研究属性。其中,“自由探索类基础研究”是指选题源于科研人员好奇心或创新性学术灵感,且不以满足现阶段应用需求为目的的原创性、前沿性基础研究;“目标导向类基础研究”是指以经济社会发展需要或国家需求为牵引的基础研究。对于试点分类评审的面上项目、青年科学基金项目和重点项目,自然科学基金委将结合申请人所选择的研究属性,组织专家进行分类评审。5. 申请人应当通过信息系统邀请主要参与者在线填写个人简历,并上传由系统自动生成的主要参与者PDF格式个人简历文件。对于个人简历中的代表性论文,申请人及主要参与者填写时应当根据其发表时的真实情况如实规范列出所有作者署名,并对本人署名情况进行标注,同时上传公开发表的代表性论文全文PDF电子版。代表性专著应上传著作封面、摘要、目录、版权页等PDF格式的扫描件。6. 申请人申请面上项目、青年科学基金项目、地区科学基金项目、重点项目、优秀青年科学基金项目、国家杰出青年科学基金项目、国家杰出青年科学基金延续资助项目、创新研究群体项目、基础科学中心项目、联合基金项目、国家重大科研仪器研制项目和重大项目,其研究期限由信息系统结合项目类型自动生成,申请人不可更改。7. 申请人在提交项目申请前,应当就申请材料全部内容征得主要参与者和合作研究单位同意。8. 申请人提交的项目申请如涉及科技伦理敏感领域的,应当经过伦理审查。9. 申请人应当确保提供的电子邮箱畅通有效,以便项目评审工作结束后能够及时接收申请项目批准资助通知或不予资助通知,以及专家评审意见的相关信息,否则由此引起的法律后果由申请人自行承担。(三) 依托单位事项。依托单位应认真履行主体责任,按照《国家自然科学基金依托单位基金工作管理办法》《国家自然科学基金委员会关于进一步加强依托单位科学基金管理工作的若干意见》、相关类型项目管理办法和资金管理办法及相关规定的要求组织申请工作,对本单位申请人所提交申请材料的真实性、完整性和合规性进行审核,并在规定时间内将申请材料报送自然科学基金委。具体要求如下:1. 依托单位应确保本单位、合作研究单位、申请人及主要参与者不在限制申报、承担或参与财政性资金支持的科技活动的期限内。2. 依托单位应注重项目申请质量,避免通过“全民动员”、设置硬性指标、实施与是否申请项目挂钩的奖惩措施等方式盲目追求项目申请数量。3. 依托单位应提前从信息系统中下载《2024年度国家自然科学基金依托单位项目申请承诺书》,由法定代表人亲笔签名并加盖依托单位公章后,将电子扫描件上传至信息系统(本年度只需上传一次)。依托单位完成上述承诺程序后方可申请项目。4. 依托单位应在项目申请集中接收工作截止时间前通过信息系统逐项确认提交本单位电子申请书及附件材料;务必在截止时间后24小时内在线提交本单位项目申请清单,请依托单位根据实际情况,确定本单位项目申请书收取的截止时间。5. 依托单位应建立完善的科研伦理审查机制,防范伦理风险。按照有关法律法规和伦理准则,建立健全科技伦理管理制度;加强伦理审查机制和过程监管;强化宣传教育和培训,提高科研人员在科技伦理等方面的责任感和法律意识。(四) 申请材料提交方式。1. 国家自然科学基金项目全面实行无纸化申请。各类型项目《国家自然科学基金申请书》(以下简称申请书)一律采用在线方式撰写。申请人应在线提交电子申请书,并将有关证明信、推荐信和其他需要特别说明的材料,全部以电子扫描件上传。依托单位只需在线确认电子申请书及附件材料,无需报送纸质申请材料。2. 项目获批准后,依托单位需补交申请书纸质签字盖章页,并将其装订在《资助项目计划书》最后,一并提交。签字盖章的信息应与信息系统中提交的最终电子版申请书保持一致。对于未按照上述要求提供签字盖章材料的,自然科学基金委将按照有关规定处理。(五) 初审结果公布。自然科学基金委将于2024年4月29日前公布申请项目初审结果,并受理复审申请。二、项目结题(一) 项目负责人事项。项目负责人应认真阅读《国家自然科学基金资助项目研究成果管理办法》、相关类型项目管理办法和资金管理办法及有关规定,撰写《国家自然科学基金资助项目结题/成果报告》(以下简称结题/成果报告),并保证填报内容真实、数据准确,同时注意知识产权保护,不得出现国家《科学技术保密规定》中列举的属于国家科学技术秘密范围的内容;不得出现任何违反科技保密和科技安全规定的涉密信息、敏感信息。1. 项目负责人登录信息系统,撰写结题/成果报告并将附件材料电子化后一并在线提交;待自然科学基金委审核通过后,项目负责人下载并打印最终PDF格式的结题/成果报告,向依托单位提交签字后的纸质结题/成果报告原件(不含附件材料)。项目负责人应保证纸质结题/成果报告内容与审核通过后的电子版一致。2. 项目负责人应根据《资金管理办法》及有关规定,以及《国家自然科学基金项目决算表编制说明》的具体要求,会同科研、财务等部门及时清理账目与资产,如实编制《国家自然科学基金项目决算表》,确保决算数据真实、准确,资金支出合法、有效。有多个单位共同承担一个项目的,项目负责人和合作研究单位的参与者应当分别编制项目决算,经所在单位审核后,由项目负责人汇总编制。3. 项目负责人撰写结题/成果报告时,不得将未正式发表/未在线发表或未标注国家自然科学基金资助和项目批准号等的论文列入结题/成果报告;不得将非项目负责人或非主要参与者取得的研究成果列入结题/成果报告;不得将与受资助项目无关的研究成果列入结题/成果报告;不得直接复制论文内容作为结题/成果报告内容;不得将早于项目资助开始时间的成果列入结题/成果报告。4. 项目负责人或主要参与者应按照《国家自然科学基金委员会关于新时代加强科学普及工作的意见》的要求,将科普成果列入结题/成果报告中;同时应按照自然科学基金委关于受资助项目论文开放获取的有关要求,将有关论文上传存储到信息系统。5. 项目负责人在科学基金项目研究成果的发布、传播和应用中,涉及科技伦理敏感问题的应当遵守有关规定,严谨审慎。6. 自然科学基金委在准予项目结题之后,按照相关规定将在国家自然科学基金大数据知识管理服务平台(https://kd.nsfc.cn)及国家科技报告服务系统(https://www.nstrs.cn)上公布结题/成果报告全文。(二) 依托单位事项。依托单位应高度重视科学基金项目结题管理,认真履行项目管理主体责任,督促指导项目负责人认真撰写结题/成果报告,严格按照相关管理规定的要求,对结题材料进行审核。1. 依托单位需先通过信息系统提交电子版结题材料,待自然科学基金委审核通过后,再报送纸质版结题材料。未按时报送结题材料的应结题项目,按逾期待结题处理,计入相应的限项申请范围,同时自然科学基金委将按照《条例》的有关规定对项目负责人和依托单位进行处理。2. 依托单位应于2024年2月26日16时前通过信息系统对结题材料进行审核并逐项确认,3月11日前将经单位签字盖章后的纸质结题/成果报告原件(一式一份)以及单位公函与结题项目清单等纸质结题材料,以邮寄方式报送至自然科学基金委,材料不完整的不予接收。三、项目进展报告、年度管理报告和包干制管理规定(一) 项目进展报告。项目负责人登录信息系统,在线撰写《国家自然科学基金资助项目进展报告》(以下简称项目进展报告);依托单位按照《条例》及相关管理办法等要求,通过信息系统对项目进展报告进行审核,并于2024年1月15日前逐项确认,无需提交纸质材料。对未按规定提交项目进展报告的,按照有关规定处理。(二) 年度管理报告。依托单位通过信息系统在线撰写《国家自然科学基金资助项目年度管理报告》(以下简称年度管理报告),于2024年4月1日-4月15日16时期间提交电子材料,无需提交纸质材料。对未在规定时间内提交年度管理报告的依托单位,将不予开放下年度的科学基金项目申请。(三) 包干制管理规定备案。根据《资金管理办法》有关规定,项目经费使用包干制的依托单位应当制定项目经费包干制管理规定。对于2023年新获批包干制项目但尚未完成备案的依托单位应于2024年6月30日16时前,将本单位制定的包干制管理规定报自然科学基金委备案;对于之前已完成备案但需要重新修订的,也应在上述截止时间之前完成修订工作并重新备案。具体备案流程请参照《关于国家自然科学基金项目经费包干制管理规定备案的通知》(国科金财函〔2021〕27号)。四、材料接收(一)材料接收组负责统一接收依托单位送达或邮寄的材料,不接收个人直接报送和非依托单位报送的材料。(二)材料接收组办公地点设在自然科学基金委行政楼101房间。五、其他注意事项(一)在填写论文等研究成果时,根据论文等发表时的真实情况如实规范列出所有作者署名,不得篡改作者顺序,不得虚假标注第一作者或通讯作者。(二)发表的研究成果(包括专利),项目负责人和参与者均应如实注明得到国家自然科学基金项目资助和项目批准号,科学基金作为主要资助渠道或者发挥主要资助作用的,应当将科学基金作为第一顺序进行标注。(三)《指南》拟于2024年1月中上旬在自然科学基金委网站公布。(四)结题/成果报告等纸质材料建议双面打印并装订。(五)自然科学基金委于2023年6月1日发布基础研究科研人员标识(Basic Researcher ID,BRID),对拥有信息系统账号的科研人员赋码。从2024年开始,申请书、项目进展报告、结题/成果报告上将显示项目负责人BRID编码。六、咨询与联系方式(一) 各类事项咨询电话。(二) 各部门咨询电话。(三) 相关网站地址。自然科学基金委官方网站: https://www.nsfc.gov.cn科学基金网络信息系统网站: https://grants.nsfc.gov.cn国家自然科学基金大数据知识管理服务平台:https://kd.nsfc.cn(四) 材料接收组联系方式。通讯地址:北京市海淀区双清路83号自然科学基金委项目材料接收工作组邮政编码:100085 联系电话:010-62328591
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 探索暗物质 阿尔法磁谱仪核心部件中国造
    美籍华人物理学家丁肇中领导的暗物质研究小组昨天发布重大研究成果,根据国际空间站上阿尔法磁谱仪的首批观测数据,科研人员已经找到了可以证明暗物质存在的6个证据中的5个。 暗物质是现有宇宙构成理论中最关键的假设之一,能够解决宇宙大爆炸理论的不自洽问题。为寻找暗物质,丁肇中于1995年提出了建造阿尔法磁谱仪的国际合作项目,中科院、上海交大、山东大学等中国科研机构都参与了磁谱仪核心部件的建造。2011年5月,阿尔法磁谱仪被送入太空,开始执行为期3年的暗物质探索任务。 距发现暗物质只剩最后一步 当地时间18日晚间,诺贝尔奖得主、美籍华人物理学家丁肇中领导的阿尔法磁谱仪项目,在欧洲核子研究中心公布了最新研究成果,进一步显示暗物质可能存在。这一成果发表在最新一期美国《物理评论快报》上。 据参与该项目的山东大学科学家程林教授介绍,目前阿尔法磁谱仪已发现了1090亿个电子与反电子,在业已完成的观测中,暗物质的6个特征已有5个得到确认。这一研究结果将人类对暗物质的探索向前推进一大步。 到底什么是暗物质呢?上世纪二十年代,物理学家们提出了宇宙大爆炸的学说。根据这一学说,宇宙在大爆炸以前处于真空状态,大爆炸以后才形成了物质世界,据此推断就应该有反物质存在。此后,物理学家们开始了寻找反物质或称暗物质的努力。 &ldquo 暗物质是一种人眼看不到的物质,想要证明它的存在可不容易。&rdquo 国家天文台宇宙暗物质暗能量组首席研究员陈学雷介绍说,1930年左右,科学家发现有一些星系团中的物质,产生的引力要比其他可以看到的星系多一些,但是这些物质不发光,所以就起名为暗物质。 现有物理学假设认为,人类目前所认知的物质世界大概只占宇宙的4%。在这之外,那些不发光不发热的暗物质,则占了宇宙的23%,还有73%是暗能量。 410亿数据将改变人类知识 寻找暗物质主要有3种途径。一种是利用粒子对撞产生直接暗物质;另一种是利用引力场间接探测。暗物质不发光,但是可以产生引力,因此可以通过对引力场变化的测量来寻找暗物质。中国主导的&ldquo 熊猫计划&rdquo (PandaX)就是后一种方法的实践。 阿尔法磁谱仪项目代表了第三种途径。从理论上讲,暗物质相互碰撞会产生过量正电子(所带电荷量与我们常见的带负电的电子恰好相反),因此可以通过探测正电子来寻找暗物质。 自从2011年5月16日被安置到国际空间站迄今,阿尔法磁谱仪已运行四十多个月,共搜集了540亿个宇宙射线数据。刚刚公布的研究成果,是基于对最先收集到的410亿个数据的分析。在这些数据中,科学家观测到约1000万个电子与正电子,这是半世纪来检测到的正电子分率的最大值。 根据丁肇中研究小组此次在美国《物理评论快报》上发布的结果,已发现的宇宙射线中过量正电子的5个特征分别为:正电子比例上升是从8吉电子伏特(1吉等于10亿)的能量开始;在速率方面,正电子占电子与正电子总数的比例快速增加;在275吉电子伏特左右停止增长;比例上升的过程较为均衡,没有明显的峰值;还有正电子似乎来源于宇宙空间的各个方向,而不是某个特定方向。 据丁肇中介绍,证明暗物质所需的最后1个特征就是正电子的产生率会不会突然下降,&ldquo 这个要花很多的时间,&rdquo 丁肇中说,&ldquo 很快下降一定是暗物质跟暗物质对撞产生正电子,因为暗物质能量有限,到一定能量以后就不可能再产生正电子,所以会突然下降。&rdquo 对于这一批数据的意义,丁肇中说:&ldquo 到现在为止我们所得到的结果,没有一个和过去100年所收集的结果是一样,所以也可以这么说,就是所有的结果慢慢改变人类对于这些的了解。&rdquo 中国研制阿尔法磁谱仪核心部件 由丁肇中教授领导阿尔法磁谱仪(AMS)项目是目前世界上规模最大的科学项目之一。阿尔法磁谱仪的结构很复杂,任务很艰巨,但它工作的基本原理却是高中物理中带电粒子在磁场中运动的知识。 说白了,阿尔法磁谱仪就是一个带电粒子探测器,其核心部件是由中国科学家和工程师经 4 年努力研制的永磁体,可以产生一个很强的磁场。当宇宙中的带电粒子穿过这个磁场时,磁场就对它施加洛仑兹力使之发生偏转,这时,记录有关数据,再用电子计算机进行数据处理,就可以从中区分出正电子等各种带电粒子。 丁肇中于1995年提出了阿尔法磁谱仪的设想,并主持其相关的国际合作计划。这计划是一个国际合作项目,动员了来自15个国家31所大学院校的上百名科研人员。 中国科学家为磁谱仪倾注了大量心血,参加阿尔法磁谱仪国际合作的中国单位还包括中国科学院电工研究所、上海交通大学、东南大学、山东大学、中山大学,以及中国台湾的&ldquo 中央研究院&rdquo 物理研究所、&ldquo 中央大学&rdquo 、中山科学研究院等。 阿尔法磁谱仪最关键的永磁体系统是由中国科学院电工研究所、中国科学院高能物理研究所和中国运载火箭技术研究院联合研制,211厂生产制造。 2011年5月16日,美国&ldquo 奋进号&rdquo 航天飞机将阿尔法磁谱仪送入太空,安放在国际空间站上。
  • 激光精密测量技术及应用——第二届精密测量与先进制造网络会议报告推荐
    德国“工业4.0”与”中国制造2025“发展战略,对高端装备中的超精密测量精度要求越来越高。激光因其高方向性、高单色性、高相干性等特点,具有高准确度、非接触、稳定性好等独特优点,在超精密加工和测量领域应用广泛。激光干涉仪以光波为载体,利用激光作为长度基准,是迄今公认的高精度、高灵敏度的测量仪器。激光束通过分光镜后,分成两束激光(参考光束和测量),分别经两个角锥反射镜反射后平行于出射光返回,通过分光镜后进行叠加(两束激光频率相同、振动方向相同且相位差恒定,即满足干涉条件),产生相长或相消。反射镜每移动半个激光波长,将产生一次完整的明暗干涉现象,通过接收到的明暗条纹变化及电子细分,即可求得距离变化(距离=干涉条纹数*激光半波长)。激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作。激光干涉仪原理构造激光测距仪是利用激光对目标的距离进行准确测定的仪器,根据测量原理分为脉冲法和相位法。脉冲激光测距法由于激光发散角小,激光脉冲持续时间极短,瞬时功率极大可达兆瓦以上,可以达到极远的测程,广泛应用在地形地貌测量、地质勘探、工程施工测量、飞行器高度测量、人造地球卫星相关测距、天体之间距离测量等方面。第二届精密测量技术与先进制造网络会议期间,清华大学与哈尔滨工业大学两位专家将分享激光精密测量技术、仪器及应用。部分报告预告如下,点击报名  》》》清华大学精密仪器系系副主任/副教授 谈宜东《激光干涉精密测量技术、仪器及应用》(点击报名)谈宜东,清华大学精密仪器系长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等多个项目。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表SCI论文100余篇,授权发明专利37项,在国际会议Keynote/Plenary/Invited报告60余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。【报告摘要】 以传统激光干涉为引,介绍清华大学激光精密测量及应用团队在双频激光器、干涉仪及在光刻机中的精密测量应用,并拓展到空间引力波测量。针对传统干涉测量需要配合靶镜的局限性,提出激光回馈测量原理,实现了无靶镜纳米测量,攻克了航空航天、先进制造和国防安全领域的无靶镜测量难题,并开展了多种应用研究,包括:位移测量、激光侦听、高精度激光测距及雷达技术等。哈尔滨工业大学副研究员 杨睿韬《短脉冲光频梳激光测距技术》(点击报名)杨睿韬,哈尔滨工业大学副研究员,博士生导师。研究方向为超精密激光干涉测量,重点攻关短脉冲/光频梳生成与稳频、光梳激光测距等关键技术,承担国家重点研发计划课题/子课题、国自然面上等项目,参与国家科技重大专项、欧盟计量联合研究计划等项目。获中国计量测试学会科技进步一等奖(序4/6)、全国优秀博士学位论文提名等奖项。担任国际SCI期刊Photonics客座编辑。发表学术论文20余篇,申请发明专利10余项,出版专著1部。指导哈工大优秀本科/硕士毕业论文共5人,指导大学生光电设计竞赛国赛一等奖等2项。【报告摘要】 激光测距技术是大范围、高精度空间几何量测量的核心技术基础。短脉冲光频梳的诞生极大的推动了该技术领域的发展,其独特的时域短脉冲序列、频域等间隔梳状多光谱特征,不仅大幅提高了经典的飞行时间、调制波测相、多波长干涉等测距方法的性能,更引领了一系列新型激光测距方法的发展。本报告分析了短脉冲光频梳激光测距方法及趋势,介绍了项目组在短脉冲光频梳激光测距领域的最新进展。更多详细日程如下:第二届精密测量与先进制造主题网络研讨会报告时间报告题目报告嘉宾单位职称12月14日上午09:00-09:30纳米级微区形态性能参数激光差动共焦多谱联用测量技术及仪器赵维谦北京理工大学 光电学院院长09:30-10:00扫描白光干涉表面形貌测量技术:原理及应用苏榕中国科学院上海光学精密机械研究所研究员10:00-10:30先进封装工艺中三维几何尺寸监控的挑战与布鲁克白光干涉技术的计量解决方案黄鹤布鲁克(北京)科技有限公司应用经理10:30-11:00激光干涉精密测量技术、仪器及应用谈宜东清华大学 精密仪器系系副主任/副教授11:00-11:30关节类坐标测量技术于连栋中国石油大学(华东)教授12月14日下午14:00-14:30基于相位辅助的复杂属性表面全场三维测量技术张宗华河北工业大学教授14:30-15:00短脉冲光频梳激光测距技术杨睿韬哈尔滨工业大学副研究员15:00-15:30机器人精密减速器及关节测试技术程慧明北京工业大学 博士研究生15:30-16:00纳米尺度精密计量技术与国家量值体系施玉书中国计量科学研究院纳米计量研究室主任/副研究员16:00-16:30尺寸测量,从检验走向控制与孪生李明上海大学教授为促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。报名页面:https://www.instrument.com.cn/webinar/meetings/precisionmes2023/
  • 德国政府资助研发新型高敏感快速光学测量技术
    现代日常生活已离不开技术复杂的产品,高技术产品的生产工艺也在不断改变,关注产品质量之外也致力于采用高效、的生产方式,通过改善程序循环来尽可能避免产品污染或是毒性负载。尤其在产品销量大的工业领域,制造方式的修正对经济与环境有显著影响。 优化生产工艺的基本条件是拥有合适的、尽可能普遍适用的高水准传感测量仪器,而目前市场上提供的设备多数不适用,或速度太慢,或对必要的检测限度不够敏感。 为解决这个现实问题,德国联邦教研部近日斥资40,4万欧元,支持联合研发项目&ldquo 基于中红外激光源的光学直列流体分析仪(OIFA)&rdquo 。该项目于今年6月正式启动,为期三年,目标是研发新型高敏感快速光学测量仪器,成品将是模块化的、坚固的光学传感器现场设备,可以普遍用于测量各种不同的流体&mdash &mdash 气体或液体,可测量出最少量的毒素污染。应用这项技术,原先复杂的样本制备与提取、用于运行实验室分析仪器的基础设施等均可放弃。 新测量技术的设计全靠新红外激光器,这种不过大头针针头般大小的激光器在中红外波段发光,非常适宜测量多种在这个范围内吸收光的物质,既便是十亿分率范围内(parts-per-billion)的浓度也可检测出来,通过测量装置上的信号变化,显示出尽管含量极低却对工业程序、对环境与人体具有很大影响的物质。 极其出色的敏感度及快速是这项技术的独到之处。结合针对工业用户与未来潜在用户方面的必要知识,新的光学传感器可为填补市场空缺作出贡献。为评估其适用性,该项目在进程中将先生产出样机,试验应用的领域是测量高压、高温下可燃气体中的一氧化碳,之后还将投入实际生产场地经受检验。 以上信息有HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱等设备。
  • 真空设备助力中国PandaX暗物质探测项目
    人类的进步和生活方式的改变,与科学的发展和变革息息相关。从古代人对天文地理编制的美丽神话“盘古开天”,到21世纪好莱坞科幻大片中的“星际穿越”,人类对于广袤宇宙的向往和探索从未停止过。纵观近现代 “群星闪耀”的基础物理发展史,从牛顿,麦克斯韦到爱因斯坦,从万有引力,相对论到量子力学,超弦理论,这些重大发现和著名物理学家不断涌现,推动了现代科学的快速发展。然而,近50年的时间里,基础物理学稍显停滞,并没有出现能够与相对论、量子力学等重大理论突破相提并论的新发展。正因为此,很多拥有伟大物理梦想的科学家和研究人员在着力推动基本粒子和暗物质粒子探测研究,期待可以直达真理,不断探索宇宙的终极秘密。在“标准宇宙学模型”中,宇宙由68%的暗能量(Dark energy)、27%的暗物质(Dark matter)和5%的普通物质(matter)组成,但迄今还没有暗物质观测的直接数据。当前探测暗物质粒子主要包括三类实验方案:一是对撞机探测,通过对撞机实验来产生暗物质粒子,进而探测出来;二是间接探测,包括卫星试验和空间站实验,例如2008年美国发射的名为Fermi的γ射线探测卫星,2015年我国发射的“悟空”暗物质粒子探测卫星;三是直接探测,通过暗物质粒子与原子核作用对暗物质粒子进行探测,但由于作用信号非常微弱,很容易湮没在大量本底环境中,因此需要把探测器放在地底深处的实验室以屏蔽宇宙射线干扰。中国PandaX暗物质探测项目持续推进‍在暗物质粒子的直接探测实验领域,全球有三大最先进的研究项目实验组;中国的PandaX,美国的LUX-ZEPLIN,意大利的XENON。PandaX(熊猫计划)是“粒子和天体物理氙探测器”(Particle and Astrophysical Xenon Experiments)的英文简写,是我国开展的首个百公斤级大型暗物质实验。这些实验都是利用液氙(Xe)作为探测媒介来寻找暗物质。PandaX项目组依托于上海交通大学粒子与核物理研究所和李政道研究所,并与中国科学技术大学,北京大学,山东大学和南开大学等相关实验室直接合作。在2016年PandaX二期实验(500公斤级液氙)已经取得了世界领先的暗物质探测灵敏度。据上海交通大学低温制冷与液化研究室负责人巨永林教授表示,目前正在进行四吨级液氙探测实验PandaX-4T,将暗物质探测灵敏度向前推进了1-2个数量级。暗物质直接探测需要稳定的低温真空环境 尽管直接探测实验在全世界已经开展了约30年的时间,实验灵敏度有了巨大的提高,但是到目前为止,还没有发现令人信服的暗物质散射的信号。因此,PandaX-4T探测项目通过使用4吨液氙全面增大了灵敏度,但同时在整体实验设计上也会有很多新挑战并需要各种性能优化。考虑到探测机制原理,要探测未知的暗物质跟已知的氙原子可能产生的微弱的闪动光信号,并将其转换成电信号放大来测量,关键就是把其他已知粒子带来的信号全部排斥在外。在PandaX-4T实验项目中,包括了八个子系统:时间投影室探测系统、光电探测系统、前端电子学系统、触发和数据获取系统、气体存储和处理(又称气体纯化)系统、低温系统、精馏系统、低本底控制系统等。其中,低温制冷系统和气体纯化系统都使用了真空泵组作为必要的设备部件,来实现两个基本保障:首先是稳定的低温真空工作环境(零下95度左右),减少外界环境的漏热,将探测介质氙的温度波动控制在大概±0.1k;同时,需要先将材料表面、阀门管道和管线等烘烤加快杂质气体释放,然后抽真空处理,这样氙和极少量的残余气体流经纯化系统,此过程中会吸附气体杂质(避免杂质对后期微弱信号捕捉的干扰),保障氙的纯度。普发真空泵为客户提供高性能真空解决方案PandaX从最开始的250公斤氙的用量,到现在的PandaX-4T,即4吨有效探测量的氙,计划未来将进行30吨级暗物质探测实验,全面覆盖暗物质的参数空间。所以,系统越大就越复杂,探测设备的尺寸越大,绝缘结构和隔热结构的层数就越多,管线数量大大增加。因而对真空泵的数量或者抽速就带来很高的要求,比如理想的夹层真空度一般需要达到10-4帕。因此,实验项目组选择真空泵的主要性能参数(技术指标)就包含了极限真空度,真空泵抽速,密封性,尺寸规格等。据上海交通大学制冷与液化研究室负责人巨永林教授表示,目前PandaX实验组已经购买了10台普发真空泵(其中6台用于低温系统和液氙存储系统,4台用于精馏系统),主要有以下几个方面的原因:首先,普发真空产品的主要技术指标能够满足严苛的实验条件;其次,产品性能足够优异的基础上,价格合理;再次,普发真空的辅助测量系统使用便捷而稳定,能对持续大半年的不间断探测运行提供可靠的支持;最后,普发真空的售后服务也很完善,能够提供各种技术支持和泄露检测解决方案等等,从而有力地支持了整个PandaX项目运行。从现在到未来,普发真空不断助推暗物质探测目前,普发的真空泵Hicube300Pro和Hipace300已经在PandaX-4T实验项目中得到了成功实践。一方面,真空泵作为必要备件被部署于上海研发实验室的暗物质探测器的子系统中,配合优化和升级的需要;另一方面,普发真空泵被部署于位于世界岩石覆盖最深的四川锦屏地下实验室暗物质探测系统中,实现稳定运行。从实际探测过程看,普发真空泵基本保障了整个探测系统的低温真空环境,为确保探测的灵敏度和精度保驾护航。值得一提的,由于系统运行的特殊地理环境等因素,可靠实时地保障系统各层级的极限真空度,系统部件必须确保极低的漏率,因此PandaX-4T项目还使用了ASM 340D系列检漏仪。通过采用该设备,可以有效地监测出来细微到10-13 Pa• m3/s 的泄漏。 “在目前PandaX-4T项目的基础上,实验室还在研发30吨液氙的探测项目,希望把精度推向下一个数量级。在我们的计划中,从2025年到2035年,这一项目预计总投资将达到数十亿人民币,需要购买47吨液氙来进行暗物质探测。”对于未来的研究计划,巨永林教授满怀信心,也满怀期待,“毫无疑问,液氙的量级越高,对于低温真空环境的稳定性要求也会越高,未来对高性能真空泵的需求也是非常大的。我们希望,以普发真空为代表的企业,能为我们的基础物理研究不断提供更好的工具支持。” 关于普发真空普发真空- (Stock Exchange Symbol PFV, ISIN DE0006916604)-作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的复合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种旋片泵,干泵,罗茨泵,多级罗茨泵,检漏仪,真空计, 质谱仪等产品以及真空管件和系统解决方案。 从普发真空发明涡轮分子泵至今, 我们在全球分析仪器、工业、科研、半导体和前端技术领域,始终代表着创新的解决方案和高品质的产品。公司自1890年创立至今百余年始终走在世界前沿, 在全球拥有 3,400 多名员工,20 多个办事处和 10 个制造工厂。
  • 快速全视角测量系统
    成果名称 快速全视角测量系统 单位名称 北京泰瑞特检测技术服务有限责任公司 联系人 闫实 联系邮箱 yanshi@tirt.com.cn 成果成熟度 □研发阶段 □原理样机 □通过小试 □通过中试 &radic 可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 1. 解决的关键技术 (1)软件的调试 本仪器系统的软件调试包含快速视角测试传感器、自动测试平台以及测试软件这三部分的联机调试。 解决了三部分的通讯应答问题,实现了测试系统的自动控制。 解决了测试软件的自动识别边界功能 测试软件增加了模糊控制功能,增加了边界识别,防止测试系统在进行自动测试时全视角测试传感器与测试平台发生碰撞。 解决了测试软件的灵活性问题,用户可以根据自己的工艺要求,对测试过程进行编辑,测试系统按照编辑的工艺过程自动测试。 (2)光学镜头组件模组化 本项目将研制一套透镜组件的固定模组,实现透镜组的焦点在一条直线上,且满足焦距的微调,达到透镜组件的光学参数和精度保持一致。 提升了镜片的镀膜增透工艺,改善了镜头的透过率,改善了低亮度状态下的测试效果。 修改了镜头调试工艺,在镜头调试过程中,缩短了调试时间,简化了调试的复杂程度。 (3)CCD传感器降低暗噪声 将CCD传感器放置在密封的抽真空空间中,将这个空间用温度控制器进行控制,将温度控制在-5℃至-20℃之间的某一个温度值(这个温度值是根据CCD传感器的参数具体设定的),让CCD传感器的暗噪声最小。 改善了温度控制电路,增加了温度传感器,对CCD传感器的环境温度进行闭环调节。 (4)仪器校准 根据工作原理,提出测量系统的校准方案,并完成校准平台的设计和搭建,配合设计与本测量系统相适应的校准软件,实现对测量系统视角、亮度及色度的校准。 完成了校准平台点光源的改装,提升了点光源的漫反射控制。 2. 创新性及应用情况 (1)CCD传感器系统的环境温度控制设计 本传感器系统将CCD传感器放置在密封的抽真空空间中,用恒温控制装置进行控制,实现CCD传感器最佳工作状态,有效降低其工作暗噪声实现低亮度条件下的准确测量。 (2)光学镜头的远心的设计 在快速视角测试传感器中,设计了一个傅里叶转换板,将入射光进行拆分,使其各角度的入射光线平行入射到CCD传感器接收板上,无需对镜头进行对焦,实现各角度入射光的光性能测量。 (3)可视角的快速测量 本测量系统可以完成显示器件或组件的全视角参数的快速测量。可视角的测量范围可以达到± 88° ,可视角的解析度实现1° ,可视角精度可以达到0.1° ,测量方位角达到360° 。还可快速获得与可视角相关的其他光性能参数数据(亮度和色度等),对显示器件的性能做出快速的全面评价,相比传统仪器有重大技术进步。 3. 技术指标 全视角快速测量测量传感器一套,暂定型号:MS-88 ,其技术指标: 入射角:-88° &mdash &mdash 88° ; 方位角:0-360° ; 可视角解析度:1° ; 可视角精度:0.1° ; 亮度测量范围:0.01-20,000cd/m2 亮度测量精度:± 2.5%(L10cd/m2) ± 2.8%(0.01-10cd/m2) 亮度测量重复性:0.1%(L10cd/m2) 0.2%(0.01-10cd/m2) 色度测量精度:± 0.001(L10cd/m2) ± 0.001(0.01-10cd/m2) 色度测量重复性:0.0008(L10cd/m2) 0.0009(0.01-10cd/m2) 2.自动测试平台一套,暂定型号:ZD3423 技术指标: 机械轴数:三轴 机械尺寸:3m(L)*4m(w)*2.3m(h) 机台重量:2,800Kg 机台解析度: X轴:0.01mm;Y轴:0.01mm ;Z轴:0.01mm 机台精度: X轴:± 0.1mm;Y轴:± 0.1mm;Z轴:± 0.1mm 3.自动控制软件一套 4.校准平台一套 a.校准平台实现的目的: (1)完成对全视角快速测量传感器的角度的校准;(2)完成对全视角快速测量传感器的色度和亮度的校准。 b.校准平台的功能 (1)校准平台由独立的两套平台组成,一套平台完成全视角快速测量传感器的视角、色度和亮度的校准,并将校准结果存入此套传感器的库文件中,此套平台我们定义为A平台; 另一套平台功能是将色度和亮度测量标准传递给被测显示器,使得被测显示器成为标准的传递物,此套平台我们定义为B平台。 (2)A平台实现的机械功能 测试架X轴行程范围:100mm ;测试架Y轴行程范围:100mm ;测试架X轴灵敏度:0.01mm; 测试架Y轴灵敏度:0.01mm; 卡具水平旋转范围:± 90º ; 卡具垂直旋转范围:± 90º ; (3)B平台实现的机械功能 测试平台X轴行程范围:100mm;测试平台Y轴行程范围:100mm;测试平台X轴灵敏度:0.01mm;测试平台Y轴灵敏度:0.01mm;点光源水平旋转范围:± 90º ;点光源垂直旋转范围:± 90º ; 5.测试信号源一台 型号:NC804 技术指标: 具备ESD和隔离保护措施。通过DDC通道读取/写入/比较EDID数据。移动十字线精确定位像素坐标。可编程VBL及VDD 输出LVDS编码兼容JEIDA/VESA标准,可选DE/Hsync/Vsync。分辨率支持4096(dot)*4096(line)4ch LVDS信号输出,支持4象限、左右图像控制。 应用前景: 针对国家检测院所及龙头平板生产企业(例如boe,华兴光电,南京熊猫,龙腾光电,中国计量院等)的需求制定销售方法及配套产品,做好技术服务,定期进行技术交流,制定交流时间表,采用具有专业技术背景的销售人原服务跟踪指定客户。了解用户的工艺需求,在用户的有效需要范围内制定控制系统,充分满足用户的生产需求。在此基础上开拓其他领域,例如汽车面板视角检测,纳米材料方面的检测,模具表面检测等领域。采用公司的主要销售渠道,扩展代理渠道,在主要客户服务区设定产品代理技术服务代理。例如我们已经在深圳设置了产品代理及服务部门,在山东潍坊设立了产品代理商,主要服务于青岛区域及歌尔声学等企业。 知识产权及项目获奖情况: 本仪器所有知识产权归北京泰瑞特检测技术服务有限责任公司和北京三爱威迪科技有限公司以及北京市科学技术委员会共同所有。
  • 日立推出暗场晶圆缺陷检测系统DI4600,吞吐量提高20%
    日立暗场晶圆缺陷检测系统DI46002023年12月6日,日立高新宣布推出日立暗场晶圆缺陷检测系统DI4600,这是一种用于检测半导体生产线上图案化晶圆上颗粒和缺陷的新工具。DI4600 增加了一个专用服务器,该服务器提供了检测颗粒和缺陷所需的显著增强的数据处理能力,从而提高了检测能力。与之前的型号相比,通过缩短晶圆转移时间和改进晶圆检测期间的操作,系统的吞吐量也提高了约 20%。DI4600将实现半导体生产线中高精度的缺陷监测,这将有助于提高产量和更好的拥有成本,促进半导体产量持续扩大。发展背景在当前的社会环境中,DRAM和FLASH等存储器半导体设备,MPU和GPU等逻辑半导体不仅用于智能手机、笔记本电脑和PC,还用于生成人工智能(AI)计算和自动驾驶。随着半导体器件的萎缩和复杂性的发展,对制造过程清洁度和检测能力的要求也变得更加严格。半导体制造商不断努力提高竞争力,尤其是在性能和制造成本方面。图案化晶圆检查工具通过检查生产晶圆的表面是否有颗粒和缺陷,有助于产量管理,使工程师能够监测半导体处理工具的清洁度变化和趋势,因此对半导体器件的性能和制造成本有很大影响。关键技术1.高通量与现有型号相比,通过减少晶圆转移时间、改善晶圆检测期间的操作和优化数据处理顺序,吞吐量提高了约 20%。2.高精度检测由于增加了专用服务器,因此提高了检测精度,该服务器提供了检测颗粒和缺陷所需的显着增强的数据处理能力。
  • 科学仪器助力科学家破解天文学难题 一箭双雕揭秘第一代星系和暗物质
    宇宙中第一代星系是如何形成的?暗物质的性质是什么?这两大谜团能否同时通过天文观测进行研究揭秘?最近,我国天文学家提出,通过测量21厘米森林的一维功率谱,未来的平方公里阵列射电望远镜(SKA)将能够同时揭秘宇宙第一代星系和暗物质的性质。相关研究发表在国际学术期刊《自然天文》上。探测21厘米森林一直面临极大挑战宇宙中存在大量的中性氢气体。这些气体中的氢原子在基态能级超精细结构之间的跃迁,会产生电磁波波长为21厘米的线辐射,也就是中性氢21厘米线。中性氢21厘米线为天文学家探索宇宙提供了巨大的机遇。“中性氢21厘米线为探测宇宙黎明与第一代星系提供了独一无二的手段。同时,利用中性氢21厘米谱线探测宇宙黎明与再电离也是平方公里阵列射电望远镜最重要的科学目标之一。”论文共同通讯作者、中国科学院国家天文台研究员陈学雷说。同时,宇宙早期各种结构及其周围的氢原子气体会在高红移射电点源的光谱上产生密集的21厘米吸收线。“这些吸收线丛,被天文学家形象地称为21厘米森林。”陈学雷说,多年来,探测21厘米森林一直面临极大挑战。“主要原因有两方面:一是21厘米森林信号微弱,并且探测它所依赖的宇宙黎明时期的射电亮源难以获取;二是21厘米森林信号同时受到第一代星系加热效应和暗物质性质的影响,因此在观测上我们很难区分这两种效应。这就使得21厘米森林探测难以实际用于限制第一代星系的加热效应或暗物质的性质。”论文共同通讯作者、中国科学院国家天文台副研究员徐怡冬解释。近年来,已经有一批高红移射电噪的类星体被发现,而且平方公里阵列射电望远镜也进入了工程建设阶段,开展21厘米森林探测已迫在眉睫。在这项研究中,我国天文学家提出了一种原创性的统计测量方案,使得21厘米森林不仅能够限制宇宙第一代星系的性质,还可以同时测量暗物质粒子的质量。新方法有望拓展人类对宇宙的认知“我们意识到由第一代星系的加热效应和温暗物质引起的信号变化,在光谱上的尺度分布特征存在明显不同。通过一维功率谱分析,我们未来可以从统计上区分这二者。”徐怡冬介绍。“21厘米森林的一维功率谱确实可以成为一箭双雕的宇宙学探针,它为揭开暗物质和第一代星系之谜提供了一种极有前景的新途径。”论文共同通讯作者、东北大学教授张鑫强调。针对此研究,加拿大圆周理论物理研究所教授凯瑟琳麦克评论道:“这项研究提出了一种有趣的方法,能够利用21厘米森林功率谱同时限制宇宙X射线对星系际介质的加热,以及温暗物质的可能效应这两种现象。虽然以前的研究已经检查了21厘米森林作为星系际介质探针的可能性,但将温暗物质效应作为一个独立信号包含进来,则为未来的观测提供了一个新的科学目标。”《自然天文》的编辑团队也针对这项研究发表了评论:“我们宇宙的最远处总是极为神秘,由于被尘埃、吸收光的原子和中间介质中的气体阻挡而很难直接观测。这项研究将吸收转化为一种优势,利用它打破了其他方法所遭遇的不同效应的简并,并可用于阐明早期宇宙的结构形成。”研究人员表示,这一突破性方法的发展对于解开暗物质和宇宙早期天体形成的奥秘具有重要意义,并将进一步推动我们对暗物质的理解,揭示宇宙结构形成及演化的过程。通过更深入的观测和分析,我们有望在不久的将来获得关于暗物质性质和早期星系形成的更多见解,进一步拓展我们对宇宙的认知。
  • 如此轻松!30分钟快速搭建X射线相衬、暗场成像光栅装置
    模块化 高性价比 X射线相衬 暗场成像套件与传统的X射线吸收成像相比,X射线相位衬度成像能够为轻元素样品提供更高的衬度,特别适合用于对软组织和轻元素构成的样品进行成像。目前主要存在5类相衬成像方式,他们大部分对光源的相干性要求极高,只能在同步辐射光源或者借助微焦点X射线源实现。而光栅法相衬成像,经过十多年的发展,已经成为在实验室实施相衬成像实验的主流技术路线。但是,高深宽比和大视场光栅的制作一直是困扰研究人员的一个痛点,LIGA技术的出现及成熟,使得此类光栅的制作变得更加的容易及可靠。基于X射线相衬成像的光栅利用Talbot自成像效应来获取有关X射线因折射和散射而产生的微小角度偏转的信息。这在医学成像和材料研究等各个领域都有潜在的应用。但是对于刚进入这一研究领域的科研工作者或者单纯想快速获得相衬图片的用户来说,繁琐的光栅参数模拟、全新开模制作光栅价格昂贵、精密平移台的选择及精密调节都将耗费大量的精力。为了解决这个问题,德国microworks公司推出了一套模块化、高性价比的X射线相衬、暗场成像套件-TALINT EDU。-TALINT套件-Microworks的TALINT EDU系统是一款结构紧凑、物美价廉的TALbot干涉仪套件。它是X射线Talbot-Lau干涉仪的巧妙简化形式,包括了建立和微调干涉仪所有必要的硬件,通过相位步进步骤来获得三种成像模式应用:吸收成像、相衬成像和暗场成像。使用者可以在不到半小时的时间内快速组装。对于这个简化的系统来说,图像采集是手动的,在相位步进过程中获得的图像非常适合于图像分析科学家。- TALINT EDU包装一览 -00:16Talint-EDU 套件主要参数套件规格套件尺寸 60cm x15cm x20cm安装EDU套件底板为M6螺孔,孔间距25mm的面包板,可安装于用户的光学平台或任何适合 25mm 间距的装置G0-G1和G1-G2距离 29cm,通过精密定位销固定;对称安装方案1:所有3个光栅角灵敏度的设计能量周期(光栅周期超过光栅间距) 40 keV 6.0 μm 21 μrad方案2:所有3个光栅角灵敏度的设计能量周期 21 keV 4.8 μm 16 μrad光栅有效面积G0: 15 mm ØG1: 70 mm ØG2: 70 mm Ø干涉仪微调可调整G1和G2绕光轴旋转角度两种光栅都可以用精密调节的螺旋千分尺绕光轴旋转样品放置可放置于靠近G1任意一侧相位步进闭环压电平移台,30nm分辨率 (包含控制器)条纹可见度 典型值15%光栅组选项 (含3块光栅)标准规格参数设计能量-40 keV设计能量-21 keV光栅周期(3块)6.00μm4.80μmG0 G2 吸收材料及高度金>150μm金>50μmG0 G2 光栅占空比0.55(容差范围0.5-0.6)0.55(容差范围0.5-0.6)G0 G2 光栅衬底石墨 400μm石墨 400μmG1 相移材料及高度Gold 7.7 μm (40 keV)Nickel 7.4 μm (21 keV)G1 光栅占空比0.5(容差范围0.45-0.55)0.5(容差范围0.45-0.55)G1 光栅基底硅 200μm硅 200μm视场范围(样品)35mm35mmTALINT-EDU 为一维光栅对称结构,除上述标准光栅套组外,还可根据要求提供其他能量段,视场等定制光栅。应用示例1. CFRP拉伸试验试棒吸收像相位像暗场像- 相衬成像增强了空腔折射信号的成像衬度- 暗场成像增强了由纤维束引起的散射信号的成像衬度2. 裂纹损伤吸收像 暗场像- 暗场成像增强了发丝状裂纹散射信号的成像衬度3. 3D打印钛波纹管照片吸收像暗场像- 暗场成像增强了残留粉末散射信号的成像衬度Microworks 代理产品 滑动查看下一张图片 德国Microworks公司基于及独特的LIGA技术,向广大科研用户提供定制化的微结构加工服务。其中,它的X射线透射光栅在相衬成像领域,有着极高的声誉。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的EUV、X射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。
  • 3月15日截止!2023年“科学探索奖”申报指南出炉
    2023年1月1日,第五届“科学探索奖”申报工作正式启动。作为目前国内金额最高的青年科技人才资助计划之一,2023年“科学探索奖”仍设置十个领域,包括数学物理学、化学新材料、天文和地学、生命科学、医学科学、信息电子、能源环境、先进制造、交通建筑、前沿交叉,将资助不超过50位青年科学家。“科学探索奖”是一项由科学家主导、腾讯公司出资的公益奖项。秉承“面向未来、奖励潜力、鼓励探索”的宗旨,“科学探索奖”鼓励青年科学家心无旁骛地探索科学“无人区”。中国科学院院士、中国科学院生物物理研究所研究员、第十一届全国政协副主席王志珍表示:“‘科学探索奖’已经成为中国科技界极为关注的大事,正在树立越来越高的声誉。”今年“科学探索奖”的申报时间为2023年1月1日至3月15日。于1977年1月1日(含)后出生,获得博士学位,全职在中国内地及港澳地区工作(国籍不限)的青年科学家,即可按照相关指引,通过奖项官方网站(点击前往官网)进行申报。申报结束后,评审委员会将独立开展评审,获奖名单拟定于2023年8月揭晓。从2023年开始,“科学探索奖”的专家提名,每次提名三年有效。今年的申报截止日期和往年相比有所提前,请有意申报的青年科学家务必按时提交各项材料。奖项申报系统全面升级,体验更为便捷友好,往年已申报奖项的青年科学家通过同一账户登录,可复用或修改已提交的材料。需要注意的是:“科学探索奖”与“新基石研究员项目”同属于腾讯公司发起和资助的科技人才资助项目,二者在申报时存在互斥关系。同一年度,符合条件的申报人只能申报“科学探索奖”或“新基石研究员项目”,不得同时申报两个项目 “新基石研究员项目”获资助者不得申报“科学探索奖”。“科学探索奖”申报指南(2023年)根据《“科学探索奖”章程》,为帮助申报人了解“科学探索奖”申报条件、流程与注意事项,制定本指南。一、申报时间申报启动时间为2023年1月1日,截止时间为2023年3月15日24时(北京时间)。二、申报条件申报人应当同时具备以下条件:1. 1977年1月1日(含)后出生。2. 获得博士学位。3. 在中国内地或港澳地区全职工作(国籍不限)。三、申报流程(一)专家提名1. 由奖项邀请的提名人发起,并提供两位推荐人信息。推荐人应具有正高级职称(教授、研究员、教授级高工、主任医师、主任药师等)。每位提名专家每年可提名一位候选人(被提名人),每次提名三年有效。2. 提名发起后,秘书处将邮件通知被提名人和推荐人。3. 被提名人须在2023年3月15日24时(北京时间)前通过项目官网提交申报。4. 推荐人须在2023年3月20日24时(北京时间)前通过邮件链接提交推荐信。推荐信三年有效,如推荐信数量不足将无法通过资格检查。(二)自由申报1. 申报人须在2023年3月15日24时(北京时间)前通过项目官网提交申报,并提供三位推荐人信息。推荐人应具有正高级职称(教授、研究员、教授级高工、主任医师、主任药师等)。2. 申报提交后,秘书处将邮件通知三位推荐人。推荐人须在2023年3月20日24时(北京时间)前通过邮件链接提交推荐信。推荐信三年有效,如不满三封申报人将无法通过资格检查。3. 因申报人提交申报材料与推荐人提交推荐信时间间隔较短,请申报人务必合理掌握申报材料的提交时间,确保推荐信能够在截止时间之前提交。四、申报材料1. 个人信息、教育和工作经历等。2. 学术成就、科研项目、代表性成果等。3. 申报领域、未来五年工作计划等。五、注意事项1. “科学探索奖”和“新基石研究员项目”均为腾讯发起和资助的科技人才项目。同一年度,申报人只能申报“科学探索奖”或“新基石研究员项目”之一,不得同时申报两个项目。“新基石研究员项目”获资助者不得申报“科学探索奖”。2. 申报材料中不得出现任何违反法律法规或含有涉密信息、敏感信息的内容;申报人应对所提交材料的真实性、合法性负责,严禁抄袭剽窃或弄虚作假。3. 涉及科研伦理与科技安全(如生物安全、信息安全等)的项目申报,申报人应严格执行国家有关法律法规和伦理准则。4. 项目申报应遵守申报人所在机构的规章制度。5. 申报人不得以任何形式干扰或影响评审工作。申报人通过打招呼、利益输送等手段试图影响评审工作,一经查实,取消为期3年的申报资格。关于项目更多信息,如常见问题解答(FAQ),请查看项目官网https://xplorerprize.org“科学探索奖”秘书处2023年1月
  • ASD丨黑化型如何影响蜥蜴对气候变化的敏感性
    蜥蜴,俗称“四脚蛇”又称“蛇舅母”,栖息环境广布世界各地。蜥蜴是爬行动物纲中最庞大的家族,其种类繁多,我国已知的有150余种,大多分布在热带和亚热带,其生活环境多种多样,生活于水中、栖息于沙漠、潜藏于地下、攀爬于树林、甚至是飞翔在空中,而且会为了环境的差异而演化出各种不同形态。蜥蜴是变温动物,在温带及寒带生活的蜥蜴于冬季进入休眠状态,表现出季节活动的变化。在热带生活的蜥蜴,由于气候温暖,可终年进行活动。但在特别炎热和干燥的地方,也有夏眠的现象,以度过高温干燥和食物缺乏的恶劣环境。因为蜥蜴是变温动物,没有体内调温系统,大部分蜥蜴通过晒太阳来提高体温,需要一定温度才能活化身体,在身体晒暖之后才易于活动和进食。因此“晒太阳”吸收太阳光的能量这件事,对蜥蜴来说也尤为重要。种类繁多的蜥蜴,有各种各样的体表颜色,甚至有部分蜥蜴在不同环境下还可以通过改变肤色来保护自己。那么蜥蜴的体表颜色在气候变化时对其影响怎样呢?今天给大家推荐了解论文是“黑化型如何影响蜥蜴对气候变化的敏感性”。气候变化对全球生物多样性的影响已确立,但气候变化对同一物种内种群的不同影响很少考虑。在变温动物中,黑化型(即由于黑色素沉积较重,皮肤颜色较深)会显著影响体温调节,因此,深色变温动物可能更容易受到气候变化的影响。基于此,在本研究中,研究者们于2018年12月至2019年4月期间,以来自南非五个地点的56个健康成年多色蜥蜴 Karusasaurus polyzonus(有鳞目: 环尾蜥科)为研究对象,研究了气候变化对其种群活动模式的影响。作者假设在未来的气候预测下,由于对预测的更温暖的气候条件的不适性增强,所有种群的活动时间都会下降。此外,由于它们目前分布在南非的最南端,因此迁移到寒冷环境的机会有限,作者预测,由于深色皮肤可能产生更强的加热效应,深色个体将比非黑色化个体受到更严重的影响。为了考虑体型对体温调节的影响,作者对蜥蜴进行了称重测量。然后利用波长范围为350-2500 nm的ASD FieldSpec3光谱仪测量了蜥蜴背部14个斑点(头部3个,躯干9个,尾部2个)的反射率并计算其吸收率(假设没有透射,1-反射率)。同时测量了岩石样品的反射率。五个采样点Karusasaurus polyzonus蜥蜴的颜色非遗传多型性显示出不同程度的皮肤黑色素含量。【结果】与预期相反,所有种群都会增加活动时间,具体而言,深色种群将比明亮种群相对更活跃。这表明深色K. polyzonus 种群可能受益于全球变暖。南非 K. polyzonus 种群的预计活动模式和皮肤吸收率(a)个体吸收率与总活动时间的关系(b)与吸收率相关的相对于目前气候条件下活动的活动变化幅度偏秩相关系数(PRCC)测试三个时间段(当前、2040-2059年和2080-2099年)模型输出(即活动时间)和输入参数(吸收率、降雨量、微温度和体重)之间的线性关系【结论】作者提出了一种新方法以研究不断变化的气候条件下热黑化对蜥蜴生存能力的影响。与热黑色素假说(TMH)相一致,作者发现皮肤吸收率会影响体温,并最终影响变温动物的活动时间。而且,预测较暗个体的活动受升温影响比较亮个体更大。结果表明,有鳞类动物,仅次于昆虫,可能会因其有色皮肤而受到影响。研究强调了在研究对气候变化的响应时,考虑种群间差异的重要性,因为必须考虑这些差异来制定有效和具体的保护策略。未来的研究应该将这些发现延伸到其他变温物种,并可能确定有色皮肤的表型可塑性,以了解物种将如何应对快速变化的环境。请点击下方链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311980&idx=2&sn=45606049d85b1de792c1b3c6bbe6652f&chksm=bee1a1d3899628c5bb53bd6efe72b5f5e1558f4847a0ab1a7caeecc6a5ee8f723c44eaa228f7#rd
  • 为疫苗和其他敏感药品使用正确的数据记录器
    2019冠状病毒病的黑暗隧道已初见曙光,随之而来的是分发方面的挑战。每种疫苗都面临着其自身的管理挑战,例如温度要求和分发问题。利用数字数据记录器来监测疫苗冷链运输中的温度变化对于疫苗的效力至关重要。无论您是在处理国药、科兴、辉瑞、莫德纳、阿斯利康还是其他敏感药品,您都需要优质的数据记录器来跟踪温度。随着2019冠状病毒病危机的持续,我们希望在解决这些问题时为您提供一些重要提示。随着免疫领域的发现日益增加,可靠且合规的冷链监测是确保可行和有效的疫苗分发的关键。冷链依赖于一些重要因素,例如专业的送货员、合适的包装和可靠的物流系统,这些方面都需要实现良好的控制和监测。想一想,当箱子被密封、门被关闭时,如何解决疫苗的完整性和效力问题。没有人知道容器内部发生了什么变化,以及它必须面对什么样的环境。这就是为什么温度数据记录器十分重要的原因,因为它们在疫苗的运输和储存过程中发挥了非常关键的作用。在这里,我们将提供一些有用的信息,帮助您选择适合冷链监测的数据记录器。01 温度范围和精度选择数据记录器时,首先要考虑温度范围和精度。确定您处理的药品的温度范围。例如,复星-辉瑞疫苗应当储存在超低温冷冻箱中,温度介于-80°C和 -60°C(-112°F和-76°F)之间。如果您有超低温冷冻箱 (ULT),则需要一个合适的数据记录器来监测其温度。不过,美国和欧盟的监管机构最近提出了一种替代解决方案——现在,疫苗可以在-25°C至 -15°C(-13°F至5°F)温度下储存最长2周。[1]应跟踪疫苗在此温度范围内储存的总时间,不应超过2周。莫德纳疫苗可以储存在-50°C至-15°C(-58°F至5°F)的冷冻箱中。此外,在小瓶被刺破之前,它们也可以在 2°C至 8°C(36°F至46°F)的冰箱中储存长达 30天。到目前为止,强生和阿斯利康的疫苗最容易运输——它们可以在 +2°C 和 +8°C(36°F和46°F)(即正常的冰箱温度)之间储存长达六个月 [2], [3]。根据所需的温度范围选择合适的数据记录器极其重要。另一个关键点是精度。在监测对温度敏感的产品的存储条件时,高达±0.5°C的精度是值得信赖的。选择数据记录器时,应当寻找所需的规格,并注意不要在不必要的功能上支付过多成本。02 数据记录器的放置为确保理想的存储温度,每个纸箱或容器通常会使用两个数据记录器。一个应当放置在疫苗旁边,第二个则放置在容器外面。箱子里的数据记录器应当放置在疫苗存货处的中央。确保疫苗存货处和温度传感器不与冰袋直接接触,以最大程度地降低冻结风险。箱子外的第二个数据记录器必须放置在可见位置,以监测存储环境温度。产品包装好之后,记录器应立即运行,并继续运行直至到达目的地。要测量箱内温度,可能需要选择配有延长电缆的记录器,因为超低温(例如-70°C/-57°F)可能会冻结所有电子设备。对于莫德纳和阿斯利康等疫苗,建议使用 USB 类型的数据记录器。它们通常小而薄,易于放置在疫苗旁边。现在还提供多通道设计,只需一个记录器即可同时测量内部和外部温度。如何包装疫苗和准备运输03 读取数据另一个需要考虑的重点是,“谁”将读取记录器数据以及如何读取?收货人是否来自同一个国家/地区?一些数据记录器需要一个特定的读出接口,其他数据记录器则使用通用接口,例如通过 USB。对于较远的收货人或较远的目的地(例如国际运输),考虑到回运和管理,监测可能会花费很多精力。因此,一次性数据记录器可能是一种理想且经济高效的解决方案。有许多新技术可以通过蓝牙、Wi-Fi或5G等方式读取数据;但是,务必确保数据全面且不存在数据泄露风险。无论您选择哪种技术,软件都应当简单易用并且支持自动生成PDF报告。04 重新校准和校准证书WHO(世界卫生组织)建议每一到两年返回您的温度监测设备和控制传感器进行校准。正确的校准报告通过根据国际公认的校准和可追溯性标准测试仪器来证明数据记录器的准确性。购买具有校准证书的数据记录器。由于每个温度监测设备都会随着使用时间的增加而损失效率,因此,应当在到期日期之前预先制定一个重新校准计划。一种替代解决方案是使用一次性数据记录器。另一种解决方案是使用传感器可更换的数据记录器。此类产品包括具有唯一对应序列号的一次性插入式传感器。这种类型的设备(包括可更换传感器)通常会随校准证书一同交付给您。05 FDA 21 CFR Part 11 合规性由于数据记录器的品牌众多,因此制造商可能会使用许多不同类型的数据采集和分析软件包。但是,选择数据记录器的最重要标准之一是它是否符合FDA 21 CFR Part 11的规定。FDA 21 CFR的一个具体重点是第11部分。它包括对电子记录和电子签名的使用。对于依靠数字数据来监测其商品的公司,尤其是制药、食品和医疗保健行业的公司,确保符合21 CFR Part 11的规定至关重要。根据21 CFR Part 11法律,系统进入需要由每个用户的唯一登录名和密码控制。此外,它还提到了“使用安全的、计算机生成的、带时间戳的审计追踪来独立记录操作员进入以及创建、修改或删除电子记录的操作的日期和时间。”选择带有合规软件的数据记录器有助于确保相关领域中的数据安全和审计日志。我们希望上述5条提示能帮助您选择合适的数据记录器。如果您需要数据记录器和监测计划方面的支持,请联系我们——我们很乐意为您提供冷链流程和设置方面的指导。
  • 世界顶级测量平台:PPMS综合物性测量系统之拓展应用篇(下)
    上一期给大家介绍了PPMS的部分测量应用,为大家呈现了PPMS基于主腔体的多种功能选件,在几十年磁学探索及合作的道路上,这部分选件功能已经为大部分磁电研究领域的科学家给予了大支持。然而,QuantumDesign公司并未止步于此,在满足客户基本需要的基础上,我们在不断突破测试限,完善测试平台的多功能性、灵活性和稳定性,新近推出了更多系列的拓展功能选件。QuantumDesign公司近期与德国attocube公司联合推出了多款可以在PPMS平台上工作的显微学和光谱学组件,涵盖了表面形貌、磁电、光学等多个领域的高精度测量,实现在变温、变磁场环境下的多种测量模式(诸如原子力AFM、磁力显微镜MFM、扫描霍尔探针显微镜SHPM、共聚焦显微镜CFM等)的形貌及表面微结构的测量等,例如:1、对磁畴成像图1磁畴测量结果,样品为NiFe薄膜。测量温度300K,探针与样品间距为20nm,dual-pass扫描模式,空间分辨率为10.7nm2、BSCCO磁通随磁场B和温度T的变化图2磁场强度从-40Oe变化到+50Oe时,磁通出现反向图3提高样品温度,磁通结构消失3、BaFeO低温测量图4相对于MFM,SHPM具有定量测量、无需接触样品表面和更高敏感性的优点测量参数:霍尔电流:10μA;扫描范围:30μm样品与探针距离:350nm;磁场分辨率:0.19mT4、氧化铁薄膜压电显微镜测量样品:层状异质结(150nmBiFeO3-Mn/35nmSrRuO3/SrTiO3(001)衬底)测量温度:82K压电力振幅图像(图5a)压电力相位图像(图5b,压电畴方向为0°和180°)图5图中有两个正方形(正方向和旋转的)是分别采用+/-15V电压书写的,从振幅图可以看到,在畴壁区域,振幅为零图6电滞回线,测量温度82K;左右分别为相位和振幅信号5、MFM模式下的磁通测量图7复旦大学PPMS用户——4K和45Gs的MFM模式下探测铁基超导样品磁通目前,PPMS平台搭建attocube光学选件已经在拥有复旦大学、中科大、物理所等多家用户,满足了不同用户的不同测试需求。QuantumDesign公司在寻求外部合作的同时,也不断突破自我,勇于创新,逐步完善测试平台。包括温度控制部分、磁体冷却方式及磁场大小、电路部分升以及氦气的利用和回收方式等,并取得了较好的效果(从代大杜瓦,EC-I到二代reliquefier,EC-II然后当前新一代DynaCool),同时也致力于研发更多功能强大的选件(比如适用于MPMS3的ETO选件),希望这些选件能为科研工作者的研究工作带来更高的精度和更大的便捷。如果您对以上选件功能感兴趣,或者期望了解PPMS更多功能选件及应用案例,欢迎您拨打:010-85120280电话咨询,我们会尽快对您的咨询给出满意的答复!相关产品链接:mpms3-新一代磁学测量系统:http://www.instrument.com.cn/netshow/sh100980/c17089.htmppms综合物性测量系统:http://www.instrument.com.cn/netshow/sh100980/c17086.htm完全无液氦综合物性测量系统dynacool:http://www.instrument.com.cn/netshow/sh100980/c18553.htm多功能振动样品磁强计versalab系统:http://www.instrument.com.cn/netshow/sh100980/c19330.htm超精细多功能无液氦低温光学恒温器:http://www.instrument.com.cn/netshow/sh100980/c122418.htm低温热去磁恒温器:http://www.instrument.com.cn/netshow/sh100980/c201745.htmmicrosense振动样品磁强计:http://www.instrument.com.cn/netshow/sh100980/c194437.htm智能型氦液化器(ATL):http://www.instrument.com.cn/netshow/sh100980/c180307.htm
  • 阿尔法磁谱仪将传回首批数据 或发现暗物质证据
    阿尔法磁谱仪(又译反物质太空磁谱仪,简称AMS)于2011年被放置到国际空间站(ISS)   穿越辐射探测器(Transition Radiation Detector)能检测高能粒子的速度 硅追踪器(Silicon Trackers)用于追踪粒子的运动轨迹,轨迹的弯曲程度显示了粒子的电荷 永磁铁(Permanent Magnet)是阿尔法磁谱仪的核心部件,能令粒子轨迹弯曲 飞行时间计算器(Time-of-flight Counters)能计算低能粒子的速度 星体追踪器(Star Trackers)能扫描星域,以确定阿尔法磁谱仪在太空中的朝向 切伦科夫探测器(Cerenkov Detector)可精确计算快速通过的粒子速度 电磁量能器(Electromagnetic Calorimeter)用于计算影响粒子运行所需的能量 反符合计数器(Anti-coincidence Counter)可将干扰粒子过滤出去。   在宇宙的遥远天体之间,引力的作用并不能解释天文学家看到的一切,如果只有这些天体的引力,那各个星系应该处于分崩离析的状态,因此在各个星系之间,还存在把它们联接在一起的物质。天体物理学家将这种理论中的物质称为“暗物质”,我们看不见它们,但它们确实在星系间起着作用。在最大的距离尺度上,宇宙正在加速扩张。因此我们更需要关注与引力作用截然不同的暗物质。目前的理论估计,宇宙的73%为暗能量,23%为暗物质,而只有4%是我们已知的物质。   北京时间2月20日消息,据国外媒体报道,作为人类在太空中进行的最为昂贵的实验,阿尔法磁谱仪(简称AMS)项目即将向地球发送回首批观测数据。这个大型的实验装置被放置在国际空间站上,用于探测宇宙射线及高能粒子。   诺贝尔物理学奖获得者丁肇中称,将于未来几周内发表涉及暗物质的研究论文。阿尔法磁谱仪项目最初便是由丁肇中提议开始。在宇宙中,正是那些我们看不见的暗物质将各个星系联接在一起。研究者并不了解这些谜一般的宇宙物质如何构成,但有理论提出,大质量弱相互作用粒子(简称WIMP)是暗物质最有希望的候选者,这是一种尚处于理论阶段的粒子。   虽然天文望远镜无法探测到大质量弱相互作用粒子,但阿尔法磁谱仪很有希望通过间接的方法来确认其存在,并描述它的性质。即将刊出的研究论文(发表期刊还未确定)将对这项研究的进展作详细阐述。   丁肇中在麻省理工学院任物理学教授,他在20世纪90年代中期提出的这个项目如今到了一个重要的里程碑时刻。“我们等待了18个月来写这篇论文,如今到了最后审视的阶段,”丁教授在波士顿的一次美国科学促进会(AAAS)的年会上发言道,“我预计在未来两到三周内,我们就能发布研究成果。我们一共有六个分析小组对相同的数据结果进行分析。如你所知,每个物理学家都有他们自己的见解,我们现在要保证每个人都能同意彼此的观点。这项工作现在已经完成得差不多了。”   20亿美元的仪器:“探索未知”   2011年,造价20亿美元的阿尔法磁谱仪搭载奋进号航天飞机前往国际空间站,这也是奋进号的最后一次任务。阿尔法磁谱仪重达7吨,拥有一个巨大的特制超导磁铁,能使落在它上面的粒子轨迹发生弯曲。   粒子的弯曲轨迹显示了它的电荷,再通过一系列的探测器对粒子的质量、速度和能量等进行分析,科学家便能准确知道捕获的是什么粒子。据丁肇中教授称,在阿尔法磁谱仪运行的最初18个月中,已经探测了250亿次粒子事件。   暗物质和暗能量之谜   在这些粒子事件中,有近80亿次是快速运动的电子及与其对应的反物质——正电子。理论上,大质量弱相互作用粒子的碰撞和湮灭会产生大量电子和正电子。通过测定二者的比例,以及在能量谱上的行为变化,科学家或许能找到研究暗物质问题的途径。   “在对正电子和电子的观测中,如果发现二者比例突然上升然后急剧下降,那就是星系中暗物质湮灭的关键标志,”芝加哥大学卡弗里宇宙学研究所的迈克尔特纳(Michael Turner)教授说,“在能量体系中也要考虑,是否具有各向异性?正电子是从固定的某个方向还是从所有方向出现?”   特纳教授并未参与阿尔法磁谱仪的合作项目。他继续说道:“暗物质应该无所不在。因此如果我们发现正电子从某个特定的方向发出,就意味着该信号是来自像脉冲星(一种中子星)一类的天体,而不是暗物质。”据悉,此次阿尔法磁谱仪的数据涉及的是0.5至350GeV(10亿电子伏特)质量范围内的正电子—电子比例。这一范围已经是其他实验中,科学家认为可能发现暗物质的上限。   特纳教授说,科学家已经逐渐接近了目标。他预测未来数年将会被铭记为“大质量弱相互作用粒子(WIMP)的十年”,而且通过一系列的研究,包括利用大型强子对撞机制造WIMP等,暗物质的性质将逐渐呈现在我们面前。   “理论上,这种粒子的质量大约在质子质量的30、40和300倍之间,即在30至大约1000GeV之间,”特纳教授说,“大型强子对撞机能够制造这样质量的粒子,丁肇中的阿尔法磁谱仪能探测到这样质量的粒子湮灭,而位于深地底的探测器对这样质量的粒子也非常敏感。如果非常幸运的话,我们能同时获得有关暗物质的三个特征信号,分别是通过观测粒子湮灭、直接探测粒子以及用大型强子对撞机制造粒子,这三种方法在同样的质量范围内都很灵敏。”
  • LIGA技术制作X射线光学元件在X射线显微学中的应用
    LIGA 是德文的制版术Lithographie,电铸成形Galvanoformung 和注塑Abformung 的缩写。自20世纪80年代德国卡尔斯鲁厄原子核研究所为制造微喷嘴创立LIGA技术以来,对其感兴趣的国家日益增多,德、日、美相继投入巨资进行开发研究。该技术被认为是最有前途的三维微细加工方法,具有广阔的应用前景。与传统微细加工方法相比,用LIGA技术进行超微细加工有如下特点:1.可制造有较大深宽比的微结构。2.取材广泛,可以是金属、陶瓷、聚合物、玻璃等。3.可制作任意复杂图形结构,精度高。4.可重复复制,符合工业上大批量生产要求,成本低。LIGA的基本工艺流程如下:x射线掩模制作首先用电子束或激光对薄光刻胶进行第一次曝光,制成初级掩膜,然后经过显影、电镀等工艺步骤制成初级微结构掩膜板(此掩膜板本质上已经是一个高度较低的微结构)。对于高深宽比微结构,需要进一步制备额外的高深宽比掩膜板。X射线光刻(Lithographie)借助上述的初级微结构掩膜板,在厚光刻胶上用X射线进行曝光,然后经过显影、电镀等工艺步骤制成中级微结构掩膜板。由于同步辐射设备KARA(原ANKA)提供的平行x射线束,可确保高纵横比和光滑的侧壁。电镀(Galvanoformung)将上述步骤获得的光刻胶模具置于金属电镀液中进行电镀,即可实现高纵横比、高精度结构的金属零件。聚合物成型(Abformung)为了复制聚合物基板上的精密结构,可以使用上述工艺制作注塑和热压花用的模镶件。可实现微聚合物结构的精确复制。因此LIGA工艺制造的微结构聚合物和金属零件在x射线光学领域有着广泛的应用,包括在在科研机构和工业领域。 在之前的文章中我们介绍了LIGA工艺制造的光栅在X射线相衬成像领域的应用。今天我们准备给大家介绍它在X射线显微学中的应用。X射线显微学目前基于X射线光管的纳米成像的主要结构有两种技术路线(基于同步辐射的CDI等成像技术,今天暂不做讨论): 1.投影几何放大技术2. 基于菲涅尔波带片的扫描透视显微技术或全场透视显微技术等全场透视显微光路扫描透视显微技术上述方法中的Condenser lens通常使用复制技术、或者玻璃毛细拉伸技术来实现;用于聚焦或目镜的菲涅尔波带片(FZP)通常使用电子束光刻和干法刻蚀等复合技术来加工,今天我们着重介绍一下使用LIGA技术加工光束截止器(central stopper 或者central beam stop)和级次选取针孔Order select aperture。 X 射线波带片结构为一系列明暗相间的同心圆环,如上图所示中,每个环带的面积相等,这些明暗相间的圆环分别使用入射X射线透明与不透明的材料,从而使通过相邻透过或不透过的光程相差一个波长,从而在焦点上发生透过不同环带的相同位相光线的叠加。在扫描透视显微光路中为保证只有一阶衍射光入射到样品上,所以选用使用适当尺寸和吸收体厚度的级次选取针孔(OSA)和光束截止器(Central beam stopper)及其他们放置的位置是非常有必要且关键的。基于成熟的LIGA技术,Microworks公司制造一批多功能、性价比高且性能优越的级次选取针孔(OSA)和光束截止器(Central beam stopper)。光束截止器(Central beam stopper)基本参数吸收材料金厚度80µmBeamstop尺寸10 µm to 160 µm,间隔10 µm开口尺寸650 µm载体薄膜自支撑结构,每个圆柱体由3个宽2.5µm的薄鳍支撑。总尺寸4.5mm*4.5mm安装建议光束截止器非常稳定,可以使用简单支架夹持制作过程视频展示级次选取针孔(OSA)同时我们可以根据您的要求定制孔径和光束截止器。选项包括特定形状、大小、高度和或者特定的阵列等。北京众星联恒科技有限公司作为Microworks公司中国区授权总代理商,为中国客户提供Microworks所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供高端的x射线、极紫外产品及解决方案。参考文献:Ohigashi, T., et al. (2020) A low-pass filtering Fresnel zone plate for soft x-ray microscopic analysis down to the lithium K-edge region. Review of Scientific Instruments.李艳丽, 陈代谢, 孔祥东, 门勇, 韩立. X射线波带片的应用及制备[J]. 纳米技术, 2019, 9(2): 41-54.http://x-ray-optics.de/index.php/en/
  • 日立高新:在中国开售纳米尺度3D光学干涉测量系统VS1800
    p    strong 仪器信息网讯 /strong 2019年3月5日,日立高新技术科学公司宣布,在中国开始销售利用光干涉原理进行非接触式无损伤三维表面形态测量的纳米尺度3D光学干涉测量系统——VS1800 span style=" color: rgb(0, 176, 240) text-decoration: underline " 【 /span a href=" https://www.instrument.com.cn/netshow/C316288.htm" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 产品链接 /span /a span style=" color: rgb(0, 176, 240) text-decoration: underline " 】 /span 。据悉,VS1800于2018年年底在日本发布并销售,今日起,中国市场正式开始发售。 /p p   VS1800搭配有支持多目的表面测量国际标准“ISO 25178*1参数对比工具”,通过简单而准确的样品测量支持客户的分析业务,与此同时,凭借不断创新积累的三维测量性能,实现高精度、高分辨率的表面性状的测量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/f8ecf284-1695-4c8e-bf63-a2c0093622f0.jpg" title=" 1.jpg" alt=" 1.jpg" style=" width: 300px height: 423px " width=" 300" vspace=" 0" height=" 423" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " VS1800:通过分析工具和测量技术支持三维表面性状测量 /span /p p   strong   span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 产品开发背景 /span /strong /p p   在半导体、汽车、食品、医药品等产业领域的材料研究和开发方面,为了提高产品的性能与功能,对产品表面的粗糙度、凸凹不平、翘曲等表面形状的评估变得尤其重要。以往,表面形态的测量方法,一般是采用 strong 触针式粗糙度测量仪等进行二维测量(线+高差) /strong 。但近年来,伴随着材料的薄膜化和微细构造化的加速,需要能够获取更多的信息,传统测量手段受到限制。进而,采用 strong 扫描型白光干涉显微镜*2和激光显微镜*3等进行三维测量(面+高差) /strong 便得到了进一步灵活应用。 /p p   此外,2010年,三维表面形态评估的国际标准ISO 25178的制定,确立了评估方法,在此背景下,实施三维测量的企业和研究机构等日益增多。随之,表面形态测量上的测量与分析的简单化以及应对多种样品的测量等问题日益凸显,为解决这些测量问题,VS1800应运而生。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 产品解决了哪些测量问题? /strong /span /p p   此次发售的VS1800, 搭配了符合ISO 25178标准的分析工具 “ISO 25178参数对比工具”。在ISO 25178标准中规定了评估表面性状的32个项目的参数,但在对比样品时,选择最适合评估的参数很难,成为分析业务的难题。“ISO 25178参数对比工具”,通过按差异程度大小顺序自动对测量的参数值进行依次排序,可轻松选出最适合对比样品的参数,从而支持客户的分析业务。 /p p   此外,VS1800通过光干涉方法*4,除了可实现大视野测量、0.01nm的垂直方向分辨率*5、高重现性外,亦通过日立高新技术科学自主研发的技术,继承了多层膜的无损伤测量等传统产品的高测量性能。此外,该产品还可搭配“大倾斜角测量选配 ”*6功能,通过捕捉大倾斜角斜面的微弱的干涉条纹变化,实现传统的光干涉方式无法实现的大倾斜角斜面测量,从而应对多种多样的样品表面性状的三维测量。 /p p   至此,在表面分析系统解决方案方面,日立高新技术集团拥有了可实现极微细样品高分辨率测量的原子力显微镜、获得更大视野的扫描电子显微镜、高精度测量可能的VS1800等产品阵容,满足相关用户更广泛需求。 /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 产品主要特点 /strong /span /p p    strong (1)高测量性能 /strong /p p   ■ 垂直方向分辨率:利用光干涉方法,通过独自的算法,实现0.01 nm*的垂直方向分辨率 /p p   ■ 重现性:利用干涉条纹测量凸凹的高度,通过将来自Z驱动机构的影响最小化,实现0.1 %以下的重现性 /p p   ■ 测量速度:由于不需要样品的前处理,只要将样品放置在样品台上即可完成测量准备。通过光干涉方法最快5秒钟即可完成测量 /p p   ■ 测量视野:以从干涉条纹获取的信息为基础进行凸凹高度的测量,由此可实现广范围(One-shot最大6.4 mm× 6.4 mm)测量与高垂直方向分辨率的两者兼顾。此外,通过连接多个数据的图像,可进一步实现广范围的分析 /p p   ■ 无损伤测量:通过日立高新技术科学自主研发的技术,对玻璃和薄膜等透明多层结构样品进行测量时,无需对样品进行加工切割成截面,即可在无损伤的情况下,完成多层结构样品的各层厚度或异物混入状况的确认以及缺陷分析等 /p p    strong (2) 易于使用的操作界面 /strong /p p   采用直观易懂的操作界面,能够轻而易举地进行图像分析处理前后的图像对比,从而支持分析时的最合适图像处理选择。此外,可简单地列出处理与分析的内容、创建独自的分析参数、重复使用分析参数等,并且还可批量处理数据,由此实现统一管理多个样品和分析结果,减轻繁琐复杂的后处理。 /p p    strong (3) ISO 25178参数对比工具 /strong /p p   在对比多个样品时,通过将ISO 25178标准中规定的32项参数值按差异的大小顺序重新排列,从而在样品对比时能够轻松选取最适参数,支持客户的分析业务。 /p p    strong (4) 硬件升级 /strong /p p   按每一台XY样品台的驱动方式,设计了3个类型的产品,即基础模式的手动型Type 1、电动型Type 2、Type 3。从Type 1到Type 2、Type 3,均可根据不同的用途进行升级。 /p p    strong span style=" color: rgb(255, 255, 255) background-color: rgb(112, 48, 160) " 【附注】 /span /strong /p p   *1 ISO 25178:规定表面形态评估方法的国际标准。 /p p   *2扫描型白色干涉显微镜:利用 span style=" background-color: rgb(112, 48, 160) " /span 光干涉原理进行非接触式、无损伤的表面形态测量的测量设备。 /p p   *3激光显微镜:将激光作为光源进行表面形态测量的测量设备。 /p p   *4光干涉方法:是利用两列或两列以上的光波相互叠加而出现光明暗(干涉条纹)现象(干涉)的检查方法。 /p p   *5 0.01 nm的垂直方向分辨率为Phase模式时的性能。 /p p   *6“大倾斜角测量选配”为选择项目。 /p
  • 光电所暗场显微增强介质微球超分辨成像质量研究取得进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 /p p   受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白光显微下即可达到50nm的分辨能力。介质微球超分辨显微方式以其简单灵活的特点,受到国内外广泛关注,但微球的成像对比度一直有待提高。 /p p   近日,中国科学院光电技术研究所研究团队发展出一种利用暗场显微有效提高成像高频成分含量的方法,具有降低成像低频成分的特点,结合微球超分辨能力,可实现更高对比度的微结构超分辨显微。该方法通过时域有限差分法模拟分析微球在不同浸没方式、浸没深度情况下的半高宽及光强值等得到更优化的超分辨能力,模拟结果如图1所示。在此基础上,通过二氧化硅和钛酸钡微球在不同浸没情况下观察特征尺寸为139nm的硅光栅结构,实验结果如图2所示。可以看出,在暗场显微时成像对比度明显得到增强。 /p p   研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122565441349485.png" src=" http://img1.17img.cn/17img/images/201711/uepic/73b00051-a008-40d3-94d5-c45458140124.jpg" / /p p style=" text-align:center " 不同浸没深度的微球聚焦特性分析 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122569039673281.png" src=" http://img1.17img.cn/17img/images/201711/uepic/f335b35f-486d-4a12-91b4-35f95acbb34a.jpg" uploadpic=" W020171122569039673281.png" / /p p style=" text-align: center " 不同照明方式的微球成像质量对比 /p
  • 量子物理学促进电镜技术两大新成果:敏感样品高分辨成像和原子级粒子相互作用测量
    作者:俄勒冈州大学Laurel Hamers   UO CAMCOR工厂的扫描电子显微镜。物理学家Ben McMorran和他的团队想出了一种改进研究工具性能的方法。图片来源自俄勒冈州大学  量子怪诞正在为电子显微镜打开新的大门,成为高分辨成像的强大工具。  UO物理学家Ben McMorran实验室的两项新进展正在改进显微镜。这两种方法都源于量子力学的一个基本原理:电子可以像波和粒子一样同时运动。这是许多奇怪的量子级怪诞的例子之一,在这些怪诞中,亚原子粒子的行为似乎往往违反了经典物理定律。  其中一项研究发现了一种在显微镜下研究物体而不与之接触的方法,从而防止显微镜损坏易碎样品。第二种方法设计了一种同时对一个样本进行两次测量的方法,提供了一种研究该物体中的粒子如何跨距离相互作用的方法。  McMorran和他的同事在两篇论文中报告了他们的发现,这两篇论文都发表在《物理评论快报》杂志上。  “通常很难在不影响它的情况下观察到一些东西,尤其是当你观察细节时。”McMorran说道:“量子物理学似乎为我们提供了一种在不破坏事物的情况下更深入地研究它们的方法。”  电子显微镜被用来近距离观察蛋白质和细胞以及非生物样本,比如新材料。电子显微镜将电子束聚焦在样品上,而不是传统显微镜中使用的光。当光束与样品相互作用时,其某些特性会发生变化。探测器测量光束的变化,然后将其转换为高分辨率图像。  但这种强大的电子束会对样品中的脆弱结构造成破坏。随着时间的推移,它可能会削弱科学家试图研究的细节。  作为一种解决方法,McMorran的团队使用了20世纪90年代初发表的一项理想实验,该实验提出了一种在不触碰敏感炸弹、不冒引爆风险的情况下探测敏感炸弹的方法。  这个技巧依赖于一种叫做衍射光栅的工具,衍射光栅是一种带有微小缝隙的薄膜。当电子束击中衍射光栅时,它被一分为二。  McMorran实验室的研究生Amy Turner是第一项研究的主导人,她解释说:“在这些分束衍射光栅正确对准的情况下,电子进入并分裂成两条路径,但随后重新组合,使其只流向两种可能输出中的一种。其原理是,当你放入样品时,电子与自身的相互作用会被打断。”  在这种装置中,电子不会像传统的电子显微镜那样击中样品。相反,电子束重组的方式揭示了范围内样本的信息。  在另一项研究中,McMorran的团队使用类似的衍射光栅装置同时在两个地方测量样品。他们将电子束分开,使其在一个小金粒子的两侧通过,测量电子传递到每一侧的粒子的微小能量。  这种方法可以揭示样本在原子水平上的敏感细微差别,了解样本中粒子相互作用的方式。  劳伦斯伯克利国家实验室的博士后研究员Cameron Johnson在McMorran的实验室做了博士研究,并领导了这项研究。他认为:“这项研究的特殊之处在于,你可以观察它的两个独立部分,然后将它们结合在一起,看看这是一种集体振荡,还是它们之间不相关。我们可以超越显微镜的能量分辨率和通常无法达到的探针相互作用的极限。”  虽然这两项研究进行了不同类型的测量,但它们使用的是相同的基本设置,即所谓的干涉测量法。McMorran团队的成员认为,他们的工具可能在他们自己的实验室之外有用,可以用于各种不同类型的实验。  Turner自豪道:“这是第一台此类电子干涉仪。人们以前使用过衍射光栅,但这是一种功能灵活的版本,可以根据不同的实验进行调整。”  McMorran谈到,如果有合适的材料和说明,这种装置可以被添加到许多现有的电子显微镜上。他的团队已经引起了其他实验室研究人员的兴趣,他们希望在自己的显微镜中使用干涉仪。参考资料:Amy E. Turner et al, Interaction-Free Measurement with Electrons, Physical Review Letters (2021). DOI: 10.1103/PhysRevLett.127.110401Cameron W. Johnson et al, Inelastic Mach-Zehnder Interferometry with Free Electrons, Physical Review Letters (2022). DOI: 10.1103/PhysRevLett.128.147401
  • 环境空气气态污染物连续自动监测系统认证检测合格产品名录(截止2015年11月20日)
    p   2015年11月24日,中国环境监测总站公布了最新的环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统认证检测合格产品名录,共包含17台仪器。 /p p   目录如下: /p p style=" TEXT-ALIGN: center" a style=" COLOR: #0070c0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/zc/1702.html" target=" _blank" span style=" COLOR: #0070c0" strong 环境空气气态污染物连续自动监测系统 /strong /span /a 认证检测合格产品名录(截止2015年11月20日) /p p style=" TEXT-ALIGN: center" img title=" QQ截图20151126092638.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/d3c94887-9a34-4124-ac32-6ab8c38c7afa.jpg" / /p p style=" TEXT-ALIGN: center" img title=" QQ截图20151126092722.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/629c78d3-437b-4e96-ade7-3468dfe6b1f4.jpg" / /p
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biologyand Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respi
  • “听”安捷伦解析、布局新兴市场——访安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士
    2012年4月,C&EN杂志在“解析2011年全球仪器市场”一文中屡次提及新兴市场,文章指出新兴市场是2011年全球各大仪器公司增长的强劲动力。而对于安捷伦而言,更是如此,2011年安捷伦收入中17亿美元即总收入的25%来自新兴市场,安捷伦化学分析集团总裁Michael McMullen表示,“新兴市场对于分析仪器市场增长的重要性是安捷伦在2011年的主要经历,而这也伴随我们来到2012年”。   在这样的背景下,作为安捷伦内部第一个以“新兴市场”命名的事业部,成立于2007年的安捷伦科技化学分析集团新兴市场测量系统事业部(以下简称为:新兴市场事业部)无疑承担着更多的重任与期望。近日,仪器信息网编辑在安捷伦上海研发制造基地采访了安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士,就新兴市场的特点、新兴市场事业部的成绩、特色及未来发展进行了深入探讨。 安捷伦科技化学分析集团新兴市场测量系统事业部总经理李林博士   新兴市场充满“新”商机 安捷伦潜心布局   新兴市场泛指相对成熟或发达市场而言目前正处于发展中的国家、地区或某一经济体,如被称为“金砖四国”的中国、印度、俄罗斯、巴西以及后来兴起的南非、越南、土耳其等。通常我们会认为“新兴市场”就意味着“中低端市场”,如此理解是否准确?安捷伦又是如何开拓新兴市场的?   谈及新兴市场特点,李林博士说到,“通常大家对于新兴市场特点的评价是市场发展比较快,对产品的技术要求不是特别高,但是对价格却比较敏感。但这其实只是对新兴市场理解的一部分,新兴市场还有一个很重要的特点就是有众多新商机,而这些商机在很多发达国家往往并不存在,例如应用于食品安全、环境污染及应急事件的移动测量等。”   正因为如此,充满新商机的新兴市场吸引众多仪器公司的关注,安捷伦更将开拓新兴市场作为安捷伦全球战略发展中最重要的一步。据李博士介绍,“安捷伦开拓新兴市场的战略也是分阶段进行的。以中国为例,二十年前,安捷伦在中国的战略是‘在中国制造,为中国’,这个时期,安捷伦只是根据中国市场的需求在中国做一些组装,但即便如此,这一举动当时对中国市场而言还是很振奋人心 十年前,安捷伦的战略转变为‘在中国设计,为中国市场’,这个时期,安捷伦在中国研发适合中国市场需求的产品,并主要在中国销售,如6820气相色谱就是很典型的例子 如今,安捷伦的中国战略升华为‘在中国设计,在中国创新,为全球’,此时期,我们强调不仅在中国研发,在中国制造,并要供应全球,服务全球。”   正是在安捷伦新的中国战略背景下,新兴市场事业部应运而生。新兴市场事业部成立于2007年3月,是安捷伦内部独立运营的实体,隶属于安捷伦化学分析集团下辖的气相集团(注:安捷伦收购瓦里安后,化学分析集团成立了气相集团、光谱集团及消耗品集团三个分集团,气相集团下又设有高端气相、气质联用、微型气相及新兴市场四个事业部),新兴市场事业部设有研发中心、市场部、质量部及产品技术支持部,其中一半以上员工是主要从事研发和技术应用开拓。李林博士说,“新兴市场事业部是具有独立经济经营权的实体,在销售方面,我们并不直接面对终端客户,更多是对安捷伦的销售和售后服务团队,公司按照产值、增长率及利润来考核我们的业绩。”   新兴市场事业部从无到有 以“快”应变   新兴市场事业部成立至今已经五年多了,谈及成绩,李林博士表示,“五年,新兴市场事业部从无到有,增长速度十分惊人,并且在过去五年中,我们相继投放市场两款主要产品——7820 GC及5975T LTM车载GC-MS——都很快被全球市场所接受,仅7820 GC的销量就比上一代产品6820 GC翻了6倍以上。此外,我们还培养了一支优秀的团队。”新兴市场事业部取得优异成绩的背后有何“独到之处”?针对新兴市场,他们又做了哪些工作?   “新兴市场事业部最核心的部分就是研发中心,它是保证不断有新产品推向市场并在市场取得成功的关键。目前,安捷伦化学分析集团在全球有五大研发战略基地,上海基地即新兴市场事业部研发中心则主要研发气相色谱和质谱等产品。上海基地与其他四大研发基地一样都秉承了安捷伦理念和体系,但是因为我们存在于新兴市场——中国,所以具有自己的独特之处。” 李林博士说到。   “上海基地的独特之处主要有以下三点:首先,以‘快’应变,新兴市场增长很快,同时新兴市场客户也面临很多新的应用,因此我们产品的研发周期要相对较短,否则等产品推出时市场可能已经发生了变化 其次,坚持本土化,我们研发的产品一定要结合新兴市场发展的特点,满足本土化的应用需求 最后,价格要具有竞争力,新兴市场对价格比较敏感,所以我们研发出来的产品在市场上要具有竞争力。” 新兴市场事业部推出的5975T LTM车载GC-MS   除此之外,新兴市场事业部下设的市场部也是事业部取得优异成绩的关键因素。李博士表示,“我们市场部的职责是负责新产品研发的全球市场定位和推广及产品全球战略,为此市场部除了研究新兴国家的发展状况外,还要针对新产品研发进行定期的全球市场调研。在如何应用市场调查结果方面,我们也有独特的方式。首先我们通过各种方式从市场上收集反馈意见及需求,然后将意见与需求汇总提炼出精华,再回到市场上去确认,最终确定市场需求,并进入到新产品研发阶段。此外,在研发过程中,我们还会在研发各个阶段,邀请专家、客户对新产品进行评价,随时根据评价结果做出调整。我想这也是我们五年推出2款产品都被市场所认可的重要原因。”   扩展产品线 应对新兴市场更多需求   “目前,从绝对值上,新兴市场事业部的收入还较小,但是增长速度却很快。特别是在欧美经济低迷的情况下,我们身处的市场让我们更具竞争力。2012年预计新兴市场事业部收入仍可保持双位数的增长。”李林博士说到。那么,针对如此有增长力的市场,安捷伦总部将给与哪些支持?新兴市场事业部未来又有哪些发展规划?   据李林博士介绍,“新兴市场在安捷伦全球市场中具有举足轻重的地位,因而安捷伦对新兴市场的投资力度很大,而我们正好处于新兴市场中,得到了总部更多的支持。例如,受经济环境影响,今年安捷伦其他事业部的研发投入一般都是个位数(指研发占收入的比率),而新兴市场事业部的研发投入却是双位数,而且在增长 在人员方面,总部对于新兴市场事业部增加人员的需求也十分支持。”   对于新兴市场事业部的未来发展规划,李林博士说,“成立至今,我们推向市场的产品主要是跟气相色谱有关的仪器及附件,但当初将事业部命名为‘化学分析集团新兴市场测量系统事业部’,就希望不局限于产品的边界,因此我们也在积极扩展产品线。例如,根据新兴市场需求,我们推出与车载GC-MS配套使用的样品前处理仪器 今年5月我们又正式向市场投放了一批电化学产品等。”   “未来,我们希望能与更多中国战略伙伴合作,在秉承安捷伦品质的前提下,通过安捷伦的领先技术、市场及渠道,相信会产生更多协同效应。另外,对于安捷伦而言,这也意味着有更多的机会来满足客户的需求。”   李林博士还表示,“随着新兴市场对安捷伦贡献越来越大,我们事业部对公司所做的贡献也将越来越大。最重要的是我们可以为中国市场和中国客户提供更多更好的产品和服务,以及更充足的解决方案。” 李林博士与团队成员合影   后记:   二十年前,一个偶然的机遇,李林博士加入PerkinElmer公司,成为一名高级科学家,由此进入到仪器行业。也是因为这个偶然,李林博士也成为国外仪器公司开拓中国市场的“先锋”。   在PerkinElmer工作的十四年中,李林博士历任亚太市场及技术发展总监、中国区首席代表及总经理、热分析事业部高级技术经理及全球市场经理等数个职务,正是这份经历使得李林博士对中国市场有了更深刻的理解。2007年,受安捷伦之邀,李林博士负责组建安捷伦科技化学分析集团新兴市场测量系统事业部, 对于此次选择,李林博士表示,“在PerkinElmer学习和积累了很多的知识与经验,我希望找一个更好的平台挑战自己,而新兴市场正是一个令人振奋的平台。”   采访编辑:杨娟   附录1:李林博士个人简介   李林博士现任安捷伦科技化学分析集团新兴市场测量系统事业部总经理,负责领导安捷伦科技上海的化学分析集团的职能团队,其包括市场部,新产品研发部,质量部和产品技术支持部,同时专门负责经营常规中端气相(GC)和移动测量解决方案(Mobile Measurement)全球业务及全球市场的发展。在新兴市场寻求新的化学分析仪器及技术拓展商机和集团业务增长也是他和他的团队的主要集中目标。   在加入安捷伦以前,李林博士担任珀金埃尔默(PKI)中国区事业发展总监。在这个岗位上,他领导了PKI中国公司的战略方针和增长策略,并成立了PKI在上海的中国技术中心。在PKI工作的14年中,李博士先后担任过数个战略发展及技术管理职位,其中包括:亚太市场及技术发展总监 PKI中国区首席代表及总经理 热分析事业部高级技术经理及全球市场经理 市场及技术支持经理 高级科学家等职。   李博士毕业于武汉理工大学,获聚合物学理学学士,美国布里奇波特大学(University of Bridgeport)商业管理学院工商管理及金融硕士,纽约州立布法罗大学(The State University of New York at Buffalo)材料科学理学博士。他是材料科学,热分析以及流变学等领域的专家,并曾发表过六十多科技论文和专题应用报告。业余时间,他喜欢旅游,下棋,高尔夫及多项体育运动。   附录2:安捷伦科技公司   http://www.agilent.com/chem/cn   http://agilent.instrument.com.cn/
  • 环境空气气态污染物连续自动监测系统合格名录(截止2017年9月30日)
    p   近日,中国环境监测总站发布环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统认证检测合格产品名录(截止2017年9月30日)。 /p table width=" 600" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr class=" firstRow" td width=" 55" p style=" text-align:center " strong 序号 /strong /p /td td width=" 154" p style=" text-align:center " strong 单位名称 /strong /p /td td width=" 120" p style=" text-align:center " strong 仪器名称 /strong /p /td td width=" 85" p style=" text-align:center " strong 报告编号 /strong /p /td td width=" 104" p style=" text-align:center " strong 检测项目 /strong /p /td /tr tr td width=" 55" p style=" text-align:center " 1 /p /td td width=" 154" p style=" text-align:left " ENVIRONNEMENT环境技术(北京)有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-2M型环境空气质量自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2014 – 007 /p /td td width=" 104" p SO2、NO2、O3、CO、PM10 /p /td /tr tr td width=" 55" p style=" text-align:center " 2 /p /td td width=" 154" p style=" text-align:left " 江苏天瑞仪器股份有限公司 /p /td td width=" 120" p style=" text-align:left " EAQM-100型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2014–112 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 3 /p /td td width=" 154" p style=" text-align:left " 北京中晟泰科环境科技发展有限责任公司 /p /td td width=" 120" p style=" text-align:left " DASIBI-4000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2014–123 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 4 /p /td td width=" 154" p style=" text-align:left " 广州嵘烨生环保产品有限公司 /p /td td width=" 120" p style=" text-align:left " System 300型环境空气气态污染物(SO2、NO2、O3)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2015–026 /p /td td width=" 104" p SO2、NO2、O3 /p /td /tr tr td width=" 55" p style=" text-align:center " 5 /p /td td width=" 154" p style=" text-align:left " 安徽蓝盾光电子股份有限公司 /p /td td width=" 120" p style=" text-align:left " LGH-03型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2015–028 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 6 /p /td td width=" 154" p style=" text-align:left " 深圳市绿恩环保技术有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-GR-2000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2015–050 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 7 /p /td td width=" 154" p style=" text-align:left " 武汉怡特环保科技有限公司 /p /td td width=" 120" p style=" text-align:left " YT-30型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2015–& nbsp 125 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 8 /p /td td width=" 154" p style=" text-align:left " 宇星科技发展(深圳)有限公司 /p /td td width=" 120" p style=" text-align:left " YX-AQMS型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2015–& nbsp 128 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 9 /p /td td width=" 154" p style=" text-align:left " 聚光科技(杭州)股份有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-1000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 044 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 10 /p /td td width=" 154" p style=" text-align:left " 中兴仪器(深圳)有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-6000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 045 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 11 /p /td td width=" 154" p style=" text-align:left " 河北先河环保科技股份有限公司 /p /td td width=" 120" p style=" text-align:left " EC9800型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 054 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 12 /p /td td width=" 154" p style=" text-align:left " 安徽蓝盾光电子股份有限公司 /p /td td width=" 120" p style=" text-align:left " LGH-01型环境空气气态污染物(SO2、NO2、O3)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 063 /p /td td width=" 104" p SO2、NO2、O3 /p /td /tr tr td width=" 55" p style=" text-align:center " 13 /p /td td width=" 154" p style=" text-align:left " 北京雪迪龙科技股份有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-900型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 068 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 14 /p /td td width=" 154" p style=" text-align:left " 苏州微纳激光光子技术有限公司 /p /td td width=" 120" p style=" text-align:left " LDAI-I型环境空气气态污染物(SO2、NO2、O3)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 125 /p /td td width=" 104" p SO2、NO2、O3 /p /td /tr tr td width=" 55" p style=" text-align:center " 15 /p /td td width=" 154" p style=" text-align:left " 武汉天虹环保产业股份有限公司 /p /td td width=" 120" p style=" text-align:left " TH-2000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 137 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 16 /p /td td width=" 154" p style=" text-align:left " 河北先河环保科技股份有限公司 /p /td td width=" 120" p style=" text-align:left " XHAQMS2000型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2016–& nbsp 175 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 17 /p /td td width=" 154" p style=" text-align:left " ENVIRONNEMENT环境技术(北京)有限公司 /p /td td width=" 120" p style=" text-align:left " AQMS-2e型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2017–& nbsp 081 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 18 /p /td td width=" 154" p style=" text-align:left " 赛默飞世尔科技(中国)有限公司 /p /td td width=" 120" p style=" text-align:left " Model 1500型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No.2017–& nbsp 116 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr tr td width=" 55" p style=" text-align:center " 19 /p /td td width=" 154" p style=" text-align:left " 安徽蓝盾光电子股份有限公司 /p /td td width=" 120" p style=" text-align:left " LGH-02型环境空气气态污染物(SO2、NO2、O3、CO)连续自动监测系统 /p /td td width=" 85" p style=" text-align:left " 质(认)字No. 2017—& nbsp 136 /p /td td width=" 104" p SO2、NO2、O3、CO /p /td /tr /tbody /table
  • 创新基金项目验收将截止 这20家仪器公司注意啦!
    p   1月12日从科技部获悉,2013年(含)以前立项的科技型中小企业技术创新基金项目已进入验收工作最后收尾阶段,所有验收受理工作将于2017年2月28日截止。截至目前,仍有近1379家企业的项目未提出申请。通知显示,凡逾受理截止时间未提交验收材料的,将不再拨付项目剩余资金(二拨资金)。 /p p   从公布的项目清单中看,化学分析、物性测试、医疗卫生领域的近20家中小型仪器企业仍未提出验收申请。 /p p    span style=" font-family: 楷体,楷体_GB2312,SimKai " 仪器信息网编辑摘录通知及名单如下: /span /p p style=" text-align: center " strong 关于科技型中小企业技术创新基金项目验收受理截止时间有关事项的通知 /strong /p p style=" text-align: center " 国科企金函〔2017〕1号 /p p 各省、自治区、直辖市及计划单列市科技厅(委、局),新疆生产建设兵团科技局,各有关项目承担企业: /p p   2013年(含)以前立项的科技型中小企业技术创新基金(以下简称创新基金)项目已进入验收工作最后收尾阶段,截至目前,仍有部分项目没有提出验收申请(这些项目均已逾项目执行截止日期一年以上,项目清单见附件)。根据科技部、财政部《关于印发& lt 科技型中小企业技术创新基金项目管理暂行办法& gt 的通知》(国科发计字〔2005〕60号)及科技型中小企业技术创新基金项目合同的有关规定,现就2013年(含)以前立项的创新基金项目验收受理截止时间有关事项通知如下: !--科技型中小企业技术创新基金项目管理暂行办法-- !--科技型中小企业技术创新基金项目管理暂行办法-- /p p   一、2013年(含)以前立项的创新基金项目验收受理截止时间为2017年2月28日。请各有关项目承担企业按照项目验收管理的有关要求抓紧进行项目总结,于验收受理截止日前通过“科技型中小企业技术创新项目网上申报平台”上传电子版验收材料,并将纸质验收材料送至地方监理单位。凡逾受理截止时间未提交验收材料的,按项目承担企业未履行按时验收义务、终止执行项目合同处理,不再拨付项目剩余资金(二拨资金)。被终止的项目将在科技型中小企业技术创新基金网站公告。 /p p   二、请各省级科技主管部门高度重视2013年(含)以前立项的创新基金项目验收收尾工作,充分发挥地方监理单位的作用,做好相关项目的督促指导、专家验收、意见审核等验收管理工作,于2017年3月20日前通过“科技型中小企业技术创新项目网上申报平台”提交项目验收结论建议,纸质验收材料邮寄至我中心创新基金监理与评价处。 /p p   三、联系方式: /p p   1、监理验收业务咨询 /p p   联系人:阳腾、张立红 /p p   电 话:010-88656235、88656231 /p p   邮 箱:jianl1@ctp.gov.cn /p p   2、网络系统技术支持 /p p   联系人:阚川 /p p   电 话:010-88656303 /p p style=" line-height: 16px "   附件: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_xls.gif" / a href=" http://img1.17img.cn/17img/files/201701/ueattachment/0029489f-2a9b-40fc-bfaa-cfa2626e5b22.xls" 2013年(含)以前立项的创新基金项目中未提出验收申请的项目清单.xls /a /p p style=" text-align: right "   科技部科技型中小企业技术创新基金管理中心 /p p style=" text-align: right "   2017年1月12日 /p p style=" text-align: center " strong 2013年(含)以前立项的创新基金项目中未提出验收申请的仪器项目清单 /strong /p table align=" center" border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 600" tbody tr class=" firstRow" td nowrap=" nowrap" width=" 52" p style=" text-align:center " strong 序号 /strong /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:center " strong 立项代码 /strong /p /td td width=" 380" p style=" text-align:center " strong 项目名称 /strong /p /td td width=" 235" p style=" text-align:center " strong 企业名称 /strong /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 1 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26211100100 /p /td td width=" 380" p style=" text-align:left " 基于光机电一体化技术的材料及表面涂层耐磨性及膜厚测量系统 /p /td td nowrap=" nowrap" width=" 235" p style=" text-align:left " 奥码拓(北京)科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 2 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26211300503 /p /td td width=" 380" p style=" text-align:left " CT极性测试装置 /p /td td width=" 235" p style=" text-align:left " 保定市创新电气自动化有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 3 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26211400911 /p /td td width=" 380" p style=" text-align:left " 用于水泥、钢铁等(高能耗)行业的激光火花光谱节能在线检测系统 /p /td td width=" 235" p style=" text-align:left " 太原市敏通科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 4 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26212120479 /p /td td width=" 380" p style=" text-align:left " 高速列车轴承轴向游隙检测仪 /p /td td width=" 235" p style=" text-align:left " 大连华控工业装备有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 5 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26212301485 /p /td td width=" 380" p style=" text-align:left " 基于拉曼原理的线型光纤温度传感器 /p /td td width=" 235" p style=" text-align:left " 哈尔滨草青木秀电子技术有限责任公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 6 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26213101692 /p /td td width=" 380" p style=" text-align:left " FH—800全自动生化分析仪 /p /td td width=" 235" p style=" text-align:left " 上海丰汇医用仪器有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 7 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26213302730 /p /td td width=" 380" p style=" text-align:left " 便携式一体化能量色散RoHS荧光快速分析仪 /p /td td width=" 235" p style=" text-align:left " 杭州正航信息科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 8 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26213302345 /p /td td width=" 380" p style=" text-align:left " 便携式植物养分无损快速测定仪 /p /td td width=" 235" p style=" text-align:left " 杭州浙大圆正机械有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 9 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26213513039 /p /td td width=" 380" p style=" text-align:left " 全自动毛细管电泳荧光分析仪 /p /td td width=" 235" p style=" text-align:left " 厦门天厦群杰仪器有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 10 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26213713540 /p /td td width=" 380" p style=" text-align:left " 数字匝间耐压绝缘检测仪 /p /td td width=" 235" p style=" text-align:left " 青岛艾普智能仪器有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 11 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26214104314 /p /td td width=" 380" p style=" text-align:left " 带空气净化装置的节能型高精度气动测量仪 /p /td td width=" 235" p style=" text-align:left " 郑州新泰精密量仪有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 12 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26214104318 /p /td td width=" 380" p style=" text-align:left " 嵌入式智能机动车检测仪 /p /td td width=" 235" p style=" text-align:left " 郑州加滋杰实业有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 13 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26214302799 /p /td td width=" 380" p style=" text-align:left " 高分辨、宽量程微型光纤光谱仪 /p /td td width=" 235" p style=" text-align:left " 长沙法利科信息技术有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 14 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26214302863 /p /td td width=" 380" p style=" text-align:left " 新型便携式激光盘煤仪研制 /p /td td width=" 235" p style=" text-align:left " 长沙友欣仪器制造有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 15 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 12C26214505633 /p /td td width=" 380" p style=" text-align:left " XDP-1大视场显微镜 /p /td td width=" 235" p style=" text-align:left " 梧州奥卡光学仪器有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 16 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26214504794 /p /td td width=" 380" p style=" text-align:left " 新型全自动尿液分析仪 /p /td td width=" 235" p style=" text-align:left " 桂林市雅信医疗科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 17 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26215113527 /p /td td width=" 380" p style=" text-align:left " 高性能强化木地板表面缺陷检测系统 /p /td td width=" 235" p style=" text-align:left " 重庆合普仪器仪表有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 18 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26215113593 /p /td td width=" 380" p style=" text-align:left " 面向数据设备及精密仪器的高效节能智能精确温控系统 /p /td td width=" 235" p style=" text-align:left " 重庆西泽科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 19 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 13C26215115136 /p /td td width=" 380" p style=" text-align:left " 高速全自动化学发光分析仪 /p /td td width=" 235" p style=" text-align:left " 重庆州泰生物科技有限公司 /p /td /tr tr td nowrap=" nowrap" width=" 52" p style=" text-align:center " 20 /p /td td nowrap=" nowrap" width=" 167" p style=" text-align:left " 11C26216113744 /p /td td width=" 380" p style=" text-align:left " GCFM-3000转速及摩擦功耗测量装置及系统 /p /td td width=" 235" p style=" text-align:left " 西安精进测控设备有限公司 /p /td /tr /tbody /table p br/ /p p br/ /p
  • 清华大学钢桶无损测量系统购置项目公开招标
    清华大学钢桶无损测量系统购置项目公开招标。该项目预算380万元,为退役形成的标准放射性钢桶无损检测系统的设计、制造,主要实施内容包括调研、关键设备选型、设计、制造和安装调试等。详情如下:清华大学钢桶无损测量系统购置项目项目编号:BIECC-22ZB0308/清设招第2022055号预算金额:380万元(人民币)采购需求:本项目为退役形成的标准放射性钢桶无损检测系统的设计、制造,主要实施内容包括调研、关键设备选型、设计、制造和安装调试等。在对桶装放射性废物进行外运及交接前,需详细描述桶内废物信息,包括废物质量、污染核素、活度浓度、废物包活度、α核素总活度、废物包表面污染水平、废物包最大γ剂量率等。因此,需对装有低放废物的钢桶进行非破坏性测量。具体要求详见招标文件第四章。序号设备/部件名称单位数量1高纯锗γ谱仪系统1套2废物桶表面剂量率测量系统1套3称重及测量旋转台1套4废物桶吊装装置1套5电气及控制系统1套6监控摄像系统1套7测量及控制软件系统1套合同履行期限:2022年10月1日前完成交付、2022年10月31日前完成安装、调试、标定工作。本项目不接受联合体投标。获取招标文件:时间:2022年5月12日至2022年5月19日,每天上午9:30至11:30,下午13:30至16:30。地点:北京市海淀区学院路30号科大天工大厦A座608室(北四环学院桥东北角)方式:本项目不接受现场购买,只接受电汇或网银购买标书售价:¥500元,本公告包含的招标文件售价总和提交投标文件截止时间、开标时间和地点:提交投标文件截止时间:2022年6月02日14点00分开标时间:2022年6月2日14点00分地点:北京市海淀区学院路30号科大天工大厦A座511会议室(北四环学院桥东北角)对本次招标提出询问,请按以下方式联系:1. 采购人信息名称:清华大学地址:北京市海淀区清华大学,邮编100084联系方式:左老师010-897960402. 采购代理机构信息名称:北京国际工程咨询有限公司地址:北京市海淀区学院路30号科大天工大厦A座611联系方式:王蕾蕾、杨梦雪 010-823735323. 项目联系方式项目联系人:王蕾蕾、杨梦雪电话:010-82373532附件:招标公告-0308清华大学钢桶无损测量系统购置项目.docx
  • 颜色科学与现代色彩测量方案—分光光度仪的使用
    在未来,随着技术的发展和社会对可持续性的日益关注,颜色科学将在多个领域中扮演更为关键的角色。从环保材料的颜色稳定性研究,到数字媒体和虚拟现实中的色彩应用,科技的进步将使得颜色的研究和应用更加精确和广泛。此外,人工智能和机器学习的介入,将可能使色彩选择和搭配变得更加智能化和个性化,大大提升设计效率和视觉体验。未来的颜色科学不仅仅是艺术和设计的一部分,它将穿透工业制造、医疗、心理学等多个领域,与人们的生活和工作方式紧密相连。本节我们将详细深入地研究颜色科学。可想而知,这将是非常技术性的讨论。然而,这对所有行业所有涉及颜色要求、沟通、测量、管理和报告的人来说都有很好的参考价值。请参见本指南最后一章“首次正确,始终正确:卓越的色彩工作流程”,汇集了本指南中包含的所有知识,说明了如何在最复杂的供应链中高效地管理色彩。一、颜色属性的分析颜色的独特外观由三个基本属性定义:色调、彩度(或称饱和度)和明度(亦称亮度)。这三个属性共同作用,使得每种颜色都可以被准确地描述并与其他颜色区分开来。二、色调的理解在描述一个物体的颜色时,通常首先提到的是色调。色调反映了我们感知的颜色种类,如红色、橙色、绿色或蓝色等。如色轮(图7)所示,色调之间可以平滑过渡,混合不同的颜色可以创造新的色调。例如,蓝色和绿色的混合产生蓝绿色;蓝色与黄色混合则变为绿色;红色和黄色混合形成橙色;而在绿色中加入黄色则可得到黄绿色。三、彩度的定义与影响彩度,也称为饱和度,衡量的是颜色的鲜艳或暗淡程度,即颜色接近纯色还是灰色的程度。以西红柿和红萝卜为例,西红柿显示出更鲜艳的红色,而红萝卜的红色则显得更为暗淡。图8展示了彩度如何随位置变化而改变。从图中心的灰色(低饱和度)向外围移动,颜色逐渐变得更鲜艳,即彩度增高。这种从中心到周边的过渡清晰地揭示了彩度对颜色表达的影响。四、明度颜色的光暗特性颜色的照明程度(即明暗程度)被称为明度。当比较颜色的明度时,它们可被分类为浅色或者深色。例如,当西红柿和红萝卜并排放置时,西红柿的红色显得更浅。相比之下,红萝卜的红色显得更深。在图9中,明度(亮度)特性通过垂直轴表示。在复杂的供应链中,色彩管理变得尤为关键。通过综合应用色调、彩度和明度的知识,可以建立一套有效的色彩工作流程,确保在各种应用场景下实现色彩的一致性和准确性。这不仅关乎美学,也涉及到品牌识别、产品质量和市场营销等多个层面。颜色科学的深入研究为我们打开了一扇窗,透过这扇窗,我们不仅看到了颜色的复杂性,更看到了通过科学管理和应用颜色带来的无限可能。无论是设计师、制造商还是消费者,都能从这一科学中获得宝贵的见解和应用价值。五、通过数字测量颜色测量颜色最常用的仪器是分光光度仪。对于某些应用也可以使用比色计,目前主要有三种适用于印刷、包装和工业应用的分光光度仪:传统的0°/45°(或45°/0°)分光光度仪、积分球式(或漫反射d/8°)分光光度仪和多角度 (MA) 分光光度仪。这些仪器主要捕捉颜色信息,并且在某些情况下能够捕获外观数据,如光泽度。未来,我们希望进入市场的仪器能够准确测量颜色和外观,获取描述被测物体或材料的更完整数据集。首先,让我们看看上述仪器名称的含义。45°/0°分光光度仪对于45°/0°分光光度仪,这个配置中第一个数字表示光源的照明角度,而第二个数字代表观察角度。重要的是理解,这些数字与仪器的外形设计无关,其中第一个数字总是指光源的角度,而第二个数字指的是观察点的位置。在45°/0°的设置中,例如使用X-Rite VS450分光光度仪,光源沿45°角照射到样品上,而接收器则位于样品表面的正上方(0°角)接收反射光。积分球式分光光度仪积分球式分光光度仪(例如X-Rite Ci64)采用漫射照明技术,能够从各个方向均匀照射到被测物品上,而接收器则位于被测物品表面的8°角处收集反射光。这种设备的内部结构包括一个积分球,用于实现均匀的漫射照明。积分球内部覆盖有一层高反射、低光泽的亚光白色材料,这使其几乎成为完美的白色反射器。当光线打到球体的任一点时,超过99%的光会被反射,并由于球体的亚光表面,光线会被随机地散射到所有方向。这样,球体内部的光线看起来好像来自各个方向,使得整个球体成为一个均匀的光源。多角度 (MA) 分光光度仪多角度分光光度仪特别适用于测量涉及特殊效果的表面,如汽车漆、金属或珠光油墨和涂料,以及化妆品等工业生产应用。这些仪器广泛应用于实验室、生产线、质量控制和装运区域。例如,X-Rite MA98便携式多角度分光光度仪,是一种复杂的设备,它能够测量并确认5组或更多的Lab*值或delta E (dE) 值。这些仪器通常使用12mm的孔径,但这个尺寸对于需要测量小尺寸工业应用中的精细细节的场合可能显得过大。它们主要采用45°的照射角度,而某些型号还提供了15°角的辅助照明功能。通过运用色彩测量仪器以及其他先进的色彩测量和管理技术,全球各行各业正在经历一场关于颜色的数字化。这些技术的应用不仅优化了颜色的精确测量和管理,还极大地改善了跨不同部门和地理位置的沟通效率。从制造到设计,从营销到质量控制,数字色彩管理正在引领行业实现更高的标准和创新,为业务流程带来前所未有的变革和提升。关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制