当前位置: 仪器信息网 > 行业主题 > >

可变倍率激光扩束镜

仪器信息网可变倍率激光扩束镜专题为您提供2024年最新可变倍率激光扩束镜价格报价、厂家品牌的相关信息, 包括可变倍率激光扩束镜参数、型号等,不管是国产,还是进口品牌的可变倍率激光扩束镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可变倍率激光扩束镜相关的耗材配件、试剂标物,还有可变倍率激光扩束镜相关的最新资讯、资料,以及可变倍率激光扩束镜相关的解决方案。

可变倍率激光扩束镜相关的论坛

  • 像元与有效放大倍率

    像元与有效放大倍率

    放大倍率:M=L/l  L显示器边长  l电子束在样品表面的扫描长度有效放大倍率:人眼明视分辨率/束斑直径  人眼明视分辨率取值不统一,0.2或0.3mm显示器解析度:设置的行数*列数。其最高设置不大于物理解析度像素:由显示器解析度确定的最小成像单元。其最高像素设置等于荧光粉的直径约0.1mm显示器相对有效放大倍率:显示器相对有效放大倍率=像素大小/电子束直径像元:指为获得充满一个像素的信息而在样品上获取信息的最小单元。像元大小与放大倍率 之间的关系为: 像元大小=像素大小/放大倍率 即r0=rp/M束斑:这里特指电子束激发试样表面而产生二次电子的区域。像元与像素之间有三种配合: a: 放大倍率小于显示器分辨率/束斑直径。此时像元总数大于像素总数行*列。此时将有一个以上像元重叠为一个像素灰度。显然一个像素小于人眼分辨率,故图像清晰。但这也是有一定限度的。过分降低放大倍率会有更多不同灰度的像元重叠为同一灰度的像素。这使图像失去细节和降低锐度。另外,随着放大倍率的降低,按照上式像元尺度r0增大,其结果是在一个像元里包含了两个以上束斑,即像元里出现了重叠束斑。如下图所示。http://ng1.17img.cn/bbsfiles/images/2012/01/201201020021_343626_1609375_3.jpg尽管有重叠束斑但像元仍未能被束斑填满,还有许多空白。像元所收集到的信息明显减弱。放大倍率越低,这种现象越严重。所以过分降低放大倍率图像会模糊。此时解决办法只有加大束斑。我们可以从新聚焦使图像清晰起来,这事实上是将束斑散大了一些。b 放大倍率等于显示器分辨率/束斑直径。像元总数=像素总数行*列,此时一个像元占据一个像素。像素尺度小于人眼分辨率,图像清晰。就一般地调节来说特别是在低倍率时,大多数情况下一个像元未必被一个束斑填满,但不影响清晰度。如果有意识的使束斑填满像元(仔细聚焦),那将是更好的照相条件。c: 放大倍率大于显示器分辨率/束斑直径。不恰当的高放大倍率并超过了有效放大倍率。这使得像元总数小于像素总数行*列,此时一个以上像素显示同一个像元。这等于将像元放大了若干倍,很容易超过人眼分辨率使图像模糊。像元在有效放大倍率下,图像分辨率设置也有三种情况a: 高分辨率设置:像元总数小于像素总数行*列。一个像元占据一个以上像素,由于像元在有效放大倍率下,因而图像清晰。b: 等分辨率设置c: 低分辨率设置:像元总数大于像素总数行*列。一个像素要重叠一个以上像元。当像元的叠加大于人眼分辨率时,这种叠加会使灰度等级不同的一个以上像元融合为一个灰度等级的像素而使图像失去细节,锐度下降,图像模糊。上面使用的是显示器分辨率。它的最高分辨率是0.1mm 。人眼只能同时看到两个融合在一起的灰度像素,故有效放大倍率至少还可以再提高一倍。

  • 【求助】关于放大倍率,有效放大倍率,像元的问题,请教各位前辈

    小弟刚接触电镜不久,看书后有很多疑惑一直无法得到解答,自己百思也不得其解。希望各位前辈能够在此传师授道解惑也。1,有效放大倍率的概念?我看书上写是 人眼分辨率比上机器分辨率。这样的话3nm分辨率钨灯丝扫描电镜,那么比出来的倍率就是大概7万倍。 但是为什么各厂家的指标都不是这么多??而是30万倍到100万倍的都有。2,放大倍率,书上放大倍率的概念是 显示器上实际大小比上样品扫描大小。请问这个和有效放大倍率有什么区别??3,像元的概念,书上是有个公式 100/M放大倍数 并且给到一个束斑孔径的关系。 像元根据计算能得出大概 10万倍的放大倍数,像元就是1nm了,这样远远小于束斑孔径,所以10万倍以上的相片是没有意义的。。这是书上讲的, 这里的疑惑是 这里的放大倍数能达到10万倍但是没有意义和 上面所讲的两个放大倍数的概念有什么区别????充满疑问,希望各位前辈能够指点迷津。。。。详细的给出解答!!

  • 【讨论】这样理解显微镜的放大倍率对吗?

    对于体视显微镜来说,其光学的物镜最多也就是5x,目镜为10x;则人眼通过目镜看到的——总放大倍率=物镜放大×目镜放大=50x然后如果物镜再添个辅助物镜2x,则最大放大100x。对于电脑总的放大倍率来讲,和目镜没有关系,只和物镜和ccd的放大有关:总放大倍数 = 物镜放大倍数 * 数字放大倍数 如果常用的1/2''ccd镜头,其对角线长度为8mm则通过计算机(14''显示器)看到的——总放大倍率=物镜的放大倍数*(电脑屏幕的对角线/ccd或者cmos的靶面尺寸)=5×(14×24.5÷8)=210倍【【【请问大侠:这样计算对吗?也就是说,按照目前的体视显微镜来物镜最大五倍的前提来说,经过摄像头的放大,一般也就是200多倍!囧的是市场上的体视显微镜四五百倍、甚至上千倍是咋计算的呢?谢谢指教】】】】ps 1英寸—靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。   2/3英寸—靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。   1/2英寸—靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。   1/3英寸—靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。   1/4英寸—靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。

  • 【讨论】老式透射电镜拍得照片倍率的问题

    透射电镜的放大倍率=物镜倍率*中间镜倍率*投影镜倍率;老式TEM只能用胶片拍下从投影镜射过来的电子,再洗出相片;疑问:用胶片拍,倍率是否会改变,再洗出相片倍率不是又会改变吗?想问问大家:你们有没有考虑这种倍率的变化?

  • 科学家用两束激光“撞”出多频率光

    科技日报 2012年03月30日 星期五 本报讯 据物理学家组织网3月28日报道,美国加州大学圣巴巴拉分校的研究人员通过将高、低频率的激光束瞄准半导体,引发电子从核心脱离并加速,再回来碰撞核心,由此产生多种频率光。相关研究结果刊登在最新一期《自然》杂志上。 当高频率的激光束击中半导体材料如砷化镓纳米结构时,会创建一对被称为激子的电子—空(穴)复合体,即当电子从外界获得能量时,会跳到较高的能级,但并不稳定,很快又会将获得的能量释放从而回到原来的能级;但如果电子获得的能量够高,就可摆脱原子核的束缚成为自由电子,电子空出来的位置则称为空穴,自由电子可能会因为摩擦或碰撞等因素损失能量,最后受到空穴的吸引而复合。 论文合著者、该校物理系教授及太赫兹科学与技术研究所主任马克·舍温说:“高频激光产生电子—空穴对,很强的低频自由电子激光束将电子从穴口分离并加速,这时由于电子加速有多余能量,它会猛烈碰撞空穴,重组电子—空穴对,并放射出新频率光子。在相当常规的路径下混合激光束碰撞后会得到一或两个新的频率,而我们在实验中看到所有这些不同的新频率最多能达到11个,这个现象着实令人兴奋。” 舍温说,由于每个频率的光对应不同的颜色,他们之所以能获得这样的突破是依靠了一种特别的工具——自由电子激光器,其最大特点是可以探测出物质的基本性质,将其置于混合光束之前即可测量出不同光的颜色,由此发现多种频率的光。 论文第一作者、该校物理系博士生本·扎克斯解释说:“这就像有线电视网络,其电缆是一束光纤,而你沿着这条线发送约1.5微米波长的光束,但在这束光里有如同细梳齿的缝隙一样分离出的许多频率。信息会以一种频率来移动。而采用这种技术就能是增加很多可以传输信息的频率,而且彼此相隔不会太远。” 该研究团队建立了一种产生电子—空穴再碰撞的机器,其在现实中恐怕还没有实际性的应用。然而,从理论上讲,一个晶体管可以用于自由电子激光产生强烈的太赫兹场,还可以调节临近的红外线光束。数据表明,该仪器调制的近红外激光是太赫兹频率的两倍,当增加光调制的速度,将会更快传输接收自电缆的信息。 研究人员介绍说,将电子—空穴再碰撞现象应用于现实世界中具有潜在显著提高光缆数据传输和通信速度的能力。最有可能的应用是多路复用技术即多渠道发送数据;另一个则可对光进行高速调制。(华凌)

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 关于激光脉冲法测试热扩散的几点疑问

    关于激光脉冲法测试热扩散的几点疑问

    众所周知,激光脉冲法测试原理是试样在绝热条件下前表面受瞬时脉冲热流加热根据试样背表面温度随时间的变化情况,确定试样的热扩散率。问题: 1 每种材料吸收激光的速度对测试结果有影响吗? 2 材料有没有反光的问题,如果是镜面,存在部分反光,那吸收的激光能量就没有那么多了,这样对最终测试结果有没有影响? 3 再添加一问题,采用激光脉冲法测试透明半透明材料时,在脉冲照射后样品起始升温的区域存在基线的“跃迁”,这个“跃迁”是什么导致的?耐驰说明书上写这种情况需要选择辐射模型+脉冲修正,难道说这个跃迁是材料本身辐射导致的?怎么产生辐射的?http://ng1.17img.cn/bbsfiles/images/2013/03/201303272042_432667_1698940_3.jpg

  • 【求助】SEM的放大倍率

    请教各位,SEM的放大倍率是怎么来实现的?通过调节什么啊?一般的显微镜是调节和物镜的距离,但好像SEM的样品台是固定的,一般选取的WD也是固定的,那通过什么来实现的呢?我记得好像有一个计算公式,不知哪位能解答一下,非常感谢!

  • 【讨论】关于低倍像的放大倍率的校正

    最近在做一些mesostructure的工作,发现在30k-100k的放大倍率下误差远比想象中要大。不同的电子显微镜和XRD的结果比较都有大于10%的误差。XRD的结果在低角度误差也很大,但是有个别电镜的误差快接近20% 了就有点说不过去了。有没有做过类似工作老师有可分享的经验呢?

  • JEM1400不能调整放大倍率问题

    请教JEM1400的MAG1下不能改变放大倍率是什么原因?在一次电镜观察操作时候突然发现MAG1的放大倍率不能改变。电镜可以正常使用。MAG2和LOW MAG都可以正常改变放大倍率。电镜和电脑重启都不能恢复。

  • 有激光脉冲法设备的朋友可以试着做做不同厚度金属材料的热扩散率,看看会是什么结果。

    激光脉冲法(热脉冲法)热扩散率测试是一种经典方法,目前市面上成熟设备也比较多,多数都标称可以测量到2000W/mK超高热导率,也就是说可以测量很高热扩散率材料。另外,目前激光脉冲法数据处理技术也非常成熟,可以进行各种修正,包括热脉冲宽度修正。基于以上提到的两点,那么就可以准确测量任何厚度金属材料厚度方向热扩散率。哪我们可以不妨做个试验,就是采用相同材质的金属材料(不透光)制成一系列厚度试样进行测量,如从1mm~6mm厚,相差1mm做6个试样分别在常温下进行测试,测试结果都应该一致。有条件的朋友可以具体做做,看看到底是什么结果,整个测试和分析也可以发表论文。

  • 使用激光粒度仪为什么要测试背景?

    使用激光粒度仪为什么要测试背景?

    使用激光粒度仪为什么要测试背景? 背景是激光透过纯净介质后在探测器上形成的固定的光信号,主要是探测光经过路径上的颗粒物(例如,样品池玻璃和透镜表面上的污渍、内部的瑕疵、介质中的残余颗粒等)对光的散射引起的。测量背景的目的的是在粒度测试(有样品)时扣除这些固定的、与样品无关的信号,以消除样品散射以外的杂散光对测试结果的影响。 激光粒度仪的背景值如果在大部分探测器上都偏高,而靠近中心的第1、2单元正常时,原因往往是样品池玻璃上的污渍、透镜上的灰尘、介质中残留的颗粒、介质温度低于室温引起的玻璃外表面的雾滴等;如果靠近探测器中心的探测单元,尤其是第1、2单元过高,一般是由光束对中不良引起的。如果所有探测单元的背景信号都过低,很可能是激光器功率下降或者滤波针孔偏移造成的。查清引起背景信号过高或过低的原因后,应排除上述问题,使背景强度恢复到正常状态。以winner2000ZDE智能湿法激光粒度仪分析仪操作软件为例:1.仪器加水排气泡后,第一环高于200,应该是光路没有对中,可进行光路对中。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191111_574341_3049057_3.png2.仪器加水排气泡后,第二环往后背景都很高,应该是样品窗污染。可清洗样品窗。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191111_574342_3049057_3.png3.经过调试后,背景达到以下情况,就可以进行背景测试。http://ng1.17img.cn/bbsfiles/images/2015/11/201511191117_574346_3049057_3.png

  • 请问拉曼光谱仪的mapping分辨率是否与所用的激光功率有关?

    前段时间购买仪器时开专家论证会,我们放了两张mapping的对比图,有专家说拉曼的mapping分辨率与所用的激光功率有关。这句话我不是很理解其中的意思。mapping分辨率不就是空间分辨率吗?空间分辨率的影响因素不就是XYZ样品台的步长、光斑大小、共焦状态、物镜倍数这些?为什么还会有激光功率呢?还是这个专家的这种说法不太正确,存在问题?

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    纳米分辨率高精度激光衍射法在碳纤维细丝直径测量中的应用

    [align=left][b][color=#339999]摘要:碳纤维单丝热膨胀系数是碳纤维复合材料设计、生产与可靠性和寿命评估的重要参数,本文针对单丝径向高温热膨胀系数测试这一难题提出了相应的解决方案。解决方案的核心内容是基于激光衍射法和高温辐射加热,并采用衍射轮廓拟合技术以及相应的校准、真空温度控制等技术,可实现几个纳米的测量分辨率。此解决方案不仅可以测量各种粗细单丝的直径及其热膨胀,还可以拓展应用于细丝的直径分布、截面形状和径向热膨胀测量。[/color][/b][/align][align=center][size=16px] [img=碳纤维单丝径向高温热膨胀系数激光衍射法测试解决方案,600,360]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300838571272_2512_3221506_3.jpg!w690x414.jpg[/img]~~~~~~~~~~~~~~~~~~~[/size][/align][size=18px][color=#339999][b]1. 项目背景[/b][/color][/size][size=16px] 随着碳纤维增强复合材料应用的扩大,其设计也变得越来越精密。温度变化引起的热应力是复合材料设计中需要考虑的重要因素之一,而碳纤维的热膨胀系数是控制热应力的基本物理性能值。另外,碳纤维的热膨胀系数不仅是复合材料设计中的重要参数,也是预测制造工艺、可靠性和寿命的重要参数。[/size][size=16px] 由于碳纤维一般具有很强的方向性,其热膨胀系数主要包括轴向和径向热膨胀系数。本文将针对1~10微米直径的碳纤维单丝,提出径向热膨胀系数测试方法,特别是提出高温下径向热膨胀系数测试的解决方案。[/size][size=18px][color=#339999][b]2. 激光衍射法测量原理[/b][/color][/size][size=16px] 在假设碳纤维单丝是直径均匀、截面积形状为圆形细丝的前提下,按照热膨胀系数的定义,碳纤维单丝高温热膨胀系数的测试可以归结为不同温度下单丝直径的测量问题,具体测试涉及到单丝温度和单丝直径的精确测量。[/size][size=16px] 对于微小细丝直径的测量,只能选择非接触光学测量方法。可选择的测试方法主要有显微镜观测法、光学投影法和激光衍射法,但由于碳纤维测试需要涉及到高温和真空环境,显微镜直接观察方法很难实现较高温度,而投影法则是无法达到纳米量级的测量精度,因此本项目将选择激光衍射法,以实现纳米精度的单丝直径测量。[/size][size=16px] 激光衍射测量原理如图1所示。单色激光垂直照射被测细丝后在焦平面上形成衍射图形,通过对图形参数等的测量,可准确测得细丝直径。[/size][align=center][size=16px][img=01.激光衍射线径测量原理图,550,329]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841272151_4630_3221506_3.jpg!w690x413.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图1 激光衍射法细丝直径测量原理图[/b][/color][/size][/align][size=18px][color=#339999][b]3. 细丝径向热膨胀测量装置[/b][/color][/size][size=16px] 基于激光衍射法的细丝径向高温热膨胀系数测量装置结构如图2所示。整个测量装置包括水冷真空系统、样品装置、温控加热装置和激光衍射测量装置四部分。[/size][align=center][size=16px][img=02.单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图,500,452]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300841487917_7673_3221506_3.jpg!w690x625.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图2 单丝碳纤维高温径向热膨胀系数激光衍射法测量装置结构示意图[/b][/color][/size][/align][size=16px][color=#339999][b](1)水冷真空系统[/b][/color][/size][size=16px] 真空系统由水冷真空腔体内、真空泵和真空度控制系统构成。在整个高温测试过程中,需要对真空腔体抽真空,以便在整个高温测试过程中形成真空环境避免碳纤维细丝样品的氧化或烧断。真空腔体壁内通循环冷却水以对内部高温形成热防护。同时还需对循环冷却水温度和腔体内部真空度进行精密恒定控制,使得腔体温度和内部真空度所引起的腔体变形和光学窗口倾斜始终保持恒定和可重复。[/size][size=16px][color=#339999][b](2)样品装置[/b][/color][/size][size=16px] 采用悬空水平方式固定被测细丝碳纤维样品,细丝样品一端采用螺接压紧方式固定,另一端经过滑动装置采用砝码拉近,通过砝码重量提供的微小张力始终使细丝样品处于水平拉直状态。对于不同强度和粗细的碳纤维细丝,可通过更换砝码来提供不同的拉紧张力。[/size][size=16px][color=#339999][b](3)温控加热装置[/b][/color][/size][size=16px] 采用细管加热炉对整个样品进行辐射加热,测试过程中的温度变化按照步进台阶式形式变化,在每个设定点温度恒定后再进行激光衍射测量。这种加热方式的优点是用加热炉内的温度代替被测样品温度,由此可避免对细丝样品温度进行直接测量的困难性。[/size][size=16px][color=#339999][b](4)激光衍射测量装置[/b][/color][/size][size=16px] 激光衍射测量装置主要由激光源、衍射图像传感器和计算机图像分析系统组成。激光源和图像传感器分别水平布置在真空腔体的两侧,激光束垂直照射在被测细丝上,所形成的衍射图像由传感器接收。[/size][size=18px][color=#339999][b]4. 衍射轮廓的高精度测量[/b][/color][/size][size=16px] 细丝直径测量中采用激光衍射装置和图像传感器获得的衍射轮廓如图3所示。纤维直径根据测量衍射轮廓的第一个暗条纹之间距离,并由衍射公式计算获得。但如果直接采用图像传感器的固有位置分辨率,则只能获得10nm左右的直径测量分辨率,这显然无法获得足够高的直径变化检测精度。[/size][align=center][size=16px][color=#339999][b][img=03.图像传感器衍射轮廓示意图,550,402]https://ng1.17img.cn/bbsfiles/images/2023/05/202305300842072248_1383_3221506_3.jpg!w690x505.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 图像传感器衍射轮廓示意图[/b][/color][/size][/align][size=16px] 为进一步提高细丝直径测量的分辨率,本文提出了以下几方面具体措施:[/size][size=16px] (1)对图3所示的衍射轮廓进行细分,具体细分技术是对衍射轮廓曲线进行参数拟合,拟合中需考虑衍射光以及背景光强度,如光学元件和窗口的散射光以及样品在高温下发出的光。[/size][size=16px] (2)采用已知直径的细丝对成像物镜的焦距进行高精度标定,减小系统误差。[/size][size=16px] (3)在CCD 前增加滤光片,在成像物镜前增加一平行于衍射方向的长条状光阑。[/size][size=16px] 通过上述措施,可将激光衍射法细丝直径测量的分辨率提高到几个纳米范围内。[/size][size=18px][color=#339999][b]5. 总结[/b][/color][/size][size=16px] 本文所述解决方案,除了可以实现1~10微米量级粗细的碳纤维单丝直径和热膨胀系数测试之外,还具备以下几方面的测试能力:[/size][size=16px] (1)本文所述解决方案在设计的同时,还同时考虑了碳纤维轴向方向上热膨胀系数测试功能的实现,即采用激光干涉法测试细丝样品在轴向方向上收缩和膨胀过程中的位移变化。在真空腔体形状和空间尺寸上都考虑了激光干涉法位移测量装置的布置,采用相同的加热和测温装置也可提供碳纤维细丝轴向热膨胀所需的温度变化和测量。[/size][size=16px] (2)由于具有几个纳米的超高分辨率,通过增加扫描装置,此解决方案可以用于碳纤维单丝外径分布和外径形状的测量。[/size][size=16px] (3)为各种粗细的线状材料外径测量提供了一种高精度的激光衍射测量方法,非接触光学测试方法和高温加热能力,也可推广应用到低温范围内的测试应用。[/size][align=center][color=#339999][b][/b][/color][/align][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • JSM-6060型电镜不同倍率图片定格后,其有一个长度标尺,数值不能更改?

    我们公司刚购买了一太JSM-6060型电镜,在拍摄照片时,我们发现不同倍率图片定格后,其有一个长度标尺,但它的数值却是不能更改的,例如,5K的照片下面的标尺就固定为5um,而我们很多客户反映这个长度不好,不能比较精确的估计粒子的大小,所以我现在很苦恼,有谁知道这个标尺能改吗?怎么改?谢谢!我的电话:0574-28827210 希望哪位好心人告诉我!!

  • 请教:gatan的CCD相机倍率校正

    如果使用放大倍率表,但只校正了部分倍率,那么其他没有校正过的倍率会怎么设定标尺?靠最近的倍率设置吗?还有,昨天用石墨校正的时候发现不同倍率下的校正因子有差异从1.3-1.4不等,有问题吗?另外,石墨的层间距应该是0.335 nm,请问你们校正的时候是按0.34还是0.335呢?

  • 影响激光粒度仪背景的因素

    激光粒度仪良好的背景状态必须同时具备以下五点:数值较低(1-3)、长度短(占 20 个通道以内)、形状斜(从左逐渐递减)、位置左(位于坐标最左侧)和稳定。影响激光粒度仪的背景状态的因素有以下原因:一是对中不良;二是样品池粘附颗粒或结雾;三是介质不干净;四是激光器老化。此外像样品池中没有介质、环境空气中灰尘太多、富氏透镜脏等也可能造成背景状态异常。如果出现背景异常,首先要检查样品池和透镜是否干净,然后检查样品池中是否有介质和介质是否有杂质,再检查对中状态是否良好。如果这些都正常,则要观察激光器的亮度是否正常、电脑与仪器之间通讯是否正常等。原则是按由简到繁的顺序检查和处理。查清引起背景异常的原因后应及时排除故障,使背景恢复到正常状态,然后才能进行粒度测试工作。如果还不能找到背景异常的原因,则需要与厂家联系求得帮助。

  • 激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    [color=#cc0000]摘要:本文针对液体和粉体形式的蓄热型相变材料,介绍了激光闪光法在蓄热相变材料热扩散系数测试中应用研究以及各种典型液体材料和相变材料的验证试验结果。根据研究文献和验证试验结果证明激光闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[/color][color=#cc0000]关键词:闪光法、相变材料,液体、粉体、热扩散系数,导热系数,储能,蓄热[/color][color=#cc0000][/color][hr/][color=#ff0000][b]1. 引言[/b][/color] 相变材料在相变过程中吸收或者释放热量,利用相变材料的相变潜热来实现能量的储存,可以解决能量供需在时间和空间上不匹配的矛盾,有效提高能源利用效率,达到节能减排目的。利用相变材料的这一特点将其应用到建筑材料中,吸收和储存白天进入室内的太阳辐射热避免室内温度过高,夜间释放这些热量,把室内温度控制在人体舒适温度范围内,可降低建筑采暖和致冷的能源消耗,实现建筑节能的同时提高居住环境舒适度。 建筑用相变材料多为潜热型蓄热方式,这种方式的主要优势是在较小温度区间内具有较高的蓄热密度,它可以用于建筑的加热和冷却,并可以与其它被动系统或主动系统配合使用。 如图1-1所示,在建筑中所使用的各种相变材料通常被描述为多种相变复合材料的基材,其主要目的是保持相变材料的形状稳定或对其进行包封,特别是相变材料是液态形式时。目前国内外常用的相变复合材料基材的样品尺寸一般从几个毫米到几个厘米直到所谓的大尺寸块状尺度,如已经被用于建筑结构中的微胶囊封装相变材料,各种非工艺陶瓷材料,水泥或石膏板等,所用的相变材料不仅微胶囊封装了石蜡,而且还包含了浸注石蜡等形式,从而形成各种形式的建筑用相变材料。[align=center] [img=1-01.液体和粉末颗粒状相变材料,690,338]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251521_01_3384_3.png!w690x338.jpg[/img][/align][align=center][color=#990000][b]图1-1 液体状和粉末颗粒状相变材料[/b][/color][/align] 这些相变材料的热物理性能给出了这些材料和复合材料的蓄热能力,但测试评价热物理性能则并不容易,特别是对于这些液体形状和粉末颗粒形状的相变材料而言,在采用目前传统实验室仪器进行测量时要十分小心,否则很难获得准确的测量结果。 本文针对液体和粉体形式的蓄热型相变材料,主要介绍了激光闪光法在蓄热相变材料热扩散系数测量中的应用,以及各种典型液体材料和相变材料的测量结果,并介绍了闪光法测试相变材料中的注意事项和存在的问题及不足。[b][color=#ff0000]2. 问题的提出[/color][/b] 在激光闪光法中被测样品位于闪光灯和红外探测器之间,激光脉冲照射到样品的前表面,红外探测器测量样品背面的温升变化。通过数学模型来处理这个温升曲线从而测得被测样品的热扩散系数,将热扩散系数与样品材料的密度和比热容相乘得到相应的导热系数。 如图1-1所示液体状和粉末颗粒状蓄热相变材料,在微观尺度上由大量几十至几百微米尺度颗粒或胶囊构成,对于十几毫米的激光闪光法测样品品宏观热性能而言则是均匀的。由此,液体状和粉末颗粒状蓄热相变材料的导热系数测试就可以归结为液体和粉体材料的热性能测试。但由于液体和粉体蓄热相变材料的特殊性,在采用激光闪光法测试导热系数过程中会面临以下几个重要难题: (1)在激光闪光法测量液体和粉末颗粒状样品时,如液液和固液相变材料,被测样品在液液和固液相变过程中会发生明显的膨胀或收缩,如果不采取特殊措施,被测样品厚度将在测试过程中发生变化,会给测试结果带来巨大误差。 (2)液体和颗粒状蓄热相变材料一般的导热系数较低,大多小于1W/mK,这就要求激光闪光法测试时一是尽可能减小样品厚度,二是加大激光脉冲功率,但对于低熔点相变材料而言则是一个相互矛盾的难题。 (3)蓄热相变材料的相变温度一般较低,当激光脉冲照射在相变材料样品前表面时,很容易使得样品前表面温度升高1~5℃,从而使得样品的激光照射区域产生软化或相变,进而改变样品整体性能的均匀性给测试带来严重误差。 (4)许多蓄热相变材料都为透明或半透明材料,激光闪光法的测试过程很容易产生热传导之外的对流和辐射传热形式,就需要采用特殊手段进行规避和修正。 (5)激光闪光法测试热扩散系数的前提条件是认为被测样品在测试过程中保持材料形态不变,即在测试过程中不能产生相变,因此对于蓄热相变材料相变过程中的热扩散系数测试则是激光闪光法无法解决的难题。 以上难题就是为什么对于液体材料大多使用特殊方法来测量热扩散系数,这些特殊方法包括同轴圆柱法和平行板法等稳态方法,瞬态法则主要有热线法。然而,为了避免液体测量中由于辐射和对流带来的影响,必须在这些方法中实施一些特殊技术手段条件,文献给出了测量液体导热系数主要方法的综述。[b][color=#ff0000]3. 激光闪光法测试蓄热相变材料的改进[/color][/b][color=#ff0000]3.1. 激光闪光法测量液体热物理性能技术研究综述[/color] 尽管采用闪光法测试液体热物性存在上述困难,一些研究人员还是尝试了将闪光法应用于液体测量。理论上闪光法可以作为一种有效的测量液体热扩散系数方法,这是因为通过使用热脉冲加热水平安装样品的上表面可以大大降低对流换热的影响。 Schriempf是第一个开发特殊闪光法仪器致力于测量液体热扩散系数并成功应用到了液体水银,他用绝缘材料制成样品容器,液体表面覆盖透明石英板,就像闪光法基本方法一样测量液体样品背面的温度上升。然而他的方法不适应测量低导热液体,因为热量流经容器不可忽略,从而造成热流不再是一维热流。 Farooq等人提出了一个类似方法,基于一个外层钎焊到一环形中心间隔器的样品容器所构成的三层结构测试单元,采用这种样品容器测试水的热扩散系数。 Maeda等人还提出了一个特殊的测样品品单元,其中的液体夹持在顶部和底部铂坩埚内形成一个三层的三明治结构,并使用三层分析计算模型来进行曲线拟合,同时基于透明体假设来进行修正。 Nishi等人研究了高温下激光闪光法测量熔融金属热扩散系数的可能性,为了做到这一点他们开发了一个简单的样品单元,并在理论上估计了在熔融金属界面上的辐射和传导热损失影响,这使得可以分析测量不确定度。他们的结论是所开发的激光闪光法测量装置可以测量熔融镍的热扩散系数以及测量不确定度为±3%。 Coquard等人开发了一种有机玻璃空心圆筒构成的样品容器,在圆筒的顶部和底部由圆形铝板进行封闭,由此组成一种三明治结构样品进行闪光法测试,通过对背温测试曲线进行参数估计得到液体样品的热扩散系数。采用此方法对两种液体(水和乙醇)和一个糊状物质(聚丙烯酰胺凝胶)进行了测试,总的不确定度分析结果为小于5%。但从文献中看这种方法液体样品很厚将近有7mm,对于低导热液体样品测试会造成背温温升时间过长而带来一系列的误差因素。 总之,上述这些研究都是基于经典的闪光法,并假设通过特制样品单元或样品容器的热量传递仍然是一维热流,虽然这可能与实际情况不符。事实上,以上开发的测试设备是由几个具有可变热性能的部件组成,都会产生相应的边缘效应。这就是为什么使用他们的仪器测量液体样品时得不到准确液体热扩散系数的主要原因,就是因为热流不再是一维热流。 为了避免非一维热流情况,Tada等人提出了一种基于适当样品几何形状的方法,他们将液体夹在金属板和样品容器之间并测量前表面温度变化,从中获得液体的导热系数。他们的方法既不要求使用参考材料,也不需要测量样品厚度,因为液体样品层被视为半无限大厚,他们的方法成功测量了水和甲苯。Ohta等人使用一种几乎相同的方法来测量高温下高粘性液体的蓄热系数。然而,这些前表面闪光法都需要测量样品前表面温升并涉及到开发特殊测量设备,而这些恰恰很难实现。 根据上述文献报道和闪光法测试原理,要解决样品厚度变化和前表面物态变化对测量的影响无外乎以下几种途径: (1)在被测样品的测量区域内(脉冲激光照射区域和样品背面温度探测区域),设法保持被测样品厚度在温度变化过程中始终不变,而在被测样品的非测量区域(边缘位置处)留出样品膨胀空间。 (2)采用夹层结构形式讲被测样品夹持在中心位置,使得激光脉冲不直接作用在样品上,一方面避免激光直接穿过透明和半透明样品直达背温探测器形成干扰,二是固定样品厚度始终不变。 (3)根据相变材料导热系数和厚度来优化激光脉冲功率,尽可能在得到满意背面温升曲线的同时,使得样品前表面不产生融化现象。 (4)采用前表面测试技术,即激光照射被测样品前表面进行样品加热,同时在样品的前表面测量样品温度变化,而不是测量样品背面温度变化。 激光闪光法前表面测试技术是一种新出现的高速测试技术,特别适合高导热材料相变前后(熔融前后)的热扩散系数测量,因此这种方法目前主要用于金属熔融前后的高温热扩散系数测量,在较低导热系数的蓄热相变材料中还应用较少,所以本文将不对激光闪光法前表面测试技术进行介绍。[color=#ff0000]3.2. 特制样品容器用于激光闪光法液体测试[/color] 目前绝大多数激光闪光法测试都是采用前表面激光闪光加热和后表面测温方式,可以采用上述前两种途径制作特殊样品容器来进行液体和相变材料测试,文献报道了为激光闪光法液体测试配备的一种特制样品容器。 这种为液体、浆料和微细颗粒材料的热扩散系数测量开发的特制容器,如图3-1所示。该特制样品容器由一个坩埚、不锈钢环和封装盖组成,将被测样品(约50ul)装入坩埚并装上封装盖,被测样品就会充满封装盖与坩埚之间约0.5mm厚的间隙,这个间隙就是被测样品厚度。装填完毕样品后,需要在坩埚底部和封装盖顶部中心区域涂覆石墨以确保表面具有较高发射率,从而形成对脉冲加热光具有良好的热量吸收以及对非接触红外探测器具有较强的热辐射。 针对不同的测试温度范围,特制容器的材质分别为铝合金(适用于500℃以下)和铂铑合金(适用于1600℃以下)。这种结构的样品容器只适合样品水平放置的直立式激光闪光法测试设备,即样品容器和样品为水平放置,激光器和背温探测器位于样品的上部或下部,这种结构的样品容器并不适合样品直立形式的激光闪光法测试设备。[align=center] [img=3-01.激光闪光法液体和颗粒物试样容器,690,450]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251523_02_3384_3.png!w690x450.jpg[/img][/align][align=center][b][color=#990000]图3-1 激光闪光法液体和粉体样品测试专用容器[/color][/b][/align] 需要注意的是,在采用图3-1所示特制容器进行样品热扩散系数测试时必须采用三层分析程序对背温检测信号进行处理,即坩埚底层、被测样品和封装盖中心层形成一个三层夹心结构的被测样品,需要已知坩埚和封装盖材料的热性能后再通过三层分析程序对背温测量信号进行计算处理才能得到被测样品的热扩散系数。如果要获得被测样品的导热系数,还需要采用其它方法测量被测样品的比热容和密度随温度的变化。[b][color=#ff0000]4. 特制样品容器的考核[/color][/b] 文献报道了采用图3-1所示特制容器对一系列液体、膏状物和相变材料进行了测试,以验证和考核特制样品容器和相关测试方法的有效性。以下内容仅为文献报道的测试内容和结果,其中有些内容并不完全代表相关材料测试过程中的真实情况,这里的介绍仅是作为激光闪光法液体热扩散系数测试考核内容的借鉴和参考,文献中很多关键技术细节和遇到的问题没有报道,本文后续篇幅将会展开进行说明。[color=#ff0000]4.1. 纯水的激光闪光法测量[/color] 在材料热分析和热性能测试技术中纯水常作为一种参考物质来检验测试方法的准确性,为了验证针对液体和粉体样品所做的特制样品容器和相应的测试程序,采用了三种不同尺寸的特制样品容器对纯水在25~50℃温度范围内进行了激光闪光法测试,在每个温度点下分别进行了5次重复性测量,测试结果如图4-1所示,测试中纯水的密度和比热容数据采用了文献值,测试结果与纯水热扩散系数和导热系数文献值进行了比较以观察测试结果的准确性和重复性。[align=center] [img=,690,461]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251532_01_3384_3.png!w690x461.jpg[/img][/align][align=center][b][color=#990000]图4-1 采用三种不同尺寸液体样品容器测量纯水热扩散系数和导热系数的结果[/color][/b][/align] 图4-1中灰色区域为纯水导热系数文献值范围,采用特制样品容器所进行的测试结果显示纯水的导热系数测试结果落在灰色区域内,热扩散系数和导热系数随温度升高略有增加,导热系数测试结果与文献值相差一般小于±2%。[color=#ff0000]4.2. 乙二醇的激光闪光法测量[/color] 乙二醇也是常用考核热分析测试方法的参考材料之一,采用特制样品容器对乙二醇进行了测试,测试结果如图4-2所示。测试结果与文献值进行了比较,假设文献值的测量不确定度为3%,并以此测量不确定度在图中绘制误差线。为了计算方便,导热系数计算中采用了文献所提供的密度和比热容数据,从所测量的热扩散系数和计算得到的导热系数可以看出测量值与文献值之间的偏差既远小于激光闪光法测量不确定度(约5%),也小于文献值的测量不确定度。从乙二醇导热系数测试结果还可以看出随着温度的增加,乙二醇导热系数几乎呈线性缓慢增大,而热扩散系数则呈线性缓慢减小,这都表示了乙二醇热扩散系数和导热系数对温度的依赖性较弱。[align=center][img=,690,481]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251533_01_3384_3.png!w690x481.jpg[/img] [/align][align=center][b][color=#990000]图4-2 乙二醇热扩散系数和导热系数测试结果[/color][/b][/align][color=#ff0000]4.3. 硅脂的激光闪光法测量[/color] 硅脂是一种常用的膏状物,其导热性能是硅脂的一个重要指标。采用特制样品容器对硅脂进行了测量,测试温度范围为-40~100℃,硅脂的热扩散系数、比热容和导热系数测试结果如图4-3所示。[align=center] [img=,690,470]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_01_3384_3.png!w690x470.jpg[/img][/align][align=center][b][color=#990000]图4-3 硅脂的热扩散系数、比热容和导热系数测试结果[/color][/b][/align] 硅脂通常用于真空应用和导热脂的制备,在后续的应用中一般将大量的无机粉添加到硅脂中。而在实际情况下,只有少量的无机材料添加到油脂中,这种添加剂的原因是其密度略高于硅脂的典型密度范围(0.8~1g/cm3),在24℃室温下的硅脂糊状物密度测量值为 1.136 g/cm3。测量结果显示随着温度的增加热扩散系数缓慢下降,而比热容则缓慢增大,由此使得硅脂的导热系数在整个温度范围内几乎呈线性增长。[color=#ff0000]4.4. 聚碳酸酯相变材料的激光闪光法测量[/color] 为了进一步验证特制样品容器的实用性,还对聚碳酸酯固液相变材料进行了激光闪光法测试,测试温度范围为室温~300℃。在室温下聚碳酸酯为非晶固体,在第一次加热超过玻璃化转变温度(200℃以上)后聚碳酸酯会变软并最终成为液体。根据这种特性,在采用特制样品容器制作测试样品时,要先将固体聚碳酸酯样品放入坩埚内并进行加热,当加热到200℃时将封装盖压在坩埚上,然后冷却特制样品容器至室温再开始激光闪光法测试,这样制作被测样品的目的是为了确保坩埚和封装盖与聚碳酸酯样品之间有良好的热接触和样品端面平行度。最终所制的聚碳酸酯样品厚度为0.55mm,直径为11mm。 采用特制样品容器制成聚碳酸酯样品后,激光闪光法的测试结果如图4-4所示。[align=center][img=,690,448]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_02_3384_3.png!w690x448.jpg[/img][/align][align=center][b][color=#990000]图4-4 采用液体样品容器测量聚碳酸酯热扩散系数和导热系数的结果[/color][/b][/align] 从图中可以看出,热扩散系数在室温~130℃范围内呈近似线性的下降,在130~150℃范围内热扩散系数发生明显的大幅度降低,这是由于聚碳酸酯玻璃化转变过程所引起的反应,在玻璃化转变过程中激光闪光法只检测到热扩散系数随温度变化只发生了轻微的改变,对温度变化并未有多少依赖性。 采用差示扫描量热仪对聚碳酸酯样品进行了比热容测试,从图4-4所示的测试结果可以看出比热容随温度几乎呈线性增大,在玻璃化转变时比热值产生较高的典型跃迁,然后继续随温度变化呈线性增大。 在文献中并没有提到聚碳酸酯密度随温度变化的测量,只是将聚碳酸酯导热系数测试结果呈现在图4-4中,测试结果显示随着温度升高导热系数持续增大,并没有受到玻璃化转变过程的太大影响。[color=#ff0000]4.5. 聚丙烯的激光闪光法测试[/color] 图4-5显示了40~300℃范围内采用差示扫描量热仪测量聚丙烯样品的表观比热容(比热容与相变焓重叠)随温度变化曲线,在温度变化初期比热容随温度升高而持续增大,在120~210℃范围内熔化热与比热容重叠,在此温度范围内结晶材料发生融化,融化过程中所引起的焓值变化在77.5J/g处进行了评估。为了进行热扩散系数和导热系数分析,需要对测试曲线进行线性内插以去掉额外的焓值变化,图中用直线表示。[align=center] [img=,690,351]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_03_3384_3.png!w690x351.jpg[/img][/align][align=center][b][color=#990000]图4-5 部分结晶聚丙烯表观比热容测试结果[/color][/b][/align] 图4-6显示了在室温~300℃范围内聚丙烯样品的热扩散系数、比热容(插值后)和导热系数测量结果,从图中可以看到,热扩散系数逐渐下降到120℃后随着温度的进一步升高而略微的增大。比热容则在整个温度区间内都呈现出增加趋势,但在固态过程中比热容随温度增加速度较高。随温度变化的导热系数近乎为直线,这是这类半晶质热塑性材料的典型特征,在融化过程中导热系数会呈现轻微的下降。[align=center] [img=,690,458]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_01_3384_3.png!w690x458.jpg[/img][/align][align=center][b][color=#990000]图4-6 聚丙烯的热扩散系数、比热容和导热系数,样品厚度0.55mm,宽度11.00mm[/color][/b][/align][color=#ff0000]4.6. 石蜡混合物的激光闪光法测试[/color] 图4-7显示了-30~50℃温度范围内石蜡混合物的热扩散系数和比热容测试结果,这些测试是在铂铑合金坩埚制成的样品容器上进行。测试结果显示出在0~40℃为宽泛的融化区间,在表观比热容测试结果中可以看到熔融过程为重叠的吸热效应(实心直线),在该温度范围内进行插值所得到的熔融热不会对比热容产生影响。[align=center] [img=,690,462]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_02_3384_3.png!w690x462.jpg[/img][/align][align=center][b][color=#990000]图4-7 石蜡混合物表观热扩散系数和表观比热容测试结果,样品厚度0.506mm,在35℃时的密度为0.757gcm-3[/color][/b][/align] 从图中可以看出,表观热扩散系数测试结果显示在-30~20℃范围内呈现出一个衰减过程,然后随温度逐渐增加,在温度达到35℃后表观热扩散系数趋于恒定。 然而,在实际测试中要考虑相变区域的测量,即考虑熔融过程中的测量,这点至关重要,这主要是用于分析激光闪光法测试结果的瞬态传热方程在相变区域不再有效。在熔化/凝固过程中,考虑到焓变化的影响, 它必须通过一个附加技术来进行扩展,这种熔化/凝固通常发生在闪光源的加热时刻和样品达到最高温度后的降温时刻。利用所开发的瞬态传热方程数值解法可以考虑这种效应,考虑到测试中的三层样品结构,这样的解决方案可能非常复杂。在这项工作中使用的另一种解决方案是在不同的闪光脉冲能量下进行测试,从而在样品内形成不同的温升,然后将结果外推到零脉冲能量,从而使热扩散系数的计算不受熔化/凝固的影响。 分别在0℃和25℃下采用不同闪光脉冲加热能量对石蜡混合物进行了测试,测试结果如图4-8所示。从图中可以明显看出表观热扩散系数与脉冲加热能量几乎呈线性关系,在热焓变化较大的熔化温度范围内(25℃),表观热扩散系数与脉冲能量的依赖性较大,而在热焓变化较小的熔化温度范围内(0℃),这种依赖性较弱。[align=center] [img=,690,455]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_03_3384_3.png!w690x455.jpg[/img][/align][align=center][b][color=#990000]图4-8 在0~25℃范围内石蜡混合物表观热扩散系数随闪光加热能量的变化,同时显示了测试结果的线性逼近趋势[/color][/b][/align] 图4-8中还显示了使用一阶多项式对测试结果进行非线性回归的外推结果,从外推结果可以看出, 实测数据与这个线性逼近吻合在实测数据散度中,在所有的相变区域内都可以相似的逼近计算。 通过外推到零脉冲能量所得到的热扩散系数结果在图4-7中显示为修正的热扩散系数,由此可以看出,在对脉冲能量影响进行修正后,热扩散系数在熔化范围内随温度变化几乎呈线性下降。 利用修正后的热扩散系数和比热容(在熔化过程中不发生重叠焓变化)计算石蜡混合物导热系数中,同时考虑了熔化过程中的密度变化,由此得到图4-9所示的导热系数结果。可以看出导热系数在-30~35℃温度范围内逐渐降低,而在在相变过程中导热系数下降速率变缓,在全熔融区中导热系数得到接近恒定值。[align=center] [img=,690,480]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_04_3384_3.png!w690x480.jpg[/img][/align][align=center][b][color=#990000]图4-9 在温度-30~50℃范围内的石蜡混合物导热系数计算结果[/color][/b][/align][b][color=#ff0000]5. 试验分析和验证[/color][/b] 采用文献报道的特制样品容器进行激光闪光法液体测试过程中,还存在很多影响因素并未有报道,以下对图3-1所示的用于液体的特制样品容器在激光闪光法测试过程中的影响因素进行分析。[color=#ff0000]5.1. 样品中空气隙的影响[/color] 为了评估测量不确定度,Coquard等人对可能导致测量误差的参数进行了分析,分析结论是样品厚度的正确测定和特制样品容器的严格灌装是关键参数,如果空气在样品所占比例为1.25%就意味的测量结果误差为15.4%, 因为这个空气层将成为热传导通道上的一个热障。[color=#ff0000]5.2. 金属样品容器的影响[/color] 图3-1所示的用于液体样品的特制样品容器材质是纯铝或铂铑合金(Pt90Rh10),其导热系数为237 W/mK 和38W/mK,与被测液体样品导热系数范围(0.15~0.6W/mK)相比这是一个非常高的导热系数值。然而特制样品容器在坩埚与封装盖之间提供了一个侧面空气间隙,这个侧面空气间隙的热阻足够大于比被测液体样品的热阻,由此使得特制样品容器上的热传递最小化。同样情形也发生在封装盖接触面上,虽然接触面并未压力加载,但接触热阻还是会远大于液体样品热阻,也就是说特制样品容器对测试结果的影响已经最小化了。但是毕竟样品容器是由高导热金属制成,瞬态激光热脉冲加热液体样品前首先加热的是三层结构样品的顶部金属表面,热量一方面会继续前行加热液体样品,同时热量还会沿着样品容器壁产生散热线性,由此造成加热液体样品上表面的热流分布并不均匀,这是一个重要测量误差源。 Delgado等人分别对空载的特制样品容器和装有水的特制样品容器进行了测试,两个测试结果的比较如图5-1所示,当样品容器空载时的背温信号响应会更长。在选择测试软件中时间范围进行计算时,重要的是数据采集时间应该很短以避免样品容器的贡献。由此可以得到一个重要的信息就是采用高导热金属材质样品容器时,数据采集时间尽可能越小越好,但对于导热系数普遍较低的液体和相变材料而言,背温变化十分缓慢,数据采集实际势必较长,这显然会造成样品容器散热的严重影响。[align=center][img=,690,514]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_01_3384_3.png!w690x514.jpg[/img][/align][b][/b][align=center][b][color=#990000]图5-1 激光闪光法测量空载和有水样品容器时的探测器信号[/color][/b][/align] 由此可以看出,样品容器的设计需要接触液体样品的两个上下表面导热系数越大越好,以保证激光脉冲热量能快速加热液体样品并使得液体样品背面温度变化有效的传递出去。另一方面需要样品容器侧壁材质的导热系数越小越好,这样可以避免热量向容器四周散热。总之,这是一个相互矛盾的命题,至于样品容器侧壁热损到底对测量结果有多大影响,可以采用有限元模拟分析进行准确评价。从这方面可以看出,就像激光闪光法不太适合刚性固体低导热材料测试一样,采用图3-1所示特制样品容器进行激光闪光法热扩散系数测试,并不一定适用于低导热特性的液体和相变材料。[color=#ff0000]5.3. 样品的准备[/color] 为了采用激光闪光法设备测量固体样品,一般首先要先建立真空,然后充入惰性气体氮气。然而,当这一程序应用到液体测试时,一旦达到蒸汽压,测试设备腔体内的真空和减压会导致样品中的水分蒸发,这可以通过真空前后的样品称重进行检查。因此,在对液体样品进行最终测试时,需要省略掉真空过程,而通过较长时间气体置换来建立氮气气氛环境。 样品制备时要在特制样品容器的外表面上均匀涂覆石墨以增加激光能量的吸收,并保证样品的所有部分都具有相同吸收量。由于激光照射是的样品前表面温度可以达到很高值,所以知道这个温度的上限非常重要,以避免被测样品出于相变阶段,样品为水的情况下必须避免蒸发。 另外,被测液体样品厚度的准确测量非常关键,为了保证样品完整填充入样品容器,需要从几何尺寸中计算出容器体积,并通过微量[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url]来控制样品量。由此可见在激光闪光法液体热扩散系数测试中,对样品的制作和测试要十分的小心,试样过程十分精密。[color=#ff0000]5.4. 液体样品特制容器的进一步试验验证[/color] Delgado等人采用图3-1所示的液体样品特制样品容器,在激光闪光法设备上对三种液体(蒸馏水、正十六烷和甘油)进行了热扩散系数测试,测量结果如图5-2所示,图中所显示的测量值为五次激光脉冲测试热扩散系数和温度结果的平均值,图中还显示了与参考值相比的标准偏差。对于蒸馏水样品,最大测试误差为7.87%,测试正十六烷的最大误差为4.31%,测试甘油时的测试误差最大达到了15.38%,蒸馏水、正十六烷和甘油的参考值分别来自文献。由此可见,采用特制样品容器进行激光闪光法热扩散系数测试并没有达到文献所描述的准确度和重复性精度。[align=center] [img=,542,453]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_02_3384_3.png!w542x453.jpg[/img][/align][align=center][b][color=#990000]图5-2 三种液体导热系数测试结果及与参考值的比较[/color][/b][/align] 根据测试设备软件所提供的三层测试模型计算得到样品的热扩散系数,图5-3显示了PCM微胶囊质量分数分别为14%、20%和30%时的相变材料浆料的导热系数数值。在20℃时所得到的测量结果被认为并不可靠,这是因为即使激光脉冲造成样品温度一个非常小的增加也会导致比热容的突然改变(相变区在20~24℃之间),这种方法规定比热容是恒定的,否则计算得到的测试结果可能是无效。因此,如果留意25~30℃范围的数据,就可以观察到,在温度升高时PCM浆料的导热系数应该稍有增加。[align=center] [img=,690,538]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_03_3384_3.png!w690x538.jpg[/img][/align][align=center][b][color=#990000]图5-3 不同微胶囊质量分数14、20和30%时的导热系数测试结果[/color][/b][/align] 必须指出的是,PCM微胶囊质量分数的增加会导致导热系数降低,这种行为是预期的,这是因为石蜡的导热系数比水低。另外与温度为30℃的水相比,质量分数为14、20和30%的PCM微胶囊浆料分别都经历了24、32和39% 的还原。[color=#ff0000][b]6. 结论[/b][/color] 通过以上激光闪光法测试液体和相变材料热扩散系数和导热系数的研究文献报道,可以得出以下结论: (1)由于受到闪光法测量原理的限制,闪光法只能测量相变材料相变前后的热扩散系数,对相变过程中的热扩散系数根本无法测量,或测量结果完全不正确。 (2)尽管为闪光法液体热扩散系数测量开发了各种形式和材质的特制样品容器,但都有各自的局限性,有些适合低导热材料,有些适合于高导热材料,这对实际应用有很大限制并影响测量精度。 (3)对于液体和相变材料而言,闪光法测试过程中的样品制备要求十分精细、准确定量灌装和严格控制样品厚度,同时要避免样品中形成气泡等空气隙,否则会对测量结果带来严重影响。 (4)样品容器侧壁材质侧面热损的影响并未进行深入的研究,对于低导热液体和相变材料测试侧壁热损很可能是影响测量精度的重要因素之一。 (5)激光能量需要优化,或进行一系列不同激光能量下测试来进行外推,避免前表面温升引起样品前表面发生相变,使得闪光法测试相变材料十分的繁琐。 (6)在样品厚度固定不变的前提下,要结合激光脉冲能量来对脉冲时间进行优化,避免加热时间过长所带来的对流和辐射传热的影响。 (7)为了获得液体和相变材料的导热系数,除了用闪光法测试热扩散系数之外,还需要对比热容和密度随温度变化进行单独测量,整个测试过程复杂繁琐。 由此可见闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[color=#ff0000][b]7. 参考文献[/b][/color](1)B. Le Neindre, Mesure de la conductivité thermique des liquides et desgaz, in : Techniques de l’Ingénieur, Mesures et contrô le (Tech. ing., Mes. contrô le), vol. RC3, noR2920, 1996, pp. R2920.1-R2920.21(2)J.T. Schriempf, A laser flash technique for determining thermal diffusivity of liquid metals at elevated temperatures, Rev. Sci. Inst. 43 (1972) 781-786.(3)M.M. Farooq, W.H. Giedt, N. Araki, Thermal diffusivity of liquids determined by flash heating of a three-layered cell, J. Thermophys. 1 (1981) 39-54.(4)Y. Maeda, H. Sagara, R.P. Tye, M. Masuda, H. Ohta, Y. Waseda, A hightemperature system based on the laser flash method to measure the thermal diffusivity of melts, Int. J. Thermophys. 17 (1996) 253.(5)T. Nishi, H. Ohta, H. Shibata, Y. Waseda, Evaluation of the heat leakage in the thermal diffusivity measurement of molten metals by a laser flash method, Int. J. Thermophys. 24 (2003) 1735-1751.(6)Coquard, R., and B. Panel. "Adaptation of the FLASH method to the measurement of the thermal conductivity of liquids or pasty materials." International Journal of Thermal Sciences 48.4 (2009): 747-760.(7)Y. Tada, M. Harada, M. Tanigaki, E.Y. Eguchi, Laser flash method for measuring thermal conductivity of liquids—application to low thermal conductivity liquids, Rev. Sci. Inst. 49 (1978) 1305-1314.(8)H. Ohta, H. Shibata, A. Suzuki, Y. Waseda, Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature, Rev. Sci. Inst. 72 (2001) 1899-1903.(9)Blumm, Jürgen, and André Lindemann. "Characterization of the thermophysical properties of molten polymers and liquids using the flash technique." High Temp. High Press 35.36 (2003): 627.(10)Blumm, J., A. Lindemann, and S. Min. "Thermal characterization of liquids and pastes using the flash technique." Thermochimica acta 455.1 (2007): 26-29.(11)Delgado, Mónica, et al. "Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry." Applied Thermal Engineering 63.1 (2014): 11-22.

  • 【这个有趣】智能手机变身350x放大倍率显微镜的方法 只需10美元

    美国科学家找到一种方式,能够将智能手机变成可观察红细胞的高性能显微镜,这种“变身”的费用只有区区10美元。此外,他们还使用日常家庭用品制造分光镜,用于测量光线的不同频率。美国科学家找到一种方式,能够将智能手机变成高性能显微镜,“变身”费用只有区区10美元。按照他们提供的做法,我们只需要一些胶带、一条橡胶带以及一个小玻璃球便能让智能手机变成具有350x放大倍率的显微镜,可以用来观察红细胞。此外,科学家还使用日常家庭用品制造分光镜,用于测量光线的不同频率。研究人员表示,让智能手机变身显微镜不只有趣那么简单,世界上一些偏远地区的患者将极大地受益于这一创造。从理论上说,这种简单的显微镜能够用于拍摄皮肤感染区域的照片,照片可通过邮件方式发送给远在千里之外的医生,帮助他们做出诊断。实验室使用的显微镜通常造价数千美元并且很难带出实验室。从智能手机变身而来的显微镜是迄今为止最为紧凑并且最为低廉的显微镜。这种显微镜由美国加利福尼亚州大学物理学家塞巴斯蒂安·沃什曼-霍格在此前设计的基础上研发。此前的设计更为脆弱并且需要更多零部件。沃什曼-霍格对其进行了简化,他使用橡胶带将一个直径1毫米的玻璃球固定在iPhone摄像头上方。iPhone版放大镜的放大倍率达到350x,由于无法聚焦,所拍摄的照片需要借助电脑软件进行处理。

  • 聚光镜激励电流与分辨率的关系

    聚光镜激励电流与分辨率的关系

    [img=,690,72]https://ng1.17img.cn/bbsfiles/images/2020/05/202005141101176235_480_4103759_3.png!w690x72.jpg[/img]看到一篇2011年的讨论帖,讲聚光镜电流。于是我将自己学习的聚光镜电流变化与分辨率之间的关系写下来[img=,462,525]https://ng1.17img.cn/bbsfiles/images/2020/05/202005141621134435_6824_4103759_3.png!w462x525.jpg[/img]由上图可知,调节聚光镜激励电流,αi会随之变化。增大激励,αi会变大,中间像di变小,S1变大,S1/WD也相应变大。S1/WD这个参数称为放大倍率,其越大,则相对应的束斑尺寸则越小,分辨率越高。同时,增大聚光镜的激励,进入物镜光阑的电流量=中间像的电流*(α0/αi)^2,由于αi变小,进入物镜光阑的电流量减小,束斑电流减小,图像亮度减小,信噪比变差。因此,调节聚光镜的激励,是一个有关图像分辨率和图像信噪比的矛盾关系,需要辩证的来看。

  • 激光粒度仪的“背景”

    背景是激光透过样品池及纯净介质后在探测器上形成的固定的光信号。产生背景的主要原因是激光由空气进入样品池玻璃(前)、介质、样品池玻璃(后)再返回空气的过程中,发生的折射、反射现象,再加上样品池玻璃、介质和透镜上可能的微小污染的综合作用引起的。测量背景的目的就是要在粒度测试时扣除这些固定的、与样品无关的信号,以消除样品散射光以外的因素对测量结果的影响,保证测量结果的准确可靠。

  • he-ne激光倍频

    我由于实验的需要想把,he-ne激光器发出的633nm的激光倍频成316.5nm,我手头有一个把1064nm倍频为532nm的倍频晶体,不知到对氦氖激光也适用,请指点一下

  • 激光测振仪在压电变压器振动测试中的应用

    激光测振仪在压电变压器振动测试中的应用

    压电变压器驱动电压低,体积小,质量轻,结构简单,无电池辐射等特点,但工作状态复杂,其振动特性影响它的特性,比如使用频率范围和转换效率等。压电变压器其实是电场和振动场耦合的谐振件,它在谐振时,器件会因多种因素(比如负载、环境、材料、输入电压)而发热、产生疲劳甚至破裂等问题。激光测振仪直接非接触地测得压电变压器在谐振状态下端点的振动位移、速度和加速度信号,便于更深入了解他的谐振状态,促进压电变压器的结构设计与优化。OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。OptoMET数字型激光多普勒测振仪具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。[img=,554,271]https://ng1.17img.cn/bbsfiles/images/2019/03/201903281454403195_8750_3859729_3.jpg!w554x271.jpg[/img]OptoMET单点激光测振仪有3个系列:分别是Vector、Nova、Dual Fiber系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。文章来源嘉兆科技官网来源网址:http://www.tnm-corad.com.cn/news/Show-5612.html

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制