当前位置: 仪器信息网 > 行业主题 > >

茎杆生长变化传感器

仪器信息网茎杆生长变化传感器专题为您提供2024年最新茎杆生长变化传感器价格报价、厂家品牌的相关信息, 包括茎杆生长变化传感器参数、型号等,不管是国产,还是进口品牌的茎杆生长变化传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合茎杆生长变化传感器相关的耗材配件、试剂标物,还有茎杆生长变化传感器相关的最新资讯、资料,以及茎杆生长变化传感器相关的解决方案。

茎杆生长变化传感器相关的资讯

  • 植物茎流仪、果实生长变化仪、茎秆生长变化计应用于上海市农科院
    2020年5月,我公司为上海果蔬种植基地(上海清澄果蔬专业合作社)提供植物茎流仪、果实生长变化仪、茎秆生长变化计等数据采集系统。 上海清澄果蔬专业合作社占地面积480亩,先后被评为中国农业部和财政部现代农业产业技术示范基地、市农业技术推广服务中心先进科技示范户、2017年上海农业科学院梨树试验示范基地等多项荣誉。合作社坚持农旅结合,打造特色农业生态合作社,并利用网络平台开设微店,生产的各种特色果品深受市民喜爱。 PEM1000X植物生理生态监测系统是北京博伦经纬公司推出的一款新型的植物生理生态监测系统,分别有监测部分、采集部分、传输部分组成,监测部分包括:各种传感器和供电部分;采购部分包括:数据记录仪、数据存储部分和支架配件部分;传输部分包括:有线传输和无线传输。此系统包括:茎秆生长变化、果实生长变化、茎流等指标,可根据客户的需要酌情添加或减少传感器,可以长期地监测植物的生理变化和影响植物生长变化的监测系统。HPV茎流量传感器是一款校准型、低成本的热脉冲液流传感器,输出校准液流量、热速、茎水含量、茎温等数据,功耗低,内置加热控制,同时改善了传统的加热方式,其原理采用热脉冲速率法(HPV),测量范围:-200~+1000cm/hr(热流速度)或-100~+2000cm3/cm2/hr (茎流通量密度),可广泛用于于茎流量监测、植物茎流蒸发计算、植物茎流蒸腾量、植物灌溉等植物茎流是树木内部的“水”运动,而蒸腾是从叶片通过光合作用蒸发流出的水分。树液流量和蒸腾量之间有很强的关联性,通常理解是同一回事。但是,严格地说,它们是不同的,这体现在它们是如何被测量的。SAP流量以L/hr(或每天、每周等)为单位进行测量。蒸腾量以每小时、每天、每星期等毫米(mm)为单位测量。 蒸散量=蒸腾量+蒸发量 蒸腾量以毫米为测量单位,可与降雨量以毫米计作比较。随着时间的推移,降雨量(水输入)应与蒸腾量(输出)相匹配。如果蒸腾作用更高,通常是树木作物的蒸腾作用,那么这种差异必须通过灌溉来弥补。 蒸发量(evaporation),蒸发量是指在一定时段内,由土壤或水中的水分经蒸发而散布到空中的量。1mm(降雨量)=1㎡地面1kg水1mm(蒸腾量)=1㎡叶面积的1升树液流量(水) 例如:在果园和葡萄园等有管理的树木作物系统中,蒸发量与蒸腾量相比非常小。因此,为了简化测量,通常忽略蒸发量,将蒸腾量取为平均蒸散量(ETo)。 技术指标测量范围:-200~+1000cm/hr(热流速度)分辨率:0.001cm/hr准确度:±0.1cm/hr探针尺寸:φ1.3mm*L30mm温度位置:外10mm,内20mm针距:6mm探针材质:316不锈钢温度范围:-30~+70℃响应时间:200ms加热电阻:39Ω,400J/m电源:12V DC电流:空闲5mA, 测量270mA线缆:5m,Max 60mDE-1T 树木生长变化传感器茎秆直径范围:60mm茎秆变化测量范围:0~10mm分辨率:0.005mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64尺寸:90 W × 60 H × 23 Dmm测量杆尺寸:160 L × 4Φ螺纹管口尺寸:10 L × 5Φ标准线缆:4m长,可选择10mFI-LT果实生长传感器是一个系列位移传感器,主要用于记录完全圆形的果实的生长尺寸和生长速度,在7 -160毫米范围内,通过三个直径变化测量。移动臂原始设计为平行四边形,提供牢固的笔直的传感器位置,用于果实研究。FI型传感器由一个安装在特殊夹子上的LVDT变送器,以及一个DC电源信号调节器组成。测量范围:30~160mm分辨率:0.065mm准确度:±0.3mm温度响应: 0.02% /℃工作环境:0~50℃预热时间:5s电源:10~30V DC功耗:1.5W防护等级:IP64标准线缆:4m长,可选择10m
  • 生物传感器监测植物生长
    日前,德国拜罗伊特大学和图宾根马克斯普朗克发育生物学研究所科学家开发出一种新型传感器,可以实时显示植物细胞中生长素的空间分布,并可快速检测环境变化对植物生长的影响。这种传感器为研究人员打开了观察植物内部运作的全新视角。相关研究成果发表在最近的《自然》杂志上。  无论是种子的胚胎发育、根系生长,还是植物对阳光方向的反应,生长素都具有协调植物对外界刺激反应的功能。为了触发对外部刺激的反应,它必须存在于所需的细胞组织中。迄今为止,人们还无法在细胞分辨率上直接确定生长素的时空分布。  此次,研究人员开发出一种新型基因编码的生物传感器,可将植物体内生长素的分布定量可视化。其特殊之处在于,它是一种植物经改造后可自己产生的人造蛋白质,而不必经由外部引入。他们利用这种传感器实时观察了细胞组织需要生长素的时空间分布动态过程。  在开发这种生物传感器时,研究人员发现大肠杆菌中有一种蛋白质可与两种荧光蛋白偶联,并在这些配对蛋白非常接近时发生荧光共振能量转移(FRET)。这种蛋白可与氨基酸色氨酸结合,但与生长素的结合要差得多。他们希望通过基因改造,使其能更好地与生长素结合,并使其FRET效应只在蛋白质与生长素结合时发生。  研究人员对植物进行了基因改造,使其在某种刺激下可在细胞组织中产生满足这些要求的蛋白质。于是,新型生物传感器诞生了:强烈的荧光信号表明了细胞组织中生长素的位置,提供了细胞内生长素分布的精确“快照”,且不会对生长素控制过程造成永久影响。  “传感器的发展是一个漫长的过程,在这个过程中,我们已经获得了关于蛋白质如何被选择性地改变以结合特定小分子的基本见解。”拜罗伊特大学蛋白质设计学教授比尔特哈克说,“预计在未来几年,新的生物传感器将发现更多关于植物内部运作以及它们对外界刺激反应的新见解。”
  • 褚君浩:传感器,让我们的敏感神经更敏感
    褚君浩,中国科学院院士,红外物理学家、半导体物理和器件专家,中国科学院上海技术物理研究所研究员,东华大学理学院院长。他是我国培养的第一个红外物理博士,从20世纪70年代末开始,他就专注于红外探测器的研究,并与汤定元、徐世秋两位科学家研究了一种全新的半导体材料,创造性地提出了测算这种材料特性的公式,该公式最终以三位中国科学家的名字命名,被称为CXT公式,成为判断红外探测器新材料、新结构的参照标准。他的专著《窄禁带半导体物理学》,被国外20多个研究机构作为相关材料和器件研究的理论依据。  智能时代,传感器无处不在。传感器与计算机、通信被称为信息系统的三大支柱,成为衡量一个国家科技水平以及是否处在国际战略竞争制高点的一个重要标志。各种机器设备中的传感器就相当于人类的五官和神经系统,它们让机器能听、能闻、能看,从而更好地感知、学习和进化,为我们提供高精度、智能化的服务。传感器家族有哪些成员?它们能为我们提供怎样的服务?高性能传感器的市场长期被美国、日本、德国的企业占据,我国科学家如何才能在这一领域拼出一席之地?  简单来说,传感器就是用材料经过一定的设计,做成的一个器件,取代耳朵、鼻子、舌头、眼睛、皮肤的功能。它能够看得见、听得见,能够闻得出味道,能够感知到。它可以比人类的功能更强大,所以传感器要具有高性能。传感器具有的高性能,一般要超过人类的五官,能够听得到很远的声音,能够看得见红外光。  日常生活当中传感器非常多,最敏感的一个传感器大家可能没注意:你把手机靠近耳朵的时候,手机的屏幕就暗了,所以随便怎么碰耳朵,照样可以打电话,这就是手机传感器在起作用。手机里面传感器最多,而且都很小、很灵敏。现在传感器的发展趋势就是高精度、高灵敏、高速响应、高稳定性、高可靠性、微型化、柔性化、多功能集成化、数字化、智能化、无线通信化,另外还要绿色环保。  没有传感器就无法数字化  2019年,嫦娥四号探测器成功着陆在月球背面。嫦娥四号搭载了多种科学探测仪器,可以探测月球表面的地形地貌、月表物质的成分和月球表层的结构。嫦娥四号的着陆器上还安装了4个与月壤直接接触的温度计,可每900秒测量一次月壤的温度,这也是人类首次实现在月球背面对月壤温度进行原位测量。我们进入了一个智能化的时代,上至宇宙探索,下至日常生活,数字技术已经渗透到方方面面,农业测产、荒野探矿、太空探月都离不开传感器,传感器信息采集功能的重要性也因此越来越凸显。物联天下,传感先行,无论是“大数据”“人工智能”,还是“物联网”,其最重要的“基石”就是传感器技术。那么,传感器技术怎样进行数据的采集、存储、计算?  智能时代的最大特点就是智能化系统的运用。智能化系统有三大支柱:动态感知、智慧识别、自动反应控制。比如机器人能够把乒乓球打到,首先是动态感知,看到这个球怎么过来;其次要分析这个球会从哪里进来,这是智慧分析;然后它采取措施,打到这个球。智能化系统最后的出路就是推动人工智能、智慧地球、数字城市的建设。这个系统最大的核心就是数字化,因为只有数字化才能定量化、精准化、规律化、智慧化,最后促进数字经济的发展。  数字经济的“数字”从哪里来?就是靠传感器来的,所以传感器是大数据的源头。数据有两类:一类是文本大数据,另一类是物理大数据。物理大数据是靠传感器实时获得的,这类数据好多都是声、光等类型的,它们属于一个波动世界。这个波动世界里面的数据量特别大,一个波有振幅、有位相、有频率,还有偏振等等,再加上时间、空间等海量的大数据,就可以告诉我们好多信息,然后对这些信息进行分析。  传感器和物联网是智慧地球、智慧城市两个核心技术。智慧分析就是从大数据分析出一些我们所需要的信息。现在浙江省义乌市有一座大桥里面安装了好多传感器,通过传感器看它里面振动的应力波形,不同的车辆开过去波形都会有变化。如果有一天发现应力情况异常,就会报警。  传感器是支撑智能化最重要的“一条腿”。无线通信接收信号要靠传感器,通信卫星主要就是发射和接收,接收需要传感器,没有传感器,通信就中断了,后面的智能化更无法实现。可以说没有传感器,就没有智能时代;没有传感器,也没有信息化时代。  我国传感器技术与国外的差距及优势  一部智能手机中有20多个传感器,一部汽车更是有多达上百个各类传感器。无处不在的传感器,已经成为全世界最具发展潜力的高新技术产业。但是,目前全球2万多种传感器产品中,我国能生产的只有大约6000种,远远不能满足国内市场的需求。智能手机中,传感器几乎均为国外产品,每年我国各种中高端传感器进口占比高达80%,传感器芯片进口的占比甚至要达90%。我国传感器技术与国外的差距究竟在哪里?如何才能打开自己的一片天地?  传感器国内一般来说都能制造,在一般的应用上面也都适用,但是在高端应用、精细应用方面和国外有差距,这就要发扬工匠精神赶超世界一流。  我们也有自己的优势领域,有一本最有名的科学手册叫《LandoldtBoerstein》,这本科学手册,到现在已经有140年历史了,它每隔10年到15年要修订一次,我就是负责碲镉汞材料修订的作者负责人,因为在这个领域,我国科学家做的工作国际上认可,所以我们有这个资格来承担这项工作。  发展传感器,我国过去有一个弊端,就是买得到自己就不做了,但是红外探测器高端的买不到,就只能自己做,我们反而做出来了。其实在有些核心的关键领域还是要自立自强。我们现在好多企业,在红外传感器方面,水平不断地在提升。另外,要发展智能化,把芯片技术感受到的传感信息,智能化地分析处理,这就是当前传感器发展的趋势。  智能时代的“桥梁”  2019年4月15日,法国巴黎圣母院起火,考虑到空中投水可能造成建筑及文物损毁,法方派遣无人机捕获实时图像,为消防员实现精确定点扑救提供了重要支持。这其实得益于物联网技术的普及。互联网、物联网,一字之差,但两者截然不同。如果说,互联网是人们用来进行信息传播和共享的平台,那么,物联网就是“物物相连的互联网”,所不同的是,物联网是通过传感器、红外等各种感知设备,将信息传送到接收器,再通过互联网实现远程监视、自动报警、控制、诊断和维护。如今,物联网已经广泛应用在智慧城市、智慧医疗、智慧农业等众多领域,而传感器作为智能时代的“桥梁”,在各个领域智慧建设中已不可或缺。未来,传感器在智慧城市、智慧医疗、智慧农业等领域还能起到怎样的作用?  江苏无锡有一家公司,在公司每个区域里所有的转动部分都安装了传感器,这样在办公室里可以监控所有的电梯、马达是否正常。如果哪个地方不正常,控制室就亮黄灯了,马上就可以派人去修理。这就是智慧城市管理的一方面。  现在抑郁症很多,还有一些小孩患抑郁症,抑郁症当然有多种识别方法,也可以做成一个小的设备,定量分析患者的抑郁程度,这都是传感器信息获取分析的可能应用。如果我们人体里面都有传感器,比如口袋里放个心脏传感器,心电图随时可以拿到,如果一个人心脏有点不舒服了,跟医生打个电话,说我现在心脏不舒服,或者发条微信给他,这个是互联网技术的应用;但如果这个传感器的信号直接送到分析中心,分析中心就能够根据GPS定位知道人在什么位置,马上通知相关机构采取措施,这就是物联网技术应用。物联网技术在人类健康上面大有用处。  人类现在要进入智能时代,智能时代的最大特点就是智能化系统的运用,智能化系统非常重要的核心就是传感器,传感器就是我们的敏感神经。在智能时代的背景下,我们要努力打造敏感神经,通过科技创新手段不断提升信息传感水平,不断提升智慧分析水平,从而发展物联网、人工智能、智慧地球的事业,促进数字经济的发展和城市数字化转型,最终提升人们的生活水平。
  • 科学家研发石墨烯材料传感器可检测分子级气体浓度变化
    英国南安普顿大学和日本先进科学技术研究所的科学家研发了一种以石墨烯为原材料的传感器,能检测出室内空气污染且精度极高。这一研究近日发表在《科学进展》期刊上。新研发的传感器可以感应到来自建筑、家具用品的二氧化碳分子以及挥发性有机化合物(VOC)气体分子。近年来,由个人居住环境中的空气污染引起的健康问题与日俱增。  这些有害化学气体的浓度水平一般在几十亿分之一(ppb),用现有的环境传感技术难以检测到,因为这些传感器只能检测到浓度为百万分之一(ppb)的此类气体。  该研究团队研发出的石墨烯传感器在通电后,可使单个的二氧化碳分子一个一个吸附到石墨烯材料上,并在分子水平上检测其浓度。其原理是:装置中的石墨烯材料采用单原子悬浮束式层状结构,石墨烯材料周边有弱电场分布。当单个二氧化碳分子或挥发性有机气体分子接触或离开石墨烯材料时,石墨烯的电阻率受影响发生改变,传感器能够检测到这种变化,由于能够检测到分子级的浓度变化,因此这种传感器拥有相当惊人的精度。在试验中,原型传感器可检测到一分钟内30ppb的二氧化碳浓度变化。而且传感器非常紧凑小巧,科学家相信其有望应用于制成便携廉价的空气污染监测装置。
  • 浙江大学研制出植物可穿戴径流传感器
    最近,浙江大学生物系统工程与食品科学学院IBE团队刘湘江、应义斌,信息与电子工程学院汪小知和农业与生物技术学院胡仲远,为植物联合发明一款穿戴式“电子皮肤”。时至今日,通过穿戴电子设备监测心率、脉搏等,已经成为健康管理的重要一环。  这种植物可穿戴茎流传感器,通过将柔性穿戴电子技术应用到植物体表,成功在自然生长状态下,首次持续监测草本植物体内水分的动态传输和分配过程。同时,科研人员还发现植物果实生长与光合作用不同步的现象,这不仅改变人们长期以来对植物生长发育过程的基本认识,更将为作物高产育种及栽培技术研发提供新的思路。  这项研究,近日刊发在《先进科学》上。  柔性传感器实现植物生理监测  众所周知,血液是维持人体生命活动的重要物质,通过血液循环能够把人体所需要的各种营养物质,运输到各个组织和器官。  植物也有类似也“血液”的物质,被称为茎流,是植物在蒸腾作用、渗透势等内外部压力下茎秆中产生的上升液流。茎流也是植物水分、养分、信号分子运输的载体。因此,实现对茎流的长期实时监测就能够探究植物生长过程水养分分配、信号传导以及植物对环境的响应机制等奥秘。  然而,现有的茎流检测方法多为大型侵入式探测器,在测量时会对植物造成物理伤害,而且仪器体积大限制了它们在草本植物上的应用。很长一段时间内,科学界没有一种方法可以在自然生长状态下长期监测植物茎流。  为了解决这一难题,来自浙江大学的智能生物产业装备创新团队(IBE)、智能传感与微纳集成团队、蔬菜种质创新与分子设计育种团队开展了跨学科交叉研究,针对植物茎秆特殊的生理特性,利用芯片级的微纳加工工艺,制备了一种植物可穿戴式茎流传感器。  这款传感器薄如蚕翼,厚度仅0.01毫米,重0.24克,如同“纹身”一样,能贴附在植物茎秆表面进行茎流监测。  另一个工程难题是避免传感器对植物生理产生影响。研究团队通过特殊设计,使得植物正常生长发育所需的阳光、氧气、水和二氧化碳能够自由通过传感器,实现了传感器与植物的长期“和平共处”,最终实现在自然生长状态下长期观察茎流的目的。  “这项工作为今后研制植物可穿戴传感器提供新的研究范式。”汪小知介绍,未来如何针对特定植物表面结构和生理特性,设计制备可穿戴传感器,如何评估传感器对植物生长和生理的影响,都可以从他们的研究中找到技术路径。  发现西瓜生长竟在夜晚生长  工欲善其事必先利其器,有了这么好的检测“传感器”,科研团队开展了一系列丰富的研究。  浙大科研人员在西瓜茎干上几个关键位点部署了茎流传感器,长期无损的观察了水分在西瓜叶片、果实、茎秆等不同器官上的动态分配情况。通过对茎流数据的分析,研究团队首次发现了西瓜果实生长与光合作用不同步的现象。  西瓜果实绝大部份是水(95%左右),然而径流传感器测量发现:在白天只有极少部分水被运输入果实用于生长(5%),绝大部份水被叶片蒸腾作用消耗掉 但是到了夜间,几乎所有的水分都被运输到果实,绝对茎流量相对日间增加了10倍。  “白天积累的光合产物导致的渗透势差应该是夜晚径流激增的主要原因。同时,夜晚没有蒸腾作用消耗水分,促使大量径流输入到西瓜果实,从而实现了果实的重量增加与体积膨大” 胡仲远表示,这一发现也间接证明西瓜果实生长主要在夜间。  这一发现改写了对于植物果实生长的传统认识。教科书中一般认为,植物生物量积累主要靠光合作用,而夜间以消耗生物量的呼吸作用为主。  这个反常识性的发现不仅具有重要的科学价值,同时具有良好的应用前景。浙大科研团队表示,水是珍贵的农业资源,基于茎流对西瓜等耐旱作物体内水分运输和抗旱机理的解析,将为全球干旱地区的农业生产、节水灌溉、抗旱作物选育提供了新理论依据和技术支持。  该研究受到国家自然科学基金、国家重点研发计划、浙江省重点研发计划的支持。
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • 小身材大作为:光纤传感器应用前景及场景剖析
    p   光纤传感器是近年来势头正猛的“科技新贵”,因为它有极高的灵敏度和精度、抗电磁干扰、高绝缘强度、耐腐蚀、能与数字通信系统兼容等优点,已被广泛应用于电网系统、道路监控、轨道交通、食品安全等领域。 /p p   紧贴时代发展趋势,由中国光学工程学会光纤传感技术专家工作委员会、中国光纤传感技术及产业创新联盟组织的2019第八届中国(北京)国际光纤传感技术及应用大会暨展洽会将于2019年8月5日-7日在北京国家会议中心组织召开。 /p p strong   科技新贵之光纤传感器 /strong /p p   光纤传感技术是一种新型传感技术。通过光的反射、折射和吸收效应,光学多普勒效应、声光、电光、磁光和弹光效应等,可使光波的振幅、相位、偏振态和波长等参量直接或间接地发生变化,因而可将光纤作为敏感元件来探测各种物理量。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 404px height: 263px " src=" https://img1.17img.cn/17img/images/201907/uepic/b0818f87-2205-4c37-9840-bd1f8c595af5.jpg" title=" 113.jpg" alt=" 113.jpg" width=" 404" height=" 263" / /p p   中国已成为全球光纤传感器消费最大国,在国产化进程有一定的突破。据了解,以南京大学、深圳中科传感为代表的大学及研究院等机构,基本掌握了全套的光纤传感器方案。而在光纤传感系统的核心部件上,厦门彼格的窄带光源、世维通的铌酸锂波导等为代表相关的器件,都不甘落后争相实现自主研发。 /p p   纵观整个行业市场,目前中国光纤传感器的自主研发仍是“短板”,总体市场化水平仍落后外国。据统计,中国传感器新品研制率落后美日等国近10年,产业化水平落后10-15年。未来,中国光纤传感市场产业化格局有待提升,物联网技术的加持,将推动中国光纤传感市场走向新一轮发展高峰。 /p p    strong 光纤传感器应用场景分析 /strong /p p   物联网俨然已经成为光纤传感器国产化的重要推手。物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网提供更可靠的数据信息,再经过系统的处理,得到人们需要的结果。可见,光纤技术在物联网中有很广阔的应用前景。 /p p   正是敏锐捕捉到光纤传感器技术在上述领域日益紧密的行业风向,第八届中国(北京)国际光纤传感技术及应用大会暨展洽会致力于全面拓展光纤传感器科技应用领域终端,聚焦智能电网、矿山安全、轨道交通、海洋与环境、地质与水利等各个应用行业,展现国内巨头企业相应的创新综合解决方案。 /p p   光纤传感器在智能电网领域起到重大作用。利用光纤传感技术对输电线路进行安全监控,通过对输电线路上发生的触碰光缆、接头盒、光芯等扰动的实时监测,采集和分析信息,判定扰动发生的位置、类型、强度,以帮助线路维护人员及时发现输电线路的破坏行为,有效解决对线路损毁的预警监测,为电力系统提供告警、智能分析和辅助决策支持。 /p p   光纤传感器也同样发力道路安全领域。伴随着工业与交通运输的发展,桥梁的跨度增加以及结构的复杂趋势,使得其安全隐患受到更多的关注。把光纤传感系统埋入水泥结构形成能够感知应力和断裂损伤的能力。同时,利用张力传感器感受隧道容易发生塌方的局部的变形情况,这些信息可以与互联网相结合,实现对这些基础设施的长期稳定的实时监测,减少事故的发生。 /p p   光纤传感器在轨道交通领域的作用也不容小觑。以中国自主研发的高铁列车代表作——和谐号380AL为例,一辆列车里的传感器数量多达1000多个,平均每40个零部件里就有一个是传感器。它们承担着状态监视、故障报警、车载设备控制等功能。中国工程院院士、中车株洲所总经理丁荣军曾一语道破光纤传感器的重大作用,它对于收集列车的运行状态信息、高速综合检测列车、钢轨探伤、轨道状态远程监测、室内外环境综合传感等方面都起到了不可或缺的作用。 /p p   strong  行业翘楚荟萃 看点十足 /strong /p p   第八届中国(北京)国际光纤传感技术及应用大会暨展洽会目前已进入倒计时,诚邀您八月相聚北京国家会议中心,感受这个绽放出耀眼科技光芒的盛会! /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 514px height: 295px " src=" https://img1.17img.cn/17img/images/201907/uepic/f9808917-ffd1-4382-89fa-a8893f2e65a4.jpg" title=" 115.png" alt=" 115.png" width=" 514" height=" 295" / /p p   strong  看点一:大咖领衔名企云集 定义光智造未来 /strong /p p   会议将邀请清华大学教授廖延彪、北京航空航天大学张惟叙教授、加拿大皇家科学院院士鲍晓毅及国内光纤传感领域的优秀研究团队等亲临现场助阵。会议内容涉及光纤传感系统在轨道交通、海洋与环境领域应用、矿山安全、智能电网、地质与水利工程中的应用等。 /p p   strong  看点二:匠心巨制 同期展会争奇斗艳 /strong /p p   会议现场将同期举办第十一届光电子· 中国博览会,会议还将呈现激光智能制造、全球高校· 研究所· 重点实验室创新技术、红外微光技术及应用、智能信息、光学制造、精密光学与光电检测六大主题展,吸引了从光学元器件到终端用户应用的众多行业龙头企业及科研机构参展。 /p p    strong 看点三:精准孵化采购新商机尊享高端定制贵宾服务 /strong /p p   第十一届光电子· 中国博览会将为光电行业的高管及专业买家提供新产品、新资讯、新方向、新商机贵宾导向服务,提升买家参观体验感,使买家豪享高端定制上中下游产品的一站式采购服务。 /p p   本届光博会展商参展/参观登记/参会注册均已全面上线,欢迎登陆展会官网或官方微信预约登记。 /p p   展会报名地址:http://www.cipeasia.com/ /p p br/ /p
  • 纳米生物传感器:蔬果有无农残 试纸一测便知
    纳米生物传感器,听起来是一个非常陌生的名词,但验孕棒等试纸产品,你肯定不会陌生,它们就是此类传感器的“化身”。  中科院宁波材料技术与工程研究所研究员黄又举精耕于纳米材料领域,构建出纳米生物传感器新材料,旨在推动更多的检测产品进入寻常百姓家。  可以设想,将来如果你对蔬果农残担忧,用这种试纸测一测,有无农残,指标多少,便一目了然 甚至一些人体健康指标也可以利用生物传感器,转化为看得见、摸得着的直观呈现。  人物名片  姓名:黄又举  职务:中科院宁波材料技术与工程研究所研究员  荣誉:2015年第六批宁波市“3315计划”创新人才  课题研究收获“意外之喜”  黄又举大学学的是高分子材料科学与工程专业,后进入中国科技大学攻读博士学位。他坚信,材料若能结合生物领域,将拥有非常广阔的发展前景。博士毕业后,他远赴新加坡南洋理工大学从事博士后研究,主要研究方向是化学与生物医学工程领域。  “我在攻读博士后之前从未涉及过纳米粒子方面的研究,后来因为研究需要相关的材料,才学习合成纳米粒子材料,没想到展现了这方面的天赋。”4年在新加坡深造研究让他收获了“意外之喜”。  2013年10月,黄又举通过“春蕾人才”计划,进入中科院宁波材料技术与工程研究所工作。去年12月,由于他出色的科研表现,被破格提升为项目研究员。  在攻关纳米生物传感器核心材料等关键问题上,黄又举潜心研究了五六年。  纳米金材料是他的研究重点。纳米金材料是纳米传感器的核心材料,被广泛应用于试纸条、试纸盒中,其大小、形状以及自组装行为直接影响到可视化的性能。  传统纳米金合成主要是通过调控反应动力学和热力学,进而调控形貌和大小,但众多实验参数常常会影响纳米金的大量高质量制备。黄又举则突破了传统的方法,提出了纳米金的两种新生长模式———智能化合成与非连续性生长模式。  他研发出超过20种单分散的不同形貌的金纳米粒子,包括球形、方形、棒状、片状、星形、线形以及一些复杂的多级纳米结构。与现有的其他产品相比,这种合成方法确保纳米粒子在大规模制备条件下,仍能保持粒子的高度均匀性。  “市场上纳米金粒子产品存在纯度不足、形貌种类有限等缺陷。”黄又举说,“我们团队研发出来的产品纯度和品质都非常高,且在相同的单位价格之下,能够生产出更大体量的产品。”  生物传感器应用非常广阔  “此类传感器的应用空间非常广阔,主要集中在一些可视化的试剂盒、试纸条上。”他介绍说,“目前市面上较为常见的就是验孕试纸,以后的应用方向还可以针对男性、小孩等受众,同时在食品安全领域也可大做文章。”  如在食品安全领域,普遍的家庭要检测蔬果是否含有毒素,不可能购置大型的仪器,只能通过一些简单的工具去鉴别,因此可以通过裸眼观察到颜色变化的试剂、试纸成为较为理想的工具、方法。  “在目前推崇‘精准医疗’的大环境下,需要更多的生物传感器去检测各类人体指标以达到预防的目的。”黄又举对研究领域的前景充满了信心。  据了解,他和团队合成的纳米金样品已经受到国内外多家高校、院所和公司的青睐与好评,样品已经免费试用于美国斯坦福大学、新加坡南洋理工大学、新加坡国立大学、韩国成均馆大学和各类生物公司等30余家机构。  同时,他与众多企业合作展开一些专利布局。浙江星博生物科技有限公司就与其合作,研发了可商业化的男性生殖健康体外检测产品。  今年,黄又举还与宁波美成生物科技有限公司合作在中科院材料所筹建了“食品安全快速检测材料与技术联合实验室”,引入了20余个快检便携式仪器,主要进行食品检测技术方面的研究和应用,争取向提供第三方检测服务方面发展。  黄又举表示,目前他们正在研究定量检测的问题,主要面向一种能随目标物浓度变化产生颜色变化的试纸条和试剂盒。“例如,你拿一张检测毒素的试纸去检测某个东西,试纸可以直接通过不同的颜色来显示毒素含量,就像pH试纸随着酸碱性浓度的不同显示不同的颜色”他说。  他表示,在互联网高速发展时代,可以将可视化生物传感器与移动医疗结合,通过相关生物传感器芯片、手机APP以及医疗大数据处理平台的构建,实现可视化生物传感器的商业化。
  • 可优化农业生产力的智慧农业:紫外线传感器的应用
    四月即将结束,五月是夏季的初篇,强烈的紫外线即将席卷而来,对于春耕正茁壮成长的农作物们,是一个不小的挑战。那么紫外线对农作物有何影响?对某些农作物的研究表明,紫外线UV-B辐射增加会引起某些植物物种和化学组成发生变化,影响农作物在光合作用中捕获光能的能力,造成植物获取的营养成分减少,生长速度减慢。研究过的植物中,紫外线对其中的50%有不良影响,尤其是像豆类、瓜类、卷心菜一类的植物更是如此。西红柿、土豆、甜菜、大豆等农作物,由于紫外线UV-B辐射的增加,还会改变细胞内的遗传基因和再生能力,使它们的质量下降。为有效止损,建大仁科研发的一款紫外线温湿度传感器。基于光敏元件将紫外 线转换为可测量的电信号原理,实现紫外线的在线监测。电路采用美国进口工业级微处理器 芯片、进口高精度紫外线传感器,确保产品优异的可靠性、高精度。产品综合温湿度传感器 为一体,测量数据更为全面。产品输出 485 信号(标准 Modbus-RTU 协议),最远可通信 2000 米,支持二次开发。产品外壳为壁挂高防护等级外壳,防护等级 IP65,防雨雪。当紫外线照射在建大仁科紫外线变送器RS-UV-*-2上,其中超过98%的紫外线透过高品质透光材料制作的透视窗,照射在对波长在240~370nm的紫外线比较敏感的测量器件,通过内部配置进口高精度紫外线传感器的监测分析,由带有美国进口工业级微处理器芯片的电路处理后,将紫外线强度以RS485信号输出,并在后台上显示,达到监测紫外线强度的目的。不仅如此建大仁科紫外线变送器RS-UV-*-2还广泛应用在环境监测、气象监测、林业等环境中。同样涵盖测量大气中以及人 造光源等环境下的紫外线。
  • 无需显微镜也可检测细菌生长及药敏性
    美国密歇根大学的研究人员近日发明出一种新型生物传感装置,利用该装置,无需显微镜即可测量出细菌的生长过程及药敏特征。研究结果发表在1月15日的《生物传感器与生物电子学》期刊上。   科学家将这种装置称为“异步磁珠转动(AMBR)传感器”,它采用了一种可以在磁场中异步旋转的磁性小珠,任何附着到这种磁珠的物质都会降低其转速。在这项研究中,研究人员将杆状大肠杆菌附着在磁珠上,然后用AMBR传感器进行检测。   “当单个细菌附着上去后……将极大地阻碍磁珠,使磁珠旋转速率减慢到原来的四分之一”,领导这项研究的Raoul Kopelman教授解释,“若细菌再长大一点点,阻碍力将持续增大,转速也将随之变化,因而我们可测量出细菌的这种纳米级生长变化”。   利用同样的原理,该装置也可用于检测细菌的药敏性。当细菌受到药物影响停止持续生长,进而使得磁珠转速发生变化,于是研究人员便能在数分钟内知道药物是否对细菌产生了作用。   “采用这种方法,我们可以检测到小至80纳米程度的细菌生长变化,远比一台光学显微镜管用——显微镜的解析度也就大约250纳米”,文章第一作者Paivo Kinnunen说,“这种方法可以应用到任何微米级或纳米级的大小变化检测中”。   研究人员表示,这种新型生物传感装置或将有助于加快细菌感染治疗。(科学网 张笑/编译)   相关仪器:IX71型倒置光学显微镜 异步磁珠转动传感器   完成人:拉乌尔科普曼课题组   实验室:美国密歇根大学化学系、生物医药工程系、化学工程系、病理学系、应用物理计划兰道实验室 密歇根大学卫生系统临床微生物学与病毒学实验室群
  • 超灵敏二硫化钼湿度传感器研究获进展
    p   现阶段对二硫化钼湿度传感器的研究主要受制于加工过程本身引入的残胶对材料表面的污染,影响了其对水分子的吸附,从而导致灵敏度不高或响应时间过长等问题。因而,如何得到具有高灵敏、快速响应时间的二硫化钼湿度传感器成为制约其应用的最主要因素。 /p p   针对上述问题,日前,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)纳米物理与器件实验室利用一种新的金剥离方法,加工得到具有干净表面的二硫化钼场效应晶体管,从而实现了对水分子的灵敏响应。该项工作由实验室博士赵静在研究员张广宇的指导下完成。 /p p   据悉,这种加工方法主要是利用二硫化钼与金之间的作用力远大于金与衬底间的作用力,从而可以将多余的二硫化钼样品从衬底上完整地剥离下来,同时保证了用于器件的二硫化钼表面的干净。利用这种方法一方面有效避免了加工过程中经过反应离子刻蚀后表面残胶对器件性能的影响,另一方面大大简化了加工过程,得到了具有超洁净表面的二硫化钼场效应晶体管,其光学、电学性能的显著提高也从另一个方面证明了这种加工方法得到的样品具有更好的性能。 /p p   由于利用这种金剥离方法得到的二硫化钼场效应晶体管具有超洁净的表面,因此能够灵敏感知外界湿度变化,大大提高了二硫化钼湿度传感器的灵敏度。除了具有超高灵敏度外,由于二硫化钼表面没有悬挂键,对水分子的吸附是纯粹的物理吸附,因此器件可以很容易地进行脱吸附,有效缩短了响应时间和恢复时间。除此之外,得益于CVD生长的二硫化钼成膜均匀,可以加工得到一系列具有优异性能的二硫化钼湿度传感器阵列,从而对外界不同湿度的空间分布起到定位作用,用来实时监测外界湿度分布的变化。 /p p   这种基于超洁净表面的二硫化钼样品加工得到的湿度传感器具有灵敏度高、响应时间和恢复时间短、使用寿命长、空间分辨率高等特性,可以广泛应用于未来无接触定位系统及二维材料多功能柔性传感器阵列领域。 /p p /p
  • 国内首台油井光纤高温高压传感器研制成功
    日前,山东省科学院激光研究所在国内首次自主研发的固定式高精度光纤压力传感器获得成功。这台光纤高温高压传感器可在油井下温度220℃和压力100MPa下长期作业,解决了常规电子传感器和光纤压力传感器受油井下高温高压干扰而无法正常工作的难题。光纤高温高压传感器的研发成功,不仅打破了国外对此技术的长期垄断,更将对我国油气井的科学开采发挥出重要作用。   据山东省科学院激光研究所副所长王昌博士介绍,这台光纤高温高压传感器通过对油井状态在线实时监测,可以及时探测到井内诸如漏水等状态变化的详细信息。根据这些信息,对油井采油工艺进行优化和调整,可提高油气采收率5%—10%。   山东省科学院激光研究所从2005年开始从事光纤油气井温度压力在线监测的研究。2006年,该所研究的《光纤高温高压井筒测试技术》被列为国家863项目和山东省技术攻关项目。通过对胜利油田、中海油、辽河油田的示范应用表明,光纤高温高压传感器不仅探测准确,其敏感元件的耐高温高压和耐腐蚀的保护技术等均优于国外技术,价格仅是国外进口设备的1/3。油田专家认为,这项新技术的推广应用,将为我国油井实现智能化监控打下良好基础。   王昌介绍说,据不完全统计,全国现有生产油井约15万口,按照每口井提高采油率5%,推广普及1%计算,年可提高油气产量超过9万吨。这项先进技术除高温高压油井监测应用外,在电力、化工、矿山等许多领域都有着非常广阔的应用前景,可产生巨大的经济效益和社会效益。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 遥感卫星大型传感器测试用大孔径积分球均匀光源
    背景图1 卫星遥感在制造用于卫星和望远镜的传感器的过程中,最重要的步骤之一是表征传感器的辐射性能,并建立到达传感器的光与传感器的数值输出之间的关系。 某国家航天局需要一套积分球均匀光源系统,用于在大型传感器的开发中进行校准测试。 开口尺寸需要1.5 米才能使发光面完全覆盖整个设备。另外还要求控制外部温度,确保可靠的长期使用。图2 成像传感器Labsphere(蓝菲光学)解决方案图3 蓝菲光学研发的大孔径积分球均匀光源图4 最大的辐亮度为此开发的系统需要大的积分球,获得超大开口端和总共 37 个灯以实现测试所需的均匀性和光谱辐射。Labsphere(蓝菲光学) 善于定制产品的开发,该系统具有以下独特功能:通过两个侧面安装的电动活塞自动调节高度;稳定性好,具有调平千斤顶工业脚轮;包含软件和硬件的完全集成的计算机系统;可控制灯产生的热量:开口周围的定制散热器,用于吸收大部分热量开口处的手动百叶窗,用于保护用户和设备免受测试后过热的影响后半球隔热罩,防止意外伤害三个温度探头来监测积分球内部的热量三个外部鼓风机连接到积分球周围的通风口具有带宽和 FOV 滤光片的可拆卸硅探测器;具有热电冷却功能的可拆卸 InGaAs 探测器;更新了具有附加功能的 HELIOSense 软件。特点先进的热重定向系统,可防止组件和材料损坏并保护用户免受意外伤害;高度可调和开口端缩孔器,可以灵活地对各种不同的传感器系统进行测试;具有针对客户应用程序优化的软件,最大限度地提高效率和可用性;可控制和获得宽光谱,通过 Labsphere(蓝菲光学) 的 HELIOSense 软件微调光谱辐射、色温和波长分布;满足所有光谱要求, 97% 以上的均匀性提供覆盖可见光和红外带内辐射度;照度 (lux)176,737光谱辐射度(W/m2-sr)1,605面均匀性 (100% Power)97.32%面均匀性(10% Power)95.08%角度均匀性 (±10°)99.5%角度均匀性 (±45°)99.2%短期(5s) 稳定性99.995%长期(30s) 稳定性99.994%硅探测器非线性度0.42%InGaAs 探测器非线性度0.37%最高外部温度39.5°C总灯功率17,680W
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 日本东京大学研制纳米级量子传感器,实现高分辨率磁场成像
    日本东京大学科学家利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。(a)六方氮化硼中的硼空位缺陷。空位可充当用于磁场测量的原子大小的量子传感器,对磁场敏感,就像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光可反应磁场的变化。图片来源:东京大学研究团队
  • 复旦开发光增强化学晶体管传感器,实现中性小分子的高灵敏检测
    小分子作为分子量小于 1000 道尔顿的化合物,在生命活动中发挥着重要的作用。对小分子进行检测和分析,无论是在生物医学领域,还是在疾病的早期诊断中,都是非常必要的。目前,市场上已出现不少小分子检测方法,包括光谱学、电化学等技术,但它们也同时存在着各种缺点,比如操作复杂、通量小、设备昂贵等。与上述传统的检测技术相比,场效应晶体管(field-effect transistors,FET)这种传感器平台则具有诸多优点,如灵敏度高、响应速度快、即时检测等。在该平台中,石墨烯作为导电通道,当其与小分子相互作用时,和电荷转移相关的化学掺杂效应会改变它的电势,导致石墨烯 FET 通道的电导发生实时变化。其中,必须说明的是,小分子的电荷量或分析物的氧化还原性,对化学门控调制起着决定性作用。也就是说,这种晶体管传感器,更适用于检测那些带电量较多的分子,而无法很好地检测那些电荷很少、且氧化还原性能较弱的小分子。复旦大学魏大程研究员带领的课题组,以新型场效应晶体管材料的研发为研究重点(课题组主页:www.weigroupfudan.com)。近期,该课题组发现了一种光化学门控效应,可以通过引入额外的光门控调制,来提高小分子的检测灵敏度。基于此,他们在石墨烯 FET 通道上,生长了具有良好光敏性的共价有机框架材料,能够吸收大量的光能量,并产生丰富的光电子,进而放大对化学信号的电流响应。图丨团队合照(来源:魏大程)接着,该团队采用光门控和化学门控协同的策略,开发了一款光增强化学晶体管传感器,实现对不同小分子,包括中性分子在内的高灵敏检测。利用该器件,他们成功检测到由细胞产生的、浓度低于 10−19M 的二羰基代谢物甲基乙二醛(methylglyoxal,MGO),至少比现有的技术低 5 个数量级。需要说明的是,MGO 是糖尿病、心血管病等疾病的重要参与分子,此前传统的小分子检测方法,很少能够实现对浓度低于 10−9M 的 MGO 的检测。在检测 MGO 的基础上,该器件还可以通过在共价有机框架材料上设计活性位点的方式,实现对其他具有不同电荷性质的小分子的检测。并且,对共价有机框架材料的分子结构进行调整,还能满足对其他疾病标志物的检测,比如蛋白质、离子、核酸等。图丨光增强化学晶体管(来源:Journal of the American Chemical Society)据魏大程介绍,该研究开始于 2018 年左右,整个过程持续了两到三年时间。“我们先是发现了一些光增强的电学响应信号现象,但并不清楚其中的机理,后来做了很多对比实验,同时也进行反复的讨论分析,才明白其实际上是光栅效应和化学效应的协同作用导致的。”他说。同时,他也表示:“我们利用光增强技术的好处是,能够对信号放大,使晶体管传感器发展成一个通用平台,既可以检测带电量较高的小分子,也可以检测带电量较低的小分子。”图丨光增强化学晶体管(来源:Journal of the American Chemical Society)2023 年 4 月 25 日,相关论文以《用于小分子超灵敏检测的光增强化学晶体管平台》(Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of Small Molecules)为题在 Journal of the American Chemical Society 上发表[1]。图丨相关论文(来源:Journal of the American Chemical Society)复旦大学硕士研究生王乾坤、艾昭琳为该论文的共同第一作者,复旦大学魏大程研究员为论文的通讯作者。整体来看,该研究拓宽了晶体传感器平台的应用范围,具有快速、易于操作、高灵敏等优点的传感器件,有望在生物医学研究、健康监测和疾病诊断中实现应用。魏大程表示:“我们实验室主要想将晶体管传感器与医疗相结合,开展一些生化检测方面的研究。不过,实现小分子检测只是研究的一部分,这里面还有许多科学问题和技术问题有待解决。比如,我们想实现对癌症的检测。虽然这方面也已经有了很多相关技术,但在进一步提高检测的准确性上还有研究的空间,所以接下来我们也计划朝着这个方向进行探索。”此外,生化传感领域,尤其是晶体管传感技术,目前尚处于实验室阶段,现在,临床上还没有在大规模使用的产品。该团队也正在和相关企业进行交流,希望能够基于所开发的技术,打造一些具有较强实用性的产品,推动产业领域的应用。
  • 如何实现超短支温度传感器校准?
    应用背景温度数据的监测在制药行业里有相当重要的地位,不论是产品质量保障、节能降耗还是合规要求,再或者药品研发、生产、包装、运输、存储的各个环节,都与温度息息相关,而且对温度参数的准确可靠有较高要求。温度监测系统由温度传感器和显示设备组成,随着时间的推移,温度传感器会受到诸多因素的影响,例如震动,应力变化,化学腐蚀等,其性能参数也会产生变化,因此需要对其进行校准以确定其误差的大小,确保其在允许误差范围内工作。而新版GMP规范第五章第五节对校准也做了明确规定:对于生产和检验用的仪表要定期校准,保存校准记录,未经校准的仪表不得使用。AMETEK校准仪器具有40年的温度校准经验,深入了解用户需求,为制药行业用户设计了有综合性的专业解决方案:✔ 卫生型温度传感器✔ 超短支温度传感器✔ 无法拆卸狭小空间温度传感器✔ 超低温冰箱、冻干设备温度传感器✔ 湿热灭菌器温度传感器✔ 隧道灭菌温度传感器✔ 表面安装温度开关如何实现超短支温度传感器校准?解决方案:RTC-158B 干体-液槽两用温度校准仪配特殊专用套管✔ 干湿两用:干体炉-微型液槽均可使用,对于插入深度小于30mm的传感器可选择液槽。✔ 温场直径大:特殊设计的专用恒温块可匹配超短或异形传感器,即使是卡盘超短卫生型传感器也可使用 。✔ 性能: D LC 动态负载补偿 及外部参考控温,保证垂直温场均匀稳定,控温准确。✔ 快捷: 升降温速度远快于传统液槽,成倍提高工作效率。关于Ametek Jofra 干体炉Ametek校准仪器是全球主要的温度、压力及电信号校准仪生产厂商之一,AMETEK JOFRA生产和销售干体炉有三十多年历史,能提供快速精准的温度校准方案。AMETEK干体炉有5大系列共50多个型号,温度覆盖-100~1205℃,满足各个行业的温度校准需求。根据应用情况提供多样的解决方案,实现实验室及现场的快速精准温度校准。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 赛微电子参设10亿产业基金,重点布局智能传感器、科学仪器等
    近日,赛微电子(证券代码:300456)发布公告,公司拟与北京国融工发投资管理有限公司(简称“国融工发”)、北京京国盛投资基金(有限合伙)(简称“京国盛基金”)、北京怀胜基金管理有限公司(简称“怀胜基金”)等方签署《有限合伙协议》,共同投资设立北京智能传感器产业发展基金合伙企业(有限合伙),传感器基金总规模10亿元,赛微电子认缴出资2.5亿元,基金管理人为国融工发。该传感基金将主要投资于智能传感器、高端科学仪器及其上下游领域,包括但不限于图像传感器、压力传感器、雷达传感器、高端科学仪器、信息安全、半导体产业等北京市高精尖产业重点领域。出资4.901亿元的京国盛基金为北京国资公司发起设立的市场化母基金,以服务北京国际科技创新中心建设为方向,围绕北京市“十四五”高精尖重点产业、北京国资公司主业领域发展,市属国企、央企混改进行投资布局,通过设立子基金吸引更多社会资本为首都经济建设贡献力量。2021年至今,基金共完成4只子基金设立决策,涉及子基金总规模达40.82亿元,投资了国电投氢能科技、中科富海等项目。出资2.5亿的赛微电子成立于2008年5月15日,公司以半导体业务为核心,面向物联网与人工智能时代,一方面重点发展MEMS工艺开发与晶圆制造业务,一方面积极布局GaN材料与器件业务。公司目前的主要产品及业务包括MEMS芯片的工艺开发及晶圆制造、GaN外延材料生长与器件设计,下游应用领域包括通信、生物医疗、工业科学、消费电子等。出资2.4亿的怀胜基金成立于2017年,为北京市怀柔区国有资本经营管理成员。基金管理人国融工发成立于1994年,是北京工业发展投资管理有限公司全资子公司。业务聚焦基金、咨询、平台管理三大核心领域,以协助政府做好高精尖领域、中小企业公共服务、产业和政策咨询等工作为己任,坚持以发挥国有企业社会作用为发展理念。
  • 荧光RNA传感器研究获进展
    基因编码的荧光传感器可以在单细胞水平追踪代谢物、蛋白质或重金属离子等细胞内靶标的丰度变化和动力学分布,并解析活细胞的生理过程和信号传导通路。7月24日,《核酸研究》(Nucleic Acids Research)在线发表了中国科学院北京生命科学研究院李幸团队撰写的题为Genetically encoded RNA-based sensors with Pepper fluorogenic aptamer的研究论文。该团队开发了一类基因编码的新型荧光RNA传感器。该传感器能够在活细胞中监测代谢物、外源药物、蛋白与金属离子等靶标,展现出高通量、高内涵药物筛选的潜力。 传统的基因编码传感器由荧光蛋白和结合靶标的蛋白模块组成。然而,由于多数靶标缺乏对应的蛋白模块,科学家难以构建基于荧光蛋白的传感器。此外,基于荧光蛋白的传感器还有信噪比低等缺陷,限制了荧光蛋白传感器的应用。 近年来,基于荧光RNA的传感器发展迅速。荧光RNA传感器由荧光RNA与结合靶标的RNA模块组成。二者通过一个短茎连接。该短茎称为传导模块(transducer module),其热力学稳定性由靶标识别适配体调节。靶标与结合靶标的RNA模块结合,诱导RNA构象变化,调控荧光RNA适配体的荧光强度,从而检测靶标信号,解析其在活细胞中的信号通路。然而,这些荧光RNA传感器通常含有RNA G四链体(RG4)结构。RG4结构可被活细胞解旋酶靶向,导致RNA的解旋或降解,故限制了含RG4的荧光RNA传感器在活细胞中的应用。 为此,李幸团队通过系列实验设计,研发了不包括RG4的荧光RNA传感器。研究选择使用了Pepper荧光适配体。Pepper不含RG4结构,避免了被细胞酶降解或解旋。此外,Pepper亮度高、稳定性强,并能够结合不同小分子探针产生不同颜色的荧光。基于此,李幸团队开发了一系列基于Pepper的生物传感器。进一步,实验表明这些传感器不包含RG4结构,并可以高效监测活细胞中的内源小分子代谢物、外源药物、蛋白质和金属离子等多种靶标。该研究发展的基于RNA传感器率先用于检测人体细胞内的金属离子,为探索人体活细胞金属离子提供了新型基因编码工具(图1)。 该团队基于Pepper的生物传感器,探讨了甲基化代谢物S-腺苷甲硫氨酸(S-adenosyl methionine,SAM)代谢通路,测定了靶标药物活性。研究将Pepper与SAM适配体融合,构建出低背景、高响应、高选择性的SAM传感器。进一步,该工作探究了单细胞中SAM合成的代谢来源,解析了SAM合成酶(methionine adenosyltransferase,MATase)的酶活性和基因表达水平。此外,该工作还构建了监测SAM的比率传感器。该传感器精确定量了MATase的酶活性,并准确测定了MATase抑制剂AG-270的半抑制浓度(IC50)。该工作首次发展荧光RNA传感器来准确测定活细胞中的药物IC50,为研发基于RNA的药物筛选平台验证了可行性,并提供了高效的MATase酶药物筛选工具(图2)。 该团队为追踪活细胞内靶标及其信号传导途径提供了高效的生物传感平台,在药物筛选和疾病诊断等领域具有潜在的应用价值。研究工作得到国家自然科学基金等的支持。 图1. 将Pepper改造为高性能荧光RNA传感器,检测细胞内靶标,监测细胞甲基化代谢通路与药物活性图2. 构建基于Pepper的比率传感器,准确测定MATase抑制剂AG-270的半抑制浓度(IC50)
  • 生物传感器新突破!快速、无损和特异性地捕获和定量检测腺病毒颗粒
    基因疗法能从根本上补充或修复缺陷基因,恢复健康基因的正常生物学功能,具有不可比拟的治疗优势。腺病毒或腺相关病毒(AAV)已经成为预防感染、严重疾病和死亡的理想基因治疗和疫苗载体。载体进入体内诱导免疫反应并建立免疫记忆需要一种具有传染性的活性病毒疫苗。传统的定量检测方法中,无论是灵敏度较高的qPCR检测,还是传统免疫学原理Elisa检测等,仅可以定量病毒载体的总浓度。因受到病毒载体碎片干扰,而无法精确测定病毒疫苗载体的效价浓度,进而影响基因药物或疫苗的生产质量控制以及精准给药。因此,迫切需要一种可准确测定病毒载体的浓度和存活力的新技术。近日,华中科技大学刘钢教授团队在 Materials Today Bio 期刊发表了题为:Versatile nanorobot hand biosensor for specific capture and ultrasensitive quantification of viral nanoparticles的研究论文。针对上述问题,华中科技大学刘钢教授和黄丽萍博士团队与华中农业大学金梅林教授、张强副教授团队合作,研发了一种具有纳米级多功能机器人手结构的纳米等离子体(Nano RHB)生物传感器,用于快速、无损和特异性地捕获和定量检测腺病毒颗粒。该传感器可应用于实时监测基因治疗和病毒疫苗载体数量和质量,评估病毒载体的感染活力。在该研究中,研究人员首先开发了一种基于非常光透射(EOT)效应的无标记NanoSPR生物传感器。该生物传感器可以被非偏振光激发,并且不需要复杂的光学设备。然后通过在纳米杯阵列芯片上直接实施金种子生长法,设计了一种具有纳米机器人手的新型多功能NanoSPR生物传感器。由于其特殊的纳米杯结构作为种子模板,通过聚多巴胺分子在芯片表面生成了不同形状的分枝状金纳米结构。这些分支金纳米结构的功能类似于智能机器人手,从而增强SPR共振效应以提高芯片的灵敏度,同时增加表面积以提高芯片修饰效率。将这些超灵敏生物传感器集成到标准96孔板或32孔板中,可以直接监测动态结合曲线,并使用微量样品定量检测腺病毒载体或疫苗。研究结果表明,基于该新型传感器,将重组人CAR、FX蛋白或抗腺病毒六邻体蛋白抗体固定在NanoRHB的表面,这些配体可以分别结合腺病毒的纤维蛋白(病毒衣壳上突出的刺突)和六邻体蛋白(主要的衣壳蛋白),通过腺病毒特异性结合的CAR/FX蛋白相互作用可快速检测腺病毒的生存活力和浓度,在5分钟内同时高通量检测多达96个样品,比传统病毒滴度检测方法和PCR方法更高效快捷。此外,研究人员还使用冻干技术将CAR标记的金颗粒整合到单克隆抗体修饰的Nano RHB平台上,检测灵敏度可以进一步提高5倍。研究结果显示,金颗粒偶联的Nano RHB的独特SPR效应可实现一步式夹心法进行高灵敏度和快速的腺病毒载体颗粒评估,而不需要洗涤步骤和复杂的样品预处理。该种超灵敏金纳米分支结构修饰的生物芯片,不仅可以快速有效地评估腺病毒载体的活力,还可以通过一步夹心法提高检测灵敏度至100 copies/mL。研究人员进一步将采用NanoRHB平台检测26个细胞上清液样品,结果显示与传统qPCR和病毒滴度检测分析的结果非常一致。Nano RHB传感器分析显著缩短了总检测时间,从几天和几小时缩短到几分钟,并通过直接结合病毒表面蛋白来同时快速检测病毒生存力和浓度,从而提高了检测能力。该新型检测平台也展示出对不同类型的病毒载体和假病毒的高特异性。研究结果显示Nano RHB平台是一种有前途的高通量生物检测工具,用于高效和超灵敏地评估疫苗和基因递送载体,用于大规模腺病毒载体疫苗的快速质量控制,亦可用于其他基于病毒载体和基因载体的检测分析。研究团队已实现上述技术的转化,基于NanoSPR技术开发的一种腺相关病毒(AAV-2)定量检测试剂盒,能准确、快速、简便、高通量的检测细胞上清中AAV-2病毒含量。AAV-2病毒定量检测试剂盒的原理是AAV-2病毒上的衣壳蛋白和生物芯片表面AAV-2单抗结合后与芯片纳米孔产生等离子共振效应,引起特定波长处吸光度的改变。该波长处的吸光度的高低与样本中的AAV-2病毒含量成正比。故可利用已知浓度的病毒样品在NanoSPR芯片的特定波长处的吸光度变化,建立吸光度变化值与浓度值的标准曲线,从而计算出待测样本中的AAV-2病毒含量。AAV作为基因治疗的明星载体,是目前基因治疗中最常用的载体,准确的滴度检测是AAV基因治疗药物质控的重要组成部分,也是开展临床研究的前提条件。AAV-2病毒定量检测试剂盒可搭配量准多功能分子检测仪(WeSPR 100或WeSPR HT96)使用,一步加样,15min即可出结果,能准确、快速、简便、高通量的检测细胞上清中AAV-2病毒含量。大大简化了AAV开发者的工作流程。在基因治疗、抗病毒疫苗开发等领域有着非常广泛的应用前景。基因治疗或疫苗开发过程中,对AAV衣壳浓度进行完整、精确的测定,是前期研发,中期筛选中获得可靠数据,后期治疗中能够安全有效给药的必要条件。同时,测定AAV分离纯化过程中不同阶段的病毒浓度、优化克隆、提高产量也十分重要。论文链接:https://doi.org/10.1016/j.mtbio.2022.100444
  • Parrot推微型多光谱传感器 可兼容任意民用无人机
    2月18日消息,Parrot宣布推出高科技微型多光谱传感器Sequoia。据了解,Sequoia是一款能够“测定不可见光”的多光谱微型传感器:它通过拍摄红外线校准图像以采集影响农作物生长的关键数据。Parrot无人机搭配Sequoia,能够让所有农业相关从事人员获取“大数据”。  据介绍,Sequoia 能从四个不同光谱波段记录农作物图像的多光谱传感器,内置64GB存储器,可记录光照条件并自动校准四个多光谱传感器的独立亮度传感器,同时内置全球定位系统(GPS)和惯性测量元件(IMU)。  同时,Sequoia可搭配任意款民用无人机使用,其尺寸与GoPro传感器相当。  而搭配Sequoia 的无人机单次航行即可覆盖数百公顷,因而能够拍摄极为精细的农作物影像,识别农场哪些区域需要特别关注,通过探测养分缺乏状况改善施肥模式,可以预防和检测生物胁迫(由生物引起)从而优化使用农药,以及分析氢气压力威胁的变化以控制对农作物的灌溉,更重要的是通过分理并利用农事指标预测农作物产量。  Parrot创始人兼CEOHenri Seydoux表示:“我们开发Sequoia的初衷是为了向农业领域提供一款精准的多光谱解决方案。它不仅需要融合先进技术,且要能够兼容市面上的固定翼无人机和多旋翼无人机。”  目前,Parrot将外在增长策略放在商用无人机市场内领先公司的所有权权益,尤以精准农业为甚。2012年Parrot收购专业无人机公司senseFly、2013年收购航空绘图公司Pix4D,2015年对数据处理和农艺公司MicaSense与Airinovin作出的重大投资。而Parrot计划进一步融合先进软件解决方案及针对不同农作物品种的传感器技术,以成为精准农业市场上的主要参与者。
  • 纳米级量子传感器实现高清成像
    日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小的量子传感器,对磁场敏感,像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光。通过分析响应微波的光致发光强度的变化,研究人员可测量每个传感器点的磁场。图片来源:东京大学研究团队研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。
  • 准确测量,绿色先行:英国Alphasense红外二氧化碳传感器在农业温室气体控制中的角色
    在农业领域,随着全球气候变化的加剧,温室气体的控制与管理已成为实现绿色农业、促进可持续发展的重要一环。其中,二氧化碳作为温室效应的主要气体之一,其浓度的准确测量与控制对于提高农作物产量、优化农业生态环境具有重要意义。英国Alphasense公司研发的红外二氧化碳传感器,凭借其高准确度、高灵敏度的特点,在农业温室气体控制中扮演着不可或缺的角色。一、准确测量,科学指导在农业温室中,二氧化碳是植物光合作用的重要原料。其浓度的适宜与否直接关系到农作物的生长速度和产量。英国Alphasense红外二氧化碳传感器能够实时、准确地监测温室内的二氧化碳浓度,为农民提供科学的数据支持。通过传感器的数据反馈,农民可以及时了解温室内的环境状况,并根据作物的生长需求进行准确调控,如适时补充二氧化碳、调整通风系统等,从而优化农作物的生长环境,提高产量和品质。二、智能控制,节能减排除了准确测量外,英国Alphasense红外二氧化碳传感器还能与智能控制系统相结合,实现温室环境的自动化管理。通过设定合理的二氧化碳浓度阈值,传感器可以自动触发相应的控制指令,如开启通风设备、启动二氧化碳补充装置等,以维持温室内的最佳生长环境。这种智能化的管理方式不仅提高了农业生产的效率,还实现了节能减排的目标,减少了温室气体的排放,促进了农业的绿色可持续发展。三、数据驱动,优化决策随着大数据和物联网技术的发展,英国Alphasense红外二氧化碳传感器所采集的数据还可以被整合到农业大数据平台中,进行深度分析和挖掘。通过对历史数据的比对和分析,农民可以更加准确地预测农作物的生长趋势和产量变化,从而制定出更加科学合理的种植计划和管理策略。同时,这些数据还可以为农业科研提供有力支持,推动农业技术的不断创新和发展。四、绿色先行,带领未来在绿色农业的发展道路上,英国Alphasense红外二氧化碳传感器以其准确测量、智能控制的优势,为农业温室气体的控制与管理提供了有力保障。它的广泛应用不仅提高了农业生产的效率和品质,还促进了农业生态环境的改善和可持续发展。未来,随着技术的不断进步和应用领域的不断拓展,相信英国Alphasense红外二氧化碳传感器将在农业领域发挥更加重要的作用,带领绿色农业走向更加美好的未来。
  • 大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
    近日,中国科学院大连化学物理研究所研究员冯亮团队在纸基光化学传感器的信号放大研发中取得进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。   纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。该工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。   相关研究成果以Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor为题发表在《分析化学》(Analytical Chemistry)上。大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制