当前位置: 仪器信息网 > 行业主题 > >

激光分子束外延系统

仪器信息网激光分子束外延系统专题为您提供2024年最新激光分子束外延系统价格报价、厂家品牌的相关信息, 包括激光分子束外延系统参数、型号等,不管是国产,还是进口品牌的激光分子束外延系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光分子束外延系统相关的耗材配件、试剂标物,还有激光分子束外延系统相关的最新资讯、资料,以及激光分子束外延系统相关的解决方案。

激光分子束外延系统相关的论坛

  • 强烈建议创办一个MBE(分子束外延)版

    我是一名研究生,使用分子束外延设备制备薄膜。国内拥有此设备的地方不多,但其发展呈上升趋势。所以,我想创建桓鲂掳妫璏BE(分子束外延)版,不知道怎样才能创办。 创办这个版,目的有以下两点: 1、有关MBE设备、及相关书籍、文章在国内还不是那么多,所以在此创 办一个MBE版,可以使所有使用过MBE或对MBE有兴趣的人拥有一个交 流的平台; 2、在此我们可以互相学习,共同研究,促进MBE在国内的发展。 以下是引用的有关MBE的简单介绍及简要回顾: 分子束外延(Molecular Beam Epitaxy)技术在现代超导薄膜(YBCO、BSCCO等)、半导体物理、器件以及GaAs工业发展中起着十分关键的作用。 回顾分子束外延的发展历史,它始终追求的是应用目标,把原子一个个地排列起来,同时将几种不同组分的材料交替地生长,而每种材料的厚度小于电子的平均自由程(100nm),两种不同材料之间的界面平整度在单个原子水平上,重复周期在100次以上,这需要很高的技术。是什么力量促使人们不断完善这一技术,使它成为当今信息产业发展的一项重要技术呢?这得从诺贝尔物理学奖获得者江崎与美籍华人朱兆祥提出的半导体超晶格理论说起,他们设想,如果将两种晶格匹配得好的半导体材料A和B交替生长,则电子沿生长方向( Z 方向)的连续能带将分裂成几个微带。 从而改变了材料的电子结构,他们预言在这种人造材料中可能出现若干新的现象与效应,从而出现了人们常说的能带工程(或能带裁剪),1970 年—2006 年期间,超晶格、继而低维及小量子系统的物理器件的长足发展均与分子束外延以及有机金属[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]淀积技术的发展息息相关) 在此期间,分子束外延技术走向成熟,有若干技术上的突破。 希望仪器信息网的论坛能给我这个机会,我会把这个版创办好的。谢谢!

  • 【转帖】分子束外延生长的优缺点

    MBE有许多优点:①由于MBE是在超高真空系统中操作,使用纯度极高的元素材料,所以可以得到高纯度、高性能的外延薄膜;②生长速率低,大约为一微米每小时,可以精确地控制外延层厚度,制造超薄层晶格结构及其它器件;③生长温度低,可避免高温生长引起的杂质扩散,能得到突变的界面杂质分布;④可在生长腔内安装仪器,例如配置四极质谱仪、反射式高能衍射仪、俄歇电子谱仪、二次离子谱仪和X射线光电子能谱仪等。通过这些仪器可以对外延生长表面情况、外延层结晶学和电学性质等进行原位检测和质量评价。这保证了外延层质量;⑤由于基本能够旋转,保证了外延膜的均匀性。分子束外延技术使异质结构、量子阱与超晶格得到迅速发展,使器件物理学家和工程师们设计出新的具有“带结构工程”的器件,为晶格失配外延生长开辟了器件制造的新领域。MBE存在的不足是:表面形态的卵形缺陷,长须状缺陷及多晶生长,难于控制两种以上V族元素,不利于批量生产等。

  • 【转帖】分子束外延生长过程

    MBE生长是由发生在衬底的一系列物理化学过程实现的,它是从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]到凝聚相,再通过一些表面过程的结果。这一复杂过程包括的具体过程包括:(1) 来自[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]的分子和原子撞击到表面而被吸附;被吸附的分子、原子在衬底表面发生迁移和分解。 (2)原子进入衬底晶格形成外延生长。 (3)未进入衬底晶格的分子、原子因热脱附而离开表面。与其它外延生长不同,MBE外延生长可以认为是一种表面非平衡态生长过程。

  • 【转帖】MBE的超高真空环境

    分子束外延生长的环境是基础条件,常年维持在10-10托,这与它的生长方式直接相关,因为分子是一层层铺上去的,外来原子将与它争夺晶格位置而造成污染,直接影响晶体质量。在分子束外延设备中采取了生长,预处理及进样三真空室的基本结构来减缓外部气体的引入,并采用全无油真空抽气系统来减少污染环节,样品的转移,快门的切换均采取真空操作。

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【分享】LED结构生长原理以及MOCVD外延系统的介绍

    第一章 外延在光电产业角色近十几年来为了开发蓝色高亮度发光二极管,世界各地相关研究的人员无不全力投入。而商业化的产品如蓝光及绿光发光二级管LED及激光二级管LD的应用无不说明了Ⅲ-Ⅴ族元素所蕴藏的潜能,表1-1为目前商品化LED之材料及其外延技术,红色及绿色发光二极管之外延技术大多为液相外延成长法为主,而黄色、橙色发光二极管目前仍以[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]外延成长法成长磷砷化镓GaAsP材料为主。MOCVD机台是众多机台中最常被使用来制造LED之机台。而LED或是LD亮度及特性的好坏主要是在于其发光层品质及材料的好坏,发光层主要的组成不外乎是单层的InGaN/GaN量子井Single Quantum Well或是多层的量子井Multiple Quantum Well,而尽管制造LED的技术一直在进步但其发光层MQW的品质并没有成正比成长,其原是发光层中铟Indium的高挥发性和氨NH3的热裂解效率低是MOCVD机台所难于克服的难题,氨气NH3与铟Indium的裂解须要很高的裂解温度和极佳的方向性才能顺利的沉积在InGaN的表面。但要如何来设计适当的MOCVD机台为一首要的问题而解决此问题须要考虑下列因素:1要能克服GaN 成长所须的高温2要能避免MO Gas金属有机蒸发源与NH3在预热区就先进行反应3进料流速与薄膜长成厚度均。一般来说GaN的成长须要很高的温度来打断NH3之N-H的键解,另外一方面由动力学仿真也得知NH3和MO Gas会进行反应产生没有挥发性的副产物。了解这些问题之后要设计适当的MOCVD外延机台的最主要前题是要先了解GaN的成长机构,且又能降低生产成本为一重要发展趋势。第二章 MOCVD之原理MOCVD反应为一非平衡状态下成长机制,其原理为利用有机金属化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法metal-organic chemical vapor deposition MOCVD是一种利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物,或是前驱物precursor和Ⅲ族的有机金属和Ⅴ族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的制程。MOCVD 利用[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]反应物间之化学反应将所需产物沉积在基材衬底表面的过程,蒸镀层的成长速率和性质成分、晶相会受到温度、压力、反应物种类、反应物浓度、反应时间、基材衬底种类、基材衬底表面性质等巨观因素影响。温度、压力、反应物浓度、反应物种类等重要的制程参数需经由热力学分析计算,再经修正即可得知。反应物扩散至基材衬底表面、表面化学反应、固态生成物沉积与气态产物的扩散脱离等微观的动力学过程对制程亦有不可忽视的影响。MOCVD 化学反应机构有反应气体在基材衬底表面膜的扩散传输、反应气体与基材衬底的吸附、表面扩散、化学反应、固态生成物之成核与成长、气态生成物的脱附过程等,其中速率最慢者即为反应速率控制步骤,亦是决定沉积膜组织型态与各种性质的关键所在。MOCVD对镀膜成分、晶相等品质容易控制,可在形状复杂的基材衬底上形成均匀镀膜,结构密致,附着力良好之优点,因此MOCVD已经成为工业界主要的镀膜技术。MOCVD制程依用途不同,制程设备也有相异的构造和型态。整套系统可分为1.进料区进料区可控制反应物浓度。气体反应物可用高压气体钢瓶经MFC 精密控制流量,而固态或液态原料则需使用蒸发器使进料蒸发或升华,再以H2、Ar等惰性气体作为carrier而将原反应物带入反应室中。2.反应室反应室控制化学反应的温度与压力。在此反应物吸收系统供给的能量,突破反应活化能的障碍开始进行反应。依照操作压力不同,MOCVD 制程可分为I 常压MOCVD APCVDii低压MOCVD LPCWDiii超低压MOCVD SLCVD。依能量来源区分为热墙式和冷墙式,如分如下(Ⅰ)热墙式由反应室外围直接加热,以高温为能量来源(II)等离子辅助MOCVD(III)电子回旋共振是电浆辅助(Ⅳ)高周波MOCVD(Ⅴ)Photo-MOCVD(Ⅵ)others其中(II)至(VI)皆为冷墙式3.废气处理系统通常以淋洗塔、酸性、碱性、毒性气体收集装置、集尘装置和排气淡化装置组合成为废气处理系统,以吸收制程废气,排放工安要求,对人体无害的气体。一般来说,一组理想的MOCVD 反应系统必需符合下列条件a.提供洁净环境。b反应物于抵达基板衬底之前以充分混合,确保膜成分均匀。c.反应物气流需在基板衬底上方保持稳定流动,以确保膜厚均匀。d.反应物提供系统切换迅速能长出上下层接口分明之多层结构。MOCVD近来也有触媒制备及改质和其它方面的应用,如制造超细晶体和控制触媒得有效深度等。在可预见的未来里,MOCVD制程的应用与前景是十分光明的。

  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路

    [color=#000000]陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c45ee993-8944-4fb1-a1b4-793fe9fb49f5.jpg[/img][/align][color=#000000]知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。[/color][align=center][img]https://img1.17img.cn/17img/images/202402/uepic/c5db2606-b780-4d94-bda7-1f42d7adfd8e.jpg[/img][/align][color=#000000]基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。[/color][来源:MEMS][align=right][/align]

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 激光共聚焦显微镜系统的原理和应用(光学)

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1. 细胞、组织的三维观察和定量测量2. 活细胞生理信号的动态监测3. 粘附细胞的分选4. 细胞激光显微外科和光陷阱功能5. 光漂白后的荧光恢复6. 在细胞凋亡研究中的应用B.在神经科学中的应用1. 定量荧光测定2. 细胞内离子的测定3. 神经细胞的形态观察C.在耳鼻喉科学中的应用1. 在内耳毛细胞亚细胞结构研究上的应用2. 激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3. 激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4. 激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。北京中科研域科技有限公司(蔡司显微镜代理商)地址:北京市朝阳区建国路15号院甲1号北岸1292,一号楼406室联系人:张辉13911188977 邮编:100024电话:010-57126588 传真:010-85376588E-mail:[email=zhs_8000@126.com][color=#0365bf]zhs_8000@126.com[/color][/email]

  • 【资料】美开发出利用激光分离细胞新系统

    近日,美国麻省理工学院利用造价低廉的激光开发出一种从样品中分离某些细胞的新系统。该系统能在普通的玻璃载玻片上分离出1万多种细胞,这将有助于研究人员轻松完成许多在以前看来不可能的生物实验。而且,与其他细胞分离方法相比,该系统分离速度快、操作简单且价格便宜。这一研究结果刊登在12月15日的《分析化学》(Analytical Chemistry)上。 此前,细胞分离系统都是将样品与可跟特定蛋白质或其他成分反应的标记物混合,然后根据样品是否发出荧光来分离细胞。新系统将根据细胞中某些特定部分的反应来进行更加细致的细胞分离。另外,系统还能根据反应速度的快慢以及持续时间的长短来分离细胞,而用传统分离办法完成这些工作是不可能的。 新系统仅利用一个固定在普通玻璃载玻片上的透明有机硅薄层。硅层中分布了很多小空穴,使样品溶液中的细胞能沉淀在其中。经过如此改装的载玻片就能帮助研究人员分离出上万个细胞。 通过显微镜,研究人员或计算机系统能仔细察看细胞是否在特定区域或时间发出荧光。一旦发现发出荧光的细胞,计算机将自动记录其位置。然后,所有被记录下来的细胞将在激光束的作用下从空穴中浮出,最后这些细胞经液体冲刷后就可收集到容器中。 该系统的研发人员称,用激光束使细胞从空穴中浮出来,就像用消防管的水推动一个充气球。但激光的作用非常轻柔,不会使细胞受到损伤。 与光镊等昂贵的分离技术不同,这个系统的成本仅为几千美元,因此可广泛应用于生物实验室和临床研究机构。研究人员预计,该系统将在临床试验与诊断、基因筛选以及克隆研究等方面发挥重要作用。(来源:科技日报 徐玢) (《分析化学》(Analytical Chemistry),79 (24), 9321 -9330, 2007. 10.1021/ac071366y S0003-2700(07)01366-2,J. R. Kovac and J. Voldman)

  • 激光共聚焦显微镜系统的原理和应用

    激光共聚焦显微镜系统的原理和应用激光扫描共聚焦显微镜是二十世纪80年代发展起来的一项具有划时代的高科技产品,它是在荧光显微镜成像基础上加装了激光扫描装置,利用计算机进行图像处理,把光学成像的分辨率提高了30%--40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察诸如Ca2+ 、PH值,膜电位等生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代强有力的研究工具。激光共聚焦成像系统能够用于观察各种染色、非染色和荧光标记的组织和细胞等,观察研究组织切片,细胞活体的生长发育特征,研究测定细胞内物质运输和能量转换。能够进行活体细胞中离子和PH值变化研究(RATIO),神经递质研究,微分干涉及荧光的断层扫描,多重荧光的断层扫描及重叠,荧光光谱分析荧光各项指标定量分析荧光样品的时间延迟扫描及动态构件组织与细胞的三维动态结构构件,荧光共振能量的转移的分析,荧光原位杂交研究(FISH),细胞骨架研究,基因定位研究,原位实时PCR产物分析,荧光漂白恢复研究(FRAP),胞间通讯研究,蛋白质间研究,膜电位与膜流动性等研究,完成图像分析和三维重建等分析。一.激光共聚焦显微镜系统应用领域:涉及医学、动植物科研、生物化学、细菌学、细胞生物学、组织胚胎、食品科学、遗传、药理、生理、光学、病理、植物学、神经科学、海洋生物学、材料学、电子科学、力学、石油地质学、矿产学。二.基本原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面的每一点扫描,标本上的被照射点,在探测针孔处成像,由探测针孔后的光点倍增管(PMT)或冷电耦器件(cCCD)逐点或逐线接收,迅速在计算机监视器屏幕上形成荧光图像。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点不会在探测针孔处成像,这样得到的共聚焦图像是标本的光学横断面,克服了普通显微镜图像模糊的缺点。三.应用范围:细胞形态学分析(观察细胞或组织内部微细结构,如:细胞内线粒体、内质网、高尔基体、微管、微丝、细胞桥、染色体等亚细胞结构的形态特征;半定量免疫荧光分析);荧光原位杂交研究;基因定位研究及三维重建分析。1.细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化2.生物化学:酶、核酸、FISH(荧光原位杂交)、受体分析3.药理学:药物对细胞的作用及其动力学4.生理学:膜受体、离子通道、细胞内离子含量、分布、动态5.神经生物学:神经细胞结构、神经递质的成分、运输和传递、递质受体、离子内外流、神经组织结构、细胞分布6.微生物学和寄生虫学:细菌、寄生虫形态结构7.病理学及临床应用:活检标本诊断、肿瘤诊断、自身免疫性疾病诊断、HIV等8.遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断四.激光共聚焦显微镜在医学领域中的应用A.在细胞及分子生物学中的应用1.细胞、组织的三维观察和定量测量2.活细胞生理信号的动态监测3.粘附细胞的分选4.细胞激光显微外科和光陷阱功能5.光漂白后的荧光恢复6.在细胞凋亡研究中的应用B.在神经科学中的应用1.定量荧光测定2.细胞内离子的测定3.神经细胞的形态观察C.在耳鼻喉科学中的应用1.在内耳毛细胞亚细胞结构研究上的应用2.激光扫描共聚焦显微镜的荧光测钙技术在内耳毛细胞研究中的应用3.激光扫描共聚焦显微镜在内耳毛细胞离子通道研究上的应用4.激光扫描共聚焦显微镜在嗅觉研究中的应用D.在肿瘤研究中的应用1. 定量免疫荧光测定2. 细胞内离子分析3. 图像分析:肿瘤细胞的二维图像分析4. 三维重建 E.激光扫描共聚焦显微镜在内分泌领域的应用1. 细胞内钙离子的测定2. 免疫荧光定位及免疫细胞化学研究3. 细胞形态学研究:利用激光扫描共聚焦显微镜 F.在血液病研究中的应用1. 在血细胞形态及功能研究方面的应用2. 在细胞凋亡研究中的应用 G.在眼科研究中的应用1. 利用激光扫描共聚焦显微镜观察组织、细胞结构2. 集合特殊的荧光染色在活体上观察角膜外伤修复中细胞移行及成纤维细胞的出现3. 利用激光扫描共聚焦显微镜观察视网膜中视神经细胞的分布以及神经原的树枝状形态4. 三维重建H. 激光扫描共聚焦显微镜在肾脏病中的应用可以系统观察正常人肾小球系膜细胞的断层扫描影像及三维立体影像水平,使图像更加清晰,从计算机分析系统可从外观到内在结构,从平面到立体,从静态到动态,从形态到功能几个方面对系膜细胞的认识得到提高。

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809294799_01_3049057_3.jpg 图1 系统结构图1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809315868_01_3049057_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2017/10/2015102809324531_01_3049057_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571202_3049057_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/10/201510280933_571203_3049057_3.png5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。 图1 系统结构图3、 系统设计3.1 在线取样系统http://ng1.17img.cn/bbsfiles/images/2015/12/201512100948_577152_3049057_3.jpg从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577153_3049057_3.jpg 图2 通讯结构图4、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577157_3049057_3.jpg图3 现场安装图如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据http://ng1.17img.cn/bbsfiles/images/2015/12/201512100949_577155_3049057_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/12/201512100950_577156_3049057_3.jpg图7 粒度分布图图8 粒度数据监控图5、结论针对在线粒度测试方面的技术难点,本文结合微纳仪器在线粒度分析仪器进行了详细的分析研究,初步研究结果表明在线取样技术,封闭样品窗技术,远程通讯技术均满足了粉体粒度在线测试的需求。参考文献 蔡小舒,舒明旭,沈建琪,等.颗粒粒度测量技术及应用,北京:化学工业出版社,2010:128-142 胡荣泽.粒度仪的量化指标.水泥技术,2007(02):69-71.

  • 粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究

    粉体在线激光粒度分析系统的设计与实验研究李文涛,任中京 (济南微纳颗粒仪器股份有限公司,济南250100,中国)liwentao0306@163.com,renzhongjing@vip.sina.com 摘要:本文介绍了一种可以对流动颗粒的粒度分布进行实时监测的在线激光粒度分析系统。详细介绍了在线取样系统、密封样品窗口、测试系统、远程通讯系统的设计,该系统能够安全连续性自动化运行,并能够将粒度分布中的关键参数提供给生产线控制系统,对于粉磨分级生产过程的工艺控制具有非常重要的意义。关键字:激光粒度仪;在线监测;系统定制1、 引言在水泥、硅胶等产品生产中,粒径作为其中的一个关键参数,直接影响产品质量。传统上粉体的粒度测试采用人工采制样或机械采制样,加人工实验室化验的方法,这种方法有很多的的缺点:1、取制样误差大,以局部代表整体过程,存在代表性问题;2、不在线,不实时,分析数据严重滞后;3、分析数据对实时生产过程指导意义不大,只能是一种补救措施。激光粒度测试仪器以其快速、准确、重复、方便等特点越来越多地被用于生产控制,随着生产控制的进一步要求,离线测试已经不能够满足要求,为了能够得到连续的粒度测试结果,在线粒度测试系统渐渐成为成为了各大厂家关注的焦点。目前,国际上英国马尔文、德国新帕泰克、中国微纳颗粒等激光粒度仪厂家都推出了粉体在线激光粒度分析仪,本文就针对微纳仪器的粉体在线激光粒度分析系统的设计与实验结果进行深入的探讨。2、 系统构成粉体在线激光粒度分析系统是可用于工业现场的粉体粒度分析系统,各项参数根据客户应用要求量身定制,本系统主要有以下几部分构成:主机系统、供气系统、取样系统、样品分散系统、密封样品窗口系统、回料系统、现场控制柜系统、远程传输与显示系统。本系统的主要功能是可以对流动的颗粒粒度分布进行实时监测,并提供准确的控制信号。系统结构如图1所示。取样器把粉体样品从生产线管道中取出,通过卸料器传给喂料器,喂料器均匀地把样品送入样品分散泵中,分散好的粉体样品通过防堵反吹阀进入仪器主机,在保护气的作用下通过样品窗口,回料泵把测试过的粉体样品送回到生产线管道中。测试过程中主机把测试到的粉体散射光谱实时地传输到现场控制柜,由安装到现场控制柜PC平板中的在线粒度分析软件通过反演运算得到粉体样品的粒度分布,现场控制柜把得到的粒度分布数据一方面通过远程通讯传给中控PC,工作人员可根据粒度分布数据对生产线及时作出调整,也可直接传输给生产线控制系统,直接调整生产线上的设备使其运转到最佳位置。现场控制柜中的PLC系统是整套系统的控制中心,能控制系统上每一个部件的开关,并对系统的运行实时监控,对异常情况及时报警。http://ng1.17img.cn/bbsfiles/images/2015/12/201512021531_576005_3050076_3.jpg1、 系统设计3.1 在线取样系统从管道中取出具有代表性的样品是实现粉体粒度在线测试的第一步,根据不同的粉体生产工艺,本设计提供两种取样系统:负压取样和螺旋取样,负压取样主要应用于飞灰式取样,如火力发电厂锅炉尾部烟气飞灰取样,螺旋取样主要应用于粉料的取样,如水泥在空气斜槽中传输过程中的取样。负压取样器由取样管和喷射泵组成,取样管插入工艺管道,通过特殊设计的取样孔从气固两相流中取出具有代表性的样品。喷射泵与取样管相连,可以形成0.04MPa的负压,将取样管中的样品吸出送到主机进行测试,喷射泵采用陶瓷内芯,具有良好的耐磨特性。粉体在管道中传输过程中大小颗粒会产生分层现象,因此应采取多点取样,本负压取样系统为运动式取样,取样器在运动控制箱的控制下从位置1到位置2作往复运动,在运动过程中连续取样,保证了取出的样品具有代表性。粉体运输一般采用气体输送,管道中存在一定的正压力或负压力,螺旋取样器只有在常压下才能正常工作,因此在本设计中加入了旋转卸料阀,能够实现空气密封,保证螺旋取样器的正常工作,取出的样品进入到分散泵中分散后经防堵反吹阀门进入主机进行测试。3.2 密封样品窗口保持主机镜头,探头的洁净是保证在线仪器的连续运行的关键,本设计中采用全密封式样品窗设计,一次保护气对密封玻璃起到气幕保护和吹扫的作用,二次保护气保证密封窗口内的气体压力平衡,避免样品从喷射管中喷出时出现返料现象。3.3 测试系统测试系统主要由主机和软件系统构成。主机系统包括光路部分、电路部分、机械密封部分,光路部分采用反傅立叶变换光路,全量程采用米氏散射理论。电路部分扫描速度1000次/秒, 每秒可显示2个完整粒度分布(用户可调)。仪器符合ISO13320标准,所有接口(采样管,阀门,管道)及主机各个部位均采用夹套式接头方便现场检修。软件系统专门为在线粒度监测系统研制,软件具有形象化的良好的人机界面,操作方便,运行可靠,安全性良好,为用户自行定制输出数据项目提供方便。3.4 远程通讯系统在线激光粒度分析系统的通讯系统构成如下图所示,在线控制系统用于现场测试的自动控制及报警,现场PC为在线粒度测试软件的运行平台,生产控制系统为粉体生产设备的控制系统,中控PC用于数据的显示及远程生产线控制。在线控制系统控制器采用PLC,能够稳定地控制各器件的依次启动和依次关闭,并能够接收粒度分布数据并转换为4-20mA标准信号输出,能够与生产控制系统进行接口,用于生产设备控制,提供完善的报警装置。如果在线设备出现问题则自动报警,并自动采取保护措施。现场PC采用一体式工控机进行数据的采集、处理、并实时显示在线颗粒的粒度分布,与中控室终端采用光纤通讯,能够保证在远距离和电磁干扰的情况下稳定传输数据,http://ng1.17img.cn/bbsfiles/images/2015/12/201512021533_576006_3050076_3.jpg1、 系统应用4.1 现场安装http://ng1.17img.cn/bbsfiles/images/2015/12/201512021534_576007_3050076_3.jpg如图3所示是微纳公司为南京某水泥生产线定制的矿渣微粉在线粒度测试系统现场。本项目目的是为了在线24小时连续监测某公司成品的粒度分布数据,为生产线提供调整依据。本项目分为以下几个系统:1、在线取样系统2、在线分散系统3、在线主机4、在线回料系统5、在线空气净化系统6、在线气体分配系统7、PLC控制系统8、工业PC测试系统(含在线粒度监测系统专用软件)9、远程传输与显示系统4.2 监测数据

  • 从激光发展前景看激光划片机现状

    众所周知,激光的应用领域在人们生活中可谓是无处不在,你知或不知,激光应用就在那里,用它那精湛的激光加工技术丰富着您的生活。 今天我们就来探讨一下这样一个具有历史代表性的产业链,是怎样逆袭曾经的风貌。 目前随着激光技术的发展,已广泛用于单晶硅、多 晶硅、非晶硅太阳能电池的划片以及硅、锗、砷化镓和其他半导体衬底材料的划片与切割。那么说到这里肯定很多人会问,激光加工技术是利用什么原理来完成划片和切割的这样一个步骤的呢? 从科学的角度上来讲,激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为两大类: 一、激光加工系统; 二、激光加工工艺。 激光加工系统主要包括激光器、导光系统、加工机床、控制系统及检测系统这些配件。而激光加工工艺的范围就略广泛一些,主要应用在切割、焊接、表面处理、打孔、打标、划线、微雕等各种加工工艺。 从功能上来讲,激光加工工艺在激光焊接、激光切割、激光笔、激光治疗、激光打孔、激光快速成型、激光涂敷、激光成像上都有很成熟的一个应用。 另外激光在医学上的应用主要分为三类:激光生命科学研究、激光诊断、激光治疗,其中激光治疗又分为:激光手术治疗、弱激光生物刺激作用的非手术治疗和激光的光动力治疗。激光美容、激光去除面部黑痣、激光治疗近视、激光除皱、都是激光领域是医学行业内伟大的成就。 在军事方面,激光成就了战术激光武器、战略激光武器、激光动力推动器等,此外激光武器的关键技术已取得突破,2013年低能激光武器已经投入使用。 在通信方面,激光通过大气空间传输达到通信目的,激光大气通信的发送设备主要由激光器(光源)、光调制器、光学发射天线(透镜)等组成;接收设备主要由光学接收天线、光检测器等组成。 目前激光已广泛应用到激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等 发展前景 由此可见激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。 激光划片机现状 激光划片机又称为陶瓷激光切割机或激光划线机,采用连续泵浦声光调Q的 Nd: YAG 激光器或绿激光作为工作光源,由计算机控制二维工作台,能按输入的图形做各种运动。输出功率大,划片精度高,速度快,可进行曲线及直线图形切割;无污染,噪音低,性能稳定可靠等优点。 目前,常见的硅晶体划片工艺分接触划片和非接角划片(激光划片工艺)两种: 接触划片工艺: 接触划片工艺主要有锯片切割等多种方法,是过去硅晶体、太阳能电池的切割方法,缺点是精度差,废品率高,速度慢。 非接触划片工艺: 非接触划片工艺主要是激光划片,由于是非接触方式,划线细,精度高,速度快,目前是太阳能电池等划片的主要方法。 江苏启澜激光科技有限公司开发研制的晶圆激光划片机具有国际先进水平,主要适用于表面玻璃钝化硅晶圆的划片机切割加工。激光加工技术已广泛应用于制造、表面处理和材料加工领域。晶圆紫外激光划片机,其无接触式加工对晶圆片不产生应力、具有较高的加工效率、极高的加工成品率,可有效的解决困扰晶圆切割划片的难题。同时,图像识别、高精度控制、自动化技术的发展,使得能实现图像自动识别、高精度自动对位、自动切割融为一体的晶圆切割划片机成为可能。国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 国内激光晶圆切割划片系统的需求正以每年70%的速度增长,2010年的保有量将会达到500台左右,约合3亿元人民币。 调查显示,瑞士、美国和日本主要的激光晶圆切割机生产商每年在中国市场约销售近100台,国外设备售价在40~42万美元左右,为了提高我国激光精密加工装备的国产化水平,降低设备的采购及使用成本,提高行业的生产效率。晶圆紫外激光划片技术代表了当今世界晶圆切割加工技术前沿的发展方向,对国家未来新兴的晶圆制造产业的形成和发展具有引领作用,有利于晶圆制造技术的更新换代,实现跨越发展。

  • 科学家用两束激光“撞”出多频率光

    科技日报 2012年03月30日 星期五 本报讯 据物理学家组织网3月28日报道,美国加州大学圣巴巴拉分校的研究人员通过将高、低频率的激光束瞄准半导体,引发电子从核心脱离并加速,再回来碰撞核心,由此产生多种频率光。相关研究结果刊登在最新一期《自然》杂志上。 当高频率的激光束击中半导体材料如砷化镓纳米结构时,会创建一对被称为激子的电子—空(穴)复合体,即当电子从外界获得能量时,会跳到较高的能级,但并不稳定,很快又会将获得的能量释放从而回到原来的能级;但如果电子获得的能量够高,就可摆脱原子核的束缚成为自由电子,电子空出来的位置则称为空穴,自由电子可能会因为摩擦或碰撞等因素损失能量,最后受到空穴的吸引而复合。 论文合著者、该校物理系教授及太赫兹科学与技术研究所主任马克·舍温说:“高频激光产生电子—空穴对,很强的低频自由电子激光束将电子从穴口分离并加速,这时由于电子加速有多余能量,它会猛烈碰撞空穴,重组电子—空穴对,并放射出新频率光子。在相当常规的路径下混合激光束碰撞后会得到一或两个新的频率,而我们在实验中看到所有这些不同的新频率最多能达到11个,这个现象着实令人兴奋。” 舍温说,由于每个频率的光对应不同的颜色,他们之所以能获得这样的突破是依靠了一种特别的工具——自由电子激光器,其最大特点是可以探测出物质的基本性质,将其置于混合光束之前即可测量出不同光的颜色,由此发现多种频率的光。 论文第一作者、该校物理系博士生本·扎克斯解释说:“这就像有线电视网络,其电缆是一束光纤,而你沿着这条线发送约1.5微米波长的光束,但在这束光里有如同细梳齿的缝隙一样分离出的许多频率。信息会以一种频率来移动。而采用这种技术就能是增加很多可以传输信息的频率,而且彼此相隔不会太远。” 该研究团队建立了一种产生电子—空穴再碰撞的机器,其在现实中恐怕还没有实际性的应用。然而,从理论上讲,一个晶体管可以用于自由电子激光产生强烈的太赫兹场,还可以调节临近的红外线光束。数据表明,该仪器调制的近红外激光是太赫兹频率的两倍,当增加光调制的速度,将会更快传输接收自电缆的信息。 研究人员介绍说,将电子—空穴再碰撞现象应用于现实世界中具有潜在显著提高光缆数据传输和通信速度的能力。最有可能的应用是多路复用技术即多渠道发送数据;另一个则可对光进行高速调制。(华凌)

  • 发烧级光纤光谱设备:Insight激光诱导击穿光谱检测系统

    大家能想到哪些应用领域?欢迎畅所欲言。 InsightTM激光诱导击穿光谱检测系统 ——高灵敏微量分析从此变得简单! Insight激光诱导击穿光谱检测系统(LIBS)专门用于固体材料的微量分析: * 系统内部的标准分级光栅光谱仪可提供宽光谱读取范围(190-800+nm)以及高于0.1nm的全波段分辨率; * 系统能够分析主成分元素和微量元素,图谱内的30000多个像素点可在紫外范围达到小于0.02nm谱线分辨率; http://www.oceanopticschina.cn/images/insight_LIBS.jpg * 系统内的增强型CCD摄像头在低光照度下具有很强的敏感度,增强了微量元素的光谱。 http://www.oceanopticschina.cn/images/insightspectra.jpg Insight系统内置的addLIBSTM软件使等离子发射光谱分析变得简单: * 通过addLIBS软件您能够使用部分美国国家标准技术研究院(NIST)图谱库或者国内图谱库来开发光谱、对光谱进行标注、使用已知样品制定标定方法、手动标定或对未知光谱自动选择标定方法; * 一旦标定方法制定完成,可以重复使用,也可以进行修改。 用于高保真测量:◆经久耐用的钇铝石榴石晶体激光(ND:YAG laser)、高灵敏的分级光栅光谱仪; ◆内置计时控制电路同步激光和光谱仪; ◆共焦可视面和激光平面,确保了测量的可重复性; ◆气体净化的样品舱; ◆一级安全外壳。 功能强大,操作简单: ◆样品查询和分析软件工具; ◆用户可选重复率; ◆用户可通过软件选择激光光斑尺寸; ◆单点发射、脉冲和持续轰击模式; ◆彩色视频显微镜可实时显示样品图像; ◆可选电脑控制x/y平台,用于夹持样品。 可选配置:◆可调整、样品共轴照明装置; ◆可调激光能量; ◆可调光谱仪延迟; ◆软件可选光斑尺寸(小于5μm至2mm,FWHW);

  • 【转帖】mbe的原位检测系统

    反射式高能电子衍射仪(Reflection High-Energy Electron Diffraction )是MBE系统中最重要的原位分析和监控仪器,在表面重构、表面相以及晶体生长细节研究中发挥重要作用,有MBE“眼睛”之称。主要由高能电子衍射枪和荧光屏构成。电子枪和荧光屏分别处在样品的两侧,在样品前方留下很大的空间,实实时监控成为可能。工作时,高能电子枪发射10-20KV的电子束以下于5度的掠射角入射到样品表面发生衍射。高能电子的能量虽高,既有很强的穿透能力,但由于是掠入射,高能电子仅作用于表面2-3个原子层,使得RHEED具有很高的表面灵敏度。另一方面,在这种散射装置中,被散射的电子相对较少,而反射电子信号很强,这样就能够从荧光屏上得到很强的RHEED图案,从而得出样品的表面信息。主要是表面的结构和平整度,如台阶、小岛、凸线、微滴表面脱附、表面生长动力学及有关衬底清洁程度和合适的生长条件等信息;同时RD(Reflectance-difference)与RHEED互为补充给出有关表现再构的信息。分析表面以下5微米深度内的状况(化学组分、杂质污染)及50埃深度以内的重掺杂分布使用俄歇分析仪(AES)。二次离子质谱(SIMS)侧重表面分析(分辨率大于100微米)和纵向分布(分辨率在50埃左右)。另外,进行表面形貌分析的还有扫描反射电子显微仪、二次电子显微仪等。

  • 激光销蚀进样系统的应用 (送礼了)

    激光销蚀进样系统的应用 NEW-WAVE公司郭经理做的一个介绍,送给大家,希望郭经理不要削我。呵呵。顺便给郭经理做个广告。[em54]不让我贴附件,给我邮箱送。

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用

    当代激光颗粒分析技术的进展与应用任 中 京( 济南微纳颗粒仪器股份有限公司 济南 250022)摘 要:简要介绍了当代激光颗粒分析技术的最新主要的进展。内容涉及测试原理的发展、仪器结构的改进、数据处理技术的突破、多次散射的处理、样品分散系统的多样化、颗粒形状对测试的影响、颗粒散射模型、工业在线应用等一系列理论和应用问题。关键词:激光,粉体,颗粒,散射,测试1 前言著名物理学家费曼曾说: 假如由于某种大灾难,所有的科学知识都丢失了,只有一句话传给下一代,那么怎样才能用最少的词汇来表达最多的信息呢? 我相信这句话是原子的假设,所有的物体都是用原子构成的 。”可见物质组成在人类文明中具有多么重要的意义。20 世纪,人们对于宏观与微观的物理世界已经有了相当深入的了解,但是对于微观粒子到宏观物体之间的大量物理现象却知之甚少。颗粒正是二者之间的中介物。如大颗粒主要表现为固体特性。随着颗粒变小,流动性明显增强,很像液体;颗粒进一步变小,它将像气体一样到处飞扬了;颗粒尺度再小,它的表面积则迅速增大,表面的分子所处状态与大颗粒完全不同,颗粒的性质将发生突变,显示出某些令人震惊的量子特性! 现在, 世界上许多优秀的科学家正在这个介观领域辛勤耕耘,大量具有特殊性能的材料将在这一领域诞生。导致颗粒性质发生如此变化的第一特征是它的大小。颗粒大小在人们的生活和生产中也非常重要。如水泥颗粒磨细些,水泥早期强度将明显提高;药品粒度越细,人体对它的吸收越好;磁性记录材料越细,存储密度越高。这样的例子不胜枚举。因此,颗粒超细化已经成为提高材料性能的重要手段。颗粒大小测定受到人们重视也就不足为奇了。人们为了测定颗粒大小,几乎采用了可以想到的一切办法。由于篇幅所限,本文只介绍激光颗粒分析技术的概况。2 激光怎样测量颗粒大小激光测量颗粒大小的方法有多种,其中包括光散射、光衍射、多普勒效应、光子相关谱、光透法、消光法、光计数器、全息照相等,本文所说的激光颗粒分析专指通过检测颗粒群的散射谱分布,分析其大小及分布的激光散射( 衍射) 颗粒分析技术。众所周知,一束平行激光照射在颗粒上,将发生著名的夫琅禾费衍射,使用傅里叶变换透镜汇集衍射光,在透镜后焦面可得到此颗粒的衍射谱。如果颗粒是球体,则衍射谱是著名的Airy 图形,中心的Airy 斑直径与颗粒直径成反比。若将一同心环阵光电探测器置于后焦面用于衍射谱的检测,再配以信号处理系统, 即构成基本的激光衍射颗粒分析系统 (见图1) 。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221524_579009_3049057_3.jpg当光束中无颗粒存在时,光会聚在探测器中心; 当小颗粒进入光束时, 探测器的光强分布较宽;当大颗粒进入光束时,探测器光强分布较窄。如果进入光束检测区的是具有一定粒度分布的颗粒群, 则探测器的输出为全部颗粒衍射谱的线性叠加,使用反演技术可根据衍射谱反求被测颗粒群的粒度分布 。激光衍射颗粒分析系统适用于粒度大于激光波长很多的颗粒,测量范围大约在6Lm 以上,测量上限决定于透镜焦距,已知最大可测到2000Lm.激光颗粒分析系统的优点是非常突出的,其中包括(1) 测量速度快,其他方法无法比拟;(2)测量过程自动化程度高,不受人为因素干扰,准确可靠;(3)衍射谱仅与颗粒大小有关,与颗粒的物理化学性质无关,因此适用面极广。3 从衍射到散射使用衍射原理的激光颗粒分析系统的主要缺点是在小颗粒范围测量误差很大,特别是无法测量亚微米颗粒的大小。随着颗粒技术的进步,颗粒粒度迅速向超细发展,夫琅禾费衍射已不能满足测试要求,必需采用更精确的Mie 理论。http://ng1.17img.cn/bbsfiles/images/2015/12/201512221525_579010_3049057_3.jpgMie 散射理论是球形颗粒对单色光的散射场分布的严格解析解。夫琅禾费衍射是Mie 散射理论在特定条件下的近似。Mie 散射理论指出,当颗粒直径比入射光波长小得多时,颗粒的前向散射与后向散射场分布对称;当颗粒直径与入射光波长近似时,前向散射比后向散射强,且散射场关于入射光轴呈周期分布;当颗粒直径比入射光波长大得多时,颗粒将只有前向散射场,这正与夫琅禾费衍射理论一致(见图2) 。由此可见,Mie 散射理论比夫琅禾费衍射理论适用范围更广,更精确。为了适应小颗粒散射谱的测量,光路也发生了重大变化,原平行光路由会聚光路取代。颗粒样品由置于透镜前改为透镜之后,可接收的散射角达到70b。经改进的颗粒分析新光路测量范围从0.1um 至数百um,只要改变样品位置即可方便地调节测量范围,不必更换透镜 。至此,Mie 散射理论正式担当了颗粒分析的主角。4 多重散射激光散射颗粒分析在原理上要求被测颗粒无重叠随机分散在与光路垂直的同一平面内。但是这一要求在实际上很难做到,例如干粉从喷嘴喷出往往呈三维分布,前面的颗粒使平行激光发生散射,散射光遇到后面的颗粒再次散射,此过程经历多次,散射谱分布大大展宽,这种现象称为多重散射。可以证明,N 次散射光场的复振幅是单次散射光场的复振幅的N重卷积。颗粒分布得越厚,散射谱展宽越严重,颗粒分析结果将严重地向小颗粒偏移。为了抑制多重散射,人们曾采用了多种办法。我国学者分析了多重散射与颗粒浓度的关系,发现颗粒三维分布时仍存在最佳衍射浓度,在此浓度下,多重散射可以得到有效抑制。颗粒分布越厚,最佳衍射浓度则越小。在此理论指导下,我国研制的干粉激光颗粒分析仪,其测量结果可以同湿法激光颗粒分析仪相比。5 反演——追求真实的努力我们的测量对象很少有单一粒径的颗粒集合,往往是有一定粒度分布的颗粒群。我们所测得的谱分布是由颗粒分布函数为权重的颗粒散射谱分布对所有粒径的积分。在颗粒分析中的反演运算即通过所测谱分布反求粒度分布(颗粒的散射谱分布作为理论已知)。反演正确与否直接关系到此技术的成败。本文不想全面论述反演技术,只简要介绍两种反演思路。流行的一种方法是先假定被测颗粒粒度服从某种分布函数( 如正态分布、对数正态分布、R - R 分布等,然后叠代求取分布参数。如果预先的假定是错的,那么反演结果必错。怎样才能获得真实可靠的结果呢? 我国研究人员发展了一种无约束自由拟合反演技术,即对粒度分布函数不作任何约束,令每一权重因子独立地逼近最佳值。此技术已在仪器上应用并取得良好效果,提高了颗粒大小分辨率,保证了反演结果的真实可靠性。此技术在其他场合也有应用价值。6 大小与形状有关吗?通常认为物体的大小与物体的形状是互不相关的两个概念。近期关于颗粒学的研究表明,颗粒大小的表征不仅与颗粒形状有关,而且与颗粒测试的方法有关,这恐怕是人们预料不到的。以沉降法为例来说明。在重力场中,某非球形颗粒A 的最终沉降速度与另一同质球体B的最终沉降速度相同,则定义颗粒A 的粒径即为颗粒B 的球体直径,称为沉降粒径。二者实际体积并不相同。与此相反,体积相同的两颗粒,若形状不同,一为球体另一为非球体,则其沉降粒径也不同。由此看来颗粒大小与形状有关。与沉降法类似,激光散射法所测粒径也与形状有关。截面积相同的两颗粒,非球体的衍射谱比球体的谱宽。若用球体衍射谱度量非球体,则测试结果偏小。为了解决这种矛盾,我国学者引入椭圆颗粒衍射模型,即取非球体颗粒的最小外圆直径为长轴,取其最大内圆直径为短轴,所作椭圆即为该颗粒的椭圆模型。颗粒的球体模型发展到椭圆模型是颗粒学的一个进步,椭圆模型引入的实质就是承认颗粒大小与颗粒形状有关,并把形状因素引入大小度量的范畴。椭圆模型的引入,为激光颗粒分析用于非球形颗粒奠定了理论基础,并有效地提高了测量精度。7 从实验室到工业生产第一线事实上颗粒测试生产线早已需要一种颗粒在线检测设备。例如粉磨设备的主要功能是将原料磨细,因此颗粒大小就成为粉磨工艺的首要检测指标,但是无论是沉降法还是库尔特法,无论是图像法还是超声波法,均难担此重任。目前人们只能靠检测磨机负荷与监听磨机发出的声音来判断它的工作状态,至于产品粒度则需数小时一次间隔取样,到试验室分析,再返回现场调整磨机,由于检测不及时,导致产品过粗或过粉磨现象司空见惯,造成的浪费无法计算。现在,激光颗粒分析技术的出现与成熟,为颗粒在线测试提供了可能。激光颗粒分析技术除前面谈到的许多优点外,还有一些优点尚未引起人们的注意:(1)它可用于运动颗粒群的实时颗粒分析;(2)它不但适用于液体中的颗粒,也适用于气体中的颗粒。所有这些优点都注定了这种测试方法必定要在现代化的颗粒生产线担任在线粒度测试的主角。此技术在粉磨系统的应用必将改变磨机的控制模式,磨机将发挥出更大的潜力,能耗也将得到最大限度的节约。我国在气流粉碎机方面的粒度在线测控研究工作业已取得可喜的成果。预计不久,选粉、造粒、喷雾、干燥、结晶等许多工艺过程都将由激光颗粒分析仪担当在线分析的重任。到那时,此种技术的潜力才可得到较为充分的发挥。8 结束语激光颗粒分析技术的研究从70 年代起步,到今天才不过20 年的时间,它已经在测量精度、测量速度、分辨能力、动态检测能力等方面远远超过传统分析方法,在世界许多实验室与生产企业应用表现出无可比拟的优越性,越来越多的产品正在选择激光颗粒分析技术作为产品检验标准。此种

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制