当前位置: 仪器信息网 > 行业主题 > >

质谱场致电离源分析

仪器信息网质谱场致电离源分析专题为您提供2024年最新质谱场致电离源分析价格报价、厂家品牌的相关信息, 包括质谱场致电离源分析参数、型号等,不管是国产,还是进口品牌的质谱场致电离源分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱场致电离源分析相关的耗材配件、试剂标物,还有质谱场致电离源分析相关的最新资讯、资料,以及质谱场致电离源分析相关的解决方案。

质谱场致电离源分析相关的论坛

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 质谱基础--电离方式和离子源

    电离方式和离子源1.电轰击电离(EI) 一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI) 电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI) 在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS) 在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS) 采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI) 波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI) 电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 实验分析仪器--质谱仪大气压化学电离源结构原理及特点

    [b]1.基本原理[/b]大气压化学电离源(atmospheric pressure chemical ionization,APCI)的结构与电喷雾电离源大致相同,不同之处在于APC喷嘴的下游放置一个针状放电电极,通过放电电极的高压放电,使空气中某些中性分子电离,产生H[sub]3[/sub]O[sup]+[/sup]、N[sub]2[/sub][sup]+[/sup]、O[sub]2[/sub][sup]+[/sup]和O[sup]+[/sup]等离子,溶剂分子也会被电离,这些离子与分析物分子进行离子-分子反应,使分析物分子离子化,这些反应过程包括由质子转移和电荷交换产生的正离子,质子脱离和电子捕获产生的负离子等。图1是大气压化学电离源的示意图。[img=image.png,500,299]https://i3.antpedia.com/attachments/att/image/20220126/1643167215913880.png[/img]图1 大气压化学电离源示意图[b]2.技术分类[/b]大气压化学电离源是一种场电离离子源,在常压下采用直流等离子体(DC plasma)作为初级的离子源,使得一般在负压下进行的离子-分子反应或电子-分子反应进行电离。[b]3.技术特点[/b]大气压化学电离源主要用来分析中等极性的化合物。有些分析物由于结构和极性方面的原因,用ESI不能产生足够强的离子,可以采用APCI方式增加离子产率,可以认为APCI是ESI的补充。APCI主要产生的是单电荷离子,所以分析的化合物分子量一般小于1000Da。用这种电离源得到的质谱很少有碎片离子,主要是准分子离子

  • 7种质谱电离方式和离子源

    [color=#ff0000][b]1. 电轰击电离(EI)[/b][/color]一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为 10eV 左右,50~100eV 时,大多数分子电离界面最大。70eV 能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定。电子轰击电离是应用最普遍、发展最成熟的电离方法。EI 的优点在于易于实现,质谱图再现好,而且含有较多的碎片离子信息,有利于未知物结构的推测。其缺点为当样品分子稳定不高时,分子离子峰的强度低,甚至没有分子离子峰。当样品不能汽化或遇热分解时,则更没有分子离子峰。电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。[color=#ff0000][b]2. 化学电离(CI)[/b][/color]原理是在离子室中通入反应气(压力上升到约 1Torr),用 200~400eV 的电子轰击使反应气分子电离,然后样品分子在高压下与反应气离子发生离子-分子反应生成样品离子。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合 EI/CI 离子源。试剂气一般采用甲烷气 ,也有 N2,CO,Ar 或混合气等。试剂气的分压不同会使反应离子的强度发生变化 ,一般源压为 0.5~1.0 Torr。反应气通常是甲烷、胺、异丁烷等气体。[color=#ff0000][b]3. 大气压化学电离(APCI)[/b][/color]在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为63Ni 辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达 9L/S。需要采取减少源壁吸附和溶剂分子干扰。大气压电离是由 ESI 衍生出来的方法。样品溶液仍由具有雾化气套管的毛细管端流出,被氮气流雾化,通过加热管时被汽化 。在加热管端进行电晕放电使溶剂分子被电离形成反应离子,这些反应离子与样品第 179 页分子发生离子-分子反应生成样品的准分子离子。与经典 CI 不同的,是 APCI无须加热样品使之汽化,因而应用范围更广。由于要求样品分子汽化,因而 APCI主要用于弱极的小分子化合物的分析。[color=#ff0000][b]4. 二次离子质谱(FAB/LSIMS)[/b][/color]分析化学论坛在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成 MH 离子,其中有些反应会形成干扰。[color=#ff0000][b]5. 等离子解析质谱(PDMS)[/b][/color]分析化学|化学分析|仪器分析|分析测试|色谱|电泳|光谱|等交流采用放射同位素(如 Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于 FAB/LSIMS,可分析多肽和蛋白质。[color=#ff0000][b]6. 激光解吸/电离(MALDI)[/b][/color]波长为 1250~775 的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为 10000/1。根据分析目的不同使用不同的基质和波长。[color=#ff0000][b]7. 电喷雾电离(ESI)[/b][/color]电喷雾电离采用强静电场(3~5KV),形成高度荷电雾状小液滴,经过反复、的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。ESI 电离是很软的电离方法,通常没有碎片离子峰,只有整体分子的峰。有利于生物大分子的测定。

  • 实验室分析仪器--质谱仪热电离离子源原理

    热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178311471374.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源

  • 实验分析仪器--有机质谱仪电子电离源与化学电离源简介

    [b]一、电子电离源[/b]电子电离源是有机质谱仪器最基本的离子源,下图为电子电离源的简图,图中阴影区为一定能量的电子与有机蒸气分子相互作用的区域,有机分子失去一个电子形成正电荷离子,然后在推斥板和拉出板的作用下离开离子源。 [img=15](LVJ31OPGRH)WUK]UK1O.png]https://i3.antpedia.com/attachments/att/image/20220126/1643166940487833.png[/img][b]1.电子电离的过程[/b]电子电离即EI,早先是 Electron Impact缩写,现在改为Electron lonization的缩写。这是因为前者易造成误解,以为电子真的与有机分子相碰撞面发生离子化,由于在分子的范内电子是如此之小,在0.133 ×10[sup]-6[/sup]kPa (10[sup]-6[/sup]mmHg)的真空条件下要攻击到所相遇的有机分子的任何一个部位都不可能;其次,从有机化合物的键能角度看,碳一氟单键为485kJ/mol,碳一氢三键为890kJ/mol,若70eV能量的电子相当于6688kJ/mol,一且与有机分子相碰撞,那么分子的任何键都会发生断裂,这样有机分子的裂解是无规律可循的。可是,事实上有机化合物的裂解是有规律可循的,因此严格地说,应把EI过程称为电子碰撞诱导裂解。电子靠近或者穿越分子,由于它的波与分子的电场相互作用而发生扭曲,扭曲的波可认为由许多不同的正弦波组成,其中有一些将以适当的频率作用于分子轨道上的价电子,导致后者的激发,最终有机分子抛出一个电子留下了正电荷于分子上形成分子离子,70eV的电子使分子离子化,并给予分子离子的剩余内能5~6eV,也就是这些剩余内能使分子离子发生进一步的单分子离子的裂解反应。[b]2.离子化效率[/b]电子能量在10~15eV(该离子化电位简称IP)时就能使有机化合物分子发生电离。不过此时的离子化效率很低。在50eV时离子化效率达到最大值,但一般是设定在70eV。因为在前者的情况下,任何电子能量的微小变化都可能导致离子化效率的明显变化。通常作为70eV,也有选择在70~100eV,不过标准EI谱图都是在70eV条件下获得,因此把它作为一个标准设定值,改变电子能量对化合物的电子电离谱型有一定的影响,过高的电子能量会增加分子离子的裂解几率。[b]3.离子源和离子化室[/b]电子电离源是包括离子产生、离开离子化区域、形成的离子束进行聚焦,并通过狭缝或者透镜将离子送出离子源这样一个整体。离子化室则属于离子源的一部分,是离子化的工作区域,为了便于清洗和切换离子化室也有做成离子体、离子匣等,它通常总带上灯丝,后者通过电流产生表击用的热电子。灯丝温度约有2000℃,故在热电子的出口处装上屏蔽缝,可控制到达灯丝的有机分子不再返回到离子化区域。离子源内装上的一对磁铁可以使发射电子沿着磁力线方向做螺旋式运动,由此改善电子束的形状和方向,使产生的离子在能量上有小的色散,并有效地提高离子化几率,推斥板和拉出电位透镜使离子很快地离开离子化室,不让形成的正离子在壁上失去正电荷。推斥板加上正电位,帮助把正离子推出。有的仪器的EI源灵敏度还是推斥板电位的函数,它的电位值有两个相应峰值,其中一个有较高的灵敏度和分辨率,但处于不稳定状态;另一个峰值则很稳定。离子源其他各透镜的安排、电极板几何形状是考虑到源内电力线的分布,达到构成一定形状离子束的目的。[b]4. 离子源温度[/b]单靠灯丝发热产生的温度是不能满足离子源的清净要求,通常离子源内还要有加热部件,尽管在真空条件下[例如离子源有0.133×10-6kPa(10-6mmHg)真空,离子化室内真空度则为0.133×10-5kPa(10-5mmHg左右)],气体分子间的碰撞几率是很小的,且正离子一且形成也很快离开离子化室,所以离子一分子之间的碰撞几率也很小,但这不妨得有机分子与器壁的(在离开离子化室前大约有50次)。所以离子源的温度设置既要低于有机分子热解的温度,也要避免有机分子冷或者产生严重记忆效应。[b]5. EI离子源的正离子[/b]在EI源中,实际上形成正、负电荷两大类离子,可以通过改变极性的办法分别予以接收,在一般的条件下EI源中形成负离子的丰度仅为正离子的0.1%~1.0%,因此大量的研究集中在EI源中产生的正离子。[b](1)分子离子[/b] 它是由分子失去一个电子而形成的,是质谱谱图中最重要的信息。绝大多数有机化合物是偶电子的分子,所以分子离子为奇电子离子。一般不用母离子来称呼分子离子,因为它是相对于子离子而言的,与分子离子相关的还有准分子离子和假分子离子,前者是指M+H或M-H离子,M是指分子,有一些类别的化合物在EI源中能形成上述准分子离子。假分子离子是指分子经离子化后形成与原来分子结构不同的离子,一般认为分子离子的结构与中性分子的结构没有多大差别,许多裂解过程是由此出发。但是,从能量的角度看,分子离子是处于不稳定的激发状态,因此又应该在结构上与中性分子有差异。这一观点也为一些实验结果所证实。例如,Ph-SO-CH[sub]3[/sub]在EI源中能产生苯酚离子,证明该分子离子经重排形成 PhOS-CH[sub]3[/sub],然后失去SCH[sub]3[/sub]形成上述离子。将有别于原来中性分子结构的分子离子称为假分子离子。[b](2)碎片离子[/b] 分子离子有多种裂解方式,可以说,各种裂解反应是处于竞争之中,由此导致了一系列的碎片离子,分子离子的裂解遵循这样的原则,在所有的裂解反应中哪一个反应需要的能量越低,则该反应就占优势。不过优势的反应不一定在谱图中为最强峰,因为它还会进一步发生二级、三级裂解。碎片离子分为两大类,一类是简单断裂形成的碎片;另一类是重排形成的。简单裂解是比较常见的,从解析的角度来看,这种裂解能直观地反映分子的部分结构,它为人们所期望。重排离子比较复杂,重排的过程是分子内部发生氢或者其他原子或者基团的转移,并同时释放中性分子或自由基。显然,释放的中性分子或自由基以及形成的碎片在原来的结构中是不存在的。从解析的角度来看,氢原子的重排还不影响结构的判断,而基团重排(常称骨架重排)常容易造成假象面导致解析上的失误。[b](3) 同位素离子[/b] 自然界存在的元素中有70%左右具有天然同位素,这就意味着含有某种元素的碎片离子并不只呈现一个单峰,而是出现一簇峰。除了丰度最大的同位素外,还有丰度较小的其他质量的同位素。[b](4)多电荷离子[/b] 这是指多于一个电子的离子。在EI源中常见的是双电荷离子,三电荷离子比较见,但有时也能发现,如(CH3)[sub]3[/sub]Si-O-Si(CH[sub]3[/sub])2-O-Si(CH[sub]3[/sub])[sub]3[/sub]化合物,它的M-CH[sub]3[/sub]离子就出现三电荷离子(m/z 73.7),稠环、有机金属化合物、含溴或氧的化合物中均可找到双电荷离子,强度一般为基峰的1%左右,个别的情况可以达到6%,例如,9H-芴的EI谱图中有m/z 69(2.8%)、m/z 69.5(6.0%)、m/z 70(0.8%)。由于同位素的存在,在低分辨的谱图中很容易发现非整数质量的离子而得以辨认。双电荷离子可以是分子离子也可以是碎片离子,出现双电荷离子的强度次序可按如下排列饱和烃饱和胺类烯烃饱和含硅化合物多烯经芳香烃芳香含氢化合物请注意,双电荷离子的强度不一定和单电荷离子相对应,这意味着在谱图中找到明显的双电荷离子,它所对应的单电荷离子不一定有很大的强度。反之亦然,另外,经归一化后的质谱图中对低强度的双电荷离子并不表示,再加上计算机处理低分辨谱图时以整数名义质量表达,所以在标准谱图中都难以见到双电荷离子,即使它们存在的话,而在早期紫外示波记录仪上则很容易发现。[b](5)亚稳离子[/b] 离子化室中形成的离子在到达收集器前不发生进一步裂解者皆称为稳定离子,否则便为亚稳离子,亚稳离子能反映母一子离子之间的关系,为裂解反应提供信息。这里需要说明的有两点,一是磁质谱的仪器中,当有足够长的无场漂移区时在低分辨的谱图上就能呈现亚稳峰,亚稳峰的峰形是呈扩散的高斯型或平顶、盘形峰,它至少占据1个质量单位以上的峰宽,并小于基峰的1%强度。不过如同双电荷离子的情况,只有使用紫外示波记录仅才能发现。也可以使用特定的装置记录这些亚检跃迁,二是有三种反应得不到亚稳跃迁信息,即源内分子内部的异构或重排;形成络合过渡态的过程;快速的二级裂解。第三种情况是指形成的一碎片离子具有相当低的出峰电位(简称AP)值,它立即发生二级裂解,此时的一级裂解反应无亚稳跃迁,而二级裂解的业稳峰常被误认为由母离子变成最终子离子反应的亚稳跃迁。[b]二、化学电离源 [/b]化学离子化(简称CI)是1969年开始应用的技术,由于它具有强的分子或准分子离子峰和较高的灵敏度等特点而得到迅速发展。常规的CI实验是这样进行的,在离子化室内反应气体压力为0.133kPa(1mmHg)的条件下,样品蒸气分子与反应离子相互反应导致样品分子的离子化,形成的分子离子或准分子离子会进一步发生裂解构成碎片,由此构成CI谱。如果用图解来表示的话,下式中R代表反应气体,R+表示反应气体的反应离子,A代表被分析的样品分子。它仅表示CI的原理,实际的反应离子和样品分子离子的情况要复杂得多。R+e[sup]-[/sup]→R[sup]+[/sup]+2e[sup]-[/sup] R[sup]+[/sup]+A→A[sup]+[/sup]+R A[sup]+[/sup]→A[sub]1[/sub][sup]+[/sup],A[sub]2[/sub][sup]+[/sup]→A[sub]3[/sub][sup]+[/sup][sup][/sup][b] 1.正离子化学电离[/b]正离子CI可分为酸碱型和氧化还原型两种主要形式[b](1)酸碱型[/b] 它是指反应过程中发生了质子的转移,按下式表达为M+BH[sup]+[/sup]→MH[sup]+[/sup]+B M+BH[sup]+[/sup]→[M-H][sup]+[/sup]+H[sub]2[/sub][sup]+[/sup]B由于反应离子是偶电子离子,样品生成的准分子离子也是偶电子离子,故这种类型也称为偶电子酸碱反应。例如,常用甲烷(CH[sub]4[/sub])气作反应气,它的反应离子是CH[sub]5[/sub][sup]+[/sup](47%∑I)和C[sub]2[/sub]H[sub]5[/sub][sup]+[/sup](41%∑I),它们是经过下述过程产生的。CH[sub]4[/sub]+e-→CH[sub]4[/sub]++2e[sup]-[/sup] CH[sub]4[/sub]++CH[sub]4[/sub]→CH[sub]5[/sub][sup]+[/sup]+CH3[sup]-[/sup]CH[sub]4[/sub]+→CH[sub]3[/sub][sup]+[/sup]+H[sup]-[/sup] CH[sub]3[/sub][sup]+[/sup]+CH[sub]4[/sub]→C[sub]2[/sub]H[sub]3[/sub][sup]+[/sup]+H[sub]2[/sub] [b](2)氧化还原型[/b] 它是指反应过程中发生电荷的转移。[b]2、 正离子CI谱的特征(1)提供分子质量信息[/b] 如果分子离子峰有1%相对强度,便认为该化合物的EI谱提供了分子质量信息,那么70%~80%有机化合物可以用EI方法进行分析,这就意味着20%~30%有机化合物在EI源中缺少分子离子峰成者相对强度低于1%而容易淹没在化学噪声之中。CI方法可以获得明显的分子质量信息,可以解决剩下的20%~30%中的一部分。[b](2)EI与CI的信息可以互补 [/b] 除了分子质量的信息外,EI谱图以低质量处的碎片峰为其特点,而CI谱图以高质量处的碎片峰为其特点,因此在一些化合物中它们的结构信息可以得到互补。以苯丙胺类化合物为例,这类物质可以使中枢神经兴奋,因而被用作体育运动的兴奋剂或者是毒品。苯丙胺类的EI谱图中主要断裂发生在a位,正电荷留在左右两边即芐基或含氨碎片上均有可能,其相对强度取决于它的结构,对于No.1~No.3化合物,基峰为含氯碎片,进一步丢失HCN或 CH[sub]3[/sub]N-CHCH[sub]3[/sub]或CH[sub]3[/sub]CN 对于No.4~No.6化合物,则基峰为CH[sub]3[/sub]CH=N+R[sub]1[/sub]R[sub]2[/sub],苯丙胺类的EI谱图中看不到分子离子峰,碎片峰以低质量区域为主。苯丙胺类CI图中主要断裂发生在a和b两处,除了在a处断裂时获得强的芐基离子(m/z 91),且在b处断裂时也有显著的PhCH[sub]2[/sub]C+(CH[sub]3[/sub])H(m/z 119)结构信息离子,不过a断裂时获得含氯碎片的离子m/z(42+R[sub]1[/sub]+R[sub]2[/sub])均不如EI谱中相对应含氯碎片的强度,CI谱提供了很明显的M+H[sup]+[/sup]峰。当然No.1例外,无M+H峰,但存在了高质量处M+H一HCN的基峰,也就是说在高质量处有相当强度的碎片离子存在。因此在分析未知的苯丙胺类化合物时结合EI谱和CI可以得到分子结构信息。(3)选择性裂解反应 由于CI谱的碎片与化合物的官能团性质及其位置有关,再加上不同性质的反应气体可以改变碎裂的程度,因此可以在CI上实现选择性的裂解并应用于结构测定,也包括异构体的区分

  • 实验室分析仪器--质谱仪的离子源种类及各自原理

    离子源是质谱仪器最主要的组成部件之一,其作用是使被分析的物质分子或原子电离成为离子,并将离子会聚成具有一定能量和一定几何形状的离子束。由于被分析物质的多样性和分析要求的差异,物质电离的方法和原理也各不相同。在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。各种电离方法是通过对应的各种离子源来实现的,不同离子源的工作原理不同,其结构也不相同。离子源是质谱仪器的一个重要部分,它的性能直接影响仪器的总体技术指标。因此,对各种离子源的共性要求如下:①产生的离子流稳定性高,强度能满足测量精度;②离子的能量发散小;③记忆效应小;④质量歧视效应小;⑤工作压强范围宽;⑥样品和离子的利用率高。[b]一、电子轰击型离子源[/b]电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115431647.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品。[b]二、离子轰击型离子源[/b]利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178115377492.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116476680.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116400622.jpg[/img]图4 铯源的基本结构示意图[b]三、原子轰击型离子源[/b]与离子轰击电离相似,原子轰击电离也是利用轰击溅射使样品电离的,所不同的是用于轰击的粒子不是带电离子,而是高速的中性原子,因此原子轰击电离源又称为快原子轰击源(fast atom bombardment source, FAB)。原子轰击源是20世纪80年代发展起来的一种新技术。由于电离在室温下进行和不要求样品气化,这种技术特别适合于分析高极性、大分子量、难挥发和热稳定性差的样品。具有操作方便、灵敏度高、能在较长时间里获得稳定的离子流、便于进行高分辨测试等优点。因此得到迅速发展,成为生物化学研究领域中的一个重要工具。原子轰击既能得到较强的分子离子或准分子离子,同时也会产生较多的碎片离子;在结构分析中虽然能提供较为丰富的信息。但也有其不足,主要是:[b]①甘油或其他基质(matrix)在低于400的质量数范围内会产生许多干扰峰,使样品峰识别难度增加;②对于非极性化合物,灵敏度明显下降;③易造成离子源污染。[/b]原子轰击源中使用的轰击原子主要是Ar原子。在放电源中,氩气被电离为Ar,经过一个加速场,Ar具有5~10keV的能量,快速的Ar进入一个充有0.01~0.1Pa氩气的碰撞室,与“静止”的Ar原子碰撞,发生电荷交换。即:Ar(快速)+Ar(静止)→Ar(快速)+Ar[sup]+[/sup](静止)生成的快速Ar原子保持了原来Ar[sup]+[/sup]的方向和大部分能量,从碰撞室射出,轰击样品产生二次离子。在射出碰撞室的快原子中还来杂有Ar[sup]+[/sup],在碰撞室和靶之间设置的偏转极可以将Ar[sup]+[/sup]偏转掉,仅使Ar原子轰击样品。图5是原子轰击源的结构示意。此外,氙气(Xe)、氦气(He)等其他情性气体的原子也可用作轰击原子使用。[img=76a94ac1e2c48555b7631bc4a90a183.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178116426694.jpg[/img]图5 原子轰击源的结构示意图[b]四、放电型离子源[/b]利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117263374.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离。[b]五、热电离离子源[/b]热电离离子源是分析固体样品的常用离子源之一。其基本工作原理是:把样品涂覆在高熔点的金属带表面装入离子源,在真空状态下通过调节流过金属带的电流强度使样品加热蒸发,部分中性粒子在蒸发过程中电离形成离子。热电离效率依赖于所用金属带的功函数、金属带的表面温度和分析物质的第一电离电位。通常金属带的功函数越大、表面温度越高、分析物质的第一电离电位越低,热电离源的电离效率就越高。因此具有相对较低电离电位的碱金属、碱土金属和稀土元素均适合使用热电离源进行质谱分析。而一些高电离电位元素,如Cu、Ni、Zn、Mo、Cd、Sb、Pb等过渡元素,在改进涂样技术和使用电离增强剂后,也能得到较好的质谱分析结果。[img=6cb803845e78c0c20db3311688659a1.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117555301.jpg[/img]图7 表面电离源的示意图图7是表面电离源的示意,结构为单带热电离源。当金属带加热到适当的温度,涂在带上的样品就会蒸发电离。单带源适合于碱金属等低电离电位的元素分析。对于电离电位较高的样品为了得到足够高的电离效率,需要给金属带加更高的工作温度。金属带在升温过程中,样品有可能会在达到合适的电离温度之前,因大量蒸发而耗尽。为了解决这一问题,在其基础上又形成了双带和多带热电离源。即在源中设置两种功能的金属带,一种用于涂样,称样品带;另一种用于电离,叫电离带。这两种带的温度可分别加以控制。当电离带调至合适的温度后,样品带的温度只需达到维持蒸发产生足够的束流。这样既能节制蒸发,又能获得较高的电离效率。还有一种舟形的单带,把铼或钨带设计成舟形,舟内放入样品。由于舟内蒸发的样品在逸出前会与炽热的金属表面进行多次碰撞,增加生成离子的机会,因此,舟形单带的电离效率可接近于多带电离源。[b]六、电感耦合等离子体离子源[/b]利用高温等离子体将分析样品离子化的装置称为电感耦合等离子体离子源,也叫ICP离子源。等离子体是处于电离状态的气体。它是一种由自由电子、离子和中性原子或分子组成的且总体上呈电中性的气体,其内部温度可高达上万摄氏度。电感耦合等离子体离子源就是利用等离子体中的高温使进入该区域的样品离子化电离。ICP离子源主要由高频电源、高频感应线圈和等离子炬管组成(图8)。利用高频电源、高频感应线圈“点燃”等离子体炬管内的气体使其变成等离子体。等离子体炬管由三根严格同心的石英玻璃管制成。外管通常接入氩气,流量控制在10~15L/min,它既是维持ICP的工作气流,又起到冷却作用将等离子体与管壁隔离,防止石英管烧融;中间的石英管通入辅助气体,流量为1L/min左右,用于“点燃”等离子体;内管通入0.5~1.5L/min载气,负责将分析样品送进等离子体中进行电离。由于ICP离子源是在常压下工作的,因此产生的离子还必须通过一个离子引出接口与高真空的质量分析器相连,这就需要应用差级真空技术,如图8所示。通常是在样品锥和截取锥之间安装一个大抽速前级泵,在此形成第一级真空,此真空维持在100~300Pa范围。截取锥之后为第二级真空,装有高真空泵,真空可达0.1~0.01Pa范围。电感耦合等离子体离子源最大的特点是在大气压下进样,更换样品非常简单、方便。此外,由于等离子体内温度很高,样品电离的效率高,因此,电感耦合等离子体离子源可提高质谱仪器元素的检测灵敏度。但是,同样在高温状态下生成的分子离子也会严重干扰对被检测样品成分的鉴别。超痕量分析中,样品处理过程中应注意可能有来自试剂、容器和环境的污染。[img=9ce118fc568554297ba172fbfaa3aa8.jpg]https://i4.antpedia.com/attachments/att/image/20220126/1643178117157289.jpg[/img]图8 电离耦合等离子体离子源示意图[b]七、其他类型的电离技术1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 质谱的离子源系统

    离子源系统的作用就是将中性原子或分子转换成具有一定能量和一定形状的正或负的聚焦良好的离子束。根据被分析物质的状态,它的物理化学性质,选择合适的电离方式。并随着电离方式的不同(例如:电子轰击、离子轰击、场致电离、光致电离、化学电离等),配置必要的组件,组成相应的离子源系统。在离子源电离区域形成的离子,经离子源透镜公聚成品质良好的、合乎需要的离子束。整个离子源的由中性原子或分子到离子的转换效率,取决于离子源的电离效率和离子光学系统的离子传输效率。这对那些要求实现高灵敏度质谱分析的课题,是十分重要的。

  • 实验分析仪器--表面解吸常压化学电离源结构原理及特点

    [b]1.基本原理[/b]表面解吸常压化学电离源(surface desorption atmospheric pressure chemical ionization ,DAPCI)又可写成 SDAPCI,其以APCI工作原理为基础,通过电晕放电的方式将试剂(如水、乙酸等)分子电离,生成初级试剂离子[H[sub]3[/sub]O[sup]+[/sup],H[sub]2[/sub]O[sup]+[/sup][sup].[/sup],(H[sub]2[/sub]O)H[sub]2[/sub]O[sup]+[/sup][sup].[/sup],(H[sub]2[/sub]O)nH[sub]3[/sub]O[sup]+[/sup]等]。初级试剂离子作用于承载粉末、颗粒、液态等样品的玻璃或聚四氟乙烯等材质的平面上,将样品中待测分子解吸并发生分子-离子反应,使待测分子电离。根据待测样品分子的不同, DAPCI也有不同的工作形式,对于有一定挥发性易于解吸的样品分子,可以使用空气作为初级离子试剂[图1(a)];相对难于解吸的小分子,可以通过使用辅助试剂产生初级试剂离子,增强离子源解吸能力[图1(b)];对于样品量较少的样品,可以采用微量取样的方式进行分析[图1(c)];对于较难解吸的大分子,可以使用液体辅助的 DAPCI进行分析[图1(d)]。不管哪种形式的 DAPCI,其主要经过三个过程:[img=image.png,500,329]https://i5.antpedia.com/attachments/att/image/20220126/1643167113660594.png[/img]图1 表面解吸常压化学电离示意图(a)无需气体,液体辅助,通过放电针电放电直接检测复杂待测表面的装置示意图;(b)通过气体为离子源增加辅助试剂的装置示意图;(c)通过微量取样针,检测极微量样品的装置示意图;(d)液体辅助DAPCIN装置示意图①放电针电晕放电产生初级离子;②待测物分子从样品表面被解吸出来;③待测物分子与初级离子在电晕放电的迁移区域内发生分子-离子反应,进行能量的转移和电荷的交换,从而完成对待测物分子的电离。[b]2.技术分类 [/b]DAPCI是以电晕放电为基础的,通过初级试剂离子对样品中待测分子进行解吸电离的二维离子化技术。[b]3.技术特点 [/b]DAPCI在复杂样品的直接电离质谱分析中,具有如下特点:①由于电放电能产生比ESI更多的初级离子 DAPCI就有较高的离子化效率和灵敏度;②可以无需载气,可以检测粉末样品;③便于与小型质谱仪联用;④可以无需有毒化学试剂,对样品表面无污染;⑤由于初级离子产生密度较高,对弱极性和非极性物质的检测能力也较高;⑥可以通过选择不同的辅助试剂,来提高分析的选择性;⑦可以在常压下产生自由基阳离子作为初级试剂离子,对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中分子离子反应的研究具有重要意义;⑧可以应用于样品表面的质谱成像研究;⑨上述各种形式的 DAPCI源,均可非常方便地与各种常见的质谱仪进行联用,如四极杆、离子阱、飞行时间和轨道阱质谱仪等。

  • 实验室分析仪器--质谱仪其他类型的电离技术及原理

    [b]1、激光电离技术[/b]具有一定能量的激光束轰击样品靶,实现样品蒸发和电离,即激光电离(laser ionization,L电离的概率取决于激光脉冲的宽度和能量。当选择单色光激光器作为电离源,可进行样品微区分析,样品的最小微区分析区域与激光的波长有关。分析灵敏度在10量级,分析深度为0.5um,空间分辨率1~5um。随着激光束的不断改进,剖析深度可以达到几十微米,配备数字处理系统,还可得到样品的三维离子分布图。激光电离飞行时间质谱仪就是一种典型的使用激光电离技术的质谱分析仪器。从脉冲激光束开始照射样品,到质谱分析的完成,时间很短,分析效率极高。现在,随着激光技术的快速发展和激光发生器生产成本的降低,激光电离技术已越来越多地用在不同类型的质谱仪上,得到广泛应用。[b]2、激光共振电离技术[/b]激光共振电离(laser resonance ionization,LRI)是20世纪70年代发展起来的激光电离的另一种形式,基本原理是基于每种元素的原子都具有自己确定的能级,即基态和激发态。量子力学揭示这些能级是分离而不是连续的。当某一个处于基态的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]了激光特定能量的光子,跃迁到激发态能级,便实现了共振激发。处于激发态的原子如能再吸收光子,只要两次吸收的光子能量之和大于该原子的电离能,即可使该原子电离,这一过程称为 LRI LRI的基本特征是:对被激发的元素具有非常强的选择性。LRI与质技术相结合组成的激光共振电离质谱仪(laser resonance ionization mass spectrometry,LRIMS)是20世纪后期发展起来的一种新型质谱技术,能够有效地排除其他同位素质谱测量过程中难以克服的同质异位素干扰,灵敏度、丰度灵敏度高,适合核反应过程中的低产额裂变核素测量,也为地球化学、宇宙化学研究中的稀有核素分析提供强有力的支持。Mainz大学使用该技术测量了Ca、u、Np等元素,对Ca的探测限达到10[sup]6[/sup]个原子。曼彻斯特大学采用冷端富集与激光脉冲电离方式实现了惰性气体的高灵敏度分析,对[sup]132[/sup]xe的探测限达到1000个原子

  • 激光多价电离及其在质谱中的应用

    在医学领域,高价离子治疗癌症比传统的放射性在生理学上有很大的优越性。在材料学领域,高价离子注入制备纳米材料是一个非常前沿的科技,用其处理过的材料拥有良好的特性。此外,高价离子在印刷电路、半导体等方面也有应用。在分析化学领域,可以用质谱通过对高价离子的比值分析来确定纳米粒子的元素组成: 宋体高价离子在做二次离子源方面也有非常大的潜力,因此寻找稳定高价离子来源,对质谱应用领域的拓宽具有重要的意义。人们很早就发现,强激光场与团簇相互作用时能够产生高价离子的现象。随着超短激光脉冲放大技术的发展,强激光与团簇的相互作用已成为一个重要的研究领域。在强激光场作用下团簇能够产生高价离子及高能电子,已出现了很多理论和模型解释这种现象。虽然关于理论研究的比较多,但有关激光电离团簇产生高价离子的应用报道很少。本研究将简单介绍一下激光高价离子的产生机制和在质谱领域中的应用及潜在应用。在激光电离气溶胶方面,利用质谱分析高价离子的比值可以确定元素的组成。在离子源方面,高价离子具有很高的电势,用其电离生物及有机大分子样品将供更多的物质结构信息,因为高价离子电离是利用其高电势,而EI电离是利用电子的能量,存在本质的区别。此外,高价离子还可以应用在二次离子质谱和表面分析上面。

  • 实验分析仪器--有机质谱仪电喷雾电离源结构原理及特点

    [b]1.基本原理[/b]一般认为当细小的雾滴从毛细管喷射出来时,就从毛细管口的高强电场中获得了大量的电荷,由于受电荷之间库仑力的作用,这些电荷均匀地分布在液滴的表面。当液滴被干燥去溶时,液滴体积逐渐减小,于是单位表面积上的电荷急剧增加,使得液滴不稳定而进行分裂,产生更细小的液滴。如果对新产生的液滴继续去溶,则将继续这种过程,直到产生稳定的单分子多电荷离子为止。为适应大流量样品需求,一般会使用雾化气(气动辅助雾化气)辅助雾化,电喷雾电离源(electrospray ionization,ESI)见图1,而没有使用雾化气的小流量电喷雾也常被称为纳升电喷雾(nano-ESI)。 [img=image.png,500,276]https://i2.antpedia.com/attachments/att/image/20220126/1643167255113989.png[/img]图1 电喷雾装置示意图[b]2.技术分类[/b]电喷雾电离是以电场作用为主的一种电离方法,待电离样品直接引入电场中形成离子。[b]3.技术特点[/b]电喷雾作为一种工业技术,很久以前就已用于工业生产,比如在工业上很早就开始用电喷雾来给汽车等上漆。当液体高速地从喷嘴喷射出来时,能够形成非常细小的带电液滴,如果提供的能量足够高时,还可以使液滴干燥去溶,进而形成气态分子离子。在ESI中,一般还利用切向的热气流来去溶,有时候也用多种方法进行联合去溶,能够得到更好的去溶效果。如果在酸性溶液中,一般形成(M+nH)[sup]n+[/sup]形式的多电荷阳离子;反之,如果具备去质子的条件,则形成(M-nH)[sup]n-[/sup]多电荷离子。在大分子中,这种电荷数量可以多达100以上,这种多电荷离子的形成大大降低了大分子的质荷比,并且根据峰的位置和相邻峰之间的间隔可以计算出分子的精确质量,非常有利于生物大分子的检测。因此,电喷雾在生命物质的结构分析中特别有意义。由于具有非常好的去溶、电离效率,使得ESI具有非同寻常的灵敏度,一般检出限在amol(10[sup]-18[/sup]mol)数量级。另外电喷雾在小分子分析中常能生成单电荷准分子离子,在用质谱-质谱分析混合物时,各组分的准分子离子经过碰撞(CID)得到二级质谱信息,其对结构鉴定也具有重要意义

  • [资料]有机质谱分析方法通则

    MV_RR_CNJ_0003有机质谱分析方法通则1. 有机质谱分析方法通则说明编号JY/T 003—1996名称(中文) 有机质谱分析方法通则(英文) General principles for organic mass spectrometry归口单位国家教育委员会起草单位国家教育委员会主要起草人郑思定批准日期1997年1月22日实施日期1997年4月1日替代规程号无适用范围本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。本通则规定了四极质谱法分析方法,适用于带有计算机数据处理及控制的四极质谱及与[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、液相色谱联机仪器。应具备进样器,色谱与质谱联用所需的接口,离子源,质量分析器,检测器,计算机控制与数据处理系统,真空系统等。本通则适用于仪器规定质量范围的有机化合物定性和定量分析。本通则规定了有机质谱法对离子阱质谱仪的要求和分析方法,本通则适用于仪器规定质量范围内的有机化合物定性和定量分析。主要技术要求1. 定义2. 方法原理3. 试剂和材料4. 仪器5. 样品6. 操作步骤7. 分析结果的表述是否分级无检定周期(年)附录数目无出版单位科学技术文献出版社检定用标准物质相关技术文件备注2. 有机质谱分析方法通则的摘要本通则规定了有机质谱法分析方法,适用于带有计算机数据处理及控制的质谱仪器。本通则适用于所用仪器规定质量范围内的有机化合物定性和定量分析。本标准包括:有机磁质谱法通则;四极质谱法通则;[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]—离子阱质谱联机方法通则。共三部分。3 定义本通则采用下列定义3.1 原子质量单位 Atomic Mass Unit定义C原子质量的1/12为一个质量单位,简写为amu或u。3.2 毫原子质量单位 Milli Mass Unit千分之一的原子质量单位,简写为 mmu,lmmu=1/1000u。3.3 质荷比 Mass to Charge Ratio离子的质量和所带电荷的比值,简写为m/z。3.4 质谱图 Mass Spectrum质谱分析中以质荷比为横坐标,离子的相对强度为纵坐标所作的谱图。3.5 分子离子 Molecular Ion试样分子失去或得到一个电子而形成的离子。它在正离子场合下表示为M+。它的质荷比即表明试样分子所对应的分子量数值。在分子中含不同同位素时,以天然丰度最大者作分子离子。3.6 亚稳离子 Metastable Ion是指离子在质谱仪的离子源中产生,在达到检测器前分解的离子。其表观质量记为m※。3.7 母离子 Parent Ion是指产生某一碎片的前体离子,母离子不一定是分子离子。3.8 子离子 Daughter Ion是指由母子离子裂解后形成的离子。3.9 碎片离子 Fragment Ion分子离子经过裂解后形成的离子。3.10 重排离子 Rearrangement Ion是指质谱过程中产生的与前体离子中原子排列不同的离子。3.11 电子轰击电离 Electron Impact Ionization试样分子在离子源内经电子流轰击电离成离子的方法,简写为EI。3.12 化学电离 Chemical Ionization在离子源内电子流首先使反应气如 甲烷、异丁烷、氨等离子化,然后再与试样分子发生分子离子反应,使试样分子离子化,这种方法称化学电离,简写为CI。3.13 解吸电离 Desorption Ionization通以电流使涂在金属线圈上的试样分子迅速解吸下发生电子电离或化学电离,简写为DEI或DCI。3.14 场致电离和场解吸电离 Field Ionization and Field Desorption Ionization经过活化处理的发射丝,尖端的曲率半径可达微米级,加上高电压后,其附近的场强可达108V/cm,高场强使挥发性的试样分子产生离子化称为场致电离,简写为FI;而把试样涂在发射丝上并通以加热电流在高场强下使样品离子化称为场解吸电离,简写为FD。3.15 快原子轰击电离和二次离子质谱 Fast Atom Bombardment and Secondary Ion Mass Spectrometry快速Ar原子(或Xe原子)轰击涂敷有某种底物靶面上的试样,使试样分子离子化,这种方法称为快原子轰击电离,简写FAB;如用高能量的一次离子如Xe+、Ar+、Cs+来轰击涂敷在靶面上的试样而溅射出试样分子的二次离子来进行质谱分析,称为二次离子质谱法,简写SIMS。3.16 磁式质谱仪 Magnetic Sector Mass Spectrometer是一种使试样分子电离成离子,并通过扫描磁场,使它们按质荷比不同进行分离,并依次检测它们的强度,对它们进行定性和定量分析的一种仪器。3.17 双聚焦质谱仪 Double Focussing Mass Spectrometer是由静电场(E)和磁场(H)所组成的质量和能量分析器的有机磁质谱仪。如静电场排列在前,称为正置式(EH)双聚焦质谱仪,反之,如磁场排列在前,称为反置式(HE)双聚焦质谱仪。3.18 联动扫描 Linked Scanning是在双聚焦磁质谱仪中,加速电压(V)固定,将磁场强度H和静电场强度E的比值保持不变,来扫描不同质荷比的离子,由母离子来找到各种子离子的测定方法以及将H2/E的比值保持不变来扫描,由于离子来找母离子的测定方法,皆称为联动扫描。3.19 碰撞诱导解离或碰撞诱导活化 Collision Induced Dissociation & Collision Induced Activation在电场和磁场中间的无场区,具有较高动能的离子与中性原子或分子(一般为惰性气体如N2,He)发生非弹性碰撞,离子的一部分动能转化为内能,结果导致离子的解离,这种由离子与中性原子或分子碰撞而引起的解离称为碰撞诱导解离或碰撞诱导活化,简写为CID或CIA。3.20 色质联机 Chromatography Mass Spectrometer由色谱仪与质谱仪通过接口构成为整体的一种联用仪器。3.21 色质联用法 Chromatography Mass Spectrometry通过色质联机对物质进行分析的方法,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱联用分析简写为GC/MS,液相色谱与质谱联用分析简写为LC/MS。3.22 质谱/质谱联用法 Mass Spectrometry/Mass Spectrometry在第一质谱仪中进行离子的质量分离,选择感兴趣的离子在碰撞室中进行解离,得到所选离子的各种裂解碎片谱图。这一过程等于获得一个质谱中某一离子的质谱,称为质谱/质谱法,此类仪器称为串联质谱仪,简写为MS/MS。3.23 总离子流色谱图 Total Ion Chromatogram是未经质量分离的各种质荷比离子,所产生的总电流强度信号与时间相对应的关系图。在色质联用分析时,TIC与色谱分析时各种检测器所得到的色谱图相对应,各峰的面积可作为GC/MS定量分析的依据,简写为TIC。

  • 实验室分析仪器--质谱仪离子轰击型离子源及原理

    利用不同种类的一次离子源产生的高能离子束轰击固体样品表面,使样品被轰击部位的分子和原子脱离表面并部分离子化—一产生二次离子,然后将这些二次离子引出、加速进入到不同类型的质谱仪中进行分析。这种利用高能一次离子轰击使被分析样品电离的方式统称为离子轰击电离。使用的一次离子源包括氧源、氩源、铯源、镓源等。[b]1、溅射过程及溅射电离的机理[/b]一个几千电子伏能量的离子束(初级离子)和固体表面碰撞时,初级离子和固体晶格粒子相互作用导致的一些过程如图2所示。一部分初级离子被表面原子散射,另一部分入射到固体中,经过一系列碰撞后,将能量传递给晶格。获得一定能量的晶格粒子反弹发生二级、三级碰撞,使其中一些从靶表面向真空发射,即溅射。溅射出来的晶格粒子大部分是中性的,另有一小部分粒子失去电子或得到电子成为带正电或负电的粒子,这部分带电粒子称为二次离子。[img=b5d7ca2ed153a848f53723f1c88a292.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178216624641.jpg[/img]图2 溅射离子过程关于二次离子产生的机理,有许多学者进行了研究, Evans的综述认为有两种过程导致二次离子产生。一种是“动力学”过程,连级碰撞的结果使电中性的晶格粒子发射到真空中,其中一部分处于亚稳激发态,它们在固体表面附近将价电子转移到固体导带顶端而电离。另一种是“化学”过程,认为在样品靶中存在化学反应物质,比如氧,由于氧的高电子亲和势减少了自由导带电子数目,这就降低了在固体中生成的二次离子的中和概率,允许它们以正离子发射。反应物质可能是固体中本来就存在的,也可以是以一定的方式加入体系的。在这两个过程中,“化学”过程起主导作用。[b]2、几种常用的一次离子源[/b]目前在离子轰击电离方式中,用于产生一次离子的离子源型号很多,主要介绍下面两种类型的离子源:冷阴极双等离子体源和液态金属场致电离离子源。[b](1)冷阴极双等离子体源[/b]世界上不同厂家制造的SMS仪器,所选用的冷阴极双等离子体离子源可能因生产厂家及型号不同,外形结构差异很大,但基本工作原理类同。图3为冷阴极双等离子源的基本结构示意。冷阴极双等离子体离子源具有电离效率高、离子流稳定、工作可靠及能产生极性相反的引出离子等特点。[b](2)液态金属场致电离离子源[/b]场致电离离子源通常使用的金属有镓、铟、铯等,使用金属离子轰击固体样品表面产生负的二次离子,多用于氧、硫、碳等非金属元素的分析。由于一次金属离子在样品表面会产生电荷累积效应,因此需要配合电子枪使用。图4是铯源的基本结构示意。[img=6e861f14b1d8243a7d37f50da23bf84.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178217279729.jpg[/img]图3 冷阴极双等离子源的基本结构示意图[img=c72458c7b868299d2724613ef5b0b90.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178218901488.jpg[/img]图4 铯源的基本结构示意图

  • 关于ESI源测得的质谱图分析

    [color=#444444]ESI源是很软的电离方法,它通常没有碎片离子峰,那测得的质谱图该怎么分析呢?只看有没有自己的目标化合物的分子量就下定论吗?[/color]

  • 一些关于质谱分析的基本常识

    质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。  从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了气相色谱-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。  质谱仪种类非常多,工作原理和应用范围也有很大的不同。从应用角度,质谱仪可以分为下面几类:有机质谱仪由于应用特点不同又分为:① 气相色谱-质谱联用仪(GC-MS)。在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。② 液相色谱-质谱联用仪(LC-MS)。同样,有液相色谱-四器极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。③ 其他有机质谱仪,主要有:基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS)、富立叶变换质谱仪(FT-MS);无机质谱仪包括:① 火花源双聚焦质谱仪。② 感应耦合等离子体质谱仪(ICP-MS)。③ 二次离子质谱仪(SIMS)。同位素质谱仪。气体分析质谱仪。主要有呼气质谱仪,氦质谱检漏仪等。  以上的分类并不十分严谨。因为有些仪器带有不同附件,具有不同功能。例如,一台气相色谱-双聚焦质谱仪,如果改用快原子轰击电离源,就不再是气相色谱-质谱联用仪,而称为快原子轰击质谱仪(FAB MS)。另外,有的质谱仪既可以和气相色谱相连,又可以和液相色谱相连,因此也不好归于某一类。在以上各类质谱仪中,数量最多,用途最广的是有机质谱仪。因此,本章主要介绍的是有机质谱分析方法。  除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪,四极杆质谱仪,飞行时间质谱仪,离子阱质谱仪,傅立叶变换质谱仪等。APCI: Atmosphere Pressure Chemical Ionization 大气压化学电离API: Atmosphere Pressure Ionization 大气压电离CI: Chemical Ionization 化学电离EI: Electron Impact 电子轰击ESI: Electrospray Ionization ( Nano ESI ) 电喷雾 (纳升喷雾)FAB: Fast Atom Bombardment 快原子轰击FD: Field Desorption 场解吸FI: Field Ionization 场电离LD: Laser Desorption 激光解吸LSIMS: Liquid Second Ion Mass Spectrometry 液体二次离子电离MALDI: Matrix-Assisted Laser Desorption Ionization基质辅助激光解吸电离PD: Plasma Desorption 等离子体解吸TSI: Thermospray Ionization 热喷雾电离1.电轰击电离(EI)一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。2.化学电离(CI)电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。3.大气压化学电离(APCI)在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。4.二次离子质谱(FAB/LSIMS)在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。5.等离子解析质谱(PDMS)采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。6.激光解吸/电离(MALDI)波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。7.电喷雾电离(ESI)电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。8.ICP离子源(ICP-MS)辉光放电离子源(GD-MD、惰性气体质谱)另外,二次离子质谱和FAB是不同的离子化方式,LSIMS和SIMS不太一样。SIMS可以分析无机,有机样品,直接将样品放入真空腔体就可以进行分析。

  • 使用电子轰击电离源(EI)的单四极杆质谱仪工作流程及框架

    [font=微软雅黑, sans-serif]采用一组四极杆[size=12px](作为质量分析器)[/size]对带电离子进行分离的质谱仪称为单四极杆质谱仪。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]质谱仪的相关部件需要在高真空环境下进行工作[/font][font=微软雅黑, sans-serif],机械泵和分子泵为仪器工作提供高真空环境,真空规对真空度进行监测。在保证质谱仪相关部件高真空工作环境前提下,经[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分离后的待测样品组分从色谱柱流出,通过传输线流入离子源[size=12px](电子轰击电离源(EI),Electron Ionization)[/size];电子轰击电离源(EI)通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size];四极杆质量分析器在射频电源的作用下,直流电压(DC)和射频电压(RF)进行叠加,满足条件的特定质/荷比(mass-to-charge ratio)的离子稳定振荡通过四极杆到达检测器[size=12px](打拿极和电子倍增器等)[/size];检测器中的打拿极与四极杆成90°且在-10000V下工作,通过四极杆的光子、中性粒子等干扰信号被降低,正离子束撞击打拿极后产生电子进入电子倍增器并产生与接收到的离子数目成正比的信号,电子流经多级放大后输入到放大电路。放大电路产生的信号经处理后在工作站中显示。使用电子轰击电离源(EI)的单四级杆质谱仪整体结构与框架如下[size=12px](以北京普析通用仪器有限公司M7质谱仪为例)[/size]:[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/5c/ee/a5cee7570e3fc5969a944c5fabaef3a7.png[/img][/align]

  • 【研一时老师布置的作业,自己总结的】在线质谱仪的构造及其在发酵过程中的应用

    在线质谱仪的构造及其在发酵过程中的应用1 质谱分析原理质谱仪需要在高真空下工作:离子源(10-3~10-5 Pa) 质量分析器(10-6 Pa)(1) 大量氧会烧坏离子源的灯丝;(2) 用作加速离子的几千伏高压会引起放电;(3) 引起额外的离子-分子反应,改变裂解模型,谱图复杂化。图1 质谱仪的结构图2 质谱分析法和工业质谱仪的组成质谱分析法是通过对被测样品离子质荷比的测定来分析其组成的一种方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场中运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。实验室质谱仪种类很多,从应用的角度可以分为有机、无机、同位素、气体分析质谱仪几类。其中,数量最多,用途最广的是有机质谱仪,包括各种色谱-质谱联用仪。从所用质量分析器的不同,可分为扇形磁场、四极杆、飞行时间、离子阱、傅里叶变换质谱仪等。工业质谱仪是工业生产流程中使用的在线质谱仪,它是一种小型的气体分析质谱仪,目前使用的质量分析器有扇形磁场、四极杆、飞行时间三种。工业质谱仪一般由检测系统、真空系统、电学系统和数据处理系统几个部分组成。(1)检测系统由进样系统、离子源、质量分析器和离子检测器组成。样品由进样系统导入离子源,在离子源中被电离成正离子或负离子,离子束按质荷比大小由质量分析器分开,被检测系统接收并记录而获得质谱图。 图2 质谱仪检测系统的基本组成(2)真空系统提供和维持质谱仪正常工作所需要的高真空,通常在10-3~10-9 Pa。(3)电学系统为质谱仪的各个部件提供电源和控制电路。(4)数据处理系统快速、高效地计算和处理质谱仪获得的大量数据,并承担仪器控制的任务。2.1电子轰击型离子源 离子源是质谱仪的主要组成部件之一,其作用是使被分析的物质电离成为离子,并将离子会聚成有一定能量和一定几何形状的离子束。 在质谱分析中,常用的电离方法有电子轰击、离子轰击、原子轰击、真空放电、表面电离、场致电离、化学电离和光致电离等。各种电离方法是通过对应的各种离子源来实现的。利用具有一定能量的电子束使气态样品分子或原子

  • 实验室分析仪器--质谱仪电子轰击型离子源及原理

    电子轰击离子源(electron impact ion source)是利用具有一定能量的电子束使气态的样品分子或原子电离的离子源(简称EI源)。具有结构简单、电离效率高、通用性强、性能稳定、操作方便等特点,可用于气体、挥发性化合物和金属蒸气等样品的电离,是质谱仪器中广泛采用的电离源之一。在质谱分析领域,为了适应不同样品电离的需求质谱仪器会配置不同功能的离子源。但电子轰击源作为一个基本装置,仍被广泛应用在气体质谱仪、同位素质谱仪和有机质谱仪上。应该特别指出,电子轰击源是最早用于有机质谱分析的一种离子源,可提供有机化合物丰富的结构信息,具有较好的重复性,是有机化合物结构分析的常规工具。电子轰击离子源一般由灯丝(或称阴极)、电子收集极、狭缝、永久磁铁。、聚焦电极等组成(见图1)[img=49049846c413a18bd54bf33a180973f.jpg]https://i3.antpedia.com/attachments/att/image/20220126/1643178178685018.jpg[/img]图1 电子轰击型离子源示意图灯丝通常用钨丝或铼丝制成。在高真空条件下,通过控制灯丝电流使灯丝温度升至2000℃左右发射电子。一定能量的电子在电离室与气态的样品分子或原子相互作用使其部分发生电离。永久磁铁产生的磁场使电子在电离室内做螺旋运动,可增加电子与气态分子或原子之间相互作用的概率,从而提高电离效率。电离室形成的离子在推斥极、抽出极、加速电压(accelerating voltage)、离子聚焦透镜等作用下,以一定速度和形状进入质量分析器。在电子轰击源中,被测物质的分子(或原子)是失去价电子生成正离子:M+eM[sup]+[/sup]+2e或是捕获电子生成负离子:M+e[sup]-[/sup]→m一般情况下,生成的正离子是负离子的10[sup]3[/sup]倍。如果不特别指出,常规质谱只研究正离子。轰击电子的能量一般为70eV,但较高的电子能量可使分子离子上的剩余能量大于分子中某些键的键能,因而使分子离子发生裂解。为了控制碎片离子的数量,增加分子离子峰的强度,可使用较低的电离电压。一般仪器的电离电压在5~100V范围内可调。电子轰击源的一个主要缺点是固、液态样品必须气化进入离子源,因此不适合于难挥发的样品和热稳定性差的样品

  • 激光多价电离及其在质谱中的应用

    在医学领域,高价离子治疗癌症比传统的放射性在生理学上有很大的优越性。在材料学领域,高价离子注入制备纳米材料是一个非常前沿的科技,用其处理过的材料拥有良好的特性。此外,高价离子在印刷电路、半导体等方面也有应用。在分析化学领域,可以用质谱通过对高价离子的比值分析来确定纳米粒子的元素组成高价离子在做二次离子源方面也有非常大的潜力,因此寻找稳定高价离子来源,对质谱应用领域的拓宽具有重要的意义。人们很早就发现,强激光场与团簇相互作用时能够产生高价离子的现象。随着超短激光脉冲放大技术的发展,强激光与团簇的相互作用已成为一个重要的研究领域。在强激光场作用下团簇能够产生高价离子及高能电子,已出现了很多理论和模型解释这种现象。虽然关于理论研究的比较多,但有关激光电离团簇产生高价离子的应用报道很少。本研究将简单介绍一下激光高价离子的产生机制和在质谱领域中的应用及潜在应用。

  • 转贴:质谱分析(一)

    质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。②快原子轰击,把样品分子放入低挥发性液体中,用高速中性原子来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。

  • 质谱电离源和质谱溶剂

    [color=#444444]请问大家[/color][color=#444444]1) 现在质谱仪电离源都有哪些呢?[/color][color=#444444]2)现在质谱都是联用([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]或[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用[/color][/url])吗?[/color]

  • 实验室分析仪器--质谱仪的分类和各品类介绍

    质谱仪之间分类一般是按质量分析器来分,如通常我们所说的飞行时间质谱或者四级杆质谱等,但同一台质谱仪可以配几种离子源,如通常[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]会配电子轰击电离源(EI)和化学电离源(CI),本文就详细说下质谱主要的几种电力方式及离子源。  样品在离子源中电离成离子,比较常用的离子源有与GC串联的电子轰击电离源(EI)和化学电离源(CI),与LC串联质谱常用电喷雾离子化(ESI)、大气压化学电离(APCI)、大气压光电离(APPI),以及基质辅助光解吸离子化(MALDI)等等。  电离方式和离子源  1.电轰击电离(EI)  一定能量的电子直接作用于样品分子,使其电离,且效率高,有助于质谱仪获得高灵敏度和高分辨率。有机化合物电离能为10eV左右,50-100eV时,大多数分子电离界面最大。70eV能量时,得到丰富的指纹图谱,灵敏度接近最大。适当降低电离能,可得到较强的分子离子信号,某些情况有助于定性。  2.化学电离(CI)  电子轰击的缺陷是分子离子信号变得很弱,甚至检测不到。化学电离引入大量试剂气,使样品分子与电离离子不直接作用,利用活性反应离子实现电离,其反应热效应可能较低,使分子离子的碎裂少于电子轰击电离。商用质谱仪一般采用组合EI/CI离子源。试剂气一般采用甲烷气,也有N2,CO,Ar或混合气等。试剂气的分压不同会使反应离子的强度发生变化,所以一般源压为0.5-1.0Torr。  3.大气压化学电离(APCI)  在大气压下,化学电离反应速率更大,效率更高,能够产生丰富的离子。通过一定手段将大气压力下产生的离子转移至高真空处(质量分析器中)。早期为Ni63辐射电离离子源,另一种设计是电晕放电电离,允许载气流速达9L/S。需要采取减少源壁吸附和溶剂分子干扰。  4.二次离子质谱(FAB/LSIMS)  在材料分析上,人们利用高能量初级粒子轰击表面(涂有样品的金属钯),再对由此产生的二次离子进行质谱分析。主要有快原子轰击(FAB)和液体二次离子质谱(LSIMS)两种电离技术,分别采用原子束和离子束作为高能量初级粒子。一般采用液体基质负载样品(如甘油、硫甘油、间硝基苄醇、二乙醇胺、三乙醇胺或一定比例混合基质等)。主要原理是分子质子化形成MH+离子,其中有些反应会形成干扰。  5.等离子解析质谱(PDMS)  采用放射性同位素(如Cf252)的核裂变碎片作为初级粒子轰击样品,将金属箔(铝或镍)涂上样品从背面轰击,传递能量使样品解析电离。电离能大大高于FAB/LSIMS,可分析多肽和蛋白质。  6.激光解吸/电离(MALDI)  波长为1250-775的真空紫外光辐射产生光致电离和解吸作用,获得分子离子和有结构信息的碎片,适于结构复杂、不易气化的大分子,并引入辅助基质减少过分碎裂。一般采用固体基质,基质样品比为10000/1。根据分析目的不同使用不同的基质和波长。  7.电喷雾电离(ESI)  电喷雾电离采用强静电场(3-5KV),形成高度荷电雾状小液滴,经过反复的溶剂挥发-液滴裂分后,产生单个多电荷离子,电离过程中,产生多重质子化离子。

  • 【分享】质谱分析技术

    质谱分析法是通过对被测样品离子的质荷比的测定来进行分析的一种分析方法。被分析的样品首先要离子化,然后利用不同离子在电场或磁场的运动行为的不同,把离子按质荷比(m/z)分开而得到质谱,通过样品的质谱和相关信息,可以得到样品的定性定量结果。从J.J. Thomson制成第一台质谱仪,到现在已有近90年了,早期的质谱仪主要是用来进行同位素测定和无机元素分析,二十世纪四十年代以后开始用于有机物分析,六十年代出现了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪,使质谱仪的应用领域大大扩展,开始成为有机物分析的重要仪器。计算机的应用又使质谱分析法发生了飞跃变化,使其技术更加成熟,使用更加方便。八十年代以后又出现了一些新的质谱技术,如快原子轰击电离子源,基质辅助激光解吸电离源,电喷雾电离源,大气压化学电离源,以及随之而来的比较成熟的液相色谱-质谱联用仪,感应耦合等离子体质谱仪,富立叶变换质谱仪等。这些新的电离技术和新的质谱仪使质谱分析又取得了长足进展。目前质谱分析法已广泛地应用于化学、化工、材料、环境、地质、能源、药物、刑侦、生命科学、运动医学等各个领域。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25329]质谱分析技术[/url]

  • 质谱 带电离子的产生、传输和检测

    [font=微软雅黑, sans-serif]带电离子的产生、传输和检测[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪工作时,仪器内部真空环境中带电离子的产生、传输和检测需要经过离子源、质量分析器和检测器等部件。[color=red]本文主要介绍单四极杆质谱仪的电子轰击电离源/电子电离源(EI)部分。[/color][/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/f0/1d/ff01dcd00e8e45a3bc8250abe70575b7.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1 [/font][font=微软雅黑, sans-serif]离子源-电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源的主要作用是将分析样品中的待测组分电离成带电离子,并将带电离子集中成密集的离子束,引入质量分析器。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-单四极杆质谱联用仪常见的离子源主要有电子轰击电离源(EI)、化学电离源(CI)等。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)[/font][font=微软雅黑, sans-serif]通过灯丝释放高能电子,在磁场与电场的作用下,化合物分子经过碰撞和诱导等相互作用发生裂解,在推斥极正电压作用下正离子进入静电透镜,并通过静电透镜聚焦引入质量分析器[size=12px](四极杆质量分析器等)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)是最常见和最简单的电离方式之一,可靠性和灵敏度高,碎片离子信息丰富,质谱图具有良好的再现性,能够提供详细的结构信息和可供对照的标准NIST质谱数据库。目前EI 源是分析鉴定中草药、香精、香料、杀虫剂和石油成品等挥发性和半挥发性复杂样品的主要手段。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)的结构包括电离腔、透镜组和模拟电路板三大部分。电离腔包括磁铁、灯丝、推斥极等;透镜组则包括离子出口板、离子出口板间隔、聚焦透镜和引入透镜等;模拟电路板[size=12px](点击链接,了解详细内容:[url=https://ibook.antpedia.com/x/666377.html][color=#7030a0]单四极杆质谱仪工作流程及框架概述[/color][/url])[/size]则用以实现电子轰击电离源(EI)灯丝电流控制,离子源加热控制,推斥电极、静电透镜、电子能量电压控制等。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/c6/fc/6c6fc7a87049a3eaa393fdac683e4dfc.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的产生[/font][font=微软雅黑, sans-serif]2.1.1.1 [/font][font=微软雅黑, sans-serif]离子的产生位置-电离腔[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电离腔[/font][font=微软雅黑, sans-serif]位于灯丝1与灯丝2之间,(上图)推斥极右侧,(上图)离子出口板左侧;磁铁位于灯丝1和灯丝2 的正上方;色谱柱于上图中色谱柱入口将分析样品中的待测组分引入离子源;另外,位于色谱柱入口正对面的真空腔门上开有小孔,外部装有开关阀及调谐用的全氟三丁胺,称为标液和标液阀。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]离子源中的两个磁体之间会形成磁场,运动电荷在磁场中受到洛伦兹力的作用;洛伦兹力不改变运动电荷的速率和动能,只改变电荷的运动方向使之偏转;灯丝经过加热产生热电子,并在加速电压的作用下进入磁场,在磁场作用下螺旋形向前运动,增加与样品分子相互作用的几率。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif][/font][font=微软雅黑, sans-serif]2.1.1.2 [/font][font=微软雅黑, sans-serif]电离腔中离子产生的原理[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif][color=#7030a0]说明:该小节参考《质谱分析技术原理与应用》,台湾质谱学会[/color][/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)又称为电子电离源(EI),其基本原理是灯丝经过加热产生热电子,并在加速电压的作用下具有一定的能量和波长。当电子的波长符合分子电子能级跃迁所需的波长时,电子能量会被分子吸收,使分子内能提高,将外层电子提升至高能级,进而至离子化态并产生自由基阳离子。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在离子源中可以通过参数设置控制电子产生的数量和电子的能量。有机化合物的电离能大多数为(10-20)eV,但通常将灯丝产生的电子动能设置为70eV[size=12px](电子伏特(electron volt),符号为eV,是能量的单位。代表一个电子(所带电量为1.6×10-19C的负电荷)经过1伏特的电位差加速后所获得的动能)[/size]。电子动能为70eV时波长约为1.4?,该波长与分子键长度接近,更容易与化学键相互作用。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV位于最佳离子化效率能量区(50-100eV)的中间,可以避免由于在区间起始或者结束位置时电子能量微小波动导致的离子化效率明显变化;同时,也避免了当电子能量过低无法被分析物有效吸收或者过高直接穿透分子引起的离子化效率降低等情况。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]电子动能为70eV时可以提供较高的谱图重现性,同时具有丰富的碎片离子,可以提供分子离子的结构信息,用来鉴定或者解析分子。目前美国国家标准与技术研究院(NIST)收集了数十万分子电子电离产生的质谱图并建立了谱图库,可以通过与该标准谱图库进行对比的方法检定化合物的身份。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]2.1.2 [/font][font=微软雅黑, sans-serif]电子轰击电离源(EI)中离子的传输和聚焦[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在电离腔中产生的离子碎片运动方向较为发散,为了将离子引出电离区,并将轴向发散的离子进一步加速、聚焦成离子束以减少在传输中的损失,并最终以较小的束宽和散角送入质量分析器中,一般使用透镜组对离子进行空间聚焦。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]单四极杆质谱仪电子轰击电离源(EI)中的透镜组(静电透镜/单透镜)是离子导向装置的一种,作为离子光学系统的一部分,承担着将离子传输至质量分析器的重要作用。[/font][align=center][img]https://img.antpedia.com/instrument-library/attachments/wxpic/4e/b2/64eb2f97caa88572c504d6aa382c3628.png[/img][/align][font=微软雅黑, sans-serif]工作过程中,由电子轰击电离源(EI)的裂解机理产生的离子多为正离子,因此首先在推斥极上施加正电压,将离子推向离子出口板;一般而言,离子出口板和离子出口板间隔接地,推斥极和离子出口板之间会形成电压差,电压差亦会推动正离子向前运动;聚焦透镜和引入透镜为负电压,且聚焦透镜的电压值会更低[size=12px](说明:负的更厉害)[/size]。[/font][font=微软雅黑, sans-serif] [/font][font=微软雅黑, sans-serif]在三个圆筒形电极[size=12px](离子出口板和离子出口板间隔、聚焦透镜和引入透镜)[/size]的作用下,中间电极附近形成一鞍形电场——即中间电极电压低于两边电极电压,构成起始减速型单透镜结构,散射的正离子在起始减速型结构的单透镜中先加速后减速,先聚焦后发散再聚焦。该透镜组(静电透镜/单透镜)的特点是对传输离子无质量歧视,可以保持离子的动能,通过调节电压即可实现离子聚焦和改善离子传输效率。[/font]

  • 实验员常见基础问题:(四)质谱分析法

    [color=red][font=&]1.[/font][/color][font=宋体][color=red]质谱法定义[/color][/font][font=宋体][color=#000000]是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比[/color][/font][font=&][color=#000000]([i]m[/i][/color][color=#000000]/[/color][i][color=#000000]z[/color][/i][color=#000000])[/color][/font][font=宋体][color=#000000]大小分离,形成质谱图。依据质谱线的位置和质谱线的相对强度建立的分析方法称为质谱法。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]2.[/font][/color][font=宋体][color=red]质谱的作用[/color][/font][font=宋体][color=#000000]准确测定物质的分子量;质谱法可以辅助确定分子式;根据碎片特征进行化合物的结构分析。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]3.[/font][/color][font=宋体][color=red]质谱分析的基本原理[/color][/font][font=宋体][color=#000000]质谱法是利用电磁学原理,将待测样品分子解离成具有不同质量的离子,然后按其质荷比[/color][/font][font=&][color=#000000]([i]m[/i][/color][color=#000000]/[/color][i][color=#000000]z[/color][/i][color=#000000])[/color][/font][color=#000000][font=宋体]的大小依次排列收集成质谱。根据质谱中的分子离子峰[/font][font=&](M+)[/font][font=宋体]可以获得样品分子的相对分子质量信息;根据各离子峰[/font][font=&]([/font][font=宋体]分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰等[/font][font=&])[/font][font=宋体]及其相对强度和氮数规则,可以确定化合物的分子式;根据各离子峰及物质化学键的断裂规律可以进行定性分析和结构分析;根据组分质谱峰的峰高与浓度间的线性关系可以进行定量分析。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]4.[/font][/color][font=宋体][color=red]质谱分析的过程[/color][/font][color=#000000][font=&](1)[/font][font=宋体]进样,化合物通过汽化引入电离室;[/font][/color][color=#000000][font=&](2)[/font][font=宋体]离子化,在电离室,组分分子被一束加速电子碰撞,撞击使分子电离形成正离子;[/font][/color][color=#000000][font=&](3)[/font][font=宋体]离子也可因撞击强烈而形成碎片离子;[/font][/color][color=#000000][font=&](4)[/font][font=宋体]荷正电离子被加速电压[/font][font=&]V[/font][font=宋体]加速,产生一定的速度[/font][font=&]v[/font][font=宋体],与质量、电荷及加速电压有关;[/font][/color][color=#000000][font=&](5)[/font][font=宋体]加速正离子进入一个强度为[/font][font=&]B[/font][font=宋体]的磁场[/font][font=&]([/font][font=宋体]质量分析器[/font][font=&])[/font][font=宋体],发生偏转。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]5.[/font][/color][font=宋体][color=red]质谱仪的组成[/color][/font][font=宋体][color=#000000]真空系统、进样系统、离子源或电离室、质量分析器、离子检测器。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]6.[/font][/color][font=宋体][color=red]真空系统作用[/color][/font][color=#000000][font=宋体]减少离子碰撞损失。若真空度低:大量氧会烧坏离子源的灯丝;会使本底增高,干扰质谱图;引起额外的离子[/font][font=&]-[/font][font=宋体]分子反应,改变裂解模型,使质谱解释复杂化;干扰离子源中电子束的正常调节;用作加速离子的几千伏高压会引起放电等。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]7.[/font][/color][font=宋体][color=red]进样系统目的[/color][/font][font=宋体][color=#000000]高效重复地将样品引入到离子源中并且不能造成真空度的降低;间歇式进样系统——气体及低沸点、易挥发的液体;直接探针进样——高沸点的液体、固体;色谱进样系统——有机化合物。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]8.[/font][/color][font=宋体][color=red]离子源或电离室[/color][/font][font=宋体][color=#000000]作用是使试样中的原子、分子电离成离子,其性能影响质谱仪的灵敏度和分辨率本领。[/color][/font][font=宋体][color=#000000]电子电离源的特点如下。[/color][/font][color=#000000][font=宋体]电离电压:[/font][font=&]70eV[/font][font=宋体];加一小磁场增加电离几率;[/font][font=&]EI[/font][font=宋体]源电离效率高,碎片离子多,结构信息丰富,有标准化合物质谱库;结构简单,操作方便;样品在气态下电离,不能汽化的样品不能分析,主要用于气[/font][/color][font=&][color=#000000]-[/color][/font][font=宋体][color=#000000]质联用仪;有些样品得不到分子离子。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]9.[/font][/color][font=宋体][color=red]化学电离源特点[/color][/font][color=#000000][font=宋体]电离能小,质谱峰数少,谱图简单;最强峰为[/font][font=&](M+1)+[/font][font=宋体]准分子离子峰;不适用难挥发试样。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]10.[/font][/color][font=宋体][color=red]快原子轰击源[/color][/font][color=#000000][font=宋体]高能量的[/font][font=&]Xe[/font][font=宋体]原子轰击涂在靶上的样品,溅射出离子流。本法适合于高极性、大分子量、低蒸汽压、热稳定性差的样品,[/font][font=&]FAB[/font][font=宋体]一般用作磁式质谱的离子源。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]11.[/font][/color][font=宋体][color=red]电喷雾源结构[/color][/font][color=#000000][font=宋体]喷嘴[/font][font=&]([/font][font=宋体]金属毛细管[/font][font=&])[/font][font=宋体],雾化气,干燥气。[/font][/color][font=宋体][color=#000000]原理:喷雾蒸发电压。[/color][/font][color=#000000][font=宋体]特点:[/font][font=&]ESI[/font][font=宋体]是最软的一种电离方式,只产生分子离子,不产生碎片离子;适用于强极性,大分子量的样品分析,如,肽,蛋白质,糖等;产生的离子带有多电荷,尤其是生物大分子;主要用于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url][/font][font=&]-[/font][font=宋体]质谱联用仪,既用作[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]和质谱仪之间的接口装置,同时又是电离装置。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]12.[/font][/color][font=宋体][color=red]场致电离源[/color][/font][color=red][font=&](FI)[/font][/color][font=宋体][color=red]和场解吸电离源[/color][/font][color=red][font=&](FD)[/font][/color][font=宋体][color=#000000]分子离子峰强;碎片离子峰少;不适合化合物结构鉴定。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]13.[/font][/color][font=宋体][color=red]基质辅助激光解吸电离特点[/color][/font][color=#000000][font=宋体]准分子离子峰很强且碎片离子少。通常用于飞行时间质谱,特别适合测定多肽、蛋白质、[/font][font=&]DNA[/font][font=宋体]片段、多糖等的相对分子质量。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]14.[/font][/color][font=宋体][color=red]质量分析器作用[/color][/font][color=#000000][font=宋体]将离子源产生的离子按质荷比[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]的大小分开。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]15.[/font][/color][font=宋体][color=red]单聚焦分析器[/color][/font][color=#000000][font=宋体]离子的[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]与[/font][font=&][i]R[/i][/font][font=宋体],[/font][font=&][i]B[/i][/font][font=宋体],[/font][font=&][i]V[/i][/font][font=宋体]有关。通过改变磁场可以把不同离子分开。在一定磁感应强度[/font][font=&][i]B[/i][/font][font=宋体]下,改变加速电压[/font][font=&][i]V[/i][/font][font=宋体]可以使不同离子先后通过检测器,实现质量扫描,得到质谱。特点:结构简单,操作方便;只有方向聚焦,无能量聚焦,分辨率低。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]16.[/font][/color][font=宋体][color=red]双聚焦分析器[/color][/font][color=#000000][font=宋体]实现方向聚焦和能量[/font][font=&]([/font][font=宋体]速度[/font][font=&])[/font][font=宋体]聚焦;[/font][/color][font=宋体][color=#000000]对于动能不同的离子,通过调节电场能,达到聚焦的目的。[/color][/font][font=宋体][color=#000000]特点:分辨率高。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]17.[/font][/color][font=宋体][color=red]四级杆质量分析器[/color][/font][font=宋体][color=#000000]特点:结构简单,体积小、重量轻,扫描速率快,适合与色谱联机。[/color][/font][font=&][color=#000000] [/color][/font][color=#000000][font=&]18.[/font][font=宋体]飞行时间质量分析器[/font][/color][font=宋体][color=#000000]特点:质量范围宽,扫描速率快,既不需磁场也不需电场,只需要直线漂移空间。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]19.[/font][/color][font=宋体][color=red]离子阱质量分析器[/color][/font][color=#000000][font=宋体]特定[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]离子在阱内一定轨道上稳定旋转,改变端电极电压,不同[/font][font=&]m/z[/font][font=宋体]离子飞出阱到达检测器。[/font][/color][font=宋体][color=#000000]特点:结构简单、易于操作、灵敏度高。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]20.[/font][/color][font=宋体][color=red]质谱的表示方法[/color][/font][color=#000000][font=宋体]质谱一般可用线谱或表谱两种方法表示,常用线谱;线谱上的各条直线表示一个离子峰,横坐标为质荷比[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体],纵坐标为离子的相对强度[/font][font=&]([/font][font=宋体]相对丰度[/font][font=&])[/font][font=宋体],一般将原始质谱图上最强的离子峰定为基峰并定为相对强度[/font][font=&]100%[/font][font=宋体],其他离子峰以对基峰的相对百分值表示。能够很直观地观察到整个分子的质谱全貌;质谱表是用表格形式表示的质谱数据,质谱表中有两项即质荷比及相对强度,对定量计算较直观。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]21.[/font][/color][font=宋体][color=red]质谱仪的分辨率[/color][/font][font=宋体][color=#000000]分辨率[/color][/font][font=&][color=#000000]([i]R[/i][/color][color=#000000])[/color][/font][color=#000000][font=宋体]指质谱仪能区别邻近两个质谱峰的能力,对两个相等强度的相邻峰,当两峰间的峰谷不大于其峰高[/font][font=&]10%[/font][font=宋体]时,则认为两峰已经分开。[/font][/color][font=&][color=#000000] [/color][/font][color=red][font=&]22.[/font][/color][font=宋体][color=red]质谱图中主要离子峰的类型[/color][/font][font=宋体][color=#000000]分子离子峰、同位素离子峰、碎片离子峰、亚稳离子峰、重排离子峰。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]23.[/font][/color][font=宋体][color=red]相对分子质量的测定[/color][/font][color=#000000][font=宋体]分子离子峰的[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]相当于该化合物的相对分子质量。[/font][/color][font=宋体][color=#000000]一般除同位素离子峰外,分子离子峰是质谱图中最大质荷比的峰,位于质谱图的最右端。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]24.[/font][/color][font=宋体][color=red]确认分子离子峰的方法[/color][/font][color=#000000][font=&](1)[/font][font=宋体]分子离子峰必须符合氮数规则:有机化合物含有偶数个氮原子或不含氮原子,分子离子峰的[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]一定是偶数;含奇数个氮原子,分子离子峰的[/font][font=&][i]m[/i]/[i]z[/i][/font][font=宋体]一定是奇数;[/font][/color][color=#000000][font=&](2)[/font][font=宋体]分子离子峰与相邻离子峰的质量差应合理,如,不可能出现比分子离子峰质量小[/font][font=&]4[/font][font=宋体]~[/font][font=&]13[/font][font=宋体]个质量单位的峰;[/font][/color][color=#000000][font=&](3)[/font][font=宋体]当化合物中含[/font][font=&]S[/font][font=宋体],[/font][font=&]Br[/font][font=宋体],[/font][font=&]Cl[/font][font=宋体]时,可利用[/font][font=&]M+(M2+)+[/font][font=宋体]等同位素离子峰的比例来确认分子离子峰。[/font][/color][color=#000000][font=&](4)[/font][font=宋体]改变质谱仪的操作条件,提高分子离子峰的相对强度。[/font][/color][font=宋体][color=#0070c0]※采用化学电离源或降低电子轰击源电压可获得较强的[/color][/font][color=#0070c0][font=&]M+[/font][/color][font=宋体][color=#0070c0]峰。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]25.[/font][/color][font=宋体][color=red][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url][/color][/font][color=red][font=&]-[/font][/color][font=宋体][color=red]质谱联用仪[/color][/font][font=宋体][color=#000000]质谱:纯物质结构分析。[/color][/font][font=宋体][color=#000000]色谱:化合物分离,定性能力差。[/color][/font][color=#000000][font=宋体]色谱[/font][font=&]-[/font][font=宋体]质谱联用:共同优点,[/font][font=&][url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url][/font][font=宋体]、[/font][font=&][url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url][/font][font=宋体]、[/font][font=&]CE-MS[/font][font=宋体],色谱是质谱的进样及分离系统,质谱是色谱的检测器。[/font][/color][font=宋体][color=#000000]主要问题:接口技术,除去色谱中大量的流动相分子。[/color][/font][font=宋体][color=#000000]适用范围:适用于挥发度低、难气化、极性强、相对分子质量大及热稳定性差的样品。[/color][/font][font=&][color=#000000] [/color][/font][color=red][font=&]26.[/font][/color][font=宋体][color=red]无损检测定义[/color][/font][font=宋体][color=#000000]无损检测技术即非破坏性检测,就是在不破坏待测物质原来的状态、化学性质等前提下,为获取与待测物的品质有关的内容、性质或成分等物理、化学情报所采用的检查方法[/color][/font]

  • 如何选择质谱离子源

    [color=#000000]我们一起来看看离子源的分类、工作原理和优缺点。希望能对你选择离子源有所帮助哦~[/color] [color=#000000][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]质谱(GC/MS)离子源[/color] [color=#000000]对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]质谱(GS/MS)来说,主要有电子轰击电离源(EI)、化学电离源(CI)、场致电离源(FI)及场解吸电离源(FD)。我们一起来了解一下:[/color] [color=#000000]1、电子轰击离子源(EI)[/color] [color=#000000]EI源主要由电离室(离子盒)、灯丝、离子聚焦透镜和一对磁极组成。灯丝发射电子,经聚焦并在磁场作用下穿过离子余弦定理到达收集极。此时进入离子化室的样品分子在一定能量电子的作用下发生电离,离子被聚焦、加速聚焦成离子束进入质量分析器。[/color] [color=#000000]EI的优点:[/color] [color=#000000]非选择性电离,只要样品能气化都能够离子化;离子化效率高,灵敏度高;EI谱白日做提供丰富的结构信息,是化合物的“指纹谱”;有庞大的标准谱库供检索,谱图是在70eV条件下获得的,谱图重复性好,被称作经典的EI谱(是指谱图中同位素峰的比例能反映构成该离子的天然同位素丰度分布规律。[/color] [color=#000000]EI的缺点:[/color] [color=#000000]样品必须能气化,不适于难挥发,热不稳定的样品;有的化合物在EI方式下分子离子不稳定易碎裂,得不到分子量信息,谱图复杂解释有一定困难;EI方式只能检测正离子,不检测负离子。[/color] [color=#000000]2、化学电离源(CI)[/color] [color=#000000]CI和EI一样,灯丝发射的电子使中性分子电离,不同的是样品和反应试剂一起进入离子化室,反应所浓度高于样品浓度,首先电离的是反应试剂中性分子,由于压力较高,发生离子-分子反应,产生各种活性反应离子,这些离子与样品分子再发生离子-分子反应,实现样品分子电离。常用的反应气试剂有甲烷、异丁烷、氨气等.[/color] [color=#000000]CI的优点:[/color] [color=#000000]CI不仅是获得分子量信息的重要手段,还可通过控制反应,根据离子亲和力和电负性选择不同的反应试剂,用于不同化合物的选择性检测。[/color] [color=#000000]CI的缺点:[/color] [color=#000000]和EI一样要样品必须能气化,不适于难挥发,热不稳定的样品;而且CI谱图重现性不如EI,没有标准谱库。另外反应试剂易形成较高本低,影响检测限。反应试剂的压力需要摸索。[/color] [color=#000000]3、场致电离源/场解电离源(FI/FD)[/color] [color=#000000]由一个电极和一组聚焦透镜组成,电压高达几千伏的电极形成一强电场,气态的样品被导入离子区,在强电场作用下使气态分子的电子被拉出电离,形成的离子不会有过剩的能量,因此电子几乎不再进一步裂解FD源,将样品涂在长晶须的电极上,通过电流加热使样品吸解并在强电场作用下发生电离.[/color] [color=#000000]FI/FD的优点:[/color] [color=#000000]只有分子离子几乎没有碎片离子,而且没有反应试剂形成的本底,谱图比EI图更为简洁。适合于聚合物和同系物的分子量测定,尤其是烃类混合物中各类烃分子量测定。结合高分辨质谱能给出元素组成,从而获得分子式,对化合物鉴定非常有利。[/color] [color=#000000]FI/FD的缺点:[/color] [color=#000000]和EI、CI一样要样品必须能气化,不适于难挥发,热不稳定的样品。FD虽然可解决样品不易气化和热不稳定问题,但FD源的发射丝需要活化成本较高,重现性较差;灵敏度差,别外高电压易发生放电效应,操作难。同时四极杆和离子阱质谱是不能配置FI源。[/color] [img]https://file.jgvogel.cn/134/upload/resources/image/408045.png?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]质谱(LC/MS)离子源[/color] [color=#000000][url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]质谱联用仪,简称[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url](LC/MS或LC/MS/MS),常用离子源从大的分类来说,主要有大气压离子源(以下简称API)、基质辅助激光解析电离源(以下简称MALDI)和快原子轰击源(以下简称FAB)三种电离方式。下面咱们逐一来了解一下:[/color] [color=#000000]1、大气压离子源(API)[/color] [color=#000000](包括大气压电喷雾电离ESI、大气压化学电离APCI、大气压光电离APPI)[/color] [color=#000000]在ESI中,离子的形成是被测分子在带电液滴的不断收缩过程中喷射出来的,即离子化是在液态下完成的。经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]分离的样品溶液流入离子源。在N2流下汽化后进入强电场区域,强电场形成的库仑力使小液滴样品离子化,借助于逆流加热N2分子离子颗粒表面液体进一步蒸发,使分子离子相互排斥形成微小分子离子颗粒如图所示。这些离子可能是单电荷或多电荷,这取决于所得的带有正、负电荷的分子中酸性或碱性基团的体积和数量。多电荷离子峰的形成使质量范围为3000u的四极杆滤过器质谱仪也能检测到生物大分子的准确分子量。 [/color] [img]https://file.jgvogel.cn/134/upload/resources/image/408046.jpeg?x-oss-process=image/resize,w_700,h_700[/img] [size=14px][color=#000000]APCI技术与传统的化学电离接口不同,它并不采用诸如甲烷一类的反应气体,而是借助电晕放电启动一系列[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]反应以完成离子化过程,就其原理,它也可被称为放电电离或等离子电离。从[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]流出的样品溶液进入一具有雾化气套管的毛细管,被氮气流雾化,通过加热管时被气化。在加热管端进行电晕尖端放电,溶剂分子被电离,充当反应气,与样品气态分子碰撞,经过复杂的反应过程,样品分子生成准分子离子: [/color][/size] [img]https://file.jgvogel.cn/134/upload/resources/image/408047.png?x-oss-process=image/resize,w_700,h_700[/img] [color=#000000]上式表示一种正离子模式的化学电离过程。R代表溶剂,M代表样品分子,MH+为生成的准分子离子。如果溶剂比样品碱性弱,则生成MRH+,都属于准分子离子。准分子离子也能以负离子模式生成准分子离子,主要应用于具有强的电子亲和力的化合物。样品分子的准分子离子经筛选狭缝,进入质谱计。[/color] [color=#000000]APPI是一种被分析物在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]中吸收由真空-紫外发出的电子(10eV或10.6eV)后放出电子而离子化的过程,APPI使用较少。APPI是直接将待测物电离,比较适合非极性或弱极性化合物的分析。[/color] [color=#000000]ESI的优点:[/color] [color=#000000]可生成高度带电的离子而不发生碎裂,这样可将质荷比降低到各种不同类型的质量分析仪都能检测的程度。通过检测带电状态,可计算离子的真实分子量。同时,解析分子离子的同位素峰也可确定带电数和分子量,因同位素峰间的质荷比差与带电数相对应。最大优势是可方便地与分离技术联用。[/color] [color=#000000]ESI的缺点:[/color] [color=#000000]ESI的主要缺点是它只能接受非常小的液体流量(1-10μl/min),这一缺点已被1987年研制出来的离子喷雾接口(ISP)所克服(离子喷雾接口是一种借助气动的电喷雾接口,它可适应较高的流速)。[/color] [color=#000000]APCI&APPI的优点:[/color] [color=#000000]适用于低极性化合物离子化;宽度动态范围(4-5个数量级);质量敏感,可耐受高缓冲液浓度[/color] [color=#000000]APCI&APPI的缺点:[/color] [color=#000000]化合物热稳定性低(最高130-150℃),易挥发,需要掺杂剂[/color] [color=#000000]2、基质辅助激光解析电离源(MALDI)[/color] [color=#000000]在一个微小的区域内,在极短的时间间隔 (ns数量级 )中,激光对靶上待分析物质提供高强度脉冲式能量,使其在瞬间完成解吸和电离,且不产生热分解。MALDI是一种直接气化并离子化非挥发性样品的质谱离子化方式,但是其离子化机理尚不清楚,存在两种可能性:离子在固态时已形成,激光照射时只是简单的释出;或是由激光引发的离子 -分子反应产生的。[/color] [color=#000000]MALDI的优点:[/color] [color=#000000]可电离一些较难电离的样品 (特别是生物大分子 ) ,得到完整的电离产物,且无明显碎片;单电荷分子离子峰占多数,质谱图较简单,适合多组分样品的分析;适用范围广,能耐受一定程度的盐和缓冲液;对样品处理的要求不严格,甚至可以直接分析未处理过的生物样品,从而简化繁琐的制样过程;灵敏度高。[/color] [color=#000000]MALDI的缺点:[/color] [color=#000000]然而在有机小分子、烟草烟气化学成分定性定量分析方面则应用较少。[/color] [color=#000000]2、快原子轰击源(FAB)[/color] [color=#000000] 用加速的中性原子(快原子)撞击以甘油(底物)调和后涂在金属表面的有机化合物(“靶面”),导致这些有机化合物电离的方法称之为快原子轰击(FAB)。以电子轰击气压约为100Pa的中性气体(氩或氦),产生的惰性气体离子经聚焦和加速后撞击靶面导致分析物的离子化称作离子轰击作用。在此基础上将氩离子还原为中性原子,再以加速的中性原子撞击“靶面”即为快原子轰击。分析物经中性原子的撞击获取足够的动能以离子或中性分子的形式由靶面逸出,进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]。产生的离子一般是准分子离子。[/color] [color=#000000]FAB的优点:[/color] [color=#000000]对热不稳定、难以汽化的化合物的分析有独到的长处。尤其是它对肽类和蛋白质分析的有效性,在电喷雾接口出现前是其他接口无法相比的。FAB在肽类和蛋白质分析方面有大量的报道和成功的蛋白质分析实例,显示出在此领域内很强的实用性。[/color] [color=#000000]FAB的缺点:[/color] [color=#000000]只能在低流量下工作(5μl/min),严重限制了[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]柱的分离效果。流动相中含有的1%-5%的甘油会使离子源很快变脏。液体通过石英毛细管时容易造成堵塞。此外,由于它的特殊的制样方法,FAB的一个很大的问题是混合物样品中共存物质的干扰,它们常常会抑制分析物的离子化,造成灵敏度下降甚至根本没有信号产生[/color]

  • 实验室分析仪器--质谱仪放电型离子源及原理

    利用真空火花放电在很小的体积内积聚起的能量可使体积内的物质骤然完全蒸发和电离,从而获得具有表征性的离子流信息。 Dempsteri最早把这一现象应用到质谱仪器上实现了当时物理、化学家们用电子轰击型电离源无法解决的铂、钯、金、铱电离的遗留问题完成了当时已知元素同位素的全部测量。这一具有历史意义的成果对后来物理、化学、地质、核科学等学科的发展,起着基础性的促进作用。下面介绍两种典型的放电型离子源。[b]1、高频火花源[/b]高频火花离子源(high frequency spark ion source)是广泛使用的一种真空放电型离子源。由于其对所有的元素具有大致相同的电离效率,因此应用范围较广,可用来对多种形态的导体、半导体和绝缘体材料进行定量分析,是早期质谱仪测定高纯材料中微量杂质的重要方法之一。图6是高频火花放电电离示意。被分析物质以适当的方式制成样品电极,装配时和参比电极相距约0.1mm的间隙。利用加载在两个电极间的高频高压电场使其发生火花击穿来产生一定数量的正离子。[img=c20a2842770bee39eaa9af208c6f2d5.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643178279378020.jpg[/img]图6 高频火花放电电离示意图使用高频火花源的一个关键是制作电极,对不同形态、不同导电性能的样品有不同的电极制作方法。如果样品是块状导体,可以直接裁制成约1mm直径、10mm长的柱状(或条状)电极;如果是粉末样品,可以冲压成上述形状;液体样品要加充填物。对于非导体材料,则需要采用适当的方法,使电极有较好的导电性能。一种方法是在非导体样品粉末中掺入良导体材料,如石墨、金、银、铟粉,然后冲压成电极;另一种方法是在非导体表面喷镀导电层,或在样品下面衬进导体基片。火花源的缺点:操作技术复杂,造价昂贵,且离子能量发散较大。这些缺陷限制了它的进一步发展和应用[b]2、辉光放电源[/b]辉光放电源是另一种放电电离技术,辉光放电技术先于真空火花放电电离,但用于质谱仪器上却在火花放电电离技术之后。事实上,是由于当时火花源的成就使人们离开辉光放电,而在相隔50多年以后,又是火花源在使用过程中出现的缺陷,促使质谱工作者又重新思考辉光放电技术。正如人们所知,气体放电过程出现的辉光是等离子体的一种形式,等离子体是由几乎等浓度的正、负电荷加上大量中性粒子构成的混合体。出现辉光放电最简单的形式是在安放在低压气体中的阴、阳电极间施加一个电场,使电场中的部分载气(如氩气)电离,电离产生的“阴极射线”或“阳极射线”在残留的气体中朝着带相反极性的方向加速,轰击阳极或阴极,使位于极板上的样品物质气化,部分气化物质的原子在其后的放电过程中电离

  • 【资料】质谱分析的发展(共1讲)

    [B][center]质谱分析的发展 [/center][/B] 质谱分析本是一种物理方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家阿斯顿(F.W.Aston,1877—1945)于1919年制成的。出手不凡,阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。质谱仪开始主要是作为一种研究仪器使用的,这样用了20年后才被真正当作一种分析工具。它最初作为高度灵敏的仪器用于实验中,供设计者找寻十分可靠的结果。早期的研究者们忙着测定精确的原子量和同位素分布,不能积极地去探索这种仪器的新用途。由于同位素示踪物研究的出现,质谱仪对分析工作的用处就越发变得明显了。氮在植物中发生代谢作用的生物化学研究要求用15N作为一种示踪物。但它是一种稳定的同位素,不能通过密度测量来精确测定,所以质谱仪就成了必要的分析仪器。这种仪器在使用稳定的13C示踪物的研究中以及在基于稳定同位素鉴定的工作中也是很有用的。标准型的质谱仪到现在已经使用了大约45年。40年代期间,石油工业在烃混合物的分析中开始采用质谱仪。尽管这种质谱图在定量解释时存在着难以克服的计算麻烦,但在有了高速计算机后,这种仪器就能在工业方面获得重大的成功。(1)近20年来质谱技术随着新颖电离技术,质量分析技术,与各种分离手段的联用技术以及二维分析方法的发展,质谱已发展成为最广泛应用的分析手段之一。其最突出的技术进步有以下几个方面:新的解吸电离技术不断涌现,日趋成熟,可测分子量范围越来越高,并逐步适用于难挥发、热敏感物质的分析,例如海洋天然产物、微生物代谢产物,动植物二次代谢产物以及生物大分子的结构研究。最有发展前景的电离方法有:①等离子解吸采用252Cf的裂介碎片作为离子源,使多肽和蛋白质等生物大分子不必衍生化而直接电离进行质量分析。它与飞行时间质谱相配合,已成功地用于许多合成多肽的质谱分析,并已在一些实验室中作为常规分析方法来鉴定多肽和蛋白质。目前它的可分析的质量极限大约是50000D。②快原子轰击,把样品分子放入低挥发性液体中,用高速中性原子来进行轰击,可使低挥发性的,热敏感的分子电离,得到质子化或碱金属离子化的分子离子。由于很容易在磁质谱或四极杆质谱上安装使用,因此得到广泛应用,分子量很容易达到3000—4000。如果与带有后加速的多次反射阵列检测器的高性能磁质谱配合使用,可测分子量可达到10000amn以上,最高记录可达25000amn。③激光解吸,利用CO2激光(10.6μm),Nd/YAG激光(1.06μm)的快速加热作用使难挥发的分子解吸电离,与飞行时间质谱或离子回旋共振质谱相配合成功地分析了一系列蛋白质和酶的复合物,并创造了蛋白质分子质量分析的最高记录(Jack Bean Urease Mr~27万)。④电喷雾(electro spray,electrostatic spray,ion spray)把分析样品通过常压电离源,使分子多重质子化而电离。由于生成多重质子化的分子离子可缩小质荷比,因此一个分子量为数万的生物大分子,如果带上几十个,上百个质子,质荷比可降低到2000以下,可以用普通的四极杆质谱仪分析,其次由于得到一组质荷比连续变化的分子离子峰,通过对这些多电荷分子离子峰的质量计算可以得到高度准确的平均分子量。第三是这种多重质子化的分子离子峰可进一步诱导碰撞活化,进行串联质谱分析。第四是这种电离技术的样品制备要求极低,溶于生物体液的样品分子或HPLC,CZE的流出液都可直接引入常压电离源进行联机检测。(2)各种联用技术。色谱、电泳等分离方法与质谱分析相结合为复杂混合物的在线分离分析提供了有力的手段,GC—MS联用技术的应用已得到充分的证明。近年来把液相色谱、毛细管电泳等高效分离手段与质谱连接已在分析强极性、低挥发性样品的混合物方面也取得了进步。主要的接口技术有:①粒子束(particle beam),它能把液相色谱与质谱连接起来,其优点是得到的质谱与普通的EIMS谱十分接近,因此可以用标准谱库的数据去检索。缺点是要耗用大量的氦气,并且只能分析中等极性和中等分子量(2000以下)的分子。②热喷雾(thermospray),是目前与HPLC连接最广泛使用的接口技术。它是一种软电离技术,可测的分子量上限大约为8000amn,缺点是流速需要0.12ml/min,对于质谱分析来说仍嫌太大。③连续流快原子轰击(CF—FAB),利用适当孔径的石英毛细管把液相色谱的流出液直接引入FAB电离源,进行连续的FAB—MS分析。由于它的流速小于5μl/min,与质谱仪更为匹配,因此具有更大的应用潜力。④电喷雾。由于采用常压电离源,因此很容易把微细径柱液相色谱,甚至普通液相色谱(只要有适当的分流装置)通过它与质谱连接起来。最近藉此把毛细管区带电泳与质谱连接起来也取得了成功,实现了高灵敏度(10-15mol),高分离效力(25万理论塔板数)的联用分析。这是一种极有希望,并很有发展前途的联用技术。(3)串联质谱等二维质谱分析方法。如果把二台质谱仪串联起来,把第一台用作分离装置,第二台用作分析装置,这样不仅能把混合物的分离和分析集积在一个系统中完成,而且由于把电离过程和断裂过程分离开来,从而提供多种多样的扫描方式发展二维质谱分析方法来得到特定的结构信息。本法使样品的预处理减少到最低限度,而且可以抑制干扰,特别化学噪音,从而大大提高检测极限。串联质谱技术对于利用上述各种解吸电离技术分析难挥发、热敏感的生物分子也具有重要的意义。首先解吸电离技术一般都使用底物,因此造成强的化学噪音,用串联质谱可以避免底物分子产生的干扰,大大降低背景噪音,其次解吸电离技术一般都是软电离技术,它们的质谱主要显示分子离子峰,缺少分子断裂产生的碎片信息。如果采用串联质谱技术,可使分子离子通过与反应气体的碰撞来产生断裂,因此能提供更多的结构信息。近年来把质谱分析过程中的电离和碰撞断裂过程分离开来的二维测定方法发展很快,主要的仪器方法有以下几种。①串联质谱法(tandem MS),常见的形式有串联(多级)四极杆质谱,四极杆和磁质谱混合式(hybride)串联质谱和采用多个扇形磁铁的串联磁质谱。②傅里叶变换质谱(FT—MS),又叫离子回旋共振谱,它利用电离生成的离子在磁场中回旋共振,通过傅里叶变换得到这些离子的质量谱,这种谱仪过去由于电离造成真空降低与回旋共振要求高真空条件相矛盾,性能不能过关。近年来由于分离电离源技术日趋成熟,这种分析方法得到较大发展,它的优点是很容易做到多级串联质谱分析,目前可分析质量范围已达5万左右,分辨力也可达1万。③整分子气化和多光子电离技术(LEIM—MUPI),它是在微激光解吸电离技术的发展中最近出现的一种新方法。它把解吸和电离二个环节在时间和空间上分离开来,分别用二个激光器进行解吸和电离。使用红外激光器来实现整分子气化,使用可调谐的紫外激光器对电离过程实行宽范围的能量控制,从而得到从电离(只显示分子离子)到各种程度不同的硬电离质谱,并成功地用于生物大分子的序列分析。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制