当前位置: 仪器信息网 > 行业主题 > >

质谱片段确定分子量

仪器信息网质谱片段确定分子量专题为您提供2024年最新质谱片段确定分子量价格报价、厂家品牌的相关信息, 包括质谱片段确定分子量参数、型号等,不管是国产,还是进口品牌的质谱片段确定分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱片段确定分子量相关的耗材配件、试剂标物,还有质谱片段确定分子量相关的最新资讯、资料,以及质谱片段确定分子量相关的解决方案。

质谱片段确定分子量相关的资讯

  • 赛默飞:DMT+Orbitrap质谱 实现超大分子量的蛋白直接检测
    质谱仪器作为一种质量检测仪器,被应用到各个学科领域中,尤其是在化学化工、环境能源、医药、生命及材料科学等领域发挥着重要作用。在常规质谱分析中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场或磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来。而在这种原理下,质谱仪测量的是离子的质荷比(m/z),而不是质量本身。利用质谱仪器对样品的分析过程中,样品的雾化过程十分关键。目前,常用的电喷雾技术原理是由John Fenn提出的电喷雾电离(ESI)技术,这一理论也获得了2002年的诺贝尔化学奖。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以使用软件进行解卷积得到m分布。这种分析手段对于分析分子量较小(分子量在5万以下)、简单纯净的蛋白样品还是很有效的。然而,在实际应用中对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化,很宽的质量分布(可达上千Da)使得不同价态的峰群连接在一起。如图1所示,这种缺少电荷状态以及同位素峰的“死亡驼峰”,我们很难通过解卷积的形式进行分析。并且,对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用解卷积软件来获得分子量的分布信息。因此,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。在这种情况下,电荷检测质谱(CDMS)技术便成为了我们的“救命稻草”。电荷检测质谱(CDMS)通过同时测量单个离子的质荷比和电荷数,进而计算获得离子质量m。因此,相较于其他类型质谱,CDMS技术的关键是如何准确地测量单个离子的电荷。目前,电荷检测质谱技术还没有现成的商品化仪器,只有能够自己开发质谱仪器硬件,或自己改编FTMS软件的专家才能进行这样的实验。而在今年的ASMS会议上,赛默飞公司重磅推出了直接分析质谱技术(DMT),并将其结合在了Orbitrap上,这使得超大分子量的复杂蛋白的直接质谱检测成为了可能。直接分析质谱技术其原理是:在Orbitrap中检测来自离子沿中心电极的中心轴旋转的轴向频率,进而确定离子的m/z信息;与此同时,来自外电极上的感应电荷振幅也会被检测,从而确定离子的电荷z的信息。直接分析质谱技术模式为 Orbitrap 质量分析仪增加了电荷检测功能,能够同时测量数百个单个离子的质荷比 (m/z) 和电荷数 (z)。这使得 Orbitrap 质量分析仪可以直接计算分析物的质量,而不需要根据 m/z 去卷积。根据 m/z 去卷积的方法依赖于测量结果中已分辨的电荷状态和/或同位素分辨的信号。直接分析质谱技术模式提高了分辨率,并且扩展了动态范围,提高了可获得的质量测量结果的上限,同时由于单个离子测量的灵敏度较高,可以从浓度明显较低的样品中采集到更有价值的数据。
  • 基质升华重结晶法进行低分子量代谢产物质谱成像分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 自质谱成像技术于二十世纪80年代前半期诞生以来,至今为止不断持续着技术改革,并被广泛运用于以新药研究和代谢产物研究领域为首的众多领域中。如今仍以提升灵敏度和空间分辨率、重现性等为目标,不断进行着技术改良。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 同时,也开发出多种离子化所需的基质,如何从这些基质中选出适用于检测目标化合物的基质成为重点。 span style=" text-indent: 2em " 除基质选择外,其涂布方法也会对分析结果造成很大影响,因此,现有多个应用于检测目标化合物的基质涂布方法正在研究中。大致可分为喷雾法和升华法两种方法,两种涂布方法均有自己的优缺点,现阶段经常会同时使用两种方法。本公司开发了能控制基质膜厚的基质升华涂布装置iMLayer(图1),对涂布方法进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 我们针对以往难以重结晶的基质9AA,开发了升华后重结晶的方法,并在此进行报告。此外,还将对小鼠肝脏中低分子量代谢产物的MS成像结果示例进行介绍。 /p p style=" text-align: right text-indent: 2em line-height: 1.75em " ——R.Yamaguchi, E.Matsuo, T.Yamamoto /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 1、不同基质涂布方法对MS成像分析造成的影响 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基质涂布方法对基质的结晶形成和MS成像分析造成的影响如表1所示。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 与升华法相比,通过喷雾法生成的基质的结晶较粗,并可能因样本中所含成分的渗漏导致空间分辨率降低。均匀性较差,基质溶液干燥后结晶时会依赖湿度和温度等周围环境,因此重现性也会变差。另一方面,样本中所含化合物的提取效果较好,可能提高检测灵敏度。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相比之下,升华法具有结晶较细、难以渗漏、均匀性好、重现性良好的特点,是高空间分辨率成像所不可或缺的方法。但相对的,其样本中成分的提取效果不佳,在灵敏度上可能存在不利的一面。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 实际的测量灵敏度依赖于检测化合物的结构。例如,在分析磷脂质等时,采用升华法便具有足够的灵敏度,诸如胺碘酮等药物可以足够的灵敏度完成MS成像(参考应用文集B61)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 另一方面,在检测小鼠肝脏等器官中含有的ADP 和ATP 等低分子量代谢产物时,通过升华法进行基质涂布,由于没有任何提取效果,无法得到足够的灵敏度。因此,绝大多数例子都是通过喷雾法涂布9AA来实施MS成像,但其空间分辨率相对较低。于是,我们对将DHB和CHCA上使用的升华后重结晶法涂布9AA所需的条件进行了研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0178e2f4-5edd-42fd-ab37-3b27f1e3173b.jpg" title=" 微信截图_20200619165723.png" alt=" 微信截图_20200619165723.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1 基质升华装置iMLayer /p p style=" text-align: center " 表1 基质涂布方法对结晶形成和MS成像分析造成的影响 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/962223c2-c637-4894-9498-e953c6d6b688.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 2、基质升华后重结晶法 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 对9AA进行升华后重结晶。如图2所示,将含有5%甲醇的滤纸和升华处理后的样本放入相同容器中,于37℃的恒温环境下静置5分钟。此时,滤纸中的5%甲醇蒸发,渗入样本中,在提取样本中化合物的同时会使少许9AA结晶溶解。之后将其真空干燥器内干燥10分钟,使溶解的9AA进行重结晶。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b1b946ad-81b9-4670-bd42-0b2b1b03f739.jpg" title=" 33333333333333.png" alt=" 33333333333333.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 图2 9AA升华后重结晶的方法 /span /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8767d240-e8eb-44fc-8470-cff5822571a1.jpg" title=" 444444444.png" alt=" 444444444.png" / /p p style=" text-align: center " 图3 成像质谱显微镜iMScopeTRIO /p p style=" text-align: center " 表2 iMScope i TRIO /i 测量参数 /p p style=" text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/69636f83-0667-4f8a-a02b-4d1c757bc977.jpg" title=" 55555555555.png" alt=" 55555555555.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 3、使用升华后重结晶法提高MS成像灵敏度 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对9AA升华后重结晶的小鼠肝脏样本,使用成像质谱显微镜iMScope& nbsp i TRIO /i (图3),根据表2的参数进行质谱成像分析。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对比升华法进行基质涂布样本与升华后重结晶样本的分析结果、比较其分析区域的平均质谱图(图4)。仅采用升华法时、能强烈检测到基质9AA的峰(m/z 385.14)(图4▼),基本上检测不到低分子量代谢产物的峰,但通过实施升华后重结晶,使来自低分子量代谢产物的峰强度增加(图4▼等),确认其提升检测灵敏度的效果。此外,其他多个低分子量代谢产物的MS图像,通过升华后重结晶的处理,能够获得更为清晰的MS图像(图5)。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 针对难以重结晶的9AA开发的升华后重结晶方法,充分利用升华法的优势成功实现了无损且高灵敏度的MS成像分析。 /p p span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0bbf3127-6052-4b6a-af7e-a0c6fc57f542.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 质谱图(升华法和升华后重结晶法的比较) /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/de208828-8702-40d6-8202-037e64b3f190.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center " 图5 MS图像(升华法和升华后重结晶法的比较) /p p br/ /p
  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • NanoTemper助力药企研究STING抑制剂片段筛选
    STING抑制剂片段筛选案例干扰素基因刺激因子(Stimulator of interferon genes, STING)在天然免疫中发挥重要作用,当细胞被病原体(如病毒)感染时,STING可以诱导I型干扰素和促炎性细胞因子的产生,是靶向治疗自身免疫疾病和癌症的潜在靶标蛋白。近年STING相关研究火爆,管线数量激增。目前全球范围内在研的STING靶向药物超过50种。今天给大家介绍的STING抑制剂片段筛选案例是由NanoTemper和药明康德旗下的Crelux公司合作完成的。研究人员生产纯化了带有His-tag的STING蛋白,随后使用Prometheus蛋白稳定性分析仪进行缓冲液优化并使用环二核苷酸cGAMP作为阳性对照进行Thermal shift assay,快速验证了蛋白的结合活性。案例回顾:差示扫描荧光法表征蛋白配体互作,不加染料的那种接下来研究人员使用Dianthus完成了片段化合物库单点筛选及亲和力排序。在使用Dianthus进行筛选时,其中一个分子需要带有荧光。本实验中, 研究人员使用His-tag荧光标记试剂盒对STING蛋白进行了特异性标记,片段终浓度为500μM,结合缓冲液为50 mM HEPES, pH 7.4, 150 mM NaCl, 3 mM DTT, 0.005% TWEEN® 20, 4% DMSO。 STING片段筛选流程下图为单点筛选结果,2213个片段加上阳性及DMSO对照(均重复一次)总共采集了5376个数据点,即14块384孔板。消耗590μg STING蛋白,上机检测时间约8h(Dianthus 33分钟即可完成一块384孔板检测,↓ 文末查看Dianthus上机演示)。紫色线框中的黄色数据点为阳性对照cGAMP,213个阳性化合物响应值CV仅0.25%,检测重复性非常好。最后将单点筛选结果中的162个hits(上图蓝色数据点)进行12个浓度点的梯度稀释检测亲和力。消耗STING蛋白190μg,上机检测时间约3小时。苗头化合物验证基于片段的药物发现 (FBDD) 是药物研发的主流方法之一。但片段分子量低,且与蛋白靶标亲和力低,通常在μM-mM范围,因此对筛选技术的灵敏度有较高的要求。Dianthus基于光谱位移技术(Spectral shift)检测,不依赖于分子量,可检测pM-mM的亲和力。此外,Dianthus检测一个kd仅需1min,单孔上样体积20μl,是您亲和力筛选项目的强大工具!Dianthus产品介绍:全新Dianthus携光谱位移技术横空出世,1分钟击破亲和力筛选难点!wx搜索NanoTemper视频号,查看Dianthus上机操作演示吧!
  • 国家市场监督管理总局关于对《蛋白质分子量测定 液相色谱-飞行时间质谱联用法》等225项拟立项国家标准项目公开征求意见的通知
    各有关单位:经研究,国家标准委决定对《焊缝无损检测 磁粉检测 验收等级》等225项拟立项国家标准项目公开征求意见,征求意见截止时间为2023年7月5日。请登录请登录标准技术司网站征求意见公示网页http://std.samr.gov.cn/gb/gbSuggestionPlan?bId=10001282,查询项目信息和反馈意见建议。2023年6月5日相关标准如下:#项目中文名称制修订截止日期1蛋白质分子量测定 液相色谱-飞行时间质谱联用法制定2023-07-052肝素酶活性的测定制定2023-07-053硫酸软骨素酶活性的测定制定2023-07-054葡萄糖氧化酶活性检测方法制定2023-07-055包装袋 试验条件 第1部分:纸袋制定2023-07-056产品几何技术规范(GPS) 坐标测量机(CMM)确定测量不确定度的技术第3部分:应用已校准工件或标准件修订2023-07-057产品召回 生产者安全管理韧性评价制定2023-07-058电梯、自动扶梯和自动人行道的电气要求 信息传输与控制安全制定2023-07-059电梯安全要求 第2部分:满足电梯基本安全要求的安全参数修订2023-07-0510工业废硫酸的处理处置规范修订2023-07-0511工作场所环境用气体探测器 第1部分:有毒气体探测器性能要求制定2023-07-0512工作场所环境用气体探测器 第2部分:有毒气体探测器的选型、安装、使用和维护制定2023-07-0513合格评定 管理体系审核认证机构要求 第 14 部分:文件管理体系审核与认证能力要求制定2023-07-0514化学品 快速雄激素干扰活性报告(READR)试验制定2023-07-0515化学品 水-沉积物系统中穗状狐尾藻毒性试验制定2023-07-0516化学品 液态粪肥中的厌氧转化试验制定2023-07-0517化学品 鱼类细胞系急性毒性:RTgill-W1细胞系试验制定2023-07-0518环境试验 第2部分:试验方法 试验:温度/湿度/静负载综合制定2023-07-0519家用燃气快速热水器 通用技术规范制定2023-07-0520腈水合酶纯度和活性的测定制定2023-07-0521跨境电子商务 海外仓服务质量评价指标制定2023-07-0522实验动物 动物模型鉴定与评价技术规范制定2023-07-0523塑料 丙烯腈-丁二烯-苯乙烯(ABS) 模塑和挤出材料 第1部分:命名系统和分类基础修订2023-07-0524塑料 聚醚醚酮(PEEK)模塑和挤出材料 第1部分:命名系统和分类基础制定2023-07-0525搪玻璃层试验方法 第6部分:高电压试验修订2023-07-0526无损检测仪器 超声检测设备的性能与检验 第1部分:仪器修订2023-07-0527无损检测仪器 超声检测设备的性能与检验 第2部分:探头修订2023-07-0528无损检测仪器 超声检测设备的性能与检验 第3部分:组合设备修订2023-07-0529项目、项目群和项目组合管理 项目管理指南修订2023-07-0530项目成本管理制定2023-07-0531消费品缺陷工程分析 危险温度点测量方法制定2023-07-0532消费品缺陷线索采集与评估规范制定2023-07-0533医疗器械 制造商的上市后监督制定2023-07-0534邮政业术语修订2023-07-0535真空技术 真空计 皮拉尼真空计的规范、校准和测量不确定度制定2023-07-05
  • 质谱成像技术概念及质谱成像方法介绍
    p   现代生物学研究已经不再停留在仅从组织中识别一种特殊的化学成分,或者蛋白成分上了,我们需要精确的了解这些物质是如何分布,如何构成的,解答这些问题需要更进一步的实验技术,比如免疫组化或免疫荧光检测方法,但是这些技术需要特殊的抗体,而且效率低,偏差大。 /p p   因此研究人员将目光转向了质谱技术上,以质谱为基础的成像方法不局限于特异的一种或者几种蛋白质分子,可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,不需要对待测物进行标记,分析物可以其最初的形态被检测,同时可对这些蛋白质分子含量进行相对定量,适用于研究生物分子的反应。 /p p   质谱成像(Imaging Mass Spectrometry,IMS)这种最新原位分析技术主要是利用质谱直接扫描生物样品,分析分子在细胞或组织中的 “结构、空间与时间分布”信息。其基本流程(以质谱分析生物组织标记物为例)见下: /p p style=" text-align: center " img title=" 9a504fc2d56285350618456392ef76c6a6ef63fc.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/640b0273-3ad1-4c6a-b6bf-22df33199709.jpg" / /p p   简单而言,质谱成像技术就是借助于质谱的方法,再配套上专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。但是随着这项技术的不断发展,也陆续出现了许多针对各种问题的新技术。 /p p   最早的质谱成像技术是基质辅助激光解吸电离(MALDI,matrix assisted laser desorption ionization)质谱分子成像技术,由范德堡大学(VanderbiltUniversity)的Richard Caprioli等在1997年提出,他们通过将MALDI质谱离子扫描技术与专业图像处理软件结合,直接分析生物组织切片,产生任意指定质荷比(m/z)化合物的二维离子密度图,对组织中化合物的组成、相对丰度及分布情况进行高通量、全面、快速的分析,可通过所获得的潜在的生物标志物的空间分布以及目标组织中候选药物的分布信息,来进行生物标志物的发现和化合物的监控。 /p p   正如数字图像包括三个通道:红、绿、蓝一样(单个亮度定义了每个像素的颜色),质谱成像也包含了数以千计的通道,每一个对应于一个特殊的光谱峰值,“你可以通过质谱方法从这些像素中获得任何信号,然后调整图像中所需分子像素的相对亮度,最后得到一张分子特异性的成像图。” /p p   这种方法可用于小分子代谢物、药物化合物、脂质和蛋白,而且质谱成像能相对快速的利用许多分子通道,完全无需特殊抗体。下面列出五种先进的质谱成像方法。 /p p    strong I. 挑战高分子量蛋白——MALDI质谱分子成像技术 /strong /p p   在对组织或生物体进行成像,分析小分子构成的时候,有一个“拦路虎”总是阻碍实验的进程,那就是多肽,这些多肽体积十分大,要想对它们进行分子成像几乎是不可能的,比如想要研究肿瘤边缘的分子微环境,如果直接成像是不可能获得清晰图像的。 /p p   来自范德堡大学的质谱方法专家Richard Caprioli博士因此发明了基质辅助激光解吸电离(MALDI)质谱分子成像技术,这项技术不局限于特异的一种或者几种蛋白质分子,它可在组织切片中找到每一种蛋白质分子,并提供这些蛋白质分子在组织中的空间分布的精确信息,而事先无需知道所检测蛋白的信息,同时可对这些蛋白质分子含量进行相对定量。 /p p   MALDI 质谱分子成像是在专门的质谱成像软件控制下,使用一台通过测定质荷比来分析生物分子的标准分子量的质谱仪来完成的。被用来研究的组织首先经过冰冻切片来获得极薄的组织片,接着用基质封闭组织切片并将切片置入质谱仪的靶上。通过计算机屏幕观察样品,利用MALDI 系统的质谱成像软件,选择拟成像部分,首先定义图像的尺寸,根据尺寸大小将图像均分为若干点组成的二维点阵,来确定激光点轰击的间距。激光束通过这个光栅图案照射到靶盘上的组织切片,软件控制开始采集质谱数据,在质谱仪中,激光束对组织切片进行连续的扫描,组织样品在激光束的激发下释放出的分子被质谱仪所鉴定从而获得样品上每个点的质荷比(m/ z)信息,然后将各个点的分子量信息转化为照片上的像素点。在每个点上,所有质谱数据经平均化处理获得一幅代表该区域内化合物分布情况的完整质谱图。仪器逐步采集组织切片的质谱数据,最后得到具有空间信息的整套组织切片的质谱数据。这样就可以完成对组织样品的“分子成像”。设定m/ z 的范围,即可确定该组织区域所含生物分子的种类,并选定峰高或者峰面积来代表生物分子的相对丰度。图像中的彩色斑点代表化合物的定位,每个斑点颜色的深浅与激光在每一个点或像素上检测到的信号大小相关。 /p p   通过增加单位面积上轰击的激光点数量和像素,研究人员可以获得更多的样品信息,例如采用4000 像素比200 像素能够得到更好的样品图像。质谱分子成像技术是一种半定量或相对定量技术,图像上颜色深的部分表明有更多的生物分子聚集在组织的这个部分。然而,不可能据此确定生物分子在组织的不同部位的实际绝对含量。选择组织图像上的任意一个斑点,图像都能够给出一个质谱谱图或者离子谱图,代表在组织的该部位存在这种生物分子,然后与做指纹图谱类似,像做指纹图谱那样,将样品的离子谱图与已知标准品进行对照,分析差异,从而进行生物标志物的发现和药物作用的监控。 /p p    strong Ⅱ. 无需样品处理 实时成像——电喷雾电离技术 /strong /p p   一般质谱成像方法由于体积庞大,重量重,需要冗长的样品准备阶段,因此并不适用于即时成像(bedside applications),比如说要帮助外科医生进行实时的肿瘤边界成像监控,那么就要寻找新的方法了。 /p p   一种称为电喷雾电离技术(desorption electrospray ionization,DESI)的MS成像技术解决了这个问题。DESI技术于2004年首次提出,由于这一方法具有样品无需前处理就可以在常压条件下,从各种载物表面直接分析固相或凝固相样品等优势而得到了迅速的发展。 /p p   这种方法的原理是带电液滴蒸发,液滴变小,液滴表面相斥的静电荷密度增大。当液滴蒸发到某一程度,液滴表面的库仑斥力使液滴爆炸。产生的小带电液滴继续此过程。随着液滴的水分子逐渐蒸发,就可获得自由徘徊的质子化和去质子化的蛋白分子DESI与另外一种离子源:SIMS(二次离子质谱)有些相似,只是前者能在大气压下游离化,发明这项技术的普渡大学Cooks博士认为DESI方法其实就是一种抽取方法,即利用快速带电可溶微粒(比如水或者乙腈acetonitrile)进行离子化,然后冲击样品,获得分析物的方法。 /p p   DESI系列产品最大的优势就在于无需样品处理,一般质谱和高效液相色谱分析,样品必须经过特殊的分离流程才能够进行分析检测,使得一次样品检测常常需要约一个小时,而DESI系列产品可将固体样品直接送入质谱,溶液被喷射到检测表面,促使样品离子均匀分布。采用这一手段的质谱分离过程,只需3分钟左右即可完成。 /p p    strong Ⅲ. 活体成像——APIR MALDI/LAESI技术 /strong /p p   了解细胞的内部成分是理解健康细胞不同于病变细胞的关键。但是直到目前为止,唯一的方法是观察单个细胞的内部,然后将其从动物或植物中移除,或者改变细胞的生存环境。但是这么做的话,会使细胞发生变化。科学家还不是很清楚一个细胞在病变时与健康细胞的差别,或者当它们从一个环境移到另一个环境中产生的变化。 /p p   来自华盛顿大学Akos Vertes教授希望能从另外一个方面来进行活细胞分析,在他的一项关于活叶样品中初级和次级代谢产物分布的研究中,研究人员发现叶片中积累基质很厚,常导致光谱末端低分子量部分模糊,而且基质辅助激光解析电离(MALDI)质谱分析需要在真空中进行,但活体样本在真空中无法存活。 /p p   实际上,MALDI质谱分析的原理是将分析物分散在基质分子中并形成晶体,当用激光照射晶体时,由于基质分子经辐射所吸收的能量,导致能量蓄积并迅速产热,从而使基质晶体升华,致使基质和分析物膨胀并进入气相。而生物样品也可以直接吸收能量的,比如2.94mm波长的光能激活水中氢氧键。 /p p   因此Vertes等人想到复合两种技术来解决这一问题。首先他们利用大气压红外线(an atmospheric pressure infrared,APIR)MALDI激光直接激活组织中的水分,使样品气化,就像是组织表面发生了细胞大小的核爆炸,从而获得了离子化微粒,进入质谱中进行分析。但是并不是所有的气化微粒都带电,大部分其实是不带电的,会被APIR MALDI遗漏。 /p p   为了捕捉这些中性粒子,Vertes等人采用了第二种方法:LAESI (laser ablation electrospray ionization,激光烧蚀电喷雾电离),这种方法能捕捉大量带电微滴的微粒,然后重新电离化。通过对整个样品进行处理,复合这两种方法,就能覆盖更多的分子,分析质量更高。 /p p   与一般质谱成像过程不同,Verte的方法还在成像中增加了高度,从而实现了3D代谢物成像。这项技术的分辨率是直径10mm,高度30mm,这与生物天然的立体像素相吻合,这样科学家们就可以获得天然构像。 /p p    strong Ⅳ. 3D成像——二次离子质谱技术 /strong /p p   质谱成像技术能将基质辅助激光解吸电离质谱的离子扫描与图像重建技术结合,直接分析生物组织切片,产生任意质荷比(m/z)化合物的二维或三维分布图。其中三维成像图是由获得的质谱数据,通过质谱数据分析处理软件自动标峰,并生成该切片的全部峰值列表文件,然后成像软件读取峰值列表文件,给出每个质荷比在全部质谱图中的命中次数,再根据峰值列表文件对应的点阵坐标绘出该峰的分布图。 /p p   但是一般的质谱成像技术不能对一些携带大分子碎片的化学成分进行成像,来自宾夕法尼亚州州立大学的Nicholas Winograd教授改进了一种称为二次离子质谱(SIMS,secondary ion mass spectrometry)的方法,可以对样品进行完整扫描,三维成像。 /p p   SIMS早在用于生物学研究之前就已经应用广泛了,比如分析集成电路(integrated circuits)中的化学成分,这种质谱技术是表面分析的有利工具,能检测出微小区域内的微量成分,具有能进行杂质深度剖析和各种元素在微区范围内同位素丰度比的测量能力。 /p p   这种技术具有几个优点:速度快(-10,000 spectra per second),亚细胞构造分辨率(-100 nm),以及不需要基质。但是另外一方面,不同于MALDI方法,SIMS方面不是一种“软”技术,这种方法只能对小分子成像,因此常常需要进行粉碎。 /p p   Winograd教授改进了这一方法,他利用了一种新型SIMS光束(carbon-60 磁性球),这种新光束比传统的SIMS光束对物体的化学损伤更小。C60同时撞击样品表面,类似于“一阵爆炸”,这样重复的轰击使得研究人员能深入样品,进行三维分子成像,Winograd教授称这个过程是“分子深度成像”(molecular depth profiling)。 /p p   C60的能量与其它的离子束相当,却不到达样品表面以下,这样样品可以连续地被逐层剥离,研究人员就可以得到纵面图形,最终获得三维的分子影像。Winograd教授等人用含有肽的糖溶液将硅的薄片包裹起来并进行SIMS实验,随着薄膜逐渐被C60剥蚀,可以获得糖和肽的稳态信号。最终,薄膜完全剥离后就可以获得硅的信号。如果用其它的射线或原子离子代替C60 ,粒子束会快速穿过肽膜而无法提供有关生物分子的信息。因此这种方法具有良好的空间分辨率,能够获得巨噬细胞和星型细胞的细胞特征和分析物的分布情况。 /p p   这里还要说到一点,SIMS和上一技术(APIR MALDI/LAESI技术)都可以对三维成像,但两者也有差别,SIMS方法中,采用高能离子轰击样品,逐出分析物离子(二级离子),离子再进入质量分析器。MALDI方法则用激光辐射样品使之离子化,另外SIMS探针可以探测到100nm的深度,能提供纳米级的分辨率,而MALDI可以探测更深,但空间分辨率较低。 /p p   strong  Ⅴ. 高灵敏度 高分辨率——纳米结构启动质谱技术 /strong /p p   质谱在检测生物分子方面有很大潜力,但现有方法仍存在一些缺陷,灵敏度不够高和需要基质分子促使分析对象发生离子化就是其中之二。比如说,需要溶解或者固定在基质上的方法检测代谢物,较易错判,因为这些代谢物与那些基质常常看上去都一样。另外基于固定物基质的系统也不允许研究人员精确的判断出样品中某一分子到底来自于哪儿。 /p p   来自斯克利普斯研究院的Gary Siuzdak博士发明了一种称为纳米结构启动质谱(nanostructure-initiator mass spectrometry,NIMS)的新技术,这种技术能以极高的灵敏度分析非常小的区域,从而允许对肽阵列、血液、尿和单个细胞进行分析,而且还能用于组织成像。 /p p   NIMS利用了一种特制的表面,这种多孔硅表面上聚集了一种含氟聚合物,这些分子在受到激光或离子束照射时会猛烈爆发,这种爆发释放出离子化的分析物分子,它们被吸收到表面上,使其能够被检测到。这种方法利用激光或离子束来从纳米尺度的小囊中气化材料,从而克服了一般质谱方法缺少所需的灵敏度和需要基质分子促使分析对象发生离子化的缺陷。 /p p   通过这种方法可以分析很多类型的小分子,比如脂质,糖类,以及类固醇,虽然每一种分析材料需要的含氟聚合物有少许差别,但是这是一种一步法的方法,比MALDI简单多了——后者需要固定组织,并添加基质。 /p p   由于含氟聚合物不能很好的离子化,因此会发生轻微的光谱干扰,而且由于离子化过程是“软性”的——就像MALDI,所以NIMS产生的生物分子是整块离子化,而不是片段离子化。不过这种技术对于完整蛋白的检测灵敏度没有MALDI高。 /p p & nbsp /p p & nbsp /p
  • Orbitrap高分辨质谱助力mRNA疫苗表征
    今日看点mRNA疫苗在新冠疫情中得到了广泛关注,Moderna及Pfizer/BioNTech的mRNA疫苗获得FDA的紧急使用授权,掀起新一轮的mRNA疫苗研发热潮。与依靠抗原或减毒病毒刺激免疫系统产生免疫反应的传统疫苗不同,mRNA疫苗本身并不含有抗原,而是以编码抗原的mRNA为主要成分。这些编码抗原的mRNA能在细胞内被翻译为抗原蛋白,从而引发免疫反应。相比传统疫苗,mRNA疫苗成本低、研发灵活性高、生产效率高,且具有相对较高的安全性,应用前景广阔[1]。对于此类新型疫苗,需严格的质量控制以确保产品的安全性尤为重要。其质量属性包括稳定性、完整性、纯度和同质性等。如图1所示,从mRNA构造、体外翻译及转染,到体内免疫,色谱、质谱、qPCR、电泳等多种表征手段被用于质量评估[2]。其中高分辨质谱技术对于mRNA的深入表征(加帽效率、修饰、测序等)、杂质分析(siRNA、DNA、宿主残留蛋白)有着重要应用。图1:mRNA疫苗的质量控制和基于细胞的功能评估的工具(点击查看大图)01mRNA的加帽反应效率评估mRNA前体的加工包括了在其5' 端加上7-甲基鸟苷(m7G),称之为“帽”。这种加帽步骤可增加mRNA稳定性,使其避免被核糖核酸酶降解。加帽步骤会产生多种结构(如图2a),最常见的被称为“Cap0结构”(只含m7G),即鸟嘌呤环上的N-7位置甲基化;而如果下游邻位核苷酸上的核糖也被甲基化,则为“Cap1”,再下游的则为Cap2”(甲基化均发生在核糖的2' 羟基上)。在脱磷酸的过程中,也会产生单磷酸、双磷酸、三磷酸等多种相关杂质。图2a.加帽反应(点击查看大图)Oribitrap高分辨质谱由于其高分辨率、高灵敏度及高质量精度可以准确地对mRNA加帽效率进行评估。全长的mRNA直接通过LC-MS分析往往由于分子量太大而无法得到精确表征,通常会使用RNAse酶切结合磁珠分离的方法获得5’端的加帽短链,如图2b所示[3]。图2b.mRNA分离纯化步骤(点击查看大图)RNAseH酶切及磁珠纯化分离后,所得的5’端mRNA酶解片段经过Orbitrap高分辨质谱分析,结果检测到未加帽组分、加帽1组分及少量在第二个A酶切位点得到的加帽1组分,包括单磷酸、二磷酸及三磷酸修饰杂质,且得到同位素基线分离的高质量谱图(如图3a、3b所示)。图3a.5’端mRNA 酶解片段TIC及质谱图(点击查看大图)图3b.5’端mRNA 酶解片段理论及实测质量(点击查看大图)通过加入内标未加帽三磷酸mRNA,确认了质谱定量方法的可行性及准确性。对各加帽组分及未加帽组分形态进行质谱峰面积定量,从而得到5’加帽比例(图3c)。图3c.质谱非标定量法计算mRNA加帽比例(点击查看大图)MRM方法用于mRNA加帽定量分析质谱MRM方法可用于组织及细胞培养基中的mRNA加帽修饰检测,具有高通量及高灵敏等优势。组织或细胞培养基中的mRNA经过nucleaseP1酶解及磁珠纯化,可得到加帽二核苷酸,(m7)GpppN(m)[4]。对11个帽二核苷酸修饰变异体建立MRM方法(图4a),可实现每种变异体的色谱分离及质谱定量(图4b)。图4a.MRM质谱方法参数(点击查看大图)图4b.11个帽二核苷酸修饰变异体的提取离子流图(点击查看大图)其中,对于m7GpppG及GpppGm形式的同分异构体,在液相及一级质谱上均无法分辨,而m7GpppG的特征子离子m/z635.9可将其区别于GpppGm,从而建立MRM方法定量分析,且方法灵敏度高(图5)。图5:(a)连续稀释的合成帽二核苷酸的峰面积测量;(b)连续稀释的合成帽二核苷酸GpppA的峰面积;(c) m7GpppG和GpppGm子离子信息;(d)连续稀释的合成帽二核苷酸m7GpppG的峰面积;(e)补偿m7GpppG和GpppGm的共享离子.(点击查看大图)该方法可快速准确定量细胞中存在的mRNA帽结构,评估不同的加帽结构形态在不同组织或细胞中的含量变化(图6)。Orbitrap的定量能力可与三重四极杆相媲美,其PRM定量灵敏度高、准确性好,也可用于mRNA帽结构的定量分析中。图6:从小鼠肝脏、活化的CD8T细胞、心脏和大脑分离的mRNA帽二核苷酸的丰度(点击查看大图)02mRNA末端多聚腺苷酸Poly A 尾检测真核mRNA通常在其3' 末端带有一段多聚腺苷酸尾(PolyA tail),根据种类的不同,其长度可能在20到200多个碱基之间变化。PolyA tai会被多聚腺苷酸结合蛋白(poly(A)+ tail-binding protein,PABP)辨识并保护住,因此在mRNA的翻译和稳定性中也起着重要的调节作用。通常是在体外转录过程中直接从编码DNA模板或通过使用polyA聚合酶将最jia长度的polyA添加到mRNA中。PolyA的提纯方法类似5’加帽核酸片段,具体步骤可参考文献[5]。纯化后的polyA通常是含有不同长度腺苷酸的混合物,随着碱基个数的增加,HPLC液相方法的分辨率很难将不同长度的polyA完全分开,而Orbitrap高分辨质谱可以准确对其长度分布进行表征和相对定量。图7a.不同碱基长度的PolyA色谱图(b)理论100-merPloy A质谱解卷积结果(点击查看大图)相比二代测序,高分辨质谱作为互补表征技术,能够快速准确地分析RNA序列,同时对于翻译后修饰的种类、位点及含量进行深入表征。此外,也能对RNA代谢产物进行定性及定量分析。
  • 国产又一家核酸质谱试剂供应商,苏州维基dNTP修饰技术取得突破进展
    国产又一家核酸质谱供应商,  目前,常见的分子诊断技术主要有荧光定量 PCR 技术(qPCR)、高通量测序技术(NGS)等。随着 MALDI-TOF-MS 技术的发展,核酸质谱技术也应运而生。  核酸质谱技术可实现单个样本同时进行几十甚至几百种靶标检测,每日处理的样本数可达千例以上,且结果分析简单。核酸质谱技术的出现能够弥补 qPCR 通量低和 NGS 耗时长、报告解读复杂的不足,已经成为研究单核苷酸多态性 ( SNP ) 、基因插入 / 删除、基因选择性剪接、基因拷贝数变化、基因表达、基因组 DNA 甲基化、tRNA 和 rRNA 的转录后修饰等课题的有效检测手段。  在核酸质谱技术领域,笔者近日关注到一家创办于 2022 年的创新公司苏州维基基因科技有限公司(以下简称 " 苏州维基 ")。苏州维基由多位业内资深医学博士联合创办,围绕其多项独有的基因检测技术,为临床及实验室等多场景提供核酸质谱整体解决方案,包括相关实验室建设、仪器、项目选择、试剂开发、临床检测全流程服务。苏州维基作为新一代基因检测机构,致力于通过开发更经济、科学、灵敏度高的检测方法提供高稳定性、高性价比的检测服务。  复杂、多靶标诊断场景,核酸质谱具有极致性价比  20 世纪 80 年代出现的 MALDI-TOF-MS 技术打破了以往质谱仅可进行小分子物质分析的传统,使得核酸、蛋白质等生物大分子也可应用质谱进行研究,极大推进了基因组学、蛋白质组学的发展,并给生物及医学领域带来了革命性的突破。  核酸质谱是在 MALDI-TOF-MS 技术基础上发展出来的一种多重 PCR 分析检测系统,通过 " 多重 PCR+ 高通量芯片 + 飞行时间质谱 " 的技术路径,能够在保持高灵敏度、高特异性的情况下,同时具备检测多基因多位点、通量大、检测速度快及极致的性价比优势。  在基因检测中,常见的分子诊断技术包括 qPCR 和 NGS 技术。在 qPCR 检测中,受到荧光通道数量的限制,要实现更大通量的检测只能依靠反复检测 而利用 NGS 技术进行检测分析成本较高,且报告周期达 7 天。" 对于临床需求而言,检测位点在 20~30 个或者 100 以内的时候,核酸质谱是更契合的检测技术。" 苏州维基联合创始人林有升说。  核酸质谱能够直接依据分子量的差异进行检测。当核酸发生变异时,无论是碱基的替换或修饰,都会改变 DNA 的分子质量,因此,只要待测靶标扩增后的分子量不同,就能够进行精准识别。  核酸质谱适合 10~100 靶标位点的基因检测,与 Sanger 测序符合度超过 99%,且重复性好。据介绍,核酸质谱仪器及配套试剂成本较低,同时每孔可分析 50 个位点,一次可分析 96 个样本,单次检测时间为 8 小时,报告周期约为 3 天。  2018 年,中国核酸质谱医用专家共识协作组在中华医学杂志刊登《中国核酸质谱应用专家共识》,系统介绍了 MALDI-TOF-MS 技术的原理及应用等方面的内容,以提高核酸质谱在国内临床及实验室中的认知程度,推动其临床转化应用。目前,核酸质谱在临床中更适合用于复杂的、多靶标疾病的诊断,主要包括出生遗传缺陷、肿瘤、药物基因组、病原体多联检和耐药性检测等。  突破国产核酸质谱试剂多个瓶颈问题,修饰后 dNTP 分子量差别大于 15  受限于技术壁垒和政策变动等因素,长久以来,国内核酸质谱检测试剂依赖于进口,除了成本高外,更受到货期等其他方面的影响,进一步限制了核酸质谱技术的临床应用推进。" 核酸质谱的临床应用要关注多个方面,包括技术平台的灵敏度、特异性、通量、报告时长以及成本等。" 林有升说。  为了实现核酸质谱试剂的国产化,苏州维基对核酸质谱检测流程中的多个环节进行了技术优化。PCR 技术是核酸质谱的关键技术环节之一,苏州维基通过 LNA-Blocker 技术,阻遏阴性模板以提高检出率,同时依靠自主开发出多重 PCR 设计软件,设计出的 UEP 引物特异性良好,能够将扩增数量达到 100 对以上。  核酸质谱主要通过检测多重 PCR 反应的产物,即单碱基延伸的产物质量大小来进一步确定检测结果。目前,核酸质谱技术主要依赖单碱基延伸反应来进行操作,单碱基延伸的效率关系到核酸质谱的检测效率,而区分度则是能否成功检测的重要标准。  dNTP 修饰技术是单碱基延伸过程中的重要技术,目前国内市面上比较成熟的核酸质谱制剂中的 dNTP 最小分子量差异为 9.21 Da。在检测中,由于分子量差异过小,出现检测的 SNP 为 AT 突变时,不同峰区的区分度很低,或是由于峰高差异较大出现 " 鼓包峰 " 等情况,从而干扰结果判读,这也成为制约核酸质谱临床应用的技术瓶颈之一。  基于其多年的技术开发经验,苏州维基已经攻克核酸质谱 dNTP 修饰技术。据介绍,修饰后的 dNTP 具有良好的单碱基阻遏效果,同时表现出极高的链接效率,而在区分度上,使用该技术进行修饰的 dNTP 分子量差别大于 15,区分度较高,失败风险降低。  面对不同的检测场景,苏州维基也从技术层面进行了推进和解决,致力于扩大核酸质谱技术的临床应用。例如,通过搭建甲基化核酸质谱检测防污染方案,可降低 98% 的 PCR 产物污染,在不影响检测灵敏度的情况下,解决了在 DNA 甲基化检测中因 PCR 产物污染造成检测结果不准确的产业化难题。  另外,依靠核心团队多年深耕检测行业,苏州维基已经积累了数万例肿瘤样本 ctDNA 基因突变谱、DNA 甲基化谱、SNC、CNV、MSI 等数据,数万例肿瘤样本全基因组检测数据及数万例肿瘤样本 ctDNA 含量、片段大小、断裂点、GC RICH 等数据,为其进一步优化技术和产品开发打下坚实基础。  打造三种解决方案,通用试剂可适配常见核酸质谱仪  凭借对核酸质谱检测流程中的多个环节进行了技术优化,苏州维基依据临床使用场景计划以 LDT 模式打造三种解决方案:病原微生物基因检测、药物基因组检测(遗传基因检测)及肿瘤基因检测。  病原微生物基因检测将通过打造 39 种病原微生物联检试剂,来覆盖 91% 以上的呼吸道感染疾病 药物基因组检测将涵盖心脑血管疾病、自身免疫系统疾病、精神类疾病、感染性疾病用药药物基因检测及单基因遗传病致病基因检测,提高各类疾病用药安全性及疗效 针对肿瘤基因检测,目前苏州维基将聚焦于消化道肿瘤筛查血浆游离 DNA 甲基化检测,实现血浆游离 DNA 甲基化启动子区 CpG 岛甲基化谱绘制。  目前,苏州维基已经开发出了国产化的全血 / 拭子核酸纯化试剂、血浆游离 DNA 纯化试剂、多重化 PCR 扩增试剂、单碱基引物延伸试剂、PCR 产物阳离子纯化试剂以及多重 PCR 设计程序、UEP 引物设计程序两款软件。可以说,苏州维基已经走通了核酸质谱的全技术链条。  据介绍,苏州维基开发的核酸质谱通用试剂 "MASS GEL ™ " 能够适配市面上常见的核酸质谱仪。" 在转化率、扩增效率、得率、稳定性及操作步骤上,MASS GEL ™表现都十分优异。其转化率超过 98%,实验步骤简化至五个。" 林有升说。  " 随着核酸质谱国产化的快速发展,仪器成本和试剂成本不断降低,已接近 QPCR 仪器和试剂成本,表现出明显的成本优势。无论是从技术优势还是成本优势来看,核酸质谱都有潜力、有机会能够在临床应用中大显身手。" 林有升强调。关于苏州维基  苏州维基基因科技是一家致力于核酸质谱国产化临床应用试剂开发与应用的技术主导型公司,由多位生物学、医学博士创办,公司申请专利5项,产品覆盖药物基因组学检测、病原微生物核酸联检,核心技术有“LNA-Multiplex-PCR”,”核酸质谱防污染技术”,“核酸质谱高效延伸技术”,“dNTP修饰技术”。苏州维基通过持续的技术开发和优化,已有药物基因组和病原微生物多款产品经过性能验证,有数款技术打破国外技术垄断,为我国临床基因检测技术进步贡献自己的力量。
  • 首台(套)用于血清多肽及蛋白指纹图谱检测的飞行时间质谱仪ClinMS-Plat® I获得NMPA二类
    质谱技术在体外诊断中发挥着重要的作用,其中基于LC-MS/MS的三重四级杆质谱主要用于药物、维生素D、新生儿遗传代谢物、氨基酸等小分子的定量生化检测,国内外多款型号的LC-MS/MS获得了医疗器械注册证。另一方面,用于大分子检测的基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)也逐渐应用于临床,多款用于微生物蛋白指纹图谱检测的MALDI-TOF质谱获医疗器械注册证,并在临床微生物鉴定中发挥着重要的作用。此外,用于核酸分析的MALDI-TOF系统也逐渐进入体外诊断领域。人体血清多肽和蛋白指纹图谱与疾病的发生和发展密切相关,国际上大量的研究机构一直在致力于该领域的研究和临床应用。近日,汇健科技首台(套)用于血清多肽和蛋白指纹图谱检测的ClinMS-Plat® I飞行时间质谱仪正式获得NMPA医疗器械注册证(浙械注准20242221307)。此次获批的ClinMS-Plat® I飞行时间质谱仪由质谱仪主机(离子源模块、检测器模块、飞行管、机架模块、外壳、真空泵)和软件组成,产品基于MALDI-TOF方法,结合配套试剂可用于人体血清样本中多肽或蛋白指纹图谱的采集,是国内首台(套)用于血清多肽或蛋白指纹图谱分析的临床质谱仪。仪器针对性地根据血清多肽分子量进行了检测区域内(m/z680~18600Da) 信噪比、分辨率、出峰谱型的调校,严格控制仪器台间变异系数。该质谱仪在注册审评前经过了严格的临床研究。临床试验采用随机、盲法、配对的临床试验设计。收集受试者促凝全血分离的血清样本并进行编盲,受试者血清样本经配套试剂预处理后用ClinMS-Plat® I飞行时间质谱仪进行多肽及蛋白指纹图谱检测,输出分析结果。三家临床试验机构对受试者样本在待考核仪器上的检测结果与金标准相比,统计分析结果显示灵敏度为91.94%(P=0.95,置信区间87.48%-94.91%),特异度91.14%(P=0.95, 置信区间 86.83%~94.13%),诊断符合率91.52%(P=0.95, 置信区间 88.57%~93.76%);Kappa值为0.8300。由于多肽与蛋白组学信息在疾病诊断中具有重要的价值,因此,ClinMS-Plat® I的获批在体外诊断领域具有重要的意义。ClinMS-Plat® I质谱仪与配套试剂盒(Bio-pSi® 系列)使用,单次检测可获得包含数百个血清多肽分子的指纹图谱。汇健科技结合人工智能算法构建了包含数万例肿瘤人群队列样本、数十万例次检测数据的人工智能判别模型(汇健智云® )。未来,该款型号的质谱仪将与诊断试剂、AI分析软件三者共同组成一整套体外诊断分析系统(下图),可用于各种肿瘤、泌尿系统疾病,神经系统疾病等多种疾病筛查、辅助诊断和复发转移评估等领域。ClinMS-Plat® I 是一款具有卓越性能和创新功能的高端医用质谱,具有如下优势:快速:独特的多肽富集技术,自动化批量检测,96个样本全流程仅需2小时;精准:多肽及蛋白指纹谱检测多个标志物,相比单一或少量标志物组合,结果更可靠;稳定:通过质控技术有效控制多肽及蛋白质谱峰强度变异系数,结果稳定性、重复性高;灵敏:相关多肽检测限可达fmol/μL级别。ClinMS-Plat® I曾入选工信部人工智能医疗器械(智能辅助诊断产品方向)创新任务榜单,是2022年质谱领域唯一进入榜单的项目;同年入选了浙江省首台(套)产品工程化攻关重点项目的高端医疗装备;2023 年入选“浙江省制造业首台(套)重点领域(高端医疗器械)关键技术指标清单”。汇健科技也与省内多家知名临床医院合作研究多肽组学技术在临床诊断中的应用,获得了多项浙江省重点研发计划和浙江省“尖兵领雁”计划的支持。我们相信,ClinMS-Plat® I的推出将推动多肽和蛋白组学在体外诊断领域的应用。我们将竭诚为临床机构、研究机构和IVD企业提供优质的创新质谱产品和服务,并期待与行业友商携手合作,在ClinMS-Plat® I平台上开发具有重要临床价值的诊断试剂,共同开创组学技术在精准医学中的应用,为人类健康做出贡献!延伸阅读1. 血液循环多肽(BCP)是目前液体活检最理想的标志物之一多肽是分子量为0.2~20KD的蛋白,主要由RNA上短的开放阅读框(Open Reading Frame, ORF)翻译或者组织蛋白在蛋白酶的作用下切割产生,处于基因调控网络和蛋白作用网络下游。其种类以及包含的生物学信息更加丰富,能迅速反应生物体内“正在发生的变化”。大量研究表明:在肿瘤发生发展过程及肿瘤细胞的迁移过程中,肿瘤微环境的多肽会发生片段长度、片段种类、糖基化修饰、磷酸化修饰等变化,通过质谱仪的检测可敏感地指示多肽指纹图谱的变化。此外,肿瘤组织高压和血管的高通透性,促使产生的低分子量肿瘤相关特异性多肽可快速、高效进入血液循环系统,使得血液循环多肽(Blood circulating peptides, BCP)包含了组织癌变信息,通过检测分析BCP指纹图谱可早期发现癌症的发生和发展。此外,BCP检测技术在阿兹海默症、呼吸道感染、泌尿系统疾病、内分泌系统疾病中也将发挥重要的应用。血液样本中,多肽含量极其微量,在质谱检测中容易受到高丰度蛋白的干扰,此前SELDI® 芯片,ClinProt® 磁珠等产品也曾用于血液多肽的提取和捕获。汇健科技创始团队从2012年开始发明了Bio-pSi® 微纳颗粒,实现了血清多肽的高效捕获,并在MALDI-TOF上呈现高稳定高灵敏的血清多肽指纹谱信号。2.飞行时间质谱工作原理飞行时间质谱(TOFMS)是一种高分辨率的质谱技术,广泛应用于物质分析领域。TOFMS工作原理可以分为离子化、加速和飞行三个步骤。具体来说,它基于不同化合物的质量-电荷比(m/z)的差异,通过高电压脉冲使其形成离子,然后引入到一个带有电场的追加管道中。在追加管道内,各种离子被加速并飞行到检测器处,到达时间取决于其质量和速度。检测器收集到的信号产生一个质谱图,其中离子信号的强度与m/z值呈正比。此外TOFMS还需要配合数据处理软件来分析和解读得到的质谱图。这些软件将质谱图转化为离子的m/z值和相对强度,从而识别不同的化合物。质谱图中每一个峰都对应着一个化合物的离子,通过比较不同样品之间的质谱图,可以确定它们之间的差异和相似性。参考文献Julia Tait, Lathrop,Douglas A, Jeffery,Yvonne R, Shea et al. US Food and Drug Administration Perspectives on Clinical Mass Spectrometry.[J] .Clin Chem, 2016, 62: 141-147.
  • 分析利器丨MALDI-TOF 高效表征小分子化合物的分子量
    MALDI-TOF对小分子化合物分子量的快速确认小分子通常指分子量小于1000 Da(尤其小于400 Da)的有机化合物,包括天然产物(生物体合成)及各类人工合成的有机小分子。质谱技术由于可以精确测量各类化合物的质量,被广泛应用于小分子的分子量表征及结构鉴定工作。通常小分子分子量表征常用手段是LCMS,实则MALDI-TOF同样可以用于小分子化合物的分子量确认,且具有更高的效率。MALDI-TOF MS表征小分子分子量的方案特点:1快!每天可分析数千个样品2直接上样分析,无需样品分离3所需样品量较少,单次上样体积只需1 μL以内4除可溶性样品外,还能够分析难溶性样品MALDI-TOF分析小分子的工作流程小分子测试案例分享01各类化合物(原料、物料、产品)分子量及杂质检测在药品、化工品等产品生产过程中,对投入的原料、物料以及终产品进行分子量和杂质检测,是生产质量控制的重要内容。下图中,通过质谱信息可以直接了解寡核苷酸合成原料亚磷酰胺单体的分子量及杂质信息。寡核苷酸合成原料亚磷酰胺单体质谱图02小分子有机合成反应跟踪、产物确认在有机合成中,鉴定反应产物和了解反应进程极其重要。MALDI-TOF MS可以快速测量化合物进行半定量反应跟踪和产物确认。通过化合物单同位素峰的分布,还能轻松识别出溴和氯的存在与否。下图中原料双(氯甲基)苯的信号强度在反应18小时后降低,产物双(溴甲基)苯在反应18小时后强度增加。反应不同时间获得的反应产物的质谱图比较03有机功能材料合成确认有机功能材料包括有机光电材料、有机导电材料、有机磁性材料、有机催化材料等。MALDI-TOF MS可以快速进行有机功能材料的合成确认。下图中,通过样品同位素分布模式及质量数的实际检测结果与理论值的比较,可以准确判断产品合成是否成功。半导体材料及有机发光二极管材料的质谱图04难溶性颜料分子量分析颜料通常不溶于水和一般有机溶剂,常见的颜料包括无机颜料、偶氮颜料、钛菁颜料等。由于颜料的难溶解性,不能使用传统LCMS或GCMS方法进行分子量检测,而MALDI-TOF MS由于不需要分离,分析时不受溶解性限制,可以检测不溶性颜料的分子量,用于鉴别颜料种类或者颜料生产合成质控。难溶性颜料钛菁红的质谱图结语MALDI-TOF MS具有前处理简单、能够快速获取从低分子量到高分子量各类样品的分子量信息,无需分离、不受样品溶解性限制等优点,为医药行业药物发现、有机合成产物确认、化工领域颜料、乳化剂等各类化工产品分子量分析、有机功能材料的合成确认提供快速检测手段。撰稿人:顿俊玲本文内容非商业广告,仅供专业人士参考。
  • 质谱技术驱动生命科学的发展
    来自美国Scripps研究所的国际著名蛋白质组学专家 John R. Yates 教授应邀出席了近日召开的第五届亚洲与大洋洲质谱会议暨第33届中国质谱学会学术年会,并作大会报告。Yates 教授在他的报告的前半部分中详细介绍了蛋白质组学的发展历程和未来的发展方向。 Yates教授与本网宋苑苑博士在会议间隙合影留念 鸟枪法蛋白质组学的演变 提到蛋白质组学的发展,自然绕不开质谱技术的发展。在过去的100年里,质谱技术可以说是以指数级的速度迅猛发展。这种进步可以部分归功于机械、电子和计算机工业领域的创新。但一些偶然的颠覆性突破,可能才是质谱技术的发展在质上取得飞跃的根本原因。大规模蛋白分析或是蛋白组学之所以成为可能,正是由于这些颠覆性的突破而导致的。 当质谱具备分析有机分子的能力的时候,自然而然的,分析氨基酸和小肽就成为了下一个目标。由于这些两性和极性分子缺少挥发性以及早期质谱质量范围的限制,导致分析工作十分复杂。为了解决这个问题,人们巧妙地利用衍生化的办法来使这些被改性的氨基酸和小肽气化。同时利用EI源来碎片化这些分子,以实现肽段测序。随着高分辨率、精确质量仪器的出现,精确质量被作为一个工具用于小肽的测序。而对于小肽分析能力的获得使得我们可以利用酶解和酸解的办法对蛋白进行分析。通过产生重叠的肽碎片,蛋白的序列就可能被重建。很显然,这种策略将产生非常复杂的肽段混合物,从而对当时的分离技术(GC)提出了更高的要求。那时,最大的挑战来自于如何省去繁琐的衍生化步骤而实现肽的离子化,否则科学家的分析对象只能局限于那些高丰度蛋白。 一个颠覆性的突破发生在1981年,也就是快原子轰击(FAB)的发展。这是第一次使得人们可以无需对肽(其分子量可以达到 〉1-2KDa)进行改性就可以完成很稳定的离子化。而这也对质谱仪器的质量范围提出了更高的要求。很快,这种离子源技术就被Hunt等人整合到了串联质谱上,从而为肽段测序提供了一种稳定的方法。 尽管FAB-MS和FAB-MSMS对于肽和蛋白分析而言是一个巨大的突破,但它们最主要的缺陷是很难直接与液相分离连接。1989年Fenn等人验证了电喷雾离子化(ESI)技术在蛋白分析方面的应用。除了可以电离大分子蛋白以及进行准确的质荷比测量外,这个方法的另一个突出特点就是实现了在大气压下的电离。这就简化了液相分离与质谱之间的接口。而在ESI这一颠覆性的创新出现后的几年里,FAB就渐渐被边缘化了。尽管和基质辅助激光解吸附离子化(MALDI)技术类似,围绕着这项技术的最初热情是集中在完整的蛋白质量的测量上,但是ESI的一个明显优势是通过与色谱技术(如:NanoLC)联用来完成更高效率的肽和蛋白的测序。 仪器控制语言(ICL)是由Finnigan MAT最先开发出来的一项具有颠覆性的创新技术。它具有一个初级的“智能”水平,可以实现自动数据采集、数据交互和根据实时数据对仪器操作进行控制。ICL事后被证明可以提高MSMS和其他实验的效率,从而使得大规模蛋白组学成为可能。现在它已成为所有用于蛋白质组学的质谱仪器的一项标准技术。 “鸟枪法”应用于蛋白质组学是一个很重要的里程碑。在用鸟枪法为基因组测序的时候,先将基因组DNA打断,分段测序,然后利用计算机重组在一起,从而确定一个生物的基因组序列。鸟枪法在蛋白质组研究中的应用方式与此相类似。首先将蛋白质混合物降解成肽段的混合物,再送入质谱进行分析,从而得到各肽段的质量数。为了得到更丰富的序列信息,质谱仪会选取某些肽段进行再次破碎(即二级质谱),得到更小的氨基酸序列片段。检索软件根据二级质谱信息与相应的数据库匹配,可得到肽段的确切序列,进而拼接成混合物中各蛋白质的完整序列,从而鉴定各蛋白。因此可以说,串联质谱对于“鸟枪法”在蛋白组学中的应用是至关重要的,它们使得大规模、高通量的数据分析成为可能。这对于传统的蛋白分析方法而言,是颠覆性的。 大规模数据分析技术的发展使对蛋白混合物直接分析成为可能,人们可以即时收集和破译数以千计的串联质谱谱图。由于样品处理过程的简化,使得样品损失降到最低,从而可以达到一个很高的效率和灵敏度。这一点对于那些始终暴露于新的、活性表面的低丰度蛋白分析尤为重要,因为这种暴露会导致大量的样品损失。 随着分析蛋白复合物和亚细胞区室方法的建立,下一步的目标自然就对准了开发对完整细胞分析的方法。全细胞分析是一个很复杂的工作。开发全细胞分析方法的挑战主要来自于两个方面:首先,需要开发合适的消解蛋白混合物的策略;其次,要有好的方法来分离这些复杂的肽混合物。在全蛋白组分析中,对溶液中蛋白的初始消解是一个非常关键的起始点,因为高效且完全的消解对于获得高的蛋白组覆盖度至关重要。而蛋白组分离的目的则是为了尽可能在最短的时间里提高峰容量和分离效率。要实现这一个目标其实是很困难的。如果峰宽过窄,由于质谱仪扫描速度的限制,可能导致肽峰的丢失。因此,分离效率必须要和质谱仪器的扫描速度匹配。良好的分离对于降低离子抑制以及提高动态范围是很重要的,同时,它也推动了一次分析过程的蛋白序列覆盖度的不断提高。鉴定蛋白功能 蛋白组学的另一个重要任务是鉴定在一个基因序列里被编码的蛋白的功能和作用。鸟枪蛋白组技术使人们能够通过一些新的策略,而快速获取这些信息。这些策略包括:基于“牵连犯罪” 概念的方法;根据活性将蛋白富集再鉴定;全细胞或细胞器分析等。 定性蛋白组学的最终目的是完成对所有存在蛋白的全覆盖。要达到这个目的,所有的蛋白需要被适当地消解并可溶。使用多蛋白酶消解可以提高序列覆盖度。此外,像电子转移解离(ETD)这样的新方法可以使人们有效地碎片化更大尺寸的肽段。高的序列覆盖度有益于分辨蛋白的亚型。对于复杂的混合物,例如细胞或组织裂解液,离子抑制和动态范围是两个挑战。如果能够很好地降低或消除离子抑制,那么就可以更加均一地实现肽的离子化,从而改善定性和定量分析。动态范围方面的挑战除了与离子抑制有关外,主要是和质谱仪器的检出限有关。除了离子抑制和动态范围外,第三个问题是质谱的峰容量。针对这个问题,可采用的一个变通的策略就是所谓的“数据独立采集(DIA)”,它已成为一个商品化技术。随着质谱仪器扫描速度变得越来越快,采用DIA技术进行鉴别也就变得越发可行。我们可以看到,每一代串联质谱较之其上一代都会有显著的改进,这推动着鸟枪蛋白组学向获得一个完整蛋白组发展。不过,如何判定何时算是我们获得了一个完整蛋白组依然是很困难的。此外,获得一个完整蛋白组的关键是要有一个合理的实验策略,而非采用一个耗时的“蛮力搜索”策略。生物体系的调控 可用于修饰蛋白的分子结构非常之多。这些修饰有些是具有明显的调控功能的,有些则只是改变蛋白的化学特性,而没有明显的调控功能。具有调控功能的修饰通常是可逆的,一个例外是蛋白水解过程。 质谱在很久以前就被用于对蛋白修饰的分析。对于高度规则的分子(如蛋白)进行质量测量是鉴定那些意料之外的新增分子结构的一个很直接的方法。随着基因组测序开始出现以及蛋白鉴定方法的发展,修饰鉴定的基本思路开始有所变化。Yates等人证明了可以采用数据检索方法通过串联质谱数据来鉴定翻译后修饰。快速破译修饰蛋白或肽的串联质谱图和明确修饰位点的能力使人们可以进行相应的大规模分析工作,从而更好地了解修饰的生物学机理。此外,大规模修饰位点的分析已经拓展到包括所有可被富集的修饰,这也同时促进了新的富集方法的发展。蛋白定量 稳定同位素标签(SIL)的发明使人们产生了利用质谱数据进行分子定量的想法。再者,对于体内代谢研究而言(例如:确定氨基酸的重要性),SIL也是定量质谱的一个必要要素。 早期的蛋白质组定量涉及到双向凝胶电泳的使用,但这一方法对于蛋白染色有着很高的要求。而质谱技术与双向凝胶电泳的结合使得人们可以比较容易地对凝胶上的蛋白进行分析和鉴定,从而也使双向凝胶电泳在生物学研究中得到充分利用。基于质谱技术的蛋白鉴定方法大大减少了鉴定时间和工作量,同时也可以实现蛋白鉴别和定量的结合。 为了得到更加准确的定量方法,SIL方法与质谱被结合在一起,以用于完整蛋白的分析。一些采用稳定同位素代谢标记方法或使用含标签的试剂(如稳定同位素标记的氨基酸)进行共价标记的手段随之出现。1999年,Gygi等人提出了一种不同的方法,即同位素编码的亲和标签(ICAT)。尽管ICAT方法在概念上很完美,但在实际当中还是有不少缺陷,例如:其鉴别和定量常常是基于一个多肽/蛋白分子,从而导致统计学分析很受局限。此外,由于为了富集需要使用基于抗生素蛋白的体系,从而使多肽回收也很困难。体内标记整个动物 将稳定同位素标签引入到人体和动物体内是为了用于测量分子的最终代谢产物。代谢分析通过痕量同位素标记的氨基酸和诸如同位素比率质谱技术来实现。代谢稳定同位素标记对于研究动物生物学而言是个非常有力的方法。整体动物标记使研究课题可以涉及到较之细胞系更为复杂的体系,并可以更好地反映有机体生物学机理。动物体的稳定同位素标记使人们可以使用组织或器官进行疾病研究。此外,组织和器官实际上是许多不同细胞类型的集合,换句话说是系统的系统,所以最终,研究目的会指向理解这些细胞的合集是究竟如何发挥它们的功能的上来。定量与鉴别的悖论 对于鸟枪蛋白组学而言,定量与鉴别同时进行的策略会产生一个自相矛盾的悖论。在一个全模式下对一个复杂体系中的蛋白进行鉴别,这需要快速的扫描仪器和高效的色谱以实现MSMS峰容量的最大化。仪器应当能够快速地采集一个肽段的数据,然后移向下一个新的肽段。而肽段定量则需要采集到足够多的数据点,从而实现准确测量两个形态之间的差别。“明快”对“持久”,这两个相互矛盾的需求导致了人们会对用于定量的数据质量做出一定的妥协,原因在于针对肽段鉴别的检出限往往要超过定量限。另一个问题是在定量实验中,对于“存在或不存在”的测量。为了对一个测量结果进行后续计算,大多数软件工具要求被重和轻同位素标记的肽段均要存在。而当不同标记的肽段比例超过10:1时,定量效率就会开始下滑,一些大的变化可能会被漏掉。一些非标记方法,例如光谱计数,能够更好地测定一些大的变化,但是它们的准确度不如标记方法。未来展望 为了充分了解人体生物学,科学家们必须要开始了解蛋白的亚型和修饰的功能,这也对相应的分离和测量技术提出了更高的要求。为了满足这一需要,我们需要可靠的方法来实现对完整蛋白的分子量和序列的测试。“由上而下”的质谱技术目前仍然在发展当中,我们期待着未来能有突破性的创新出现,以降低质谱的成本和复杂性,从而能使更多的人使用它。而就当下的过渡阶段而言,在过去的几年里,针对5-10 KDa的肽段的测序和表征,质谱分析器已经有了长足的进步,不过能够将蛋白切到5-10 KDa肽段的蛋白酶剪切或化学剪切方法仍需进一步发展。更高分辨率的质谱结合ETD能够使得对于这些中等尺寸的多肽的表征更加容易。 蛋白复合体代表了细胞内的一个更高阶的结构。确定蛋白亚型或被修饰后的形态如何影响蛋白复合体的功能或活性将是下一步的工作。同时,我们也期待质谱仪器能够通过科技进步和激烈的商业竞争而继续以一个较快的速度发展。为了给蛋白质组学提供更好的工具,质谱仪器的扫描速度和灵敏度将会得到进一步提升。(主编当班) Acknowledgement To help us to finish this story, Prof. Yates kindly provided instrument.com.cn with his perspective article (2013) on which the first half of his presentation at the conference is based. We herein would like to appreciate Prof. Yates for his full support to our work.
  • 从人类基因组草图到完全图谱 ——论基因组重复片段研究
    从人类基因组草图到完全图谱——论基因组重复片段研究作者:李东卫,张玉波(中国农业科学院农业基因组研究所,“岭南现代农业”广东省实验室,深圳 518120)2001年发表的人类基因组草图并没有包含全部的基因组序列,直到二十年后,科学家们才正式宣布完成了人类全序列基因组图谱,这其中主要的技术障碍就是重复片段的测序工作。重复片段(segmental duplications,SDs)是指广泛存在于基因组中的大于1 kb且序列相似性超过90%以上的大片段。它们可以通过基因组重排及拷贝数变异产生新基因和驱动进化,其大量存在于子端粒中,并与哺乳动物细胞复制性衰老以及癌症等重要生物学过程密切相关,一直以来备受科学家关注。但是其序列特点使得常规的测序技术难以完全准确测出全部序列,是基因组组装工作的一个难点。人类基因组全图谱的完成将重复片段在生物体进化、延缓衰老、疾病治疗等方面的研究提供基础。本文将就重复片段的重要性,研究的技术难点,研究现状以及未来展望等方面展开论述。重复片段的重要性重复片段是基因组中序列高度相同的大片段,具有广泛的结构多样性。它们占人类参考基因组(T2T-CHM13)中的7.0%,长度为218 Mbp[2 ],在中心体及子端粒区域富集高达10倍。中心体所包含的5个典型重复为:α卫星,β卫星,CER卫星,γ卫星,CAGGG重复,以及重复子4。子端粒所包含的典型重复为:端粒相关重复(TAR)以及传统的(TTAGGG)n重复[4 ]。重复片段可以介导染色体重排,使常染色体和异染色体之间通过同源重组产生镶嵌类型的重复的染色质[5 ]。在最近新鉴定的人类重复片段中,Mitchell R等预测了182个新的候选蛋白编码基因,并使用T2T-CHM13基因组重构了重复基因(TBC1D3,SRGAP2C,ARHGAP11B),这些基因在人额皮质增生中具有重要作用,揭示了重复片段结构在人和他们近亲物种之间的巨大进化差异[6 ]。大量的染色体子端粒区含有重复片段[8 ]。复制性衰老被认为是一种抗癌机制,限制细胞增殖。长寿的有机体经历更多的细胞分裂,因此具有更高的产生肿瘤的风险。端粒酶能够增加端粒的长度,促进癌细胞不断增殖,因此长寿动物体细胞倾向于抑制端粒酶的活性,从而抑制肿瘤发生的风险[10 ]研究难点:大片段长度、多拷贝数、序列高度相似 重复片段的大的片段长度,多拷贝数以及序列的高度相似是长期以来其研究的难点。各种测序技术的发展致力于解决这个问题。重复片段长度范围是1到400 kb [12 ]。而且,标准的长读段校正工具,例如MUMmer 或Minimap2不能够有效的捕捉低相似的重复片段,也经常将重复片段与其它调控元件混淆[14 ],为重复片段的研究带来机遇。尤其是PacBio的HiFi读段,具有长读段的同时还具有较高的准确度。但是,很多重复片段的长度要比HiFi读段的平均长度要长,因此很难完全准确的进行组装[3 ]。染色体重排,尤其是染色质断裂常发生在高GC区域[16 ]。同时,在T2T-CHM13基因组基础上,Mitchell R等首次进行了全基因组重复片段的研究。与当前人类参考基因组(GRCh38)鉴定的167 Mbp复制片段相比,鉴定了更多的(218 Mbp)非冗余重复片段(图2 a, b)。新发现91%的重复片段能更好地代表人的拷贝数,通过与非人灵长类基因组相比,前所未有的揭示了人类和其它近亲在重复片段结构中的杂合性以及广泛的进化差异[17 ]。图2 T2T-CHM13中新鉴定的染色体内(a)与染色间(b)的重复片段[1 ]。利用重复片段解析衰老机制未来可期新组装的T2T-CHM13的拷贝数比GRCh38高9倍,因此它能更好的呈现人类拷贝数变异。通过鉴定新基因的拷贝数变异,可筛选相应的药物治疗靶点。例如,CHM13鉴定到LPA、MUC3A、FCGR2基因的拷贝数变异与疾病相关[1]。此外,对于尚具争议的疾病标志基因,例如乳腺癌中ESR1 基因[18],可以通过CHM13对其进行分子进化分析,进而鉴定其突变和扩增,确定其在乳腺癌中的作用。尽管端粒作为抗衰老靶标已研究多年,但是端粒长短变化与复制性衰老的关系仍不清楚。细胞减数分裂过程中端粒变短的机制是什么?重复片段拷贝数变异与端粒变短有无相关性?很多研究已证明端粒酶具有延长端粒长度的作用,具体的机制是什么?这些问题因此前端粒不能被准确测序而长期未解决。现在,人类基因组完全图谱已基本实现,相信这些谜团会很快解开。未来可以根据人类年龄增长过程中端粒重复片段的拷贝数变异,解析其抗衰老的机制。通过人为干预其拷贝数,可能用于探索生命的极限。1. Vollger MR, Guitart X, Dishuck PC, Mercuri L, Harvey WT, Gershman A, Diekhans M, Sulovari A, Munson KM, Lewis AM et al.Segmental duplications and their variation in a complete human genome. bioRxiv.2021:2021.2005.2026.445678.2. Prodanov T, Bansal V.Sensitive alignment using paralogous sequence variants improves long-read mapping and variant calling in segmental duplications. Nucleic Acids Research.2020 48(19).3. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE.Segmental duplications: Organization and impact within the current Human Genome Project assembly. Genome research.2001 11(6):1005-1017.4. Courseaux A, Richard F, Grosgeorge J, Ortola C, Viale A, Turc-Carel C, Dutrillaux B, Gaudray P, Nahon JL.Segmental duplications in euchromatic regions of human chromosome 5: a source of evolutionary instability and transcriptional innovation. Genome research.2003 13(3):369-381.5. Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M.Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome research.2013 23(11):1763-1773.6. Young E, Abid HZ, Kwok PY, Riethman H, Xiao M.Comprehensive Analysis of Human Subtelomeres by Whole Genome Mapping. PLoS genetics.2020 16(1):e1008347.7. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al.Initial sequencing and analysis of the human genome. Nature.2001 409(6822):860-921.8. Seluanov A, Chen ZX, Hine C, Sasahara THC, Ribeiro AACM, Catania KC, Presgraves DC, Gorbunova V.Telomerase activity coevolves with body mass not lifespan. Aging Cell.2007 6(1):45-52.9. Bromham L.The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos T R Soc B.2011 366(1577):2503-2513.10. Shay JW.Role of Telomeres and Telomerase in Aging and Cancer. Cancer discovery.2016 6(6):584-593.11. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R et al.Segmental duplications and copy-number variation in the human genome. American journal of human genetics.2005 77(1):78-88.12. Hartasanchez DA, Braso-Vives M, Heredia-Genestar JM, Pybus M, Navarro A.Effect of Collapsed Duplications on Diversity Estimates: What to Expect. Genome Biol Evol.2018 10(11):2899-2905.13. Numanagic I, Gokkaya AS, Zhang L, Berger B, Alkan C, Hach F.Fast characterization of segmental duplications in genome assemblies. Bioinformatics.2018 34(17):i706-i714.14. Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves-Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE.Long-read sequence and assembly of segmental duplications. Nature methods.2019 16(1):88-94.15. Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J et al.Towards complete and error-free genome assemblies of all vertebrate species. Nature.2021 592(7856):737-+.16. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, AltemoseN, Uralsky L, Gershman A et al.The complete sequence of a human genome. bioRxiv.2021:2021.2005.2026.445798.17. Zhu Y, Liu X, Ding X, Wang F, Geng X.Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology.2019 20(1):1-16.18. Tabarestani S, Motallebi M, Akbari ME.Are Estrogen Receptor Genomic Aberrations Predictive of Hormone Therapy Response in Breast Cancer? Iranian journal of cancer prevention.2016 9(4):e6565.
  • 使用BiopharmaLynx软件分析蛋白完整分子量
    贾伟 沃特世科技(上海)有限公司实验中心 对蛋白药的分子量进行测定,可以在完整蛋白水平,对其进行宏观表征,以初步确定蛋白的表达是否正确。BiopharmaLynxTM软件中,专门设计了对蛋白整体分子量测定及表征的多种功能,它具有以下特点。 ■ 通过原始质谱数据,计算出蛋白分子量。 ■ 自动标注蛋白的各种不同修饰形态。 ■ 以直观方式,比较样品与标品间差异。 ■ 自动计算蛋白质的各种修饰形式间的峰强度比例。 ■ 界面友好、直观,操作简单。 通过原始质谱数据,计算分子质量,是蛋白分子量测定的基本功能。图1中左上为免疫球蛋白IgG的原始质谱数据,右下为软件分析后,得出的IgG分子质量信息。通过BiopharmaLynx软件的自动计算功能,复杂的质谱数据成为了直观的分子量形式。图1中,绿底色图为标准品蛋白的分子质量分布数据,蓝底色图为样品蛋白的分子质量分布图。在BiopharmaLynx给出的结果中,IgG的具有多个分子质量形式,这是由于其含有多种糖基化修饰的原因。 图1. BiopharmaLynx软件的完整蛋白质量分析界面。 图中的紫色线条直观地显示出了样品蛋白与标品的质量分布差异差异。观察紫色线条形态可以发现,样品IgG具有更多的大分子量糖基化修饰形式,而标品蛋白中的小分子量糖型修饰较多。当将鼠标指针放置于峰尖时,将自动出现此处蛋白名称、修饰种类、峰强度、色谱保留时间等信息。通过以上两种信息,可以简单、直观地找到两者的差异之处了。 BiopharmaLynx软件可根据用户设置,对蛋白的不同修饰情况,自动标注。除内置的90种修饰外,用户还可根据需要自行创建修饰方式。特别是,考虑到生物蛋白药的一些具体情况,BiopharmaLynx内置了一些蛋白表达药品常见的蛋白改变修饰,如蛋白C端的Lysine缺失等(图2红色箭头指向)。这些细节设计,会帮助使用者极大地提高工作效率,节省精力。 图2. 使用BiopharmaLynx软件的修饰设置界面。 BiopharmaLynx软件对蛋白各种修饰间的比例也可以直观地给出初步分析结果(图3)。 作为一家在液相与质谱技术都占有领先优势的企业,沃特世更提供了全面的蛋白分子量分析方案,包括色谱柱、色谱梯度方法、质谱条件等一系列已优化完成的实验操作流程(图4)。使用此整体解决方案,仅仅使用0.5微克的IgG蛋白,在4分钟内,就可完成液质数据采集全过程。此方案也包括对还原后IgG的分析方法(图4右上)。 图4. 完整及还原后IgG质量测定解决方案示意图。 参考文献 (1) Rapid Profiling of Monoclonal Intact Antibodies by LC/ESI-TOF MS. Waters Application Note, 2007, 720002393 EN (2) Rapid Screening of Reduced Monoclonal Antibodies by LC/ESITOF MS. Waters Application Note, 2007, 720002394 EN (3) Characterization of an IgG1 Monoclonal Antibody and Related Sub-Structures by LC/ESI-TOF MS, 2007, 720002107 EN (4) Assessing the Quality and Precision of T herapeutic Antibody LC/MS Data Acquired and Processed using Automated Workflows. Poster presented at the ASMS meeting. 2008, 720002687 EN (5) Efficiently Comparing Batc hes of an Intact Monoclonal Antibody using t he Biop harma Lynx Software Package. Waters Application Note, 2008, 720002820 EN 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 蛋白质组学大师John Yates :质谱的狂热爱好者
    回顾质谱的百年发展史,得益于机械、电子和计算机行业的不断创新,质谱仪的性能也在不断提升。而真正推动质谱实现飞跃的是那些偶然的革命性创新,即具有颠覆性的技术创新——创造全新的分析规模和能力水平。蛋白质组学的大规模分析亦是革命性创新所推动实现的,John Yates III便是实现这项工作的关键科学家之一。John Yates:I was instantly hooked when I first saw a mass spectrometer. 迷恋 | 与质谱的初见作为MudPIT (Multi-dimensional Protein Identification Technology) 与SEQUEST的发明者,John Yates为蛋白质组学技术带来了突破性的进展,而他的每一份成就离不开对质谱的热爱。Yates也在某次采访中直言,在他第一眼看到质谱时,就被“迷倒了 (instantly hooked)”!MudPIT与SEQUEST的发明者——John Yates据Yates回忆,当时他还是个本科生,看到质谱仪是怎么运作的那个瞬间,他惊呼:“这好酷!”;而当看到实验室里满满当当的计算机时,他又被其强大的数据处理能力所震撼。因此,1980年获得缅因大学 (University of Maine) 动物学学士学位的Yates,选择继续在本校攻读化学专业的研究生课程。在学习过程中,为了深入探究质谱法与蛋白质组学研究的关联性,实干派Yates联系了弗吉尼亚大学(University of Virginia)的Don Hunt(弗吉尼亚大学的化学和病理学系教授)。不久后,他收到了一封手写的邀请函,并就此开展了他在弗吉尼亚大学的研究。与此同时,Yates已经看到了质谱的潜力,并希望将其应用于蛋白质组学研究中,但受限于“无法通过人工对数据进行快速解析”。因此,他带领团队在1994年开发了质谱数据的翻译器——软件工具SEQUEST。 John Yates发明SEQUEST算法释放质谱的魅力 | “翻译器”SEQUEST某种程度上而言,SEQUEST的开发是一种必然。1990年,美国能源部 (United States Department of Energy) 和美国国立卫生研究院 (National Institutes of Health, NIH) 向美国国会 (United States Congress) 提交了人类基因组测序的联合计划。自那时起,数据库开始充满了DNA序列信息,用于挖掘数据生物信息学的相关算法也大量涌现。1994年是数据依赖型采集 (data-dependent acquisition, DDA) 的诞生元年,开创性成果SEQUEST也在这一年诞生,万众瞩目。作为自下而上蛋白质组学(自下而上法:对蛋白质进行酶解处理后,得到多肽进行分析) 检索程序的开山鼻祖,SEQUEST的开创不仅奠定了蛋白质组学研究的核心基础,使更多生命科学领域中的研究人员意识并认同蛋白质组学的价值,更向全世界展示了质谱的魅力与潜力。简单来说,SEQUEST是通过利用人类基因组学的信息来解释质谱的信息(即肽和蛋白)。在研究细胞中的蛋白时,得益于这个方法,研究人员不需要对每个蛋白进行纯化,只需要对整体蛋白进行剪切,再通过质谱分析其中的每一种蛋白,便可获得全部蛋白的信息。SEQUEST分析方法可分为四步:(1)对质谱数据进行压缩;(2)通过比对蛋白质数据库 (database)与实验质谱数据在分子质量层面的信息,匹配 (compare)可能的多肽序列;(3)将从数据库中得到的序列的预测片段离子与质谱信息进行比较,从而产生最佳匹配序列表;这个序列被用于进行打分和统计学运算,进而(4)得到分析结果。SEQUEST分析步骤这套方法不仅采用了彼时最前沿的技术,如求互相关性的快速傅里叶变换(fast Fourier transform, FFT),还融入了作者在对质谱数据深入理解后的大胆假设,如对数据进行的系统归一化处理和多项经验打分权重等。SEQUEST提高了质谱技术的有效性和准确性,可以使关键性的生物和临床问题得以解决。自其开发以来,世界各地的研究人员对细胞器中的大部分蛋白质进行研究,根据正常和疾病状态中蛋白质表达差异进行“画像”,从而揭示疾病发生发展的机理。此外,这项工作也促进了蛋白质组学的大规模应用(将在下文进行介绍),他本人将其应用于确定单细胞生物体和哺乳动物细胞中蛋白质复合物成分的大规模研究中。一系列的其他软件亦在SEQUEST的影响下被开发,促进了蛋白质组在分子和细胞生物学研究中的各种应用,包括肽/蛋白的定性定量分析、翻译后修饰的鉴定、蛋白质结构动态研究等等。新战场 | 蛋白质大规模鉴定1998年,Yates提出鸟枪法蛋白质组学 (Shotgun proteomics),以推动蛋白质组的大规模鉴定分析。这个思路来源于人类基因组草图的制作方之一——塞莱拉基因组公司 (Celera Genomics)。他们采用了彼时非常先进的基因测序技术:鸟枪法 (Shotgun)。这种方法跳过将基因组拆分、克隆的过程,直接将其打成小片段进行随机测序,就像拼图一样:我们把一块完整的拼图买回家,彻底打乱后,再开启游戏之旅。2001年,基于鸟枪法蛋白质组学的想法,John Yates团队开发了MudPIT技术,并将其成果发表于 Nature Biotechnology,文章题目为Large-scale analysis of the yeast proteome by multidimensional protein identification technology。实现将鸟枪法应用于蛋白质组学是一件里程碑式的发展成就,其不仅颠覆了传统的蛋白质分析方法,还推动实现大规模分析。Yates带领团队开发MudPIT彼时应用最为广泛的蛋白质分析鉴定方法是二维聚丙烯酰胺凝胶电泳 (Two-dimensional gel electrophoresis, 2D-PAGE),该技术是通过等电点(isoelectric point, pI) 和分子量 (molecular weight, MW) 两个维度,对蛋白质进行鉴定,拥有高分辨率的特点。然而,2D-PAGE存在着一些难以克服的缺陷:(1)虽然该技术可以提供蛋白质的相对分子质量、等电点、表达丰度的相对量等信息,但它无法完成一些更为“精细”的任务,如低丰度蛋白质点的检测,极酸性和极碱性区蛋白质及高分子质量区蛋白质的分离等;另一方面,(2)这项技术自动化程度低,重复性差且耗时长;除此以外,(3)鉴定量和通量一直是这项技术的瓶颈。反观MudPIT,这是一种非凝胶技术,可以实现复杂蛋白质和多肽混合物中某一成分的分离与鉴定工作。首先,肽段先在二维液相色谱中被分离,然后再进入多维毛细管液相色谱中分离、而后进行串联质谱分析以及最后的数据库检索工作。该技术可对样品量较少的蛋白质进行快速分析,适用于蛋白质组学中大规模蛋白质的分离鉴定研究。Yates的文章将MudPIT较之2D-PAGE技术的优势全盘展示。他们完成了彼时鉴定量最大的蛋白质鉴定研究:从酿酒酵母 (S. cerevisiae) 的蛋白质组中分离鉴定了1484个蛋白质;作为对比,当时最大的基于2D-PAGE的蛋白质组学研究,仅鉴定出了流感嗜血杆菌 (Haemophilus influenza) 蛋白质组的502个蛋白质。总体来看,MudPIT的灵敏度和动态监测范围都有了更大的进步,且应用范围更广、自动化程度高。因此,MudPIT也成为了二十世的最初的十年里,研究复杂生物样本中大规模蛋白质表达、定性和定量的强有力工具。制胜密码 | 创新与协作John Yates:I’ve become very intrigued with the concept of innovation.科研进展十分依赖于研究人员的高强度攻坚,及不断创新。他们需要不停地“刁难”自己、“刁难”别人,保持新方向、新想法的敏感度。Yates也一直非常希望更多的科学家可以在他的方法上继续创新。为了帮助各位科学家早日创新、淘汰自己的方法,Yates分享了自己的“创新书单”,希望大家一起从书中学习创新路径并得到启发,如Jon Gertner的 The Idea Factory(这是一部关于传奇科研机构——贝尔实验室的传记,其中共孕育了9位诺贝尔奖得主),以及Steven Johnson的 Where Good Ideas Come from(在这本书中,作者深入发明的创新自然史,对其进行跨越学科、领域的追踪,确定了创新的七种关键模式)。Yates也回忆道,在2003年与一家质谱制造商讨论合作时,他的第一个问题是“扫描速度可以更快吗?”也正是这个问题使得我们迎来了现在的升级版质谱仪。此外,当新设备准备落地时,Yates还会不断提出新的想法,与合作方商讨,寻找更优解。除创新以外,Yates还十分主张团队协作性,并先后培养出来70多位优秀的科学家。其中一位曾在Yates实验室进行博士后工作的研究员Michael Washburn(目前是美国堪萨斯大学医学中心肿瘤生物学教授)称,Yates使他深刻认识到建立一个多学科团队的必要性。因为质谱研究不是一场单机游戏,它极度需要跨学科的方法论,复合型人才的相互教导,才能解决研究瓶颈取得成果。因此,在当年与Yates一起开发出MudPIT后,Washburn在蛋白质组学研究领域继续开疆拓土,并以基于质谱来研究染色质重塑复合物而闻名。Michael Washburn成就、扎根 | 年轻的蛋白质组学SEQUEST 与 MudPIT 的开发,及其他杰出的科研成果奠定了Yates在蛋白质组学领域的泰斗地位,他也毫不意外地入选了 2011年 “2000-2010年全球顶尖一百位化学家”名单。John Yates入选2011年 “2000-2010年全球顶尖一百位化学家”名单此外,他于2019年获得ASMS质谱杰出贡献奖及 Khwarizmi 国际奖,以表彰他对蛋白质组学的贡献。蛋白质组学诞生(1997年)至今才二十余年。得益于全球科学家和HUPO的不懈努力,这个年轻的前沿学科已获得许多令人振奋、惊叹的里程碑式成果。未来,我们亦期待、欢迎有更多的年轻研究人员参与进来,一同以蛋白质组学为支点,揭示生命的奥秘,开创疾病治疗的新篇章。年轻科研力量的崛起是科技创新、发展的重要引擎。2015年,HUPO特设Early Career Researchers (ECRs)项目,以推动年轻科研人员对新知识、新思想和前沿科技创新的引领作用。具体而言,该项目的主旨为:(1)为ECR提供更多研究和交流平台,提高他们的科学知名度:HUPO设立稿件竞赛 (Manuscript Competition),以便让杰出的年轻科学们展示自己最新工作成果;(2)为ECR策划职业发展相关活动,提高他们在学术界、工业界的竞争力:HUPO邀请来自不同科研、技术和商业领域的世界知名科学家,分享他们的科研经历与职业生涯;(3)提高蛋白质组学领域的公平性、多样性和包容性。参考资料1. Washburn, M. P., Wolters, D., & Yates, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology, 19(3), 242-247.2. Proteomics goes global. Nature biotechnology, 24, 302–303 (2006). https://doi.org/10.1038/nbt0306-3023. Eng, K. J., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society Mass Spectrometry, 5(11), 976–989.4. Yates, J. R. (2013). The revolution and evolution of shotgun proteomics for large-scale proteome analysis. Journal of the American Chemical Society, 135(5), 1629-1640.5. Vivien, M. (2013). Digging deep into proteomes. Nature Method, 10(1), 3.6. MICHGAN STATE UNIVERSITY. (n.d). Dr. Michael Washburn. Retrieved from https://bmb.natsci.msu.edu/about/awards/john-a-boezi-memorial-alumnus-award/dr-michael-washburn/7. Scripps Research. (2019). Chemist John Yates receives 2019 ASMS John B. Fenn Award for innovations that advanced mass spectrometry. Retrieved from https://www.scripps.edu/news-and-events/press-room/2019/20190614-yates-amsmaward.html
  • 基于质谱的内源性抗体从头测序的展望
    大家好,本周为大家分享一篇发表在mAbs上的综述,A perspective toward mass spectrometry-based de novo sequencing of endogenous antibodies1,通讯作者是来自荷兰乌得勒支大学Bijvoet生物分子研究中心的Albert J.R. Heck。  据估计,人体可以产生的抗体理论序列超过1015种,这些序列是独一无二但又高度相似的,这使得它们的表征和测序非常复杂。抗体的结构从功能上分为Fab段和Fc段,其中Fab负责与抗原结合,具有高度变异性,这种突变主要集中在Fab段的互补决定区(CDR),阐明这部分的序列对抗体的发现非常重要。 图1展示了用于抗体序列分析的三种组学策略。Bottom-up(BU)是最流行的测序方法,可以通过数据库匹配或完全的从头测序实现对抗体的序列分析,但主要用于高度纯化的重组抗体。第二种策略是通过将基于MS的技术与基因组学/转录组学相结合,例如全基因组测序或 BCR 测序,通过B细胞测序生成个性化序列数据库,将BU MS数据靶向该数据库搜索,是一个部分从头测序的流程。第三种策略是结合几种基于MS的de novo方法,如Top-down(TD)和Middle-down(MD),旨在直接从临床样本中确定选定抗体克隆的完整序列,而无需其他组学数据的帮助。  图1 基于MS的抗体测序的三种策略  通过BU方法进行的从头测序需要高度的序列覆盖,理想情况下,抗体中的每个序列位置都由多个重叠的肽段支持。通过缩短酶的孵育时间、微波辅助水解,或使用具有协同序列特异性的多种酶,可以产生较长的肽段或较多的重叠序列。图2所示的工作使用总共9种蛋白酶(包括特异性和非特异性)成功地从头测序抗 FLAG-M2小鼠mAb全长。通过覆盖整个CDR的高分肽获得了高置信度的CDR序列,所选择的6条肽段来自5种不同蛋白酶的消化。  图2 单克隆抗体Anti-FLAG M2的测序。  对于抗体这种具有高度变异性的蛋白质,通常无法获得完整和准确的序列数据库来进行匹配。相反,可以使用来自基因组或转录组实验的同源序列。抗体种编码每个区域的基因可作为种系序列获得,基于序列对齐或序列标签提取的容错片段匹配算法可以使用同源数据库对实验确定的序列进行评分。同源序列数据库还可以作为种系模板来辅助从头测序肽段的组装。  TD/MD策略虽存在对分子量较大蛋白的电离效率低、分辨率低等限制,但近年该领域的一些进展也报告了相对较高的序列覆盖率。Shaw 等人报道了使用现代仪器将完整的 mAb 在非变性状态下片段化(图3)。通过在单个串联 MS 实验中结合 ECD 和 HCD,获得了曲妥珠单抗 42% 的轻链序列覆盖率和 20% 的重链序列覆盖率。产生的碎片谱不仅包含多电荷主链碎片产物,还包含链间二硫键断裂产生的完整轻链。  图3 轻链 (a) 和重链 (b) 片段图显示了曲妥珠单抗上 ECD 和 HCD 组合产生的序列覆盖率。二硫键用虚线表示,CDR3 区域以黄色高亮显示。(c)为完整曲妥珠单抗的 25+ 电荷态的相应碎片谱,插图显示了轻链的 9+ 电荷态和各种碎片离子。红色和蓝色碎片离子标签分别对应轻链和重链。星号表示质量选择的母离子。  将抗体测序拓展到内源性抗体存在许多挑战。首先,血浆中单个克隆的中位浓度约为 1 µg/mL,比 mAb 低几个数量级,并且单个克隆的分离极具挑战性,使测序过程进一步复杂化 因为大多数软件工具专为组装单个抗体而设计,当数据代表几个相似的 Ig 序列时可能导致分析失败。此外,在复杂的内源性多克隆抗体混合物中,由于来自恒定区的序列信息被放大并抑制CDR的信号,因此通常无法检测到CDR区的关键序列。使用多组学方法,例如通过使用来自同一供体的基因组学或转录组学数据补充 BU MS 数据,可以绕过从头测序的一些具有挑战性的方面。  Guthals等人报道了一个例子,使用糖蛋白B抗原从患者的血清中纯化抗体后,进行了完整质量和BU MS分析(图4c)。通过半自动软件PolyExtend用完整质量来检索抗体混合物中最丰富的物种的平均质量,并以此来约束BU MS数据导出的序列结果。在最近的一项研究中,Bondt等人从败血症患者的血清中制备IgG1的Fab亚基,成功地在不经过抗原特异性捕获的条件下,通过MD/BU结合和ETD活化的MS方法,在一个供体的血清中直接对一个高丰度的抗体克隆进行从头测序(图4d)。首先,从IMGT数据库中选择高度匹配的轻链和重链种系模板。然后用采集的从头测序数据来迭代和改进这些模板,产生最终的成熟序列。值得注意的是,确定的序列包含的突变比BCR测序研究报告的突变率所预期的要多,这表明蛋白质水平测序和基因水平测序之间存在潜在的差异。  图4  尽管从抗体混合物中重新组装序列仍然是艰巨的任务,但一些研究团队最近已经设法获得了令人兴奋的数据。随着现有方法的众多进步,很可能只需把这些碎片拼凑在一起,创建一个基于MS的方法,以更常规地用于抗体发现。所有近期发表的这些策略概念的验证为更高效的下一代方法铺平了道路。
  • 双特异性抗体解析新方法:离子迁移质谱结合碰撞诱导去折叠
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics1,文章的通讯作者是密歇根大学的Brandon副教授。  双特异性抗体(bispecific antibodies, bsAbs)是一类重要的新兴疗法,能够同时靶向两种不同的抗原,已被开发作为对某些单克隆抗体疗效有限疾病的治疗手段。尽管bsAbs具有独特的优势,但它的结构较为复杂,需要特殊的制备工艺,“knobs-into-holes”(KiH)是其中一种可以用于制备bsAbs的技术,这种技术通过将knob链CH3结构域表面的特定氨基酸突变为较大氨基酸,将hole链上的突变为较小氨基酸,从而实现“knobs-into-holes”的配对形式,提高不同轻重链在配对时的正确配对率,产生正确的bsAbs。然而,由于抗体治疗药物分子量较大,通常比传统的小分子药物表现出更大的结构复杂性和异质性,对KiH bsAb 高级结构的完整表征对定义bsAb的结构功能关系,以及确保最终治疗的稳定性、有效性和安全性都至关重要。目前已开发的分析方法有很多,但是普遍存在样品消耗量大、数据采集和解析时间较长等缺点。近年来,非变性离子迁移质谱(ion mobility-mass spectrometry, IM-MS)和碰撞诱导去折叠(collision-induced unfolding,CIU)逐渐被证实是用于分析单克隆抗体高级结构的有效方法,能够从存在结构异质性和杂质的几微克样品中表征单抗治疗药物的高级结构。IM可以根据气相蛋白离子的电荷和旋转平均碰撞截面(collision cross sections,CCSs)在毫秒时间尺度上对蛋白进行分离。当与质谱耦合时,可以很容易地将质荷比相同但CCS不同的离子区分开来,而CIU可以使IM-MS同步提供蛋白质结构和构象稳定性信息。CIU根据二硫键、糖基化水平、结构域交换特性等信息来区分差异。  在这篇文章中,作者描述了定量CIU在bsAbs中的首次应用,扩展了非变性IM-MS和CIU的能力,用于稳定表征KiH bsAb及其亲本knob和hole同型二聚体单抗的高级结构。  图1 Native、未修饰的knob(蓝色)和hole(橙色)同型二聚体,以及KiH bsAb异型二聚体(绿色)的CIU实验。(A)24+电荷态(左)及其相应重复RMSD基线(右)的平均CIU指纹图谱(n=3)。所有的指纹图谱都显示了白色虚线框所示的三个主要特征。在(B) 5 V、(C) 65 V、(D) 110 V时的标准化TWCCSN2分布。在较低的激活电位下,所有抗体均具有相似的CCS,在较高的加速电位下则存在显著差异。(E)两两的RMSD分析显示,与重复的RMSD基线(虚线)相比,抗体之间的整体高级结构差异。(F)CIU50分析说明了KiH bsAb模型的稳定性如何保持在knob和hole的同型二聚体之间。  如图1所示,bsAb的稳定性似乎与本文研究的KiH模型的两个亲本同型二聚体单克隆抗体相关。在电压为65V时,KiH bsAb的TWCCSN2分布与亲本knob同型二聚体单抗的分布相似 而在110V时,则与亲本hole同型二聚体单抗的分布相似。并且KiH bsAb的稳定性介于两种亲本同型二聚体单抗的稳定性之间。与指纹图谱中记录的第一次CIU转换相对应的是CIU50-1值,第二次的则是CIU50-2值,从3组样本的数据分析推测,CIU50-1和CIU50-2很可能代表了KiH bsAb和mAb结构中不同结构域的局部稳定性。  图2 knob和hole的半体CIU数据。(A)16+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,半体之间的高级结构存在显著差异。(C)CIU50分析显示,蛋白质稳定性存在显著差异。  为了更好地展示KiH bsAb不同结构域的CIU特征,作者记录了同型二聚体单抗IM-MS光谱中16+电荷态的knob和hole半体的CIU数据。从图2A的指纹图谱可以看出,每种结构都包含4种主要的CIU特征,但是图2B的RMSD分析显示两种半体的高级结构之间存在显著差异。CIU50分析进一步表明,在观察到的两次展开过渡中,knob半体明显比hole半体更稳定。作者推测造成这种CIU主要差距的原因可能是Fab结构域的差异。  图3 Fab和Fc片段的CIU数据。(A)13+电荷态的平均CIU指纹图谱(n=3).(B)两两RMSD分析显示,knob和hole的Fab片段之间存在显著差异。(C)CIU50分析显示,不同片段之间稳定性存在显著差异。  为了进一步将CIU特征联系到KiH bsAb的结构域当中,作者对木瓜蛋白酶消化后产生的Fab和Fc片段进行了CIU分析。从图3A可以看出,knob和hole的Fab片段都具有3种CIU特征,但是嵌合的Fc片段则具有4种CIU特征。尽管knob和hole的Fab片段具有相似的CIU指纹图谱,但是RMSD分析显示它们之间的高级结构仍然存在较大差异,并且knob的Fab片段稳定性明显高于hole的。至于Fc片段的稳定性则远高于两种Fab片段,可能的原因是重链CH3结构域的强非共价作用以及knobs-into-holes配对的影响。  图4 去糖基化后的knob、hole同型二聚体和KiH bsAb异型二聚体24+离子(n=3)。(A)比较对照组和去糖基化抗体的RMSD分析显示,高级结构有显著差异。CIU50-1(B)和CIU50-2(C)分析显示抗体去糖基化后表现出显著的不稳定性。(D)对照组和去糖基化抗体之间的CIU50值差异图。  先前的研究已经证明,CIU对不同水平的单抗糖基化很敏感,其中去糖基化会导致单抗高级结构的不稳定。作者利用高分辨率非变性轨道阱质谱分辨添加PNGaseF前后同型二聚体mAb和KiH bsAb糖型的变化。实验结果显示,KiH bsAb表现出高度糖异质性,包含至少12种不同的糖型。这很可能归因于组装的KiH bsAb中每个独立的knob和hole重链上存在独特的糖基化,进一步增加了其复杂性。  总而言之,这篇文章展示了IM-MS结合CIU用于建立KiH bsAb及其亲本同型二聚体之间高级结构联系的能力。单独的CCS不足以解决此研究中抗体之间细微的高级结构差异。相比之下,CIU指纹图谱则可以分辨和区分每一个等截面的抗体。这一解释bsAb CIU细节的能力,加上对KiH bsAb稳定性的更深入理解,有可能提供支持KiH bsAb发现和发展的关键信息。  撰稿:梁梓欣  编辑:李惠琳  文章引用:Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  Villafuerte-Vega, R. C., Li, H. W., Slaney, T. R., Chennamsetty, N., Chen, G., Tao, L., & Ruotolo, B. T. (2023). Ion Mobility-Mass Spectrometry and Collision-Induced Unfolding of Designed Bispecific Antibody Therapeutics. Analytical Chemistry.
  • 核酸质谱快速检测新型冠状病毒变异株
    新型冠状病毒肺炎(Coronavirusdisease2019,COVID-2019)是由严重急性呼吸系统综合征冠状病毒(SARS-CoV-2)所引起的高传染性病毒疾病,对世界人口造成了灾难性影响,导致全球380多万人死亡,成为继1918年流感大流行以来影响最大的全球卫生危机。 新冠病毒不断变异的RNA病毒 作为单链结构的RNA病毒,新型冠状病毒的一大特点就是极其容易变异。随着感染人数的增加和疫情的持续,新型冠状病毒不断进化和变异,陆续产生多种新冠病毒变异株。世界卫生组织(WHO)根据新冠病毒变异株的传播力、致病力等将其分为VOCs(Variant of concern)和VOIs(Variant of interest)。新冠病毒VOCs的分类 新冠病毒VOIs的分类 目前市场对新冠病毒筛查主要采用荧光 PCR 方法,该方法检测灵敏度高,但成本也相对较高,并且单机通量小,容易被污染,制约了大规模病毒检测速度,对当前不同变异毒株区分荧光PCR方法存在一定难度。随着病毒感染多元化和疫情防控常态化的推进,市场急需一种更快速、准确、高通量的检测方法,用于满足大样本量的检测、基层的日常防控筛查,以及不同变异株的区分。 基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)主要用于分析包括蛋白质及核酸在内的生物大分子,该技术应用于核酸检测具有高通量、高灵敏、高准确率的特点。其主要工作原理是结合延伸分析法和碱基特异裂解分析法,将扩增后的核酸产物通过离子源使样品离子化,产生不同质荷比的离子,再经过质量分析器测定该样品中不同种类离子的分子量,按照从小到大的顺序依次排列从而得到一幅质量图谱,并根据检测项目不同给出相应的检测报告。该技术在遗传病筛查、肿瘤变异检测、甲基化检测、用药指导、病原体检测及功能医学健康管理等多个领域的应用日益深入,已经成为精准医学不可或缺的分子诊断技术。MALDI-TOF MS检测新型冠状病毒方法为通过特定引物扩增目标基因片段,再通过靶向位点探针特异性单碱基延伸,然后通过质谱技术检测延伸位点的碱基,判断病毒种类和变异类型。该方法灵敏度高、操作简单、成本低廉、人员需求低、通量高,可实现6小时384样本出报告,以后每1小时出384份样品报告。新冠病毒流行初期,Autof ms1000系统建立了完成病毒检测检测体系,对病毒毒株进行了精准检测(图3)。随着研究深入,Autof ms1000检测核酸的体系也日渐成熟,针对当前多变异毒株情况,研究人员通过合理设计扩增引物和探针,可实现单个样品,单芯片位点检测,一次区分当前所有可认知的新冠病毒变异株。随着疫情斗争的持续进行,病毒变异也不断发生,后续可能出现更多更复杂的病毒变异株,MALDI-TOF MS技术基于其检测原理,在大样本多病毒变异株检测方面的优势将日渐突出。随着人们对该技术的认知度的日渐加深,未来该技术在核酸检测方向的应用将出现更多的思路和方法,MALDI-TOF MS在临床应用领域中将会发挥更大的作用。
  • 使用超高效聚合物色谱系统对低分子量聚合物进行快速高分辨率分析
    使用超高效聚合物色谱(APC)系统对低分子量聚合物进行快速高分辨率分析 Mia Summers和Michael O&rsquo Leary 沃特世公司(美国马萨诸塞州米尔福德) 应用优势 ■ 既能对聚合物进行快速表征又不会降低性能水平 ■ 与常规GPC分析相比,可提高对低分子量低聚物的分辨率 ■ 与常规GPC分析相比,可提高校准水平并由此对低分子量低聚物进行更准确的测定 ■ 可对聚合物进行快速监测,从而能提早发现产品开发过程中出现的变化 沃特世提供的解决方案 ACQUITY® 超高效聚合物色谱(APC&trade )系统 ACQUITY APC XT色谱柱 沃特世聚合物标准品 带有GPC选项的Empower® 3色谱数据软件关键词 聚合物、SEC、GPC、APC、聚合物表征、低分子量聚合物、低聚物、环氧树脂 引言 凝胶渗透色谱(GPC)是一种广泛认可并行之有效的聚合物表征方法。然而,尽管使用此技术可获得大量信息,但这类分析本身仍存在缺陷。色谱柱通常填充苯乙烯-二乙烯基苯,同时需要进行适当老化并应在低背压下运行以确保其长期稳定。填充颗粒通常较大(&ge 5 &mu m),分辨率一般会因此而受影响。填充较小颗粒(行校正。综合使用这些技术能够更稳定、更精确地测定低分子量聚合物样品的分子量参数。提早识别某种聚合物所出现的甚至比较细微的改变都能明显加快化学和生物材料应用中聚合物的开发速度。 实验 Alliance® GPC系统条件 检测器: 2414 RI (示差折光检测器) RI流通池: 35 ℃ 流动相: THF 流速: 1mL/min 色谱柱: Styragel 4e,2和0.5,7.8 x 300 mm(3根串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L ACQUITY APC系统条件 检测器: ACQUITY RI(示差折光检测器)RI流通池: 35 ℃ 流动相: THF 流速: 1 mL/min 色谱柱: ACQUITY APC XT 200 Å 柱和两根45 Å 柱,4.6 x 150 mm(3根柱串联) 柱温: 35 ℃ 样品稀释剂: THF 进样量: 20 &mu L 数据管理 Empower 3色谱数据软件 样品 1 mg/mL的沃特世聚苯乙烯标准品(100K、10K和1K)环氧树脂(2 mg/mL) 结果与讨论 为了使用SEC对聚合物进行适当表征,重要的是要使用适当的标准品生成一条校准曲线以确定当前所用色谱柱的分离范围。使用常规GPC分析标准品和样品相当耗时,运行时间可长达1小时(或更长)。由于样品所产生的数据将与经校准的标准品进行比较以确定分子量,因此标准品分析结果的准确度对获得关于聚合物样品的准确结果而言具有至关重要的作用。除了GPC本身的运行时间较长之外,常规GPC系统的额外柱体积较大也会导致峰展宽,从而降低分辨率并由此降低校准数据点的准确度。与常规GPC系统相比,ACQUITY APC系统的扩散度更低,因此产生的峰展宽就更少,并且窄分布标准品的色谱峰也明显更清晰,如图1所示。此外,低扩散性APC系统与支持更高流速和背压的稳定的亚3 &mu m APC色谱柱柱技术相结合也能提高对1K聚苯乙烯标准品的分辨率,并使分析时间缩短至原来的1/5。 图1. 比较在常规GPC系统和ACQUITY APC系统中分析聚苯乙烯标准品(Mp:100K、10K和1K)的运行时间和分辨率 使用APC系统所提高的分辨率为确定1K聚苯乙烯标准品分子量增添了更多可识别的色谱峰。如图2所示,通过使用标准品供应商提供的数值或根据外部方法得出的标准品测定值而确定的分子量信息,更多的数据点由此可被添加到校准曲线上,从而为根据这条曲线所计算出的样品结果增加了可信度。 图2. 使用ACQUITY APC系统时,因对1K低分子量标准品的分辨率提高而在校准曲线上得出关于聚苯乙烯标准品(100K、10K和1K)的更多数据点 一般说来,需要运行一系列标准品以得出用来生成校准曲线的数据点。使用常规GPC时,平衡、配制并分析每种标准品可能需要数小时至数天的时间。因此,通常不进行校准并根据原有校准曲线确定分析结果。ACQUITY APC系统因其系统滞留体积低而使平衡速度明显加快,并且因在更高流速下使用更小的颗粒而使运行时间明显缩短。运行时间的缩短使得平衡和校准操作可在一小时内轻松完成。最后,得益于分辨率的提高,可能只需要配制并进样检测更少的标准品,就能获得一条可用来进行校准的稳定曲线。分析样品时,校准操作的稳定性提高使得对低分子量低聚物的分子量测定具有更高的可信度。 图3显示出一份环氧树脂样品相对于用聚苯乙烯标准品校准的分析结果。该结果表明使用三根ACQUITY APC XT 4.6 x 150 mm串联柱可在不到5分钟的运行时间内分辨出不同低聚物。 图3. 使用配有ACQUITY RI检测器的三根ACQUITY APC XT 4.6 x 150 mm串联柱对溶于四氢呋喃的一份环氧树脂样品进行分析。低分子量低聚物(显示为峰尖分子量)可在不到5分钟的时间内被分辨开来。 APC可缩短运行时间的特点有助于在工艺开发过程中进行反应监测。分辨率提高能够促进对合成应用或降解研究中可能出现的聚合物改变进行更快速的鉴别。通过监测各种分子量而提早发现工艺改变有助于更好地了解聚合物及其预期属性,从而可促进新型聚合物的开发并加快产品上市进程。 结论 由于超高效聚合物色谱系统的扩散度更低并能承受更高的背压以允许使用更小的杂化颗粒,因此该系统明显优于常规GPC系统。通过与最新的色谱柱技术相结合,APC系统与常规GPC相比也提高了对低分子量低聚物的分辨率。APC在性能方面的优点包括校准结果更可靠,这对生成用于聚合物表征的准确测定值而言是必不可少的。低分子量聚合物检测速度和分辨率的同时提高可在开发过程中实现对聚合物的快速且可靠的表征,从而促进对新型聚合物进行密切的上市跟踪。
  • 汇集结构质谱尖兵,开拓蛋白质结构生物学的新天地——第十四届质谱网络会议报告推荐
    随着生命科学研究的深入开展,科学界对解析复杂生物大分子结构以揭示生命现象的渴望日益增加。在各种结构生物学技术快速发展的背景下,结构质谱技术凭借其独特的优势,日益成为连接静态结构与动态功能、实现从分子到细胞的跨尺度研究的重要手段。在12月12-15日即将召开的“第十四届质谱网络会(iCMS 2023)”同期,特别新增了“结构质谱新方法”主题专场,来自全国的顶尖科学家团队将汇聚一堂,围绕氢/重氢交换质谱、化学交联质谱、原位质谱等前沿技术,报告他们在蛋白质结构生物学研究中的最新进展。本次主题会议的召开,恰逢结构质谱技术发展的重要机遇,必将推动该领域技术的重要突破及交叉创新,开启生命科学研究的新篇章。热忱欢迎质谱界的科技工作者报名参会交流、了解前沿动态、开拓合作视野。部分报告预告如下,点击报名  》》》会议主持人:中山大学 教授 李惠琳中山大学药学院教授,博士生导师。主要从事生物质谱新技术的开发及应用,侧重于(1)开发整合结构质谱技术(包括native top-down MS, HDX-MS, CX-MS等),用于药物作用分子机制及蛋白复合物结构研究;(2)Middle-down/top-down蛋白质组学新技术的开发及应用。共发表SCI收录论文40篇,其中第一作者或通讯作者15篇,主要发表在Nat. Chem.、Anal. Chem.等期刊;2014年获得American Society of Mass Spectrometry Postdoctoral Career Development Award;2019年入选“珠江人才计划”青年拔尖人才;主持国家自然科学基金项目3项。报告人:香港理工大学 教授 姚钟平报告题目:氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象复旦大学学士及硕士,香港科技大学博士,香港理工大学应用生物及化学科技学系教授。长期从事质谱、分析化学、化学生物学、组学的交叉学科研究,主要发展和应用质谱技术解决化学、生物、食品安全、信息科学等领域的基础和应用问题,在Nature Communications, PNAS, JACS等期刊发表论文100多篇。现任香港研究资助局专家委员会委员、深圳市中药药学及分子药理学重点实验室副主任、中国化学会有机分析专业委员会委员、Frontiers in Chemistry副主编以及Analytica Chimica Acta, Rapid Communications in Mass Spectrometry,《中国质谱学报》,《分析测试学报》等期刊编委。会上,姚钟平教授将作主题为《氢氘交换质谱揭示β-内酰胺酶与抑制剂相互作用的动态构象》的报告。利用氢氘交换质谱(HDX-MS)并结合原态离子迁移质谱(Native IM-MS)以及分子动态(MD)模拟,发现不同亚型的A型β-内酰胺酶在几个主要的结构域存在显著的动态构象差异。进一步研究了A型β-内酰胺酶与抑制蛋白结合界面的动态结构变化,结果揭示了H10区域是一个可调节β-内酰胺酶抑制作用的别构部位。报告人:浙江大学 研究员 周默为报告题目:非变性质谱剖析异质性蛋白复合体结构和功能信息浙江大学首位“求是实验岗”研究员,分析化学专业,长期从事前沿生物质谱技术和仪器的开发工作。2008年本科毕业于武汉大学,2013年博士毕业于美国俄亥俄州立大学,之后两站博士后分别在美国FDA和西北太平洋国家实验室PNNL。2018年成为PNNL的研究员开展独立研究,培养多名博士后和学生。2023年加入浙江大学。截至目前共发表60余篇学术论文,代表作包括在Angewandte Chemie, Nature Communications, Analytical Chemistry等期刊的论文。现任自上而下蛋白组协会(Consortium for Top Down Proteomics)的青年委员会主席,曾担任美国质谱协会(ASMS)的出版委员会委员、短课程讲师、评审委员等学术任职,努力推动新分析测试技术的开发和跨学科领域的应用研究。本次会议中,周默为研究员将为介绍题为《非变性质谱剖析异质性蛋白复合体结构和功能信息》的报告。精准表征生物大分子的微观结构对各类生物工程、生物医药领域的研究至关重要。由于大部分质谱检测到的分子量范围有限,在分析之前生物大分子需要先被剪切为分子量更小的片段。但是剪切和碎片化的过程中会丢失一些关键的结构信息。前沿质谱技术提高了仪器的分子量上限,使非变性条件“自上而下”研究完整的生物大分子更加容易。我将以具体案例,阐述自上而下非变性质谱技术在异质性蛋白质复合体结构和功能解析中的贡献,以及与其他方法的互补性。报告人:北京大学 研究员 王冠博报告题目:生物样本中蛋白高级结构的质谱分析北京大学生物医学前沿创新中心研究员。北京大学学士,美国马萨诸塞大学博士,曾于荷兰乌特勒支大学暨荷兰蛋白组学中心从事博士后研究;曾任南京师范大学教授、博士生导师。主要从事免疫反应相关蛋白质的高级结构及相互作用研究,以生物质谱为核心工具,结合新型分析设备研发,应用于生物物理学、蛋白质药物分析等领域。长年与国际药企合作研发新型药物表征技术并应用于新药研发。获国际国内授权专利,出版《Mass Spectrometry in Biopharmaceutical Analysis》等专著、译著、合著多部。任中国生物化学与分子生物学会蛋白质组学专业分会委员、国际学术组织Consortium for Top-Down Proteomics青委会委员。本次会议中,王冠博研究员将围绕生物样本中蛋白高级结构的质谱分析主题分享报告。生物质谱已成为蛋白质多次结构表征的重要工具。为将蛋白结构质谱技术的应用拓展至生物样本乃至临床样本中,我们针对背景基质复杂、糖基化等修饰异质性高、超大分子量颗粒结构层次多样等问题,以非变性质谱等质谱手段为核心工具开发了一系列组合策略,提供生物样本乃至临床样本中的蛋白高级结构和相互作用关系信息。报告人:中国科学院大连化学物理研究所 研究员 王方军报告题目:高能紫外激光解离-串联质谱仪器研发和应用2011年于中科院大连化物所获博士学位,师从邹汉法研究员。研究工作致力于生物大分子质谱新仪器、新方法及其在生命健康领域的应用研究,搭建了世界首台50-150 nm可调波长极紫外激光超快解离-串联质谱;提出了位点光解离碎片产率和原位化学标记效率定量表征蛋白质结构变化的两种质谱分析新原理,实现亚微克蛋白质复合物序列和结构变化单氨基酸位点分辨表征;发展了蛋白质-纳米材料界面相互作用精细结构的质谱分析新方法等。在Nat. Protoc.,J. Am. Chem. Soc.,Cell Chem. Biol.,Chem. Sci.,Anal. Chem.等期刊发表论文130余篇,他引5000余次。本次会议中,王方军研究员将分享题为《高能紫外激光解离-串联质谱仪器研发和应用》的报告。高能/真空紫外激光解离是表征生物大分子序列和动态结构的前沿结构质谱表征技术,但相关仪器和理论都亟待发展。报告人将介绍近年来自主研发的皮秒脉冲极紫外激光解离装置和蛋白质原位光化学标记仪器的原理、主要参数、与商品化质谱对比、及在蛋白质瞬态结构表征、蛋白-蛋白识别和相互作用机制分析等方面的应用情况。报告人:中国科学院大连化学物理研究所 研究员 赵群报告题目:活细胞内蛋白质原位构象和相互作用规模化解析新方法研究中国科学院大连化学物理研究所研究员,博士生导师。本科毕业于西北大学化学基地班。同年进入大连化学物理研究所攻读博士学位,师从张玉奎院士和张丽华研究员,2014年获得理学博士学位。毕业后留所工作至今,主要从事蛋白质组定性定量及相互作用分析新技术研究,共发表学术论文62篇,其中近五年以通讯/第一作者(含共同)在Nat. Commun., Angew. Chem. Int. Ed.,Anal. Chem.等SCI期刊发表论文23篇;已获20项发明专利授权。作为课题负责人承担国家重点研发计划,作为项目负责人承担国家自然科学基金面上基金等,2023年获国家自然科学基金优秀青年基金支持;2018年入选大连市科技之星,2020年入选中国科学院青年促进会会员,2023年获中国化学会菁青化学新锐奖;兼任《色谱》青年编委、中国化工学会理事、中国蛋白质组学会青年委员、中科院青促会沈阳分会委员等。本次会议中,赵群研究员将围绕题为《活细胞内蛋白质原位构象和相互作用规模化解析新方法研究》的报告。作为生命活动的执行者,蛋白质通过相互作用形成复合体等形式行使其特定的生物学功能。不同于细胞外的离体环境,细胞内的限域效应、拥挤效应和细胞器微环境等对于维持蛋白质复合体的结构和功能起着至关重要的作用。因此,实现细胞内蛋白质相互作用的精准解析对于深入研究其生物学功能,进而理解生命现象本质具有重要意义。近年来,化学交联质谱技术已逐渐成为蛋白质复合物解析的重要手段。它是利用化学交联剂将空间距离足够接近的蛋白质内/间的氨基酸以共价键连接起来,再利用质谱对交联肽段进行鉴定,进而实现蛋白质相互作用的组成、界面和位点的解析。现有化学交联技术主要用于解析体外表达纯化的或细胞裂解液中的蛋白质复合物,而在细胞内蛋白质复合物的原位构像解析方面仍处于起步阶段。 针对上述问题,我们团队发展了一系列新型高生物兼容性的可透膜多功能化学交联剂,实现了活细胞内蛋白质复合物构像的原位交联捕获;建立了多种高选择性的低丰度交联肽段的富集方法和高可信度的交联肽段鉴定方法,显著提高了原位交联信息的鉴定灵敏度、覆盖度和准确度;进而,通过靶向富集特定亚细胞器内的交联蛋白质复合物,实现了亚细胞器空间分辨的蛋白质相互作用精准解析;在上述基础上,利用基于化学交联距离约束的分子动力学技术获得了蛋白质复合物的动态系综构像,实现了活细胞微环境下蛋白质复合物组成、相互作用界面及作用位点的规模化精准解析,为规模化地揭示蛋白质复合物功能状态下的结构调控机制提供了重要的技术支撑。为了分享质谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与北美华人质谱学会(CASMS)将于2023年12月12-15日联合举办第十四届质谱网络会议(iCMS2023)  。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/iCMS2023/ (点击下图去报名)》》》
  • 蛋白分子质谱诊断先行者许洋:蛋白质谱目前有三种临床应用
    p   用于生物样品分析的蛋白指纹法,该专利技术被国际顶级科学杂志《科学》以及医学界权威杂志《柳叶刀》评为世界蛋白指纹图谱和蛋白质芯片排名第一的技术。针对这项技术的一些问题,火石创造对许洋博士进行了深度的专访。 /p p style=" text-align: center " img width=" 300" height=" 385" title=" 001.png" style=" width: 300px height: 385px " src=" http://img1.17img.cn/17img/images/201711/insimg/ebf3be8e-c0c2-49d6-9891-a76d207d183f.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong   许洋博士 /strong /p p   许洋博士一直致力于蛋白质组学研究开发,怀揣近五十项蛋白分子质谱诊断技术的自主发明专利。2009年他创办了湖州赛尔迪生物医药科技有限公司,凭借专利产品蛋白指纹图谱仪成为行业领头羊,也成为此类器械行业标准的起草者。 /p p strong   火石:请问您为什么做蛋白质谱? /strong /p p   许洋博士:我研究蛋白质谱是偶然也是必然。在美国纽约著名的Sloan-Kettering研究所单克隆抗体实验室早期研究治疗白血病时,我们制造了全世界第一枚人源化单克隆抗体(抗CD33人源化单抗)。后来我又和顶尖美国公司合作第一个将人源化单克隆抗体做成了靶向药。有了扎实的基础,必然能在更窄的蛋白质谱领域做的更好。 /p p   strong  火石:蛋白质谱当前的临床应用情况如何? /strong /p p   许洋博士:只有拿到医疗器械注册证才算进入临床,蛋白质谱目前只有三种临床应用:对肿瘤的筛查 对早期肾脏疾病的分析 在细菌上的鉴定应用。蛋白质谱在国内仍处于非常早期的阶段,且具有垄断性,极少人能做且在做。 /p p strong   火石:作为国家“千人计划”医疗器械特聘专家,您认为蛋白指纹图谱仪在医疗器械中的角色是什么? /strong /p p   许洋博士:蛋白指纹图谱仪分析的大数据可以生动地比喻为人体疾病的健康地图。 /p p   蛋白指纹究竟是什么?把质谱仪的显示屏中的每一个蛋白质都用一个分子量来表达,这些分子量组合起来就叫蛋白指纹。就像每个人的指纹都是不同的,每种疾病的特定蛋白质表达物也不同,称之为指纹图谱。蛋白指纹图谱技术是由蛋白质芯片及分析仪器——表面加强激光解析电离飞行时间质谱仪两部分组成,可以将病人血清中蛋白质成分的变化记录下来,绘制成蛋白指纹质谱图,并显示样品中各种蛋白的分子量、含量等信息。将这张图谱与正常人、某种疾病病人的谱图或基因库中的谱图进行对照,就能最终发现和捕获新的特异性相关蛋白及其特征。这种方法具有微量、精确、简易、快速的特点,适应于基础和临床等各个领域。 /p p   之所以将蛋白指纹图谱仪分析的大数据比喻为人体疾病的健康地图(MAP),是因为既然β2—微球蛋白是11731、人绒毛膜促性腺激素是37580、转甲状腺素蛋白是13761(数字对于计算机的应用更好管理),而每个蛋白质在质谱仪分析中都是数字,它本身就是大数据。任何物质在质谱底下都是数字,综合起来就是大数据。我把大数据串联起来,就能将分子在身体的MAP做出来。譬如一位吸烟的男士来体检,能发现他吸了烟数年之后肺部出现影像学病理性位点,结合质谱仪分析发现相关的疾病标志物,我们能够模拟出肺部疾病的健康地图,即通过质谱仪检测的健康大数据,可以模拟出该患者肺部出现了数个小红点,点击每个红点后都会解释原因,如显示铅、铬等数据是否超标,以及告诉你相应的对策。这样的技术开启了全智能健康4.0时代。 /p p   Tips:β2—微球蛋白(β2—MG)被认为是诊断早期肾功能损伤的敏感指标,尤其对于糖尿病肾病、高血压肾病、红斑狼疮肾炎的早期诊断具有重要参考价值,因此β2—微球蛋白的测定在临床上是有多种价值的。 /p p    strong 火石:您和您的团队在蛋白质组学研究的技术或者方法上有什么突破吗? /strong /p p   许洋博士:蛋白质作为标志物对肿瘤的诊断,确实没有太大的进展。 /p p   一直以来蛋白质组学研究面临的重大瓶颈是蛋白质分离问题:人体内有十万种蛋白质与衍生物,多数可能与疾病有关联,但这十万种蛋白质与衍生物只有分开后,质谱才能分析清楚。此前蛋白质组学技术中最流行、最通用的蛋白质分离方法是双向电泳,基本上能分离近二千种血浆蛋白质,远远不及十万种,所以成为了瓶颈。 /p p   2006年我提出了一个设想:和蛋白有关的抗体至少有一万多种,那为什么不用抗体来分离蛋白质?这件事一直有人在做,但之前都没有人想到用抗体组把一千个蛋白质一次性快速、实时地分离出来。之后就诞生了免疫质谱分析方法(专利号ZL 200610140652.0),可以在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析,还可以同时检测多个生物标志群。用免疫组质谱技术能测定抗原变异片段的分子量。另外,还可以将多种疾病特异性抗原的抗体同时标在一个基质点上。 /p p   Tips:免疫质谱分析方法:质谱与抗体分离技术联合应用即为免疫组质谱(Immunomic mass spectrometry,IMS)。免疫组质谱检测为一组多种(类)抗体与质谱联合来精确地鉴别变异或修饰生物标志群的方法。在一个抗体组基质上同时捕获多个生物标志,并对捕获的变异的或修饰的生物标志进行质谱精确分析。可以同时检测多个生物标志群(biomarkers)。 /p p   双向电泳(Two-dimensional electrophoresis):是一种等电聚焦电泳与SDS-PAGE相结合,分辨率更高的蛋白质电泳检测技术。目前是快速成长的蛋白质组学技术中最流行最通用的蛋白质分离方法。目前2D-PAGE能够在同一块凝胶上同步检测和定量数千个蛋白质。 /p p   从整个2015年的政策看,医疗器械行业是受到国家大力扶持的,行业地位与重要性大幅提升,法规向国际化看齐,行业监管不断趋严,医疗器械正成为与药物齐头并进的新兴产业。 /p p    strong 火石:是什么驱动着行业的高增长? /strong /p p   许洋博士:一是需求,老龄化加剧,家庭支付能力增强,导致医疗需求高增长 二是政府加大医疗卫生投入,《医疗器械科技产业“十二五”专项规划》表示,“十二五”期间将扶植形成8~10家产值超过50亿元的大型医疗器械产业集团 三是为配合新医改完善基层医疗建设的目标 四是国内生物技术研发应用进入突破期。 /p p    strong 火石:您认为接下来医疗器械未来发展的特点和前景会是怎么样的? /strong /p p   许洋博士:未来5年,医疗器械和制药占比将会达到1:1。近十年,我国医疗器械市场规模快速增长,国内医疗器械工业总产值从2003年的189亿人民币上升到2013年的1889亿,2013年同比增长21%,增长速度远快于药品。预计在未来5年左右,我国医疗器械行业仍然将保持高速增长。医疗器械行业涉及到医药、机械、电子、塑料等多个行业,中高端医疗器械更是多学科交叉、知识密集、资金密集的高技术产业,研发成本高,决定了只有大型厂商才能在大中型医疗器械方面有所作为。此外,器械“国产化”也会成为必然趋势。 /p p    strong 火石:赛尔迪当前开展的业务、研发的产品有哪些?公司部署战略是怎么样的? /strong /p p   许洋博士:我们现在正在做一张人类的大健康MAP。通过精准医疗计划,基于环境健康大数据,通过蛋白指纹图谱仪完成健康管理。现在的疾病市场最关注的问题分别是:检测0~6岁儿童智力、优生优育(为什么生不出聪明宝宝)、高达5千万的肿瘤人群以及3.5亿的高血压、糖尿病人群。 /p p   其中糖尿病肾病是糖尿病最常见且严重的并发症之一,是糖尿病所致的肾小球微血管病变而引起的蛋白排泄和滤过异常那个渐进性肾功能损害。而微量白蛋白尿即早期糖尿病肾病是可逆的,这不同于大量白蛋白尿即临床糖尿病肾病,因此积极防治早期糖尿病肾病就显得尤为重要。去年底,赛尔迪公司与中国医学科学院北京协和医院签署协议,承担国家对糖尿病肾病体内铅、镉毒素的临床大样本检测。全新升级的蛋白指纹图谱仪,是目前唯一获国家药监局批准、能检测含微量白蛋白、β2—微球蛋白以及泛素3项指标的医疗器械。这对糖尿病肾病的早发现、早治疗具有重大意义。 /p p   赛尔迪接下来将按照个体化精准检测所附带的信息,由这些信息与大数据库交流,提出符合个体化治疗的方案,向个体化精准医学管理方式转变。 /p p   随着大数据时代的来临,“互联网+”概念的提出让医疗健康事业呈现出了新的发展势态和特征。医学知识体系正被大数据、精准医疗所重构,信息化进程提高了知识传递速度与医疗协同效率。 /p p strong   火石:蛋白质组学技术如何助推精准医疗? /strong /p p   许洋博士:常识知道铅、镉会引起糖尿病性肾病。但铅、镉指标不是医院常规检测的项目。如果采取个体化精准治疗,每年常规检查一次体内铅与镉的指标,发现异常就能进行针对性的从尿液排泄的治疗。已经得了肾病正在透析的病人,检测铅与镉指标后进行针对性排泄也会增强治疗效果。利用蛋白指纹图谱仪能够发现早期的肿瘤和心血管标志物,这就会对疾病的治疗带来极大的希望。随着质谱技术在精准医疗的应用,越来越多的个体化标志物将会被发现,人体的蛋白指纹图谱测定将会成为医院的常规工作。 /p p   精准医疗,即考虑每一个体健康的差异,制定个性化的预防和治疗方案。正确的选中一个工具,解决关键问题,这就是精准医疗。基于基因组测序技术、生物医学工具以及大数据工具逐步成熟和完善,精准医疗能够为个体基因特征、环境以及生活习惯进行疾病干预及治疗,但如何尽快与大数据结合才是发展重点。日前我与北京协和医院合作,创立了中国特色的首个百万人疾病与环境毒素数据库与IMS(爱睦世)特检中心:HZIMS2008,首次在复杂疾病系统中构建了基于环境毒素大数据的移动网络数据库的质量控制体系,使我国重大疾病,如高血压、糖尿病、肿瘤的大数据病因学研究处于世界领先。 /p p /p
  • 质谱分析|Native MS中计算质量、误差和不确定性的方法
    大家好,本周为大家介绍的是一篇发表在Journal of the American Society for Mass Spectrometry上的文章Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry1,文章通讯作者是来自美国亚利桑那大学化学与生物化学系的Michael T. Marty教授。  非变性电喷雾离子化质谱(native ESI mass spectrometry)已经发展为一种成熟的、表征生物分子相互作用和结合化学计量的技术,通过将生物分子的缓冲体系换成质谱可兼容的挥发性盐溶液,来保护样品的结构和非共价相互作用在离子化过程中不被破坏。随着该技术的发展,一些计算概念的标准化是有必要讨论的。本文介绍了native MS中质量的定义、计算、误差和不确定性。  对于一个质谱峰,有三个位置可以描述它的质荷比:平均值(mean)、中位数(median)和顶点(apex)。平均值又称为质心,即每根峰的质荷比加权其强度得到的平均值 中位数很少被用来描述峰值 顶点是指峰强度最高处的质荷比。在理想的情况下,质谱峰应该是完全对称形状的,质心和顶点的质荷比应该相同(图1A),但这种情况在native MS中比较少见,因为经常会有盐离子等小分子加合到峰上,导致质心和顶点分离以及峰型不对称(图1B),在这种情况下,顶点作为计算真实质量的参数更为合理。Native MS峰也可能与噪音(图1C)和基线(图1D)叠加,相比之下,噪音对顶点的影响大于基线,很可能干扰顶点的识别,这种情况下,选择超过一定阈值的质心计算质量更为合适。由于待测物会产生一系列电荷分布,建议在每个电荷态单独计算出质量后,再按电荷态的相对强度进行加权,获得最终的检测质量。  图1. 几种可能的谱峰形状:理想(A)、有加合(B)、有噪音(C)、基线高(D)。  在比较实测质量和理论质量时,误差指的是实测质量减理论质量,在谱峰鉴别时通常需要计算误差,而不确定程度是指在测量过程中不可避免的值的离散,为了评估误差和不确定程度,作者考虑了三个指标:①从不同电荷态计算出的质量的加权标准差(图2A),这反映了通过所有电荷态计算出的质量的平均值的准确程度,标准差越小,平均值就越准确,这种计算标准差的衡量不确定程度的方式,适合手动计算质量时使用。②峰宽(图2B),如果将质谱峰视为高斯分布,峰宽也是体现不确定程度的参数,在native MS中通常使用半峰宽来衡量峰之间的差异,由于重叠的峰难以手动区分但可以被软件识别,这种衡量方式更适合软件。③重复性(图2C),相比于前两种方式,重复性是更好的确定不确定程度的方式,不确定程度可以定义为多次重复测量出的质量的标准差,但重复实验也需要考虑实验重复性因素(喷针口径,样品制备方法,样品批次,仪器校准等)。  图2. 三种测量峰不确定程度的方法:不同电荷态计算出的质量的加权标准差(A),峰宽(B),重复性(C)。  总结:本文讨论了native MS谱峰的质量、误差和不确定程度的定义,推荐从native MS谱图中不同电荷态的峰计算质量后,加权平均以获得精确质量,并通过重复实验考察不确定程度。  1. Marty, M. T., Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? Journal of the American Society for Mass Spectrometry 2022, 33 (10), 1807-1812.
  • 质谱成像:MALDI技术在质谱成像中的应用
    p style=" text-align: left "    strong 一、质谱成像技术简介 /strong /p p   成像质谱(IMS)是一种非常灵敏的分子成像技术,可提供组合的分子信息和空间分辨率。它允许从组织切片、单细胞或其他物质表面直接鉴定和定位化合物分子。成像质谱研究的核心特点是质谱仪的高灵敏度、技术的无标签性、对肽和蛋白质的成像能力,以及从个体水平(几百微米)到细胞水平(几十纳米)空间分辨率。成像质谱允许在单个实验中同时检测数千个不同分子的图像。因此,它是一种有效的多组分分子成像技术。科学家们已经开发了许多不同的成像质谱方案和仪器来研究生物内源性化合物,如脂质、肽和蛋白质,以及外源化合物,如聚合物,或者用于研究组织处理药物的分布。这些研究提供了从亚细胞层次到有机体层次生物过程的详细情况。 /p p style=" text-align: center " img title=" 00.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/023209d6-c059-4300-b7e9-75b5d86cff30.jpg" /    /p p & nbsp & nbsp & nbsp 当今,成像质谱主要是用于病理学离体组织研究的技术,并不具备MRI(磁共振成像)或PET(正电子发射断层摄影)扫描的体内诊断能力。然而,它可以作为体内成像的补充技术来验证生物分子的分布代谢规律或不同疾病阶段药物的递送方式。许多研究人员正在探究用这种补充成像方式来解决分子分布的具体问题。这种做法的理由很明显。没有其他单一的成像技术能够以适当的空间分辨率、时间分辨率及生物学状态提供分子结构和解剖信息的适当组合。与其他分子成像方法相比,如MRI,PET或免疫组织化学(IHC),成像质谱有一个独特的特征:它可以使化合物分子可视化而又无需标记,这可以实现其他技术所不能实现的对新化合物分布规律的研究。通常,它是在使用影响色差的常规染色剂(例如通常用于组织染色的苏木精和曙红(H& amp E)情况下,可以做化合物分子鉴定的唯一工具。它可以用于常规组织学染色剂不可实现的化合物分子分布规律的研究。这是因为在病理学中使用的常规染色剂只提供一般组织分型,而不识别特定分子,不提供分子修饰及其组合信息等。不能被常见组织染色剂染色的几种药物和代谢物如表1所列。 /p p style=" text-align: center " img title=" (MS@0{[%]6Q49XJ@3VDOVZA.png" src=" http://img1.17img.cn/17img/images/201708/insimg/4e4940a0-12c9-4169-b75e-f37f5d2ef818.jpg" / /p p    strong 二、质谱成像的解吸和电离技术 /strong /p p   IMS需要从被研究物质的表面解离和离子化化合物分子。主要有两种物理方法:(1)用载能带电粒子碰撞分析物表面,(2)用来自脉冲相干光源的光子照射表面。 /p p   1. 带电粒子的解吸和电离 /p p   带电粒子主要用于二次离子质谱(SIMS)成像。在这种方法中,分析物表面暴露于高能聚焦的一次离子束下。离子撞击会导致表面上下分子的级联碰撞,从而引起表面分子的移动和电离。随后,碰撞产生的二次离子可以进入质量分析器分析以确定其性质。碰撞能量通常会保持较低,以确保一次离子可以与不同区域表面分子相作用,并且确保已碰撞区域不再进行二次碰撞分析。低于表面层分析碰撞能量的实验被称为静态SIMS实验。高于该碰撞能量的实验,被称为动态SIMS实验。在动态SIMS实验过程中,分析物表面会发生持续的变化。在静态SIMS实验中,被分析的表面通常在1%以内。 /p p   在SIMS实验过程中,大量的内部能量被转移到表面分子中。这会导致表层化合物分子产生大量的碎裂。这使得该方法不适合直接研究大分子物质,如肽和蛋白质等。该方法可以较好地观测待测物表面元素和小分子化合物分布规律。化合物碎裂模式与电子碰撞电离中观察到的碎裂模式相似。 /p p   最常用的一次离子种类是铟和镓。它们主要应用于半导体表面上的元素和有机杂质研究,以及薄层表面涂层的研究。受益于较大簇离子或分子离子的应用,切片组织等生物表面也可以被分析。较大的一次离子有Aun+、Binm+、C60+等。这些离子可以使完整次级分子离子的产率更高,并且减少了分子离子碎裂。此外,这些离子的应用还可以显著降低对表面下层分子的破坏,从而增加三维成像实验成功的可能性。 /p p   所有的SIMS实验与以上所述的离子光束均需要保持真空环境,否则初级离子会因为平均自由程太短而不能到达分析物表面。解吸电喷雾电离(DESI)是大气压下的解吸和电离技术。它会产生电喷雾液滴,然后在大气条件下被传送到待分析物表面。溶剂液滴吸附到表面分子上,从而产生与常规电喷雾质谱电离相似的二次离子。这种方式可以产生带多电荷的准分子离子。据报道,该方法适用于多种待测物的表面分析,包括药物片剂、血迹和组织切片等。研究显示,DESI技术用于组织成像可以可视化观察脑和肿瘤组织切片中的磷脂和脂质。 /p p   2. 光子解吸、电离 /p p   2.1 LDI和MALDI /p p   能够从表面解离和电离分子的第二种方法是光子与表面分子产生相互作用。通常,脉冲激光束聚焦在分析物表面上。由表面层吸收的光子能量会导致表面材料的爆炸性去除或消融。 /p p   当使用红外(IR)或可见光时,光子能量主要转化为表面振转能量。在紫外线或真空紫外线(VUV)光下,光子能量增加可以引发大量的电子激发。如果积累在待分析化合物分子中的内部能量足以引起直接电离,该过程被称为激光解吸和电离(LDI),如图1(a)所示。在激光解吸过程中积累的内部能量通常比较高,表面分子可以发生大量的碎裂。此外,有机化合物的低电离效率使得该技术不太适合于大分子质谱分析。这些情况下,可以应用激光解吸后电离(LDPI)策略来电离解吸过程中产生的中性粒子(图1(b))。后电离策略可以在真空条件下通过UV或VUV波长范围内的二次能量激光束照射实现。最近研究表明,激光解吸可以有效地与ESI离子源联用,从而在大气压力条件下可以进行激光烧蚀电喷雾电离(LAESI)(图1(c))。这种组合增加了可以用激光解吸策略分析的化合物类别,并能减少化合物碎裂。当与电感耦合等离子体质谱(ICP-MS)组合时,激光烧蚀可以成功地用于待测品表面元素的定量分析。烧蚀的组分被等离子体源雾化并离子化成构成元素和同位素离子,随后通过质谱仪进行分析。当与光发射光谱法结合时,使用从ICP发射的光可以获得更多定量基本信息。 /p p   由于存在大量碎裂,直接LDI策略不适用于分子量超过500Da的生物大分子分析。这时可以选择使用能量调节基质。分析物混合或被涂布在待分析物表面上(参见图1(d))可以克服这个限制。在20世纪80年代晚期,由Karas和Hillenkamp构想的这种技术被称为基质辅助激光解吸和电离(MALDI)。它是现代蛋白质组学研究中的关键技术,可以应用于生物大分子,如蛋白质和DNA分子的解吸和电离。在复杂待测物表面的MALDI分析中,基质辅助方案有更多的用途。 /p p style=" text-align: center " img title=" 2.png" src=" http://img1.17img.cn/17img/images/201708/insimg/44bc0e85-da34-4110-9c06-ae524e9d48ad.jpg" / /p p   首先,应用基质后,它可以将复合物样品中的待测分子重构在基质晶体中间或者表面。这些分析物掺杂基质晶体的形成,可以将待分析物与其他辅助因子如盐等分离,并可以将大分子分散在基质中。用脉冲激光对晶体表面的后续照射能够快速地使样品过热。这是作为激光能量强吸收体的基体受到电子激发(UV-MALDI)或振动激发(IR-MALDI)作用的直接结果。协同运动的过热基质与其夹带的分析物可以被引导到的真空中。这有助于分析物分子气相化的非破坏性转变。基质的最后一个目的是通过电荷转移促进分析物分子的电离。该方法通常会使[M+X]+型的阳离子转化成完整的准分子离子,其中X表示产生的阳离子的类型。最常见的阳离子是氢、钠和钾。为保证分析成功,分析物分子必须与固体基质材料共结晶,并且这些基质应该是过量的。最常用的基质与分子的比例在103:1至105:1的范围内。根据经验,研究的分析物的质量越高,完全解吸所需的基质剩余越多。 /p p   2.2 MALDI在敞开环境中的应用 /p p   近来敞开式解吸策略的发展已经产生了一些进步,该策略也需要使用基质。类似于LAESI方法,其基质、分析物混合物需要在基材上共结晶,这样可以有更多完整样品从表面移除。 MALDI离子会受质谱入口和样品表面之间电场的作用而发生偏转。从MALDI基质上产生的中性粒子含有大量在真空MALDI实验中丢失的分析物分子。它们可以被吸附在尚未完全雾化的电喷雾液滴表面。接下来是常规的产生多电荷离子的电喷雾电离过程。该过程又缩写MALDESI(基质辅助激光解吸电喷雾电离),它可以将MALDI在敞开环境中的优点以及电喷雾电离的灵敏性结合起来。 /p p   2.3 MALDI和液相色谱 /p p   MALDI技术和液相色谱(LC)分离技术的成功联用,提高了复杂混合物的分离检测效率。分析复杂混合物时,MALDI会受到显著的离子抑制。不同物化性质的化合物分子共存通常会导致一种或几种组分优先于其他组分离子化。离子抑制效应是许多分析学科量化研究的主要障碍。对MALDI质谱强度差异的解释本质上是定性的。克服该问题的一个方法是进行色谱分离以降低混合物的复杂性。许多nano-LC-MALDI方法已经实现了将分离时间尺度转换为空间分布尺度。自动点样技术可以将一系列二维纳升液相洗脱液滴(通常每滴为150纳升)沉积到MALDI基质预涂层上。也可以采用其他方法将基质溶液与LC洗脱液混合,并将该混合物液滴有序沉积在干净的基质靶板上用于质谱分析。 /p p   3. SIMS中基质的使用 /p p   使用能量调节基质材料的优点并非仅限于光子解吸和电离技术。MALDI质谱技术的成功使MALDI基质在SIMS(二次粒子质谱分析法)样品制备中的应用成为可能。分析物与MALDI基质(2,5-二羟基苯甲酸/DHB)的共结晶,更加方便了采用基质增强型SIMS(ME-SIMS)方法对质量超过10kDa的大分子离子进行检测。因此,这种仅基于SIMS电离方法产生完整大分子离子(肽,蛋白质,寡核苷酸)的技术是成功的。有人提出,基质在ME-SIMS中的作用与在MALDI中的作用相似:都是为分析物分子提供了一个嵌套环境,并提供了质子来增强电离。以DHB为基质可以获得最佳结果,可能解释是DHB提高了样品表面区域中分析物的浓度。由于ME-SIMS(与MALDI相比)仅检测表面50nm之内,所以分析物的定位在样品制备中至关重要。分析物分子必须存在于晶体的表面,因为在静态SIMS条件下不能检测到基质共结晶的较深层次。 /p p    strong 三、成像质谱的空间分辨率 /strong /p p   IMS的一个关键参数是可实现的空间分辨率。空间分辨率决定细胞和组织表面可观察到的细节。获得质量分辨率图像的最常见方法是使用微探针或扫描模式。微探针模式质谱成像通过SIMS扫描样品上的电离探针束或移动样品通过MALDI对焦进行。对于每个特定位置,带电离子束与样品相互作用,存储坐标,并获得位置相关离子产生的质谱数据。以这种方式构建光栅,光栅中的每个点都具有与其相关联的质谱数据。使用专用软件,可以从这些数据集中构建质量分辨的离子图像。微探针成像实验中最大的可实现空间分辨率由微探针的尺寸决定。在技术上,光栅中每个点的精度是控制分辨率的另一个因素,但是对于SIMS和MALDI成像,通常这不是一个问题。此外,实验实现的空间分辨率受样品制备(基质)和灵敏度(信噪比)相关因素的影响。 /p p   1. 二次离子质谱(SIMS)和解吸电喷雾电离质谱(DESI)成像质谱的空间分辨率 /p p   SIMS使用离子源的大多是由液体金属离子枪构成。 Ga +和In +主要用于表面元素和小分子分析。使用这些枪可以获得的空间分辨率由发射器的大小,离子柱中的静电光学元件和主光束电流决定。后者通常保持较低以防止光束的空间电荷膨胀和分辨率损失。当在低电流下进行调谐时,这两支枪可以提供50nm的焦点。金属簇光束Aun+、Bin+以及C60+可以在非常低的光束电流下提供100-200nm的光斑尺寸。低光束电流通常需要更长的实验时间。因此,为了应用更大的束电流增加分析速度,空间分辨率通常会受到一定损失并减小到大约1μm。 DESI使用指向表面的带电溶剂液滴喷射流。喷射流与表面的润湿相互作用中,作用区域大小决定了空间分辨率。研究表明,DESI成像的常规空间分辨率为1mm左右。 /p p   2. 激光直接成像(LDI)和基质辅助激光解析电离(MALDI)成像质谱的空间分辨率 /p p   聚焦激光束的分辨率是波长决定的,并受阿贝衍射极限的限制。长波长的红外激光器难以聚焦在50μm以下。商业仪器中的UV激光光斑的物理尺寸限制在约10μm。在商业仪器上,大多数实验用激光光斑尺寸在50和250μm之间。这个选择是由灵敏度和完成实验所需的时间决定的。特殊的共焦目标可以将斑点尺寸减小到1μm,但是使用MALDI的这些小斑点所需的激光阈值通量对于组织中化合物的无损分析是不是太高仍存在实质性的争论。初步实验显示了其从分析物获取高分辨率图像的能力。替代方法是使用常规MALDI-ToF仪器的过采样方法增加空间分辨率。在这种方法中,激光探针点的移动增量小于光点直径。所有样品在第一个采样点完成后,每个采样增量都会从比激光焦点尺寸小得多的区域采集信息,从而达到增加空间分辨率的目的。这种方法的两个缺点是有限的质谱串联可能性和较大的总样品消耗量。 /p p    strong 四、成像质谱仪:发展和改进领域 /strong /p p   使用上一节描述的解吸和电离技术,可以在复杂表面产生原子和分子离子。质谱图像的产生需要对这些产生的离子进行后续质量分析。现代质谱方法提供了一系列质量分析仪器来达到此目的。本文介绍三种类型的质量分析仪器,为生物表面的MALDI或SIMS质谱成像提供独特的分析能力。 /p p   1. 飞行时间成像质谱法 /p p   IMS中最常用的质量分析器是飞行时间分析仪。它需要产生脉冲离子,这一要求理想地与MALDI和SIMS要求兼容。所有离子都具有相同的加速电位。相同质荷比的离子将在其解吸过程产生的初始动能之上获得相同的动能。因此,它们的速度取决于它们的质荷比,并且离子可以通过在无场区域中的漂移而分离。离子检测是通过多通道板(MCP)类的粒子检测器实现的。ToF分析提供了非常宽的质量范围,该范围仅受大分子物质检测灵敏度的限制。MALDI-ToF-MS最多可以对数百万道尔顿的分子进行分析。微秒范围内的高传输效率和总飞行时间,为使用高重复率激光器进行高灵敏度表面检测提供了可能性。这使得高通量分析成为可能,而高通量分析正是大表面积样品分析的关键要求。分辨能力的提高可以通过补偿解吸过程产生的初始动能来实现。使用延迟提取,半球形静电扇形器件和反射镜等技术可以在m/z 1000下将半峰宽(FWHM)质量分辨率增加到m/△m = 30 000。用于化合物鉴定的串联质谱通常通过碰撞诱导解离(CID)或通过观察电离后亚稳离子的衰变实现。为此,两个独立的ToF系统可以以所谓的ToF / ToF配置串联。第一个ToF用于前体选择,第二个ToF用于产物离子分析。 /p p   2. 傅里叶变换离子回旋共振质谱法 /p p   傅里叶变换离子回旋共振质谱(FT-ICR-MS)是一种离子捕获技术,它决定了强磁场中潘宁离子阱中捕获离子的回旋加速频率。在外部离子源产生离子后,离子被转移到潘宁离子阱中,直到进一步分析。使用宽带射频电激发,所有离子被激发到大的回旋加速轨道。它们的轨道半径不仅增加,而在潘宁离子阱中,相同质荷比的离子也相互连贯地在轨道绕行。在绕行期间,它们可以在一组双检测电极中引起振荡图像电荷。该时域信号被数字化并进行傅里叶变换以产生回旋加速频谱。质谱图可以通过对回旋加速器方程w=qB/m校准产生。 /p p   FT-ICR-MS的主要优点是具有无与伦比的质量分辨率和质量测量精度,可用于从MALDI图像分析中发现新的结构细节。此外,使用捕获离子技术不仅允许CID,而且允许红外多光子解离(IRMPD)和电子捕获解离用于串联质谱的结构测定。分析速度受观测时域信号的长度和相关质量分辨率的限制。质量分辨率取决于轨道离子的相干时间。典型的分析时间是每像素1 s,与所用的离子源无关。可以通过增加磁场强度来降低相同分辨率下的瞬态长度。MALDI组织成像实验可以在FT-ICR-MS系统上进行,FWHM分辨率范围从40000到400000。(图2)。 /p p style=" text-align: center " img width=" 450" height=" 616" title=" 3.png" style=" width: 450px height: 616px " src=" http://img1.17img.cn/17img/images/201708/insimg/91f3b7ae-f7c9-4edd-81d2-1fe8a264e388.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   3. MALDI离子迁移成像质谱法 /p p   通过MALDI生成离子的迁移分离,质谱图中可以得到更多附加信息。离子迁移谱是基于离子通过碰撞横截面面积的分离技术。在离子迁移质谱中,有充气的漂移池用于质谱分析之前的离子分离,这些离子由于构象或组成变化而具有不同碰撞截面。当用于质谱成像时,除了空间维度和质谱维度之外,还增加了时间漂移的气相分离维度。离子迁移光谱法在两个主要方面有利于MALDI成像质谱的研究。首先,增加额外的分离维度能够检测到更多的质谱峰。离子迁移有利于减小质谱分析复杂度,并有助于不同种类化合物的分离,例如肽和磷脂。第二,质量与漂移时间选择结合使得等压肽或其它类似物分解为分裂谱。 /p p   离子迁移、MALDI与用于IMS的ToF-MS组合,能够通过其相关的消化肽片段定位和鉴定蛋白质。离子迁移分离可以鉴定通过常规MALDI-ToF-MS无法鉴定的等压离子。与传统的MALDI-ToF相比,该方法每次测量的观察峰数量增加,能够产生质量和时间选择的离子图像,同时可以对单个离子进行鉴定。图3所示结果证明了离子迁移飞行时间成像质谱(IM-ToF-IMS)对来自组织的蛋白质鉴定的可行性。 /p p style=" text-align: center " img title=" 4.png" src=" http://img1.17img.cn/17img/images/201708/insimg/bfc037cb-3061-4ea0-b5a6-6c3b3bf23e09.jpg" / /p p   组织消化与MALDI-IM-ToF-IMS方法相结合,可以对不同种类组织蛋白质鉴定实行“自下向上”的策略。 /p p    strong 五、MALDI成像策略 /strong /p p   1. 质谱成像流程 /p p   不同解吸电离方法与不同质量分析器组合,为在单个组织样品上进行互补实验提供了可能性。 /p p   需要仔细的实验设计来确保获得相关的互补分子图像信息。图4中显示的实验工作流程提供了从单个组织生成六个补充图像数据集的示例。在该示例中,通过外科手术获得一块组织。组织中的细胞表达荧光标记的蛋白质,因此成像工作流程中的步骤是产生荧光图像。这提供了一种特定蛋白质的详细位置。在将衬底表面上的10-20μm薄片进行组织切片和安装之后,进行SIMS分析。这提供了在高空间分辨率下的低分子量成像MS数据。静态SIMS除去表面材料的不到1%,因此残留的表面仍然可以进一步分析。SIMS研究完成后,可以用基质涂层覆盖组织表面(参见“基质涂层”一节)。根据感兴趣的分析物,表面可以或不能被洗涤。洗涤方案对所得结果有重要影响。在图4的实验工作流程中,在基质沉积之前不进行洗涤以允许小的水溶性分子成像。在基质沉积后,进行的第一次分析是ME-SIMS。再次只有少量化合物分子从表面去除,晶体表面保持可用于后续的MALDI分析。ME-SIMS数据集提供了更大的完整有机分子(如脂质和分子量小于2000 Da的小信号分子)的信息。进行的下一个分析是具有略高于解吸阈值的激光注量的MALDI-ToF分析。 MALDI-ToF数据集包含有关内源性肽和完整蛋白的信息(取决于使用的洗涤方案和基质)。可以获得的最后一个MS成像数据集是MALDI-FTICR-MS数据集(或离子迁移率图像数据集)。这些技术需要去除大多数基质材料。它们可以提供高质量分辨率和质量精度信息,有助于识别构成图像的分子。任何残留的基质材料都可以从多次分析的表面上洗去,以便进行最终的H& amp E染色。这提供了其他的组织学信息,可以与成像质谱数据集结合来鉴定特定区域或组织类型。 /p p style=" text-align: center " img title=" 5.png" src=" http://img1.17img.cn/17img/images/201708/insimg/6e50bb6c-daeb-4a23-895c-3da7452a8caa.jpg" / /p p   2. 基体涂层 /p p   在MALDI和ME-SIMS分析之前,必须将基质溶液涂布于组织表面。基质溶液由有机溶剂如甲醇或乙腈组成,添加剂为弱有机酸如芥子酸(SA)或2,5-二羟基苯甲酸(DHB)和三氟乙酸(TFA)。加入TFA可增加分子的离子化质子的量。基质应用方法将强烈影响成像MS结果。应用方法将对灵敏度,表面扩散与空间完整性,空间分辨率,表面平坦度和分析速度产生影响。组织性质和环境参数影响组织中蛋白质的提取效率和基质的结晶。因此,控制基质沉积环境也是很重要。有几个实验室正在考虑创新的沉积方法,如基质升华。对于一般实验室,一般有两种基质沉积方法:点样和喷涂。 /p p   2.1基质点样 /p p   将基质溶液点样到组织部分时需要将分析物的扩散限制在斑点大小范围。已经开发了两种基质检测方法:手动或自动检测。手动点样产生微滴液滴,经常用于不需要生成图像的MALDI组织分析。自动点样使用更小的体积(pl)液滴,并产生约120-150μm的点样尺寸和约200μm的最小分辨率。两种不同类型的自动识别器用于基质沉积:喷墨式压电喷嘴和使用聚焦声波的液滴分配器。两个喷射器都可以释放100μl在组织上干燥成150μm直径的液滴。在这种情况下,成像MS分析的分辨率通常会受到大于分析光束直径的基质点样点的限制。 /p p   2.2 基质喷涂 /p p   基质喷涂使均匀小滴的基质溶液覆盖了样品的整个表面。气动、振动喷头或电喷雾可以使基质溶液变生液滴喷雾。喷涂可以手动和自动化的方式进行。手动喷涂采用手持气动喷枪或TLC喷雾器。通过喷雾装置与x-y机器人联用可以实现自动喷雾应用,也可以在较大的区域上进行基质沉积。使用振动喷雾器在较小的区域也可实现自动喷涂,其小型腔室主要控制湿度。喷涂后形成的晶体通常为10-20μm。为了获得更小的晶体,可以使用电喷雾,减小敏感度产生甚至小于1μm的晶体。当使用喷雾沉积时,激光束的直径限制了MALDI成像质谱的空间分辨率。 /p p   3. 鉴定策略 /p p   用于产生分子图像的质谱峰的识别是所有质谱图像策略中的关键步骤。选择时候,可以使用高质量分辨率以及准确的质量进行测量。通常需要结合其他策略,如使用MALDI串联质谱或其他分析策略来识别表面化合物种类。 /p p   3.1 MALDI串联质谱法 /p p   串联质谱使用是识别表面产生的不同化合物离子的合理选择。限制因素是前体离子选择的分辨率、裂解效率和方法灵敏度。在相同的位置,通常只能进行几个质谱实验。可以在单个位置进行的实验数量仍然取决于提供信号的激光照射的数量。在相邻位置执行串联实验的隔行扫描成像方法可部分克服此问题。一旦裂解模式已知,可以应用多重反应监测来确定化合物分布。 /p p   4. LC-MS / MS鉴定 /p p   研究可以使用互补组织匀浆和提取来产生组织成分的信息库。也可以使用LC-MALDI来解决混合物复杂性的问题,增加灵敏度,以及降低离子抑制效应。 /p p   在直接MALDI成像实验中观察到的MALDI图谱比较分析可以用作识别策略的一部分。在这些研究中,串联MS可用于识别在LC-MALDI靶上发现的各个化合物成分。 /p p 参考文献: /p p a title=" " href=" http://sci-hub.cc/10.1016/B978-0-08-043848-1.00028-6" target=" _self" The Development of Imaging Mass Spectrometry. /a /p p a title=" " href=" http://www.sciencedirect.com/science/article/pii/B9780123744135000087" target=" _self" MALDI Techniques in Mass Spectrometry Imaging. /a /p p & nbsp /p
  • 国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ MS与Bruker Biotyper质谱系统在革兰阴性菌的鉴定效能评估
    范欣, 肖盟, 徐志鹏, 张戈,陈欣欣,徐英春. (中国医学科学院 北京协和医学院北京协和医院检验科) 国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ MS与Bruker Biotyper质谱系统在革兰阴性菌的鉴定效能评估 [J]. 中华检验医学杂志,2017,40( 1 ): 41-45. DOI: 10.3760/cma.j.issn.1009-9158.2017.01.009 编者按北京毅新博创生物科技有限公司是国内首家自主研发临床质谱的企业,也是第一家国产质谱走出国门走向世界的企业。该公司研发的clin-tof质谱系统是国内第一个通过CFDA认证的质谱系统。本文节选北京协和医院检验科徐英春主任最新发表在《中华检验医学杂志》上的研究论文,该研究验证了国产Clin-TOF质谱系统在革兰阴性菌方面的鉴定能力与Bruker质谱系统相当,都有非常好的鉴定效能。 该研究旨在评估国产基质辅助激光解吸电离飞行时间质谱系统Clin-TOF-Ⅱ型仪器及其搭载的BioExplorer V2.3鉴定数据库(简称Clin-TOF质谱系统)对革兰阴性菌的鉴定效能。共纳入1999至2000年及2014至2016年北京协和医院革兰阴性菌1025株,分属32个属,56个种或种复合体。其中,肠杆菌科细菌覆盖13个菌属;非发酵菌覆盖7个菌属;以及其他12个菌属的少见革兰阴性菌。另外,该研究纳入了临床常用的革兰阴性ATCC标准菌株,包括大肠埃希菌ATCC 8739、ATCC35218、ATCC25922、流感嗜血杆菌ATCC 49247、ATCC 49766、铜绿假单胞菌ATCC 27853。对照方法为Bruker Biotyper质谱系统:Bruker Autoflex Speed型号仪器及其搭载的Biotyper v3.1数据库(简称Bruker质谱系统)。采用直接涂抹法平行使用2套质谱系统对研究纳入菌株进行菌种鉴定。结果显示,Clin-TOF质谱系统准确鉴定率为98.05%(1 005/1 025)。该研究表明国产Clin-TOF质谱系统在鉴定革兰阴性菌方面有临床效能。 1.鉴定准确性Clin-TOF质谱系统临床菌株准确鉴定率为98.05%(1 005/1025)。2.肠肝菌科细菌对于689株肠杆菌科细菌来讲,包括埃希菌属、克雷伯菌属、肠杆菌属、沙雷菌属、枸橼酸杆菌属、变形杆菌属、摩根菌属、沙门菌属、普罗威斯登菌属、柔特勒菌属、多源菌属等,Clin-TOF质谱系统能够准确鉴定98.98%(682/689)的肠杆菌科细菌。3.非发酵菌对于306株非发酵菌,包括假单胞菌属、不动杆菌属、无色杆菌属、窄食单胞菌属、金黄杆菌属、莫拉菌属、产碱杆菌属等,Clin-TOF质谱鉴定系统准确鉴定率达到97.71%(299/306)。4.少见革兰阴性菌该研究纳入的30株少见格兰阴性菌,包括苍白杆菌属、伊金菌属、嗜血杆菌属、气单胞菌属、罗尔斯通菌属、勒克菌属、巴斯德菌属等。Clin-TOF质谱系统准确鉴定率为80%(24/30)。 Clin-tof质谱系统搭载的最新的BioExplorerV2.3数据库是我国自主研发建立的数据库,因此对我国临床病原菌鉴定有一定的针对性。Clin-TOF质谱系统与Bruker质谱系统的鉴定准确率均为98%以上, 国产clin-tof质谱系统在革兰阴性菌方面的鉴定能力与bruker质谱系统相当,都有非常好的鉴定效能。 Clin-TOF质谱系统简介Clin-TOF飞行时间质谱系统由国内首家自主研发临床质谱的企业——北京毅新博创生物科技有限公司生产。该公司的Clin-TOF-Ⅰ质谱系统于2012年即通过了欧盟 CE IVD 认证和美国FDA 认证,2014 年通过中国 CFDA 认证 。Clin-TOF-Ⅱ 临床质谱仪于 2016 年通过欧盟 CE IVD 认证,具有1200mm长度的飞行管,因此,比Clin-TOF-Ⅰ(飞行管长度800mm)具有更高的灵敏度、分辨率和精准度:在蛋白组学、基因组学应用基础上,拓展了微生物组学应用领域,拥有超过370属、2200种、7900株的微生物谱库,可对临床样本或培养后临床样本进行细菌、真菌、分支杆菌鉴定。Clin-TOF临床质谱仪,在蛋白组学研究方面,可进行生物样品的蛋白、多肽及蛋白糖基化修饰检测,是蛋白组学研究的有效技术手段;在基因组学研究方面,直接以核酸片段的分子量为标记,对核酸进行精确的定性定量分析,适用于各种类型的SNP基因型核酸分析实验,可用于肿瘤ctDNA、药物基因、遗传代谢疾病基因检测。Clin-TOF质谱系统是目前应用质谱技术对疾病蛋白质组、基因组、微生物组进行全方位研究的先进技术平台。 Clin-TOF质谱系统特点Clin-TOF飞行时间质谱系统具有功能多样及高通量的特点,可实现蛋白质及多肽检测、核酸检测、微生物检测多种功能,且具有快速检测大样本量标本的特点,该系统适合应用于临床检验项目。不同分析目标要求不同的样品处理及研究方法。疾病蛋白质组研究:样品(体液/组织/细胞)中的蛋白、多肽提取(液相色谱/固相芯片/液相芯片)→质谱检测→软件分析图谱→多肽鉴定→临床模型建立。基因组学研究:样品中的DNA提取→PCR扩增→SAP消化→单碱基延伸→树脂纯化、上样→质谱检测→核酸分型。微生物组学研究:菌种分离→菌种培养→样本提取、上样→质谱检测→微生物谱库检索、鉴定。
  • 113万!复旦大学采购电喷雾离子源精确定性质谱仪
    项目概况复旦大学电喷雾离子源精确定性质谱仪采购国际招标项目 招标项目的潜在投标人应在复旦大学招采进宝电子招投标系统(http://fudan.zcjb.com.cn/ebidding)获取招标文件,并于2022年04月22日 10点00分(北京时间)前递交投标文件。一、项目基本情况项目编号:0705-224002028013项目名称:复旦大学电喷雾离子源精确定性质谱仪采购国际招标项目预算金额:113.0000000 万元(人民币)最高限价(如有):113.0000000 万元(人民币)采购需求:招标项目编号:0705-224002028013招标项目名称:电喷雾离子源精确定性质谱仪项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1电喷雾离子源精确定性质谱仪1套分辨率:>21000FWHM @1522 m/z(单电荷)预算金额:人民币113万元 合同履行期限:签订合同后6个月内合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:详见招标文件3.本项目的特定资格要求:(1)投标人应为符合《中华人民共和国招标投标法》规定的独立法人或其他组织;(2)投标人应为投标产品的制造商或其合法代理商,代理商投标应提供投标产品的制造商针对本项目的唯一授权;(3)投标人须在投标截止期之前在国家商务部认可的机电产品招标投标电子交易平台(以下简称机电产品交易平台,网址为:http://www.chinabidding.com)上完成有效注册;(4)本项目不接受联合体投标;(5)本项目不接受分包和转包。三、获取招标文件时间:2022年03月24日 至 2022年03月31日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:复旦大学招采进宝电子招投标系统(http://fudan.zcjb.com.cn/ebidding)方式:有兴趣的潜在投标人应于2022年3月24日16:00时起至2022年3月31日16:00时止(北京时间),通过招标人指定的复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)在线领购招标文件,招标文件售价零元,在上述规定的招标文件出售截止期之后将不再出售本项目的招标文件。未从招标机构处领购招标文件的潜在投标人将不得参加投标售价:¥0.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年04月22日 10点00分(北京时间)开标时间:2022年04月22日 10点00分(北京时间)地点:复旦招采系统五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1、招标文件的获取招标文件领购开始时间:2022-03-24招标文件领购结束时间:2022-03-31是否在线售卖标书:否获取招标文件方式:现场领购招标文件领购地点:复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)招标文件售价:免费其他说明:有兴趣的潜在投标人应于2022年3月24日16:00时起至2022年3月31日16:00时止(北京时间),通过招标人指定的复旦大学招采进宝电子招投标系统(以下简称复旦招采系统,网址为:http://fudan.zcjb.com.cn/ebidding)在线领购招标文件,招标文件售价零元,在上述规定的招标文件出售截止期之后将不再出售本项目的招标文件。未从招标机构处领购招标文件的潜在投标人将不得参加投标2、投标文件的递交投标截止时间(开标时间):2022-04-22 10:00投标文件送达地点:复旦招采系统开标地点:复旦招采系统3、投标人在投标前应在必联网(https://www.ebnew.com)或机 电产品招标投标电子交易平台(https://www.chinabidding.com)完成注册及信息核验。评标结果将在必联网和中国国际招标网公示。4、联系方式招标人:复旦大学地址:上海市邯郸路220号联系人:张老师联系方式 :021-65641327招标代理机构:上海国际招标有限公司地址:中国上海延安西路358号美丽园大厦14楼联系人:马骎联系方式 :021-321736765、汇款方式招标代理机构开户银行(人民币):招标代理机构开户银行(美元):账号(人民币):账号(美元):其他: 1、通过境内账户用人民币形式汇款的银行账户信息 (1)开户银行:招商银行股份有限公司上海曹家渡支行 (2)户名:上海国际招标有限公司 (3)账号:215080920510001 2、通过境外账户用外币或人民币形式汇款的银行账户信息 (1)收款人开户银行:(ACCOUNT WITH INSTITUTION) (a)Bank: CHINA GUANGFA BANK, H.O. (b)Swift Code: GDBKCN22 (c)Address: No.713 EAST DONGFENG RD. YUEXIU DISTRICT, GUANGZHOU, GUANGDONG PROVINCE CHINA CHN (2)收款人名称、地址和账号:(BENEFICIARY) (a)Beneficiary: Shanghai International Tendering Co., Ltd. (b)Address: 14/F.358 Yan An Road(W), Shanghai 200040, P.R.China (c)A/C No.: 9550880025773600153(CNY) CNAPS:306290003671 (d)A/C No.: 9550880025773600333(USD) (e)A/C No.: 9550880025773600513(EUR) (f)A/C No.: 9550880025773600423(JPY)6、其他补充说明其他补充说明: 关于复旦招采系统:复旦招采系统是由第三方机构独立运营的电子采购平台,有关该平台的使用方法及注意事项请参见该平台的供应商使用说明,在参与投标的过程中若遇到该平台的操作及技术问题,请咨询平台运营机构(机构名称:上海汇招信息技术有限公司,联系电话:4000192166 转 4、4006166620)。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:复旦大学     地址:上海市邯郸路220号        联系方式:张老师、021-65641327      2.采购代理机构信息名 称:上海国际招标有限公司            地 址:中国上海延安西路358号美丽园大厦14楼            联系方式:马骎、021-32173676            3.项目联系方式项目联系人:马骎电 话:  021-32173676
  • 俄科学家研制出新型激光质谱仪 可直接确定材料元素组成
    p & nbsp & nbsp 俄罗斯国立核能研究大学莫斯科工程物理学院的专家研制出一种新型激光质谱仪,可直接确定材料元素成分,显著提高了分析速度,及降低分析成本。研究成果发表在《European Journal of Mass Spectrometry》杂志上。 /p p & nbsp & nbsp & nbsp 传统的元素分析法需要繁重的样品制备,如果所研究样品为固态,例如在分析矿物时,就首先需将其溶解,这不仅花费时间,还可能污染环境。除了长时间的样品制备,还需同标准样品进行比对,以免在分析整体组成上发生错误,从而增加分析成本。 br/ & nbsp & nbsp & nbsp br/ & nbsp & nbsp & nbsp 这种配备楔形离子反射镜质谱仪的特点是,无需使用标准样品即可对固体材料进行普遍分析,优势在于可进行广泛的能量传递,小巧轻便,耗电量低。此外,这种仪器可以分析所有级别的物质,方法环保,可进行局部和分层分析,不存在团簇离子的干扰。 br/ & nbsp & nbsp & nbsp br/ & nbsp & nbsp & nbsp 脉冲工作模式使这种分析仪与激光离子源能很好地结合在一起,鉴定速度快,因此该质谱仪还可用于刑事侦查学。同时,这种新型质谱仪也为医学,尤其是与分析人体毛发及指甲中微量元素之相关领域开启了新前景。此外,该仪器还可提高火车站和机场过境物品成分鉴定的精准度,加快土壤样本分析以获取准确的区域生态环境现状图。 /p
  • 质谱确定清华简2300岁 周文王遗言首曝光
    2009年4月25日,清华大学公布了“清华简”首批被释读的篇章。首次公布的两篇文章,一篇是周文王对武王说的遗言,另一篇是武王宴请伐耆国归来的周公等人的乐诗。这两篇文章都是首次面世,对中国历史研究有重大意义。 “清华简”已2300岁 2008年10月23日京华时报曾报道,由清华大学校友捐赠的2000多枚战国竹简入藏清华,其中包含已失传的上古《尚书》篇章,具有重要研究价值。昨天上午,清华大学又公布了对战国竹简的阶段性研究成果。 受清华大学委托,北京大学加速器质谱实验室、第四纪年代测定实验室对清华简无字残片样品做了AMS碳14年代测定,经树轮校正的数据是:公元前305±30年,即相当战国中期偏晚,与由古文字学观察的结果一致。 发现周文王遗言 经过几个月来精心的清理保护、初步释读及研究工作,最终确定这批“清华简”共为2388枚;目前在清华简发现的一些内容珍秘,在历史上久已失传。其中,整理出来的第一篇简书为《保训》。 《保训》全篇共11支简,每支22-24个字,其中第2支简上半残失。这些简有一个特点,简的长度只有28.5厘米,字体也有点特别,所以引起了研究人员注意,成为第一篇被释读的文章。 这篇文章记载了周文王临终对其子武王的遗言,里面讲到尧舜和商朝祖先上甲微的传说,过去没人知道。文王想用这些史事给太子灌输一个思想观念——“中”,也就是后来说的中道,说明《保训》的思想与之后的儒学有共通之处。 首次发现武王乐诗 据清华大学出土文献研究与保护中心主任李学勤教授介绍,耆国在商朝时是一个离商都朝歌不远的小国。在宋朝前,人们一直认为是周文王时代伐耆,宋朝之后对这个问题出现争论,有了武王伐耆之说。一直以来这两种说法谁都没有获得充分证据。 经释读“清华简”上一篇周武王时的乐诗,为“武王伐耆说”找到了证据。简上记载了周武王8年,征伐耆国得胜回到周都,在文王宗庙举行“饮至”典礼,有武王、周公、毕公、召公、辛甲、作册逸、师尚父等人,典礼中饮酒赋诗,作者已知有武王和周公。 李学勤表示,这些竹简既有历史价值,又有文学意义,特别是秦代以后,乐诗已经全部亡佚,这一发现更显重要。
  • 赛默飞世尔科技色谱质谱:人参提取物中人参皂甙的高分辨多级质谱分析
    赛默飞世尔科技色谱质谱应用经理王勇为博士   人参皂甙是人参的主要成分,具有提高动物体机能、抗衰老等多种药理作用。人参皂甙种类繁多,还有各种异构体,从人参中已经分离出39种人参皂甙单体。质谱技术的发展,尤其是高分辨多级质谱技术的使用能够更多、更快地发现人参皂甙可能的新成分。本文用LTQ-Orbitrap高分辨组合质谱仪对东北人参提取物进行了液质联用的5级高分辨质谱分析,得到了近30个人参皂甙成份的母离子和各级碎片离子的精确分子量,质量准确度在1ppm内,由此得到了唯一的分子式。通过和已报道的人参皂甙相比较,可以确定各种皂甙的甙元和糖组成。
  • ​基于碰撞活化解离技术的非变性自上而下质谱用于蛋白复合物高级结构解析
    大家好,本周为大家分享一篇最近发表在 Journal of the American Chemical Society上文章,Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes1。该文章的通讯作者是美国加利福尼亚大学洛杉矶分校的Joseph A. Loo教授。非变性质谱(native MS,nMS)通常用于揭示蛋白及其复合物的分子量大小和化学结合计量比,但若要进一步阐明深层次的结构信息,则需要与串联质谱结合,即非变性自上而下质谱(nTDMS),通过对母离子进行二级甚至多级碎裂可获取额外的序列、翻译后修饰(PTMs)以及配体结合位点信息。此外,nTDMS能以构象敏感的方式断裂共价键,这样就可以从碎片模式推断出有关蛋白高级结构的信息。值得注意的是,使用的激活/解离方式会极大地影响得到的蛋白质高阶结构信息。电子捕获/转移解离(ECD、ETD或ExD)和紫外光解离(UVPD)等快加热的活化方式因其能够在保留蛋白整体结构的情况下先对共价键进行断裂而被广泛应用于nTDMS分析中。而慢加热的活化方式如碰撞活化解离(CAD)会在断键前进行能量重排,导致一些较弱的非共价相互作用先发生破坏,例如:亚基的释放和展开,因此对高阶结构表征没有帮助。而此次Joseph A. Loo课题组的研究结果显示使用基于orbitrap的高能C-trap解离(HCD)同样也可以从天然蛋白复合物的中直接获得序列信息,并且碎片模式可以提供有关其气相和溶液相高阶结构信息。此外,CAD还可以生成大量的内部碎片(即不包含N-/ C-端的片段)用于揭示蛋白质复合物的高阶结构。为了研究蛋白复合物HCD的碎裂化情况,作者比较了酵母来源的乙醇脱氢酶四聚体(ADH)在Complex-down MS (psedo-MS3)和nTDMS两种分析策略下的碎片模式。如图1所示,在Complex-down MS分析中,ADH经源内解离(ISD)释放出单个亚基,该亚基经HCD碎裂生成肽段b/y离子。而在nTDMS分析中,肽段离子则可以从复合物中直接获得。如图2(上)所示,在Complex-down MS分析中总共获得了24个b离子和18个y离子,能够实现11.8%的序列覆盖率。近乎相等数目的b、y离子表明Complex-down MS分析中释放的ADH亚基N-端和C-端均具有较高的表面可及性,即亚基发生去折叠。此外,碎片模式也揭示了N-端乙酰化、V58T突变体以及Zn2+结合位点等信息。相比之下,nTDMS分析则更反映ADH的高阶结构,如图2(下)所示,在nTDMS分析中主要检测到b离子,几乎没有亚基信号,说明b离子是直接由复合物中共价键断裂产生的。ADH的nTDMS分析共产生了60个N-端b离子和3个C-端y离子(17.6%序列覆盖率)。由HCD产生的大量N端碎片类似于ADH基于电子和光子解离技术产生的nTDMS产物。将这些片段映射到ADH的晶体结构上可以看出,N端区域比C端区域更容易暴露于溶剂,而C端区域主要形成复合物的亚基-亚基界面。ADH的碎片离子中来源亚基界面断裂的仅占8%,大部分碎裂都发生在溶剂可及的N-端。图1 Complex-down MS和nTDMS分析流程图1 Complex-down MS(上)和nTDMS(下)碎片模式比较ADH的nTDMS分析充分展现了CAD在蛋白复合物高阶结构表征上的潜力,为了进一步验证,作者还选择了其他的蛋白复合物进行实验,如醛缩酶同源四聚体、谷胱甘肽巯基转移酶A1二聚体、肌酸激酶二聚体等。这些蛋白复合物在n-CAD-TDMS分析中都产生了与结构对应的碎片离子,说明基于CAD的nTDMS分析是具有普适性。当然也会存在一些例外,膜蛋白水通道蛋白(AqpZ)同源四聚体在nTDMS分析过程中产生了高丰度的单体亚基、二聚体、三聚体信号,这应该归因于AqpZ四聚体亚基之间的弱疏水结合界面,导致亚基的释放发生在共价键断裂之前,因此产生的b/y离子无法反映蛋白复合物的空间结构。相较而言,以盐桥为主要稳定作用的蛋白复合物,如ADH、醛缩酶等则更容易在nTDMS分析中产生肽段碎片离子。此外,基于CAD的nTDMS分析中还发现了大量的内部碎片,ADH产生的大部分内部碎片来源于溶剂可及区。尽管内部碎片难以辨认,但可以大幅度提高序列覆盖率,提供更精细的结构信息。一个从小分子裂解衍生到大分子解离的假设是,在实验的时间尺度内,由碰撞引起的激活是完全随机化的,并以沿着最低能量途径引导碰撞诱导的解离。然而,这些假设没有考虑到熵的要求,缓慢重排可能是释放亚基所必须的,例如重新定位盐桥将一个亚基与其他亚基相连。在碰撞次数或每次碰撞能量不足以碰撞出能释放亚基的罕见构型的情况下,以释放出更小的多肽碎片(具有更少的约束) 代替重排可能具有更高的竞争性。总之,本文展示CAD在nTDMS分析中的应用,无需基于光子或电子的活化方式,CAD可直接从蛋白复合物中获得肽段离子,并且该碎裂离子能够反映蛋白复合物的空间结构。撰稿:刘蕊洁编辑:李惠琳原文:Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes参考文献1. Lantz C, Wei B, Zhao B, et al. Native Top-Down Mass Spectrometry with Collisionally Activated Dissociation Yields Higher-Order Structure Information for Protein Complexes. J Am Chem Soc. 2022 144(48): 21826-21830.
  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?
    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy”相关文章。(DOI:https://doi.org/10.1021/acs.analchem.5b02324)。2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:https://doi.org/10.1021/acs.chemrev.1c00377)2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。2018年ASMS质谱杰出贡献奖可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。(相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。TrueMass创始人 John Hoyes博士TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。
  • 赛默飞:美国质谱年会 Tandem Mass Tag Grant 获奖者已确定
    赛默飞世尔科技表示, 2015 美国质谱年会(ASMS)Thermo Scientific Tandem Mass Tag (TMT) 研究奖项的获奖得主已经确定。今年是这个奖项设立的第二年,竞争者是全球在蛋白质组学工作中具有创新性和影响力的研究者,最终获奖者将在四位科学家候选者中产生。   奖品包括价值5000美元的TMT试剂, 研究人员可用来进行全蛋白表达研究的定量、标准化和简单化。   赛默产品经理Kay Opperman说:&ldquo 颁奖典礼的举行肯定了科技创新是我们工作的亮点之一,这令人很惊喜也很荣幸,这么多杰出科学家都在使用最新的仪器和试剂,这也是一个可以看到蛋白质组学未来的窗口。&rdquo 颁奖活动将在ASMS期间于圣路易斯Renaissance Hotel举行。 编译:郭浩楠
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制