当前位置: 仪器信息网 > 行业主题 > >

多孔性材料通孔孔径分析仪

仪器信息网多孔性材料通孔孔径分析仪专题为您提供2024年最新多孔性材料通孔孔径分析仪价格报价、厂家品牌的相关信息, 包括多孔性材料通孔孔径分析仪参数、型号等,不管是国产,还是进口品牌的多孔性材料通孔孔径分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多孔性材料通孔孔径分析仪相关的耗材配件、试剂标物,还有多孔性材料通孔孔径分析仪相关的最新资讯、资料,以及多孔性材料通孔孔径分析仪相关的解决方案。

多孔性材料通孔孔径分析仪相关的论坛

  • 你所不注意的细节——色谱柱填料孔径对分析的影响~

    一般情况下,我们在购买色谱柱时,很少考虑色谱柱孔径方面的信息,其实,色谱柱填料孔径对分析也有些影响,具体如下:*HPLC吸附介质是多孔的颗粒,绝大多数的反应表面于孔内。因此,分析物必须进入孔内才能被吸附和分离*孔径小,含孔率高,则比表面积大,碳载量高,色谱柱分离性能也随之提高*另外,孔径大小必须和分子大小相匹配。一般情况下,分子量小于2000的分析物使用100 Å 或更小;分子量在2000-10000之间的分析物使用100-200 Å的填料;大于10000的包括多肽,蛋白质等需要选用300 Å或更大的孔径。为了达到最佳分离,一般要求孔径直径是分子直径的3倍以上

  • 【原创】多孔材料表征分析技术研讨会将在广州举办----广东搞物性的版友可以参加下

    为了使广大用户更多地了解美国康塔仪器公司最前沿的测量技术,美国康塔仪器公司将于2011 年5 月25日在广州市华南理工大学举办“粉体和多孔材料表征分析技术研讨会”,欢迎光临指导。   日 期:2011 年5 月25 日(星期三)   时 间:9:30 ~ 16:00   地 点:广东省广州市华五山路南理工大学五山校区材料学院(25号楼3楼会议室)   内 容: 你的孔径分析结果准确吗?  --多孔材料的孔分析技术进展  l 背景知识  l 吸附理论  l 气体吸附法测量比表面和孔径大小  l 如何正确应用BET 理论计算微孔样品比表面  l 孔分析模型及非定域密度函数理论在孔径分析中的应用  l 化学吸附的应用以及对仪器的要求  l 2010 年新产品介绍:Autosorb-iQ 全自动双站微孔吸附分析系统  l 比表面和孔径分析操作中应特别注意的问题及曲线分析 (NOVAe 系列测试技术培训)  主讲人:杨正红(美国康塔仪器公司 中国区首席代表)  诚邀相关领域的专家、同行莅临交流!  联系报名方式:  美国康塔仪器公司北京代表处 陈小姐 010-64401522; 800-810-0515 E-mail: chenliwen@quantachrome-china.com  美国康塔仪器公司上海办事处 朱小姐 021- 021-5282 8278 E-mail: zhuleina@quantachrome-china.com  美国康塔仪器公司广州办事处 蔡先生 18602045808 E-mail: caidabin@quantachrome-china.com  u 杨正红,美国康塔仪器公司北京代表处首席代表,中国区经理

  • 测定固体材料孔径分布和孔隙度 压汞法

    测定固体材料孔径分布和孔隙度 压汞法

    一般测试样品的孔径分布,所使用的方法就是静态容量法和压汞法。其原理是通过测试的分压和对应的各级孔的吸附量,来表征材料孔径的分布。表征的方法是,通过各级孔径的体积与对应的分压下的一个曲线图,来表征材料的孔径分布。今天我们主要讲讲测定固体材料孔径分布和孔隙度 -压汞法它的原理如下: [font=宋体]由于非浸润[/font][font=宋体]液体[/font][font=宋体]汞仅在施加外压力[/font][font=宋体]时方可[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔体(不包含[/font][font=宋体]闭孔[/font][font=宋体]),在[/font][font=宋体]不断增压的情况下,[/font][font=宋体]进入[/font][font=宋体]多[/font][font=宋体]孔[/font][font=宋体]体的汞体积[/font][font=宋体](或孔径)[/font][font=宋体]与外压力具有一定函数关系[/font][font=宋体],[/font][font=宋体]从而测得样品的孔径分布。[/font][font=宋体]在假设孔为圆柱形的前提下,[/font][font=宋体][color=#222222]Washburn方程[/color][/font][font=宋体][color=#222222]给出了压力与孔径[/color][/font][font=宋体][color=#222222]间[/color][/font][font=宋体][color=#222222][font=宋体]的关系[/font],[/color][/font][font=宋体][color=#222222]见下[/color][/font][font=宋体][color=#222222]式[/color][/font][font=宋体][color=#222222]。[/color][/font][img=,156,66]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301515009551_4103_2140715_3.png!w156x66.jpg[/img][font=宋体]其中,[/font]γ为汞的表面张力、θ为汞在样品上的接触角。我们实验室所购压汞仪为美国麦克仪器的9500系列的全自动压汞仪。最高压力可加至33000psia(≈230MPa),可分析孔径范围为0.0055um-400um。压汞检测适用范围: 适用于大多数非浸润多孔材料,不适用于汞齐化的材料,如:金、铝、还原铜、还原镍和银等一些金属;样品预处理: 最好在>110℃温度下,真空状态下干燥处理1h以上;样品尺寸的选择 因为检测中心使用的是5cc的膨胀计,样品尺寸为φ14×20mm的样品较为适宜。 但样品最佳的尺寸要根据所分析材料的总孔体积选择。一般,当Stem Volume Used 小于25%或大于90%时,需要改变分析变量。第一:可以选择稍大或稍小的样品量以提供更好的分辨率,第二改变毛细管体积。具体操作如[b][font=黑体] 1.[/font][font=黑体][color=#222222]样品烘干[/color][/font][/b][font=宋体][color=#222222]1[/color][/font][font=宋体][color=#222222]10[/color][/font][font=宋体][color=#222222]℃±[/color][/font][font=宋体][color=#222222]5[/color][/font][font=宋体][color=#222222]℃,2h,贮存在干燥器中冷却至室温备用。[/color][/font][font=宋体][color=#222222] [/color][/font][font=宋体][color=#ff0000][font=宋体]最好在>[/font][font=宋体]110℃温度下,真空状态下干燥处理1h以上[/font][/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=黑体][color=#222222]2 [/color][/font][b][font=黑体][color=#222222]膨胀计[/color][/font][font=黑体][color=#222222]装样[/color][/font][/b][font=宋体][color=#222222]将干燥[/color][/font][font=宋体][color=#222222]冷却后的样品[/color][/font][font=宋体][color=#222222]称重[/color][/font][font=宋体][color=#222222]后[/color][/font][font=宋体][color=#222222]放入[/color][/font][font=宋体][color=#222222]一干净的膨胀计中,[/color][/font][font=宋体][color=#222222]用成套[/color][/font][font=宋体][color=#222222]的密封件[/color][/font][font=宋体][color=#222222]密封[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]密封时[/color][/font][font=宋体][color=#222222]必须使用密封脂[/color][/font][font=宋体][color=#222222],确保[/color][/font][font=宋体][color=#222222]密封性[/color][/font][font=宋体][color=#222222],密封不严可能造成真空度无法达到要求[/color][/font][font=宋体][color=#222222]。[/color][/font][font=楷体][color=#222222]注意:在样品装样等过程中必须戴好乳胶手套,皮肤不得直接接触样品和膨胀剂等,全程佩戴好口罩等防护用品。[/color][/font][font=黑体][color=#222222]3 [/color][/font][b][font=黑体][color=#222222]抽真空[/color][/font][/b][font=宋体][color=#222222]抽真空的目的是去除样品中的大多数水分及气体。[/color][/font][font=宋体][color=#222222]首先[/color][/font][font=宋体][color=#222222]将[/color][/font][font=宋体][color=#222222]装有样品的[/color][/font][font=宋体][color=#222222]膨胀计[/color][/font][font=宋体][color=#222222]安装在压汞[/color][/font][font=宋体][color=#222222]仪低压[/color][/font][font=宋体][color=#222222]站,建立低压测试文件开始分析,[/color][/font][font=宋体][color=#222222]真空度[/color][/font][font=宋体][color=#222222]达到小于[/color][/font][font=宋体][color=#222222]50μmHg[/color][/font][font=宋体][color=#ff0000][font=宋体](使用真空泵将膨胀计抽真空至[/font][font=宋体]20mg汞柱[/font][/color][/font][font=宋体][color=#ff0000])[/color][/font][font=宋体][color=#ff0000]。[/color][/font][font=宋体][color=#222222]要求后开始下一步低压测试[/color][/font][font=宋体][color=#222222]。[/color][/font][font=黑体][color=#222222]4 [/color][/font][b][font=黑体][color=#222222]低压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]抽真空结束后压汞仪[/color][/font][font=宋体][color=#222222]以分级连续升压或在[/color][/font][font=宋体][color=#222222]可[/color][/font][font=宋体][color=#222222]控[/color][/font][font=宋体][color=#222222]的[/color][/font][font=宋体][color=#222222]方式下以步进式[/color][/font][font=宋体][color=#222222]升压[/color][/font][font=宋体][color=#222222]的方式增压[/color][/font][font=宋体][color=#222222]。系统[/color][/font][font=宋体][color=#222222]记录压力和对应的进[/color][/font][font=宋体][color=#222222]汞[/color][/font][font=宋体][color=#222222]体积。当[/color][/font][font=宋体][color=#222222]达到设定[/color][/font][font=宋体][color=#222222]的压力[/color][/font][font=宋体][color=#222222][back=#ffff00](一般为[/back][/color][/font][font=宋体][color=#222222][back=#ffff00]30psia[/back][/color][/font][font=宋体][color=#222222][back=#ffff00])[/back][/color][/font][font=宋体][color=#222222]后,减压[/color][/font][font=宋体][color=#222222]力[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=宋体][color=#222222]当泄压结束后将膨胀计组件松开取下,毛细管向上称重并记录。[/color][/font][font=黑体][color=#222222]5 [/color][/font][b][font=黑体][color=#222222]高压[/color][/font][font=黑体][color=#222222]测试[/color][/font][/b][font=宋体][color=#222222]安装膨胀计于[/color][/font][font=宋体][color=#222222]高压[/color][/font][font=宋体][color=#222222]站[/color][/font][font=宋体][color=#222222],[/color][/font][font=宋体][color=#222222]确保密封性。建立高压测试文件开始孔径分布的高压分析。通过[/color][/font][font=宋体][color=#222222]计算机图表[/color][/font][font=宋体][color=#222222]记录[/color][/font][font=宋体][color=#222222]压力和相应的注汞体积。当[/color][/font][font=宋体][color=#222222]达到[/color][/font][font=宋体][color=#222222]所需的最大压力,[/color][/font][font=宋体][color=#222222]逐步减压[/color][/font][font=宋体][color=#222222]至大气压。[/color][/font][font=黑体][color=#222222]6 [/color][/font][b][font=黑体][color=#222222]测试[/color][/font][font=黑体][color=#222222]完毕[/color][/font][/b][font=宋体][color=#222222]从测[/color][/font][font=宋体][color=#222222]孔仪中取出膨胀计前,必须确保[/color][/font][font=宋体][color=#222222]仪器[/color][/font][font=宋体][color=#222222]内的压力已降至大气压。[/color][/font][font=黑体][color=#222222]7 [/color][/font][b][font=黑体][color=#222222]空管校准[/color][/font][/b][font=宋体][color=#222222]为消除由于汞压缩而产生的相对注汞体积、样品管和其他仪器元件等产生的误差[/color][/font][font=宋体][color=#222222]。[/color][/font][font=宋体][color=#222222][font=宋体]在使用新的膨胀计时需按住[/font][font=宋体]8[/font][/color][/font][font=宋体][color=#222222].2-8.6[/color][/font][font=宋体][color=#222222]进行空管校准测试,建立专用的膨胀计数据,以便后续测试时减去空白,得到样品的真实孔径分布数据。[/color][/font][b][font=黑体]8.结果计算[/font][font=黑体] [/font][/b][font=宋体][font=宋体]通过以上测试获取样品的中位孔径、最可几孔径以及孔径分布曲线等数据,典型孔径分布曲线如下图[/font][font=宋体]1[/font][/font][font=宋体]-3[/font][font=宋体]所示。[/font]8.1压汞图谱介绍[font=宋体] [/font][img=,690,584]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301522043958_4855_2140715_3.png!w690x584.jpg[/img]8.2压汞过程中汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301523249691_5499_2140715_3.png!w690x575.jpg[/img]8.3压力转化为孔径后的汞的变化量过程图[img=,690,575]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301524109350_4028_2140715_3.png!w690x575.jpg[/img]8.4压汞测试报告结果[img=,690,274]https://ng1.17img.cn/bbsfiles/images/2023/09/202309301526057747_9550_2140715_3.png!w690x274.jpg[/img]Total intrusion Volume【总侵入体积】,mL/g,是指在分析过程中获得的最大压力下,汞侵入样品孔隙的最大体积。 Total Pore Area【总孔面积】,m2/g,是基于圆柱几何假设的孔壁面积。Median Pore Diameter(Volume)【中值孔径(体积)】,nm,是指在较大和较小的直径上出现等量孔隙体积时的孔径。Median Pore Diameter(Area)【中值孔径(面积)】 ,nm,是在较大和较小的直径上出现相等数量的孔壁面积时的孔径。 注:中值孔径(体积)和中值孔径(面积)经常不同,因为分布中较大的孔对总体积贡献很大,而较小的孔对总孔面积贡献更大。随着孔隙分布变得更宽或呈双峰,这两个数字之间的差异将变得更大。END

  • PTFE多孔材料(微孔膜,微孔滤膜)在仪器分析中有哪些应用?

    我们是做PTFE多孔材料的。刚刚进入这个行业,感觉比较迷茫目前查了一些资料,初步了解了PTFE多孔材料有用于液体纯化、色谱、过滤分离等领域大神们能否给我再详细拓展一下PTFE微孔膜,在仪器分析中的具体应用啊!比如为什么要选择PTFE过滤材料而不选择其他滤材

  • 【分享】材料比表面积和孔径分析

    北京金埃谱科技有限公司,免费为有需要的科研工作者提供测试服务。材料比表面积和孔径分析测试,已经成为当前科研活动不可或缺的一项内容,本司可为您提供免费的测试。有需要的可以联系我、给我留言。

  • “比表面与孔径分析原理及应用”免费讲座福利包拿走不谢!

    [align=center][b][color=#ff0000]《比表面与孔径分析原理及应用》系列讲座之第一讲 [b]氮吸附法比表面及孔径分析原理[/b][/color][/b][/align][b][color=#ff0000]主讲人:[/color][/b]钟家湘,北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”。[b][color=#ff0000]开讲时间:[/color][/b]2018年7月5日 10:00[b][color=#ff0000]免费报名链接:[/color][/b][url]http://www.woyaoce.cn/webinar/meeting_3335.html[/url][b][color=#ff0000]课程简介:[/color][/b]本讲主要介绍超细粉体材料比表面及孔径分布的基本概念;吸附科学在比表面及孔径分析中的应用要点;氮吸附比表面测定原理;氮吸附孔径分布测定原理。比表面与孔径分析原理及应用专家系列讲座之课程目录第一讲 氮吸附法比表面及孔径分析原理第二讲 连续流动色谱法比表面仪原理及应用第三讲 超细粉体表面孔径分布的表征与测试原理第四讲 静态容量法比表面及孔径分析仪原理及应用第五讲 超微孔孔径分布的分析原理及方法第六讲 密度函数理论在孔径分析中的应用 这样的学习充电机会你舍得错过吗?[b][color=#ff0000]系列课程链接:[url]https://www.instrument.com.cn/ykt/video/106_0.html[/url][/color][/b][img]http://5b0988e595225.cdn.sohucs.com/images/20170916/a327e21777b4435893b261c0d2dea633.gif[/img]

  • 【原创】高校应如何选择国产比表面及孔径分布测定仪

    1. 引言微纳米材料的性能取决于小尺寸效应、表面效应、量子尺寸效应等,其中表面效应来源于表面原子的状态与特性的特殊性以及材料的使用性能往往与其表面最相关,表面特性主要用两个指标来表征,一个是比表面:单位质量粉体的总表面积;另一个是孔径分布:粉体表面孔体积随孔尺寸的变化;微纳米材料的表面特性具有极为重要的意义,因为材料的许多功能直接取决于表面原子的特性,例如催化功能、吸附功能、吸波功能、抗腐蚀功能、烧结功能、补强功能等等。比表面仪就是测定这两个指标的分析仪器。由于微纳米材料已成为近代材料科学的前沿之一,因此“比表面及孔径分布的测定”已作为基础实验列入我国高等院校的教学计划中,为此很多院校都面临选购比表面及孔径分布测定仪的问题,下面就如何选择国产比表面仪提出一些分析意见,供老师们参考。2. 我国比表面及孔径分析仪概况2.1比表面及孔径分析仪分类对于微纳米材料而言,其颗粒尺寸本来很小,加上形状千差万别,比表面及孔尺寸不可能直接测量,必须借助于更小尺度的“量具”,氮吸附法就是借助于氮分子作为一个“量具”或“标尺”来度量粉体的表面积以及表面的孔容积,这是一个很巧妙、很科学的方法。按测量氮吸附量的方法不同及功能不同,我国常用的比表面及孔径分析仪分类如下: 动态直接对比法比表面仪连续流动色谱法氮吸附仪 动态BET比表面仪 动态比表面及孔径分布测定仪 静态容量法比表面及孔径分布测定仪“连续流动色谱法”是采用气相色谱仪中的热导检测器来测定粉体表面的氮吸附量的方法,这种方法可以实现直接对比法快速测定比表面,BET比表面测定和介孔孔径分布测定,目前国内动态仪器趋向于一机多能,在仪器结构基本相同的情况下,只要配备适当软件,就可实现既测比表面又测孔径分布的功能,而且能基本实现自动化;“静态容量法”测量氮吸附量与动态法不同,他是在一个密闭的真空系统中,精密的改变粉体样品表面的氮气压力,从0逐步变化到接近1个大气压,用高精度压力传感器测出样品吸附前后压力的变化,再根据气体状态方程计算出气体的吸附量或脱附量。测出了氮吸附量后,根据氮吸附理论计算公式,便可求出BET比表面及孔径分布。欧美等发达国家基本上均采用静态容量法氮吸附仪,我国已有少数公司可以生产。2.2国产静态容量法比表面及孔径分布测定仪的介绍国产静态容量法氮吸附仪在我国只有2、3年历史,一般了解较少,先通过下列两个表格的对照来介绍。表 静态容量法氮吸附仪与动态法氮吸附仪的比较序号国产流动色谱法比表面及孔径分析仪国产静态容量法比表面及孔径分析仪1动态法仅国内采用,国外基本不用静态容量法国际通用2达不到真正的吸附平衡,仅为流动态的相对平衡达到真正的吸附平衡,理论计算更为可靠3不能测量等温吸附曲线,只能测定等温脱附曲线,且在高压区失真,不能对材料的吸附特性进行分析可准确测定等温吸附曲线和等温脱附曲线,可以对材料的吸附特性进行分析4测量的压力点少,特别是对孔径分布的测定过于粗糙BET比表面测3~5点,重复精度≤2%孔径分布只测定(脱附过程)~12点 测量的压力点多,表明测试更为精确可靠,BET比表面一般测7~9点,重复精度≤1%孔径分布测定,吸附过程≥26点,脱附过程≥26点,最高都可测到100点[/font

  • 如何准确解析比表面积和孔径分布

    作为固体材料最重要的物理性质之一,比表面积和孔径分布的性能表征在许多行业中都有着广泛的应用。材料吸附性能的优劣、吸附特点等与其孔隙结构有着密切的联系。本次微课从物理吸附理论出发,系统地介绍了多孔材料

  • 【金秋计划】+那色谱填料的孔径,测定什么样的产品需要考虑呢?

    [font=none][font=none]答:现在多孔填料的[/font] 95%以上表面积在孔内部,这样只有分析目标物进入孔内,才能达到分析分离的目的。而只有样品分子直径小于平均孔径,才能进入微粒内部。对于小分子的反相分离,选择小孔径(60? ~120?)填料柱,对于小分子和多肽,使用100? ~150?,而只有当目标物的分子量大于2000 时我们才会选择300?孔径的填料。 [/font]

  • 【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    【原创大赛】物理吸附法or BET法? ---浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称

    [align=center][color=#333333]物理吸附法[/color][color=#333333]or BET[/color][color=#333333]法?[/color][/align][align=center][color=#333333]---[/color][color=#333333]浅析确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称[/color][/align][align=center][color=#333333]丁延伟[/color][/align][align=center][color=#333333](中国科学技术大学理化科学实验中心,安徽省合肥市,[/color][color=#333333]230026[/color][color=#333333])[/color][/align][b][color=#333333]摘要:[/color][/b][color=#333333]气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用。[/color][color=#333333]BET[/color][color=#333333]法作为一种[/color][color=#333333]多分子层吸附理论,常用来计算固体材料的比表面积。[/color][color=#333333]本文介绍了物理吸附法和[/color][color=#333333]BET[/color][color=#333333]法的相关理论及应用,力图规范确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称为物理吸附法。[/color][color=#333333] [/color][b][color=#333333]关键词:物理吸附,[/color][color=#333333]BET[/color][color=#333333]模型,比表面积[/color][/b][color=#333333] [/color][b][color=#333333]1. [/color][color=#333333]前言[/color][/b] 多孔材料由于其特殊的多孔性结构,使其具有高比表面积、高孔隙率、高透过性、高吸附性、可组装性等诸多优异的物理化学性能,因而在化工、生物医药、环保、功能材料等领域均有广泛应用[sup][/sup]。多孔材料的研究已成为当今材料科学研究领域的一大热点。多孔材料的研究离不开结构表征分析,多孔材料的孔隙结构特性主要包括孔径、孔径分布、孔形态、孔容积及孔通道特性等方面。多孔材料的孔隙结构是不规则的,孔穴尺寸在不同方向上存在着差异。多孔材料的这种各向异性状态,可以对其各项性能产生不同程度的影响[sup][/sup]。了解多孔材料的比表面积和孔隙形貌对研究其活性、吸附、催化、力学性能等都具有重要意义。多孔材料的表征方法很多,根据检测目的不同,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜、压汞法、气泡法、离心力法、透过法、核磁共振法等。 气体吸附技术作为对固体材料的比表面积、孔径分布、孔隙度、表面性质等参数的分析的必备手段,在物理、化学、材料、生物、环境等学科中得到日益广泛的应用[sup][/sup]。气体吸附技术主要分为物理吸附和化学吸附两大类。通常使用物理吸附技术来确定固体材料的比表面积、孔径分布、孔隙度等信息[sup][/sup]。 然而,在许多已经公开发表的各种科研论文、专利等技术资料中通常对用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的名称存在比较混乱的现象。例如,有些技术资料中称这种方法为BET法,而有的则称为比表面积测定法。本文试图从理论角度来规范这类方法的名称。[b]2.物理吸附相关理论[sup][/sup][/b] 通常将互不相混溶的两相接触所形成的过渡区域称为界面,吸附作用则发生在两相之间的界面上。吸附是物质(通常为固体物质)表面吸着周围介质(液体或气体)中的分子或离子现象,是一种传质过程。吸附质(adsorbate)通常定义为在界面上被吸附的物质,而吸附剂(adsorbent)则被定义为具备从[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者液相中吸附某些组分的能力的物质。吸附作用通常可以分为物理吸附与化学吸附。依靠分子间普遍存在的van der Waals力产生的吸附作用称为物理吸附,而由于吸附质分子与吸附剂发生化学作用产生的吸附称为化学吸附。 吸附质在吸附剂上的吸附量([i]x[/i])是绝对温度([i]T[/i])、气体压力([i]p[/i])或液体浓度([i]c[/i])和固体-气体之间的吸附作用势([i]E[/i])的函数,用式(1)表示。[img=,576,135]http://ng1.17img.cn/bbsfiles/images/2017/08/201708140959_01_2984502_3.jpg[/img] 对于给定的气-固体系,当温度[i]T[/i]保持恒定时,通常可认为吸附作用势[i]E[/i]保持不变。此时平衡吸附量[i]x[/i]只是压力[i]p[/i]的函数,该表达式得到的曲线通常称为吸附等温线(adsorptionisotherm)。同样的道理,当压力[i]p[/i]保持恒定时,吸附量[i]x[/i]与温度[i]T[/i]的关系曲线则称之为吸附等压线;当吸附量[i]x[/i]保持恒定不变时,[i]p[/i]与[i]T[/i]的关系则称为吸附等容线。[color=#333333] 物理吸附是由分子间的弱相互作用力所引起的吸附,由于该作用较弱,由此产生的吸附热较小,吸附和脱附速度也都较快。被吸附物质也较容易脱附下来,因此物理吸附是可逆的。例如分子筛对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。[/color] 通常情况下,我们可以通过分析吸附体系的吸附等温线根据相关的理论模型来得到固体材料的比表面积、孔径分布、孔隙度、表面性质等参数。 实验上,利用专业的商品化的物理吸附仪或化学吸附仪,先将吸附剂在一定温度下以真空或吹扫气的形式对其进行彻底脱气,再在恒定温度下,控制吸附质与载气的分压,使吸附体系逐步达到平衡。这种通过控制吸附质分压与相应的平衡吸附量的关系所得到的实验曲线即为吸附等温线。 由于气体在固体表面的吸附状态多种多样,由此所得到的吸附等温线也不是一成不变的。2015年8月,国际化学领域最权威的国际纯粹与应用化学联合会(IUPAC)公布了最新的比表面积和孔参数分析的气体吸附分析规范[sup][/sup]。图1为物理吸附等温线的最新分类方法,实际由实验得到的各种吸附等温线大多是这六类等温线的不同组合。多年来,许多研究者对各类吸附等温线提出了许多吸附相互作用理论,并推导出了等温吸附公式,如Henry吸附式、Freundlich吸附式、Langmuir理论、BET吸附理论等,并依托于这些理论表征吸附剂的结构与成分,如比表面积、孔容积、孔径分布等,其研究深入到吸附作用的机理。[b]3. 气体吸附法测定比表面积与孔参数的基本原理[/b][color=#333333] 用于测量材料的物理吸附性质的仪器主要有容量法和重量法两种,其中以容量法更为常用。容量法测量物理吸附的仪器又分为流动法和静态法两种。本文主要介绍静态容量法仪器的工作原理及实验样品用量。[/color][color=#333333] 静态容量法由于待测样品是在固定容积的样品管中,吸附质相对动态法不流动。该方法测量是在等温(通常用液氮)条件下,向样品管内通入一定量的吸附质气体(通常为[/color][color=#333333]N[sub]2[/sub][/color][color=#333333]),通过控制样品管中的平衡压力直接测得吸附分压,由气体状态方程(通常为理想气体状态方程)得到该分压点的吸附量。测量过程中逐渐增加吸附质气体使吸附平衡压力逐渐变大,最终得到吸附等温线。通过逐渐吸附质气体被抽走来降低吸附平衡压力,得到脱附等温线(如图[/color][color=#333333]2[/color][color=#333333])。[/color][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_01_2984502_3.jpg[/img][/align][align=center][img=,494,383]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141000_02_2984502_3.jpg[/img][/align][color=#333333] 根据所测得的吸附[/color][color=#333333]-[/color][color=#333333]脱附等温线可以判断吸附现象的本质,如属于分配(线性),还是吸附(非线性);测量吸附剂对特定吸附质的吸附容量;用于计算吸附剂的孔径、比表面、孔容积、孔形状等重要物理参数。[/color][color=#333333] 气体吸附法测定比表面积利用的是多层吸附的原理。其基本原理是测算出某种气体吸附质分子在固体表面形成完整单分子吸附层的吸附量,然后再乘以每个分子的覆盖面积即得到样品的总表面积。单位质量的吸附剂的总表面积([/color][color=#333333]m[sup]2[/sup]/g[/color][color=#333333])称为比表面积,它是表面积的常用表示方式。[/color][color=#333333]但是由于实际的固体表面并不是理想的二维平面,而是粗糙不平滑的。因此吸附法测得的表面积只是吸附质分子可以直接[/color][color=#333333]“[/color][color=#333333]接触[/color][color=#333333]”[/color][color=#333333]到的表面的面积,这一数值会因吸附质分子大小不同而发生变化。为了得到固体材料的真实有效的表面积,吸附质分子应该尽量小、接近球形而且对表面惰性。高纯氮气、氪气和氩气等气体都是适合的选择。其中,由于液态氮的价格便宜、容易高纯度获得,其在大多数表面上都可以形成典型的[/color][color=#333333] II[/color][color=#333333]、[/color][color=#333333]IV [/color][color=#333333]型吸附等温线,并且分子截面积已经得到了公认值,所以最为常用。气体吸附质分子在固体表面形成完整单分子吸附层的吸附量需要通过处理吸附等温线数据求出。[/color][color=#333333] 气体吸附法测定孔径分布利用的是毛细冷凝现象和体积等效交换原理,即将被测孔中充满的液氮量等效为孔的体积。[/color][color=#333333] 由于不同材料的孔结构大有不同,因此我们采用不同的数据处理方法与模型(如表[/color][color=#333333]1[/color][color=#333333])对不同情况下的孔结构进行具体处理[/color]。[align=center]表1 常用孔结构分析中的数据处理方法与模型[/align] [table][tr][td] [align=center]孔结构参数[/align] [/td][td] [align=center]数据处理方法或模型[/align] [/td][/tr][tr][td] [align=center]比表面[/align] [/td][td]BET, Langmiur(微孔), DR, BJT, DH[/td][/tr][tr][td] [align=center]中孔分布[/align] [/td][td]BJH, DH[/td][/tr][tr][td] [align=center]微孔分布[/align] [/td][td]DA(DR理论的扩展), HK, SF, MP[/td][/tr][tr][td] [align=center]微孔/中孔分布[/align] [/td][td]NLDFT[/td][/tr][tr][td] [align=center]微孔体积[/align] [/td][td]t-方法, DR(含平均孔宽,分子筛和活性炭等微孔表征)[/td][/tr][tr][td] [align=center]分形维数[/align] [/td][td]FHH, NK[/td][/tr][/table][b]4. BET理论[/b][color=#333333] BET[/color][color=#333333]理论是根据吸[/color]附等温线得到固体材料的比表面积的一种理论模型,最初是由三位美国学者S. Brunauer、P. Emmett和E. Teller于1938年提出的[url=https://baike.baidu.com/item/BET][color=black]BET[/color][/url]多分子层吸附理论,BET是三位科学家(Brunauer、Emmett和Teller)的首字母缩写。其数学表达式即BET方程。 推导BET方程所采用的模型主要做了以下基本假设:(1)吸附表面在能量上是均匀的,即各吸附位具有相同的能量;(2)被吸附分子间的作用力可略去不计;(3)固体吸附剂对吸附质气体的吸附可以是多层的,第一层未饱和吸附时就可由第二层、第三层等开始吸附,因此各吸附层之间存在着动态平衡;(4)自第二层开始[color=#333333]至第[/color][i][color=#333333]n[/color][/i][color=#333333]层([/color][i][color=#333333]n[/color][/i][color=#333333]→∞[/color][color=#333333]),各层的吸附热都等于吸附质的液化热。[/color][color=#333333] 我们可以通过热力学和动力学两种方法来推导[/color][color=#333333]BET[/color][color=#333333]方程,表达式如下:[/color][align=center][img=,675,272]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141001_01_2984502_3.jpg[/img][/align][color=#333333] 由上式可见,当物理吸附的实验数据按[/color][color=#333333] [i]p[/i]/[i]v [/i]([i]p[/i][sub]0[/sub]-[i]p[/i])[/color][color=#333333]与[/color][i][color=#333333]p[/color][/i][color=#333333]/[i]p[/i][sub]0[/sub][/color][color=#333333]作图时应得到一条直线。直线的斜率[/color][i][color=#333333]m [/color][/i][color=#333333]= ([i]C[/i]-1)/([i]v[/i][sub]m[/sub][i]C)[/i],[/color][color=#333333]在纵轴上的截距为[/color][i][color=#333333]b[/color][/i][color=#333333]=1/([i]v[/i][sub]m[/sub][i]C)[/i][/color][color=#333333],所以以[/color][color=#333333]/V(P[sub]0[/sub]-P)[/color][color=#333333]对[/color][color=#333333]P/P[sub]0[/sub][/color][color=#333333]作图[/color][color=#333333],[/color][color=#333333]得一直线如图[/color][color=#333333]3[/color][color=#333333]所示。[/color][align=center][img=,534,396]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_01_2984502_3.jpg[/img][/align][color=#333333] 根据直线的斜率和截距[/color][color=#333333],[/color][color=#333333]可求出形成单分子层的吸附量[/color][color=#333333]V[sub]m[/sub]=1/([/color][color=#333333]斜率[/color][color=#333333]+[/color][color=#333333]截距[/color][color=#333333])[/color][color=#333333]和常数[/color][color=#333333]C=[/color][color=#333333]斜率[/color][color=#333333]/[/color][color=#333333]截距[/color][color=#333333]+1[/color][color=#333333]。[/color][color=#333333] 根据[/color][i][color=#333333]V[/color][/i][sub][color=#333333]m[/color][/sub][color=#333333]由下式可以计算吸附剂的[/color][color=#333333]BET[/color][color=#333333]比表面积:[/color][img=,557,134]http://ng1.17img.cn/bbsfiles/images/2017/08/201708141002_02_2984502_3.jpg[/img][color=#333333] 需要指出,为满足以上假设[/color][color=#333333]BET[/color][color=#333333]方程的总有效区为相对压力在[/color][color=#333333]0.05~ 0.3[/color][color=#333333]之间。即便如此,[/color][color=#333333]BET[/color][color=#333333]方程还是不精确的,主要原因如下:([/color][color=#333333]1[/color][color=#333333])吸附剂表面吸附中心能量不均匀;([/color][color=#333333]2[/color][color=#333333])同一层中吸附质分子与相邻分子存在相互作用;([/color][color=#333333]3[/color][color=#333333])在大于[/color][color=#333333]1[/color][color=#333333]的多层吸附中,随吸附质远离吸附中心,相互之间作用力会减弱[/color][color=#333333]。[/color][b][color=#333333]5 [/color][color=#333333]结论[/color][/b] 测定多孔材料的孔结构,关键是通过正确的实验操作获得材料的吸附-脱附曲线,再利用合适的数据处理方法或模型获得相应的结构参数。通过以上分析我们可以清楚的看到,用来确定固体材料的比表面积、孔径分布等孔参数的实验方法的规范名称应为物理吸附法,由物理吸附法可以得到固体材料的比表面积、孔径分布、孔容积、分形维数、孔形状等更为丰富的信息,而BET法只是由吸附曲线中p/p[sub]0[/sub]在0.05-0.3之间的数据根据BET模型计算得到固体材料的BET比表面积。另外,BET法确定比表面积只是确定比表面积的其中一种方法。在实际工作中,我们不应该把这两种不同的方法混为一谈。[align=center]参考文献[/align]1. 徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学.北京:科学出版社,2004:13.2. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.3. Ajayan, V. Toshiyuki, M. Katsuhiko, A. New families of mesoporous materials, science and technology ofadvanced materials. Sci Techn Adv Mater, 2006, 10:1.4. Jianlin Shi*, “On thesynergetic catalytic effect of heterogeneous nanocomposite catalysts” , Chemical Reviews, 2013, 113 (3) 2139-21815. Stein, A. Wang, Z.Y. Fierke,M.A. Functionalization of porouscarbon materials with designed porearchitecture. Adv Mater, 2008, 20:1.6. Do D D, Adsorption analysis:equilibria and kinetics, Imperial College Press, 1998.7. Guiqing Lin, Huimin Ding,Daqiang Yuan, Baoshan Wang, and Cheng Wang, J. Am. Chem. Soc.2016, 138,3302-3305.8. Matthias Thommes, KatsumiKaneko, Alexander V. Neimark, James P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol and Kenneth S. W. Sing.Physisorption of gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report). Pure Appl. Chem.2015 87(9-10): 1051-10699. 甄开吉,王国甲,毕颖丽, 李荣生, 阚秋斌. 催化作用基础科学出版社,2005.

  • 压汞法测试孔径参数分析报告

    压汞法测试孔径分布参数分析报告 [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]压汞法是一种通过测量汞在压力作用下进入多孔材料孔隙的过程来评估材料孔结构特性的方法。[/color][/font][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]?这种方法利用汞对大多数固体材料具有非润湿性的特点,通过外加压力使汞进入固体孔中。对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/color][/font][url=https://www.baidu.com/s?sa=re_dqa_generate&wd=Washburn%E6%96%B9%E7%A8%8B&rsv_pq=9c1d7da0003485f1&oq=%E5%8E%8B%E6%B1%9E%E6%B3%95%E6%B5%8B%E8%AF%95%E5%AD%94%E5%BE%84&rsv_t=1a84+LljYYdttKWJacycBpf21Lrul8D0l64HszgINjh2DJ9F370Tuf816B4d9Kn1Gcu/ErS2gscp&tn=44004473_52_oem_dg&ie=utf-8]Washburn方程[font=cos-icon !important][size=9px][/size][/font][/url][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333],通过控制不同的压力,可以测出压入孔中汞的体积,从而得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。今天我们聊聊关于 压汞法测试孔径参数分析报告[/color][/font] [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]一、对孔径测试及压汞仪的了解 [/color][/font] [font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔; 孔径测试的常用方法: -压汞法:加压向孔内充汞。适用于根据最大挤压压力60000psi,孔径范围0.003um到400um之间的大多数材料。(本公司设备最大挤压压力33000psi ,测试孔径范围0.0055um到400um ) -气体吸附分析介孔-大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围0.002um至0.1um之间; -气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围0.4nm至2.0nm之间; [/color][/font] [color=#333333]二[font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]、压汞仪了解[/color][/font] [/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合Washburn方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]Washburn方程了解: h2 = crσ cosθ t / (2η) 其中,c为毛细管形状系数,r为平均毛细管半径,σ为液体的?表面张力,η为?液体粘度,θ为?接触角,t为?时间 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333] 方程的作用:将压力与孔径间建立了关系; 方程的基础:将所有孔都假设成理想的圆柱形孔模型; 方程的不足:实际上孔的结构多种多样,存在以偏概全的问题; 压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333] 三、压汞仪原理及使用 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]Autopore IV9500压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试0至30psi的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试30至33000psi的压汞量,根据Washburn方程得到对应于不同压力的孔径大小,并作出相应数据分析。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]膨胀计的选择: 要求:样品孔体积应在25%至90%范围的毛细管体积; 对不同孔隙率的样品在加工上及膨胀计选择上需合理。 [/color][/font][/color][table=622][tr][td=1,1,90] [font=宋体]样品大致孔隙率[/font][/td][td=1,1,212] [font=宋体]膨胀计选择[/font][/td][td=1,1,320] [font=宋体]样品大小[/font][/td][/tr][tr][td=1,1,90] [font=&]3%-10%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]0.392cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ13.5*20[/font][font=&]mm(3cc)[/font][/td][/tr][tr][td=1,1,90] [font=&]10%-25%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ13.5*20[/font][font=&]mm(3cc)[/font][/td][/tr][tr][td=1,1,90] [font=&]25%-65%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ10*20[/font][font=&]mm(1.5cc)/3*[/font][font=&]φ8*10[/font][font=&]mm(0.5cc[/font][font=&])[/font][/td][/tr][tr][td=1,1,90] [font=&]≥[/font][font=&]65%[/font][/td][td=1,1,212] [font=&]最大可挤体积[/font][font=&]1.131cc[/font][/td][td=1,1,320] [font=&]接近[/font][font=&]φ8*10[/font][font=&]mm(0.5cc)[/font][/td][/tr][/table] 压汞仪低压测试原理 [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]低压测试原理 一、使用真空泵将膨胀计抽真空至20mg汞柱; 二、通过真空效果,将汞压入膨胀计; 三、通过外接的氮气压力进行压汞至30psi,过程中根据设定点位收集 压汞体积;[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]高压测试原理 一、将做完低压已灌满汞的膨胀计装入高压装置; 二、通过液压泵和倍增器进行加压至33000psi; 三、过程中根据设定点位收集 压汞体积;[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]四、数据分析处理[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]常规参数分析[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]已知条件:样品质量Ws:直接称量; 空管体积Vp:通过空管校准,系统内部计算得出; 空管质量Wp:直接称得; 汞的密度ρ:根据控制室温直接给出; 样品+空管+汞质量Wpsm:直接称得; 累计压入体积:Ii=Vi/Ws,为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的; 总压入体积:Itot=Vtot/Ws,通过不同物质对比,可以很直观的看出不同物质的孔体积差异; 样品体积:Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ ρ,样品体积是根据空管体积减去压入的汞体积计算得出。 孔隙率%:Ppc=100*Vtot/Vb,孔隙率能总体看出样品的孔量。[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]体密(0.51psi下):Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ ρ),该数据属于表观数据,将物质内的孔体积都算在密度内; 骨架密度(32983.86 psi):Ys=Ws/Vs=Ws/(Vb-Vtot),该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在32983.86 psi下所能测得的孔径。 中值孔径(V):先通过Ik=Itot/2,计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。 中值孔径(A):先通过Ak=Atot/2,计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。 平均孔径(4V/A):以理想型圆柱体模型为基础,Dav=4*Itot/Atot,从而算出其平均直径。 累计孔面积:Ai=Aij+Aij-1+….+Ai1;而单孔面积计算是Aij=4*Iij/Dmi,从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径关系图分析[/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134048883_4302_2140715_3.png!w678x577.jpg[/img][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134048883_4302_2140715_3.png!w678x577.jpg[/img][img=,672,576]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192134126732_6933_2140715_3.png!w672x576.jpg[/img] 1、从图中看出,一般的压汞过程接近正态分布,且孔体积的增加较为集中; 2、M825中心总压入汞量:0.1008mL/g;M825边部总压入汞量:0.1135mL/g; 说明M825中心的孔体积比边部少; 3、降压过程,孔结构简单的容易退汞,从图中看出M825中心比M825边部退汞 多,能看出M825边部的孔比M825中心结构更复杂多样; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径关系一阶导数微分图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192136219149_3954_2140715_3.png!w678x577.jpg[/img][img=,676,584]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192136296556_7465_2140715_3.png!w676x584.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、一阶导数:Idi=-(Ii-Ii-1)/Di-Di-1,表达的是瞬时的速率; 2、第一个峰的出现正好在最可几孔径附近,说明当时进汞体积加速,孔体积富集; 3、第二个峰出现在低孔径处,也是出现在高压强下,将许多不易进汞的孔填满; 4、对于第二个峰,当然还有一个假设,高压下导致样品坍塌,一些原本的闭孔被 填满。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计压汞量与孔径对数微分图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,678,577]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192139010814_9803_2140715_3.png!w678x577.jpg[/img][img=,690,579]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192139064276_6168_2140715_3.png!w690x579.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、对数微分:Ildi=-(Ii-Ii-1)/logDi-logDi-1; 2、从中只能看出最可几孔径,其他不明; [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]累计孔面积与孔径关系图分析 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333][img=,673,584]https://ng1.17img.cn/bbsfiles/images/2024/08/202408192140458508_5207_2140715_3.png!w673x584.jpg[/img] [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]1、孔面积的计算: Aij=4*Iij/Dmi,由公式得出,相同压汞体积下,孔径越小,孔 面积越大。 2、从图2可看出,1区间属于高斜率孔面积累计区,对应图1的1区间正好是最可几孔 径附近;2区间属于平稳增加孔面积区域,对应图1的2区间,其孔径增加量也较为平 均;3区间属于高斜率孔面积累计区,而孔体积的增加变化不明显,说明很有可能是 出现大量细小孔,短时间内增加孔面积。 [/color][/font][/color] [color=#333333][font=-apple-system, Arial, Helvetica, sans-serif][color=#333333]END[/color][/font][/color]

  • 【原创大赛】毛细管孔径仪数据处理实用小技巧

    [b]毛细管流动孔径分析仪[/b] Capillary Flow Porometer用于测定材料孔径大小测定,原理为有小孔的材料被润湿液体完全润湿后,液体受到表面张力的作用而保留于材料内部,如果要想将液体挤出材料就需要外加一个气体压力。能够克服表面张力将材料孔内的液体完全挤出时所需要的最小压力,就是该材料的泡点值压力,也就是我们常说的起泡点,基于这种原理的测试方法,就是起泡点测试法。这也是应用最为广泛的一种非破坏性完整性测试方法。以下为泡点值计算公式:d=K*C*t/PP = 泡点压力d = 最大孔径k = 形状矫正因子C = 液固接触角t =表面张力泡点值直接与过滤器孔径相关联。不同孔径大小的泡点不同,开孔压力也不同,随着压力的增加,大孔,小孔都打开,直到足够压力,所有孔都打开后,气体从孔洞出来, 气体流量随气体压力增加而增加,最后成线形关系。这样的一条气体流量和压力的一条线,我们称为湿线,刚出来流量时的压力为泡点压力,根据上述公式计算出最大孔径。如果材料没浸润液体,一直处于开孔状态,气体流量会随着压力的增加而增加,是个线形关系。我们再根据一个干线和湿线拟合一条半干线,模拟计算出孔径的分布图。但是有些材料在随着压力增大时,有可能被压扁,变形,特别是一些高分子材料,柔性材料,这时候在压力变大到一定时,气流量和气压力就不是一条很好的线形曲线了,在拟合曲线时就不是很好看,但是我们可以找个气通量曲线和目标材料差不多的样品,做一条干线,然后保存,再数据处理下(data editor),就会做得很漂亮。具体看视频。

  • 【分享】北京精微高博公司“高性能氮吸附比表面及孔径分析仪”项目喜获国家创新资金资助

    北京精微高博科学技术有限公司的“高性能氮吸附比表面及孔径分析仪”项目,喜获2011年国家中小企业创新基金的资助,这是精微高博公司产品在2010年4月获国家级技术鉴定之后,又一里程碑式的记录,这标志着精微高博公司自主研发创新能力达到了一个崭新的高度。当前,国际上先进的静态法比表面及孔径分析仪,正朝着高精密及微孔分析的方向发展,仪器的智能化,自动化程度也有了很大的提高,北京精微高博公司研制的高性能氮吸附比表面及孔径分析仪,已经在控制精度和测试精度上进入了世界先进行列,微孔测试下线可达到0.35nm,相对压力由10-7到10-1的等温吸附曲线测试压力点可>100点,0.35-2nm微孔孔径分布曲线得到的最可几孔径, 重复偏差<0.02nm,完全达到了国际先进水平,北京精微高博公司在国产比表面及孔径分析仪的研究与制造上取得了可喜的进步。

  • 【原创】多孔材料与无孔材料粒度测试的区别?

    对一多孔材料来说,由于在湿法测试中孔内吸附了液体,在测试过程中我有如下几个问题想与大家讨论:1、其折射率与相同材料的无孔固体相比会发生改变吗?能不能用仪器上给的无孔固体的折射击率。2、其散射光的强度会发生变化吗?3、如何评价一种多孔固体的测试结果?与无孔固体相比有没有需在修正的地方?谢谢!

  • 【原创】为什么动态色谱法不适合做孔径测试分析?

    国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:一、动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;孔径分析时,通常要分析40个以上的分压点。动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; 静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; 1. 没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;2. 动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;二、由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; 而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;三、动态色谱法仪器不能测试真正意义的脱附等温线;动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;四、动态色谱法仪器测试范围窄;若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm; 由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。

  • 【原创】动态色谱法比表面仪不适合做孔径测试原因分析

    [align=center][b][size=3][font=宋体]动态色谱法比表面仪不适合做孔径测试原因分析[/font][/size][/b][/align][size=3][font=宋体] 国外比表面及孔径分析仪测试孔径全部为静态容量法,没有任何一个型号的仪器采用动态色谱法来测试孔径分布;虽然国内动态色谱法在比表面测试方面已经比较成熟,但在前两年市面上出现的把动态色谱法应用到孔径分析,此种仪器虽然软件做到了勉强可以做出孔径分析数据,但由于受动态色谱法仪器检测器检测范围和测试原理的限制,其在孔径分析方面有诸多缺陷,当其作为在静态法仪器推出之前的一种国产孔径分析仪器的补充和过度,填补了国产比表面仪在孔径分析方面的缺失,而这个仅仅对商家利益有益,用动态法测得的孔径分布数据时近似或难以被认同的。[/font][/size][size=3][font=宋体]相对静态容量法,动态色谱法比表面仪不适合不适合做孔径测试,主要有四个因素:[/font][/size][size=3][/size][b][size=3][font=宋体]一、[/font][/size][size=3][font=宋体]动态色谱法测试液氮消耗比静态容量法快,需要补充,不适合长时间连续自动多点运行;[/font][/size][/b][size=3][font=楷体_GB2312]孔径分析时,通常要分析40个以上的分压点。[/font][/size][size=3][font=楷体_GB2312]动态色谱法测试时,每一个分压点的吸附脱附需要样品管进出液氮杯一次,吸附时样品管进入液氮杯吸热降温,吸附平衡后再离开液氮杯升温脱附,下个分压点时再次浸入液氮,使得每个分压点的测试都使液氮消耗量较大;每个分压点需要约20-30min,所以对孔径测试40-80个分压点测试需要15-40小时,耗时长,且需要多次人为添加液氮,使得测试过程繁琐,不能脱离人工看管而完全自动化,所以动态法仪器不适合做需要大量分压点的精确分析; [/font][/size][size=3][font=楷体_GB2312]静态法仪器,装样管可以很长(液氮杯深度和样品管长度一般在20-30cm),插入深而小口的杜瓦杯内,并将杯口遮盖,测试过程中无需样品管出入液氮杯,保温效果好,热量损失小,每个分压点需要约3-5min,40-80个分压点耗时4-8小时,在整个测试过程中都可以不用添加液氮,可以进行大量分压点的精细分析; [/font][/size][size=3][font=楷体_GB2312]1.[/font][/size][size=3][font=楷体_GB2312]没有任何一款动态法仪器测试40个分压点可以低于12个小时;而静态法平均只需要3小时左右;做70个分压点的精细分析,动态法仪器耗时不可能低于24小时,而静态法需要约6小时;[/font][/size][size=3][font=楷体_GB2312]2.[/font][/size][size=3][font=楷体_GB2312]动态法通常需要1小时就添加一次液氮,而静态容量法由于配备有液氮面伺服保持系统,整个测试过程中无需添加液氮;[/font][/size][size=3][font=楷体_GB2312]所以这两点是动态法仪器不适合进行孔径分析这种长时间自动运行的第一个原因;[/font][/size][size=3][font=楷体_GB2312]二、[/font][/size][b][size=3][font=宋体]由于高纯气体内杂质的影响,使动态色谱法每测试一点需要对样品进行吹扫处理后再继续测试下一个点,而静态容量法不需要。[/font][/size][/b][size=3][font=楷体_GB2312][/font][/size][size=3][font=楷体_GB2312]测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以每个分压点测试的(20-30min)过程中将有大约1000ml的气体流经待测样品,40个分压点的整个测试过程将有40L左右的气体流经每个样品表面;对于单个分压点流经样品表面的1000ml气体中的高沸点杂质将有0.01-0.05ml左右,[/font][/size][size=3][font=楷体_GB2312]而对于500mg比表面积为1m[sup]2[/sup]/g的材料,在其表面形成水的单分子层吸附所需要的水的量为:0.069 ml(标况),[/font][/size][size=3][font=楷体_GB2312]所以,杂质吸附对下一分压点氮气吸附的影响就不能忽略,而需要重新吹扫处理后再进行下分压一点吸附,否则将得到的是表面被水分子包裹后的材料颗粒对氮气分子的吸附了,此测试结果显然不会可靠;[/font][/size][size=3][font=楷体_GB2312]静态法仪器每个分压点充入样品管的氮气量很少,每个分压点注入的氮气量只有几个毫升,消耗氮气量只有动态法的几百分之一,吸附质气体中的杂质影响程度将降到非常小; [/font][/size][size=3][font=楷体_GB2312]而目前市面上可测孔径的动态色谱法仪器没有一款会在一个分压点结束后对样品进行重新处理;所以动态色谱法仪器若是省略吹扫处理,这将造成结果的不准确;若是不省略,那将需要每测试完一个分压就得将样品重新处理,这将使仪器无法连续自动运行,成为繁琐长时间的人工操作;[/font][/size][size=3][font=楷体_GB2312]所以这点是动态法仪器不适合进行孔径分析这种长时间自动运行的另一个原因;[/font][/size][b][size=3][font=宋体]三、[/font][/size][size=3][font=宋体]动态色谱法仪器不能测试真正意义的脱附等温线;[/font][/size][/b][size=3][font=楷体_GB2312]动态色谱法仪器的吸附脱附方式决定了动态法仪器是不能测试材料的脱附等温线的,只能测试材料的吸附等温线;而脱附等温线和吸附等温线是不重合的,即有脱附回线;而国际常用的孔径分析理论都建议采用脱附等温线进行孔径分析;所以用动态法仪器采用吸附等温线得到的孔径分析数据时不可靠或难以被认可的,只能作为一种参考数据;[/font][/size][b][size=3][font=宋体]四、[/font][/size][size=3][font=宋体]动态色谱法仪器测试范围窄;[/font][/size][/b][size=3][font=楷体_GB2312]若用吸附等温线来代替脱附等温线进行孔径分析,动态色谱法仪器由于检测器是采用热导池检测器,所以氮气的分压测试范围不能过低也不能过高,其对氮气分压的测试范围只能最大只能达到0.01-0.95,无法达到孔径测试所要求的分压范围0-1,使孔径测试范围只能达到2-100nm,而静态容量法仪器的氮气分压测试范围将达到0-1全范围内,测试孔径的范围将达到0.35-400nm;[/font][/size][color=blue][size=3][font=宋体] [/font][/size][/color][size=3][font=宋体] [/font][/size][size=3][font=宋体]由以上4点可以看出,静态容量法是通过对固定空间的压力变化来检测粉体材料对氮气的吸附量,更适合做孔径及比表面分析;而动态色谱法是通过载气中氮气浓度变化来检测粉体材料对氮气的吸附量,则只适合进行比表面分析。[/font][/size]

  • 【国产好仪器讨论】之北京精微高博科学技术有限公司的全自动比表面及孔径分析仪(JW-BK132F)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C73677%2Ejpg&iwidth=200&iHeight=200 北京精微高博科学技术有限公司 的 全自动比表面及孔径分析仪(JW-BK132F)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 产品简介: 由我公司自主研发的国内首台研究型、高性能静态容量法微孔分析仪JW-BK132F诞生于2010年,该款仪器完全继承了BK系列孔径分析仪的所有技术特点,核心硬件全部采用国际先进品牌,并引入“涡轮分子泵高端技术,配合微孔分析模型的准确应用,使得该产品综合性能更加完善,测试结果准确性、精确性、稳定性更加完美,是现今国际市场上性价比最高的一款分子泵微孔分析仪,其质量与性能完全能够与国外同类产品相媲美,非常适合活性炭、分子筛等超微孔纳米粉体材料的研究。 仪器型号: JW-BK132F 原理方法: 气体吸附法,静态容量法; 测试功能: 等温吸脱附曲线;单点、多点BET比表面积;Langmuir比表面积;外表面积(STSA);单点吸附总孔体积、平均孔径;BJH介孔大孔孔容积及孔径分布分析;t-plot法、as- plot法、DR法、MP法微孔常规分析;HK法、SF法微孔精确分析;平均粒径估算; 特殊功能:NLDFT法孔径分布分析;真密度精确测试;气体吸附量、吸附热测试;质量输入法测试; 测试气体: 氮、氧、氢、氩、氪、二氧化碳、甲烷等; 测试范围: 比表面积0.005(m2/g)--至无上限;介孔、大孔分析2nm-500nm; 微孔分析0.35nm-2nm;总孔体积0.0001cc/g至无上限; 重复精度: 比表面积≤± 1.0%;外表面积≤± 1.5%;微孔最可几孔径≤0.01nm;真密度≤±0.04% 测试效率: 比表面积平均每样30min;介孔、大孔分析平均每样4-6小时;微孔分析平均每样10-15小时; 分析站: 2个样品测试位,可同时进行真空脱气预处理,原位交替测试;每个测试位原配单独的3L或1L真空玻璃内胆杜瓦瓶,共2个; P0位: 每个样品测试位设有独立的P0管,共2支,由单独的进口压力传感器控制,完全同分析位分开,可实时、准确测量氮气的饱和蒸汽压,并实时参与理论计算; 升降系统: 2个样品测试位原位设有2套独立的升降系统,电动控制、自动控制,且互不干扰; 真空系统: 全不锈钢多通路并联抽真空管路系统,真空抽速微调阀系统专利技术,可在2-200ml/s范围内自动调节; 真空泵: 外置式进口双级旋片式机械真空泵(自动防返油)+ 内置式进口涡轮分子泵,极....【了解更多此仪器设备的信息】

  • 压汞法测试孔径参数分析报告

    本材料检测中心主要从事石墨及碳素材料等分析,孔径分析测试主要是使用麦克莫瑞提克的压汞仪,型号为9500.今天主要谈谈孔径测试及压汞仪的了解。[font=宋体]一、[/font][font=宋体]对孔径测试及压汞仪的了解[/font][font=宋体]孔径测试[/font][font=宋体] [/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]二、[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体]三、[/font][font=宋体][font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体]四、[/font][font=宋体][font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体]五、[/font][font=宋体][font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]孔径测试[/font][font=宋体]孔的定义:不同的孔可视作固体内的孔、通道或空腔,或者是形成床层、压制提或团聚体的固体颗粒间的空间(如缝隙或空隙);本测试不能测试固体中的闭孔;[/font][font=宋体]孔径测试的常用方法:[/font][font=宋体] [font=宋体]压汞法:加压向孔内充汞。适用于根据最大挤压压力[/font][font=Calibri]60000psi[/font][font=宋体],孔径范围[/font][font=Calibri]0.003um[/font][font=宋体]到[/font][font=Calibri]400um[/font][font=宋体]之间的大多数材料。(本公司设备最大挤压压力[/font][font=Calibri]33000psi [/font][font=宋体],测试孔径范围[/font][font=Calibri]0.0055um[/font][font=宋体]到[/font][font=Calibri]400um [/font][font=宋体])[/font][/font][font=宋体] [font=宋体]气体吸附分析介孔[/font][font=Calibri]-[/font][font=宋体]大孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.002um[/font][font=宋体]至[/font][font=Calibri]0.1um[/font][font=宋体]之间;[/font][/font][font=宋体] [font=宋体]气体吸附分析微孔法:液氮温度下,吸附氮气表征孔结构。测试孔径范围[/font][font=Calibri]0.4nm[/font][font=宋体]至[/font][font=Calibri]2.0nm[/font][font=宋体]之间;[/font][/font][font=宋体]压汞仪了解[/font][font=宋体][font=宋体]压汞法原理:汞对大多数固体材料具有非润湿性,需外加压力才能进入固体孔中,对于圆柱型孔模型,汞能进入的孔的大小与压力符合[/font][font=Calibri]Washburn[/font][font=宋体]方程,控制不同的压力,即可测出压入孔中汞的体积,由此得到对应于不同压力的孔径大小的累积分布曲线或微分曲线。[/font][/font][font=宋体][font=Calibri]Washburn[/font][font=宋体]方程了解: [/font][/font][font=宋体] [/font][font=宋体] [font=宋体]方程的作用:将压力与孔径间建立了关系;[/font][/font][font=宋体] [font=宋体]方程的基础:将所有孔都假设成理想的圆柱形孔模型;[/font][/font][font=宋体] [font=宋体]方程的不足:实际上孔的结构多种多样,存在以偏概全的问题;[/font][/font][font=宋体]压汞法优势:压汞法能测试的孔径范围宽广,覆盖大孔和中孔范围,可通过测试结果推导出尽可能多的孔结构信息;[/font][font=宋体]压汞仪测试原理[/font][font=宋体][font=Calibri]Autopore IV9500[/font][font=宋体]压汞法原理:将已烘干样品放入合适的膨胀计,将膨胀计放入低压测试区间,先对膨胀计抽真空,然后压入汞,运用氮气压缩方式测试[/font][font=Calibri]0[/font][font=宋体]至[/font][font=Calibri]30psi[/font][font=宋体]的压汞量;测试完成后将膨胀剂放入高压测试区间,通过油压方式测试[/font][font=Calibri]30[/font][font=宋体]至[/font][font=Calibri]33000psi[/font][font=宋体]的压汞量,根据[/font][font=Calibri]Washburn[/font][font=宋体]方程得到对应于不同压力的孔径大小,并作出相应数据分析。[/font][/font][font=宋体][font=宋体]膨胀计的选择:[/font] [/font][font=宋体] [font=宋体]要求:样品孔体积应在[/font][font=Calibri]25%[/font][font=宋体]至[/font][font=Calibri]90%[/font][font=宋体]范围的毛细管体积;[/font][/font][font=宋体] [font=宋体]对不同孔隙率的样品在加工上及膨胀计选择上需合理。[/font][/font][font=宋体] [font=宋体]压汞仪低压测试原理[/font][/font][font=宋体] [/font][font=宋体]低压测试原理[/font][font=宋体] [font=宋体]一、使用真空泵将膨胀计抽真空至[/font][font=Calibri]20mg[/font][font=宋体]汞柱;[/font][/font][font=宋体] [font=宋体]二、通过真空效果,将汞压入膨胀计;[/font][/font][font=宋体] [font=宋体]三、通过外接的氮气压力进行压汞至[/font][font=Calibri]30psi[/font][font=宋体],过程中根据设定点位收集 压汞体积;[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体]压汞仪高压测试原理[/font][font=宋体]高压测试原理[/font][font=宋体] [font=宋体]一、将做完低压已灌满汞的膨胀计装入高压装置;[/font][/font][font=宋体] [font=宋体]二、通过液压泵和倍增器进行加压至[/font][font=Calibri]33000psi[/font][font=宋体];[/font][/font][font=宋体] [font=宋体]三、过程中根据设定点位收集[/font] [font=宋体]压汞体积;[/font][/font][font=宋体] [/font][font=宋体]三、数据分析处理[/font][font=宋体] [/font][font=宋体] [font=宋体]常规参数分析[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]已知条件:样品质量[/font][font=Calibri]Ws[/font][font=宋体]:直接称量;[/font][/font][font=宋体] [font=宋体]空管体积[/font][font=Calibri]Vp[/font][font=宋体]:通过空管校准,系统内部计算得出;[/font][/font][font=宋体] [font=宋体]空管质量[/font][font=Calibri]Wp[/font][font=宋体]:直接称得;[/font][/font][font=宋体] [font=宋体]汞的密度[/font][font=宋体]ρ:根据控制室温直接给出;[/font][/font][font=宋体] [font=宋体]样品[/font][font=Calibri]+[/font][font=宋体]空管[/font][font=Calibri]+[/font][font=宋体]汞质量[/font][font=Calibri]Wpsm[/font][font=宋体]:直接称得;[/font][/font][font=宋体][font=宋体]累计压入体积:[/font][font=Calibri]Ii=Vi/Ws[/font][font=宋体],为了更好的进行物质间对比,这里的累计压入体 积是以单重量样品来计算的;[/font][/font][font=宋体][font=宋体]总压入体积:[/font][font=Calibri]Itot=Vtot/Ws[/font][font=宋体],通过不同物质对比,可以很直观的看出不同物质的孔体积差异;[/font][/font][font=宋体][font=宋体]样品体积:[/font][font=Calibri]Vb=Vp-Vm=Vp-(Wpsm-Ws-Wp)/ [/font][font=宋体]ρ[/font][font=Calibri],[/font][font=宋体]样品体积是根据空管体积减去压入的汞体积计算得出。[/font][/font][font=宋体][font=宋体]孔隙率[/font][font=Calibri]%[/font][font=宋体]:[/font][font=Calibri]Ppc=100*Vtot/Vb[/font][font=宋体],孔隙率能总体看出样品的孔量。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]体密[/font][font=Calibri](0.51psi[/font][font=宋体]下[/font][font=Calibri])[/font][font=宋体]:[/font][font=Calibri]Yb=Ws/Vb=Ws/(Vp-(Wpsm-Wp-Ws)/ [/font][font=宋体]ρ[/font][font=Calibri])[/font][font=宋体],该数据属于表观数据,将物质内的孔体积都算在密度内;[/font][/font][font=宋体][font=宋体]骨架密度([/font][font=Calibri]32983.86 psi[/font][font=宋体]):[/font][font=Calibri]Ys=Ws/Vs=Ws/(Vb-Vtot)[/font][font=宋体],该数据是扣除了孔体积后的样品体积计算得出的密度,更接近于样品的真实密度。当然,这里只代表在[/font][font=Calibri]32983.86 psi[/font][font=宋体]下所能测得的孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]V[/font][font=宋体]):先通过[/font][font=Calibri]Ik=Itot/2[/font][font=宋体],计算出中位累计进汞体积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]中值孔径([/font][font=Calibri]A[/font][font=宋体]):先通过[/font][font=Calibri]Ak=Atot/2[/font][font=宋体],计算出中位累计面积,再根据数据查出相应的孔径,即为中值孔径。[/font][/font][font=宋体][font=宋体]平均孔径([/font][font=Calibri]4V/A[/font][font=宋体])[/font][font=Calibri]:[/font][font=宋体]以理想型圆柱体模型为基础,[/font][font=Calibri]Dav=4*Itot/Atot,[/font][font=宋体]从而算出其平均直径。[/font][/font][font=宋体][font=宋体]累计孔面积:[/font][font=Calibri]Ai=Aij+Aij-1+[/font][font=宋体]…[/font][font=Calibri].+Ai1[/font][font=宋体];而单孔面积计算是[/font][font=Calibri]Aij=4*Iij/Dmi[/font][font=宋体],从这也看出,相同压汞体积下,孔径越小,孔面积越大。[/font][/font]END[font=宋体] [/font]

  • 10月18日直播|《比表面与孔径分析原理及应用》系列讲座之第三讲开播啦!

    [b][color=#ff0000]讲师介绍:[/color][/b]钟家湘 : 北京理工大学材料学院教授,获得国务院颁发的政府特殊津贴;2004至2017年,担任北京精微高博科学技术有限公司学术带头人,曾研发成功多种系列的氮吸附比表面及孔径分析仪,被誉为中国氮吸附仪的开拓者,2015年获我国第二届科学仪器行业“研发特别贡献奖”[color=#ff0000][b]内容简介:[/b][/color]本讲主要详细介绍:超细粉体中孔径分布的氮吸附法的分析原理;孔径分布的表征方法,各种表征参数的正确含义;BJH法进行孔径分布的分析中,值得注意的若干问题。比表面与孔径分析原理及应用专家系列讲座目录第一讲 [color=#ffffff]1.[/color]氮吸附法比表面及孔径分析原理[color=#ffffff][/color]第二讲 连续流动色谱法比表面仪原理及应用第三讲 静态容量法比表面及孔径分析仪原理及应用第四讲 氮吸附法介孔与大孔的测试与分析第五讲 氮吸附法微孔的测试与分析第六讲 密度函数理论在孔径分析中的应用[b][color=#ff0000]免费报名链接:[/color][/b][url]https://www.instrument.com.cn/ykt/course/live/index?sid=115[/url][b][color=#ff0000]直播时间:[/color][/b]2018/10/18 10:00[b][color=#ff0000]温馨提示:[/color][/b]本讲座直播免费哦,点播需购买整个系列讲座,详情见[url]https://www.instrument.com.cn/ykt/course/course/detail?sid=106[/url],还有8个免费名额哦,先到先得![color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color][color=#ffffff]1.氮吸附法比表面及孔[/color][color=#ffffff]径分析原理[/color][color=#ffffff]2.连续流动色谱法比表面仪原理及应用[/color][color=#ffffff]3.[/color][color=#ffffff]静态容量法比表面及孔径分析仪原理及应用[/color][color=#ffffff]4.氮吸附法介孔与大孔的测试与分析[/color][color=#ffffff]5.氮吸附法微孔的测试与分析[/color][color=#ffffff]6.密度函数理论在孔径分析中的应用[/color]

  • 四站比表面及孔径分析?你要小心了

    最近从客户那里了解到,国内某家比表面孔径分析仪的厂家对外宣传的所谓四站式比表面及孔径分析仪居然是伪四站,虽然有四个测试位,但是每次只能进行两个样品的比表面及孔径分析,另外两个测试位只能进行比表面测试。这种极度不负责任,虚假的,欺瞒客户的行为大大伤害了广大客户对国产仪器的信任,沦为国产仪器的还群之马。技术上不行,可以通过研究,学习改进,但是弄虚作假就是品行问题,作为一个企业,更是不能让人接受,真是给我们国产仪器抹黑啊。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制