当前位置: 仪器信息网 > 行业主题 > >

质谱计气体掺杂分析

仪器信息网质谱计气体掺杂分析专题为您提供2024年最新质谱计气体掺杂分析价格报价、厂家品牌的相关信息, 包括质谱计气体掺杂分析参数、型号等,不管是国产,还是进口品牌的质谱计气体掺杂分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱计气体掺杂分析相关的耗材配件、试剂标物,还有质谱计气体掺杂分析相关的最新资讯、资料,以及质谱计气体掺杂分析相关的解决方案。

质谱计气体掺杂分析相关的仪器

  • 基于20多年稀有气体质谱仪的经验,Thermo Scientific开发了系列新一代多接收稀有气体质谱仪。它结合创造性的新特征和经过实践验证的成熟的同位素质谱技术,开发了Helix MC Plus、Helix SFT和ARGUS VI三款先进的静态真空稀有气体质谱仪,是多接收静态惰性气体质谱迈进的重要一步。Thermo Scientific HELIX SFT质谱是为氦同位素同时分析及高精度跳峰分析而设计的高分辨、多接收系统,可以同时测定3He和4He,也可以用跳峰模式测量任何稀有气体同位素。 主要特点 该系统可同时测量氦同位素,无需跳峰扫描,减少了分析时间,获得了更高的精度和产出效率; 丰度灵敏度:由于HELIX SFT独特的设计,质量4对质量3的贡献小于1ppb; 体积:HELIX SFT的内部体积约1400cc,这是当前技术的重要提升; 分辨率:低质量数接收器,通常用来测定3He,其分辨率大于700,这保证了3He 能够和两个干扰峰HD和H分开; 1010Ω/1011Ω/1012Ω/1013Ω放大器拥有不同的动态范围范围使大部分分析都能在长寿命的法拉第接收器上进行。
    留言咨询
  • APIX超高纯电子气质谱分析仪 结合了工艺先进的电子电路和功能强大的过程分析软件的、性能卓越 的大气压离子化质谱仪 (API-MS)使得 Thermo Scientific APIX 生产线提供的分析仪系统成为半导体和电子工业大宗气体连续质量控制的选择。 API-MS 为传统质量控制技术提供了一个成本-效益的替代方案,允许每种大宗气体中一系列潜在污染物浓度监测能够达到很低的测量下限;相较于其他技术,甚至能够优于100倍。 APIX产品线提供了更多完整的杂质分析,包括: H2、CO、CO2、H2O、O2、CH4 、Kr和 Xe ,以及其他需要测量的杂质。随着 300 mm 晶圆生产者发布更严格污染物控制气体质量标准,这种技术将持续的成为ppt级杂质测量下限的首选技术。 特点: 快速在线测量(典型<5秒)确保 了立即响应供气的波动状况 完全集成的多分析器分析方案提 供了污染物的快速检测 超高的灵敏度和10ppm的测量下限满足当下以及未来的严格的气体分析要求 备份能力在单个大气压离子化分 析器(API)在维护时,允许每 一台大气压离子化质谱仪(APIMS)支持多流路分析 针对于工厂控制和数据集中的标准 化工业通讯协议 (OPC, DDE, Modbus, Siemens 3964R, PROFIBUS, 等等)应用 超高纯氮气(UHP N2) 超高纯氩气(UHP Ar) 超高纯氦气(UHP He) 超高纯氢气(UHP H2) 运行原理APIX δQ 和APIX Quattro 采用阳离子大气压离子化质谱仪 ( API-MS)技术, 该技术被电子工业广泛用于检测超纯气体中的污染物。进样时,样气以大气压或略高于大气压的压力进入离子源。 金属针设置在靠近由孔板行成的通向棱镜组的入口附近。它带有高的电压,能够产生电晕放电。这就产生了从孔板到针头的电子流。电子与离子源中 大量样气发生反应,从而导致大量样气气体分子的电离。 幸运的是,相对于氮气、氢气、氦气和氩气而言,这些出现在样气中浓度很低的污染物需要很少的能量就可以产生 电离。正是因为如此,任何污染物分子出现在样气中,它们与样气离子发生反应的几率就非常高。 这种反应发生时,电荷转移至污染物气体分子,这就形成了再次电离。 这个电荷转移导致非常高比例的污染物气体分子被电离。 事实上,这个效率比其他使用真空腔电离技术的质谱仪, 其效率要高1000倍。 部份样品、完全电离的污染物,经过一系列的减压透镜后,进入三重四级杆质谱仪。一个测量质量数达到300道尔顿(原子质量单位)三重四级杆能够确保实现所有污染物的精确测量。脉冲计数放大器的噪声等级仅为10个脉冲,每106个脉冲, 与大气压离子源配合后, 能够确保12数量级的测量下限,它可以低1012之一 (即1 ppt). 配置:APIX δQ的标准配置为一个单一机箱,它里面配置了1个大气压离子化质谱仪(API-MS)和 一个Air Liquide 气体处理单元,它能够用于ppb或ppt级自动校准。标准机箱是为 相对空气洁净且有温度控制的环境而配置;如果需要,一定数量的冷却降温和吹扫选项也可以满足更多环境需求。 APIX Quattro 标准配置使用了三个机箱,两个配置了4 个大气压离子化质谱仪(API-MS)独立机箱,和第三个装有一个Air Liquide 气体处理单元机箱。 四个质谱仪中的每一个都安装在滑轨上,以便向前拖出,便于维护。 顶部安装的机箱盖包含流路切换阀组, 用于采样气体连接。它允许多个流路连接到每个独立的 散装气体分析器。这种流路选择可以是手动或完全自动完成。每一个大气压离子化质谱仪( API-MS )都是独立的,并且都具备多流路切换功能。当一台质谱仪进行年度固定维护时,可以使用其余三台质谱仪监测四个散装气体。 在这两种配置的机箱盖组件包含一个氢安全系统,以确保质谱仪在氢气泄漏时安全关闭。这个安全设备使用独立于质谱仪供电。如果需要有限的机动性,可以提供一组车轮,使该质谱仪能够安全地从一个测试点推送到另一个测试点。 每一个质谱仪通过使用后备电池闪存、运行实时的操作系统的处理器控制。这个处理器作为一系列内部控制器的主人,它们之间的通过以太电缆实现互联。 这些微处理器中的每一个都能作为一个独立部件单独运行,例如气体处理器和多流路进样系统。气体处理器仅需要一个单独的校准气瓶并结合了来自渗透管装置的湿度校准。 内部配电装置通过内部分析仪网络进行监测和控制。 这一设计拓展了 GasWorks 软件的诊断能力。每一个多处理器网络提供了冗余的通讯渠道,允许质谱仪可靠、不需要电脑工作站独立运行,直接传送样品流路数据和诊断信息至DCS或SCADA系统。每一个通讯渠道都可被配置为点对点的 光纤通讯或是硬接线的电流回路、多点连接 。每个分析器都可以配置一个嵌入式opc服务器,与 Microsoft 主机或多种工艺网关协议(Modbus, Siemens, Allen-Bradley, 等.)实现无缝通信 。如果需要质谱仪提供硬接线模拟检测和数字报警输出, OPTO 22 SNAP 和 OPTOMIX 协议将被完全支持,一系列硬件卡件能够使用。 Thermo Scientific GasWorks 软件 Thermo Scientific GasWorks 软件包为质谱仪操作提供了一个直观的、信息丰富且灵活的窗口。使用安装了Gasworks软件的一台电脑可以完成初始设置,过程数据和诊断信息的显示。我们也可以断开电脑与APIX的连接;APIX能够脱离与电脑的连接而独立运行于无人值守模式。 从设计概念到数代产品,完全认可的ISO 9001质量程序得到了软件团队的严格执行。 软件安装可以随时检查,以确保其可验证的完整性和正确性。软件更新可以远程上传。 技术参数测量方式APIX δQ: 1x 三重四级杆质谱分析器 APIX Quattro: 4x 三重四级杆质谱分析器质量范围1-300 AMU离子源类型大气压离子化离子源背景<1 ppt放大器和动态测量范围100 MHz脉冲计数型检测器脉冲计数通道电子倍增器检测噪声每106 有10个数检测下限 10 ppt (根据组份变化)分析时间(典型) 1s每个组份流路切换时间(典型)15分钟至 1 ppb适合的大宗气体H2 , N2 , Ar, He串口连接类型RS232, RS422, RS485检测的污染物H02 , He, CO, CO2 , O2 , CH4 , Kr 和 Xe (其他污染物也可检测)外形尺寸APIX δQ: 1.9 m (H) x 0.7 m (W) x 0.65 m (D) APIX Quattro: 1.9 m (H) x 2.1 m (W) x 0.65 m (D)
    留言咨询
  • 基于20多年稀有气体质谱仪的经验,Thermo Scientific开发了系列新一代多接收稀有气体质谱仪。它结合创造性的新特征和经过实践验证的成熟的同位素质谱技术,开发了Helix MC Plus、Helix SFT和ARGUS VI三款先进的静态真空稀有气体质谱仪,是多接收静态惰性气体质谱迈进的重要一步。Thermo Scientific Helix MC Plus质谱是专为微量样品稀有气体分析而设计的高分辨磁质谱,可实现氖、氩、氪、氙惰性气体中任何五个同位素的同时检测。主要特点: 该系统可测量氖、氩、氪和氙的同位素。同时多达5个同位素的多接收测量无需跳峰,减少了分析时间,获得了更高的精度和产出效率; 可以进行跳峰测量,如氦同位素; 接收器动态范围:考虑到CFM接收器结合了法拉第和CCD,能够获得更大样品浓度范围的测量能力; 分辨率:标准分辨率接收器750(10%峰谷)能够解决标准碳水化合物干扰,而 1500(10%峰谷)分辨的高分辨接收器能够使得很多科学问题得到解决; 1010Ω/1011Ω/1012Ω/1013Ω 放大器拥有不同的动态范围范围使大部分分析都能在长寿命的法拉第接收器上进行。
    留言咨询
  • 产品简介:NGX-600是一台全自动、高精度的质谱仪,具有全面的多接收能力,可以高分辨率地测量稀有气体同位素比率。它配备有高灵敏度的“Nier”型气源和小体积静态真空计。探测阵列由可以定制组合的法拉第杯和离子计数电子倍增器组成。NGX标配了ATONA放大器。设计特点:- 紧凑设计- 大半径的磁场确保其有更佳的离子传送、质量分辨率和稳定性 - 可旋转离子焦平面使接收器焦平面和离子轨迹垂直,不论接收器和离子焦平面的初始相对位置如何,均可确保更佳的峰平坦度- 专利(专利号GB2552233)的新一代电子校正ATONA放大器,用于全部法拉第杯- 小体积设计- 新一代高灵敏度离子源- 高质量分辨率,可以排除有机物基质干扰,从HD中分辨3He,从双电荷40Ar中分辨20Ne。- 全面的多接收能力,可选配置实现同时测定氙的9种同位素。一台仪器适用于多种稀有气体。 应用领域:地质年代学、天体化学和热年代学等研究领域中稀有气体 He、Ne、Ar、Kr 和 Xe 的同位素分析。
    留言咨询
  • microflex LRF台式MALDI-TOF质谱系统,适用于不同领域、不同种类、质量范围跨度较宽的样品分析。microflex LRF具有线性和反射两种模式,可以灵活检测聚合物、多肽以及寡核苷酸;高达15000的分辨率,能够提供足够的谱图细节,满足诸如食品掺假等应用的需求,更可用于多种应用市场的研究和日常筛查工作。结构简单,性能可靠microflex LRF是一台结构设计紧凑、性价比高的基质辅助激光解吸电离-飞行时间(MALDI-TOF)质谱系统。别具一格的microScoutTM离子源以及无网格反射器,赋予microflex LRF优异的分辨率、卓越的质量准确度和突出的灵敏度,在同类仪器中独占鳌头。microflex LRF采用布鲁克独特的WhisperModeTM静音技术,凭借无油免维护真空泵,实现超静音运行。自诊断系统为每日运行的稳定性保驾护航。专利的AnchorChip技术使制备的样品非常均匀,位置更加准确,更容易实现快速的数据自动采集。可以把灵敏度提高10-100倍,不仅可以提高蛋白质鉴定时的序列覆盖率,还可以发现质控样品中的痕量杂质。久经验证的稳定性能独特的microScout&trade 离子源采用先进的脉冲离子提取技术;频率高达60Hz的氮气激光器具有激光频率可调功能,同时配备光纤传输系统;高分辨高传输率的无网格反射器设计。microflex LRF是一款可以满足各种实验室需求的功能强大而耐用的质谱仪。系统具有可以自动选择母离子的二级质谱性能(automated post-source decay autoPSD),Compass软件包无缝整合Polymerix, ProteinScape&trade , BioTools&trade 等软件,可选软件Compass Security Pack满足21CFR part 11法规要求。应用举例食品安全食品掺假对世界经济影响巨大,不同的掺杂物对人类和动物健康的危害也不容小觑。即使对于传统方法难以分析的样品,例如脂类和食用油,MALDI-TOF质谱也能快速低成本地获得高价值的分析结果。聚合物、寡核苷酸和合成多肽的简单快速质控(QC)简单的实验流程,易用的软件,几分钟就可以完成从样品制备到结果分析。聚合物专用软件有助于聚合物的深入分析。根据样品的特性,数据采集可选择正离子或者负离子模式,线性或者反射模式,从而可以检测、筛选不同电离特点的样品。
    留言咨询
  • 仪器简介:英国Hiden公司的QIC 20 小型在线气体分析质谱仪是一台完备的台式气体分析系统,用于监测气体和过程分析,便于生产、研究使用。应用: 过程监测 在线分析 污染物研究 CVD / MOCVD 环境气体分析 热分析质谱 催化剂研究/ 反应动力学技术参数: QIC 直接进样,对气体、蒸气的响应时间 1~20 sccm / min连续进样 取样压力:100 mbar ~ 2 bar(可选配10mbar-2bar) 高压取样接口至30 Bar(选配) 灵敏度高 (0.1ppm标配,可选配至 5 ppb) 质量数:1-200amu标配。可选配50amu,100amu,300amu,510 amu。主要特点: 高效、柔韧、加热(直到200℃)惰性石英毛细管(QIC) 惰性毛细管避免了气体与毛细管发生物理或化学反应 自动流量控制,以恒定离子源压力 液氮低温板(选配),增强对可凝结的背景气体的抽吸 软离子化技术,有利于分析复杂有机物 稳定性(24h以上,峰高变化小于±0.5% ) 通过RS232、RS485或以太网连接计算机,由 MASsoft 软件控制 定量分析方法
    留言咨询
  • 综合概述 ATR7010EO是基于拉曼的食用油掺杂分析仪,可以定量检测食用油掺杂的含量。可用于食用油品企业的研发设计、工艺开发和生产等环节,通过检测食用油的拉曼图谱并作定量分析,帮助用户测试掺杂浓度,确定食用油品的掺杂的关键参数、比例,提升食用油产品质量,实现企业高效、安全、稳定的放大生产。ATR7010EO是奥谱天成顺应市场食用油掺杂检测需求全新研制推出的一款拉曼光谱仪,它采用制冷型高灵敏度CCD,使得仪器具有良好的环境适应性,可根据用户的油品实际情况按照需求进行定制,使之适合于企业生产和实验室食用油品科学研究。 ATR7010EO配备的多功能软件,可实现食用油掺杂的快速分析,支持用户快速提取掺杂所需信息,让用户能更轻松作出后续决策,提升食用油品的质量。产品特点l 定量检测:可对食用油的掺杂含量(0%~100%)进行定量检测。l 安全环保:不用进行复杂化学实验分析,避免操作员接触强腐蚀性、剧毒、易燃易爆等高危化学品,提高安全性;l 高灵敏度:采用高灵敏度的制冷型CCD,可实现低掺杂食用油品掺杂的检测;l 适用性强:仪器设计兼顾体积与性能,满足茶油、大豆油、橄榄油等食用油品的掺杂的检测;l 一键式分析:配备功能强大、界面友好的的光谱分析软件,一键式操作,意味着无论是专家还是初次使用拉曼光谱仪的用户,均可快速和准确采集食用油品数据和分析食用油掺杂。典型应用l 茶油掺杂 ● 花生油掺杂 l 大豆油掺杂 ● 葵花油掺杂 l 橄榄油掺杂 ● 菜籽油掺杂 l 玉米油掺杂ATR7010EO原理食用油作为高效的能量来源,人体每时每刻的生理活动都需要能量的支持。传统食用油掺杂检测方法主要依赖于理化法、色谱法、气质连用法,红外法等检测手段,这些检测方法往往需要繁琐的前处理过程,费时、费力且费用高,且无法确认油品的产地,这对一些企业和单位进行食用油的掺杂检测和产地鉴定造成了一定的困难。拉曼光谱是由印度科学家C. V. Raman在 1928 年发现的一种散射光谱。拉曼光谱能反映分子转动、振动信息。食用油的种类和食用油所含的饱和与不饱和脂肪酸比例有关,食用油的各个特征峰强度分别反应的是饱和与不饱和脂肪酸的含量,所以食用油的掺杂定量实际上定的是饱和与不饱和脂肪酸混合物的比例。仪器信息 仪器外观信息 表2-1 ATR7010EO技术规格
    留言咨询
  • MS GAS-100气体分析质谱仪用于对气体和挥发物质,包括同位素、溶剂和可挥发有机物进行复杂的精确分析。 系统组成:质谱分析模块:由开放/封闭版电子碰撞离子源,两个独立灯丝和一个四级质朴分析器组成。质量范围分为1-100、1-200和1-300 amu。系统中应用两种检测器:法拉第检测器:灵敏度低于10ppm次级电子倍增检测器(SEM):灵敏度低于100ppb高效真空泵系统:真空室内置加热元件;专用汽水分离模块;双泵抽真空模块,包括前级隔膜泵和涡轮分子泵。恒温加热元件可以去除真空室中的杂质。汽水分离模块中的电子控制斯特林制冷器可以高效抑制水分子背景,从而显著提高离子源寿命。这一模块可以连续运行数周。温度可以由用户自定义,从而监测特定的挥发物质,如乙醇等。进样单元:模块化设计,可互换渗透膜探头或针阀进样器。渗透膜探头允许溶解物质通过,既可以测量液态样品,也可以测量环境气体。针阀进样器适用于直接测量气态样品中的挥发物质。真空压传感器:测量真空室中的总压力和进样单元中的压力,确保不会损坏质谱分析器。集成触屏监控器:可手动控制加热/制冷温度,开闭进样器、分流阀和安全阀。可通过预设程序进行自动测量。控制软件:操作设定质谱仪、获取测量数据、编写用户自定义测量程序用于测量特定的物质。应用领域: 气体和液体样品的气体交换,如藻类光合作用(CO2、O2)、生物燃料研究(H2、乙醇、烃类)一台仪器即可进行多种气体和挥发物质的长期监测两种进样单元,即可测量气体也可测量液体模块进样设计,多种接口可选,可以进行整株植物或细胞悬液的气体交换分析固氮生物研究(N2)18O2标记光呼吸研究同位素分布分析气体污染研究(CH4,H2S,NOx,SO2,CS2,CO等)水污染研究(可溶性有害气体、挥发性有机物等) 技术参数:分析气体种类:气体:CO2、O2、H2、N2、C2H4、CH4、H2S、NOx、SO2、CS2、CO等挥发性有机物:乙醇、烃类、苯、甲苯、丙酮等 质谱分析器:残余气体分析器(RGA)质量范围:1-100 amu、1-200 amu、1-300 amu离子源:开放或封闭版电子碰撞离子源,两个独立灯丝(灯丝材料:yttriated iridium)检测器:法拉第检测器:灵敏度10ppm次级电子倍增检测器(SEM):灵敏度100ppb响应时间:20秒真空系统:前级隔膜泵和涡轮分子泵进样器:渗透膜探头(PDMS)或针阀进样器加热系统:100W恒温加热元件,最高温度90℃制冷系统:电子控制内置斯特林制冷汽水分离模块,最低温度-80压力传感器:高真空压传感器用于测量真空室中总压力;进样器压力传感器用于保护质谱分析器触控屏:系统控制并显示实际读数BIOS:可升级固件通讯端口:千兆以太网,TCP/IP协议外部工作站:预装专用软件,操作设定质谱仪、获取测量数据、编写用户自定义测量程序用于测量特定的物质尺寸:54.5×72×45.5cm重量:65kg供电:110-230V交流电应用案例:配合FMT150藻类培养与在线监测系统测量蓝藻Synechocystis 6803光补偿点(测量O2)。配合专用测量室和FluorCam便携式叶绿素荧光成像系统,测量整株番茄的光合作用(测量CO2),同时与Li6400测量数据进行对比,可见MS GAS-100的稳定性和重复性要远远高于Li6400。 产地:欧洲 参考文献:1. Zav?el T. et al, 2016, A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. Bioresource Technology, 202:142-1512. Zav?el T., ?erveny J., Knoop H., Steuer R., 2016, Optimizing cyanobacterial product synthesis: Meeting the challenges. Bioengineered, 7(6): 490-496.
    留言咨询
  • 原理:等离子体等离子体分析飞行时间质谱仪是一个全新的仪器,它结合了GD等离子体的溅射速度和飞行时间质谱的灵敏度,实现了高分辨率和高灵敏度条件下固体材料的快速化学深度剖析。重点应用领域: 掺杂分析(半导体、光电子、太阳能光伏、传感器、固态光源) 表面和整体污染鉴定(PVD镀层、摩擦层、) 腐蚀科学和技术(示踪物、标记监测、同位素分析) 界面监测 参数: 采集速率:每30μs一张全质谱 质量分辨率:选择高分辨率模式时,在m/z208可达5000 动态范围:107 质量准确度40ppm 灵敏度:103cps/ppm 深度分辨率:nm 正负离子模式 4个离子的灵活消隐功能 简单易用的水平样品装载 产品特点: 样品分析快速无预处理:无需超高压腔 适用于各种材料及镀层分析 全质量覆盖:可提供从H到U元素的完整质谱和分子信息,包括同位素监测 独有3D数据 ,脉冲射频模式(专利) 高深度分辨率:测试薄层可至1nm到厚层:厚层可达100μm 无需校准的半定量分析:溅射和电离过程分离,使得基体效应最小化原理图:应用实例:富含O18氧化钽的同位素分析Si PV的杂质识别 Si中B的定量掺杂 InGaN中Mg的定量分析
    留言咨询
  • HPR20 QIC TMS瞬变过程气体分析质谱仪是为在常压附近快速反应的气体分析而设计的系统。配置0.9m长度的石英毛细进样管,是理想的气体瞬变过程分析质谱仪。0.9m长的高效、柔韧、加热(直到200℃)石英惰性毛细管(QIC) APSI-MS 软离子化技术,选择性分析复杂气体和蒸汽 多离子源选择和快速响应的优化泵结构 脉冲离子记数器,可检测连续7个数量级的动态范围 ppm,%定量分析方法 提供两组外部参数显示信号;可选配16组 扩展余地宽 质量数范围: 1~50、100、200 、300、500、1000amu 响应速度: <150ms,200毫秒内对于5个数量级气体组成变化做出反映 扫描速度: 100amu/s 取样压力: 100mbar~2bar 标准配置 1mbar~30bar 选配 检测浓度: 5ppb~100% 稳定性: 24h以上,峰高变化小于±0.5% 测量速度: 500点/秒
    留言咨询
  • SHP8400PMS-I 防爆型过程气体质谱分析仪,将前沿的在线质谱分析技术与针对性的行业解决方案相结合,实现过程气体的实时、在线分析。通过多通道采样实现多点监测,提供多组分、多流路同时分析。该款质谱分析仪适用于易燃易爆环境和复杂工况环境下的过程气体多组分同时分析,满足长期不间断在线分析和多路不同样品监测的需求。设备简介: SHP8400PMS-I防爆型在线工业质谱仪可用于危险及复杂工况环境下的气体成分快速在线分析,具有防爆、防水、防尘等防护功能。仪器可实现高精度多组分同时检测,提供精准的定性定量测试,并可与生产反应调控过程关联。高精度流体控制◆仪器内置温度补偿型全自动高精度电子流体控制系统,当样气状态改变时,自动进行流量调节,避免了样气压力、温度波动对数据准确性的影响,保证长期连续监测过程中数据的一致性。高稳定质量分析◆72小时内质量轴偏差优于0.1amu,是连续稳定监测的可靠保证。可靠的长期稳定性◆连续36天监测空气中Ar的含量,大标准偏差优于0.4,满足长期连续监测的实际需要。智能在线监控◆在线监控真空度、气路温度、分子泵状态等系统运行参数,如有异常情况出现,立即报警或停机,大程度保障运行安全。精益管理解决方案降低投资成本◆单台质谱仪轻松取代多台气相色谱仪,不仅降低设备投资费用,减少了占地面积,也节省了分析小屋的成本。◆多个工艺气流的各种气体分析数据由一台质谱仪提供,简化了与控制系统的连接,也更为高效。减少运行成本◆质谱仪运行无需载气、助燃气、色谱柱等,避免了气相色谱仪的高维护成本和气体消耗。 在线质谱分析控制原理示意图
    留言咨询
  • 原理:等离子体分析飞行时间质谱仪结合了辉光放电等离子体的溅射速度和时间飞行质谱的快速以及高灵敏度,实现了高分辨率和高灵敏度条件下固体材料的快速化学深度剖析。应用领域:● 掺杂分析(半导体、光电子、太阳能光伏、传感器、固态光源)● 表面和整体污染鉴定(PVD 镀层、摩擦层、电气镀层、光学镀层、磁性镀层)● 腐蚀科学和技术(示踪物、标记监测、同位素标记)● 界面监测技术参数:● 采集速率:每30μs一张全质谱● 质量分辨率:选择高分辨率模式时,在m/z 208可达 5000● 动态范围:107● 质量准确度:40 ppm● 灵敏度:103 cps/ppm● 深度分辨率:nm● 正负离子模式● 4个离子的灵活消隐功能● 简单易用的水平样品装载产品特点:● 样品分析快速无预处理:无需超高压腔● 适用于各种材料及镀层分析● 全质量覆盖:可提供从 H 到U元素的完整质谱和分子信息,包括同位素监测● 3D 数据,脉冲射频模式● 高深度分辨率:测试薄层可至 1nm● 薄层到厚层:层厚可达 100μm● 无需校准的半定量分析:溅射和电离过程分离,降低基体效应
    留言咨询
  • 仪器简介 英国Hiden公司的HAL 201 RC超高真空残余气体分析四极质谱仪专为检测超高真空容器中的存在组分而设计,针对真空诊断进行精确的分析。 离子源为镀金离子源,适合应用在总压小于5 x 10-10mbar的领域,其系统与EPIC离子/分子分析质谱仪完全兼容。 主要特点:镀金离子源,以减少离子源脱气 氧化物涂层双铱丝的离子源 双法拉第/ Channeltron电子倍增器检测器 技术规格:质量数范围: 200,300 amu扫描速度: 100amu/s 最小扫描步阶:0.01amu 灵敏度: 0.1 ppm~1ppm 稳定性: 24h以上,峰高变化小于±0.5% 最小检测分压:5 x 10-14 mbar 最大工作压力:1 x 10-4 mbar
    留言咨询
  • 针对生物发酵尾气分析需求,SHP8400PMS过程气体质谱分析仪配置多通道采样系统,高稳定性四级杆质量分析器,耐水、耐氧性双灯丝离子源等进口关键部件。整个仪器精度高、漂移小 、响应快、维护少并且可以实现多个生物反应器发酵尾气实时、连续、精确的全组分气体分析 ,是提供发酵尾气监测的理想工具。详细信息 SHP8400PMS 过程气体质谱分析仪依托多年研发应用经验,以实时、高精度、在线监测多路生物过程气体为目标,配置16通道采样系统,具有指纹谱图库的电子轰击离子源,经典、成熟的四极杆质量分析器,性能稳定,使用寿命长的法拉第检测器等。另有专业设计的发酵尾气预处理系统,保证分析结果准确的同时确保了仪器不受溢罐等特殊情况的伤害。更高的投资回报率◆一台过程质谱多可同时分析15台发酵罐尾气组分,台均投入费用少;◆快速在线气体分析(每个取样点快30秒),准确反映工艺动态,给工艺优化提供强有力支撑;◆高稳定性,3-6个月的标定间隔,可长时间稳定运行;◆全组分分析,自动生成摄氧率(OUR)、二氧化碳释放率(CER)、呼吸商(RQ)等数据和曲线;◆自动化程度高,维护需求少,运营成本低;16通道采样系统◆每一通道均为独立进气和独立排气,彻底摒除通道间干扰◆连续流动式取样,保证气体的实时更新◆可控温的进气管路,有效防止过程气体在采样过程中冷凝全组分气体分析◆SHP8400PMS可实现气体全组分分析,除了提供N 2 、O 2 、C O 2 、A r等无机气体的监测结果,也能实现甲醇、乙醇、甲烷等有机气体的实时分析。高精度流量控制◆仪器内置温度补偿型全自动高精度电子流量控制系统,当样气状态改变时,自动进行流量调节,避免了样气压力、温度波动对数据准确性的影响,保证长期连续监测过程中数据的一致性。高稳定质量分析◆72小时内质量轴偏差优于0.1am u,是连续稳定监测的可靠保证。全中文在线质谱分析工作站◆采用新一代Fluent Ribbon用户界面,在提供丰富信息的同时,降低操作难度,易于用户掌握。质谱仪在线监控示意图 在线气体前处理系统◆针对生物过程设计的多通道样气在线处理系统,具备除尘、除湿、除泡沫、控温及调压等功能,保证样气的真实快速传输和质谱仪的长期稳定运行。 完美兼容各种发酵控制系统和工艺分析软件◆软件的数据存储格式和内部交换格式均采用通用的工业标准,与其他软件系统完美兼容。 SHP9000PA在线监控及工艺分析软件◆中文软件界面,适用于工业生产以及实验室多参数过程监控,可根据用户工艺流程定制工艺画面,通过实时数据的采集即时掌握整个工艺流程的概况。◆支持各类工业P LC ,数据采集装置以及本公司在线质谱仪等各类在线分析仪器。自动生成摄氧率(OUR)、二氧化碳释放率(CER)、呼吸商(RQ)等数据和曲线,提供趋势图,柱状图等显示监测数据或历史数据,可更直观地对参数进行分析处理,用户可轻易发现参数之间的相关性,同时按要求格式保存输出。◆可输出控制信号,具有报警功能。
    留言咨询
  • QGA配有专业版定量气体分析软件,提供了多种气体实时定量分析的功能。操作界面简单方便,使得用户非常容易去设置,减少了编辑程序的麻烦。应用: 催化研究反应动力学热分析质谱气体纯度分析多组分气体分析 环境气体分析 燃烧研究 CVD / MOCVD 发酵过程分析 氢气在线监测技术规格: 质量数范围:1~200 amu(标准配置) 1-300amu可选 响应速度: 300毫秒内对于气体浓度的变化做出反映 取样压力:100mbar~2bar 标准配置;1mbar~30bar 选配 检测浓度: 1 ppm~100% QGA专业定量分析软件 多种气体或蒸汽的定量气体分析 智能谱库扫描功能 建立气体/蒸汽谱分析计算并自动减去重叠谱 谱图模拟器动态快速显示用户控制的变化 可从外部输入触发信号,自动开始分析 能够读取多种输入,如温度和压力 数据输入外部气体分析器,例如一个CO分析器,能自动积分分析质谱数据 多路气体分析可自动顺序测量能连接多达80路气流(需选配多路取样阀)
    留言咨询
  • 英国Hiden公司的QGA定量气体分析质谱仪是为在常压附近连续定量分析气体/蒸气的而设计。QGA配有专业版定量气体分析软件,提供了多种气体实时定量分析的功能。操作界面简单方便,使得用户非常容易去设置,减少了编辑程序的麻烦。设置简单、操作方便 图形、数据实时显示 本底自动校正 16种气体的定量分析 数据以原始数据、%或ppm形式输出 智能谱库扫描功能 准确的碎片峰形记录 自动减去重叠谱 数据输入外部气体分析器,例如一个CO分析器,能自动积分分析质谱数据 多路气体分析可自动顺序测量能连接多达80路气流(需选配多路取样阀)
    留言咨询
  • 仪器简介:HALO 201 MBE 分子束外延残余气体分析四极质谱仪用于泄漏探测、趋势分析、真空诊断的过程监测和残余气体的精确分析。该分子束外延特定分析质谱仪由兼容性材料组成,并能在分子束外延环境中长期使用。 主要特点:钼铜布线增加MBE环境下系统的寿命 抗污染离子源护罩 双法拉第/ channelplate电子倍增器 技术规格:质量数范围: 1~300 amu 扫描速度: 100amu/s 最小扫描步阶:0.01amu 灵敏度: 0.1 ppm~1ppm 稳定性: 24h以上,峰高变化小于±0.5% 最小检测分压:2 x 10-13 mbar 最大工作压力:1 x 10-4 mbar Mass Spectrometers for Residual Gas Analysis - RGA (1.35 MB)
    留言咨询
  • 在线质谱分析仪与气体分离测试系统联用上海伯东客户某研究院采购在线质谱分析仪 Omnistar 与气体分离测试系统联用进行 CH4, CO, C2H2,CO2 的快速定量分析.在线质谱分析仪使用方法: 质谱分析仪通过毛细管与气体分离测试系统连接, 开始测试前加配对应的标气, 利用氦气作为载体, 在测试前进行标定. 采用 MCD 定量模式分析, 即可快速在线实时分析反应产物的含量.在线质谱分析仪 Omnistar GSD 350 01 主要参数 质量数 1-100 amu 最大进气口压力 1200 hPa 检测极限 100 ppb 气体流率 1-2 sccm (0 °C) 输入模拟 5 x, -10 – +10 V, 14 bit | 16 bit 不锈钢毛细管长度 1m 进样加热温度最高 200 °C 铱灯丝, Y2O3 2根 鉴于客户信息保密, 若您需要进一步的了解在线质谱分析仪, 请联络上海伯东叶女士
    留言咨询
  • 总览ZBLAN光纤是由ZrF4、BaF2、LaF3、AlF3和NaF等重金属氟化物组成的复合玻璃光纤。与广泛应用的石英光纤相比,ZBLAN光纤具有传输波长范围宽(0.35μm~4μm)和掺杂稀土离子发射效率高等特点。对于光纤激光器和放大器的应用,为了优化其效率,通过一种独te的光纤制造技术,筱晓光子推出低成本生产出高质量(特别是低损耗)的氟化物纤维双包层光纤,具有特定的d型芯可以设计和制造定制光纤的激光和放大器Mid-IR supercontinuumLVF非线性单模光纤由于其优良的性能,可以实现非常平坦和宽带的输出光谱。(中红外超连续介质激光器)中红外光谱和光学测量VF提出了用于光学安装的标准单模和多模光纤连接电缆。荧光LVE制造用于荧光研究的定制稀土掺杂氟化物玻璃块。晓光子提供全系列ZBLAN光纤产品,可定制波长0.04μm~0.35μm,纤芯与包层从50μm~1000μm可定制,也可定制红外线解决方案。稀土 Ho钬/Pr镨掺杂 ZBLAN双包层氟化物裸光纤,稀土 Ho钬/Pr镨掺杂 ZBLAN双包层氟化物裸光纤 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径
    留言咨询
  • 仪器简介:qRGA托卡马克装置残余气体分析质谱仪专为阈值电离质谱(TIMS)模式下操作,核聚变系统燃料输送进行分析而设计的质谱仪。 通过控制TIMS模式提供的电子发射能量,能对D2 和4He的同位素进行分析检测。 主要特点:实时定量分析 ppm级检测水平 在常规质量分析和TIMS模式下操作 电子能量分辨率为0.1 eV 辐射屏蔽和磁屏蔽,低耗费运行 技术规格:质量数范围:1~200 amu 软离子化: 0~150eV 稳定性: 24h以上,峰高变化小于±0.5%
    留言咨询
  • 主要参数 / Main Parameters: ◆ 四极质谱:德国英福康(INFICON)在线质谱(产地:美国,提供原产地证书及原厂校准测试证书); ◆ 质量数:默认1-100amu;选配1-200amu或1-300amu; ◆ 灯丝:镀铱灯丝,2套,一用一备,软件切换; ◆ 分辨率:优于0.5ppm(40amu); ◆ 扫描速度:可达1.8毫秒/amu,扫描步阶0.1amu; ◆ 最小可检测分压:2E-15Torr (4s停留时间) ◆ 气体采样流量:默认可低达2SCCM的微流量采样,可至0.2SCCM的超微采样量;(相比其它国际品牌,完全避免了大流量采样吸入空气的弊端) ◆ 响应速度:可在低达<2SCCM的微流量采样量下,仍然保持超快速的响应,响应时间<1秒;(无需大流量采样来提高响应速度) ◆ 分流系统:具有,高精度分流系统是快速灵敏响应速度的保证。 ◆ 软离子化功能:离子源电子能量软件可调,提供更高分辨率。 ◆ 涡轮分子泵:爱德华,抽速85L/s,100KRPM,极限真空1*10E-12mbar; ◆ 干泵:涡旋干泵,抽速20L/S,极限真空1*10E-1mbar; ◆ 质谱腔体:一体式腔体,非焊接式,含加热烘烤,烘烤温度150℃; ◆ 进样接口:1.2米内洁净钝化不锈钢毛细管进样装置,防冷凝防堵塞保护结构;采样压力默认100±10kpa,负压或高压采样可定制; ◆ 软件分析系统:德国英福康(INFICON),英文;通讯接口TCP/IP。 ◆ 规格:H510mm*L520mm*W225mm,Weight30kg,高集成度。测试报告 / Test report其它功能 / Other functions ◆ 零焊缝超高真空质谱腔体技术(将传统的4焊缝降低到0焊缝); ◆ 分子泵高真空大流导MAX接口技术(将流导面积增加3倍以上,流导长度缩短5倍以上),从而获得极限灵敏度; ◆ 分子泵电流电压监测,质谱腔体温度监测; ◆ 采样管线防蒸汽凝结技术;采样口防堵技术;高温变压高湿气体在线质谱分析系统BSD用户论文 / BSD User Paper
    留言咨询
  • 上海伯东日本 Atonarp Aston™ 质谱分析仪无等离子体设计,可以实现快速, 化学特定的原位定量气体分析, 与光学发射光谱 OES 对比, Aston™ 质谱仪 的 OA% 灵敏度显示为 0.25%, 适用于半导体工艺中蚀刻计量控制, ALD, 3D-NAND 和新兴的堆叠式 DRAM.半导体蚀刻工艺挑战日益增加蚀刻是半导体制造中常用的工艺之一. 介电蚀刻用于形成绝缘结构, 触点和通孔, 多晶硅蚀刻用于在晶体管中创建栅极, 金属蚀刻去除材料以显示电路连接图案并钻穿硬掩模.连续蚀刻铝 Al, 钨, 铜 Cu,钛 Ti 和氮化钛 TiN 等工艺金属具有挑战性, 因为许多金属会形成非挥发性金属卤化物副产品(例如六氯化钨 WCl6), 这些副产品会重新沉积在蚀刻侧壁上, 导致成品率降低(通过微粒污染或沉积材料导致短路).随着半导体行业不断缩小关键特征尺寸并采用垂直扩展 (如 3D-NAND 存储器和全环绕栅极先进技术节点), 各种新的蚀刻挑战已经出现. 这些包括在晶圆上蚀刻更小的特征, 高展弦比 HAR 沟槽蚀刻 (具有小的开放面积百分比- OA%), 以及在新兴的非挥发性存储器和高 k介质中蚀刻金属闸极, 稀土金属等新材料. 对于先进的纳米级工艺, 如蚀刻到硅介质和金属薄膜, 选择性处理, 如原子层蚀刻 ALE 一次去除材料的几个原子层. ALE 提供了比传统蚀刻技术更多的控制. 对于 3D-NAND 和先进 DRAM 来说, 向批量生产过渡的重大挑战包括解决导体蚀刻困难的要求, 满足积极的生产斜坡和实现所需的吞吐量, 以推动成本效益.上海伯东日本 Atonarp Aston™ 质谱分析仪提供高性能, 嵌入式和可靠的原位定量分子气体计量已经成为验证工艺室和持续监测工艺化学过程的关键工具, 确保生产环境中的高产率和更大吞吐量.Aston™ 质谱分析仪提供全腔室解决方案使用上海伯东 Atonarp Aston™ 质谱仪通过实时, 定量和精确的分子传感器来解决半导体新兴蚀刻工艺技术相关的关键挑战. 通过解决传感器耐久性, 灵敏度, 匹配, 系统集成和易用性等方面的挑战, 日本 Atonarp Aston™ 质谱仪升级了传统的气体分析计量方法. Aston 是一种全室解决方案, 用于在各种工艺步骤中实时监测前体, 反应物和副产物.这些包括基准室和过程指证, 腔室清洁, 过程监测 (包括存在腐蚀性气体), 颗粒沉积和气体污染物凝结. 小的占地面积和灵活的通信接口允许在室内安装和集成到过程设备控制系统. 为了集成到半导体工艺工具中, Aston 质谱分析仪的高性能和可靠性设计用于生产晶圆的大批量生产过程控制.Aston™ 质谱分析仪半导体蚀刻计量控制半导体行业正从二维结构的扩展转向复杂三维结构的挑战性要求. 传统的离线晶圆测量已不足以实现性能和良率目标, 原位蚀刻测量传统上缺乏生产所需的鲁棒性和可重复性. Aston™ 质谱分析仪的结构中嵌入了专利技术, 使其具有卓越的分析和操作性能. 为了满足过程控制和跨工厂生产工具匹配的严格要求, Aston 从头开始设计, 高运行时间和低维护的吞吐量, 长期信号稳定性和可重复性.为了承受腐蚀和沉积过程的恶劣环境, Aston™ 引入了两个的功能: 等离子电离和自清洁 (ReGen™模式). 等离子体电离消除了由于与腐蚀性气体(如NF3, CF4, Cl2)的反应而导致的灯丝降解. 此外, 除去(正硅酸四乙酯) TEOS 等颗粒和蒸汽污染物沉积, 同时定期进行室内清洁循环, 延长了 Aston™ 质谱仪的使用寿命. ReGenTM 模式使仪器能够使用高能等离子离子清洗自身, 通过去除在膜沉积过程中可能发生在传感器和腔室壁上的沉积. 结合这两个功能, 传感器的灵敏度可维持在数百个RF(射频)小时的操作. Aston质谱仪支持的基于测量的控制, 有可能延长清洗间隔 MTBC 的平均时间. MTBC 的增加意味着工具可用性和长期吞吐量的增加. 除了等离子电离器(用于工艺), 传感器还配备了传统的电子冲击 EI 灯丝电离器, 用于基线和校准.分子传感器的分析级是使用微米级精密双曲电极的四极杆. 由高度线性射频(RF)电路驱动, Aston 质谱的HyperQuad 传感器在 2到300 amu的质量范围内具有更高的分析性能.Aston™ 质谱分析仪技术参数参数值质量分辨率0.8u质量数稳定性0.1u灵敏度(FC / SEM)5x10-6 / 5x10-4 A/Torr最低可检测的部分压力(FC / SEM)10-9 / 10-11 Torr检测极限10 ppb最大工作压力1X10-3 Torr每 u 停留时间40 ms每u扫描更新率37 ms发射电流0.4 mA发射电流精度0.05 %启动时间5mins离子电流稳定 ±1%浓度的准确性 1%浓度稳定±0.5%电力消耗350w重量13.7kg尺寸400 x 297 x 341mm高展弦比 HAR 3D 蚀刻随着多模式技术和 3D器件结构的出现, 高度密集的蚀刻和沉积过程驱动了计量需求. 3D多层膜栈, 如 NAND 存储架构, 代表复杂的, 具有挑战性的蚀刻过程, 具有关键的蚀刻角度, 统一的通道直径和形状要求, 尽管高蚀刻纵横比通道 100:1 是常见的. 对于 3D-NAND, 关键导体蚀刻过程包括阶梯蚀刻(下图)和用于垂直通道和狭缝的 HAR 掩模打开. 通过硝酸硅和氧化硅交替层蚀刻需要高速定量终点检测. 对于 DRAM, 蚀刻过程包括 HAR 门, HAR 沟槽和金属隐窝. 对于阶梯蚀刻, 关键是在整个 3D堆栈的每个介质膜对的边缘创建等宽的“步骤”, 以形成阶梯形状的结构. 在器件加工过程中, 这些步骤的大量重复要求蚀刻高吞吐量和严格的过程控制.多功能现场气体计量需要在一个工具中执行多种监测功能:• 检测和量化污染, 交叉污染, 气体杂质和工艺室内的工艺化学• 评估已开发的蚀刻过程在生产工具 / 运行的复杂功能上的性能• 测量刻蚀后的清洁 (包括先进的无晶圆自动清洁 WAC) 作为腔条件对于消除工艺漂移和确保可重复性性能是至关重要的• 快速准确的蚀刻端点检测 EPD, 通过等离子体或气体监测, 因为这是一个关键的控制功能. 举例包括一氧化碳 CO 副产物在介电蚀刻中下降或氯 Cl 反应物在多晶硅和金属蚀刻端点上升.• 全面的实时计量数据, 允许过程等离子体和反应物的动态腐蚀控制, 以管理要求的腐蚀剖面Aston™ 质谱分析仪无等离子体终点检测虽然光学发射光谱 OES 已被广泛用于蚀刻 EPD, 但低开放面积 OA 和 HAR 设计的趋势使其在许多蚀刻任务中无效. OES 技术需要等离子体'开'和发光物种. 随着昏暗和远程等离子体越来越多地用于 3D设备和原子水平蚀刻 ALE 工艺, 需要更多敏感的数据和分析技术来实现迅速和确定的 EPD. 此外, 脉冲等离子体通常用于管理 HAR 和 低 OA% 工艺的蚀刻剖面, 这使得 OES 对于 EPD 来说是一个不切实际的解决方案. 在3D 结构中, 多层薄膜和多个接触深度阻碍了每一行触点到达底部时端点的光学发射信号的急剧步进变化其他 OES 限制包括:• 在电介质蚀刻中, 在 OA 5% 的模式上进行 EPD一直具有挑战性, 因为 OES 在低浓度下具有低信噪比.在高压Si深蚀刻(例如博世工艺)中, 要求 OA% 的 EPD低于 0.3%, OES 中较大的背景噪声水平抑制了对发射种数量的任何变化的检测.• 在金属蚀刻中, OA% 可能低于10%, 这取决于所涉及的互连尺寸. 对于接触和通过蚀刻, OA 可以在0.1-0.5%之间或更低, 这取决于所涉及的特征的大小. 在钨 W 蚀刻的情况下, 随着 OA的减小, 氯 Cl 反应物的消耗减少, 由于材料运输到 HAR 蚀刻特征, 蚀刻趋于放缓. 这两个因素都降低了反应气的消耗率. 因此, 由于等离子体中反应物的耗尽, 很难看到在终点处 OES信号的显著变化.Aston™ 质谱仪可以利用蚀刻反应物和 EPD 的副产物. 此外, Aston 能够在小的, 有限体积的传感器上运行周期性清洗, 以保持其性能(灵敏度), 在延长晶圆运行次数的情况下获得更大的正常运行时间. 然而, OES 要求在腔室上有一个需要保持清洁的访问窗口,以获得足够强度的稳定信号。通常,加热石英窗用于减缓工艺产品的堆积. 使用 Aston™质谱分析仪,在低浓度下的检测不受等离子体发射的背景光谱的影响, 也不受射频功率脉冲期间等离子体强度波动的影响.图 3a/3b 显示了 CO+和 SiF3 +的副产物 OA%下降到0.25%的电介质腐蚀EPD数据数据清楚地显示了线性行为和在低浓度下的检测不受等离子体发射的背景光谱影响. Aston 质谱的 ppb 灵敏度是针对 0.1%以下的 OA性能.原子级蚀刻 ALE在三维结构中, ALE 过程中的逐层去除需要脉冲射频电源来控制自由基密度和较低的离子能量, 以减少表面损伤和保持方向性. 在这样的光源中, 等离子体的整体光强较低, 并表现出波动幅度. 通常等离子体离晶圆区很远(距晶圆区25厘米), 而且等离子体激发的副产物很少, 使得光学测量不切实际.在 ALE中, 由于每个周期都是自我限制的, 端点检测可能不那么重要. 然而, 在缺乏气体分析的情况下, 工艺工程师对监测腔室和工艺健康状况“视而不见”, 因为无法看到化学状态, 特别是在工艺步骤 (吸附/净化/反应/净化) 之间过渡时的动态状态, ALE 的自限性并不能使它不受过程漂移的影响. 此外, 由于 ALE 不是基于等离子体的, 因此过程中的化学变化不一定可以通过等离子体监测检测到.有一种误解, 认为 ALE 技术实际上是一次一个原子层 相反, 它们每循环的去除/沉积量可能比单分子膜多一点(或少一点). 由于真空泵性能, 晶圆温度或离子轰击能量 (电压) 的变化分别导致表面饱和度和表面反应性的变化, 工艺移位(Å/周期的变化)可能发生.在 ALE (下图)中,由于等离子体的使用不一致, 化学监测方面的差距就不那么明显了. 在这种情况下, Aston™ 质谱仪具有以下优点:• 在每个工艺步骤中建立一个腔室化学状态的指证. 这可以参照其自身的正常行为, 也可以参照标准腔• 描述和监控与化学变化相关的动态过程中, 从一个步骤过渡到下一个步骤• 监测在 ALE 循环第一步之后从系统中清除吸附物质的时间. 等离子体通常用于产生吸附物质(自由基), 但它是在远离晶圆片的地方产生的• 监测 ALE 循环第二步反应产物的变化. 等离子体光强通常较低, 因为它使用了低占空比的脉冲射频• 监测反应产物和反应物在ALE循环第二步后被净化的时间结论原子级蚀刻只能使用像上海伯东日本 Atonarp Aston™ 质谱仪这样的分子传感器进行真正的测量和监测. 它的高灵敏度, 速度和对等离子体强度变化的低敏感性产生可靠的定量测量, 即使在低浓度的反应物和副产物, 具有低于1% 水平的高精度, 可以监测微妙的过程漂移和过程变化效应, 提供了可用于机器学习模型的见解.利用其高扫描速度, 通过监测反应产物减少的时间来实现步进时间优化, 因为它是表面反应活性变化的指示, 增加了总体吞吐量.ALE 是先进的蚀刻技术, 上海伯东 Aston 质谱仪为 ALE 提供了先进的化学计量技术, 可以测量和控制反应及其持续时间, 为大批量生产提供了可靠的解决方案.若您需要进一步的了解 Atonarp Aston™ 在线质谱分析仪详细信息或讨论, 请参考以下联络方式:上海伯东: 罗先生
    留言咨询
  • 一,氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm)ZFG光纤重金属氟化物组成的复合玻璃光纤。与广泛应用的石英光纤相比,ZFG光纤具有传输波长范围宽0.03μm~4.5μm具有掺杂稀土离子发射效率高等特点。在光纤激光器和放大器的应用领域,为了优化其效率,通过一种独te的光纤制造技术,筱晓光子特推出低成本生产出高质量(特别是低损耗)的氟化物纤维单模光纤,具有特定的D型芯可以设计和制造定制光纤的激光和放大器Mid-IR supercontinuumLVF非线性单模光纤由于其优良的性能,可以实现非常平坦和宽带的输出光谱。(中红外超连续介质激光器)中红外光谱和光学测量。筱晓光子提供全系列ZFG光纤产品,可满足苛刻的光纤激光器的需求,可定制截止波长,纤芯直径,包层直径等,筱晓光子为您提供全方位红的外线解决方案。 光纤类根据数量价格,合同金额原则上不低于3500元光纤类根据数量价格,合同金额原则上不低于3500元 氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm),氟化物单模掺铥ZBLAN光纤 ( 0.3-4.50μm) 通用参数型号ZFG SM [0.95](Tm3 5000) 3/125 纤芯直径3μm包层直径125μm第二包层直径N/A数值孔径0.23掺杂离子TmF3浓度(mol)5000ppm截止波长0.9μm短期弯曲半径≥15mm长期弯曲半径≥45mm衰减曲线三,稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列)ZBLAN氟化物光纤的特点之一是各种稀土掺杂物,比如Tm、Pr和Er的高效率光发射。光纤用掺稀土的单模ZBLAN光纤抽芯光放大器、ASE光源和光纤激光器作为增益介质。稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列),稀土钬/铥掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列) 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径
    留言咨询
  • 因产品配置不同, 价格货期需要电议, 图片仅供参考, 一切以实际成交合同为准 残余气体分析仪 Hicube RGA 上海伯东销售维修德国 Pfeiffer 残余气体分析仪 HiCube RGA. 四极杆质谱 PrismaPro 与 HiCube 涡轮分子泵组的搭配, 质量数范围 1-300, 高分辨率和灵敏度. 适用于残余气体分析, 过程监测, 泄漏检测.残余气体分析仪 Hicube RGA 优势残余气体分析和氦气泄漏检测模式可用于从大气压至高真空环境高分辨率和灵敏度通过真空压力监测保护灯丝进气系统带集成式切断阀Pfeiffer 残余气体分析仪 Hicube RGA 技术规格 涡轮分子泵组HiCube&trade Eco功耗170W电压(范围)110 - 240 V 50 / 60 Hz氮气抽速67 l/s前级泵在 50 Hz 时的泵送速度1 m3/h极限真空1X10-7 hPa 真空计PKR 361测量范围1X10-9 至 1X103 hPa阀门EVN 116气体流量可调整, 自 5X10-6 至 3X103 hPa l/s进气口DN 16 ISO-KF PrismaProQMG 250 F1 QMG 250 F2QMG 250 F3QMG 250 M1QMG 250 M2QMG 250 M3检测器法拉第 Faraday (F)电子倍增器/法拉第 C-SEM/Faraday (M)质量数 amu1–1001–2001–3001–1001–2001–300四极杆直径/长度6 /125 mm 最小检测极限 F hPa *1,24X10-135X10-137X10-13---最小检测极限 M hPa *1,2---3X10-154X10-155X10-15对Ar的灵敏度 F A/hPa*35X10-44X10-4 3X10-45X10-44X10-43X10-4最大工作压力 F hPa5X10-4最大工作压力 M hPa---5X10-55X10-55X10-5对临近质量数的影响*1 10 ppm 20 ppm 50 ppm 10 ppm 20 ppm 50 ppm操作温度 分析200 °C (max. 150 °C when operating with SEM)操作温度 电子5 – 50 °C烘烤温度 分析300 °C连接法兰DN 40 CF-F保压时间1 ms – 16 s/amu峰比值可重复性± 0.5 %接口以太网电源电压100–240 V AC,50/60 HzHiCube&trade RGA重量25.5 - 26.2 kg 残余气体分析仪 Hicube RGA 典型应用 残余气体分析: 对真空系统中残余气体的分析, 可以获知在达到所需的最终压力或调节要求时, 残余物质的组成. 由此可以得出各种有关系统表面性质, 脱附行为, 纯度和密封性以及工艺气体成分的结论. 这将为您提供有关真空室或真空组件状态的重要信息.泄漏检测: 上海伯东 Pfeiffer 残余气体分析仪 HiCube RGA 具有氦气泄漏检测模式, 可以通过软件控制激活. 此功能可以方便您发现真空系统中的任何泄漏.过程监控: HiCube RGA 可以在最大 300u 的测量范围内随时间观察任意数量的选定质量强度, 并可对选定的各质量分配警报循环阈值. 如果它们高于或低于所需极限, 则可以通过数字输出将信号提供给更高级别的控制系统. 因此残余气体分析仪 HiCube RGA 能够提供实时过程观察和控制功能. EVN 116 气体计量阀还可以使真空系统中的压力适应相应过程需求, 此外, 集成式切断阀还允许对泄漏设定点进行快速开/关控制.质量保证和过程优化: 诸如提供气体成分定量测定, 确定过程气体纯度, 以及监测真空镀膜过程相关气体成分等能力, 残余气体分析仪 HiCube RGA 是过程记录和质量保证中的重要工具. 即使测量正在执行, 所有测量值也会得到存储, 并且可以在不停止测量的情况下追踪. 即使仍在执行测量, 也可以导出测量结果以进行进一步分析.若您需要进一步的了解残余气体分析仪详细信息或讨论, 请联络:上海伯东: 叶女士 上海伯东版权所有, 翻拷必究!
    留言咨询
  • 总览ZBLAN氟化物光纤的特点之一是各种稀土掺杂物,比如Tm、Pr和Er的高效率光发射。光纤用掺稀土的单模ZBLAN光纤抽芯光放大器、ASE光源和光纤激光器作为增益介质。稀土Ey/Dy镝掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列),稀土Ey/Dy镝掺杂 ZBLAN双包层氟化物裸光纤( FL ZDF系列) 通用参数产品应用光纤激光器光纤放大器类型掺稀土双包层光纤光纤类型双包层氟化物光纤掺杂元素Pr,Nd,Ho,Er,Dy,Tm,Yb,其它掺杂浓度(ppm mol)500-50000包层形状圆,八角形,长方形纤芯数值孔径0.16,0.21,0.26涂覆层数值孔径0.5截止波长(um)2.5芯径(um)2涂覆层直径(um)圆形:123/200/500(直径)八角形:123/200/500(对角线长度)矩形:123/200/500(对角线长度)包层直径(um)460,480,600第二层涂覆层厚度(um)30第二层涂覆层材料氟树脂包层材料UV固化丙烯酸脂实验测试半径1.25cm,2cm,6cm标准型号参考型号稀土掺杂稀土浓度(摩尔ppm)芯径(μm)Core NACutoff(nm)第一层包层直径(μm)包层形状第二层包层直径(μm)CladdingNA包层吸收(dB/m)ZDF-16/250-10E-CEr10,00016±20.12±0.02@ 3500 nm 2850250±13圆形460±300.50±0.02@1000nm0.3-0.8@ 980 nmZDF-18/250-60E-CEr60,00018±20.12±0.02@ 2700 nm 3400250±13圆形460±300.50±0.02@1000nm2-3@ 980 nmZDF-30/300-60E-CEr60,00030±20.12±0.02@ 2700 nm 5350300±15圆形460±300.50±0.02@1000nm4-5@ 980 nmZDF-7.5/125-40T-CTm(铥)40,0007.5±1.50.14±0.02@ 2000 nm 1700120±3圆形210±200.50±0.02@1000nm1-2@ 800 nmZDF-8.5/125-2H40T-CHo(钬)Tm2,00040,0008.5±2.00.14±0.02@ 2000 nm 2000123±4圆形195±150.50±0.02@1000nm1-2@ 800 nmZDF-10/125-30H2.5P-CHoPr(镨)30,0002,50010±10.17±0.02@ 3000 nm 2400123±3圆形210±100.50±0.02@1000nm1-2@ 1150 nmZDF-20/250-40E2.5D-CEyDy 镝40,0002,50020±30.13±0.02@ 3000 nm 4100250±13圆形460±300.50±0.02@1000nm1-2@ 980 nmZBLAN玻璃的折射率(芯,典型)HBLAN玻璃的折射率(用于包层,典型)ZBLAN玻璃的材料分散性(芯,典型)HBLAN玻璃的材料分散性(用于包层,典型)背景损耗和发射波长通过选择稀土元素和激发波长,得到不同波长的光发射。虽然芯在长波长区域具有较低的损耗,但在第一包层中的传播光在1.7um处造成更大的损耗,而由于吸收用于第二包层的氟基UV树脂而导致更多波长损耗。DCFF配置订购信息例如:DCFF-2/125-P-30-0.21-0.52/125------2=芯径 125=涂覆层直径P ----------P=掺杂稀土元素30 ---------30=第二层涂覆层厚度0.21--------0.21=纤芯数值孔径0.5 --------0.5=涂覆层数值孔径技术参数光纤损耗谱
    留言咨询
  • 新一代的QGA 2.0质谱仪采用了全新的外观和内部设计,以更小的体积和重量,呈现出更加美观的外观。其更快的扫描速度和更高的灵敏度使其能够实现每秒1000次的测量速度,并覆盖了从100ppb到100%的扫描范围。 便捷简化 – 一键启动操作先进卓越 – 全新电子学部件设计多功能应用 – 兼容多种进样口精心优化 – 专为氢气分析而优化高效速度 – 每秒高达1000次测量直观易用 – QGA 2.0 定量分析软件紧凑轻巧 – 实验台占地面积减小了42%轻盈便携 – 重量减轻了26%可持续环保 – 制造过程中使用更少,更环保的材料
    留言咨询
  • 激光拉曼光谱气体分析仪LRGA-6000产品名称:激光拉曼光谱气体分析仪 产品型号:LRGA-6000激光拉曼光谱气体分析仪LRGA-6000基于激光拉曼散射原理,通过对待测气体的特征拉曼散射光谱进行增强、收集、处理和识别,并对含量进行定量计算。可同时对多种气体进行全量程的在线和实时检测。   产品特性   采用激光拉曼气体特征指纹技术,干扰少 在线、实时:一台仪器解决工业过程气体全流程监测 全组分:测量包括N2、O2、H2O在内的气体全组分 响应速度快,样气进入分析仪后直接显示测量结果 全量程气体浓度测量,检测范围为(0.01-100)%,调整时间,也可以测量微量组分 具备温度和压力自动修正功能,无漂移 使用和维护成本低,无须载气与耗材 集全自动气体连续采样、反吹、标定系统于一体 可选配集成系统,实现对多个监测点的实时循环监测 智能化软件设计,全触屏界面,数据直观显示,可外接PC键盘产品优势在线、实时、全组分,可取代气相色谱GC和质谱MS对比红外分析技术(NDIR)——红外气体分析仪量程范围小,且不能检测同核双原子分子,如N2、O2和H2等。LRGA-6000拥有多组分气体成分检测能力,尤其是能够精确测量天然气中的双原子分子,且量程更大,精度更高。对比气相色谱技术(GC)——气相色谱仪使用需要载气和色谱柱,且响应时间通常需要几分钟到几十分钟,需要专业技术人员操作。LRGA-6000响应时间极短,无需载气和耗材,操作简便,使用成本低。对比质谱分析技术(MS)——质谱分析仪价格昂贵,维护成本高,操作复杂,很少用于工业现场在线分析。LRGA-6000坚固耐用,操作简单,维护成本低,更适用于恶劣的工业现场。 技术参数行业应用领域监测气体煤化工行业煤气发生炉煤制天然气合成氨/尿素CO、CO2、H2、N2、O2、CH4、C2H2、C2H4、C2H6、C3H8、H2S…CO、CO2、H2、N2、O2、CH4、C2H6、C3H8、iC4、nC4、H2S、H2O…CO、CO2、H2、N2、O2、CH4…钢铁冶金行业CO、CO2、CH4、C2H2、C2H4、C2H6、C3H8、O2、H2、N2、H2S…石油天然气行业CH4、CO、CO2、H2S、C2H6、C2H4、C3H6、C3H8、H2…原铝行业CO、CO2…环保行业H2、N2、O2、CO、CO2、CH4、C2H2、C2H4、C3H6、C3H8、H2S…电力行业CO、CO2、H2S、CH4、H2O…水泥行业CO、CO2、H2O、H2S…基本参数量程范围最低量程:(0~10)%,最高量程:(0-100)%线性误差≤±1%F.S.分辨率0.01%仪表响应时间≤90s漂移≤2%F.S./24h,
    留言咨询
  • Mini β 小型质谱分析系统(图1)是由北京清谱科技有限公司的研发团队在清华大学和美国普度大学的深度合作下研发、设计、制造的质谱产品,旨在为终端用户提供简单快速的原位化学分析方案。Mini β小型质谱仪的实现源自两项关键技术的诞生——原位电离和质谱仪小型化技术。图1 Mini β 小型质谱分析系统1 仪器设计理念:十年砺剑,化繁为简Mini β小型质谱仪的实现源自两项关键技术的诞生——原位电离和质谱仪小型化技术。原位电离设计概念率先由普渡大学R. Graham Cooks 和清华大学欧阳证教授团队于 2006 年提出(Cook et al., 2006),旨在为质谱使用提供简单易用、快速精准的分析方法。十余年间,团队通过不懈创新,开发了以解吸附电喷雾(Takáts et al., 2004)、纸喷雾(Wang et al. 2010)及段塞流微萃取(Ren et al., 2014)为代表的一系列方法,并已经过国际多所高校、科研院所和企业的原理及应用验证。Mini β小型质谱分析系统将原位电离技术植入了一次性进样试剂盒,在赋予质谱仪简单快速的使用特性的同时,避免了痕量分析工作中由样品造成的潜在设备污染。同期,R. Graham Cooks 和欧阳证教授的团队也在不断探索质谱小型化的方案,并在 2007 年推出了用于气相分析的质谱小型化技术(Gao et al., 2007)。该技术现已被广泛应用,是市场上便携质谱仪的原型,已被成功用于安防领域的气体和挥发物检测,而具备非挥发物质检测能力的小质谱 Mini 12 是在气相小质谱的基础上多次创新的成果(Gao et al., 2008 Hendricks et al., 2014 Li et al., 2014),也是 Mini β 小型质谱分析系统的设计原型(图2)。 图2 质谱小型化技术发展沿革Mini β 小型质谱分析系统是世界首款实现质谱小型化与原位电离技术联用的质谱产品,此项仪器设计极大地降低了质谱分析的复杂程度,增强了检测的移动性、时效性,使仪器使用突破了检测场地、时间和人员的限制,为用户提供及时、准确的化学信息反馈,在食品安全、公安执法和医疗诊断等领域有着广泛的市场潜力(Li et al., 2014 Ma et al., 2015 Ma et al., 2016)。Mini β 小型质谱分析系统由PCS原位电离试剂盒和Mini β 小型质谱分析仪组成,传统质谱仪所需的进样系统、质量分析系统、数字控制系统、射频控制系统、真空系统已全部压缩集成在了55cm(长)×24cm(宽)×31cm(高)的空间中,体积仅和台式电脑主机相当。2 核心技术与产品性能:小巧、快速、简单2.1 PCS 原位电离技术2004年,普度大学R. Graham Cooks研究组开发出解析电喷雾技术(DESI),直接离子化质谱技术得到快速发展,纸喷雾技术(PS)、萃取喷雾技术(ExS)相继推出。2015年纸喷雾技术得到优化升级,得到更稳定的微管纸喷雾技术(PCS),并于2016年产业化为PCS原位电离试剂盒(图3)。 图3 PCS原位电离试剂盒常规质谱采用电喷雾(ESI)或大气压化学电离(APCI),要求经分离提纯后进行离子化,而 Mini β小型质谱分析系统采用的 PCS 原位电离技术(Paper Capillary Spray),集样品快速前处理和离子化于一身,无需额外样品处理步骤,即可实现采样-自动样品纯化-离子化进样,并可在采样现场轻松完成(图4)。以该技术为核心开发的PCS原位电离试剂盒,简化了操作步骤,在提高质谱分析所必须的样品前处理速度的同时(1分钟),降低了对操作人员专业性及检测环境的要求。图4 Mini β 进样模式相关专利:a) Analyzing An Extracted Sample Using An Immiscible Extraction Solvent, WO PCT/US2015/013649b) Systems and Methods for Sampling Ionization Using Capillary Device, US 62/211,2682.2 质谱小型化技术Mini β 小型质谱分析系统的另一核心技术是质谱小型化技术。该技术的实现主要归因于真空和离子传输系统的创新设计。Mini β 小型质谱分析系统将传统质谱仪普遍采用的多级真空腔体合并为单级腔体,传统的连续大气接口也调整为非连续大气接口(DAPI),该设计使 Mini β 对真空泵保持着最低的需求,仪器真空的维持得以用小型真空泵来实现,从而使重达 400kg、功率达 6000w 的传统质谱仪优化为 20kg、100W的小型质谱分析系统(图5)。图5 Mini β 真空设计示意图清谱科技独有的非连续大气进样接口技术(DAPI)(图6)可为质量分析系统提供灵活的压力控制,使进样、离子碎裂、质量分析能够在合适的压力区间内进行(图7)。更为重要的是,得益于单极真空的设计,DAPI技术使 Mini β 的灵敏度得以优化提升。图6 非连续大气进样接口(DAPI)图7 真空系统压力变化质谱小型化技术除此之外,Mini β 的射频系统使其质量范围达到2000Th,这个质量范围甚至能够分析细胞色素等复杂样品(图8)。图8 细胞色素C的信号响应Mini β 采用了最前沿的线性离子阱技术,动态范围达到了3个数量级,并具有强大的多级串联质谱分析(MSn)能力。令人兴奋的是,清谱科技在单阱系统的基础上开发双阱系统,保证离子的高效碎裂,实现三重四极杆质谱仪的全部功能。相关专利:a) Discontinuous Atmospheric Pressure Interface, WO 2009/02336b) Sample Quantitation Using a Miniature Mass Spectrometer, WO PCT/US2015/0136493 Mini β 小型质谱分析系统性能指标Miniβ小型质谱分析系统与其他质谱产品相比,既保留了大型质谱仪的性能和分析物的普适性(挥发、非挥发性),也保留了小质谱的现场检测能力(表1,图9),使原本实验室内总耗时若干天的质谱分析可以在现场 1 分钟内完成。 表 1 Miniβ主要性能指标型号Mini β 小型质谱分析系统尺寸(长×宽×高)55×24×31 cm重量20 kg功率≤100 W进样/离子化方法采用一次性(原位电离)试剂盒,实现直接采样、离子化适用样品适于血液等多种复杂混合样品质量分析器线性离子阱串联质谱能力MSn描速度10000 (Da/s)分辨率~1 amu质量范围50-2000 Da,动态范围大于3个数量级,适于大有机污染物、分子药物和多肽等的检测灵敏度好于 10 ng/mL 维拉帕米(Verapamil)通量1 分钟/样品,达到国际先进水平气体需求无(空气)控制支持内置电脑控制专业性无需专业人员操作 图9 Mini β 质量范围、分辨率和灵敏度4 Mini β 应用模式:现场检测、实时反馈和数据整合Mini β小型质谱分析仪终端配合清谱科技在建的化学云分析网络(图10),可在质谱终端实现更好的智能化和拓展性的同时,通过中心化的数据分析,帮助上层决策人员实现规模化、网络化的协同管理。图10 化学云分析网络在检测现场,一线人员无需任何化学背景,只需将添加样品的试剂盒插入仪器,按下开始按钮即可开启“一键式”全自动质谱分析。在终端样品分析过程中,仪器可通过识别试剂盒二维码与对应的网络位置进行实时通信,实现自动调取扫描方法、自动质量分析、自动采集数据、自动数据处理、自动反馈结果等功能。整个过程在1min内完成,分析完成后,结果报告自动上传至化学云分析网络。一线人员可通过手机获取结果反馈,指导现场实践。在管理决策终端,后台管理人员可通过化学云分析网络实现对检测终端的远程管理与在线分析,及时响应,快速决策。此外,化学云分析网络还可为公安缉毒、食品安全、环境监测等领域的应用需求提供专业化监控定制方案。5 应用案例Mini β 小型质谱分析系统是世界首款实现质谱小型化与原位电离技术联用的质谱产品,此项仪器设计极大地降低了质谱分析的复杂程度,增强了检测的移动性、时效性,使仪器使用突破了检测场地、时间和人员的限制,为用户提供及时、准确的化学信息反馈,使检测介入决策中去。在食品安全、公安执法、医疗诊断、环境监测等领域有着广泛的市场潜力(Li et al., 2014 Ma et al., 2015 Ma et al., 2016)。在公共安全领域,Mini β 小型质谱分析系统可为公安人员现场缉毒提供快速简单的解决方案;在食品药品领域,Mini β 可帮助执法部门进行现场筛查,防止不合格食品药品流向市场;在医疗诊断领域,Mini β 可提供即时检测(POCT),帮助医生及时研判病情,为患者争取宝贵的治疗时间。下面以公安毒检为例,对 Mini β 应用方法做简要介绍。公安毒检:尿液中苯丙胺、甲基苯丙胺、3,4-亚甲基二氧基甲基苯丙胺(MDMA)的快速检测苯丙胺类兴奋剂是苯丙胺及其衍生物的统称,本案例基于小型质谱分析系统开发了尿液中苯丙胺、甲基苯丙胺、3,4-亚甲基二氧基甲基苯丙胺(MDMA)(图11)的实时快速检测方法,无需繁琐的样品前处理,无需耗时的色谱分离,1步操作1min完成样品分析,本方法的检出限为100ng/mL。图11 苯丙胺、甲基苯丙胺、3,4-亚甲基二氧基甲基苯丙胺结构实验样品苯丙胺,CAS 300-62-9,1mg/mL,Cerilliant。冷冻保存,使用时稀释至所需浓度;甲基苯丙胺,CAS 33817-09-3,1mg/mL,Cerilliant。冷冻保存,使用时稀释至所需浓度;MDMA,CAS 42542-10-9,1mg/mL,Cerilliant。冷冻保存,使用时稀释至所需浓度;以上标准品由浙江省嘉兴市公安局提供。尿液样品存于密封容器中,冷藏保存。实验设备Mini β小型质谱仪;PCS液体检测试剂包(含PCS试剂盒、微量液体取样器、萃取剂A)。实验方法标准溶液分析:移取5μL标准溶液,从PCS试剂盒加样口加于PCS上,从溶剂口加入3滴萃取剂A后,将试剂盒插入质谱仪进样口,进行质谱分析。样品分析:用微量液体取样器移取尿液(6.5μL),从PCS试剂盒加样口加于PCS上,60℃干燥5min后,从溶剂口加入3滴萃取剂A,将试剂盒插入质谱仪进样口,进行质谱分析。MS条件:电离模式:正离子模式;检测方式:子离子扫描,监测离子及丰度见表2。表2 监测离子及丰度化合物中英文名称母离子子离子苯丙胺 Amphetamine136119(100),91(60)甲基苯丙胺 Methamphetamine150119(100),91(60)3,4-亚甲基二氧基甲基苯丙胺 MDMA194135(100),105(40)实验结果与讨论通过对阴性尿液样品加标(500ng/mL)的方式考察了本方法的检出限,以S/N=3计,本方法的LOD为100ng/mL。苯丙胺、甲基苯丙胺、3,4-亚甲基二氧基甲基苯丙胺(MDMA)的标准溶液子离子扫描谱图、阴性尿液加标样品子离子扫描质谱图、阴性尿液子离子扫描质谱图见图12-14。 图12 (a)苯丙胺标准溶液子离子扫描质谱图(1μg/mL, PCS);(b)阴性尿液加标中的苯丙胺子离子扫描质谱图(1μg/mL, PCS);(c)阴性尿液中苯丙胺的子离子扫描质谱图(PCS) 图13 (a)甲基苯丙胺标准溶液子离子扫描质谱图(1μg/mL, PCS);(b)阴性尿液加标中的甲基苯丙胺子离子扫描质谱图(1μg/mL, PCS);(c)阴性尿液中甲基苯丙胺的子离子扫描质谱图(PCS) 图14 (a)MDMA标准溶液子离子扫描质谱图(1μg/mL, PCS);(b)阴性尿液加标中的MDMA子离子扫描质谱图(1μg/mL, PCS);(c)阴性尿液中MDMA的子离子扫描质谱图(PCS) 本方法使用Mini β小型质谱分析系统建立了快速测定尿液中苯丙胺、甲基苯丙胺、MDMA的方法,该方法无需对样品进行处理,无需色谱分离,使用原位电离源PCS试剂盒,可快速完成尿液中苯丙胺、甲基苯丙胺、MDMA的定性检测,为现场缉毒、毒驾监管等提供了快速简单的解决方案。6 所获奖项2017年10月,在“北京分析测试学术报告会暨展览会”(BCEIA 2017)上,Mini β荣获中国分析测试协会颁发的“BCEIA 金奖”(图15-16)。图15 Mini β 获BCEIA金奖图16 BCEIA金奖证书参考文献Cooks R G, Ouyang Z, Takats Z, et al. Detection Technologies. Ambient mass spectrometry. Science, 2006, 311(5767):1566.Gao L, Song Q, Noll R J, et al. Glow discharge electron impact ionization source for miniature mass spectrometers. Journal of Mass Spectrometry, 2007, 42(5):675.Gao L, Cooks R G, Ouyang Z. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface. Analytical Chemistry, 2008, 80(11):4026-32.Hendricks P I, Dalgleish J K, Shelley J T, et al. Autonomous in situ analysis and real-time chemical detection using a backpack miniature mass spectrometer: concept, instrumentation development, and performance. Analytical Chemistry, 2014, 86(6):2900-8.Li L, Chen T C, Ren Y, et al. Mini 12, Miniature Mass Spectrometer for Clinicaland Other Applications—Introduction and Characterization. Analytical Chemistry, 2014, 86(6):2909.Ma Q, Bai H, Li W, et al. Direct identification of prohibited substances in cosmetics and foodstuffs using ambient ionization on a miniature mass spectrometry system. Analytica Chimica Acta, 2016, 912:65.Ma Q, Bai H, Li W, et al. Rapid analysis of synthetic cannabinoids using a miniature mass spectrometer with ambient ionization capability. Talanta, 2015, 142:190-196.Ren Y, Mcluckey M N, Liu J, et al. Direct mass spectrometry analysis of biofluid samples using slug-flow microextraction nano-electrospray ionization. Angewandte Chemie, 2014, 53(51):14124.Takáts Z, Wiseman J M, Gologan B, et al. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 2004, 306(5695):471.Wang H, Liu J, Cooks R G, et al. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angewandte Chemie, 2010, 122(5):889-892.
    留言咨询
  • —来自美国劳伦斯伯克利国家实验室的绿色化学分析技术技术背景 当激光作用于样品表面时,在极短时间内诱导产生含有样品物质的等离子体,等离子体产生的过程中,发射出带有样品元素信息的发射光谱,通过检测这些发射光谱,得到样品的元素信息。这种技术被称为激光诱导击穿光谱技术LIBS(Laser Induced Breakdown Spectroscopy),俗称激光光谱元素分析技术,检测限可达ppm级;随着等离子的冷却,凝结的样品颗粒可输送到ICP-MS,可测量样品中的微量、痕量元素或同位素,检测限可达ppb级。 测量的元素可覆盖元素周期表中的大部分元素,高达100多种。 J200激光质谱联用元素分析仪是美国应用光谱公司APPLIED SPECTRA(ASI公司)融会美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)30多年激光化学分析基础理论研究成果推出的全球顶级产品。ASI公司由美国劳伦斯伯克利国家实验室资深科学家 Dr. Rick Russo及其团队成立。Russo博士研究领域包括:激光加热和激光剥蚀过程的机理研究;飞秒激光进样系统;利用激光剥蚀技术提高LIBS及ICP-MS 的化学分析精度;激光超声的无损检测和评估等。Russo 博士共发表学术论文300 多篇,专利22 项。ASI公司在激光应用领域具有世界领先的技术及经验。 系统介绍 J200激光质谱联用元素分析仪创造了激光等离子光谱化学分析技术的新时代,首次将LIBS技术和ICP-MS结合,将检测限提高到ppb级,并可得到样品元素的空间分布图(elements mapping)。目前已广泛用于国际高端和国家级实验室,如美国劳伦斯伯克利国家实验室、美国大克拉曼多犯罪实验室 、巴西圣保罗大学、 美国西北太平洋国家实验室等众多知名机构。 J200激光质谱联用元素分析仪基于激光诱导击穿光谱技术,实现了从氢元素到钚元素几乎全元素的测量,包括H、N、O等轻元素以及卤族等其他传统方法(包括ICP-MS)不能测量的元素。此外,J200激光质谱联用元素分析仪还可将剥蚀出的纳米级固体样品微粒直接送入ICP-MS进行更精确的分析,有效避免酸溶、消解等复杂样品前处理带来的二次污染和可能的误差引入,同时还可以大大提升元素检测限,实现了ppb以下到100%的宽范围测量。 功能 快速检测土壤、植物、中草药、刑侦材料(玻璃、油墨等)、矿石、合金等样品中的: ? 常量元素N, P, K, Ca, Mg, S ? 微量元素Fe, Cu, Mn, Zn, B., Mo, Ni, Cl ? 痕量元素:可检测化学周期表上大部分元素 ? 其他:有机元素C、H、O和轻元素Li、Be、Na等 (其他技术很难同时分析) ? 同位素 (可升级和ICP-MS 联用测量) 应用领域 ? 土壤、植物样品检测 ? 中药元素分析 ? 刑侦微量物证分析 ? 农产品检测 ? 地质矿物分析 ? 煤粉组分检测 ? 重金属污染检测 ? 合金分析 ? 宝石鉴定 ? 材料分析等 工作原理 J200激光质谱联用元素分析仪的固体激光器产生激光作用于样品表面。当激光能量大于样品击穿门槛能量时,在样品表面形成等离子体。这些等离子体中受激光能量激发到达高能态的样品物质在迅速回迁至低能态的过程中,发射出带有样品元素种类、含量信息的发射光谱,这些发射光谱信号被智能信号收集系统收集并传输至光谱仪中进行分光,再由CCD检测器进行检测,得到元素信息。硬件特点 ? J200激光质谱联用元素分析仪可对样品进行全元素快速检测,同时可将固体样品的剥蚀颗粒直接送入ICP-MS 系统,实现ppb级精确分析。弥补了ICP-MS不能测量部分轻元素的缺憾,也有效避免了ICP-MS分析中繁杂的 样品前处理过程及可能引入的二次污染。 ? J200激光质谱联用元素分析仪配置高适连接口,轻松实现与市面上绝大多数主流品牌ICP-MS的联用。 ? J200激光质谱联用元素分析仪配备有固体样品室,还可根据用户需求同时配置气体、液体样品室,并通过设 置可自动切换的光路系统,实现固、液、气体样品室在同一系统中的自动化切换,无需人为拆卸。 ? J200激光质谱联用元素分析仪的硬件采用模块化设计,易于更新。激光器和光谱仪(检测器)可根据样品的 种类及用户的研究目的进行升级,两者均不受外界环境温度影响,无需进行特殊的环境控制,使用寿命长。 ? J200的激光能量和激光光斑大小连续可调,激光脉冲能量稳定一致,可实现样品分层剥蚀(分辨率最小可达 7nm)、夹杂物和微光斑分析(直径最小可达5μm)、元素分布制图、高精度定量等多种分析。 ? J200激光质谱联用元素分析仪采用ASI专利技术:剥蚀导航激光和样品高度自动调整传感器相结合,解决了样 品表面凹凸不平导致剥蚀不均匀的问题;激光能量稳定阀确保到达样品表面的激光能量稳定一致;3-D全自动 操作台。 ? J200具备双摄像系统,分别用于广角成像和放大观察某一样品区域。 软件特点 J200的系统软件能实现对所有硬件组件的控制,能提供多种采样模式,包括直线、曲线、随机点、网格任意大小和自定义采样等,通过设置参数,可在无人值守的条件下自动进行大面积采样。 ASI公司专利的TruLIBS™ 数据库是真正的等离子体发射光谱数据库,与NIST数据库相比,TruLIBS™ 数据库能快速、准确地识别复杂的元素谱线,各种搜索功能,如波长范围、元素种类和等离子体激发态,将搜索时间缩短至几秒。TruLIBS™ 同时允许用户直接上传元素激光诱导特征谱线,进行谱峰的识别和标记。 J200内置的数据分析软件功能强大、分析速度快。能任意选取谱线及背景,自动计算谱线的净强度;计算两个波峰之比;自动计算所有波峰的标准偏差;同步分析所有文件夹及目录下的测量数据。多次采样时,软件自动统计监测LIBS的强度 ,监控信号质量,获得精确的定性和定量分析结果。 数据分析软件具有单变量和多变量校准曲线制定功能,易于完成高精度定量分析。单变量标定曲线对于基质较为简单的样品分析效果较好。多变量标准曲线用于分析基质较为复杂的样品,例如土壤、植物样品等,以减少基质中其它元素对目标元素的影响,提高分析准确性。 此外,J200的数据分析软件还具有PCA、PLS-DA、多参数线性回归等多种化学统计分析功能。可对样品进行快速分类鉴别,并可通过样品某一特定元素的二维或三维分布制图,形象展示样品元素的分布。 产地:美国应用案例1、土壤样品常量和微量元素分析 将不同来源的9个土壤标准样品压片处理,使用ASI公司的J200 激光光谱元素分析系统进行测量,并采用J200内置的专业分析软件对测量结果进行分析。并对分析结果的精确度和分类鉴别能力进行评价。图1为9个土壤标准样品的PCA三维分析结果图。这表示分析结果能良好的判断出这9个样品为不同类型的土壤。采用建立的标准曲线检测21号土壤标准物样品,以此来评价分析的准确度和精度(表1)。 2、植物样品表层及深层元素分布 将植物叶片置于金属元素溶液中至24小时,使用J200 激光光谱元素分析系统对叶片进行扫描,可见植物叶片对重金属元素吸收分布的情况。其中常量元素由LIBS系统直接测出,重金属元素由LA-ICP-MS进行测量。 采用飞秒LA-ICP-MS系统还可以对植物叶片进行深度的剖析。测量叶片内部不同部位的元素变化情况以及特定元素的分布情况。实验使用飞秒激光器,10个脉冲,脉冲1至脉冲10表示叶片的表层至内部。3、大米和糙米样品外壳及内部砷元素的分布图谱 大米是中国、韩国和日本等东亚诸国的主要农作物,大米中砷元素含量超标引发了很多食品安全问题。国际食品法典委员会标准中也明确规定铅含量不得大于0.2mg/kg ,镉含量不得大于0.1mg/kg,但仍然对砷元素含量无规定。为了建立相关标准,韩国科学技术研究院搜集了韩国市场上常见的100种大米和糙米样品,分析其中砷元素的含量及分布作为相关标准制定的科学依据。研究结果表明,砷元素主要分布在糙米和大米样品的表面,并存在砷元素含量明显的向中心递减趋势。结论:砷元素主要分布在大米和糙米的表面,打磨是降低砷元素含量的主要手段。部分文献 欢迎来电索取文献目录OlgaSyta,BarbaraWagner,Ewa Bulska,Dobrochna Zielinska,Grazyna Zo?a Zukowska,Jhanis Gonzalez,RichardRusso.Elemental imaging of heterogeneous inorganic archaeological samples by means of simultaneous laser induced breakdown spectroscopy and lasera blationin ductively coupled plasma masss pectrometry measurements.Kiran Subedi, Tatiana Trejos, Jose Almirall,Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA.Forensic analysis of printing inks using tandem Laser Induced Breakdown spectroscopy and Laser Ablation Inductively Coupled Plasma Mass Spectrometry万翔宇,王阳恩,熊艳,王绍龙,梅兴安;长江大学物理科学与技术学院, 湖北荆州;《激光杂志》2014年第35卷第4期.激光诱导击穿光谱对水系沉积物的分类及铬元素测定的研究李辉,王阳恩,刘庆,林佳辉,徐大海.长江大学物理与光电工程学院,湖北荆州;分段激光诱导击穿光谱的水稻种子识别Benjamin T.Manard,C.Derrick Quarles Jr,E.Miller Wyliea and Ning Xua.Laser ablation–inductively couple plasma masss pectrometry/laserinduced breakdown spectroscopy:a tandem technique for uranium particle characterizationHerveK.Sanghapi,Jinesh Jain,Alexander Bol' shakov,Christina Lopano,Dustin McIntyre,Richard Russoc.Determination of elemental composition of shalerocks by laser induced breakdown spectroscopy.Chirinos, J. R., Oropeza, D. D., Gonzalez, J., Hou, H., Morey, M., Zorba, V., & Russo, R. E. (2014). Simultaneous 3-Dimensional Elemental Imaging with LIBS and LA-ICP-MS. Journal of Analytical Atomic Spectrometry. doi:10.1039/c4ja00066hChoi, S. H., Kim, J. S., Lee, J. Y., Jeon, J. S., Kim, J. W., Russo, R. E., et al. (2014). Analysis of arsenic in rice grains using ICP-MS and fs LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(7), 1233–1237. doi:10.1039/C4JA00069BQuarles, C. D., Gonzalez, J. J., East, L. J., Yoo, J. H., Morey, M., & Russo, R. E. (2014a). Fluorine analysis using Laser Induced Breakdown Spectroscopy (LIBS). Journal of Analytical Atomic Spectrometry, 29(7), 1238–1242. doi:10.1039/C4JA00061GDong, M., Mao, X. L., Gonzalez, J., Lu, J., & Russo, R. E. (2013). Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry. Atomic Spectroscopy. doi:10.1021/ac303524dHarmon, R. S., Russo, R. E., & Hark, R. R. (2013). GEOLIBS–A Review of the Application of Laser-Induced Breakdown Spectroscopy for Geochemical and Environmental Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy. doi:10.1016/j.sab.2013.05.017Piscitelli, V., Gonzalez, J., Mao, X. L., Fernandez, A., & Russo, R. E. (2013). Micro-Crater Laser Induced Breakdown Spectroscopy-an Analytical approach in metals samples.
    留言咨询
  • APIX超高纯电子气质谱分析仪 结合了工艺先进的电子电路和功能强大的过程分析软件的、性能卓越 的大气压离子化质谱仪 (API-MS)使得 Thermo Scientific APIX 生产线提供的分析仪系统成为半导体和电子工业大宗气体连续质量控制的选择。 API-MS 为传统质量控制技术提供了一个成本-效益的替代方案,允许每种大宗气体中一系列潜在污染物浓度监测能够达到很低的测量下限;相较于其他技术,甚至能够优于100倍。 APIX产品线提供了更多完整的杂质分析,包括: H2、CO、CO2、H2O、O2、CH4 、Kr和 Xe ,以及其他需要测量的杂质。随着 300 mm 晶圆生产者发布更严格污染物控制气体质量标准,这种技术将持续的成为ppt级杂质测量下限的首选技术。 特点: 快速在线测量(典型<5秒)确保 了立即响应供气的波动状况 完全集成的多分析器分析方案提 供了污染物的快速检测 超高的灵敏度和10ppm的测量下限满足当下以及未来的严格的气体分析要求 备份能力在单个大气压离子化分 析器(API)在维护时,允许每 一台大气压离子化质谱仪(APIMS)支持多流路分析 针对于工厂控制和数据集中的标准 化工业通讯协议 (OPC, DDE, Modbus, Siemens 3964R, PROFIBUS, 等等)应用 超高纯氮气(UHP N2) 超高纯氩气(UHP Ar) 超高纯氦气(UHP He) 超高纯氢气(UHP H2) 运行原理APIX δQ 和APIX Quattro 采用阳离子大气压离子化质谱仪 ( API-MS)技术, 该技术被电子工业广泛用于检测超纯气体中的污染物。进样时,样气以大气压或略高于大气压的压力进入离子源。 金属针设置在靠近由孔板行成的通向棱镜组的入口附近。它带有高的电压,能够产生电晕放电。这就产生了从孔板到针头的电子流。电子与离子源中 大量样气发生反应,从而导致大量样气气体分子的电离。 幸运的是,相对于氮气、氢气、氦气和氩气而言,这些出现在样气中浓度很低的污染物需要很少的能量就可以产生 电离。正是因为如此,任何污染物分子出现在样气中,它们与样气离子发生反应的几率就非常高。 这种反应发生时,电荷转移至污染物气体分子,这就形成了再次电离。 这个电荷转移导致非常高比例的污染物气体分子被电离。 事实上,这个效率比其他使用真空腔电离技术的质谱仪, 其效率要高1000倍。 部份样品、完全电离的污染物,经过一系列的减压透镜后,进入三重四级杆质谱仪。一个测量质量数达到300道尔顿(原子质量单位)三重四级杆能够确保实现所有污染物的精确测量。脉冲计数放大器的噪声等级仅为10个脉冲,每106个脉冲, 与大气压离子源配合后, 能够确保12数量级的测量下限,它可以低1012之一 (即1 ppt). 配置:APIX δQ的标准配置为一个单一机箱,它里面配置了1个大气压离子化质谱仪(API-MS)和 一个Air Liquide 气体处理单元,它能够用于ppb或ppt级自动校准。标准机箱是为 相对空气洁净且有温度控制的环境而配置;如果需要,一定数量的冷却降温和吹扫选项也可以满足更多环境需求。 APIX Quattro 标准配置使用了三个机箱,两个配置了4 个大气压离子化质谱仪(API-MS)独立机箱,和第三个装有一个Air Liquide 气体处理单元机箱。 四个质谱仪中的每一个都安装在滑轨上,以便向前拖出,便于维护。 顶部安装的机箱盖包含流路切换阀组, 用于采样气体连接。它允许多个流路连接到每个独立的 散装气体分析器。这种流路选择可以是手动或完全自动完成。每一个大气压离子化质谱仪( API-MS )都是独立的,并且都具备多流路切换功能。当一台质谱仪进行年度固定维护时,可以使用其余三台质谱仪监测四个散装气体。 在这两种配置的机箱盖组件包含一个氢安全系统,以确保质谱仪在氢气泄漏时安全关闭。这个安全设备使用独立于质谱仪供电。如果需要有限的机动性,可以提供一组车轮,使该质谱仪能够安全地从一个测试点推送到另一个测试点。 每一个质谱仪通过使用后备电池闪存、运行实时的操作系统的处理器控制。这个处理器作为一系列内部控制器的主人,它们之间的通过以太电缆实现互联。 这些微处理器中的每一个都能作为一个独立部件单独运行,例如气体处理器和多流路进样系统。气体处理器仅需要一个单独的校准气瓶并结合了来自渗透管装置的湿度校准。 内部配电装置通过内部分析仪网络进行监测和控制。 这一设计拓展了 GasWorks 软件的诊断能力。每一个多处理器网络提供了冗余的通讯渠道,允许质谱仪可靠、不需要电脑工作站独立运行,直接传送样品流路数据和诊断信息至DCS或SCADA系统。每一个通讯渠道都可被配置为点对点的 光纤通讯或是硬接线的电流回路、多点连接 。每个分析器都可以配置一个嵌入式opc服务器,与 Microsoft 主机或多种工艺网关协议(Modbus, Siemens, Allen-Bradley, 等.)实现无缝通信 。如果需要质谱仪提供硬接线模拟检测和数字报警输出, OPTO 22 SNAP 和 OPTOMIX 协议将被完全支持,一系列硬件卡件能够使用。 Thermo Scientific GasWorks 软件 Thermo Scientific GasWorks 软件包为质谱仪操作提供了一个直观的、信息丰富且灵活的窗口。使用安装了Gasworks软件的一台电脑可以完成初始设置,过程数据和诊断信息的显示。我们也可以断开电脑与APIX的连接;APIX能够脱离与电脑的连接而独立运行于无人值守模式。 从设计概念到数代产品,完全认可的ISO 9001质量程序得到了软件团队的严格执行。 软件安装可以随时检查,以确保其可验证的完整性和正确性。软件更新可以远程上传。 技术参数测量方式APIX δQ: 1x 三重四级杆质谱分析器 APIX Quattro: 4x 三重四级杆质谱分析器质量范围1-300 AMU离子源类型大气压离子化离子源背景<1 ppt放大器和动态测量范围100 MHz脉冲计数型检测器脉冲计数通道电子倍增器检测噪声每106 有10个数检测下限 10 ppt (根据组份变化)分析时间(典型) 1s每个组份流路切换时间(典型)15分钟至 1 ppb适合的大宗气体H2 , N2 , Ar, He串口连接类型RS232, RS422, RS485检测的污染物H02 , He, CO, CO2 , O2 , CH4 , Kr 和 Xe (其他污染物也可检测)外形尺寸APIX δQ: 1.9 m (H) x 0.7 m (W) x 0.65 m (D) APIX Quattro: 1.9 m (H) x 2.1 m (W) x 0.65 m (D)
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制