当前位置: 仪器信息网 > 行业主题 > >

质谱蛋白组数据分析

仪器信息网质谱蛋白组数据分析专题为您提供2024年最新质谱蛋白组数据分析价格报价、厂家品牌的相关信息, 包括质谱蛋白组数据分析参数、型号等,不管是国产,还是进口品牌的质谱蛋白组数据分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱蛋白组数据分析相关的耗材配件、试剂标物,还有质谱蛋白组数据分析相关的最新资讯、资料,以及质谱蛋白组数据分析相关的解决方案。

质谱蛋白组数据分析相关的资讯

  • 质谱技术在靶向蛋白组学及脂质结构分析研究进展
    p style=" text-align: justify "   美国威斯康星大学麦迪逊分校的李灵军教授在《美国质谱学会杂志》上发表了题为& quot Faces of Mass Spectrometry”的文章。 /p p style=" text-align: justify text-indent: 2em " strong 进展1: /strong /p p   本月,李教授的团队在分析化学杂志上发表了一篇文章“HOTMAQ: A Multiplexed Absolute Quantification Method for Targeted Proteomics”。 /p p style=" text-align: center " img title=" 1111111.webp.jpg" alt=" 1111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/04527389-10d7-4d2c-9392-40078abb0c71.jpg" / /p p style=" text-align: justify "   靶向蛋白组学中的绝对定量研究由于复杂背景下的低特异性、有限的分析通量及广泛的动态范围等诸多因素而具有挑战性。为解决这些问题,其课题组开发了一个混合offset-triggered多路复用绝对量化(HOTMAQ)方法。此方法结合了具有成本效益的质量差异和等压标签,能够在MS1前体扫描中同步构建内部标准曲线,在MS2水平上实时识别多肽,并在同步前体选择(SPS)-MS3光谱中对目标蛋白进行质量偏移触发的精确定量。这种方法将目标定量蛋白质组学的分析通量提高了12倍。采用HOTMAQ策略对临床前阿尔茨海默病候选蛋白生物标志物进行高精度验证。HOTMAQ的高通量和定量性能,加上样品的灵活性,使其广泛应用于靶向肽组学、蛋白质组学和磷蛋白组学的研究中。 /p p style=" text-align: justify text-indent: 2em " strong 进展2: /strong /p p style=" text-align: justify "   清华大学欧阳证和瑕瑜教授与普渡大学学者共同在《自然通讯》上发表“Online photochemical derivatization enables comprehensive mass spectrometric analyses of unsaturated phospholipid isomers” 文章。 /p p style=" text-align: center " img width=" 600" height=" 304" title=" 22222222.webp.jpg" style=" width: 600px height: 304px " alt=" 22222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201902/uepic/f219c925-a096-478e-a956-d221f5b56fbd.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: justify "   质谱技术是脂质结构分析的主要工具,但如何在不饱和脂质中有效定位碳碳双键(C=C)以区分C=C位异构体仍是一个难题。本文通过Paterno-Buchi反应与液相色谱-串联质谱联用在线C=C衍生化,开发了大型的脂质分析平台。这为脂质C=C位异构体提供了丰富的信息,揭示了牛肝脏中200多种不饱和甘油磷脂的C=C位,鉴定出55组C=C位异构体。通过对乳腺癌患者和2型糖尿病患者血浆样本的分析,其课题组发现C=C同分异构体的比例受个体丰度的影响较小,这说明同分异构体比例可能用于脂类生物标志物的发现。 /p p & nbsp /p
  • 云检医学完成B1轮融资,推进质谱蛋白组学与大数据驱动开发平台
    云检医学集团(以下简称“云检医学”)宣布,阿斯利康中金医疗产业基金完成对公司B1轮的独家投资。本轮融资主要用于进一步扩充公司妇幼产品线及癌症检测产品研发管线,并持续推进各产品线在中美两地的注册生产、商业化落地和国际市场的开拓。云检医学是新一代基于蛋白和代谢组学标记物发现技术的平台公司。自2015年成立以来,公司建立了独特的由医学假设驱动,基于质谱蛋白组学与大数据驱动的分析平台,缩短了传统方法发现疾病标记物的周期,并根据标记物特点适配相应的临床诊断平台,实现了快速产品化的闭环路径。目前,公司正在中美日等地快速推进女性及孕期健康、儿童罕见疾病检测,癌症精准诊断和复发监测和代谢类疾病创新检测领域IVD/LDT产品的注册和商业化。云检医学的平台技术创新来源于斯坦福大学医学院背景的研发团队逾19年的积累。创始团队具有在药物开发、疾病生物标志物发现、临床转化和诊断、大数据疾病模型和数据安全等领域丰富的经验。目前,公司已在美国马里兰州、加州、上海、天津、成都等地建立中美双研发中心和GMP工厂,并在马里兰州拥有由美国病理学家学会和美国临床实验室委员会双认证的CAP/CLIA临床实验室。同时,天津云检医学检验实验室取得了国内医疗机构执业许可证,通过双盲对比实验,相关检测项目达到CAP 同等的检测质量水平。在刚刚结束的无锡太湖湾生命健康未来大会上,云检医学宣布与阿斯利康在蛋白质组学和代谢组学领域开展探索性研究合作,包括但不限于基于质谱靶向技术检测药物开发中常见的创新药物靶点。云检医学将为阿斯利康提供质谱驱动的创新药物开发伴随诊断检测,助力精准确定更有效的患者群体和优化临床试验方案。云检医学联合创始人兼首席执行官陈利民先生表示:“作为一家以创新为驱动内核的高科技企业,云检医学始终致力于严肃医疗领域为临床、为患者提供更好的医疗产品和服务。云检医学依托斯坦福大学团队的技术积累和在海外成功运营经验,已经构建了深厚的技术基础和丰富的产品管线,致力于在全球范围内提供妇幼及癌症筛查检测跟踪解决方案。站在新始点,云检医学不仅追求商业化的成果,更致力于探索和实践‘人工智能+多组学检测’的中国路线,让各管线产品融入‘健康中国行动’的大战略。衷心感谢阿斯利康对云检医学的信任和支持,我们希望与投资人以及合作伙伴携手前行,共同成长。”云检医学完成B1轮融资,推进质谱蛋白组学与大数据驱动开发平台阿斯利康中金医疗产业基金董事总经理,阿斯利康中国副总裁、战略合作与业务发展部负责人陈冰先生表示:“尽管质谱平台已在海外科研领域成功商用多年,其在中国临床诊断领域的应用大多限制在传统标志物,市场渗透率也受制复杂的前处理流程。云检医学基于其在组学数据和疾病模型领域的多年积累,搭建的‘质谱蛋白组学与大数据驱动的开发平台’使传统的科研型质谱平台重新焕发了生命力。云检医学美国研发团队已与阿斯利康全球转化医学团队多次合作,我们对公司与阿斯利康中国即将开展的探索性研究合作非常期待。“中金资本总裁,阿斯利康中金医疗产业基金执行事务合伙人委派代表单俊葆先生表示:“云检医学拥有先进的技术、强有力的团队和丰富的产品管线。公司发展至今,已有足够的能力为临床提供精准可及的多种解决方案。我们相信,在科学家团队的带领下,公司将持续引领‘人工智能+多组学检测’行业的发展,造福更多的肿瘤、妇幼等多疾病领域的患者。我们相信云检的国际视野,学术前瞻性,和研发实力将为临床源源不断输出更多更好的诊断工具,使更多患者受益。非常荣幸参与本轮融资,我们将充分调动基金的产融资源,全方位支持公司未来的发展。”关于阿斯利康中金医疗产业基金阿斯利康中金医疗产业基金是由阿斯利康与中金资本联合发起,专注于医疗健康产业投资的私募基金。融合阿斯利康全球的产业优势以及中金资本丰富的资本运作经验,基金聚焦于生物医药、医疗器械、诊断服务、数字医疗等投资领域,致力于汇聚产融资源,为企业及投资伙伴提供双向全周期赋能,共同助力中国医疗健康产业创新发展。
  • 质谱革命:推动蛋白组学市场快速增长的黄金技术
    蛋白组学是当今生命科学和精准医学的研究热点,目前仍处于早期快速发展阶段。其发展轨迹与早期的基因组学相似,随着时间的推移,蛋白组学在研究和临床中的应用潜力将逐渐释放,有望接近基因组学的市场规模。当前,全球蛋白组学市场规模已达500亿美元,且呈现快速增长趋势。随着资本市场的关注,不断有新公司进入并获得融资,推动了新技术的不断涌现。 蛋白组学技术的扩展与应用 蛋白质组学技术已从最初的蛋白质定性鉴定扩展至多个领域,包括蛋白质定量表达分析、翻译后修饰鉴定和定量、蛋白质互作分析、蛋白质复合物成分解析、空间蛋白质组分析以及单细胞蛋白质组分析。这些技术不仅应用于基础科学研究,更在药物开发、临床医学和转化医学等领域展现出巨大潜力。这一切得益于质谱技术、蛋白质分离技术、生物化学技术和计算机技术的快速发展。 质谱技术:蛋白组学发展的关键 质谱技术是推动蛋白质组学发展的关键技术,特别是在生物标志物发现方面具有黄金标准地位。在全球范围内,只有少数制造商发明了能够区分小至单肽分子的复杂质谱技术,包括布鲁克公司(Bruker)、赛默飞公司(Thermo Fisher Scientific)、安捷伦公司(Agilent)、沃特世公司(Waters)和 Sciex 公司。其中,赛默飞世尔公司在蛋白组学研究质谱市场中拥有超过90%的市场份额,主要归功于其创新的Orbitrap系列。布鲁克公司的TimsTOF系列则是蛋白组学领域增长最快的质谱之一,从赛默飞公司那里获得了市场份额,以约30%的速度增长。质谱技术的持续创新将对蛋白组学的发展产生深远影响。然而,质谱技术的标准化和应用流程的复杂性,尤其是样品制备阶段的缺乏标准化,成为其进一步推广的瓶颈。正是在这一背景下,像Evosep等公司在液相色谱标准化方面取得了突破,逐步占据了60%以上的市场份额。这种创新反映了市场对流程效率提升的迫切需求。与此同时,新兴技术如Seer、Olink和Somalogic通过纳米粒子分离技术和适配体蛋白质检测技术,正在改变传统的蛋白质组学检测方式,显著提高了检测精度和通量。 蛋白组学的产业链 蛋白组学市场已形成涵盖上游质谱仪器和蛋白质组学试剂供应商、中游蛋白组学技术服务公司以及下游蛋白组学终端客户的完整产业链条: 颠覆性技术与企业的崛起 近年来,Seer、Olink、Somalogic、Nautilus和Quantum-Si等企业凭借其颠覆性技术,改变了传统的蛋白组学检测方式,极大地提升了检测的通量、准确性、特异性和敏感性:&bull Seer:发明了一种在液相色谱分离之前对蛋白质进行标准化消化和分离的工作流程。其专有的纳米粒子技术将蛋白质分成4组,增强了低丰度蛋白质的检测。&bull Olink:通过DNA编码连接到蛋白质上,实现蛋白质定量可通过基因测序的基础设施进行。其PEA(临位延伸分析)检测技术在qPCR仪器或Illumina的下一代测序仪上工作,提供高通量和特异性。&bull Somalogic:利用适配体进行蛋白质检测,其SomaScan平台可以识别并检测大量的蛋白质。该公司拥有一个由7000个独特适配体组成的文库,能够在48小时内从单个样品中识别7000种不同的蛋白质。&bull Nautilus:其技术利用专有仪器、流动池和试剂,对样品中95%的蛋白质组进行量化。设计了一个"超密集单分子蛋白质纳米阵列",实现了单分子分辨率。 国内市场的快速发展 在蛋白组学行业,欧美企业布局早,经过多年发展成熟后逐渐得到资本市场认可。包括Seer、Olink、Nautilius、Quantum-Si以及Somalogic在内的多家生物科技公司从2020年开始陆续上市。Seer、Olink、Somalogic是欧美三家蛋白质组学的标杆企业,Seer是其中最年轻的公司,但是为下一代蛋白质组学带来了创新技术和路径。与之相比,国内企业起步较晚,但发展迅速。景杰生物、中科新生命等专注于蛋白组学,而诺禾致源、华大基因、美吉生物、欧易生物等企业也同时提供蛋白组学服务。国内市场规模从2016年的1.2亿元增长到2020年的5.8亿元,年复合增长率高达49.1%,预计2025年将达到22.6亿元。(摘自弗若斯特沙利文分析)与此同时,随着精准医学和转化医学的快速发展,越来越多新发现蛋白质生物标志物的检测工作,将为蛋白质组分析带来巨大的市场需求。我们发现抗体-药物偶联物(ADC)药物正在快速发展,其结合了单克隆抗体的靶向能力和细胞毒性药物的强效性,成为癌症治疗领域的突破性疗法。在ADC药物的研发过程中,蛋白组学起到了至关重要的作用。(点击查看→ADC药物如何精准制导癌症治疗、质谱如何推进ADC药物研发)蛋白组学技术可用于鉴定和验证ADC的靶标蛋白,帮助研究人员筛选出最具潜力的治疗靶点。此外,蛋白组学在分析抗体与抗原的结合位点、优化抗体结构以提高药物效力和降低副作用方面也具有重要价值。总而言之,蛋白组学还是处于发展的黄金时代,质谱技术的不断进步将推动着整个行业的快速前进。随着多组学整合、人工智能赋能、空间蛋白质组学兴起和临床应用加速落地等趋势的出现,蛋白组学将在生命科学、精准医学和药物研发等领域发挥越来越重要的作用。在全球蛋白质组学有着千亿美元市场的机遇下,就需要加强核心技术研发,尤其是在质谱、单细胞和空间蛋白质组学等领域实现突破。同时,积极推动多组学整合,结合基因组学、代谢组学等数据,构建全面的生物学信息网络,深化对复杂疾病的理解。此外,深化国际合作与交流,吸收全球先进技术和经验,增强自身的创新能力,参与全球市场竞争,提升国际影响力。通过这些努力,中国企业将有望在全球蛋白组学市场中分得一杯羹,为生命科学和精准医学的发展做出更大贡献。
  • 技术进步为质谱血浆蛋白组学带来了巨大飞跃
    近日美国质谱学会年会(ASMS)上发布的最新数据表明,新的仪器和工作流程极大地提高了基于质谱的血浆蛋白组学实验的覆盖深度和通量。这些进步可使质谱成为各应用领域中更有用的工具,包括血浆蛋白生物标志物的开发以及迄今由Olink和SomaLogic等亲和性平台主导的大规模人群研究。  血浆是一种易于获取和常用的样本来源,尤其是在临床工作和人群研究中。然而,由于血浆含有大量丰度较高的蛋白质和较宽的动态范围,传统的质谱蛋白质组学分析能力不足。对于细胞裂解物的分析,质谱工作流程可测量8000到12000个蛋白质,但对血浆,类似的工作流程只能测量500到1000个蛋白质。虽然可通过去除丰度较高的蛋白质或进行粗分离来改善这一情况,但这也会牺牲通量。  去年,瑞士蛋白质组学公司Biognosys在Journal of Proteome Research杂志上发表了一项研究,他们使用赛默飞的Orbitrap Exploris 480质谱仪,通过两小时的液相色谱梯度测量了180个去除了高丰度蛋白的血浆样品中的2732个蛋白质,这是未进行血浆分离处理情况下最高深度的血浆蛋白质组分析。  最近,蛋白质组学公司Seer推出了一种新的血浆蛋白组学解决方案。该公司的Proteograph系统使用一组纳米颗粒来富集血浆蛋白质,然后可以使用质谱等技术对其进行鉴定和定量分析。与传统的血浆蛋白组学方法相比,Seer系统在覆盖深度和通量上都有所提升。在一份发表于四月BioRxiv预印本的研究中,威尔康奈尔医学院-卡塔尔团队使用该系统分析了345个血浆样本,测量了大约3000种蛋白质,在其液相色谱-质谱法的运行时间下每天可分析大约10个样本。  根据以上数据,Biognosys分析和Seer系统的覆盖深度都接近于Olink的Explore平台,后者可以在血浆中测量大约3000种蛋白质,但它们仍远远落后于SomaLogic的SomaScan平台,后者可以在血浆中测量大约7000种蛋白质。在每周约70个样本的处理量上,Biognosys和Seer系统的通量仍然落后于Olink和SomaLogic平台,后者每周分别可以处理多达1000个和340个样本。  ASMS年会上,Thermo Fisher Scientific展示了使用Seer最新发布的Proteograph XT试剂盒在其新的Orbitrap Astral仪器上测量大约6000种蛋白质的数据,每天处理大约30个血浆样本。这些数据标志着血浆蛋白组学工作流程的重大进展,并表明在大规模血浆研究方面,结合Seer Proteograph等血浆富集技术的质谱法与基于亲和性的平台现在可能成为竞争对手。  剑桥大学临床医学院MRC流行病学单位的生物信息学家Maik Pietzner表示:“坦白说,我们没有预见到这么大的飞跃。”他和他的同事在大规模蛋白质基因组学研究中使用了SomaLogic的SomaScan和Olink的Explore。他指出,根据ASMS展示的数据,“看起来现在似乎变得可行了”,因为他们的研究需要1000个或更大的样本队列。  华盛顿大学基因科学教授Michael MacCoss还表示,质谱技术具备的覆盖深度和通量使其成为大规模人群研究的有用工具。他说:“像英国生物库(UK Biobank)或弗雷明汉心脏研究(Framingham Heart Study)这样的大型队列……这些样本的价值是巨大的,研究人员希望能够以最少的资源获取最多的信息,很多实验都使用了Olink或SomaLogic。”  如果质谱技术能够可靠地提供ASMS演示中展示的覆盖深度和通量,它可能成为亲和性平台的有力补充和竞争对手。许多蛋白质存在多种形式,或称为蛋白质变体,其变异包括氨基酸变异、截断或翻译后修饰等,这些变化会影响它们的功能,在亲和性平台上往往不清楚或不确定测量的是蛋白质的哪种变体。质谱方法更适合分析这些不同的蛋白质变体。  Olink总裁Carl Raimond表示,他认为质谱和亲和性平台是“绝对互补的”,并补充说“看到蛋白质分析领域有创新是非常好的”。然而,他表示在Olink占据领先地位的大规模人群研究中质谱技术近期可能无法成为竞争对手,他同时也质疑ASMS展示的令人印象深刻的数据在广泛应用时是否能够经受考验。他说:“细节决定成败。提出要求很容易,但真正能够实现或提出关于这一要求背后的问题则是完全不同的事情。”Raimond补充说,虽然质谱技术不断改进,但亲和性平台也将不断进步。Olink正在将其Explore平台扩展到约5,000种蛋白质靶点,而SomaLogic计划在今年年底前将SomaScan平台扩展到覆盖约10,000种蛋白质。Pietzner同样表示,虽然在ASMS上发布的数据令人兴奋,但他和他的同事们期待看到更广泛的数据,包括总体的蛋白质覆盖范围,不同蛋白质和肽段在样本中检出的一致性和重复性。他说,“亲和性方法已经应用于规模大于50,000的人群队列中,并带来了惊人的发现。我们需要进行头对头的比较以评估这些新的质谱技术是否能够实现类似的扩展。”  MacCoss表示,使用质谱进行此类研究的公司或研究人员需要提供数据,证明他们能够在每个样本中一致且可重复地测量一组核心蛋白。他说:“当人们使用Olink时会有一个清单,上面列出了每次都会测到的蛋白质。我们仍然需要这样做。我们仍然需要说,这是每次实验都会返回定量值的蛋白质列表……以及测量中获得高质量分析数值的蛋白。”  Pietzner表示,他和他的同事目前正在努力扩展他们的蛋白质基因组学研究以包括质谱技术。强生和强生制药公司的神经科学数据科学主管,以及英国生物库药物蛋白质组学项目(PPP)主席Christopher Whelan表示,目前一个规模最大的蛋白质基因组学人群研究项目正在实施基于质谱的蛋白质组学。  Seer本月宣布推出Seer技术访问中心,该中心将组合其XT试剂盒与Orbitrap Astral质谱仪,为没有质谱仪的用户提供蛋白质组学服务。  尽管到目前为止很难全面评估Thermo Fisher的Orbitrap Astral和Seer的Proteograph XT的性能,但一些早期用户表示其产生的结果很出色。  Cedars-Sinai精准生物标志物实验室主任Jennifer Van Eyk一直在使用Orbitrap Astral进行血浆蛋白质分析,在这方面它比先前的仪器有更强的能力。Van Eyk表示,在每天运行60个样本时,新仪器可测得的蛋白质数量是相同工作流程下使用Thermo Fisher的Exploris 480仪器的2到2.5倍。  她说:“我们不仅可以检测到更多蛋白质,而且可以定量更多蛋白质,并且这些蛋白质是可重复的,也就是说,如果我们运行一个样本五次,我们确实会五次都观察到同样的蛋白。这是一个很大的飞跃。”这台仪器最出色的或许是其高通量,Van Eyk表示,她和她的同事们每天可以运行多达180个的未去除高丰度蛋白的血浆样本并获得良好的数据和深度的覆盖。她说,“在每天运行180个样本的情况下,突然间你可以开始讨论运行10,000个样本,然后它就成为一个人群研究了。”Van Eyk和她的同事目前正在试验Seer Proteograph系统,以“充分测试”其性能,并评估是否要将其作为血浆蛋白质组学工作流程的一部分。  威斯康星大学麦迪逊分校的生物分子化学和化学教授Joshua Coon指出,他的实验室能够使用50分钟的液相色谱梯度在未处理的血浆中测量大约1,500种蛋白质,并且已经在该仪器上开发出了一种一分钟的直接注射方法,能够在每个样本中测量约200种蛋白质。  Coon还是SeerProteograph平台的用户,尽管他尚未将其与Orbitrap Astral结合使用。他的实验室一直在使用Seer XT试剂盒分析阿尔茨海默病患者的血浆样本以及长期新冠肺炎(long COVID)个体的样本。他说,尽管他的团队尚未开始处理大批量样本,但在初步工作中,实验室每个样本一致地测量到约3,000种蛋白质,这是不使用Seer系统时的五倍左右。他认为,当研究人员将工作流程应用于Orbitrap Astral系统时,这些数字还会进一步提高。  除了覆盖深度外,Coon表示,Proteograph对简化质谱样品制备非常有用。他说:“我没有完全认识到到它的自动化程度,它非常方便。现在主要的用户是一个一年级和二年级的研究生……所以他们必须快速学习。他们在处理样本、获得消化产物和肽段方面取得了很大的成功。当你有新人或者长时间不做该工作的人时,进行大规模蛋白质组学研究的样品制备将耗费整个实验一半以上的精力,只需使用该平台然后熟练掌握。”  尽管Seer Proteograph平台提供的覆盖深度使质谱血浆蛋白质组学在某些应用中与Olink和SomaLogic等亲和力平台更具竞争力,但Seer本身在血浆富集领域面临新的竞争。  在ASMS会议上,蛋白质组学样品制备公司PreOmics推出了其ENRICH-ist富集血浆和血清蛋白质的试剂盒。该试剂盒使用非功能化顺磁性微珠来富集低丰度蛋白质,据该公司称,与未去除高丰度以及未富集的血浆相比,用该试剂盒处理血浆可将蛋白质检出率从50%提升至100%。PreOmics首席执行官Garwin Pichler表示,微珠与缓冲液的结合可在去除高丰度蛋白的同时富集低丰度蛋白以提高覆盖深度。Biognosys推出了一种新的基于微珠的血浆蛋白质组富集试剂盒,作为其TrueDiscovery服务平台的一部分。据该公司称,这种试剂盒可以高通量定量人类血浆中约4,000种蛋白质。  此外,在本月,华盛顿大学研究人员领导的团队在BioRxiv预印本上发表了一篇论文,描述了一种使用ReSyn Biosciences的磁性微粒富集血浆蛋白质的方法,其通过结合血浆中的膜结合囊泡并分析相关蛋白质来提高覆盖深度。华大的MacCoss是这篇预印本的通讯作者,该预印本的第一作者Christine Wu也是该富集方法的主要开发者。他们能够在Orbitrap Astral上使用30分钟的液相色谱梯度稳定地定量约4,800种血浆蛋白质,每天可处理约40个样本。在使用一小时的液相色谱梯度时,他们能够测量5,000到6,000种蛋白质。MacCoss他们迄今没有过度挑战该方法的能力,所以这些数字是相对保守的。MacCoss表示,由于Seer公司的技术成本较高,研究人员对于血浆蛋白质组学富集的替代方法很感兴趣。他说:“Seer在制造这些产品方面做得很好,但成本是一个高门槛。”  维也纳分子病理研究所的蛋白质组学负责人Karl Mechtler表示,他与Seer的讨论中,每个样品的报价大约是600美元。他说:“如果我有100个样品,对于一个蛋白质组学实验室来说,这是一笔巨款。”他指出,对于一个典型的蛋白质组学实验室,一个合适的价格范围应该在每个样品25到50美元左右。Wu表示,使用华大的富集方法进行实验的每个样品成本低于5美元。PreOmics将ENRICH-ist试剂盒作为完整蛋白质组学样品准备工作流程的一部分销售,每个样品总共80美元。  在回答成本问题时,Seer公司董事长兼首席执行官Omid Farokhzad表示,他认为价格是“价值交换的问题”。他说:“并非所有内容都是等价的。问题在于,从Seer所提供的与其替代方案所提供的内容来说,价值交换是什么?”在血浆蛋白质组学领域最新的发展中,这个问题的答案似乎是一个不断变化的目标。
  • 代谢组学、单细胞蛋白组学……ASMS2024上这些质谱新技术值得关注
    2024年6月2-6日,全球质谱领域最具影响力之一的专业盛会--第72届美国质谱年会(ASMS)在美国加州阿纳海姆会议成功召开,该盛会吸引了世界各地的质谱工作者汇聚一堂,共话质谱未来。此次大会盛况空前,举办了超70个分会议,约有6,800名科学家出席,并展示超3,400篇研究摘要。大会设有短期培训课程、墙报、分会场口头报告等,通过多种不同的形式,科学家们分享他们的最新研究成果,揭示质谱学的前沿技术和应用。同时仪器厂商也争相展示着最新的产品技术,仪器信息网在众多企业发布的新品中,总结了热门技术产品。会议现场&bull 赛默飞Stellar&trade 对Astral的定量补充本届大会上赛默飞带来了他们的最新仪器——一款能够执行靶向验证的质谱仪。这反映了整个行业正朝着靶向检测与验证这一趋势迈进。传统意义上,高分辨率质谱仪能揭示众多潜在生物标志物,但如何有效验证这些成千上万的候选标志物一直是难以逾越的障碍。赛默飞此次发布的全新产品Thermo Scientific&trade Stellar&trade 质谱仪,正是针对这一痛点的突破性解决方案,也是赛默飞创新的又一重大里程碑。Stellar质谱仪结合了两个质量分析器,一个四极质量分析器用于前体离子选择,以及超高速双压线性离子阱质量分析器。离子集中路由多极(ICRM)同时在两个离子阱中操控离子包。同步离子管理以高灵敏度、宽动态范围和增加特异性高达140的MS2数据,使科学家能够在更短的时间内自信地将更多的候选生物标志物转化为验证阶段。提供大规模定量性能:一个小时内可以稳定地定量近10,000种肽,实现有偏差的系统生物学分析;样本通量数据提高:绝对定量更多靶向化合物,以提高定量研究能力,样本通量提高4倍;将靶向定量推向单细胞水平:利用增强的灵敏度扩展靶向通路分析的范围,同时减少样本的缺失值;大幅缩减背景干扰,增强特异性:采用快速、灵敏的全扫描同步前体离子选择 (SPS) MS3 采集克服具有挑战性的背景基质干扰;提升实验室生产率:使用各种靶向和非靶向数据采集方案,加快靶向方法的创建和实施。&bull 岛津RX系列三款新品全面升级LCMS-TQ RX系列包括LCMS-8060RX、LCMS-8050RX和LCMS-8045RX三个型号,继承岛津三重四极杆液质联用仪UFMS的特点,同时提供更高的灵敏度、稳定性和可操作性。LCMS-TQ RX系列采用创新离子源设计,提高了数据可靠性。利用在分析前自动检查仪器状态、自动执行校准(调谐)的功能,以及将待机功耗降至更低的生态模式,实现高效的实验室操作和降低环境负荷。通过RX系列的导入,制药、环境、食品和科研领域等相关实验室工作效率将进一步提升。&bull 沃特世Xevo&trade MRT新一代多反射飞行时间质谱技术沃特世推出新款Xevo&trade MRT台式质谱仪(MS) ,是在先前推出的Waters SELECT SERIES&trade MRT 质谱仪 的技术基础之上,将多反射飞行时间(MRT)技术和混合四极杆飞行时间(QTof)技术的特性以及分辨率、速度的优势整合到了这款灵活的台式仪器中。 Waters Xevo MRT台式质谱仪在100 Hz下可提供100K FWHM的分辨率和亚ppm级质量精度。Waters Xevo&trade MRT质谱仪采用新一代多反射四极杆飞行时间技术,在不影响分析性能的前提下,实现了高分辨率和高速度的完美结合。与其他品牌的同类产品相比,该系统在上限运行时可提升高达6倍分辨率以及2倍的质量精度,有助于科学家用更短的时间处理更多的样品,更好地开展大型队列生物医学研究和流行病学研究。Waters Xevo&trade MRT能够提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,用户可以方便灵活地使用沃特世软件、色谱柱和仪器开展高通量分离,并与第三方软件应用程序共享通用数据。&bull 安捷伦推出运用前沿GC/MS和LC/Q-TOF技术的新产品在第72届ASMS质谱与相关专题会议上推出两款新产品。一款是Agilent 7010D三重四极杆气质联用系统,这款以食品和环境为主要目标市场的系统,可在气相色谱-质谱联用分析中展现出色的精度和灵敏度。另一款为适用于6545XT AdvanceBio LC/Q-TOF系统的Agilent ExD池,旨在助力生物制药市场与生命科学研究。Agilent 7010D三重四极杆气质联用系统(7010D GC/TQ)Agilent 7010D 三重四极杆气质联用系统(7010D GC/TQ)配备全新的HES 2.0离子源,灵敏度可达阿克级。该系统内置SWARM自动调谐和早期维护反馈(EMF)等智能功能,有助于简化分析工作流程和减少计划外仪器停机。连接碰撞池的Agilent ExD池(适用于6545XT AdvanceBio LC/Q-TOF)适用于6545XT AdvanceBio LC/Q-TOF的Agilent ExD池可增加电子捕获解离(ECD)功能,助力肽和蛋白质表征。ECD特别适合用于研究大分子蛋白质、易损修饰和异构体残基——仅使用传统的碰撞诱导解离(CID)方法难以明确表征这些分析物。结合 6545XT 本身就有的完整蛋白质分析能力,ExD 池还适用于对较大的和高电荷的蛋白质(如抗体)以及小一些的亚基(如肽)执行“top to middle down”表征,由此生成的丰富谱图信息可使用 ExDViewer 软件进行可靠的解析。&bull SCIEX 7500+系统迄今为止SCIEX速度最快的三重四极杆质谱仪SCIEX推出了SCIEX 7500+系统,这是SCIEX定量产品组合中的最新款质谱仪,不仅可以覆盖日益复杂的基质样本,同时能确保仪器在更长时间内保持优异的性能状态。SCIEX 7500+ 系统SCIEX 7500+系统中Mass Guard技术是一项新的技术,包含主动过滤潜在污染离子的能力。它降低了仪器污染的风险和频率,特别是在处理复杂基质时,维持仪器最高灵敏度性能的时间,与现有SCIEX技术相比可提升两倍。进样组件DJet+完全可拆卸,允许前端维护,从而能够最大化系统的运行时间。SCIEX 7500+系统每秒可进行800次多反应监测(MRM),是迄今为止SCIEX速度最快的三重四极杆质谱仪。这一提升扩展了大列队化合物的应用范围和定量能力,能覆盖更多新的化合物,从而提高了实验室的整体工作效率。&bull 布鲁克新产品持续推动单细胞蛋白质组学发展在第72届ASMS会议上布鲁克宣布推出一款革命性的MALDI-TOF/TOF质谱仪,即neofleX&trade 空间成像质谱仪。neofleX&trade Imaging Profiler配备了布鲁克专利的smartbeam 3D激光器,确保了具有真实的“方形像素点”成像采集功能;配备了增强型检测器,可实现线性模式和反射模式下、持久稳定的数据采集性能。neofleX&trade 还提供TOF/TOF配置,该配置具有进一步优化设计的二级碎裂模块,能显著提高TOF/TOF的检测灵敏度、采集速度和序列覆盖度。布鲁克还宣布了一款SCiLS&trade 系列软件的扩展产品 - SCiLS&trade Scope 1.0,为neofleX&trade 结合靶标蛋白质成像的空间多组学成像流程而设计。SCiLS &trade Scope软件可处理来自靶向成像工作流程(如MALDI HiPLEX-IHC等)的OME-TIFF数据集。离子图像通过预先选定的通道色彩编码进行空间可视化分析,借助简单工具还可以实现快速图像处理和距离测量。布鲁克推出了全新的超高灵敏度 timsTOF Ultra 2 质谱系统,该系统大大提高了对微小细胞、亚细胞细胞器进行深度分析的灵敏度,并增加了样本进样量范围的灵活性。结合新的 Spectronaut® 19 软件和全新的 PreOmics ENRICHplus 试剂盒,布鲁克正在建立从超高灵敏度到大规模深度血浆蛋白质组学的4D-蛋白质组学新标准。&bull 国内厂商莱伯泰科、清谱科技精彩亮相在ASMS展会上,也出现了更多的国产质谱企业,莱伯泰科旗下子公司CDS携带蛋白组学样品前处理自动化平台以及最新发明的相关耗材产品精彩亮相,向世界展示了其在生命科学领域的创新实力。在本次ASMS中,CDS展示了MiniLab蛋白组学样品前处理自动化平台、6通道EZ-Trace固相萃取装置,以及基于Empore膜技术的最新E系列蛋白消解和脱盐产品。在展台上重点介绍了CDS新开发的蛋白组学样品前处理离心小柱的性能,其高肽容量和出色的高pH分馏效果让现场观众耳目一新。清谱科技也携带最新产品在#433展位与行业分享。清谱科技通过3个口头报告、18个墙报,展示分享团队近一年取得的创新技术成果及产品研发应用进展。
  • 南昌大学预算1730万采购4套代谢/蛋白组学研究质谱(附详细技术指标)
    p   日前, 江西省南昌大学食品学院发布发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目,预算1730万采购4套质谱系统,其中2套蛋白组学研究质谱,2套代谢组学研究质谱,并给出了详细的技术指标: /p p   项目编号:JXDY2020-G0067 /p p   项目名称:南昌大学食品学院发酵工程领域大型系列化研究设施(代谢组学研究质谱等)采购项目 /p p   预算金额:1730.0000000 万元(人民币) /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 103px " src=" https://img1.17img.cn/17img/images/202011/uepic/2a157889-5108-4b77-aaed-ddcd0f71e19d.jpg" title=" 微信图片_20201118100404.png" alt=" 微信图片_20201118100404.png" width=" 600" height=" 103" border=" 0" vspace=" 0" / /p p strong   技术要求 /strong /p p   strong  一、代谢组学研究质谱: /strong /p p   1.基本配置要求: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软 /p p   件,全景定量采集模块软件各两套。 /p p   1.3代谢组学软件:2套 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 2016软件:2套。 /p p   1.6工作站电脑:2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬盘,DVD-RW,23″ /p p   液晶显示器,正版Windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB /p p   DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume, /p p   8x DVD+/-RW Slimline。 /p p   1.8泵油 4 瓶。 /p p   1.9二元高压混合泵:2套。 /p p   1.10温控自动进样器:2台。 /p p   1.11控温柱温箱:2台。 /p p   1.12五通道在线脱气机:2 套。 /p p   1.13配套大型氮气发生器:1套。 /p p   1.14配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.15 C18 色谱柱:2根。 /p p   1.16 2 mL 样品瓶:200个。 /p p   1.17配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1 质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源: /p p   2.4.1清洗离子源时不影响系统真空。 /p p   2.4.2电喷雾源(ESI)。 /p p   2.4.3 ESI 源流速10 µ L~3mL/min,100%H2O无需分流。 /p p   2.4.4灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.5 离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   大气压化学源(APCI)。 /p p   2.4.6 APCI 源流速 50 µ L-3mL/min,100%H2O 无需分流。 /p p   2.4.7 灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时同时仪器稳定性≤1ppm。 /p p   2.6检测器数据转换速率:& gt 25GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   2.13.3可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.4利用进样的 MS/MSALL 数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.5分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.6定量软件和处理软件,可用于小分子和大分子肽类化合物,符合 GLP 的定量分析软件,内有多种不同的定量积分模式,帮助 您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.7实时质量亏损触发的 IDA 功能,一级 MS 扫描可同时接 50 个以上 MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集 /p p   不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1 处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1GB,具备 DVI 或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21 英寸,最佳分辨率≥1920× 1080,具备 DVI或 HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows10专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB) /p p   2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW /p p   Slimline. /p p   3.高效液相色谱技术要求指标: /p p   3.1二元并联高压混合泵: /p p   3.1.1流量范围:0.001~5.000 mL/min,步进 0.001 mL/min。 /p p   3.1.2最大压力:18500 Psi 。 /p p   3.1.3流量准确度:& lt 0.5% 。 /p p   3.1.4流量精密度:& lt 0.05% 。 /p p   3.1.5梯度混合精确度:& lt 0.15% 。 /p p   3.1.6梯度混合类型:二元高压混合。 /p p   3.1.7滞后体积:≤150 μL。 /p p   3.2温控自动进样器: /p p   3.2.1样品位数:不少于 110 位,同时兼容孔板及常规样品瓶。 /p p   3.2.2进样体积:0.01~20μL。 /p p   3.2.3交叉污染:0.005%。 /p p   3.2.4进样精度:& lt 0.15% RSD。 /p p   3.2.5自动进样器还具有自动样品稀释。自动进样器温控范围:5~40℃。 /p p   3.3 可冷却的柱温箱: /p p   3.3.1安全性能:具备防止误开门功能,在线监测泄露情况。 /p p   3.3.2柱温箱温控范围:5~100℃。温度稳定性:± 0.1℃。温度精度:± 0.1℃。 /p p strong   二、蛋白质组学研究质谱: /strong /p p   1.基本配置: /p p   1.1 四极杆-飞行时间质谱仪(配备独立 ESI、APCI 离子源):2套。 /p p   1.2系统软件:2套,包括:质谱采集分析软件、高通量定量模块软件,定性处理分析模块软件,全景定量采集模块软件各两套。 /p p   1.3蛋白质数据采集和分析软件:2套。 /p p   1.4系统实时校正系统:2套。 /p p   1.5专业版 Microsoft Office 软件:2套。 /p p   1.6工作站电脑2套,配置不低于:双核3.6G CPU,内存4GB,3× 1TB硬 盘,DVD-RW,23″ /p p   液晶显示器,正版windows10操作系统。 /p p   1.7数据分析处理服务器:2套,配置不低于Dual Intel Xeon Gold 6134 Processors,64GB DDR4 (8x8GB) 2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume,8x DVD+/-RW Slimline。 /p p   1.8泵油:4瓶。 /p p   1.9二元纳升色谱泵:2套。 /p p   1.10自动进样器:2套。 /p p   1.11控温柱温箱:2套。 /p p   1.12微流组件:2 套。 /p p   1.13 上样泵:2套。 /p p   1.14配套大型氮气发生器:1套。 /p p   1.15配套大型不间断电源:20KVA (含8小时电池、电池箱):1套。 /p p   1.16配套启动试剂及工具包:2套。 /p p   2.质谱联用仪要求技术指标: /p p   2.1质谱主机:精确质量数四极杆-飞行时间质谱仪。 /p p   2.2质量范围(m/z):5-40000amu或更宽。 /p p   2.3分辨率:扫描速度& gt 60张谱图/秒时分辨率≥40000 FWHM。 /p p   2.4离子源:清洗离子源时不影响系统真空。 /p p   2.4.1电喷雾离子源(ESI): /p p   ESI 源流速10 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   离子源温度:≥700℃,保证最好的雾化效果,避免直接加热产生的热裂解。 /p p   2.4.2大气压化学离子源(APCI): /p p   APCI 源流速 50 µ L~3 mL/min,100%H2O 无需分流。 /p p   灵敏度:柱上 1 Pg 利血平(m/z 609.2807),S/N& gt 2000:1。 /p p   2.4.3微流离子源组件: /p p   微流离子源耐受流速范围1-200 µ L/min。 /p p   配套喷雾针1-50 µ L/min和喷雾针50-200 µ L/min。 /p p   2.5质谱数据采集速度:大于60张谱图/秒同时仪器稳定性≤1 ppm。 /p p   2.6检测器数据转换速率:& gt 30 GHz。 /p p   2.7质量精确度:≤1 ppm。 /p p   2.8必须配离子聚焦装置(必须为iFunnel 离子聚焦装置或 StepWaveXS离子聚焦装置或 /p p   S-lens离子聚焦装置或 Qjet 离子聚焦装置中的一种)。 /p p   2.9 DIA扫描速度& gt 80可变窗口,最窄2 Da。 /p p   2.10 谱图内动态范围:& gt 105。 /p p   2.11检测器:高性能电子倍增器。 /p p   2.12工作流程:具有定性、定量和同时定性定量三种工作模式。 /p p   2.12.1完全定性分析:使用强大的信息关联数据采集模式(IDA)和高分辨、高准确质量数一级扫描和二级扫描模式,获得相应的高分辨准确质量数一级谱图和二级谱图,完成对未知物的鉴定。 /p p   2.12.2完全定量分析(高分辨 MRM 定量,MRMHR):高分辨 MRM 定量分析具有高选择性和数据可靠的特点,同一张质谱图中全质量范围都具有高分辨、准确质量质谱数据,可以用于高分辨质谱数据的定量分析。 /p p   2.12.3同时定性定量分析:一针进样,用高分辨一级质谱定量分析样品中的所有化合物,同时利用高分辨准确质量数二级质谱定性确证化合物。 /p p   2.13 质谱控制和数据分析软件。 /p p   2.13.1在一个窗口中,可以同时查看多个样本的谱图,比如通过重叠的色谱图或热流图(heat maps)进行快速简单的定性数据查看和比较。 /p p   2.13.2数据处理参数可用于大样本组,在数据处理和查看时节省时间。 /p p   可以快速生成提取离子流色谱图,几秒钟内就可以给出几千个化合物的谱图,可用于筛查和确证。 /p p   2.13.3利用进样的 MS/MSALL数据(所有产物的母离子),可对单张谱图独特的扫描类型产生的全部的碎片进行可视化,有助于快速理解常见的碎裂和中性丢失。 /p p   2.13.4分子式发现器和结构解析等独特的工具,可以在分子水平上详细研究和表征化合物。其主要特点是加入了同位素丰度比和质量精度来过滤元素组成,同时可通过不饱和度、N-规则等也可帮助正确解析化合物的分子式,方便快捷。 /p p   2.13.5定量软件和处理软件,可用于小分子和大分子肽类化合物,符合GLP 的定量分析软件,内有多种不同的定量积分模式,帮助您更合理的积分色谱峰,界面方便快捷。 /p p   2.13.6实时质量亏损触发的 IDA 功能,一级 MS扫描可同时接 50 个以上MS/MS 扫描,该扫描模式能够实时捕获获得母药代谢产物的一级质谱信号,进行重点关注 MSMS,获得最多的母药代谢产物,特别在蛋白和药物相互作用研究。 /p p   2.14 具有智能动态背景扣除,数据采集过程中,仪器自动选择某一时间点上离子强度有显著变化的离子去进行MS/MS分析,从而避免收集与洗脱液、色谱柱等相关的背景离子,有效提高信息关联扫描的MS/MS谱图收集的效率和质量,能够很好的克服按强度低丰度化合物采集不到MSMS的弊端。 /p p   2.15计算机工作站:商用电脑。 /p p   2.15.1处理器规格:≥Intel 酷睿双核,主频≥3 GHz,高速缓存≥3 MB。 /p p   2.15.2 内存:≥8 GB,DDR3-1333,有可扩展空闲插槽。 /p p   2.15.3 显卡:独立显卡,显存≥1 GB,具备 DVI或 HDMI 输出接口。 /p p   2.15.4 硬盘:7200 rpm,容量≥4 TB,有可扩展空闲插槽。 /p p   2.15.5 I/O 接口:千兆网卡,USB3.0 接口。 /p p   2.15.6 显示器:尺寸≥21英寸,最佳分辨率≥1920× 1080,具备 DVI或HDMI 输入接口。 /p p   2.15.7 系统软件:正版 windows 10 专业版、工作站所需的支持软件。 /p p   2.15.8 Microsoft office 2016 专业版操作软件。 /p p   2.16 计算服务器不低于此配置:Dual Intel Xeon Gold 6134 Processors. 64GB DDR4 (8x8GB)2666MHz RDIMM ECC RAM. 2x 3.5 2TB 7200rpm SATA HDD in one RAID1 Volume. 8x DVD+/-RW& nbsp Slimline. /p p   3.二元纳升蛋白质分离系统技术要求指标: /p p   3.1二元高压纳流液相:采用先进的无分流模式提供恒定流量的流动相。 /p p   3.2最大耐压:≥10000 psi。 /p p   3.3具备纳流梯度泵,流速范围含有:100-1000 nL/min,1-50 μL/min,或具有更宽的流速范围。 /p p   3.4配备自动进样器、柱温箱、进样针。 /p p   3.5配备上样泵,或相关上样设计。 /p p   3.6微流1-10 μL /min模块,包括柱温箱加热模块,进样针等。 /p p   注:以上“技术部分”要求为实质性条款须完全响应,否则投标无效。 /p p br/ /p
  • 布鲁克:累计实现600台timsTOF质谱装机 蛋白组学是重要增长点
    近日,第四十一届J.P.摩根大会召开,会议上,多家科学仪器企业和诊断企业均分享了最新的业务情况,并对未来的行业发展重点进行了讨论。仪器信息网对部分科学仪器行业头部企业的业绩表现和战略重点进行了摘录,以飨读者。  布鲁克(BRUKER)  Bruker 首席执行官 Frank Laukien 表示,公司预计 2022年第四季度的有机收入将实现中高个位数增长,报告的收入将超过华尔街的普遍预期。分析师平均预计第四季度收入为 6.664 亿美元。 他补充说,公司预计 2023 年有机收入将实现3.6%的同比增长,收入约25亿美元。(数据未审计,仅供参考)  Laukien 强调,布鲁克的蛋白质组学业务是一个特别重要的增长动力,并预测“蛋白质组学将迎来一个非常重要的十年”。 他提到蛋白质组学在生物制药中的“作用越来越大”,并补充说生物制药研究现在占公司收入的 15% 到 16%,而过去几年里这一比例不到 10%。 过去一年,美国生物制药一直是布鲁克业务增长最快的部分,呈现两位数的高增长。 截至 2022 年底,布鲁克已安装了600 多台 timsTOF 质谱仪,这些仪器已成为蛋白质组学研究人员最喜欢的仪器。  Laukien 还强调了 Bruker 正在不断扩展其空间蛋白质组学产品组合,特别指出了其 Canopy Biosciences 子公司的 CellScape 空间单细胞蛋白质组学平台,以及去年与 AmberGen 合作推出的 MALDI HiPLEX-IHC 组织成像系统。 他介绍到,公司去年售出了 20 多套 HiPLEX-IHC 系统。  Laukien 还讨论了布鲁克对瑞士蛋白质组学公司 Biognosys 的投资,布鲁克最近收购了该公司 80% 以上的股份。 Bruker 正在为 Biognosys 提供资金以在美国开设一个实验室,这笔投资将帮助 Bruker 从研究人员和行业团体那里获得业务,他们可能不具备自己操作公司质谱仪的专业知识或人员。 Biognosys 目前的年收入约为 1500 万美元,布鲁克预计该公司未来几年将实现两位数的增长。  布鲁克2022年新产品新技术、市场动态大事记  2月,布鲁克推出首款基于timsTOF技术的MPP系统,丰富高通量药物筛选平台。其具有 MALDI 的极快速度和久经考验的稳健性,并且在 HTS 中首次利用了布鲁克创新的捕获离子迁移谱 (TIMS) 技术。TIMS 通过利用分子碰撞截面实现等压线甚至异构体的快速气相分离。这与常规的 50000 质量分辨率和 QTOF-MS 检测相结合,可在 HTS 速度下实现革命性水平的特异性测定。timsTOF MPP 具有双 MALDI / ESI 离子源和布鲁克专利的smartbeam 3D激光技术,可实现与 uHTS 兼容的速度和高通量,并提供独特的基于激光的后电离技术 (MALDI-2 )选项以扩大化合物检测空间。作为 timsTOF MPP 解决方案的一部分,新的 MALDI PharmaPulse 2023 软件支持用于高通量药物筛选的应用。其自动化接口可实现与来自不同供应商的通用调度软件包协同工作。此外,MPP 2023 可将数据和结果无缝传输到下游分析软件,例如 Genedata Screener。  4月,布鲁克宣布收购大气压DART(实时直接电离)技术的创新者IonSense公司,用于加快DART离子源技术的开发,以及加大在应用市场的应用开发投入,包括食品安全和法医学领域。  5月,继收购DART后,布鲁克又一大动作进军工业领域!布鲁克和TOFWERK AG宣布建立战略合作伙伴关系,以提供高速、超灵敏的应用和工业分析解决方案,同时布鲁克对TOFWERK注入了新资本。布鲁克最近收购的实时直接分析(DART)技术与TOF-MS技术融合产生的新型业务机会分析解决方案也在开发计划中。  6月,ASMS2022期间,布鲁克推出DART-EVOQ质谱组合产品,是一款结合了原位电离源(DART)的三重四极杆质谱仪。通过引入用于高通量定量的DART-EVOQ 三重四极杆质谱仪,将实验室内外的质谱分析能力扩展到点对点高效分析。DART-EVOQ 不需要色谱分离来进行食品/饮料、法医、工业、安全、环境和制药等领域的分析。  6月,布鲁克宣布了组织和肿瘤微环境(TME)空间多组学的重要创新。继布鲁克与 AmberGen 建立战略合作伙伴关系后,MALDI HiPLEX-IHC 质谱成像增强了关键性蛋白分析功能。布鲁克还宣布推出了用于 timsTOF fleX 系统的 smartbeam 3D MALDI 光源的 microGRID 模块。  6月,布鲁克公司推出新的 timsTOF HT 系统,进一步拓展了革命性的 4D-多组学 timsTOF 平台。timsTOF HT 采用新型第 4 代 TIMS(trapped ion mobility separation,捕集离子淌度分离)XR cell 和14 位 Digitizer,可实现更宽动态范围、更深的肽段覆盖率和更准确的定量分析。该系统在 4D 血浆、组织蛋白质组和表观蛋白质组学中表现出色。  2022年布鲁克在蛋白质组学、生物制药等领域进行了多项关键收购和商业投资,可以说是动作频频,基于此,2022年仪器信息网特别采访了布鲁克道尔顿中国区掌门人何磊,与他进行了深入的交谈。点击了解  不仅如此,2022年,布鲁克推出timsTOF HT(High Throughput)系统,直面蛋白成像的难题与挑战。可以说,布鲁克基于timsTOF持续进行着技术创新,并努力拓展蛋白质组学应用研究的边界。在此背景下,仪器信息网特别采访了布鲁克道尔顿中国区组学与制药应用经理刘先明,与他就timsTOF平台的里程碑产品技术、4D-蛋白质组学技术以及蛋白组学成像技术难点、未来发展趋势等话题进行了深入的交流。点击了解
  • 全球基因组学和蛋白组学分析仪器市场预测
    全球权威调研机构Technavio最新报告显示,预计在2013到2018年全球基因组学和蛋白组学分析仪器市场将保持7.83%的复合年增长率。   基因组学研究的是基因及其功能,蛋白质组学研究的是蛋白质组或组蛋白的结构和功能,两者均使用分子生物学和生物信息学的工具和技术。基因组学通过绘制基因和DNA序列来了解基因组的结构和功能。一个蛋白质组是一个基因组在特定时间内表达的一整套蛋白质。蛋白质组学主要涉及的是使用分子生物学、生物化学和遗传学来分析蛋白质,这些蛋白质是通过基因编码而来。蛋白质是所有细胞的主要组分,而且控制细胞的不同功能特性。基因组和蛋白质组结构或功能的缺陷可能导致疾病,因此基因组学和蛋白组学技术在科研、新药研发、疾病诊断中发挥着重要作用。这些应用都需要基因和蛋白缺陷的识别和研究,而基因组和蛋白质组的蛋白质分离、净化、识别、量化和分析都需要仪器、试剂和软件。基因组学和蛋白质组学用到多种分析仪器,但应用最广泛的是色谱系统、质谱系统、PCR系统和下一代测序系统。   目前,基因组学和蛋白组学领域的主要供应商有安捷伦、Bio-Rad、罗氏集团、Illumina、PE和赛默飞,其他比较优秀的供应商还有BD、布鲁克、GE医疗、JASCO、日本电子、Luminex、Qiagen NV、Rigaku Corp.、岛津、西格玛、Spectrolab Systems、Waters等。   这个市场发展的主要推动力为基因组学和蛋白组学技术的完善,主要挑战在于基因组学和蛋白组学知识的缺乏,主要趋势为聚焦于药物研发和疾病诊断。
  • 质谱“跨界”医学 妙用蛋白组学分析——访威斯康星大学麦迪逊分校细胞与再生生物系及化学系葛瑛教授
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong & nbsp span style=" text-indent: 2em " 2020年,美国质谱学会(American Society for Mass Spectrometry, ASMS)将质谱界内“最高荣誉”之一的Biemann奖章授予了威斯康星大学麦迪逊分校的葛瑛教授 (https://labs.wisc.edu/gelab/),以表彰其应用基于高分辨率质谱的top-down蛋白质组学技术在心脏疾病研究领域所做出的重大贡献。该奖项是对质谱先驱—Klaus Biemann教授的纪念,表彰获奖者个人在其学术生涯的早期就在基础和应用质谱领域获得显著成就,因此该奖项的获得者均为中青年的杰出科学家。 strong Biemann奖章自1997年颁布以来共授予了24位科学家,作为2020年的奖项获得者,葛瑛教授既是该奖项自颁布以来的第七位女性科学家,也是该奖项历史上第三位获得此荣誉的华人学者。 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛本科毕业于北京大学化学学院,毕业后赴美国康奈尔大学攻读博士学位。她基于top-down的蛋白质组学研究也起始于博士求学期间,彼时她师从Fred W. McLafferty,后者提出了著名的 strong 麦克拉弗蒂重排反应 /strong ,也被喻为质谱界泰斗。葛瑛在博士毕业后做出了一个与多数科研学者不同的抉择,她决定先加入美国惠氏制药(后并入辉瑞制药公司)从事药物研发工作,这段工作经历需要她与不同研究领域的工作者合作完成研究内容,也让她切身感受到了交叉学科研究模式的可行性和高效性,更为她日后赴任高校开启交叉学科的研究之路“凿”开了一道光。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 葛瑛团队突破了传统化学、生物学和医学的界限,利用高分辨质谱技术和top-down方法开展蛋白质组学研究,并通过新的方法策略获得了对心脏疾病等病理学研究的新颖洞见。仪器信息网近期采访了这位优秀的女性质谱工作者——威斯康星大学的葛瑛教授,与她进行了深入的交谈,探寻她光环加身的科研成果背后有何奥秘。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 450px " src=" https://img1.17img.cn/17img/images/202008/uepic/50b38277-e0d1-4e19-92d0-ffef8ecafdd6.jpg" title=" 葛瑛.jpg" alt=" 葛瑛.jpg" width=" 300" height=" 450" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 威斯康辛大学麦迪逊分校细胞与再生生物系及化学系教授 葛瑛 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 以质谱为中心的技术开发 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 翻译后修饰的蛋白质(PTMs)在许多关键细胞中发挥着重要作用,因此对蛋白质组进行全面的分析,对于解释分子作为一个系统如何相互作用,以及了解细胞系统在健康和疾病中的功能至关重要。当前蛋白质组学的质谱分析主要有bottom-up(自下而上)和top-down(自上而下)两种方法,Bottom-up是传统的手段,它将蛋白质的大片段混合物消化/酶解成小片段的肽后再进行分析,是在蛋白质组学的研究中广泛使用的一种质谱技术,但该方式无法取得与PTMs之间相关联系的信息。而Top-down技术则不再需要酶切的过程,可以直接对完整的蛋白——包括翻译后修饰蛋白以及其它一些大片段蛋白测序,而非仅仅针对多肽,这就使得与翻译后修饰相关的信息能最大程度的保存下来。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 基于top-down质谱技术的蛋白质组分析是表征完整蛋白质组的新兴手段,它可以对来自于全细胞或组织裂解液的复杂混合物中的完整蛋白进行快速、灵敏的分析,提供一个系统、定量的蛋白质评估。然而,由于蛋白质组的高度复杂性和动态性,蛋白质组学的分析依然面临着巨大的挑战。比如蛋白质难溶于水、新的蛋白分离纯化方法有待探索以及根据top-down获得的数据来确定蛋白特性和有效翻译后修饰蛋白质的计算机工具十分匮乏等。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此葛瑛团队就蛋白质组学分析面临的难题开展了系列研究,首先便是蛋白质溶解度的问题。在蛋白质的分析过程中,为了有效地从细胞或组织中提取蛋白质,提取缓冲液中通常含有表面活性剂,但是传统的表面活性剂与质谱不相容,它们通常存在极大的抑制蛋白质的质谱信号,因此在质谱分析前要先除去表面活性剂。基于此,葛瑛团队创造性地合成了可光降解的表面活性剂Azo,Azo的功能与常规表面活性剂非常相似,但却在表面活性剂分子的中间加入了可以通过简单紫外线照射被破坏的化学键。在进行质谱分析之前,可以通过暴露于光来裂解键,这样Azo就会分裂,仅留下蛋白质分子。葛瑛说到:“Azo能够对整个蛋白质进行有效的质谱分析,开辟了研究膜蛋白质的新道路。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 其次,针对完整蛋白质色谱分离法并不完善的问题,葛瑛团队发展了一种新型的多维色谱法——在线HIC/MS(疏水性相互作用色谱质谱)分析方法,用于在非变性模式下高分辨率分离完整蛋白,展示了该方法在Top-Dwon蛋白质组分析的潜力。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 不仅如此,针对难以使用质谱检测低丰度蛋白质等难题,葛瑛团队研发了新型纳米材料用于富集蛋白质,实现了利用top-down质谱法富集、鉴定、定量和表征完整的磷酸化蛋白。近日,葛瑛教授团队和威斯康星大学麦迪逊分校化学系金松教授团队合作的研究成果发表于自然子刊《自然· 通讯》,团队开发了基于纳米材料的蛋白质组学新方法,将功能化的超顺磁性纳米颗粒(NPs)与自上而下蛋白组学质谱分析结合,在有效地从血清中富集心脏肌钙蛋白I(cTnI)(cTnI是一种心脏疾病的生物标志物)的同时也能很好的去除血清白蛋白。该研究成果将在蛋白组学研究上得到广泛的应用,有助于揭示cTnI的分子指纹图谱,便于精准医疗研究。 a href=" https://www.nature.com/articles/s41467-020-17643-1" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " (原文链接:《Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum span style=" color: rgb(0, 32, 96) text-indent: 2em " 》) /span /span /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 此外,对于top-down数据分析工具开发不足的问题,其团队开发了综合软件工具MASH Explorer软件,实现了不同质谱厂商的数据统一分析,并结合了多种用于反卷积和数据库搜索的算法,以进一步推动top-down蛋白质组学在生物医学研究中的发展。 span style=" color: rgb(0, 32, 96) " (软件免费下载 /span a href=" https://labs.wisc.edu/gelab/MASH_Explorer/index.htm" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/MASH_Explorer/index.htm /span /a span style=" color: rgb(0, 32, 96) " ) /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在不断钻研的基础上,葛瑛团队进一步将其开发的方法应用于生物医学等问题的研究上,比如在正常和患病条件下建立心脏肌丝蛋白修饰的图谱,探究其调节心脏和骨骼肌收缩力的功能结果,以及利用蛋白质组学和代谢组学等综合研究方法评估干细胞疗法治疗心力衰竭的功效,并了解心脏再生过程中的信号传导机制。她在心脏生物学领域取得了重要发现,例如,其团队确定了心肌肌钙蛋白I的磷酸化和肌动蛋白同工型转换是慢性心力衰竭的潜在生物标记。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 跨界要知己知彼 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 从上文不难看出,葛瑛的研究内容不仅跨越了化学、生物学和医学的传统界限,更创造性地将其在生物化学方面的专业知识与医学相结合,获得了对心脏疾病等病理学研究的新颖见解。“科学界越来越多的人认识到,一个领域内真正的突破,很多时候来自于这个领域之外,来自于其它领域科学家的研究成果。也就是人们经常所说的‘跨界’研究。” 葛瑛说道:“从另外一个‘视角’去解决问题,往往能得出意想不到的结果。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 交叉学科很热门,但研究难度也不小。如何克服跨领域探索的挑战?笔者向葛瑛抛去这个问题。结合其自身的经历,在跨领域的学习过程中葛瑛一直积极地、努力地保持着好奇心,在不同的专业领域积蓄知识和力量。葛瑛表示:“随着长期对一个研究方向的不断深入,自然需要不断扩展,我当时进行跨界研究的契机是在加入麦迪逊医学院组建蛋白质中心后,开始有很多机会与生物学家以及医生合作,这就需要我去学习更多的知识,包括阅读其他领域的文献,跨领域沟通研究等等。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “另外,想要真正深入了解一个科研领域,也必须要找到对应的‘圈子’,并且要知己知彼。”葛瑛分享了一段故事:“当我准备利用系统生物学方法深入了解心脏病等研究时,我阅读了上千篇心脏医学的文章,去参加该领域的学术研讨会,不断地扩充我的知识,有一次在一场心脏学会研讨会上,我遇见该领域的一位‘大伽’,并主动上前与他交谈,过程中他提到看过我发表的关于心肌钙蛋白的文章,对我赞誉很高,借那次机会,他推荐了多位医学领域的学者给我认识,也为我后来进行跨界研究提供了资源和平台。这是我认为很重要的一点,跨界,你必须要知己知彼。当然我很幸运能够得到多个领域(质谱,蛋白质组学,色谱 和 心脏学会)的前辈和朋友们的大力支持, 非常感激。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 对科学研究来说,跨界是必然的,而当跨界研究的时候找到一个突破口也十分必要。葛瑛的团队是多元化的,既有生物学、化学方向的学生,也有医学方向的学生。围绕课题组的两大主要方向,技术开发和生物医学研究,化学系的学生以发展技术为中心,最终落地到应用上,而生物系的学生以研究一种疾病为中心展开课题。此外,课题组实验室的设置也同样多元化,一层楼里有化学实验室、生物工程实验室和临床实验室,这样的环境也为组内的学生提供了跨界沟通、交流和合作的机会与平台。“我们实验室已经不是单纯的化学实验室或生物实验室,某种意义上我们可以称为‘交叉研究中心’。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 采访的最后,葛瑛也表示,不管从事的是化学研究还是生物学研究,最终都是想要解决生命科学的问题,因此质谱技术也好,生物医学应用也好,团队都希望能更好地实现精准医学,最终造福人类。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: right text-indent: 2em line-height: 1.75em " 采访编辑:万鑫 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 后记: /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 当下时代的科学研究已经不仅仅需要培养“标准型人才”,更多的创新成果和研究领域的成长点都发生在领域的边缘或几个不同领域的交界处,因此,越来越需要像葛瑛这样掌握各种知识的研究学者。与此同时,科研学者如果能够自由发挥,把自己培养成“非标准型人才”,也许更利于将来的创新研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" 点击图片了解葛瑛团队更多内容: a href=" https://labs.wisc.edu/gelab/" target=" _blank" style=" color: rgb(0, 32, 96) text-decoration: underline " span style=" color: rgb(0, 32, 96) " https://labs.wisc.edu/gelab/ /span /a /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span /p p style=" text-align: center" a href=" https://labs.wisc.edu/gelab/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/a7c8ff9b-cf8b-40b8-bcf2-b2a9d68a1b5a.jpg" title=" 葛瑛团队.jpg" alt=" 葛瑛团队.jpg" / /a /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" font-family:楷体, 楷体_GB2312, SimKai" /span br/ /p
  • Astral与Ultra谁与争锋?单细胞蛋白组学质谱数据展示
    最近发表的论文显示,新型质谱平台正在显著增强单细胞蛋白质组学实验的覆盖深度。研究人员在单细胞实验中发现,使用Bruker timsTOF Ultra和Thermo Fisher Scientific Orbitrap Astral仪器后,检测的蛋白质数量增加了一倍多。这两种仪器都在6月份的美国质谱学会年会上(ASMS 2023)首次亮相。timsTOF Ultra是Bruker timsTOF系列的最新产品,它提高了现有timsTOF SCP对小样本的分析能力,还可以对较大样本进行高性能分析。(新产品详情了解)Orbitrap Astral标志着赛默飞世尔公司进军一项新技术,即Astral(用于不对称轨道无损)分析仪,该分析仪与飞行时间(TOF)分析仪一样,测量离子沿仪器内轨道的行进及其到达探测器表面的情况。(新产品详情了解)哥本哈根大学的研究人员于11月发布在BioRxiv预印本上的文章首次展示了Astral在单细胞蛋白质组学研究中的分析能力。在这项研究中,科学家们能够在单个HeLa细胞中识别出5000多种蛋白质。他们指出,这是之前单细胞实验通常达到数量(约2000种蛋白质)的两倍多。哥本哈根大学Novo Nordisk基金会蛋白质研究中心教授兼副主任、预印本资深作者Jesper Olsen表示,Astral “真正改变了游戏规则”,并指出Astral分析仪“提供了极高的灵敏度”。东北大学(美国)生物工程副教授、专注于单细胞蛋白质组学研究的PTI所长Nikolai Slavov表示:“我们注意到单细胞蛋白质的分析性能大幅提高,而新仪器占据了主要原因。”并表示,新的质谱仪器能够准确地定性定量多种肽和蛋白质。维也纳分子病理学研究所蛋白质组学技术中心负责人Karl Mechtler认为,如果没有新的仪器,很难进行单细胞的最近研究。他说:“通过和单细胞领域的研究者讨论,我们都认为新仪器是向前迈进的重要一步。”Mechtler的实验室拥有Ultra,并计划购买Orbitrap Astral,这两种仪器都将用于单细胞实验。在ASMS上,Mechtler展示了Ultra的研究数据。在250pg(大约相当于单个细胞中的蛋白质量)中,他和同事测量了约6000个蛋白质组,中位变异系数(CV)为10%,而使用旧的timsTOF SCP,测量约5000个蛋白质组,CV为12%。在研究实际的单个HeLa和K562细胞(与标准细胞相反)过程中,他们分别鉴定了3803和3221种蛋白质。Mechtler说,自从安装Ultra以来,实验覆盖深度略低,比在ASMS报告的数字下降了5%-10%。由于该系统只使用了六个月,他和同事们将继续优化其性能。在Slavov及其同事在11月发表的BioRxiv预印本中,研究人员将timsTOF Ultra用于单细胞实验,每个细胞量化了3000-3700种蛋白质。Slavov表示,虽然这两种仪器都能大幅提高单细胞研究的分析能力,但timsTOF Ultra更具优势。与Orbitrap Astral相比,Ultra的捕获离子迁移率(TIMS)使仪器能够分离和破碎更大的离子。但是Orbitrap Astral灵敏度更好,尤其是在产生少量离子的单细胞实验中。Slavov补充说,在用于单细胞和大块蛋白质组学实验的数据独立获取(DIA)实验中,通过一系列m/z分离窗口循环,在给定的时间点分解m/z窗口中存在的所有前体离子。Ultra利用TIMS对离子的释放进行计时,以匹配当时碎片化的m/z窗口。但在Astral中不能以这种方式计时,因此在特定时间点被碎片化的m/z窗口外的离子将无法进行分析。Ultra收集的离子迁移率数据提高了检测的特异性。Olsen同样指出,Astral能够分析样本产生的一小部分(约1%)离子束。尽管如此,该系统“与我们以前使用过的任何仪器相比,仍然具有极高的灵敏度。”他和他的同事通过Astral进行单细胞实验时,调整了隔离窗和喷射时间,以便吸收更多的离子进行分析。在批量实验中,通常使用2个Thompson隔离窗。他们将该窗口的大小和允许的最大注射时间都增加了一倍。他认为现在是单细胞蛋白质组学研究的最佳时刻,并且握在自己手中。Olsen指出,Astral还能够在单细胞水平上分析翻译后修饰(PTM)。这在传统上是困难的,因为小尺寸单细胞样本在没有富集的情况下很难识别PTM,而富集方法又会导致样本丢失,这使得单细胞PTM分析具有很大挑战。样本制备流程的改进也推动了分析仪器行业的发展。Olsen的团队使用Evosep最近发布的ProteoCHIP EVO 96平台进行单细胞研究。该平台是Evosep与Cellenion合作设计,允许研究人员使用Cellenion的CellenOne X1平台分离单个细胞并将其分配到EVO 96平台中;最多可以并行处理96个细胞,然后转移到Evosep的Evotip分离设备中,并在该公司的Evosep One LC系统上运行。该系统的集成使样品制备过程几乎没有损失,并指出这是“提高质谱分析灵敏度的关键”。Slavov也使用CellenOne系统进行样品制备。这种方法被称为nPOP,在载玻片上以液滴形式制备单个细胞,可以同时制备数千个。研究人员表示,这种方法可以在一到两天内制备3000多个细胞。Mechtler还与Cellenion合作开发了单细胞样品制备的工作流程,以最小的样品损失同时处理大量单细胞。通量仍然是单细胞蛋白质组学面临的最大挑战。最近发布的仪器在一定程度上解决了这一问题,但许多工作流程仍然局限于每天分析几十个左右的细胞。Slavov说:“我们希望每天能够以分析每一个细胞的工作量去分析数千个细胞。我们目前在timsTOF Ultra上使用PTI继续开发plexDIA方法,该方法将样本复用与独立于数据的采集质量规范相结合,以实现更高通量的实验。”Olsen同样指出,“通量是我们目前的主要问题。”他说,实验室每天可以运行大约40个单细胞,但只要“稍作调整”,可以实现每天运行100个细胞。他和他的同事们正在探索多种复用方法,这些方法可以进一步提高通量,但“现在说它能起多大作用还为时过早。”---------------------------------------------------------------------------------------------------------------2023年,仪器信息网联合北美华人质谱学会(CASMS),于12月12-15日联合举办第十四届质谱网络会议(iCMS 2023),本届会议新增单细胞质谱技术及应用新进展专场,聚焦单细胞质谱新技术及最新研究进展。(点击了解相关质谱仪器专场)部分报告预告点击浏览  》》》会议报名点击下图
  • 定量蛋白组方案升级——全新Velocity LFQ DIA 工作流程正式发布
    今天的蛋白组学研究中,研究人员们在转化研究,生物标志物发现,甚至单细胞分析等过程中,不止是追求简单的鉴定,更多的需要获取准确可靠的定量信息,用以理解生物学问题。 他们需要使用精确的定量检测方法来表征生物系统之间的差异,对大量样本进行高置信度、高通量的表征,验证生物学假说。在刚结束的USHUPO中,赛默飞正式推出了全新的Velocity LFQ DIA 工作流程。 该平台基于Thermo Scientific Orbitrap 超高分辨质谱仪、Thermo Scientific Vanquish NEO UHPLC 系统以及高效的 Thermo Scientific µ PAC UHPLC 色谱柱技术,具有优异的定量性能,蛋白组深度覆盖,并可轻松实现高通量分析,匹配今天研究人员们对定量蛋白组学研究的需求。 下面就由小编给大家介绍该平台的工作流程,并展示其在定量表征、蛋白组覆盖度和方法通量中的性能。WorkflowVelocity LFQ DIA 工作流程Velocity LFQ DIA 工作流程组成如图1 所示,包括Vanquish Neo UHPLC 系统和µ PAC Neo UHPLC 色谱柱用于色谱分离,Easy-Spray 纳升离子源和 Orbitrap Exploris 240/480 用于质谱数据采集,Spectronaut软件用于数据分析。图1. Velocity LFQ DIA 工作流程示意图(点击查看大图)色谱分离:大队列研究中需要有稳健的色谱设置(分离技术、色谱柱等),确保系统长期稳定运行。 Vanquish Neo UHPLC 系统可实现高重现性,并可进行多种类型的 LC-MS 实验。 新的色谱分离技术同样也可提高系统稳健性,例如基于微阵列的 µ PAC Neo 色谱柱,可提高分析灵敏度和保留时间稳定性 [1] 。质谱分析:除了稳健性和重复性之外,可靠的鉴定和定量在蛋白组学研究中十分重要。 Orbitrap 技术可提供高质量精度以及高分辨率,是复杂 DIA 扫描中可靠鉴定,以及准确、精确检测并分辨离子类型的关键因素。数据分析:DIA谱图中为混合母离子碎裂后所得的混合子离子谱图,通常需要使用谱图库方法进行解析。 但是,随着数据分析软件(例如,使用机器学习方法模拟预测获得高质量的谱图库)的发展,无需谱图库的方法成为了节约时间和成本的一种选择。Key WordsVelocity LFQ DIA 工作流程三个关键词:定量、覆盖度、通量为了深入展示 Velocity LFQ DIA的性能,我们建立一个稳健、高重现性的工作流程,可实现复杂样品中蛋白的准确鉴定和定量。 其中使用了两个不同的混合样品,包括两种蛋白组和三种蛋白组混合样品(图2),质谱数据采集使用OE240质谱仪。图2. Velocity LFQ DIA 工作流程性能展示所使用的的实验设计。 A,两种蛋白组混合样本,包括高含量的人类肽段背景(800 ng Hela 酶解肽段),低到中含量的 Ecoli肽段,比值为1:2:4:8; B,三种蛋白组混合样本,中等含量的人类肽段背景(325 ng Hela 酶解肽段),以及酵母和Ecoli肽段,比值分别为1:0.5和1:4。 这些混合样本分别模拟生物样本中的上调和下调蛋白表达情况。 (点击查看大图)01出色的定量性能分别对上述两种样本进行30min的LC-MS采样,数据采用Spectronaut16,directDIA的方式进行数据分析,肽段和蛋白的FDR均小于1%。Ecoli和hela的混合样本中,ecoli蛋白在4个样本中的3个不同比值均十分接近理论比值,且所有数据点在中位数附近分布很窄,展示了Velocity LFQ DIA工作流程的高定量准确性和精密度(图3A)。 此外,技术重复间肽段的 CV 值均小于 7%(图3B),说明该工作流程具有高定量精密度。图3. 工作流程的定量准确性和精密度展示,使用两个蛋白组混合样本。 A,Ecoli蛋白三个不同比值下的实际比值,以箱型图展示,橙色虚线为理论比值; B,4个不同比例下肽段丰度CV的小提琴图。 (点击查看大图)同时,使用Velocity LFQ DIA工作流程可获得约5个数量级的人类蛋白动态范围(图4A),有助于低丰度蛋白的发现。 在高含量的hela肽段背景下,使用该工作流程可发现很多细菌体内的重要蛋白,包括与转录翻译相关,以及人类干扰素诱导相关的ecoli蛋白。 另外,选取了Ecoli中十个丰度最低的蛋白,发现它们在不同样品间的实际比值依然十分接近理论比值(图4B),说明该工作流程即使在低丰度蛋白情况下仍可获得高定量准确性。图4. A,两个蛋白组混合样本的蛋白丰度分布; B,Ecoli中十个丰度最低蛋白的实际比值与理论比值偏差 (点击查看大图)在三个蛋白组混合样本中,Velocity LFQ DIA工作流程同样展示了出色的定量性能。 实际比值与理论比值之前偏差02深度蛋白组覆盖使用Spectronaut16的directDIA方法分析两个蛋白组样品,在不损失定量性能的同时,可获得深度蛋白组覆盖。 然后使用第三方软件DIA-NN [2] 分析相同的数据集,可获得与sp16类似的结果。 当使用Spectronaut17软件时,改善的directDIA+方法可提高30%的母离子鉴定,及10%的蛋白鉴定(图6),30min梯度内,不使用谱图库可获得接近7000个蛋白鉴定。 这表明Velocity LFQ DIA工作流程不仅可获得出色的定量性能,也可实现深度蛋白组覆盖,此外也说明了不使用谱图库可作为一种有效的DIA数据分析方法。 如果想进一步提高蛋白组覆盖深度,也可通过建立合适谱图库的方法实现。图6. 使用library free方法分析两个蛋白组样品可实现深度蛋白组覆盖。 柱状图比较了三个不同的软件(或版本)所得的蛋白和母离子数目,FDR03高通量流程在上述所展示的Velocity LFQ DIA工作流程中,有效梯度为30min,实际时长为每针39min,可提供每天分析 36个样品的通量。 另外,在一些大队列研究中,研究人员需要更高的分析通量。 在Velocity LFQ DIA工作流程中使用了Vanquish Neo液相,其使用灵活,且经过优化样品吸取、上样、色谱柱清洗和平衡等流程,可有效提高质谱利用率 [3] ,可方便研究人员根据项目需求,进一步提高样品通量。04工作流程稳健性为了验证Velocity LFQ DIA工作流程的稳健性,从一个持续两个月时间(使用同一根色谱柱)的项目中选取其中的一部分数据作为展示。 采用 200 ng Hela肽段,DDA实验作为系统性能的 QC,在两个月内间歇运行,梯度为67min,结果如图7所示。 由结果可知,肽段和蛋白的鉴定数字在整个500小时的项目中(总上样量约为130 µ g)保持一致(鉴定数字变化在5%以内)。 这说明了色谱柱,色谱分离以及质谱的稳健性,这对大队列研究十分重要,是获得良好数据的基础。图7. 两个月的使用时间内,肽段和蛋白鉴定的重现性。 在整个实验周期中,间歇运行DDA QC实验,数据分析使用CHIMERYS算法。 (点击查看大图)小结Velocity LFQ DIA工作流程结合了 Vanquish Neo 系统,µ PAC Neo色谱柱以及 Orbitrap 超高分辨质谱仪,是高通量非标蛋白组DIA鉴定和定量的一种理想工作流程。采用30min梯度的OE240方法展示了该工作流程的主要性能特点: 出色的定量深性能、蛋白组深度覆盖和分析高通量。Velocity LFQ DIA工作流程适用于需要高通量、稳健性、高准确性精密度定量性能和深度蛋白组覆盖的定量蛋白组学研究。
  • Open-pFind助力蛋白质组学分析 显著提高质谱数据解析率
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 中国科学院计算技术研究所研究员贺思敏及其研究团队设计和实现了新一代开放式搜索算法Open-pFind,可提高质谱数据解析的数量与质量,有望成为蛋白质组学日常数据分析的主力工具。相关成果10月9日在线发表于《自然—生物技术》。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/419b4d61-469e-48e0-baf9-3ef492f7ff8b.jpg" title=" 2018-10-12_165404.png" alt=" 2018-10-12_165404.png" / /p p style=" line-height: 1.5em "   质谱数据的低解析率直接影响着肽段和蛋白质鉴定数目和鉴定精度的提高。质谱数据解析率一直较低,是由于质谱数据中通常有大量存在意外修饰或发生意外酶切的肽段,传统的限定式搜索因搜索空间有限,通常无法对上述肽段进行有效检索。 /p p style=" line-height: 1.5em "   新一代开放式搜索引擎Open-pFind采用基于序列标签索引的开放式搜索流程,快速扫描蛋白质数据库并对部分高质量谱图进行鉴定。在此过程中,意外修饰、突变、半特异及非特异性酶切肽段均在引擎的搜索空间内。Open-pFind通过基于支持向量机的肽谱匹配重打分算法,挖掘数据中的特征信息,并据此进行第二次精细搜索。同时,Open-pFind集成了前端数据处理的pParse模块,对肽段母离子进行校准,并有效提取混合谱图,进一步提升了谱图解析率。 /p p style=" line-height: 1.5em "   在四组典型质谱数据集上,Open-pFind解析率均达到了70%~85%,比同类软件鉴定结果多出50.5%~117.0%。对于高质量的串联质谱图,Open-pFind甚至基本实现了完全解析。在搜索空间是常规引擎5个量级的基础上,Open-pFind的速度仍然是常规引擎的2~3倍,是同类开放式引擎的数十倍甚至上百倍。在超大规模人类蛋白质组数据集上,Open-pFind报告了超过12000种蛋白,且准确度远远超过以往常规分析结果。 /p p    /p p br/ /p
  • Thermo与MSAID合作,创新方法重新定义蛋白质组学研究的数据分析
    日前,服务科学领域的全球领导者 Thermo Fisher Scientific 和蛋白质组学人工智能领域的领导者 MSAID 合作,为蛋白质组学研究人员提供先进的质谱软件,从而产生市场——通过使用人工智能 (AI) 和深度学习显着提高肽识别和定量能力,从获取的数据中获得领先的生物学洞察力。带有 CHIMERYS by MSAID 的 Thermo Scientific Proteome Discoverer 3.0 软件利用人工智能(AI)显着提高蛋白质组学数据中独特肽识别的识别率和数量。与通常假设串联质谱中的所有峰均来自单个肽的现有方法相比,CHIMERYS 确定了可以解释获得的串联质谱的最小肽集。与现有工具相比,这种创新方法使典型蛋白质组学数据集的独特肽识别数量增加了 1.8 倍,蛋白质识别数量增加了 1.5 倍。除了提高蛋白质覆盖率和定量能力外,Proteome Discoverer 3.0 软件与 CHIMERYS 搭配使用还有助于加快数据采集速度,从而提高样品通量。Thermo Fisher Scientific 和 MSAID 在宾夕法尼亚州费城宾夕法尼亚会议中心举行的第 69 届美国质谱学会(ASMS)质谱和相关主题会议上展示他们的新软件解决方案。「以前的技术无法完全解释使用质谱法生成的数据,因为质谱可能包含来自多个共同分离肽的片段,而这些片段无法使用当前算法进行识别。」 Thermo Fisher Scientific 的色谱和质谱研发副总裁 August Specht 说,「通过使用 Proteome Discoverer 3.0 软件和 CHIMERYS,科学家们现在可以利用人工智能对蛋白质组数据进行更深入的挖掘。这不仅提高了蛋白质组学的覆盖范围,而且还扩展了蛋白质组学科学家获取和应用数据的方式。」MSAID 首席执行官 Martin Frejno 说:「嵌合光谱是基于质谱的蛋白质组学中的一个长期存在的问题。通过 CHIMERYS,我们使用 AI 从头开始重新构想串联质谱的分析来解决它。」Proteome Discoverer 3.0 软件版本还包括更新的 INFERYS 预测模型,扩展了对串联质量标记(TMT)、碰撞诱导解离(CID)的支持,并为免疫肽组学提供了改进的结果。通过 Proteome Discoverer 3.0 软件和 CHIMERYS 的智能数据分析与 Thermo Scientific Vanquish Neo 超高效液相色谱(UHPLC)系统和 Thermo Scientific Orbitrap 质谱平台中的领先硬件技术配对,研究人员将有能力继续突破界限 蛋白质组学研究。有关 Thermo Scientific Proteome Discoverer 3.0 软件和 MSAID 的 CHIMERYS 的更多信息:www.thermofisher.com/proteomediscoverer关于 Thermo Fisher ScientificThermo Fisher Scientific 官网:www.thermofisher.comThermo Fisher Scientific 是科学服务领域的全球领导者,年收入约为 350 亿美元。「我们的使命是让我们的客户让世界更健康、更清洁、更安全。」 无论他们的客户是在加速生命科学研究、解决复杂的分析挑战、改进患者诊断和治疗还是提高实验室的生产力,Thermo 都会在这里为他们提供支持。他们由 90,000 多名员工组成的全球团队通过行业领先的品牌(包括 Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific、Unity Lab Services 和 Patheon)提供无与伦比的创新技术、购买便利和制药服务组合。关于 MSAIDMSAID 官网:https://msaid.de/MSAID GmbH [ m s e d] 改变了科学家分析蛋白质组学数据的方式。MSAID 是德国慕尼黑工业大学蛋白质组学和生物分析系主任的私人控股信息学分拆公司。该公司由一个跨学科的科学家团队创立,其愿景是为蛋白质组学领域提供更好的计算解决方案。该团队成员在蛋白质组学数据的获取、分析和解释方面拥有极其出色的业绩记录和长期的专业知识。作为蛋白质组学人工智能的领导者,他们用强大的、基于人工智能的解决方案取代当前的算法,并为更深入、更可靠的蛋白质组学数据查询方式铺平道路。相关报道:https://www.biospace.com/article/releases/innovative-approach-redefines-data-analysis-in-proteomics-research/?keywords=AI
  • 880万!阜外华中心血管病医院国家区域医疗中心高分辨蛋白组质谱成像仪采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-272、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目3、采购方式:公开招标4、预算金额:8,800,000.00元最高限价:8800000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230060-1阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目880000088000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购货物名称及数量:高分辨蛋白组质谱成像仪 1台5.2 标包划分:一个标包5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4 核心产品:/5.5 采购范围:高分辨蛋白组质谱成像仪的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:20日历天5.8 交货地点:采购人指定地点6、合同履行期限:/7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年02月13日 至 2023年02月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)3.方式:投标人凭企业CA 数字证书登录河南省公共资源交易中心网站市场主体登录系统,并按网上提示自行下载投标项目所含格式(.hnzf)的招标文件。4.售价:0元三、投标截止时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:通过“河南省公共资源交易中心(http://www.hnggzy.net/)”电子交易平台加密上传。逾期送达的投标文件,电子招标投标交易平台将予以拒收。四、开标时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:河南省公共资源交易中心远程开标室(一)-2,郑州市经二路12号(经二路与纬四路向南50米路西)。五、发布公告的媒介及招标公告期限本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日。六、其他补充事宜无七、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:阜外华中心血管病医院地址:河南省郑州市郑东新区阜外大道1号联系人:何芸联系方式:0371-586800922.采购代理机构信息(如有)名称:河南省信人工程造价咨询有限公司地址:河南省郑州市金水区文化路9号永和国际1702室联系人:张振辉联系方式:0371-638991563.项目联系方式项目联系人:张振辉联系方式:0371-63899156
  • 沃特世在2014年国际质谱大会(IMSC)上推出用于小分子数据分析的Progenesis QI 2.0版
    新一代软件加强了控制能力,独具Pathway Mapping、Process Automation功能及改进的化合物数据库通道日内瓦—(美国商业资讯)—沃特世公司(纽约证券交易所代码:WAT)近日在瑞士日内瓦举行的第20届国际质谱大会上,推出了2.0版Progenesis? QI。该软件是一款用于液相色谱-质谱(LC-MS)小分子组学数据分析的新一代软件。 继六月份推出适用于蛋白质组大分子组学数据分析的2.0版Progenesis QI,沃特世今天发布的软件进一步完善数据平台。Progenesis QI和Progenesis QI蛋白组学软件将液相色谱-质谱(LC-MS)的数据分析速度和精度都提升至新水平,使用户能快速定量和鉴定样品中发生显著变化的小分子、脂质化合物和蛋白质。 Progenesis QI 2.0版的新功能包括:Pathway Mapping能促进将现有发现纳入生物学情境中的过程,从组学数据中获得尽可能多的信息;Workflow Automation能在没有人为干预的情况下,使软件在多个处理阶段自行运转,不仅节省了宝贵的时间,还能在夜间和周末持续运转;改进的化合物数据库通道,提高了成功鉴别化合物的机会;与EZInfo 3.0的扩展统计功能完美结合,具有双向的数据流,只需通过单一的菜单导向命令,就可实现灵活的数据挖掘。 沃特世全球营销和信息部门副总裁Rohit Khanna博士表示:“未进行深入了解的新发现是无用的。最新版本的Progenesis QI拥有改进的界面,使得软件的使用比以前更直观快速,让用户对他们的研究更有信心,并能更深入地理解获得的结果。” Progenesis QI 2.0版拥有基于研究人员的工作方式的灵活、直观易学的工作流程。它有着高度可视化的用户界面。扩展后的功能拓宽了在制药、健康科学、食品、环境和化学研究等诸多研究领域的应用。 如需了解更多有关Progenesis QI 2.0版软件的信息,请访问http://www.nonlinear.com/progenesis/qi/。更多Progenesis QI生物信息学软件的信息,请访问:http://www.waters.com/waters/zh_CN/Progenesis-QI-Software/nav.htm?cid=134790655&locale=zh_CN关于Progenesis QI软件2014年4月,在德国慕尼黑的Analytica Conference(分析研讨会)上,沃特世继收购组学数据分析软件领域的全球领导者Nonlinear Dynamics Ltd.之后,推出了Progenesis QI和Progenesis QI蛋白质组学软件。2014年6月,沃特世发布了用于蛋白质组学的2.0版Progenesis QI,扩充了信息学套装。Progenesis QI软件使研究人员能采用独特的方法分析并可视化LC-MS数据,准确定量和鉴定化合物和蛋白质。Progenesis QI软件支持所有常用的LC-MS数据格式,具有直观的导向性工作流程,能使用户能在宝贵的样品中快速、客观、可靠地找到目标化合物。Progenesis QI 2.0版拥有pathway mapping、process automation和改进的化合物数据通道等新功能,能提供增强的控制能力和功能。
  • 1800万!中国医科大学附属第一医院单细胞蛋白组学质谱采购项目
    项目编号:JH22-210000-64371项目名称:中国医科大学附属第一医院单细胞蛋白组学质谱(国家医学检验临床医学研究中心)采购包组编号:001预算金额(元):18,000,000.00最高限价(元):18,000,000采购需求:查看合同履行期限:合同签订后1个月内到货。需落实的政府采购政策内容:对于中小微企业(含监狱企业)、促进残疾人就业的相关规定、对于节能产品、环境标志产品的相关规定等本项目(是/否)接受联合体投标:否中国医科大学附属第一医院单细胞蛋白组学质谱(国家医学检验临床医学研究中心)采购.doc
  • 赛默飞与西湖欧米携手推进临床蛋白组学快速发展
    近日,赛默飞与西湖欧米(杭州)生物科技有限公司(以下简称:西湖欧米)深化合作签约仪式在赛默飞客户体验中心举办。西湖欧米(杭州)生物科技有限公司于2020年7月创立,是一家专注于 AI 赋能的微观世界数据公司。西湖欧米致力于将蛋白质组大数据与人工智能相结合,基于生物质谱数字化技术,开发其他组学和蛋白质组学辅助临床诊断的新方法,助力精准医学和药物研发。 近年,随着蛋白组学的研究不断深入,越来越多的潜力标志物被不断发现,但是将潜在的标志物向临床转化时会碰到各种问题,比如稳定性,敏感度、特异性等,还需要通过大量的临床验证,建立合适的模型,临床案例积累,临床教育等工作,并且需要在严格的医学检测体系管理下的临床检测实验室进行高通量可靠的分析,从而真正给临床提供价值。此次合作,基于2021年西湖欧米和赛默飞“临床蛋白质组在转化医学中的应用领域”设立联合实验室并开展系列合作后,获得了一系列进展。此次合作将着重于合作转化,共同将临床真正受益的方案和产品推广到常规医学检测和治疗中。郭天南西湖欧米创始人“AI赋能的蛋白质组学可助力精准医学,为生命健康带来新的曙光。“工欲善其事,必先利其器”,在临床蛋白组学的发展道路上,精密的仪器设备、优秀的合作伙伴,以及创新、科学的思想,都是至关重要的。欧米和赛默飞的深入合作是强强联手,未来可期。”沈 严赛默飞色谱和质谱业务中国区商务副总裁“很高兴能和西湖欧米进一步深入合作,基于之前非常振奋人心的合作成果,此次合作将着眼于将成果进行转化,将科研,AI大数据与临床衔接,希望通过双方多个维度的合作能真正推出符合市场符合临床的产品,并给当代医疗提供实际的助力。”赛默飞代表在现场还表示,在国际上,我们已经看到不少研究机构和企业在临床蛋白组学转化的路上做出了一些创新和成绩,因此非常高兴能和国内的行业领导者西湖欧米进行深入合作,相信在不久的将来,通过合作能看到更多的蛋白组学应用于临床的成功案例,这将开启临床蛋白组学的一个新的篇章。 深化合作签约仪式后,双方进行了深度的讨论和交流。
  • 4D-组学新时代!开启转化蛋白组学4D时代
    质谱稳定性和分析通量影响蛋白质组学向临床转化蛋白质组学技术是寻找疾病分子标志物和药物靶标最有效的方法之一,但受到质谱稳定性、定量重复性和分析通量的影响,蛋白质组学向临床转化一直面临挑战。在传统生物标志物的研究中,常采用三角形的研究策略(图2A),因为受到质谱稳定性和分析通量的影响,不管是在生物标志物早期发现过程还在中,还是在最终的确认过程,都无法进行大规模蛋白组学研究。随着样本制备、色谱分离和质谱技术的进步,临床蛋白组学渐渐开始走向大队列研究,矩形研究策略(图2B)则是趋势,尤其4D-蛋白质组学的出现,更是让蛋白质组学显现出了向临床转化的广阔前景。高通量分析加快蛋白质组学向临床转化为了应对大队列蛋白质组学挑战,开发扫描速度更快,灵敏更高的质谱仪是提升蛋白覆盖深度最有效的办法,提高质谱仪的稳定性是获得定量重复性的保障,保证蛋白覆盖度深度的前提下缩短色谱梯度是提高临床大队列样本分析通量的捷径。Max Plank生化研究所主任Matthias Mann博士联合布鲁克,共同研发的4D-蛋白质组学平台timsTOF Pro,让蛋白组学技术产生了革命性的变化,超过120 Hz的MS/MS扫描速度,出色的稳定性和灵敏度使其正成为临床高通量蛋白组学研究的理想平台。高通量dia-PASEF方案进一步增强4D-蛋白质组学为了进一步加快4D-蛋白质组学向临床转化,布鲁克在ASMS 2020发布了高通量dia-PASEF方案(图4),即将Evosep One LC与timsTOF Pro再次联合,最大程度发挥Evosep One LC快速分离和timsTOF Pro扫描速度和稳定性的优势。该方案目前有4种方法(图4B),分别采用4.8min、7.2min、14.4min和24min色谱方法,对应的每天可以分析300、200、100和60蛋白质组学样本,把蛋白组学分析通量提升到一个全新的高度。分析结果(图4C,4D)显示出此方案在保证分析通量的同时,蛋白覆盖深度也有很好的保证,4.8min的分析单针可以鉴定2158蛋白,24min可以得到与传统蛋白组学长梯度分析相当的结果。小结timsTOF Pro带来的采集速度与灵敏度的同时提升,使得其在短梯度下也能实现蛋白深度覆盖,结合其在大队列样本分析中展现出的卓越稳定性,相信基于4D质谱平台开发的高通量和高灵敏度临床蛋白组学方法,必将在生物医学基础研究和临床诊断中有着广阔的应用前景。伴随随着4D-蛋白质组学方案的不断完善,转化蛋白组学将进入全新时代,临床队列研究也必将从中获益。 参考文献:Stephanie Kaspar-Schoenefeld, et al., High throughput 4D-Proteomics – Application of dia-PASEF® and the Evosep One for short gradients. App Note LCMS-170Thomas Kosinski, et al., Maximized throughput and analytical depth for shotgun proteomics using PASEF on a TIMS equipped QTOF. ASMS 2018, TP 685Thomas Kosinski,et al., Short nanoLC gradients optimize throughput on a TIMS equipped QTOF with PASEF, ASMS 2019, TP 514.Philipp E Geyer, et al., Revisiting biomarker discovery by plasma proteomics, Mol Syst Biol. (2017) 13: 942
  • 1086万!长春中医药大学中医药蛋白组学分析检测平台建设采购项目
    一、项目基本情况项目编号:采购计划-[2024]-01439号项目名称:长春中医药大学中医药蛋白组学分析检测平台建设预算金额:1086.000000 万元(人民币)最高限价(如有):1086.000000 万元(人民币)采购需求:本项目主要采购四极杆超高静电场轨道阱超高分辨质谱仪及蛋白纯化系统等仪器设备,用于新药研发,代谢物鉴定、研究与疾病有关的标记物和蛋白组学、脂质组学、小分子和生物大分子的相互作用、快速纯化多种生物分子等,进行中医药生物组学分析检测平台建设。合同履行期限:自签订合同之日起,国产设备30天完成供货安装;进口设备90天内完成供货安装,任何迟交货将不予接受。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年05月10日 至 2024年05月16日,每天上午9:00至12:00,下午12:00至15:00。(北京时间,法定节假日除外)地点:长春市绿园区皓月大路1888号(吾悦国际中心15栋1908室)方式:有兴趣的合格投标人,请携带营业执照副本、单位负责人授权书(含单位负责人及被授权人身份证明)的原件及加盖红章的复印件,于2024年5月10日起至2024年5月16日(法定节假日除外)北京时间每日9:00至15:00,在吉林省公诚采购建设招投标有限公司领购招标文件。售价:¥1000.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:长春中医药大学     地址:吉林省长春市净月国家高新技术产业开发区博硕路1035号        联系方式:曲婧 0431-86172126      2.采购代理机构信息名 称:吉林省公诚采购建设招投标有限公司            地 址:长春市绿园区皓月大路1888号(吾悦国际中心15栋1908室)            联系方式:李佳 18946768247            3.项目联系方式项目联系人:李佳电 话:  18004312825
  • 赛默飞世尔和Sage-N Research联合提供完整蛋白质组学数据分析解决方案
    2008年8月20日,服务科技,世界领先的赛默飞世尔科技和高通量蛋白质组数据分析解决方案领先者 Sage-N Research Inc.经过五年合作,推出了在蛋白质组学分析领域内的最新产品---为企业Linux市场特殊设计的第一个蛋白质组学软件平台。   SORCERER™ 企业版软件产品来自Sage-N Research Inc.是一种可升级的软件套件,可在高性能的Linux系统上实现完全自动化、高容量的蛋白质组分析,该Linux系统包括刀片服务器和传统的Linux集群。SORCERER™ 是专门为生物医药企业和集中化的实验室里的数据中心设计的,这些实验室必须快速处理各个研究领域(如癌症,干细胞和神经退行性疾病)日益增长的来自质谱的蛋白质组学数据。   SORCERER企业版平台可作为主要的独立的数据分析系统,通过Web界面可支持数以百计的蛋白质组学研究人员使用。它也可以与Thermo Fisher Scientific最近发布的基于Windows的Proteome Discoverer软件进行无缝链接。高通量蛋白质组学研究实验室可将这两个互补性的产品作为一个整合系统,既可对SORCERER平台个性化定制后端的分析工具和底部的接口,也可以对Proteome Discoverer平台个性化定制前端的交互环境。SORCERER企业版是我们最新推出的下一代Proteomics 2.0分析软软件,侧重于蛋白质修饰(如最新的裂解方式电子转移解离裂解)和定量。”Sage-N Research Inc.蛋白质解决方案副总监James Candlin 说,“我们很高兴能与Thermo Fisher Scientific继续进行技术合作,向世界上高效能的蛋白质组学实验室提供具有创新性、世界一流的分析解决方案。   “我们一直致力于为高通量的顾客提供高质量的解决方案和最先进一流的产品,这些产品来自企业内部或与技术领先的伙伴合作开发。”Thermo Fisher Scientific 的蛋白质组学营销总监Andreas Hühmer说,“我们很高兴能够与Sage-N Research Inc.一直进行成功的合作,向市场提供业界领先的产品。”   SORCERER企业版软件为Thermo Scientific的SEQUEST® Clusters的用户提供了一个方向标,这些用户需要增加一些高级的数据分析功能,如蛋白质定量或数据库搜索的翻译后修饰分析。该软件目前正在促销中。  有关SORCERER企业版的软件可以直接咨询Sage-N Research Inc.,也可以向2008年人类蛋白质组大会的34展台的Thermo Fisher Scientific咨询。请致电:900-810-5118或400-650-5118,电邮sales.china@thermofisher.com 或者访问www.thermo.com, http://www.SageNResearch.com/. SEQUEST是华盛顿大学的注册商标 Sorcerer是Sage-N研究所的商标 Windows是微软公司的注册商标   Thermo Scientific是Thermo Fisher Scientific,的一部分,是全球科学服务领域的领导者. -------------------------------------------------------------------------------- 关于赛默飞世尔科技(Thermo Fisher Scientific)   Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲了解更多信息,请登陆:www.thermofisher.com,或www.thermo.com.cn(中文)。
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和前沿的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF® ,dia-PASEFF® ,prm-PASEF® )及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • “技”往开来 -- 浅谈4D-蛋白组学技术发展史(一)
    截至目前,人类蛋白质组计划收录的质谱数据可覆盖人类约90%的蛋白,同比可映射至其他物种的蛋白。尽管如此,复杂体系单针蛋白组学鉴定深度依旧受限于液相分离能力、质谱扫描速度和灵敏度等因素。近些年,基于离子大小和结构在气相中进行分离的技术成为质谱领域的关注焦点。该技术不仅在高效性和便捷性上点燃了大众对离子淌度的兴趣,更因其能结合传统液相 (LC) 和质谱 (MS) 的技术优势而备受瞩目。为了能将基于新型捕集离子淌度的4D-蛋白质组学技术讲清楚,我们将通过一系列的文章,携各位共同回顾捕集离子淌度结合飞行时间质谱的发展历程和最新的进展。01TIMS和PASEF技术的发展离子淌度谱 (Ion mobility spectrometry, IMS) 是通过额外加入一维离子淌度从而将离子根据大小和形状在气相中分离。传统漂移IMS中离子受弱电场中惰性缓冲气体阻尼效应,与惰性气体分子的碰撞会延缓运动。离子穿过漂移管的迁移时间由离子与缓冲气体的碰撞频率决定。因此离子迁移时间与结构、大小、质荷比及缓冲气体性质相关,根据迁移时间即可换算出离子碰撞截面积值 (Collision cross sections,CCS),CCS值小的离子相较于CCS值大的离子能够更早的到达检测器。自1960年代起,IMS和MS检测器实现耦合,随后各种IMS方法被研发出来并不断更新。这其中包括漂移时间淌度谱(DIMS)、行波离子淌度谱(TWIMS)和捕集离子淌度谱(TIMS)等。尽管IMS在毫秒级的分析时间尺度增加了其在蛋白组学研究中的应用潜力,但仪器和数据的复杂度高及灵敏度低限制了IMS的广泛应用。目前,布鲁克专注于TIMS (trapped ion mobility spectrometry, TIMS) 和PASEF (parallel accumulation-serial fragmentation, PASEF) 联合技术。尽管从离子淌度发展的悠久历史来看,TIMS和PASEF兴起于十年前,属于相对新颖的技术,但新一代技术能够大幅增加离子传输效率和扫描速度,具有应用于蛋白质组学研究的无限潜力。2011年TIMS的推出 (Fernandez-Lima,et al. 2011) 颠覆了传统IMS技术,用气体吹动离子逆电场迁移并根据离子淌度将其分批释放。这种设计使离子淌度分辨率可不受设备物理尺寸限制大幅提升从而实现空间紧凑设计,也可在比常规低一个数量级的电压下运行。目前商业配置的设备拥有双TIMS配置,第一个TIMS具有10cm的离子通道主要用于离子捕集,而与其串联的第二个TIMS负责离子的分批释放。由于双TIMS能够将离子捕集和释放周期形成闭环,从而提升离子利用率至100%。在100ms极短时间内TIMS可对特定淌度区间的离子富集并将其压缩至1~2ms半峰宽的淌度峰,这就为TIMS结合TOF质量分析器实现快速检测提供了可能性。impact II平台配备了一个TIMS,成为新一代timsTOF仪器的前身。02TIMS和PASEF技术原理TIMS将离子捕获在一个电动通道中,通道从入口到出口充斥着2~3 mbar的气流 (图二A)。气流对各离子产生的吹力会因其空间横截面积产生差异,横截面积越大则受到的吹力越大。这种气流吹力促使离子往前运动,而沿通道增强的直流电场阻力方向则恰好相反,当受到的气体吹力和反向电场力相等时,离子将会稳定淌度管在这一特定位置,即离子被捕集住。由于相同离子淌度离子会稳定在相同位置上,这就使得在离子源区域和传输过程中呈现发散状态的离子实现时间和空间上的聚焦,有利于提高仪器灵敏度和扫描速度。分析过程中,通过逐渐降低电场强度将离子在淌度维度上逐级洗脱,离子受到气体推力不变,而随着电场力下降,离子就由大到小分批释放。电场强度的调节是通过保持出口电压不变,以恒定的用户定义的频率增加通道入口电压来实现。在相同累积时间的情况下,单TIMS会损失超过一半的离子,因为离子在释放的时候需要阻止离子源过来的离子进入淌度管,以免打乱其中离子分布稳态,而离子源端离子是持续存在的。因此,Silveira等人提出增加为双TIMS设计解决了该问题,该设计将整个通道分区为离子捕获区、离子传输区和TIMS分析区三个区域 (图二B)。这种双TIMS的配置将离子累积和释放划分在不同区域完成,也使得累积和释放能够实现时间上的并行。离子在捕获区被捕获累积,随后通过一步简单的传递将其转移至分析区进行离子淌度分析。同一时间,捕获区会再次被下一批离子填满,从而实现离子零浪费 (Silveira et al. 2017)。近些年,串联TIMS成为了发展趋势。PASEF的设计理念是利用离子累积和释放同步进行来提高MS/MS实验的效率。多肽离子通过捕集型离子淌度分析器进行分离,洗脱(~100ms)并在QTOF中检测,生成TIMS MS热图。在PASEF方法中,离子在淌度分析器中的分离和四级杆隔离同步进行,四级杆能快速切换到下一个母离子。timsTOF Pro采用了一种先进的分段四极质量过滤器,以提高离子传输和隔离效率。由于其超快的质量轴切换时间(034D-蛋白质组学的诞生2018年12月01日,德国Max Plank Institute生化研究所的 Matthias Mann团队在新一期的《Molecular Cellular Proteomics》上在线发表了研究论文《Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer》,文章中对timsTOF Pro平台在蛋白质组学分析中的表现进行了详细评估,也让4D-蛋白质组学正式进入大众视野,超快的灵敏度、超高的采集速度和超好的稳定性,让人们印象深刻。离子淌度首次被引入到大规模蛋白质组学分析,这使得蛋白质组学进入了4D新时代。4D-蛋白质组学是在3D分离即保留时间(retention time)、质荷比(m/z)、离子强度(intensity)这三个维度的基础之上增加了第四个维度,离子淌度(mobility)的分离(图5),进而大幅度的提高峰容量、扫描速度和检测灵敏度,带来蛋白质组学在鉴定深度、检测周期、定量准确性等性能的全面提升。相信到这里,大家对4D-蛋白质组学技术研发背景有了一个全面的了解。小编在这里也提前做一个预告,在的面的几期,我们将进一步对全4D的采集模式(dda-PASEF® ,dia-PASEFF® ,prm-PASEF® )及其应用优势、4D-数据处理等方面进行详细的讲解。参考文献 Florian Meier, et al., Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Molecular & Cellular Proteomics, 2018Florian Meier, et al.,Trapped Ion Mobility Spectrometry and Parallel Accumulation-Serial Fragmentation in Proteomics. Molecular & Cellular Proteomics, 2021Fernandez-Lima, et al., Gas-phase separation using a trapped ion mobility spectrometer. Int.J. Ion Mobil. Spectrom. 2011
  • 非变性质谱技术融合结构生物学和组成蛋白组学
    大家好,本周为大家分享一篇发表在Accounts of Chemical Research上的综述,Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics [1],文章的通讯作者是美国西北大学的Neil L. Kelleher教授。生命活动由一系列生物大分子相互作用驱动,这些相互作用距今已进化了数十亿年。正如乙酰化和磷酸化等共价修饰可以改变蛋白质的功能一样,与金属、小分子和其他蛋白质的非共价相互作用也可以改变蛋白质的功能。然而,传统的蛋白质组学方法会分离非共价相互作用并使蛋白质变性,导致许多蛋白质水平的生物学信息尚未被发现或仅靠推断获取。就在过去的几年中,质谱(MS)技术不断发展,目前已具备维持内源性蛋白复合物完整组成并表征其特征的能力。采用非变性质谱(Native Top-Down MS, nTDMS)激活蛋白复合体,可以释放部分或全部亚基,通过与中性气体或固体表面碰撞,在进一步表征之前分离。亚单位质量、母离子质量和活化亚单位的碎片离子可以拼凑出复合物的精确分子组成,包括蛋白质修饰在内的相互作用也能被阐明,并与人类疾病状态下的功能障碍联系起来。在本综述中,作者详述了nTDMS技术目前的发展和未来在表征更大的生物复合体方面所面临的挑战。目前,nTDMS可以靶向内源性核小体复合物,而病毒颗粒、外泌体和高密度脂蛋白颗粒表征或将在未来几年内得到深度解析。为充分解决这类大小为兆到千兆道尔顿级别的复合物的表征,未来的工作将主要集中于非变性分离、单离子质谱(Single ion mass spectrometry)和新的数据类型。为了实现这一目标,Kelleher教授课题组近年来发展了一系列策略,概括为以下几个方面(1)靶向非变性质谱表征整个核小体(图1);(2)非靶向蛋白质组学深度解析内源性蛋白质复合物;(3)单分子质谱(Single molecule MS)。其中提到,阻止对非变性蛋白质进行整体表征最大的障碍之一可能是分子量分布于100 kDa到1 MDa的复合物的分辨率较差。而电荷检测MS通过直接测量离子电荷提供大型复合物的分子分布。此外有研究表明,通过对单分辨离子进行centroiding和rebinning,Orbitrap仪器的有效分辨率可以在电荷检测工作流程之上大大提高。在这种被称为“单离子质谱法(Individual Ion Mass Spectrometry, I2MS)”的技术中,可以同时检测数千个单离子,并允许在复杂混合物中分配约500种proteoforms的质量(前提是它们先前已被表征并且在数据库中可查找)。I2MS可用于分析病毒样颗粒和AAVs(图2)。图1. 核小体表征图2. 病毒颗粒检测未来随着技术的发展和创新,nTDMS都将扩展到研究极其稀缺和高度异质的生物复合物,了解蛋白质间的相互作用以及它们是如何出错的(例如错误折叠,在功能失调的化学计量和组成中形成复合物)。这些将不仅为疾病治疗的发展提供信息,还将深化我们在分子水平上对生命的理解。撰稿:张颖编辑:李惠琳原文:Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 溢价74%全资收购蛋白组学龙头Olink,赛默飞为什么如此青睐组学领域?
    2023年10月17日,赛默飞宣布以每股26美元的对价,以全现金的形式收购蛋白组学领域领导者Olink。对应Olink市值为31亿美元,对应2023年10月16日的收盘价溢价74%。此次收购完成后,Olink将成为赛默飞世尔生命科学解决方案部门的一部分。全球科学服务领域的领导者收购下一代蛋白质组学解决方案的领先服务商,一时间,市场一片哗然,灵魂三问涌上心头:1.赛默飞为什么选择重金押注组学领域?2.赛默飞为什么会选择Olink?3.赛默飞为什么会选择溢价74%收购?一、赛默飞为什么会选择重金押注蛋白质组学领域?原因只有一个:高增长!高增长!高增长!相比于日渐萎靡的生物制药市场,以蛋白质组学、代谢组学为代表的组学领域处于超高速增长的阶段。信立方研究表明,国内代谢组学年均增速达到50%以上,蛋白组学年均增速达到30%以上,而糖组学、脂质组学也处于快速成长的状态。根据景杰生物的招股书,中国蛋白质组学科研服务市场规模从 2016 年的1.2亿人民币规模扩大到2020年的5.8亿人民币规模,期间复合年增长率为49.1%。预计在未来,蛋白质组学科研服务市场持续扩大,以31.3%的复合年增长率在2025年达到22.6亿人民币规模。纷纷扰扰皆浮云,唯有增长暖人心。高增长才是赛默飞选择重金押注蛋白质组学领域的唯一原因。图1.1 中国蛋白质组学科研服务市场规模及预测(2016-2025E)数据来源:景杰招股书,仪器信息网产业研究部整理蛋白质组学领域的高速增长也得到了国家重大仪器平台数据的验证。仪器信息网产业研究部以“组学”、“液质联用仪”为关键词,遍历了2005年-2019年的国家重大仪器平台的数据,识别出232家应用液质联用仪从事组学研究的终端用户,其中包含大专院校121所,科研院所44所,其他企业单位67所。研究表明,2005年-2019年这14年间各大科研平台用于组学领域的液质数量呈逐步上升趋势,尤其是2018年开始迅速增加。图1.2 重大平台多组学液质联用仪启用时间分布情况数据来源:国家重大科学仪器平台,仪器信息网整理,2023年8月注:1、数据统计从2005年至2022年二、赛默飞为什么会选择Olink?原因也非常明确:蛋白质组学领先服务商(技术领先+市场地位领先)作为一家脱胎于瑞典乌普萨拉大学的新生代明星公司,从2021年首次于纳斯达克IPO以来,Olink业绩和股票都表现的相当亮眼,并成长为蛋白质组学的领先服务商。Olink掌握了平台邻位延伸分析技术(Proximity Extension Assay,PEA),依靠双抗体系统来测量蛋白质,可以在不牺牲特异性的情况下进行多重蛋白质测量。Olink市场领先的特异性和高动态范围及灵敏度使其在蛋白质组学研究市场中表现良好,并且适用于诊断开发及药物研发。图2.1 平台邻位延伸分析技术(Proximity Extension Assay,PEA)在蛋白组学领域,赛默飞已经布局了基于质谱的技术路线。从2005年推出第一台Orbitrap高分辨质谱以来,赛默飞持续提升质谱产品的分辨率、灵敏度、特异性和速度,成为蛋白质组学的标配产品。尤其是,2023年6月,赛默飞推出Orbitrap Astral质谱仪,既提供了无与伦比的灵敏度、动态范围和速度组合,又兼顾了精确定量,得到组学领域专业人士的青睐。图2.2 赛默飞质谱发展路径此次收购Olink,可以理解为是赛默飞对蛋白质组学领域发起了饱和式攻击,用高分辨质谱和PEA两条不同的实施路径覆盖这一高速增长的市场,提前锁定未来的市场机遇。三、赛默飞为什么会选择溢价74%收购?答案就是:高业绩增长+大市场前景。在过去的五年中,Olink实现了营收的稳健增长,从2019年的4600万美元发展到2022年的1.4亿美元,预期今年将达到2亿美元。图3.1 Olink近五年营收情况(2019-2023E)更重要的是,迅猛增长的客户群。当前,Olink 的生物制药和学术机构数量已超过 850 家,在生物制药领域,Olink 的客户群已从所有排名前 20 的机构扩大到排名前 40 的许多机构。截至 2023 年 8 月,引用 PEA 技术所发表的文章数量超过 1,363 篇。明确的科学实用性不断推动客户的快速采用和增长。图3.2 (左)引用 PEA 技术所发表的文章数量情况;(右)Olink 客户数量情况同时,Olink拥有从最广泛的发现(高复杂)到更有针对性的研究(中复杂)到后期临床试验和诊断(低复杂)的完整产品,这是一个从发现到临床应用的价值 350 亿美元的潜在市场机会。这才是赛默飞以74%高溢价收购Olink的关键。如需要了解更多关于组学、质谱的内容,欢迎订阅《液质在组学领域应用的市场研究报告(2023版)》。本报告由仪器信息网产业研究部打造,组学研究发展历程、组学研究产业链以及质谱(液质联用仪)在科研服务机构、基础科研用户的应用现状等维度进行市场研究。 【服务热线】: 15120049203 林先生【电子信箱】: survey@instrument.com.cn【特别福利】:扫码添加下方微信,可免费领取景杰生物、诺禾致源等公司年报及招股书资料《液质在组学领域应用的市场研究报告(2023版)》【报告目录】:第一章 概述1.1 组学概念1.2 单一组学分类1.2.1 基因组学1.2.2 转录组学1.2.3 蛋白组学1.2.4 代谢组学1.3 多组学技术1.4 组学技术的应用1.4.1 组学技术在医学领域的应用1.4.2 组学技术在生命科学领域的应用1.4.3 组学技术在食品领域的应用1.5 组学发展历程第二章 组学产业链研究2.1 组学产业链概览2.2 下游终端用户特征2.3 中游组学科研服务企业特征2.3.1 景杰生物2.3.2 华大基因2.4 上游仪器及试剂耗材厂商特征第三章 液质联用仪在组学领域的市场综合分析3.1 液质联用仪在组学领域的市场概况3.2 液质联用仪在组学领域主流品牌关键业务情况3.2.1 布鲁克3.2.2 赛默飞3.2.3 SCIEX第四章 液质联用仪在组学科研服务企业的情况分析4.1 主流组学科研服务企业业务布局一览4.2 主流组学科研服务企业拥有的液质联用仪一览4.3 质谱在组学服务机构的品牌分布情况第五章 组学领域液质在重大仪器平台的情况分析5.1 重大平台组学领域液质启用时间分布情况5.2 重大平台组学质谱省份分布情况5.3 重大平台组学液质联用仪品牌分布情况5.4 重大平台组学液质联用仪采购单位类型分布情况第六章 总结概述
  • Scientific Reports:使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体
    肾细胞癌(RCC)是常见的一种肾脏癌症。RCC现在仍然缺少有效的医学诊断指标,已经成为RCC治疗方法开发的大挑战。外泌体是一种潜在的癌症诊断指标,细胞分泌的外泌体的组成会因细胞的生理状态不同而发生变化。肿瘤内乏氧是癌症发生、发展及扩散的一个关键因素。研究表明,处于乏氧状态的细胞分泌的外泌体会影响癌细胞的增殖、扩散以及肿瘤血管生成,且与外泌体的内容物有关。外泌体内容物的表型可以通过蛋白组学和转录组学方法检测,但这些方法过于繁琐,难以用于医学诊断。单个外泌体表型分析是将免疫学与光学结合的一种新技术。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。该技术在短短两年时间,备受广大科研工作者的关注。本文将为大家分享使用单外泌体表征分析技术与蛋白组学检测乏氧状态的肾细胞癌外泌体,以供参考。研究人员先分离了鼠RCC细胞的细胞培养上清液,使用基于单个外泌体表型分析技术的全自动外泌体荧光检测分析系统Exoview检测了在乏氧和正常状态下分泌的外泌体中CD81和CD9亚群的含量。图1结果表明,乏氧状态下分泌的含CD81与含CD9外泌体均为正常状态下的3.1-3.6倍。图1 ExoView检测乏氧与正常RCC细胞外泌体表型接下来使用Western Blot检测上清液以及不同纯化方法获得的外泌体的蛋白含量。由图2结果可知,WB无法检测到上清液(左列)中的蛋白,而Exo-spin排阻色谱法(中列)和梯度超速离心法(右列)获得的外泌体中,乏氧RCC的CD81和CD9低于正常组,与Exoview的结果相一致。 图2 Western Blot检测不同纯化方法获得的外泌体的蛋白含量确定了不同状态条件下细胞分泌的外泌体表面标志物有差别后,研究人员使用了SERS,TG-RS(图3)和TG-SERS(图4)检测不同纯化方法获得的外泌体的谱线。由谱线可知,TG-RS和TG-SERS法检测Exo-spin法纯化的外泌体,可以分辨出乏氧和正常外泌体的不同谱峰。后,研究人员使用质谱检测了Exo-spin法纯化的外泌体。蛋白组学分析结果表明,乏氧外泌体的CD9的表达量高于正常,这与Exoview和WB结果一致。图3 TG-RS与一般SERS检测不同纯化方法获得的外泌体的谱线图4 TG-SERS检测Exo-spin法纯化获得的外泌体的谱线本研究的TG-RS结果中,不同纯化方法的结果也有不同,这既说明了TG-RS方法检测的高灵敏度,也说明纯化确实影响了外泌体样品的组成。Exoview使用细胞上清液或其他体液的原液直接进行检测,通过芯片上的抗体特异性结合外泌体,可以排除杂质的影响,无需对样品进行纯化,而WB等方法由于浓度限制无法直接检测。也说明,Exoview可以作为一种标准的外泌体表型检测方法,作为其他检测和诊断方法开发的有效参照。作为外泌体表征分析的倡导者,美国NanoView Biosciences于2018年推出了全自动外泌体荧光检测分析系统ExoView,该系统一经推出,便引起了外泌体领域科研工作者的广泛关注,凭借其稳定、出色的性能,短短几年在全球已有近百个客户,发表文献100多篇。ExoView的表征,能够帮助科学家更深入地了解外泌体与疾病之间的关系,助力疾病诊断和新药开发。参考文献: [1] Samoylenko, A., Kögler, M., Zhyvolozhnyi, A., Makieieva, O., Bart, G., Andoh, S. S., ... & Hiltunen, J. (2021). Time-gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Scientific reports, 11(1), 1-14.全自动外泌体荧光检测分析系统(ExoView R100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。为了更好的服务中国客户,Quantum Design中国子公司在北京建立了专业的客户服务中心,正式推出专业的全方位外泌体表征测试服务,您只需要少量样品即可获得全方位的外泌体表征数据。欢迎各位老师垂询:010-85120280。前10名订购服务的老师,可享受8折优惠!扫描上方二维码,即刻订购吧!
  • 乌得勒支大学和布鲁克合作开发4D结构蛋白组学方法
    近日,布鲁克宣布与 Utrecht University(乌得勒支大学,荷兰)合作,共同推进质谱技术在蛋白质3-D结构与相互作用方面的研究工作。乌得勒支大学的Albert Heck实验室在蛋白质组学、用质谱研究蛋白质结构和相互作用方面,具有20多年的丰富经验,在国际上一直遥遥领先。在Richard Scheltema博士加入乌得勒支大学后,领导一个科研小组集中围绕蛋白质组学结构和相互作用的交联质谱(XL-MS)展开研究。Albert Heck和Richard Scheltema的研究小组附属于乌得勒支大学附属的科学学院,工作重心是基于质谱的先进蛋白质组学技术的开发和应用,并以其基于质谱的结构生物学、天然质谱的开拓性方法和交联质谱方面的专业知识而闻名。该小组负责协调欧洲蛋白质组学研究基础设施,并领导荷兰X-Omics计划(www.x-omics.nl)的蛋白质组学核心。布鲁克和乌得勒支大学的合作聚焦于将捕集离子淌度(TIMS)和同步累积连续碎裂(PASEF)的优势与化学交联质谱(XL-MS)技术相结合,进一步拓展4D-蛋白质组学的应用,将timsTOF Pro质谱系统独特的大规模、精准CCS测定的优势应用于结构生物学研究中。该突破性的研究成果刚刚在《Molecular and Cellular Proteomics》上发表,题目为《Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry》1。布鲁克计划将这项研究成果商业化,形成基于XL-MS进行蛋白质结构和相互作用研究的完整解决方案。该方案通过将Heck和Scheltema开发的新颖、可富集的PhoX交联剂2与timsTOF Pro质谱平台上高通量与高灵敏度的PASEF方法相结合,可以发现更多的交联产物,从而得到有关蛋白质结构和相互作用的更多信息。先进的分析软件也是关键,相较典型的鸟枪法蛋白质组学实验,XL-MS获得了更复杂也更丰富的数据信息。Scheltema正致力于开发创新的 XlinkX 软件能够处理TIMS/PASEF数据,并将其提供给timsTOF Pro的用户群。乌得勒支大学Albert Heck教授表示:“我们很高兴同布鲁克合作进一步开发XL-MS的工作流,利用PASEF的快速、独特的大规模精确CCS数据来增强XL-MS中的交联检测。我们很开心在MCP上发表初步成果,并期待着XL-MS的进一步发展。同时我们对利用timsTOF Pro离子淌度分离和CCS值在糖蛋白组学和Top-Down蛋白质组学中的应用也很感兴趣。”乌得勒支大学 Albert Heck布鲁克蛋白质组学副总裁Gary Kruppa博士说:“2001年,我在桑迪亚国家实验室亲身参与了早期XL-MS的相关概念性的工作,我相信Heck团队所取得的研究进展将能够使timsTOF Pro应用于结构生物学研究变成更常规的方法。我们和乌得勒支大学的合作将使XL-MS在结构及相互作用蛋白质组应用得到更快推广。”乌得勒支大学Richard Scheltema教授表示:“我们团队打算通过基于对CCS值的测定和利用,来设置数据采集时的PASEF离子选择界线,从而增强XL-MS工作流程。我们在使用 XlinkX 软件分析XL-MS数据并获得生物信息学方面有了重大进展3,4。我们很高兴因timsTOF Pro采用开放的数据格式架构,XlinkX 开发的代码能将大规模并准确测定的CCS值用于交联肽的鉴定,从而进一步提升了错误发现率(FDR)的计算。”乌得勒支大学 Richard Scheltema参考文献:Benefits of Collisional Cross Section Assisted Precursor Selection (caps-PASEF) for Cross-linking Mass Spectrometry. Steigenberger B, Van den Toorn H, Bijl E, Greisch JF, R?ther O, Lubeck M, Pieters RJ, Heck AJR, Scheltema RA., Mol Cell Proteomics, 2020 Jul 21:mcp.RA120.002094. doi:10.1074/mcp.RA120.002094. Online ahead of print.PhoX: An IMAC-Enrichable Cross-Linking Reagent. Steigenberger B, Pieters RJ, Heck AJR, Scheltema RA. ACSCent Sci. 2019 Sep 25 5(9): 1514-1522.Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Liu F, Rijkers DT, Post H, Heck AJ. Nat Methods. 2015 Dec 12(12):1179-84. doi:10.1038/nmeth.3603Klykov, O., Steigenberger, B., Pekta?, S. et al. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat Protoc 2018 Dec 13,2964–2990. https://doi.org/10.1038/s41596-018-0074-x
  • 鲲羽生物原位检测新品,助力空间转录组和蛋白组研究!
    新品一:3D空间组,真正3D成像的原位空间组,告别2D时代!新品二:30个免疫蛋白检测panel--通过蛋白核酸偶联技术实现多个免疫蛋白的共检!新品三:FFPE样本的超高分辨率空间组学检测,让久远临床宝藏样本重见天日、回顾性队列分析如虎添翼! 鲲羽生物立足基因原位测序(in situ sequencing)和原位杂交(in situ hybridization)技术的研发和应用。核心成员从事相关研究20年,拥有本细分领域国际一流的核心技术和知识产权。作为少数从事基因原位检测的研发型公司,鲲羽生物以解码生命空间奥秘、革新临床精准诊断为目标,结合基础科研和临床发展实际需要,重视研发不断拓新,在前期快速DNA FISH试剂盒/RNA FISH试剂盒/原位空间测序技术服务及自动化杂交、成像仪器的基础上,隆重推出新品三连发!20233D空间组重磅来袭2022年,空间组学技术被国际顶级学术期刊《Nature》评为年度七大颠覆性技术;2023年,世界经济论坛发布《2023年十大新兴技术报告》,空间组学与柔性电池、人工智能辅助医疗、可持续航空燃料等创新技术被评为最有潜力、对世界产生积极影响的十大技术。然而目前市场上的空间组学仅是基于一张切片来检测的2D空间组。鲲羽生物推出两种3D空间组:一种通过连续或半连续切片做2D检测后,将多张切片成像数据对准后实现厚组织的检测;第二种是对厚组织直接透明检测成像,在获取X轴和Y轴信息基础上,同步获得Z轴信息,实现真正三维空间组的检测!小脑三维空间图谱构筑斑马鱼端脑三维空间图谱构筑202330个免疫蛋白检测panel--蛋白基因偶联检测重磅来袭蛋白是生命活动功能的主要执行者,过去的研究通过绘制转录表达谱来推测单细胞中相关的蛋白丰度,但大量数据显示这两者的相关性较差。传统的免疫荧光检测通量受限于二抗属源或染料数目,然而仅凭少数蛋白难以对细胞身份及功能进行注释。目前大尺寸的研究单细胞及空间分辨率的蛋白图谱依旧具有挑战性。鲲羽生物历经多年专研打磨,突破分辨率、灵敏性、特异性、大视野等限制,推出单细胞分辨率高灵敏高保真大视野的寡核苷酸抗体多重免疫组合空间蛋白组学。其主要原理是将特定抗体和特定核酸序列进行偶联,将蛋白信息转化为核酸序列信息,通过检测抗体偶联上的核酸序列从而获得蛋白的原位表达图谱。目前已实现在一张切片上检测30个免疫蛋白和多个RNA分子的同时检测,深度解析免疫微环境,助力免疫方向的临床诊断和科学研究!2023FFPE样本的超高分辨率空间组学检测重磅来袭FFPE(formalin fixation and paraffin embedding)样本是指福尔马林固定后经石蜡包埋的组织样本。过去几十年中,按照此方法保存了大量的生物样本。FFPE样本承载着众多疾病信息,是当之无愧的病理“瑰宝”。但是FFPE样本取材不严格,存放时间长,存放条件不稳定等因素,增加了RNA检测的困难,大大制约了珍贵样本的信息挖掘。鲲羽生物自主研发的原位检测技术对存放一年以上的FFPE样本仍有极佳的检出效果。 目前鲲羽生物已助力客户在Cell、Nat Commun、Dev Cell、Nat Plants等知名学术期刊上发表文章。鲲羽生物目前已拥有多种DNA、RNA、蛋白原位检测产品以及高通量自动化FISH操作与成像平台、原位测序仪器等,拥有完全自主的基因原位检测相关技术核心知识产权多项,打破了国外在新一代单细胞组学技术的垄断,推动民族生物原始创新技术走向世界、服务全球。鲲羽已助力客户在 Cell、Nat Plants、Dev Cell、Nat Commun、SciAdv、Elife 等国际顶流期刊发表多篇文章。
  • 沃特世11月3日"食品过敏原分析:非靶向组学研究和靶向蛋白组学分析"网络讲座即将启动
    日期: 2017年11月3日时间: 14:00 – 16:00地点: 网络讲座语言: English 食物过敏原是食物中可能导致体内异常免疫反应的成分,通常是相对分子量为10000?70000的蛋白质或糖蛋白。食物过敏研究是蛋白质组学在食品科学领域的重要应用。食物过敏会导致皮肤发红和肿胀,甚至休克死亡,这是一个需要高度关注的问题。 曼彻斯特大学的Clare Mills教授是这个领域非常活跃的学者。她与当地医院建立了良好的合作关系,通过大量的临床样本分析,从食物过敏原标志物的发现、鉴定到其对人体的影响开展了广泛的研究。 在研究中,她使用高水平的离子淌度质谱系统发现食物过敏原标志物,进一步开发了可应用于食品过敏原监测和常规检测的高灵敏度LC / MS(串联四极杆质谱)检测方法。 在本讲座中,Mills教授将以花生为代表与您分享研究思路和成果。 主讲人:Clare Mills博士 曼彻斯特大学,炎症与修复研究所,曼彻斯特生物技术研究所,曼彻斯特健康科学学术研究所分子变态学教授 Mills教授目前在曼彻斯特大学从事分子过敏原研究,并领导欧盟综合项目iFAAM和EuroPrevall。 Mills教授运用分子科学研究过敏原,更好地诊断和治疗食物过敏症。 登录沃特世官网并搜索“食品过敏原分析:非靶向组学研究和靶向蛋白组学分析”即可进行注册报名。 此网络讲座免费报名参加。您只需要使用一台链接网络的电脑即可参加,如果您需要在讲座中加入讨论或语音提问,请您提前准备好麦克风。收到您的注册信息后我们会筛选并在讲座前一天通过电子邮件给您发送讲座登录链接。如有任何问题请拨打电话:021-61562642或发送邮件至minxing_guo@waters.com,谢谢。
  • Olink新品发布|Explore HT 蛋白标志物平台开启蛋白组学新时代
    Olink 于 2023 年 7 月 12 日 宣布发布 Olink Explore HT 新产品,该变革型高通量蛋白组学解决方案以全方位的已验证特异性、可扩展性和简化流程。Olink Explore HT 代表了新一代蛋白组学的重大进步,科学家们仅需 2 μl 样品即可准确检测超过 5,300 种蛋白标志物,且重新设计后的整个流程更简化。与上一代 Explore 产品相比,新品不仅将特异蛋白标志物检测数量提高了 80%,同时将样品检测通量提高 4 倍,数据输出能力提高 8 倍,并以更简化的操作流程进一步提高了从样品到数据产出效率。更重要的是,这些创新也缩减了环境空间,所有组件降低了 6 倍,外部包装降低了 10 倍。  Olink CEO Jon Heimer说到:“Olink Explore HT 展示了我们秉承持续创新的承诺,为科学研究提供强有力的解决方案。在几年前,Olink Explore HT 的强大功能几乎是难以想象的。而现在,这是 Olink 迄今为止提供的最先进的高通量蛋白组学产品,其卓越性能将赋能 21 世纪医疗健康提供重要新发现。”  Olink Explore HT 旨在全方位解锁所有规模蛋白质组学的巨大价值,以推进多组学研究。并可广泛应用于疾病治疗领域,加深疾病发生、进展及结果进程中,在分子信号通路水平的全面理解。Olink Explore HT 还将推动药物研发新发现,从基于疾病致病蛋白鉴定的靶点发现,到对作用机制研究的实操见解,以及通过对临床试验中现有样品的重新审查来重新利用扩展治疗方法。  瑞典乌普萨拉大学的Ulf Gyllensten教授说到:“我们对 Olink Explore HT 新平台感到非常兴奋。凭借 Olink 变革型 PEA 多重标记检测技术,Olink Explore HT 使得我们能从微量临床样品中进行高通量、超多重和极其精准的蛋白分析。将 PEA 技术与 NGS 读数结合后,Olink Explore HT 将以其前所未有的能力,进一步揭示全人类蛋白组。作为早期用户,我们已经成功地使用该平台发现识别妇科癌症的诊断和预后蛋白生物标志物。使用 Olink Explore HT 具有的更大规模的蛋白标志物库进行蛋白组学分析,定会加速新型生物标志物的发现,并揭示重要的生物学新见解。更广泛地说,从基础科研到转化研究的整个药物开发过程中,该平台将开启一种强大的基于多组学的新方法。”  Olink Explore HT 代表了 Olink PEA 技术与 NGS 读数相结合的前沿创新。每一个经过充分验证的分析实验,都再次验证 Olink 用户所信任的特异性和灵敏度的卓越标准。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制