当前位置: 仪器信息网 > 行业主题 > >

色谱峰拖尾改善方法

仪器信息网色谱峰拖尾改善方法专题为您提供2024年最新色谱峰拖尾改善方法价格报价、厂家品牌的相关信息, 包括色谱峰拖尾改善方法参数、型号等,不管是国产,还是进口品牌的色谱峰拖尾改善方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱峰拖尾改善方法相关的耗材配件、试剂标物,还有色谱峰拖尾改善方法相关的最新资讯、资料,以及色谱峰拖尾改善方法相关的解决方案。

色谱峰拖尾改善方法相关的资讯

  • 造成色相色谱峰拖尾的原因分析
    气相色谱仪(GC)和气相色谱质谱联用仪分析化合物时,有时候会遇到色谱峰拖尾的问题,不但严重影响定量精度,甚至使分析工作无法进行。那么什么原因会造成色相色谱峰拖尾呢?  进样口的问题  1、进样口的温度不合适  样品使用气相色谱仪分离时,首先进入进样口,在里面进行气化,所以要求进样口的温度要高于待测化合物的沸点,使化合物在进样口处充分气化。如果进样口的温度低于待测化合物的沸点,那么化合物就会气化不充分,也会导致色谱峰拖尾。并且,没有气化的化合物就会残留在进样口,污染进样隔垫和衬管,也可能响到其它化合物的峰形。高温有利用样品的气化,同时,也要考虑到样品的热稳定性,要保证样品在高温下不改变化学性质。  使用气相色谱仪分离化合物,利用新的隔垫、衬管和柱子时,化合物的分离度和峰形都很好。使用一段时间后,化合物的峰形明显拖尾,这种情况下的主要原因就是进样口和色谱柱有污染。  2、隔垫和衬管被污染  进样口很容易被污染的两个部位就是隔垫和衬管。隔垫和衬管被污染后,化合物有可能与污染物结合或者发生反应,也会导致峰拖尾。这时候更换新的隔垫和衬管就会解决峰拖尾的问题。针对很容易拖尾的化合物,可以选择使用超惰性的衬管,不容易与化合物发生反应,有利于化合物的分离分析。必要时,还可以清洗一下衬管下面的分流平板。  样品的问题  1、样品浓度太高  样品浓度太高时,样品的色谱峰就会有明显的拖尾,这种情况下可以稀释样品,或者把样品进样的模式由不分流进样改为分流进样,或者把分流进样的分流比调高一些,例如之前设置进样分流比为10:1,根据样品的实际浓度可以设置为100:1等。  2、样品的性质问题  ①化合物极性太强  分析极性化合物或活性化合物时,其活性位点容易与流经途中的位点吸附而呈现出拖尾,这种情况下要求样品分析系统具有良好的惰性,例如使用超惰的衬管、干净的分流平板和惰性好的低流失色谱柱。  ②化合物的沸点太低  早流出的组分一般是挥发性强、沸点低的组分,这类化合物拖尾严重时,主要原因在于化合物的沸点太低,可能在于溶剂聚焦效应不够,溶剂没有完全冷凝、有部分气化时,样品就进入了色谱柱,这样沸点低的化合物也就先进入色谱柱进行分析了,导致色谱峰拖尾。这种情况下可以降低进样口的温度、调整程序升温的初始温度在溶剂沸点10-25℃以下,让所有的化合物都在冷凝的情况下,整齐划一地进入色谱柱。  ③化合物的沸点太高晚流出的色谱峰一般是低挥发性、沸点高的组分,这类化合物的拖尾现象随着保留时间的增加而严重,主要原因在于化合物的沸点太高,在进样口气化不完全,或者色谱柱和传输线的温度偏低,引起样品在分析的过程中有部分冷凝,进而导致色谱峰拖尾。这种情况下,应该注意化合物的沸点,可以适当地提高进样口、色谱柱、传输线等处的温度可以改善拖尾现象。
  • 色谱图出现双峰了?别慌,给我三分钟帮你解决!
    各位小伙伴在做实验过程中通常会遇到各种奇奇怪怪的问题,其中色谱峰出现双峰可以说是经常会遇见的一类问题。遇见双峰了该怎么去解决呢,这里听小编慢慢道来。HPLC分析中,在色谱柱正常,样品灵敏度足够,分析方法合适,色谱峰在出峰时间较短的条件下(不包括梯度),峰型应对称而尖锐。但是,在对样品了解程度不够,方法不妥,样品处理方法及进样方式不合理下,会出现各种意想不到的问题,而对色谱峰难以作出合理的解释,尤其对于新手更是如此。色谱双峰指的是一种物质,但在色谱图中出现双峰,这种情况分为四种原因。 1.色谱柱堵塞或污染 如果你分析样品时发现每个色谱峰都出现双峰(出峰越快,出现双峰的可能性越少),尤其采用单一纯物质时,可以判定色谱柱出问题(柱头受损或柱头固定相变脏或流失)。如果进样量少,原来色谱柱正常,色谱峰的形状多为一大峰带一小峰,不一定拖尾,这一般应是柱头端堵塞,将色谱柱反接冲洗维护,一般情况下可以解决。如果峰拖尾,双峰强弱相差不大,柱头填料受污染或键合相流失可能性更大,这时可以对色谱柱维修处理或者使用新的色谱柱,维修建议交由厂家处理。 2.溶剂极性及进样量不合适许多小伙伴对此可能不以为然,一般的书籍和文献都不会提到这方面的内容,而这确是双峰产生的一个很重要的原因。目前HPLC分析多为反相色谱,流动相多为甲醇、乙腈、水,以及各种添加剂以改善分离性能。样品一般用与流动相相溶的溶剂溶解,溶解方法是用流动相溶解,但是很多情况是不一致的。当用极性强度大的试剂做溶剂时,如纯甲醇、纯乙腈,纯乙醇,而分析体系中以水为主,样品进样量大,如20ul,单一的纯物质出双峰,第二峰比第yi峰小(每次都不太一样),且拖尾,保留时间会提前(相对进样量少而言),将进样量减少一半以上,峰型将变为正常。这是样品的溶剂与流动相极性相差太大,而流动相来不及将其稀释达到平衡造成的。 另一个原因是,进样量不一定大,但浓度很大,色谱图上的双峰紧靠在一起,基本上齐高,不拖尾(如果出峰很快,也可能是色谱柱问题)。将样品稀释再进样就可以了,这是由于进样量过大,色谱柱过载造成的。 3.样品的特性和PH值不了解有些样品由于其化学结构的特点,存在互变异构现象,而这种互变异构体无法分开,而是以一个动态平衡存在。在色谱分析时,在一个特定的条件下,一种物质将出现双峰,甚至三峰。这时一般双峰靠的很近,基本齐高,不拖尾,条件稍一变化,尤其改变pH,双峰现象将消失。 pH对峰形的影响在缓冲液流动相平衡过程中非常明显,当连续进样时,受pH的连续变化影响会经常遇到这种双峰的情况。另外,在样品分析时,流动相的pH尽量远离被分析物的等电点,否则也容易引起双峰的产生。在用离子对试剂分析时,选择不好条件也会容易引起双峰的产生。 4.仪器参数设置不合理参比波长设置错误,例如设置分析波长254nm,参比波长400nm,这个对于大多数化合物可能没影响。但是如果被测化合物,在400nm处也有强的紫外吸收,比254nm更高。这样其出峰时,由于背景的抵扣作用,本来一个峰会变成对称的二个峰,而且如果将二峰之间的峰谷反转180度,恰好是一个完整的峰。这时要将参比波长设置更大,或者取消。 以上就是小编给各位小伙伴整理的出现双峰的原因和对应解决方案,高效液相色谱是一套非常精密的分析系统,一旦出现异常峰形需要认真排查原因,找到合适解决方案。各位小伙伴若还有任何疑问,欢迎咨询我们的当地销售或经销商。
  • 岛津二维液相色谱新应用|流动相含离子对试剂的化药杂质质谱鉴定方法
    离子对试剂:极性药物分析绕不开的话题 液相色谱是药物杂质含量测定和有关物质分离分析最常用的技术手段。对一个陌生的化合物,ODS反相色谱柱通常方法开发条件会选择酸性pH流动相。然而,总有些化合物,它们或含氨基、或含羧基、磺酸基团、磷酸基团,极性较强在反相色谱柱上没有保留。打开2020版《中国药典》第二部,不难发现这些品种,名称中常含有“马拉酸”、“盐酸”、“碱”、“酸”等关键词。对于这类强极性化合物的分析,药典给出的答案是:流动相中添加离子对试剂。例如丁溴东莨菪碱、贝敏伪麻的有关物质流动相条件中含有十二烷基硫酸钠;马来酸曲美布汀的流动相含有戊烷磺酸钠;盐酸头孢吡肟的流动相含有辛烷磺酸钠;叶酸、头孢美唑和对氨基水杨酸钠的流动相含有四丁基氢氧化铵。离子对试剂的添加,增强了极性化合物的保留,改善了药物与杂质的分离,是极性药物分析的杀手锏。 离子对试剂:“质谱不能承受之重” 辛烷磺酸钠和四丁基硫酸氢铵等常用离子对试剂,属于不挥发盐类,质谱响应强且信号经久不衰,持续抑制目标化合物的电离。一旦误操作进入质谱端,需要清洗整个离子通路才能恢复质谱的正常状态。常规二维液相在线除盐系统仅能去除无机盐,无法去除离子对试剂。这是因为无机盐(如磷酸盐)在二维反相色谱柱上无保留,在死时间将其切至废液从而实现在线除盐。然而离子对试剂具有较强的疏水性,在常规ODS色谱柱上强烈吸附显著拖尾,因此不能被常规二维液相系统去除。 上图是辛烷磺酸钠在ESI离子源上的响应。可生成簇离子,质谱响应强且持久,对ESI正负模式均可产生抑制。 上图是四丁基硫酸氢铵在ESI离子源正模式的响应,质谱响应强且持久。四丁基硫酸氢铵与固定相强烈作用,色谱上呈现显著拖尾。 ReDual:一款可以同时分离无机、有机、阴、阳离子的“神柱” ReDual系列色谱柱,是岛津公司最新推出的离子交换反相混合键合相色谱柱,共分为三款: ReDual™ SCX-C18 强阳离子交换+反相ReDual™ CX-C18 弱阳离子交换+反相ReDual™ AX-C18 强阴离子交换+反相 下图是采用ReDual AX-C18 (4.6 mm I. D. × 150 mm L., 5 µm,货号426-45415)分析磷酸二氢钠、四丁基硫酸氢铵和卡络磺钠混合样品的色谱图。该款色谱柱表面键合叔胺基团,在pH 2-7范围内色谱柱表面带阳离子。除疏水作用外,其对阴离子具有离子交换作用,对阳离子具有离子排斥作用。为分离极性类似的阳离子和阴离子型化合物提供了条件。下图中四丁基氨根离子峰型对称,不拖尾无残留,可以通过阀切换导入废液实现在线去除。 ReDual AX-C18色谱柱NQAD检测器同时分离无机有机阴阳离子(1:Na+ 2:四丁基氨根离子;3:H2PO3- 4:卡络磺酸根离子) 应用案例:卡络磺钠参比制剂中杂质结构鉴定 本应用采用常规中心切割二维液相系统,无需改造仪器;馏分转移过程配有紫外检测器监控,不存在检测盲区;离子对试剂的去除未使用强酸或强碱性试剂;方法耐用性好。一维使用C18反相色谱柱,流动相添加磷酸二氢钠(含四丁基硫酸氢铵,pH 3.0);二维使用ReDual AX-C18色谱柱,在线去除四丁基硫酸氢铵和磷酸二氢钠,实现目标化合物的质谱鉴定。 卡络磺钠杂质2的质谱鉴定结果 总结岛津中国创新中心搭载的特色中心切割二维色谱杂质鉴定系统,二维使用岛津公司最新推出的ReDual™ AX-C18强阴离子交换反相混合键合相色谱柱,成功实现一维流动相中离子对试剂和无机盐的在线去除,并对卡络磺钠参比制剂中未知杂质进行了质谱鉴定。
  • AB SCIEX与菲罗门携手改善食品安全检测方法
    全球生命科学分析技术的-者ABSCIEX,与全球分离科学技术的-者Phenomenex今天宣布,双方达成一项旨在显著改善食品检测方法的合作协议。此项合作的关键在于建立了一个联合的快速响应团队,共同开发行业最高质量、最经济的方法。这一合作伙伴关系的建立,目的是防止污染食品的蔓延,同时帮助提高全球食品供应的安全性。   近年来出现的食品污染危机,对全球食品检测的共同体提出了建立适时分析方法的更高要求——更快速地响应,更高质量的结果和更低的检测成本。为了满足这一要求,ABSCIEX和Phenomenex的科学家们,将与农残分析、抗生素分析、过敏原分析和天然毒物分析等广阔领域内的食品行业的专家们紧密合作,为全球范围的实验室快速提供验证的分析方法,以应对食品安全0现的威胁。   两家公司进行了经验和资源的联合,组建了一支新的全球快速响应团队,团队成员来自Phenomenex方法开发研究组和ABSCIEX整体解决方案组。这支联合团队将会帮助全球食品检测实验室检测新兴污染物,并比以前更快地确定污染食品的污染原因。食品检测科学家们和分析工作者们将能够通过互联网查看这一快速响应资源,从而帮助他们解决在实验室中遇到的LC/MS方面的问题。   独立的科学家们组成了联合网络,其中的一部分是食品检测特定领域的专家,他们正与这两家公司一起工作来发展新方法,其中一位专家是来自位于哈利法克斯市的加拿大国家研究院的MichaelQuilliam博士。Quilliam博士是贝类毒素分析领域的著名专家,并已经同ABSCIEX合作开发了iMethod应用方法,用于提高食品供应中贝类毒素的鉴定和定量能力。这一应用方法将收录在国家研究院的分析方法中,并作为认证参考资料。Quilliam博士在其实验室使用了ABSCIEX和Phenomenex的技术。   作为合作协议的一部分,Phenomenex将与ABSICEX协作,扩展和销售ABSCIEX的iMethod应用产品线,将Phenomenex先进的HPLC/UHPLC色谱柱和样品制备产品和ABSCIEX行业领先的质谱系统相结合。这一整合资源能够简化食品检测科学家获得完整方法的过程,从而快速应对食品污染物危机。   iMethod应用方法是经过验证的“交钥匙”方法,关于如何进行最高效的检测,最有信心地鉴定食品污染物,iMethod方法中提供了具体操作指导和参数。在ABSCIEX多语言版本的可立快(Cliquid® )软件上可运行这些方法,并已被证实可将食品分析的时间从几天缩短到几小时。   “我们不断突破食品检测的极限,从而提高分析结果的质量,特别是在出现危机时”,ABSCIEX公司应用市场和临床研究业务部的副总裁JoeAnacleto讲到,“通过与Phenomenex的合作,以及分享他们在这一重要领域积累的先进经验,我们相信,双方在技术和检测能力方面互为补充,共同为食品检测实验室提供最完整的解决方案。ABSCIEX与Phenomenex联合,拥有丰富的经验和广泛的产品线,使得先进的食品检测方法如此经济且易用,这是其它任何一家LC/MS/MS供应商无法做到的。”   Phenomenex应用市场研究组经理SkyCountryman先生补充到,“因为我们经历了最近出现的食品污染危机,我们意识到,我们与我们的合作伙伴ABSCIEX一起,处在一个特殊的位置,做着一些非常重要的事情。我们与ABSCIEX的合作提供完整的解决方案,迄今为止,行业里还没有其它人能够做到。我们不但集成了先进的样品制备技术、色谱和质谱技术 而且通过我们的联合快速响应团队,我们还为全球实验室提供了与食品安全分析界顶尖专家交流的机会。”   媒体资源   Phenomenex食品检测站   ABSCIEX食品检测应用方案   关于Phenomenex   Phenomenex是全球技术的-者,致力于开发创新的分析化学解决方案,帮助工业、临床、政府部门和研究型实验室应对分离和纯化过程中面临的挑战。从药物发现和药物开发,到疾病诊断、食品安全和环境分析,Phenomenex的色谱解决方案加速科学发展,帮助研究人员改善全球人类健康。想要了解更多关于Phenomenex的信息,请访问www.phenomenex.com,并在Twitter@Phenomenex上了解Phenomenex动态。   关于ABSCIEX   ABSCIEX帮助改善我们生活的世界,使科学家和实验室分析者们不断突破其所在领域的研究极限,应对复杂分析的挑战。作为全球质谱行业的领先者和全球顶级的服务支持提供者,ABSCIEX已成为全球基础研究、药物发现和开发、食品和环境检测、法医和临床研究领域成千上万的科学家和实验室分析者们值得信赖的合作伙伴。拥有20多年行之有效的创新经验,ABSCIEX擅长听取和了解其客户不断发展的需要,开发可靠、灵敏、直观的解决方案,对在常规和复杂分析中什么是可实现的不断进行着重新定义。欲了解更多信息,请访问www.absciex.com,并在Twitter@ABSCIEX和Facebook上了解ABSCIEX动态。   ABSCIEX仪器仅用作研究,不用于诊断过程。此处提到的商标归ABSCIEX公司及其所有者所有。未经许可,不得使用ABSCIEXTM商标。   图片/多媒体库可从以下网址获得:http://www.businesswire.com/cgi-bin/mmg.cgi?eid=50141234&lang=zh   CONTACT:   ABSCIEX媒体联系易思闻思公共关系咨询(英文)MelindaIlagan新加坡:(65)62220306melinda@eastwestpr.com或易思闻思公共关系咨询(中文)KelvinChen陈琛北京:(86)15001203090kelvin@eastwestpr.com或VivianLi李雯雯北京:(86)13041030670Vivian@eastwestpr.com
  • 非手性杂质的超高效合相色谱分析方法开发
    Michael D. Jones、Andrew Aubin、Paula Hong和Warren Potts 沃特世公司(美国马萨诸塞州米尔福德市) 应用优势 1.正交法进行药物杂质分析 2.用于药物杂质分析的 UPC2 方法 3.对杂质采用超临界流体色谱分析符合 ICH 指南和法规要求 沃特世解决方案 ACQUITY UPC2&trade 系统 ACQUITY UPC2色谱柱套装 Empower® 3软件 ACQUITY® SQD质谱仪 关键词 UPC2,药物杂质,稳定性指示方法,降解分析,方法开发,甲氧氯普胺,合相色谱 简介 超高效合相色谱 (UPC2&trade )以亚2 µ m颗粒为固定相,采用超临界流体二氧化碳作为主要流动相成分。合相色谱是一种使用少量溶剂即可实现高速分析的分析工具,尤其是在分析杂质时,相比于反向液相色谱(LC),合相色谱的正交方法更有利于发现未知杂质。合相色谱的方法开发不同于液相和气相色谱的方法开发策略,后者已经基本成熟。为了简化这个过程,我们需要研究一种系统的方法,用于开发非手性物质的合相色谱方法。 了解药品和药物材料中的杂质分布是一个重要步骤,样品纯度的评估可帮助制药公司在药物开发过程中做出决策,推进药物上市进程。杂质分布将确定供应商所提供原材料的质量、成品的保质期、合成途径和防止伪造的知识产权保护。色谱图的正交对比有助于生产商作出最明智的决策。在本应用纪要中,实验采用ACQUITY UPC2系统分析甲氧氯普胺及其相关杂质。如图1所示,甲氧氯普胺(胃复安)是一种止吐药,可以治疗胃灼热、胃溃疡以及由化疗导致的恶心。方法开发研究了色谱柱和溶剂,以确定优化特异性和峰形的合适方法条件。 图1. 甲氧氯普胺的化学结构。 实验 UPC2条件 系统:配备PDA和SQD检测器的ACQUITY UPC2系统 色谱柱:ACQUITY UPC2 BEH 2-EP 3.0 × 100 mm,1.7 µ m 流动相A:CO2 流动相B:含1 g/L甲酸铵的甲醇/乙腈(50:50)溶液,加2%的甲酸 清洗溶剂: 70:30的甲醇/异丙醇 分离模式:梯度;溶剂B在5.0 min内由2%增加至30%;达到30%后,保持1 min 流速:2.0 mL/min CCM 反压:1500 psi 柱温:50 ℃ 样品温度:10 ℃ 进样体积: 1.0 µ L 运行时间: 6.0 min 检测条件: PDA 3D通道:PDA,200到410 nm;20Hz PDA 2D通道:270 nm,4.8 nm分辨率(补偿500到600 nm)SQD MS:150到1200 Da;ESi+和ESi- 补液流速:不需要 数据管理: Empower 3软件 样品描述 分离度溶液由甲氧氯普胺和八种相关杂质制备而成,将其置于TruView&trade 最大回收样品瓶中等待进样,如表1所示。杂质的浓度为甲氧氯普胺标准品浓度的0.1% w/w。分离度溶液用于色谱分析方法开发。 表1. 甲氧氯普胺杂质标准品、峰的名称、质量数和欧洲药典分类列表。 结果与讨论 系统筛选 方法开发过程对色谱柱、改性剂和改性添加剂进行了系统筛选,以获得最佳分离结果。初始的配置通过四种改性剂对四种UPC2色谱柱进行了筛选。&ldquo 改性剂&rdquo 是强溶剂流动相,有利于洗脱极性较强的分析物。所使用的四种溶剂分别是甲醇、含0.5%甲酸的甲醇、含2 g/L甲酸铵的甲醇和含0.5%三乙胺的甲醇。筛选过程采用溶剂B在5 min内从5%增加至30%,达到30%时保持1 min的常用梯度。总筛选时间仅两个多小时。对比各色谱柱所得峰可以发现,含有甲酸铵的甲醇总体上可提供最好的峰形,如图2所示。方法筛选过程中通过查看ACQUITY SQD提供的质谱图实现峰跟踪。对于极性较强的分析物,选择性(&alpha )有很大不同。在这些对比实验中,流动相保持恒定,因而不断变化的&alpha 是由[固定相 &ndash 溶质]相互作用所导致。 图2. 色谱柱筛选结果。改性剂(B)是含有2 g/L甲酸铵的甲醇。溶剂B在5 min内从5%增加至30%,达到30%时保持1 min。 基于这些结果,UPC2 2-EP固定相是最佳的色谱柱选择,可以为大多数分析物提供更好的峰形和分离度。UPC2 CSH Flouro-Phenyl色谱柱可以提供较好的选择性和峰形;但是,杂质C未能按预期分离成两个峰。这种未知现象将在未包括在本应用纪要中的另一组实验中进一步考察。1 梯度斜率的影响 在反相LC中,梯度斜率是控制选择性和分离度的常用工具。使用UPC2 2-EP固定相,延长总的梯度运行时间可以降低梯度斜率。斜率的改变对色谱图基本没有影响,仅使峰6和7之间的选择性发生改变,如图3所示。 图3. 归一化的x轴叠加显示甲氧氯普胺,采用延长的12 min和35 min梯度运行时间,其斜率较6 min的筛选实验更小。使用原始梯度;溶剂B由5%增加至30%。 不同洗脱溶剂的影响 使用变化率较平缓的梯度并未增加峰与峰之间的分离度。为提高分离度,将低极性非质子有机溶剂(乙腈)与甲醇(极性较强的洗脱溶剂)以不同比例混合。乙腈的添加提高了分离度,扩展了峰之间的分离间隔。这些现象证明本方法可在方法开发中发挥重要作用,如之前发表的结果所示。1 图4. 如叠加图中突出部分所示,在改性剂成分中添加乙腈后,后部洗脱分析物的分离度明显提高。 在添加剂筛选过程中,我们也考察了每种杂质各自的标准品。甲酸可以优化杂质H的峰形;但是,它会影响其它相关物质的色谱分析性能。添加剂的浓度也会对峰形产生影响。为了得到更理想的峰形,浓度需要高于反向LC的常用浓度。增加甲酸的浓度可以进一步改善杂质H的峰形,如图5所示。但是,杂质F的峰形受到了影响,如图6所示。组合使用甲酸和甲酸铵可同时获得两种添加剂的优势,使全部的分离均获得最佳峰形。在改性剂中使用添加剂甲酸和/或甲酸铵对过期样品进行分析所得结果如图7所示。在此对比实验中使用过期样品使我们能够更好地评估已知杂质在存在未知杂质条件下的选择性和峰形。如图7所示,解决峰形问题最终会影响色谱分离的效率、分离度和灵敏度。 图7. 过期甲氧氯普胺样品的分析,改性剂中分别添加不同的添加剂成分。将甲酸铵和甲酸组合,称之为&ldquo 类缓冲液&rdquo 系统,此系统可使样品中的所有分析物均获得最佳峰形。所使用的改性剂为50:50的甲醇/乙腈。 评估特异性 在确定可对选择性、分离度和峰形产生积极影响的方法条件后,各变量同时获得了优化。实验使用甲氧氯普胺和杂质(对照)的标准混合物和过期的样品混合物对最终方法进行了评估,如图8所示。有关未知杂质的进一步考察,请参阅沃特世(Waters® )应用纪要。2 图8. 采用&ldquo 实验&rdquo 部分中列出的最终方法条件对甲氧氯普胺对照混合物和降解混合物进行的对比分析。 结论 本实验使用ACQUITY UPC2系统成功对甲氧氯普胺及其相关物质进行了非手性分析。了解杂质结构的特性有利于方法开发。实验中分析的多种杂质包括胺类、羟基、酯类和羧酸。能够影响选择性、分离度和峰完整性的主要方法变量分别是固定相、改性剂的洗脱强度和添加剂的组成。最后甲氧氯普胺相关物质的分析方法展示了此方法对过期甲氧氯普胺样品的特异性。 本方法开发过程通过色谱柱筛选处理中的对比实验揭示了多种[固定相 &ndash 分析物]相互作用。更多的相互作用需要在已发表的研究基础3-6上进行进一步的探索。了解这些方法变量相互作用的影响将有助于创建一种更加适用的方法开发技术。 参考文献 1. Jones MD, et al.Analysis of Organic Light Emitting Diode Materials by UltraPerformance Convergence C hromatography Coupled with Mass Spectrometry (UPC2 /MS).Waters Application Note 720004305EN.2012 April. 2. Jones MD, et al.Impurity Profiling Using UPC2 /MS. Waters Application Note 720004575EN.2013 Jan. 3. West C, Lesellier E. A unified classification of stationary phases for packed column supercritical fluid c hromatography.J Chromatogr A. 2008 May 1191(1-2):21-39. 4. West C, K hater S, Lesellier E. C haracterization and use of hydrophilic interaction liquid c hromatography type stationary phases in supercritical fluid c hromatography.J Chromatogr A. 2012 Aug 1250:182-95. 5. Lesellier E. Retention mec hanisms in super/subcritical fluid c hromatography on packed columns.J Chromatogr A. 2009 Mar 1216(10):1881-90. 6. Zou W, Dorsey JG, C hester T L. Modifier effects on column efficiency in packed-column supercritical fluid c hromatography.Anal Chem.2000 Aug 72(15):3620-6.
  • 高效液相色谱日常维护要点-脱气
    大家好,高效液相色谱和其它常规分析仪器一样,为了能让高效液相色谱更好的工作、在实验的时候得到可靠的数据,首先你要保养好它,使它处于一个健康的待机状态,这样你使用它进行检测分析时就可以比较顺利地获得理想结果。而且良好规范的操作习惯还可以延长仪器使用寿命。在日常使用维护中最重要的主要有三点:脱气、过滤和冲洗。这三点属于最常规操作要求,同时也是检测分析中必不可少的流程。小编会分三期为大家讲解,今天先带大家了解下脱气的具体原因和脱气的具体方法。脱气流动相里存在气泡是HPLC系统操作过程中常见的问题、气泡会造成泵输出的问题,也能造成检测器的输出结果中出现假的色谐峰。大多数的气泡问题可以在使用流动相之前以脱气的方法来消除。下面就是小编简单总结了脱气的主要目的:1、防止由溶解(在液体中的)气体量的变动引起的检测不稳程度 。2、提高保留时间和色谱峰面积的重现性。3、防止气泡引起尖峰。4、使基线稳定,提高信噪比。5、防止由气泡的产生引起的故障,示差折射率检测器:使折射率变化UV检测器(200nm以下):溶解氧气有吸收,荧光检测器:溶解氧气有消光作用。6、减少死体积。7、防止填料氧化。脱气要求只要空气在流动相里保持溶解,气泡问题就很少会出现。原则上讲人工配备的等度洗脱流动相般不需要脱气就可以在实验中使用,但是被气体饱和的溶液也只需要非常小的压力下降就能脱气。比如当流动相通过溶剂人口的在线过滤器,或者当流动相进人压力相对低的检测器溶液池时。因为这个原因和为了能使一般的HPLC操作具有可靠性,我们强烈建议用于反相色谱的所有溶剂都必须经过脱气。脱气对于正相HPLC来说不会产生很多问题,所以使用正相色谱时脱气是可选的。需要除去的溶解在流动相里的气体量根据HPLC泵的设计不同而不同,一些泵能够承受大量溶解在流动相里的气体而另外些泵则需要彻底脱气才能达到可靠的操作效果。常用的脱气方法1.抽真空脱气法:此法可使用真空泵,降压至0.05~0.07MPa即可除去溶解的气体,用真空脱气10-15分钟可以除去60%-70%溶解在流动相的气体。但是由于真空脱气会使混合溶剂组成发生变化,从而影响到实验的重现性,因此多用于单溶剂体系的简单分析。2.氦气喷洗脱气法:氦气喷洗是除去流动相里的气体最有效的技术,主要是利用氦气在液体中溶解度比空气低的特性,在0.1MPa压力下,以约60mL/min流速通入流动相储液容器中10~15min,可以很有效地从流动相中排除溶解的空气,能排除接近80%-90%溶解的气体。采用一个高效分布式喷射流装置,一体积的氦气可从流动相中将等体积的几乎全部气体排除。3.在线脱气法:在线脱气主要优点是操作简单,低故障,并非常有效。4.加热回流法:此法的脱气效果较好。但是还是有一些不足,那就是在操作时要特别注意冷凝塔的冷却效率,否则溶剂会丢失,混合流动相的比例会有变化。5.超声波脱气法:实验室最普遍的脱气方法,主要操作就是将欲脱气的流动相置于超声波清洗器中,用超声波震荡时间不宜过长,避免温度升高导致易挥发性成分的丢失,一般在5min之内。但是相对于其他脱气方法,优点是容易操作,时间短。不足之处则是此法的脱气效果相对较差。到此需要脱气的具体原因和脱气的具体方法,在这里就差不多介绍完了。下期小编将继续带领大家去具体了解高效液相色谱日常维护要点-过滤。
  • 最强实用攻略 | 方法开发时,如何选择 C18 色谱柱?
    在色谱方法开发过程中,分离度、柱效、峰形是考察色谱柱选择性是否合适的主要性能指标。方法开发中的分离度根据分离度(Rs)公式,分离度的影响因素主要有柱效(N)、选择性(α)和保留因子(或称容量因子,k):(公式 1)公式1作为分离度改善的理论基础。通常,方法开发过程中,通过提高化合物保留 (k)、提高柱效 (N)、以及提升选择性 (α) 来达到分离度的改善。选择性因子(α):(公式 2)式中 k1 和 k2 分别是第一个峰和第二个峰的保留因子。根据公式 1 和公式 2,当选择性因子提高 0.1 时,对分离度的贡献是 Rs 大约为原来的 1.8 倍。因此选择性的改变对分离度的改善效果显著,如图 1 所示。图 1. 分离度与柱效、选择性、保留因子的关系与选择性有关的因素:固定相:选择不同化学修饰的键合相(不同的 C18 柱或其它键合类型色谱柱)流动相:调整有机相的类型、pH 值、盐浓度、两相比例等柱温方法开发中的色谱柱选择在色谱固定相的选择和使用中,最常用的键合相类型是十八烷基硅烷键合硅胶(C18)。不过,由于固定相物理特性与化学修饰的差异,使得不同的 C18 选择性不尽相同。选择色谱柱时,如果一种类型的 C18 柱分离度不足,就可以选择与之选择性差异较大的 C18 柱来进行优化。以 Agilent InfinityLab Poroshell 系列中的 C18 液相色谱柱为例:Poroshell 120 EC-C18 为封端的碳十八固定相,对酸性、碱性、中性化合物都有良好的选择性,已经成为方法开发的首选,也是在 Agilent 1260 Infinity II 四元泵液相色谱系统中标配的色谱柱。与 EC-C18 柱不同,Poroshell 120 SB-C18 柱却是不封端的碳十八固定相。由于裸漏的硅醇基存在,可与待分离物发生氢键、离子间作用等,因此 SB-C18 的选择性与封端的 C18 柱存在显著差异。可以利用这个特点,在方法开发时 SB-C18 和 EC-C18 通常可以作为方法开发的起始色谱柱。另外,SB 的全称是 StableBond,顾名思义意为“稳定的键合相”,这里说的稳定,主要是在C18硅烷长链的两侧采用异丁基进行立体的保护,使得 SB-C18 在低 pH 下有较好的耐受性能。同样采用 Poroshell 120 的硅胶,HPH-C18 与 EC-C18 和 SB-C18 又有所不同。在进行键合之前,在 Poroshell 硅胶的表面多孔层,先进行了有机杂化处理,再进行 C18 键合和封端修饰,得到的 HPH-C18 色谱柱具有了高 pH 耐受的特点。因此,表面化学结构的差异,三种常用的 Poroshell C18 柱,在选择性上具有显著区别。表 1 列出了以 EC-C18 为基准,HPH-C18 与 SB-C18 的相似度因子 Fs。当 Fs 因子大于 3.0 时,固定相选择性存在差异。表 1. 三种固定相选择性差异比较(以 EC-C18 为基准)问渠哪得清如许,为有源头活水来,新产品 Poroshell CS-C18 上市!Poroshell 色谱系列在色谱分析行业已经得到了广泛的认可,安捷伦也一直在拓展 Poroshell 系列色谱柱的产品线。2020 年 11 月,安捷伦推出了新产品 Poroshell CS-C18 柱,进一步拓展了 C18 固定相的类型。该固定相是在 Poroshell实心核颗粒的表面多孔层在进行高 pH 耐受的杂化处理之后,再进行 C18 键合、封端和正电荷修饰,其中使用的键合相还进行了侧立基的保护。这样 CS-C18 固定相的表面,不仅具有 C18 提供的疏水作用、而且还具有正电荷的离子作用,选择性也与其它的 C18 键合相有显著差异。同时,硅烷链侧立基保护、多孔硅胶表面杂化处理,使得固定相pH耐受范围得到了拓宽。在 Poroshell C18 的四种 C18 键合相中,涵盖了 RPLC 模式下的主要作用力,选择性彼此之间有显著差异,见图 2。利用这些固定相的选择性差异,可以方便地进行方法开发中的色谱柱选择。图 2. Poroshell 的 4种 C18 固定相应用实例碱性条件下选择性差异在 pH=10 的体系下,耐碱的 CS-C18 与 HPH-C18 选择性存在显著差异。图 3. 农药组分在碱性体系下 LC-MSMS 色谱图结果比较酸性条件下选择性差异在酸性体系下,不同 Poroshell C18 柱的保留、分离度有显著差异。图片图 4. 阿片类药物在酸性体系下 HPLC 分析色谱图比较峰形及载样量比较在酸性体系下,在碱性药物阿米替林的杂质分析时,采用 CS-C18 与传统封端的 C18 柱进行比较,CS-C18 柱对碱性组分具有更好的峰形、载样量和分离度。图 5. 不同色谱柱对阿米替林及杂质(0.25%)不同进样量分析结果比较酸性体系下 LC/MS 灵敏度比较在甲酸体系下,在进行液质联用分析时,CS-C18 柱提供可更好的灵敏度、响应和峰形。图 6. 甲酸体系中低浓度标样(50ng/ml) 在 LC/MS/MS 中灵敏度比较安捷伦 &bull 618618 活动期间2024 年 6 月 3 日 ~ 30 日Agilent Poroshell 120 2.7um 全线 6 折!参考文献:1. L. R. SNYDER , J. J.KIRKLAND, J. W. DOLAN. Introduction to Modern Liquid Chromatography, ThirdEdition.2. 液相色谱手册-液相色谱柱与方法开发指南. 安捷伦科技.5990-7595CHCN3. Agilent InfinityLabPoroshell 120 CS-C18 助您将 pH 值用作方法开发工具. 安捷伦科技. 5994-2274ZHCN4. 使用 Agilent InfinityLab Poroshell 120 CS-C18 色谱柱改善碱性分析物的峰形. 安捷伦科技. 5994-2094ZHCN
  • PerkinElmer获得保证自动热脱附气相色谱准确性的方法专利
    自动验证 ATD 的填充完整性,既节省时间,又提供可靠的分析结果 马萨诸塞沃尔瑟姆 – 专注于提高人类及其生存环境的健康和安全的全球领先公司 PerkinElmer, Inc.,今天宣布美国专利商标局 (USPTO) 已针对气相色谱 (GC) 方面的先进方法授予其 7,422,625 B2 号专利。 这个专利名为“定性吸附剂採樣管的方法和系统”,可以保护公司特有的方法,该方法有助于在使用自动化热脱附 (ATD) 气相色谱 (GC) 时增加其结果的准确性。 专利中描述的 PerkinElmer 自动验证方法使用公司气相色谱系统的 TurboMatrix™ 热脱附仪产品线開發而來,帮助用户避免在 ATD 测量中出现人为错误,这些错误可能导致结果的不一致和样品完整性的下降。 该方法由 PerkinElmer 气相色谱资深科学家 Andrew Tipler 与英国 Buxton 健康与安全实验室资深科学家 Neil Plant 共同开发出来的。 “过去,分析人员担心其结果可能会因 ATD 管和捕集阱中填充物质的不完整而受到影响,”Tipler 说。“我们检查填充完整性的自动方法,可以帮助客户高度信任其分析结果,最终帮助他们节省时间,提高实验室生产效率。 该方法已集成到我们的 TurboMatrix 热脱附仪生产线,而该系列产品可用于各种行业和应用。” PerkinElmer 于 1982 年首次推出 ATD,它是一种有效的方法,可以从各种挥发性气体基质中分离挥发性化合物,之后将它们作为样品引入气相色谱仪。 它是室内外空气监控最常用的技术,还可用于分析土壤、水、生物柴油、聚合物、包装材料、香料和香气、化妆品、药品和许多其它应用。 ATD 的工作原理是,通过填充了一种或多种吸附剂的热脱附管,吸附蒸汽样品。热脱附管加热后挥发性气体会从填充物中释放出來,这些气体随后会被吹入冷却的辅助捕集阱中。然后快速加热此捕集阱,将收集的成分脱附到气相色谱柱进行分离和鉴定。热脱附管和捕集阱需要填充相同的填充物需要穩定一致,以保证为每次运行的分析提供相同的进样、热脱附流速和流路。如果填充材料中存在空隙或吸收剂变脆和破碎,气流可能形成管流或堵塞,那么分析结果就会不一致。 过去,分析人员有时会手动测量热脱附管的流阻抗来验证其性能,但是此过程比较耗费时间,并且捕集阱的拆装也比较费事。Tipler 和 Plant 提出的热脱附管和捕集阱的流抗阻自动化监控方法,可以缓解这一问题。使用该方法时,如果热阻超出预设限制,则将会向用户发出警告,通常可以采用重新填充或替换热脱附管或捕集阱来解决这个问题。 有关 PerkinElmer 的 TurboMatrix 热脱附仪产品线的详细信息,请访问 www.perkinelmer.com/turbomatrix。 关于 PerkinElmer, Inc. PerkinElmer, Inc. 是一家专注于提高人类及其生存环境的健康和安全的全球领先公司。据报道,该公司 2008 年收入约为 20 亿美元,拥有约 8,500 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请访问 www.perkinelmer.com 或致电 1-877-PKI-NYSE。 关于健康与安全实验室 (HSL) 健康与安全实验室 (HSL) 是英国领先的工业健康和安全研究机构,在各个领域均具有 30 多年的研究经验。 HSL 的性质是健康与安全执行局 (HSE) 的代理机构,除了向 HSE 负责外,还为 400 多家组织客户提供独立公正的科学建议和研究结果。有关其它信息,请访问 www.hsl.gov.uk 媒体联系人:PerkinElmer: Stephanie R. Wasco,781-663-5701 Stephanie.wasco@perkinelmer.com # # # 或 Sandra Schiller,203-402-7105 Sandra.schiller@perkinelmer.com 或 Porter Novelli: Kate Weiss,617-897-8255 Kate.Weiss@porternovelli.com
  • 得到完美的色谱图要跳过哪些坑?HPLC谱图常见故障及解决方法!
    p   液相色谱中的许多问题都能在谱图上反映出来,其中有一些问题可以通过改变设备参数得到解决 而其他的问题必须通过修改操作程序来解决。对于色谱柱和流动相的正确选择是得到好的色谱图的关键。 /p p   一、拖尾峰 /p p   1. 筛板阻塞,柱子两头的过滤筛板如果堵塞,样品就会在筛板部分受阻而形成时间延迟,使得样品在柱后流出时峰型形成拖尾。需要通过反冲色谱柱,或者更换筛板。 /p p   2. 色谱柱塌陷,是指色谱柱由于其它原因引起了柱效率丧失,不能对物质形成保留,使得物质不在固定相上保留而随流动相流出,但是又还有一点柱效,因此形成拖尾。需要重新填充色谱柱或者更换色谱柱。 /p p   3. 有污染,即样品不在同一起跑线起跑,从后面开始跑得到达终点稍晚,表现出拖尾。更换色谱柱或者采用有机溶剂梯度洗脱1h以上,以冲洗柱子。 /p p   4. 流动相PH值选择错误,如某PH下有的样品存在分子型和离子型的动态平衡,离子型的陆续向分子型转化就会表现出拖尾。调节PH值可抑制分子解离,改善拖尾,对于碱性化合物,相对较低的PH值更有利于得到对称峰。 /p p   二、前沿峰 /p p   1. 样品过载,被保留的样品在正常出峰时间前陆续出来,形成前沿峰。降低样品含量。 /p p   2. 样品溶剂选择不恰当,当样品溶剂的洗脱能力大大强于流动相时会出现前沿峰,例如,在反相色谱中用已腈做样品溶剂,而流动相的洗脱力较弱时会出现前沿峰。选择流动相或者接近流动相的比例作为样品溶剂。 /p p   3. 色谱柱损坏,色谱柱柱效损失,不能对物质形成保留。更换色谱柱。 /p p   4. 在大峰前有小峰出现,假象前沿峰,即大峰前包埋了没有分开的小峰。调整流动相洗脱梯度。 /p p   三、基线漂移 /p p   1. 柱温波动,即使是很小的温度变化都会引起基线的波动,通常影响示差检测器、电导检测器、较低灵敏度的紫外检测器或其它光电类检测器。使用柱温箱,控制好柱子和流动相的温度,在检测器之前使用热交换器。 /p p   2. 流动相不均匀,流动相条件变化引起的基线漂移大于温度导致的漂移。使用HPLC级的溶剂,流动相在使用前进行脱气处理。 /p p   3. 流通池被污染或有气体。用甲醇或其他强极性溶剂冲洗流通池。如有需要,可以用1N的硝酸(不要用盐酸)。 /p p   4. 流动相配比不当或流速变化。更改配比或流速,为避免这个问题可定期检查流动相组成及流速。 /p p   5. 样品中有强保留的物质,以馒头峰样被洗脱出,从而表现出一个逐步升高的基线。使用保护柱,如有必要,在进样之间或在分析过程中,定期用强溶剂冲洗柱子。 /p p   四、出现宽峰 /p p   1. 色谱柱污染或失效,造成塔板数降低。更换同样类型的色谱柱,如果新柱子可以提供对称的色谱峰,则用强溶剂冲洗旧柱子。 /p p   2. 柱子与检测器之间的管路太长或管路内径太大。更换内径较小的短管路。 /p p   3. 检测器对反应时间或池体积响应过大。减少响应时间或使用更小的流通池。 /p p   五、基线噪音 /p p   1. 在流动相、检测器或泵中有空气(尖锐峰)。流动相脱气,冲洗系统以除去检测器或泵中的空气。 /p p   2. 漏液。检查管路接头是否松动,泵是否漏液,是否有盐析出和不正常的噪音。如有必要,更换泵密封。 /p p   3. 流动相混合不完全。用手摇动使混合均匀或使用低粘度的溶剂。 /p p   4. 温度影响(柱温过高,检测器未加热)。使用柱温箱,减少温度差异或加上热交换器。 /p p   5. 在同一条线上有其他电子设备(偶然噪声)。断开LC、检测器和记录仪,检查干扰是否来自于外部,加以更正。 采用精密级稳压电源。 /p p   六、分离度不够 /p p   1.流动相梯度洗脱设置不合理。优化梯度洗脱程序。 /p p   2.流动相污染或变质(引起保留时间变化)。重新配置流动相。 /p p   3. 保护柱或分析柱阻塞。去掉保护柱进行分析,如果必要则更换保护柱 如果分析柱阻塞,可进行反冲 如果问题仍然存在色谱柱可能被强保留的污染物损坏,建议使用恰当的再生程序 如果问题仍然存在,进口可能阻塞了,更换入口处的筛板或更换色谱柱。 /p
  • Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”
    Acclaim Organic Acid—脱氢乙酸峰型拖尾“终结者”胡金胜食品安全国家标准修订2021年3月26日,国家卫生健康委员会食品安全国家标准审评委员会秘书处发函,对组织起草的《食品添加剂使用标准》等12项食品安全国家标准(征求意见稿)公开征求意见。备受关注的GB 2760时隔多年再次修订,变更的内容涉及到多个常用的食品添加剂,其中防腐剂“脱氢乙酸及其钠盐” 使用规定的修改引发了热议。左右滑动查看GB 2760中脱氢乙酸及其钠盐修订细节 脱氢乙酸及其钠盐作为一种广谱食品防腐剂,毒性较低,对霉菌和酵母菌的抑制能力强,按标准规定的范围和使用量使用是安全可靠的。然而通过汇总近些年来全国各地食品安全监督抽检结果,我们不难发现脱氢乙酸及其钠盐超限量、超范围使用的情况屡有发生。由于脱氢乙酸及其钠盐能被人体完全吸收,并能抑制人体内多种氧化酶,长期过量摄入脱氢乙酸及其钠盐会危害人体健康。随着GB 2760征求意见稿的发布,针对食品添加剂脱氢乙酸及其钠盐,收窄了使用范围,降低了最大使用量,释放了监管部门将进一步加强监管的信号。由于政策信息传递的延迟及生产工艺革新的滞后,部分食品企业可能会面临因脱氢乙酸及其钠盐超限量、超范围使用而被监管部门处罚的风险。 目前,食品检测实验室参照GB 5009.121-2016开展脱氢乙酸的测定也会遇到一系列的难题,其中最突出的问题就是脱氢乙酸峰型拖尾,影响定性和定量结果的准确性。脱氢乙酸属于非羧基酸类,分子结构存在烯醇互变,导致在普通C18 上峰型容易出现拖尾。相关文献显示,通过调节缓冲盐pH(调酸或调碱)和有机相比例可以在一定程度上抑制脱氢乙酸的拖尾,但是在食品安全监督抽查中对于实验室方法的偏离及变更有着较为严格的审核流程,这也是实验室体系管理难以回避的问题。 基于此,赛默飞实验室筛选了一款特色色谱柱—Acclaim Organic Acid,在不变更标准色谱条件的前提下,开展了一系列的验证工作,完美解决了脱氢乙酸峰型拖尾的问题,并且在实际样品分析过程中有着出色的表现。Acclaim Organic Acid有机酸分析专用柱,极性嵌入,专利封端技术,可耐受 100% 水相,PEEK 柱管,可有效消除硅胶表面残余硅羟基及金属柱管内壁与有机酸分子次级作用导致的拖尾。 实验谱图及数据色谱条件液相色谱仪:Vanquish™ Core HPLC 液相色谱系统色谱柱:Acclaim Organic Acid, 5 μm, 4.0×250 mm (P/N: 062902)柱温:30 ℃;进样量:5 µL;流动相:A为20 mM 乙酸铵溶液,B为甲醇洗脱程序:A:B=90:10,等度洗脱流速:0.8 mL/min检测波长:293 nm采样频率:5 Hz采集时间:15 min 分离谱图 脱氢乙酸标准品溶液5.00 μg/mL,保留时间为7.107 min,不对称因子为1.04,理论塔板数为13830。脱氢乙酸在 Acclaim Organic Acid 色谱柱上获得了出色的峰型和优异的灵敏度。图1. 脱氢乙酸标准品溶液色谱图(5.00 μg/mL) 脱氢乙酸标准工作液线性范围为0.50-50.0 μg/mL,线性方程y=0.6283x-0.0141,线性相关系数r2=0.99990,线性关系良好。图2. 脱氢乙酸线性方程图及标准曲线点叠加色谱图(0.50-50.0 μg/mL)以脱氢乙酸峰高为 S,选取 4-6 min 基质噪音的平均值为 N,采用 Chromeleo 数据处理软件计算信噪比 S/N,脱氢乙酸线性低点 0.50 μg/mL信噪比S/N为181.8。实验室可根据实际情况设置合适的线性最低点,以满足方法检出限的要求。图3. 脱氢乙酸线性低点 0.50 μg/mL 色谱图及信噪比脱氢乙酸标准品溶液 1.00 μg/mL 重复进样,保留时间RSD为0.04%,峰面积RSD为0.28%,不对称因子RSD为0.34%,重现性良好。图4. 脱氢乙酸标准品溶液 1.00 μg/mL 6次重复进样叠加谱图在实际样品分析中,面对各种复杂基质的干扰,Acclaim Organic Acid 表现出了非常出色性能。以下谱图分别展示了Acclaim Organic Acid 应用于鸡蛋挂面、猪肉脯、肉松面包、法式小面包及芒果汁中脱氢乙酸的测定。样品前处理方法采用标准推荐的直提法,其中芒果汁样品基质复杂,对流动相比例和柱温进行了适当调整。图5. 鸡蛋挂面中脱氢乙酸的测定图6. 猪肉脯中脱氢乙酸的测定图7. 肉松面包中脱氢乙酸的测定图8. 法式小面包中脱氢乙酸的测定图9. 芒果汁中脱氢乙酸的测定 本试验基于Vanquish™ Core HPLC液相色谱系统,采用Acclaim Organic Acid有机酸分析专用柱,对多种食品基质中脱氢乙酸的测定开展了验证。实验结果表明,Acclaim Organic Acid能够完美解决脱氢乙酸峰型拖尾的问题,有效排除各种复杂样品基质的干扰,为食品实验室准确定性和定量分析脱氢乙酸,提供了一个高效便捷的方法。 那么,有请我们的主角闪亮登场… … 此处应有掌
  • 利用XP色谱柱改进美国药典(USP)噻康唑有机杂质分析方法
    利用eXtended Performance(XP)色谱柱改进美国药典(USP)噻康唑有机杂质分析方法 Kenneth D.Berthelette、Mia Summers和Kenneth J.Fountain 沃特世公司,美国马萨诸塞州米尔福德 方案优势 ■ 使用XP色谱柱改进耗时的USP美国药典有机杂质分析方法,实现更快速的分析并减少溶剂的使用量,同时仍符合美国药典章指南的规定。 ■ 将样品运行时间缩短80%,从而提高了生产能力。 ■ 将溶剂用量减少90%,降低了运行成本。 沃特世提供的解决方案 ACQUITY UPLC® H-Class系统 Alliance® HPLC系统 XSelect&trade CSH&trade C18色谱柱 Empower® 3软件 eXtended Performance [XP] 2.5 &mu m色谱柱 TruView&trade LCMS认证最大回收样品瓶 关键词 美国药典方法、噻康唑、ACQUITY UPLC色谱柱计算器、沃特世反相色谱柱选择表、仿制药 引言 全世界的制药企业在日常工作中都需要对仿制药中的有机杂质进行分析。使用较为陈旧的仪器和色谱柱技术进行有机杂质分析,因为需要长时间使用大量的溶剂,所以既耗时又费钱。然而通过使用显著改进的仪器和色谱柱技术有机杂质分析会变得更高效。2.5&mu m 粒径的eXtended Performance(XP)色谱柱设计用于高效液相色谱和超高效液相色谱。该色谱柱是改进美国药典方法的理想选择,因为其能够使色谱分析工作者实现更小粒径和低扩散系统带来的利益,同时能够符合美国药典章色谱分析指南的规定。章列出了允许的方法变化幅度。 噻康唑是一种用于治疗酵母菌感染的咪唑类抗真菌化合物。被转换的方法是噻康唑有机杂质的分析方法2。有机杂质分析方法用于测定样品中是否存在杂质及其含量。该XP色谱柱方法是从最初在HPLC系统上的色谱柱规模的美国药典方法缩放至HPLC和UPLC仪器上的。在HPLC仪器上使用XP色谱柱对现行美国药典方法进行改进能够缩短运行时间,从而提高了常规分析实验室的样品通量。而在UPLC系统上使用XP色谱柱则可以比HPLC进一步缩短运行时间并减少溶剂的使用,从而节约了总成本。 实验条件 Alliance 2695 HPLC色谱条件 流动相: 44:40:28乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18,4.6 x 250 mm,5 &mu m, 部件号:186005291;XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111 柱温: 25 ℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 ACQUITY UPLC H-Class色谱条件 流动相: 44:40:28 乙腈/甲醇/水加2 mL氢氧化铵 分离模式: 等度洗脱 检测波长: 219 nm 色谱柱(L1): XSelect CSH C18 XP,4.6 x 150 mm,2.5 &mu m, 部件号:186006729;XSelect CSH C18 XP,4.6 x 100 mm,2.5 &mu m, 部件号:186006111;XSelect CSH C18 XP,2.1 x 150 mm,2.5 &mu m, 部件号:186006727 柱温: 25℃ 洗针液: 95:5乙腈/水 样品清洗液: 95:5水/乙腈 密封垫冲洗液: 50:50甲醇/水 流速: 根据方法调整 进样量: 根据方法调整 数据管理: Empower 3软件 样品描述 用100%的甲醇将噻康唑样品制备成表1所述的浓度。将样品转移至一个进样用的TruView最大回收样品瓶中(部件号:186005662CV)。 结果与讨论 全世界制药企业都需要对常规方法制备的噻康唑进行日常分析。本应用纪要使用美国药典专论中规定的有机杂质分析方法,在几种不同规格的色谱柱上对噻康唑及其有关物质A、B、C的分离进行了比较。因为噻康唑许多杂质缺乏实际可用性,所以将噻康唑有关物质A、B、C用作低浓度杂质标准品。美国药典所列的有机杂质分析方法用于分析复杂的样品处方。样品中多种成分的有效分离通常需要使用更长的色谱柱。使用较大填料粒径(&ge 3.5 &mu m)的长色谱柱会使运行时间加长,溶剂使用量增大。例如,最初的美国药典中的噻康唑有机杂质分析需要使用4.6 x 250 mm,5 &mu m的色谱柱,分离时间长达30分钟,每分析一个样品需要耗费30 mL溶剂。但是,使用2.5&mu m粒径的eXtended Performance(XP)色谱柱,可以在缩短运行时间的同时仍然符合考核的要求。由于运行时间缩短,样品通量得到了提高,每次分析所需溶剂减少,从而降低了总成本。现行的美国药典章色谱分析指南规定了允许的方法变化幅度。这些允许的变化包括± 70%的色谱柱长度变化,-50%的粒径变化,± 50%的流速变化。1美国药典要求有关物质B和C之间的分离度要达到1.5,本应用纪要证明:在不同的色谱柱和不同的色谱系统之间进行的方法转换完全满足对这两个难分离化合物的苛刻要求。 在HPLC仪器上使用XP色谱柱进行有机杂质分析 噻康唑的有机杂质分析方法需要使用L1专用色谱柱,为该分离而列出的色谱柱是LiChrosorb RP-182。参照沃特世反相液相色谱柱选择表,本文选用更先进的XSelect CSH C18固定相色谱柱。之所以选择XSelect CSH C18色谱柱是由于其与所列出的色谱柱相类似,并且能提供适用于HPLC UPLC仪器的各种规格和粒径。本文首先使用一根XSelect CSH C18,4.6x250mm,5&mu m色谱柱在Alliance HPLC系统上运行美国药典方法,流速1.0mL/min。如表2所示,本次分离符合考核标准。本次分离的总运行时间为30分钟,在连续批量分析样品时,将面临着时间和成本管理的双重挑战。如果使用原始的美国药典方法, 8小时的一个工作日仅能分析16个样品,要消耗480mL溶剂。通过使用XP色谱柱,在同样的8小时工作日内可分析80个样品,且仅需使用240mL溶剂,显著地提高了样品通量并降低了运行成本。 在不同的系统上使用2.5&mu m XP色谱柱改进的标准方法具有通用性,同时仍符合美国药典章指南的要求,如图1所示。XP色谱柱是一款2.5-&mu m颗粒的HPLC和UPLC色谱柱,经高效填装并能够承受UHPLC系统的高压,使XP色谱柱在HPLC和UPLC仪器上均能使用。 本纪要的标准方法首先从最初的4.6 x 250 mm,5 &mu m色谱柱转换至4.6 x 150 mm,2.5 &mu mXP色谱柱,用以说明使用更小粒径的色谱柱可以缩短运行时间。使用更小的粒径还可以提高分离能力,用色谱柱长度与粒径的比值(L/dp)即可预测。在本例中,L/dp从50,000(初始条件)提高到60,000(4.6 x 150 mm XP色谱柱)。根据ACQUITY UPLC色谱柱计算器的计算,用于该XP色谱柱的最佳流速为2.0 mL/min3。但是,这个流速超出了美国药典章指南规定的变化范围。故采用1.0 mL/min的流速以保证符合美国药典指南的规定,同时也适应HPLC系统反压的限制。噻康唑及其有关物质在原始色谱柱上与在4.6 x 150 mm XP色谱柱上的分离进行了对比,如图2A-B所示。4.6 x 150 mm XP色谱柱将运行时间缩短43%,分离度提高5%,如图2所示。 接着使用一根更短的4.6 x 100 mm,2.5 &mu m XP色谱柱进行分离,用以说明在实现更快速分离的同时,仍保持着合格的分离度。运行时间的缩短对于有机杂质分析尤其有用归因于附加的分离复杂性,这些方法一般比其他方法具有较长的运行时间。需要注意的一个重要问题是,不一定任何时候都会选用具有较低分离能力(L/dp 40,000)的较短色谱柱。例如在辅料和杂质洗脱时间很接近的情况下可能需要保持原始的分离能力。图2C显示了使用4.6 x 100 mm,2.5&mu m XP色谱柱进行分离时,与初始条件相比,运行时间缩短57%,并且仍然符合所有的考核标准,如图2所示。在这种情况下,L/dp从50,000(初始条件)降低至40,000导致有关物质B与C之间的分离度降低15%;但分离度仍然符合要求,这取决于原始分离的复杂程度。 在UPLC仪器上使用XP色谱柱进行有机杂质分析 如图1所示,通过同时使用XP色谱柱和ACQUITY UPLC色谱柱计算器,该方法可以从Alliance HPLC系统转换至ACQUITY UPLC H-Class系统上。更新的仪器,例如ACQUITY UPLC H-Class系统,可以实现更快速、更高效的分离,归因于其高反压耐受能力、进样之间更快速的平衡以及显著降低的系统体积和扩散。为了对比HPLC和UPLC系统之间的分离能力,将图2B中所示的使用4.6 x 150 mm,2.5 &mu m颗粒的 XP色谱柱进行的有机杂质分析方法在ACQUITY UPLC H-Class系统上重新运行,如图3A所示。仅仪器本身的变化&mdash &mdash 从HPLC变到UPLC,会使B与C色谱峰之间的分离度增加5%,使运行时间缩短12%,如表2和表3所示。分离度的增大归因于UPLC系统的低系统体积和低扩散,因为这两个属性都可以改善峰形。 为进一步说明UPLC仪器的优点,如图3B所示在UPLC系统上使用4.6 x 100 mm XP色谱柱进行分离。此分离操作使B与C色谱峰之间的分离度从使用HPLC系统时的1.6(参见表2)提高到使用UPLC系统时的1.8(参见表3)。在UPLC系统上使用4.6 x 100 mm XP色谱柱,得到与在HPLC系统上用原始方法分离相同的分离度,但是比原始方法快57%。 最后,将标准方法转换至一根2.1 x 150 mm 2.5 &mu m XP色谱柱上。这根色谱柱的测试结果说明通过减小色谱柱的内径,在保留相同分离度的同时,还能进一步缩短运行时间,并且大大减少溶剂用量。根据ACQUITY UPLC色谱柱计算器的计算,适合这根色谱柱的流速为0.42 mL/min。但这个流速超出了美国药典章指南的要求,因此实验使用符合规定的0.5 mL/min流速。分析得到的色谱图(如图3C所示)显示,如表3所示与原始条件相比运行时间缩短80%,而适用性要求仍很容易达到。此外,仅仅通过减小色谱柱的内径分析就比使用4.6 x 150 mm XP色谱柱快63%,如图3A所示。最后,通过使用2.1 x 150 mm XP色谱柱,与原始的标准方法相比,溶剂用量减少90%,显著地节约了成本。当对流速进行调整,以保持在美国药典章指南规定的范围内时,B和C色谱峰的分离度从1.9下降至1.8,但仍符合考核标准。 结论 在进行既耗时又费钱的有机杂质分析时,在现有HPLC系统上使用eXtended Performance [XP] 2.5 &mu m色谱柱,与原始的美国药典方法相比,可以缩短运行时间和减少溶剂用量57%。通过将XP色谱柱与UPLC仪器相结合,运行时间可减少80%,溶剂用量可减少90%。既能在HPLC仪器上运行又能在UPLC仪器上运行的XP色谱柱的实用性可以用于在遵循现行美国药典章指南的同时,改进美国药典方法。在常规分析实验室中,使用经更小粒径色谱柱改进的美国药典方法,可以节约大量的时间和运行成本。 参考文献 1. USP General Chapter , USP35-NF30, 258. The United States Pharmacopeial Convention, official from August 1, 2012. 2. USP Monograph. Tioconazole, USP35-NF30, 4875. The United States Pharmacopeial Convention, official from August 1, 2012. 3. Jones MD, Alden P, Fountain KJ, Aubin A. Implementation of Methods Translation between Liquid Chromatography Instrumentation. Waters Application Note 720003721en. 2010 Sept.
  • 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办
    2010 年 9 月 15 日北京&mdash &mdash 沃特世公司的最品色谱柱技术与方法研讨会在京沪举办。研讨会主要详细介绍了 沃特世公司于今年 6 月向全球新推出的 ACQUITY CSH &trade 和 XSelect &trade HPLC 色谱柱。沃特世新一代的色谱柱 采用表面带电杂化颗粒( Charged Surface Hybrid )技术重新定义了最广泛的分离选择性和最佳的性能。新的色谱能提供沃特世有史以来最广泛的分离选择性,并当使用酸性、低离子强度的流动相时大大改善色谱分离的性能。 沃特世公司在 9 月 15 日和 9 月 17 分别在北京和上海举行 &ldquo 最新色谱柱技术与方法开发研讨会 &rdquo 。会上由沃特世总部市场经理 Eric S.Grumbach 进行 CSH 技术及其色谱柱相关介绍,并与中国用户分享了 UPLC 方法开发系统策略。籍此与业界的学者与科学工作者共享沃特世最新的色谱柱和方法开发解决方案,并展开了中国分离科学业界所关心的行业热点话题探讨,以助提高实验室工作效率。 新的 ACQUITY ® 超高效液相色谱( UPLC ® )和 HPLC 色谱柱,为从事方法开发科学家提供了更多不同的分离选择性。三种新的色谱柱可以在 UPLC 、 HP LC 和制备色谱之间以及不同粒径之间进行无缝的方法转换。新一代色谱柱提供 1.7 ( UPLC )、 3.5 和 5 &mu m ( HPLC )的颗粒,并且非常适合用于最新沃特世 ACQUITY UPLC ® H-Class 系统配合 S-Matrix ® 公司开发的 Fusion 方法研发&trade 软件进行 HPLC 和 UPLC 方法开发。 benwen : http://www.jssxkj.net
  • 叮!您有一份色谱柱维修报告,请注意查收!
    当您的色谱柱出现异常,您知道其中的原因和预防方案吗?今天小编就为您带来一份色谱柱的维修报告,让我们一起来看看反相液相色谱柱的常见污染现象,查找其中的原由,并学习多种可行的预防方案。01 填料污染异常表现:柱压变高,柱效变低,出峰峰形异常等。原因分析:1、中药类样品成分复杂,如前处理方式不当,则容易引起强保留成分积留在色谱柱入口端,导致色谱柱压力升高,柱效下降,峰形异常,或在色谱图中出现“鬼峰”。2、蛋白类样品积累:生物类样品易在柱头累积,导致柱压升高,柱效下降。3、其他:如胶状、絮状等样品通过过滤无法去除,也会积压在筛板和柱头端,引起柱压升高。4、流动相一次配置使用超过12小时变质,生成的絮状物导致色谱柱的污染。预防方案:1、中药等成分复杂的样品:开发合适的前处理方法,采用SPE小柱、萃取等方法,减少样品溶液中的易污染成分。2、蛋白类样品的积累:定期进行色谱柱的冲洗维护,推荐使用乙腈-水-三氟乙酸(50:50:0.1)作为洗脱试剂,低流速过夜冲洗。3、其他:如胶状、絮状等样品无法通过过滤去除,从而污染柱筛板和柱头的情况,建议最好在样品处理或方法工艺上去优化解决。4、使用保护柱,且在保护柱能力下降后,要及时地更换新的保护柱芯。柱压升高10%;柱效下降10%;分离度下降10%,均是需要更换保护柱芯的信号。5、对于检测复杂样品的色谱柱,建议定期按色谱柱说明书的异常再生方法进行色谱柱的再生维护,目的是定期去除柱头的强保留污染物质。6、12小时最长不超过24小时更换流动相以及储液瓶。02 填料板结异常表现:1、柱压升高,柱效低,峰形拖尾或前延等现象。2、色谱柱填料板结,打开色谱柱后,会发现,填料颜色不变,但填料成片状、块状、结晶等结块现象。原因分析:1、流动相配置时间过长,流动相长菌,或乙腈等有机相长时间放置产生絮状沉淀。2、如上述填料污染的原因中,样品成分复杂,容易被柱头端填料吸附,特别如样品中含有蛋白类物质,在柱头端填料进行富集,则易导致填料污染板结。3、其他:如胶状、絮状等样品通过过滤无法去除,样品进入色谱柱后积压在筛板和柱头端。预防方案:1、流动相按需配置,纯水流动相一次配置使用不超过24小时,其他含有有机相流动相一次使用不超过3天。2、检测复杂样品的色谱柱污染预防方案,可参见上文一中的填料污染预防。03 填料塌陷异常表现:一般会出现柱压高,柱效低,峰形拖尾或前延,出峰漂移等。此类损伤的色谱柱,异常再生或维修一般无法改善。原因分析:1、除了特殊说明,硅胶基质的色谱柱的长期使用pH范围是2-8,流动相或样品溶液的pH较高或较低,均会加快键合相的脱落和硅胶的破碎。2、柱温较高,加快了缓冲盐对硅胶基质的攻击,导致键合相脱落和填料塌陷。3、小基团键合相,本身的性质较易脱落,是属于正常的填料性质表现的现象。4、长期在高压条件下使用色谱柱等。预防方案:填料塌陷有两种填料异常的形式:键合相脱落和基质破碎。● 避免键合相脱落1、样品溶液和流动相的pH控制在长期适宜的使用范围内,样品溶液pH异常,使用保护柱,或者更换月旭LP(耐受pH≤2)系列或Xtimate 系列(耐受pH≥8)。2、根据色谱柱的键合相性质,选择合适的试剂作为流动相。如非极性键合相,避免使用非极性溶剂;中级性键合相,避免使用中等极性溶剂;极性键合相,避免使用极性溶剂。3、参考月旭液相色谱柱说明书中的存储条件。● 避免基质破碎1、除特殊说明,硅胶基质色谱柱使用的流动相和样品溶液pH不超过8。2、按照色谱柱说明书,选择适宜的柱温,避免高温。3、避免压力脉冲,高压等。需要注意,月旭的反相液相色谱柱一般建议正向使用,反接冲洗。但对于已经存在填料塌陷的色谱柱,不建议反接冲洗色谱柱,以免对色谱柱造成进一步的损伤。04 筛板堵塞异常表现:一般会出现柱压高,柱效低,峰形拖尾等。原因分析:1、使用的过滤膜材质不对或质量不好,引入了新的物质到流动相或样品中,导致筛板和填料污染。2、仪器系统长时间未经过彻底清洗。3、流动相中的缓冲盐和离子对试剂使用前后没有过渡和有效的冲洗,析出,堵塞筛板和填料。4、在梯度使用的过程中,有机相比例高于60%,变换速率过快,有缓冲盐析出。5、不当的运输引起的颗粒物脱落等堵塞筛板。预防方案:1、更换更加耐受、质量更好的过滤器材(请参考月旭微信公众号中关于过滤材质选择的文章)。2、泵后清洗溶剂和洗针溶剂定期更换,建议一周更换一次,仪器系统定期使用40度温水,有机溶剂等彻底清洗。3、色谱柱使用前后用过渡流动相过渡掉系统中高有机溶剂或者高盐相(参考月旭液相色谱柱说明书中新柱活化项下方法)。4、减缓流动相的变化速率,降低最高有机相的比例。5、新柱子严格按照说明书活化后使用,如活化时发现压力偏高,说明运输及保存过程中色谱柱保存溶液有损失,此时宜选用低流速过夜的方式活化色谱柱。如低流速过夜活化色谱柱后,压力依然偏高,则可能是不当运输引起了筛板堵塞,需要联系厂家寄回维修排查。
  • 【瑞士步琦】通过 SFC(超临界流体色谱)分离纯化甜叶菊提取物中甜菊苷的方法
    分离纯化甜叶菊提取物中甜菊苷甜菊糖苷(结构式见图1 (b))属于甜菊醇糖苷,甜菊糖苷是甜菊属植物的甜味来源。甜菊糖的增甜能力比蔗糖的甜度高许多倍,因此是一种糖的替代品。自 2011 年以来,甜菊糖苷已被欧盟批准为食品添加剂 E960。甜叶菊本身还没有被批准作为一种食品。本文介绍了一种使用 BUCHI Sepiatec SFC 设备从甜叶菊提取物当中分离得到甜菊糖苷的方法。分离过程所使用食品级CO2、乙醇和水作为添加剂。 1实验条件设备Sepiatec SFC-50色谱柱prep HPLC column Nucleodur Si 5um 250 x 4.0m流动相种类A=CO2(100%)B=乙醇/水(95/5)流动相条件0-2min:95%A/5%B2-25min:5-35%B25-31min:35%B样品200mg/mL 乙醇甜叶菊提取物以 95%A/5%B,4mL/min流速条件对色谱柱平衡 5min。通过自动进样器进样并开始运行分离程序,UV检测波长设定为 210nm,背压调节阀设定为 150bar,柱温箱温度为 40℃,得到如下分离图谱:▲ 图1:(a)甜叶菊提取物的纯化以及(b)对 24 号组分进行 HPLC 纯化分析 2结果与讨论图1(a)展示了甜叶菊提取物的色谱图,通过乙醇对甜叶菊进行提取得到了很多化合物,甜菊糖苷作为极性分子与色谱柱的极性固定相(Slica)发生了强烈的相互作用。因此,当流动相的整体梯度极性增加是,甜菊糖苷得以被洗脱。图1(a)表明其纯度非常高。除此之外,甜菊糖苷也是提取物中甜度最高的化合物,并且可从甜菊糖总甙中的甜菊双糖苷中分离得到。食品性质的物质提纯一般更偏向于使用乙醇。反相色谱所使用的典型溶剂甲醇或乙腈往往与食品特性不太符合的。由于流动相整体极性的增加,所以水作为添加剂可以有效改善待测分析物的峰型。 3结论使用制备型 SFC 可以有效地将甜菊糖苷从甜叶菊提取物中分离得到。通过 SFC 以及符合食品要求的溶剂可以对食品提取物进行纯化。
  • 液相色谱常见问题及处理方法
    液相色谱常见问题及处理方法 HPLC灵敏度不够的主要原因及解决办法 1、样品量不足,解决办法为增加样品量 2、样品未从柱子中流出。可根据样品的化学性质改变流动相或柱子 3、样品与检测器不匹配。根据样品化学性质调整波长或改换检测器 4、检测器衰减太多。调整衰减即可。 5、检测器时间常数太大。解决办法为降低时间参数 6、检测器池窗污染。解决办法为清洗池窗。 7、检测池中有气泡。解决办法为排气。 8、记录仪测压范围不当。调整电压范围即可。 9、流动相流量不合适。调整流速即可。 10、检测器与记录仪超出校正曲线。解决办法为检查记录仪与检测器,重作校正曲线。 为什么HPLC柱柱压过高 柱压过高是HPLC柱用户最常碰到的问题。其原因有多方面,而且常常并不是柱子本身的问题,您可按下面步骤检查问题的起因。 1、拆去保护预柱,看柱压是否还高,否则是保护柱的问题,若柱压仍高,再检查; 2、把色谱柱从仪器上取下,看压力是否下降,否则是管路堵塞,需清洗,若压力下降,再检查; 3、将柱子的进出口反过来接在仪器上,用10倍柱体积的流动相冲洗柱子,(此时不要连接检测器,以防固体颗粒进入流动池)。这时,如果柱压仍不下降,再检查; 4、更换柱子入口筛板,若柱压下降,说明您的溶剂或样品含有颗粒杂质,正是这些杂质将筛板堵塞引起压力上升。若柱压还高,请与厂商联系。 一般情况下,在进样器与保护柱之间接一个在线过滤器便可避免柱压过高的问题,SGE提供的Rheodyne 7315型过滤器就是解决这一问题的最佳选择。 液相色谱中峰出现拖尾或出现双峰的原因是什么? 1、筛板堵塞或柱失效,解决办法是反向冲洗柱子,替换筛板或更换柱子。 2、存在干扰峰,解决办法为使用较长的柱子,改换流动相或更换选择性好的柱子 如何解决HPLC进行分析时保留时间发生漂移或急速变化 漂移现象 1、温度控制不好,解决方法是采用恒温装置,保持柱温恒定 2、流动相发生变化,解决办法是防止流动相发生蒸发、反应等 3、柱子未平衡好,需对柱子进行更长时间的平衡 快速变化现象 1. 流速发生变化,解决办法是重新设定流速,使之保持稳定 2、泵中有气泡,可通过排气等操作将气泡赶出。 3、流动相不合适,解决办法为改换流动相或使流动相在控制室内进行适当混合 HPLC 仪器问题 1、 我的HPLC泵压明显的偏高,请问可能的原因? 答:流速设定过高;流动相或进样中有机械杂质,造成保护柱、柱前筛板或在线过滤器阻塞;流动相粘度过大;柱温过低;缓冲盐结晶;压力传感器故障。 2、 基线不稳,上下波动或漂移的原因是什么,如何解决? 答:a.流动相有溶解气体;用超声波脱气15-30分钟或用充氦气脱气   b.单向阀堵塞;取下单向阀,用超声波在纯水中超20分钟左右,去处堵塞物   c.泵密封损坏,造成压力波动;更换泵密封   d.系统存在漏液点;确定漏液位置并维修   f.柱后产生气泡;流通池出液口加负压调整器   g.检测器没有设定在最大吸收波长处;将波长调整至最大吸收波长处   h.柱平衡慢,特别是流动相发生变化时;用中等强度的溶剂进行冲洗,更改流动相时,在分析前用10-20倍体积的新流动相对柱子进行冲洗。 3、 接头处为何经常漏液,如何处理? 答:接头没有拧紧;拧松后再紧,手紧接头以手劲为限,不要使用工具,不锈钢接头先用手拧紧,再用专用扳手紧1/4-1/2圈,注意接头中的管路一定要通到底,否则会留下死体积。接头被污染或磨损;建议更换接头。接头不匹配,建议使用同一品牌的配件。 4、 进样阀漏液是如何造成的? 答:a.转子密封损坏;更换转子密封   b.定量环阻塞;清洗或更换定量环   c.进样口密封松动;调整松紧度   d.进样针头尺寸不合适,一般是过短;使用恰当的进样针(注意针头形状)   e.废液管中产生虹吸;清空废液管 谱图问题 1、 问:造成峰拖尾的原因是什么,如何消除? 答:a.筛板阻塞;反冲色谱柱、更换进口筛板   b.色谱柱塌陷;填充色谱柱   c.有干扰物质的存在;使用更长的色谱柱、改变流动相或更换色谱柱   e.流动相PH值不合适;调整PH值,对于碱性化合物,低PH值更有利于得到对称峰   f.样品与填料表面的溶化点发生反应;加入离子对试剂或碱性挥发性修饰剂或更改色谱柱 2、 问:造成峰分叉的原因是什么,如何消除? 答:保护柱或分析柱污染;取下保护柱再进行分析。如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。样品溶剂不溶于流动相;改变样品溶剂,如果可能采取流动相作为样品溶剂。 3、 问:K值增加时,拖尾更严重,这是为什么? 答:反相模式,二级保留效应;   a.加入三乙胺(或碱性样品)   b.加入乙酸(或酸性样品)   c.加入盐或缓冲剂(或离子化样品)   d.更换一支柱子 4、 问:保留时间的波动有几种可能的原因? 答:温控不当;调节好柱温。流动相组分变化;防止流动相蒸发、反应等,做梯度时尤其要注意流动相混合的均匀。色谱柱没有平衡;在每一次运行之前给予足够的时间平衡色谱柱。 液相色谱常用符号与术语表 ACN 乙腈 Acetonitrile AUFS 满量程的吸光度单位 Absorbance units, full scale As 峰不对称因子 B 二元流动相中的强溶剂;例如:反相HPLC的甲醇/水混合液中的甲醇 BSA 牛血清白蛋白(一种蛋白质) Bovine serum albumin CAF 咖啡因(中性溶质) Caffeine CRF 色谱响应因子 Chromatographic response function;色谱图总分离度的定量指标 dc 色谱柱内径(cm) DMOA 二甲基辛胺 Dimethyloctylamine DNB 2,4-二硝基甲酰(基) 2,4-Dinitrobenzoyl dp 色谱柱填料的粒度(cm) DRYLAB 液相资源公司(LC Resources INC.)的计算机模拟软件。DRYLAB I用于等度预测,DRYLAB G用于梯度预测 F 流动相的流速(ml/min) FC-113 1,1,2-三氟-1,2,2-三氯乙烷 GPC 凝胶渗透色谱法 Gel-permeation chromatography HA 酸性溶质,能电离出A- Hex 己烷 Hexane hr 二相邻谱带之间的谷高 HVA 高香草酸 Homovanillic acid h&rsquo 峰高 h1,h2 相邻谱峰1和谱峰2的峰高 IEC 离子交换色谱法 Ion-exchange chromatography IP 离子对 Ion-pair IPC 离子对色谱法 Ion-pair chromatography J 色谱峰强度参数 K&rsquo 所给谱峰的容量因子,k&rsquo =(tR-t0)/t0=tR&rsquo /t0,tR=t0(1+k&rsquo ) k 梯度洗脱过程中,某溶质的k&rsquo 的平均值或有效值 kw 以水做流动相k&rsquo 的外推值 k1,k2 相邻谱峰1和谱峰2的容量因子 L 色谱柱长度(cm) Lc 检测器流动池光路的长度(cm) M 溶质的分子量 MC 二氯甲烷 Methylene chloride MDST 混合设计统计技术 Mixture-design statistical technique;一种优化流动相的软件 MeOH 甲醇 Methanol MTBE 甲基叔丁醚 Methyl-t-butyl ether MW 溶质的分子量 N 色谱柱塔板数 NAPA N-乙酰普鲁卡因胺 N-Acetylprocainamide(碱性溶质) N0 检测器的基线噪音 ODS 十八烷基硅烷 Octadecylsilyl P 色谱柱的压力降[通常以巴(bar)表示,也用psi;另外,也用作柱极性参数 PA 普鲁卡因胺 Procainamide(碱性物质) PAH 聚芳香烃 Polyaromatic Hydrocarbon PESOS 优化流动相的计算机软件(美国Perkin-Elmer产品) pKa 溶质酸性常数的负对数;当pH=pKa时,溶质中有一半是电离的 Rk 保留值范围,Rk=(最末谱峰k&rsquo )/(最初谱峰k&rsquo ) RRM 相对分离度图(通常N=10000) Rs 相邻二谱峰的分离度 S 当流动相中的%B改变时,测量溶质保留值的变化速率的参数 SAL 水杨酸 Salicylic Acid SEC 尺寸排阻色谱法 Size-exclusion chromatography S/N 信噪比 Signal to noise ratio t 分离时间(min)(样品进样时t=0) tp 梯度系统的滞后时间(min) TBA 四丁基铵离子 Tetrabutylammonium ion TEA 三乙胺 Triethylamine THF 四氢呋喃 Tetrahydrofuran tk 在用于校正等度洗脱溶剂强度的流动相离开梯度混合器时,梯度洗脱的时间 TLC 薄层色谱法 Thin-layer chromatography TMA 四甲基铵 Tetramethylammonium(盐) TMS 三甲基硅烷 Trimethylsilyl t0 色谱柱的死时间(min) tR 溶质的保留时间(min) tG 梯度时间(min),即梯度开始至结束的时间 t1,t2 相邻谱峰1和谱峰2的保留时间(min) ti 色谱图中第一峰的保留时间(min) tf 色谱图中最末峰的保留时间(min) △tg tf-ti tx (tf-ti)/2 UV 紫外光 Vm 色谱柱的死体积(mL),Vm=t0F VMA 香草扁桃酸 Vanillymandelic acid wm 化合物的进样量 w1,w2 相邻谱峰1和谱峰2于半峰高处(W1/2)的宽度(min) W1,W2 相邻谱峰1和谱峰2的基线宽度(min) W1/2 半峰高处的谱带宽度 xd,xe,xn 溶剂选择参数,分别用于测定溶剂的酸度、碱度和偶极性的程度 ? 分离因子,?=k2/k1 △? 梯度洗脱期间流动相成分的变化 ?o 溶剂强度参数 ? 化合物的克分子吸收系数 ? 流动相的粘度(Pa?s) ? 流动相中强溶剂的体积份数%B 二元流动相中强溶剂的体积百分比(%v) 液相色谱法简介 气相色谱不能由色谱图直接给出未知物的定性结果,而必须由已知标准作对照定性。当无纯物质对照时,定性鉴定就很困难,这时需借助质谱、红外和化学法等配合。另外大多数金属盐类和热稳定性差的物质还不能分析。此缺点可高效液相色谱法来克服。在经典液相色谱的基础上,引入了气相色谱的理论与技术,在70年代初建立了高效液相色谱分析法(以HPLC表示)。在常压下操作的液相色谱,分离一个样品往往长达几小时至几十小时,因此工作效率很低。人们曾对这种经典液相色谱法试用了柱前加压或柱后减压的办法来提高流速,以缩短分离时间,但是结果失败了。根据液相色谱理论,因为随着载液(流动相)流速的提高,板高则增大,所以柱效会显着降低。随着生产技术的提高,人们制成了细小(10?m)而高效的填充物,从而使柱效大大提高。但是随着填充物粒度的减小,柱压降显着增大,为了得到合理的载液流速,使用了高压;输液泵,使流速达到1~10mL/min。从而使分析一个多组分样品只需几分钟到几十分钟时间。随着高效固定相、高压泵和高灵敏度检测器以及电子技术和计算机技术的应用,70年代以业逐步实现了液相色谱分析的高效、高速、高灵敏和自动化操作。因此人们常称它为高效液相色谱或现代液相色谱,以区别于经典液相色谱。高效液相色谱法的分类与经典液相色谱法一致。按固定相的聚集状态不同分为液固色谱法和液液色谱法。按分离原理不同分为吸附色谱、分配色谱、离子交换色谱和凝胶色谱法四类。 高效液相色谱所用基本概念: 保留值等色谱分析有关术语,以及分配系数、分配比、塔板高度、分离度、选择性等方面均与气相色谱相一致;高效液相色谱所用基本理论:塔板理论与速率理论也与气相色谱一致。因液相色谱以液体代替气相色谱中的气体作流动相,则速率议程H=A+B/?+C?。式中:纵向扩散项(分子扩散项)B/?对板高的影响与气相色谱不同,由于液相色谱中组分分子在流动相中的扩散系数Dm仅为气相色谱中的万分之一,因此纵向扩散项对板高的影响可以忽略不计。于是影响液相色谱的主要因素是传质项Cu。由图14&mdash 可知,气相色谱(GC)的流动相流速u增大时,板高H显着增大(即柱效显着降低),而液相色谱(LC)的流速增大时,板高增大不显着(即柱效降低不显着)。这说明高效液相色谱也有很高的分离效能,此外,气相色谱的载气权数种,其性质差别也不大,对分离效果影响也不大。而液相色谱的载液种类多,性质差别也大,对分离效果影响显着。因此流动相的选择很重要,并且在选择流动相对应注意以下几点:流动相对样品有适当的溶解度,但不与样品发生化学反应,也不与固定液互溶;流动相的纯度要高(至少分析纯)、粘度要小,以免带进杂质和组分在流动相中扩散系数下降;流动相应与所用检测器相匹配,不应对组分检测产生干扰作用。高效液相色谱不但具有高效、高速、高灵敏度的特点,还由于它的流动相(载液)种类比气相色谱的流动相(载气)多,因此可选用两种或多种不同比例的液体作流动相,从机时可提高选择性。此外,液相色谱的馏分比气相色谱易于收集。便于为红外、核磁等方法确定化合物结构提供纯样品。由于高效液相色谱法具有以上特点,它适于分离、分析沸点高、热稳定性差、分子量大(大于400)的气相色谱法不能或不易分析的许多有机物和一些无机物,而这些物质占化合物总数的75~80%。因此它已广泛用于核酸、蛋白质、氨基酸、维生素、糖类、脂类、甾类化合物、激素、生物碱、稠环芳烃、高聚物、金属螯合物、金属有机化合物以及多种无机盐类的分离和分析。但是,高效液相色谱的固定相的分离效率、检测器的检测范围以及灵敏度等方面,目前还不如气相色谱法。此外对于气体和易挥发物质的分析方面也远不如气相色谱法,因此高效液相色谱法和气相色谱法配合使用可互相取长补短,相辅相成。 1.分离原理 凝胶色谱,又称空间排阻色谱。它是利用某些凝胶对混合物各组分因分子量不同,其阻滞作用也不同而进行分离、分析的方法。凝胶色谱的分离要理和其它色谱法不同,它类似于分子筛的作用,但凝胶的孔径要比分子筛大得多,一般为几百至几千埃。色谱柱内填充具有一定大小孔穴的凝胶。当样品进入色谱柱后,不同大小的样品分子(图14&mdash 2中以黑点表示)随流动相沿凝胶颗粒(图14&mdash 2中以空心圈表示)外部间隙和凝胶孔穴旁流过,体积在的分子因不能渗透到凝胶孔穴里而得到排阻,因此较为顺利地通过凝胶柱而较早地被流动相冲洗出来。中等体积的分子产生部分渗透作用,小分子可渗透到凝胶孔穴里去而受阻滞,因有一个平衡过程而较晚地被流动相冲洗出来。这样,试样组分基本上按分子大小受到不同阻滞而先后流出色谱柱,从而实现分离目的。光凝胶色谱采用水溶液作流动相进,称为过滤凝胶色谱(HFC),而用有机溶剂为流动相时,称为凝胶渗透色谱(GPC)。 2.固定相 凝胶色谱的固定相凝胶,是含有大量液体(一般是水)的柔软而富于弹性的物质,是一种经过交联而具有立柱网状结构的多聚体。根据凝胶的交联程度和含水量的不同,分了软质、半硬质和硬质三种。软质凝胶(如葡聚糖凝胶、琼脂糖凝胶等)交联度低,膨胀度大,容量大,可压宿,不能用于高压(使用压力低于3.5kg/㎝2或更低),主要用于含水体系的常压凝胶色谱,半硬质凝胶(如苯乙烯一二乙烯基苯交联共聚凝胶),容量中等,渗透性较高,压力可用到70kg/㎝2。适用于非水溶剂流动相;硬质凝胶(如多孔硅胶、多也玻球等),膨胀度小,不可压缩,渗透性好,可耐高压,适于高流速下操作。 3.流动相 在凝胶色谱中,为提高分率效率,多采用低粘度、与样品折光指数相差大的流动相。常用的流动相有苯、甲苯、邻二氯苯、二氯甲烷、1,2一二氯乙烷、氯仿、水等。 高效液相色谱仪操作步骤: 1)、过滤流动相,根据需要选择不同的滤膜。 2)、对抽滤后的流动相进行超声脱气10-20分钟。 3)、打开HPLC工作站(包括计算机软件和色谱仪),连接好流动相管道,连接检测系统。 4)、进入HPLC控制界面主菜单,点击manual,进入手动菜单。 5)、有一段时间没用,或者换了新的流动相,需要先冲洗泵和进样阀。冲洗泵,直接在泵的出水口,用针头抽取。冲洗进样阀,需要在manual菜单下,先点击purge,再点击start,冲洗时速度不要超过10 ml/min。 6)、调节流量,初次使用新的流动相,可以先试一下压力,流速越大,压力越大,一般不要超过2000。点击injure,选用合适的流速,点击on,走基线,观察基线的情况。 7)、设计走样方法。点击file,选取select users and methods,可以选取现有的各种走样方法。若需建立一个新的方法,点击new method。选取需要的配件,包括进样阀,泵,检测器等,根据需要而不同。选完后,点击protocol。一个完整的走样方法需要包括:a.进样前的稳流,一般2-5分钟;b.基线归零;c.进样阀的loading-inject转换;d.走样时间,随不同的样品而不同。 8)、进样和进样后操作。选定走样方法,点击start。进样,所有的样品均需过滤。方法走完后,点击postrun,可记录数据和做标记等。全部样品走完后,再用上面的方法走一段基线,洗掉剩余物。 9)、关机时,先关计算机,再关液相色谱。 10)、填写登记本,由负责人签字。 注意事项: 1)、流动相均需色谱纯度,水用20M的去离子水。脱气后的流动相要小心振动尽量不引起气泡。 2)、柱子是非常脆弱的,第一次做的方法,先不要让液体过柱子。 3)、所有过柱子的液体均需严格的过滤。 4)、压力不能太大,最好不要超过2000 psi。
  • 环境领域多项最新标准发布!涉及色谱、质谱、光谱等多类仪器分析方法
    近日,为贯彻《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》,防治生态环境污染,改善生态环境质量,国家生态环境部连续发布多项环境领域标准,包括环境空气领域:环境空气颗粒物中甲酸、乙酸和乙二酸的测定离子色谱法 (HJ 1271—2022);环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法。水质领域:水质6种苯氧羧酸类除草剂和麦草畏的测定高效液相色谱法(HJ 1267—2022);水质甲基汞和乙基汞的测定液相色谱-原子荧光法(HJ 1268—2022)。土壤领域:土壤和沉积物甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)。仪器信息网摘录部分要点如下:1.环境空气 颗粒物中甲酸、乙酸和乙二酸的测定 离子色谱法 (HJ 1271—2022)本标准规定了测定环境空气颗粒物中甲酸、乙酸和乙二酸的离子色谱法,适用于环境空气和无组织排放监控点空气颗粒物中甲酸、乙酸和乙二酸的测定。其方法原理为环境空气颗粒物样品中的甲酸、乙酸和乙二酸经水超声提取、离子色谱柱分离后,用抑制型电导检测器检测。根据保留时间定性,峰面积或峰高定量。其中涉及到的仪器及设备包括:环境空气颗粒物采样器:性能和技术指标应符合 HJ 93 和 HJ/T 374 的规定;离子色谱仪:具有电导检测器、阴离子抑制器。若使用氢氧根淋洗液,需配有淋洗液在线发生装置或二元以上梯度泵;色谱柱:阴离子分析柱和保护柱,能实现对甲酸、乙酸和乙二酸的分离;滤膜盒:聚苯乙烯(PS)或聚四氟乙烯(PTFE)材质;样品管:聚乙烯(PE)、聚丙烯(PP)或聚四氟乙烯(PTFE)材质,容积≥100 ml,具螺旋盖;超声波清洗器:功率 400 W 以上,频率 40 kHz~60 kHz;注射器:1 ml~10 ml;水系微孔滤膜针筒过滤器:孔径 0.45 μm;以及一般实验室常用仪器和设备等。2. 环境空气 26 种多溴二苯醚的测定 高分辨气相色谱-高分辨质谱法 (HJ 1270—2022)本标准规定了测定环境空气中多溴二苯醚的高分辨气相色谱-高分辨质谱法。本标准适用于环境空气气相和颗粒相中BDE 7、BDE 15、BDE 17、BDE 28、BDE 47、BDE49、BDE 66、BDE 71、BDE 77、BDE 85、BDE 99、BDE 100、BDE 119、BDE 126、BDE 138、BDE153、BDE 154、BDE 156、BDE 175/183、BDE 184、BDE 191、BDE 196、BDE 197、BDE 206、BDE207和BDE 209 共 26 种多溴二苯醚的测定。其中涉及到的仪器及设备包括:高分辨气相色谱仪,需要配置低流失石英毛细管柱,一根为耐高温柱,柱长 15 m,内径0.25 mm,膜厚0.10μm;另一根柱长 30 m,内径 0.25 mm,膜厚 0.10 μm。固定相为 5%苯基 95%二甲基聚硅氧烷,或其他等效的低流失色谱柱;高分辨质谱仪,要求静态分辨率大于 8000,动态分辨率大于 6000;前处理装置等。3. 水质 6种苯氧羧酸类除草剂和麦草畏的测定 高效液相色谱法 (HJ 1267—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中 6 种苯氧羧酸类除草剂和麦草畏的高效液相色谱法,适用于地表水、地下水、生活污水、工业废水和海水中麦草畏(3,6-二氯-2-甲氧基苯甲酸)、2,4-滴(2,4-二氯苯氧乙酸)、2-甲-4-氯(2-甲基-4-氯苯氧乙酸)、2,4-滴丙酸(2-(2,4-二氯苯氧基)-丙酸)、2,4,5-涕(2,4,5-三氯苯氧乙酸)、2,4-滴丁酸(4-(2,4-二氯苯氧基)-丁酸)和2,4,5-涕丙酸(2-(2,4,5-三氯苯氧基)-丙酸)等 7 种除草剂的测定。其中涉及到的仪器及设备包括:高效液相色谱仪,要求耐压≥60 MPa,具紫外检测器或二极管阵列检测;器。色谱柱,要求填料粒径 2.7 µm,柱长 15 cm,内径 4.6 mm 的 C8反相色谱柱,或其他适用于酸性条件的等效色谱柱;浓缩装置;固相萃取装置;pH计等。4. 水质 甲基汞和乙基汞的测定 液相色谱-原子荧光法 (HJ 1268—2022)本标准规定了测定地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的液相色谱-原子荧光法,适用于于地表水、地下水、生活污水、工业废水和海水中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:液相色谱-原子荧光联用仪,由液相色谱系统、在线紫外消解装置及原子荧光光谱仪组成;色谱柱,要求填料粒径为 5 μm,柱长 15 cm,内径 4.6 mm 的 C18反相色谱柱,或其他等效色谱柱;汞空心阴极灯;分液漏斗等。5. 土壤和沉积物 甲基汞和乙基汞的测定 吹扫捕集/气相色谱-冷原子荧光光谱法 (HJ 1269—2022)本标准规定了测定土壤和沉积物中甲基汞和乙基汞的吹扫捕集/气相色谱-冷原子荧光光谱法,适用于土壤和沉积物中甲基汞和乙基汞的测定。其中涉及到的仪器及设备包括:全自动烷基汞分析仪,要求包括吹扫捕集装置、气相色谱仪、色谱柱、裂解装置和冷原子荧光光谱仪;真空冷冻干燥仪,要求空载真空度达13Pa以下;离心机,要求转速可调;恒温振荡器;涡旋振荡器;尼龙筛;离心管;进样瓶等。
  • 拓新产品架构 磐诺推出全二维气相色谱新品
    仪器信息网讯 近日,磐诺推出了全新全二维气相色谱产品GC1212,气相色谱家族再添一员,应用领域布局进一步完善。全二维气相色谱技术是一种多维色谱分离技术,利用两种极性不同的毛细管色谱柱,通过调制器串联形成二维气相色谱系统对样品组分进行分析。与常规一维气相色谱相比,全二维气相色谱具有分辨率高、峰容量大、灵敏度好、谱图分布规律性强等优点,是实现复杂样品分离鉴定的有力工具,在石油化工、环境、食品等领域有着很强的应用前景。常州磐诺仪器有限公司(以下简称:磐诺)是国内知名的色谱仪器厂家,一直专注于气相色谱及相关技术的研发和创新。为了深入了解该新产品,本网特别与磐诺就GC 1212全二维气相色谱仪产品相关话题进行了探讨。磐诺:着力推动全二维气相色谱普及化仪器信息网:请介绍磐诺推出全二维气相色谱产品的背景及其市场定位。磐诺:技术创新是一家科技企业,特别是仪器科技企业的灵魂和基石。对于气相色谱这项比较成熟的技术而言,是否能够再创新、在哪些方面进行创新、如何创新,是磐诺一直在考虑的问题。最近几年,全二维气相色谱技术凭借其远超常规一维色谱的分离能力,在石化、环境、食品、代谢等领域获得了越来越广泛的应用,被称为继毛细色谱柱以后气相色谱最具革命性的技术。但到目前为止,全二维技术还大多集中在高端科研实验室,在常规分析领域的渗透不足,在标准化方面的工作也缺乏亮点。更先进便利的分析工具亟待推广和应用,在市场广泛需求的推动、国家和行业政策的助力下,让技术转化为产品,产品服务于市场,进而真正惠及用户,是磐诺有责任也有能力去做的事。磐诺希望借助传统气相色谱技术的积累,能够为全二维色谱技术的推广贡献力量。全二维气相色谱产品GC1212磐诺作为国内领先的色谱厂家,依靠成熟的色谱研发、生产、市场和销售能力,再加上具有多年产品和应用开发的全二维技术专家团队,首次推出全新全二维气相色谱产品GC1212。要实现全二维技术的普及,就不能只聚焦于科研领域,我们希望能将该技术推广到常规应用实验室中,成为一种标准化的分析工具和手段。今后,我们将持续进行产品研发和升级,尽量减少客户的转换门槛,开发更多行业应用方案和前瞻性应用研究。并与相关的行业单位深度合作,建立示范合作点,共同推进方案和标准落地。另外,除了实验室色谱,磐诺全二维技术还可以整合到在线或便携式气相色谱产品中,进一步拓展产品线和应用场景。新品GC1212:一体化+专用软件仪器信息网:新品GC1212有哪些显著创新?磐诺:GC1212全二维气相色谱仪的创新主要有以下几点:第一、设备的整体性。之前几乎所有的全二维气相色谱都是在现有GC或GC-MS平台上加装一个全二维调制器来实现的,可以说,没有一家全二维厂家是基于自有GC产品,而现有的GC都只是为一维色谱分离而设计制造的,并没有考虑到全二维的功能需求。这样的组合产品在整体功能上就存在天生欠缺,最多只能做到信号通讯同步以及参数编辑整合。磐诺作为深耕GC技术的厂家,依托专精技术优势,可以更好地将全二维功能有机整合到GC平台中,从底层设计开始嵌入全二维模块,具有更好的功能兼容性和用户体验感。第二、在软件上实现了完全统一。使用一套软件实现仪器控制、状态监控、方法优化、数据采集和处理以及定制方案,不需要下载使用多套不同厂家的软件来编辑不同设备的对应设备方法;方法编辑更高效,错误率大大减少。软件还配有针对全二维气相色谱的流量计算和方法优化工具,方便用户进行系统配置和参数选择。在采集数据的同时,实时显示一维及全二维谱图,第一时间了解样品组成情况,方便提前进行计划调整和结果估算。第三、灵活定制方案。磐诺全二维GC产品主要针对科研及常规分析应用,对于某些专用分析需求,内置特定方法包:包括专用色谱柱系统、色谱参数方法、定制标样、定制化数据处理流程等,提供一整套完整的“交钥匙”解决方案。同时,对于科研用户,我们专业的技术团队提供从色谱柱配置、方法开发、数据处理到系统维护、方案定制等一系列全面的技术支持和服务。新手操作友好,对于初步接受全二维技术的用户,可以尽快上手使用,节省调试和方法开发,及数据处理的时间,以最快速度最小成本享受到全二维色谱技术带来的效果提升。着重石油化工等领域应用仪器信息网:磐诺的全二维气相色谱产品着力解决哪些实际应用问题?针对特殊领域应用是否推出新的解决方案?磐诺:全二维色谱主要解决复杂样品和复杂基质中的分离难题。我们推出的全二维GC产品也主要聚焦这个方向,特别在化工、环境和食品等行业推出针对性的分析方案,着力解决原有一维分析方案中分析时间长、需要大量预处理和预分离过程、以及设备要求高使用不便等问题。我们已经开发的方案包括:柴油中多环芳烃、航煤中烃组成、凝析油分析、蜡油及润滑油等重油中族组成和含氧化合物、环境中恶臭气体、食品中矿物油、香精香料等分析方案,也和国内一些分析机构进行合作,满足一些行业特定的分析需求。仪器信息网:对于新品的市场表现预期如何?磐诺:任何一种革命性的技术从开始出现到引领市场,都需要很长的一段时间,期间需要技术人员、配套材料、整体方案以及实际需求等各方面要素逐渐完善。我们现在习以为常的色谱技术,不管是毛细管色谱柱,还是色谱质谱联用,无一不是经过十几年甚至几十年的发展,才最终被市场接受。对于这款全二维GC新品,磐诺已做好充分准备,戒骄戒躁,砥砺前行,真正在产品设计和应用开发上下功夫,打造出具有国际领先水平的国产设备和自有方案。当然,我们也充满信心,在磐诺集团强大的研发生产和市场推广能力的保障下,同时得益于国家对高新技术的大力支持,以及各行业对国产新技术的旺盛需求,全二维GC产品会以比较快的速度推进,并得到客户和市场的认可。磐诺对新技术应用前景保有信心,未来全二维色谱系统会在相应应用领域分析工具数据中获得可观份额。
  • 视频回放丨“车内材料VOC检测和气味改善”主题研讨会
    导读热脱附气相色谱质谱联用TDS-GCMS如何分析车内VOC?什么是最新的车内气味改善提升解决方案?车内VOC和气味性研究中都存在着哪些分析技术?10月29日,哲斯泰(上海)贸易有限公司与我要测网成功举办了主题为“车内材料VOC检测和气味改善”的线上研讨会,会中三名检测行业专家为大家带来了汽车行业车内VOC的最新检测分析方法、针对于目前分析方法的优化方案以及如何改善车内气味的主题报告。汽车产品逐渐作为人们的日常生活用品,车内空气质量(VOC)已经成为消费者车辆质量评估的重要因素之一。降低或者减小车内VOC的有效方法之一是严格监管和把控车内零部件和材料的VOC释放量和气味。欲想了解更多的关于“车内材料VOC和气味改善”线上研讨会的内容,请看专家讲解重点和视频回放吧!https://www.woyaoce.cn/webinar/video_113789.htmlIntertek 天祥集团的刘娟 技术经理作了主题为热脱附-气相色谱质谱联用TDS-GCMS在汽车材料VOC分析中的应用的报告。刘娟老师为大家从VOC问题产生的背景、国内汽车VOC法规现状和主要车内VOC检测的方法三个方面作了分享。目前国内主要使用的是2011年发布的《车内空气质量评价指南》。现行车内VOC的主要测试方法有整车、部件气袋法、部件舱式法和材料热脱附法4种,测定单位会根据分析物质的不同选择不同的分析仪器,主要用到的仪器有TDS—GCMS和HPLC。刘娟老师从五个方面分析了部件袋式法和材料热脱附法测试的不同,并且在最后提到了TDS-GCMS在汽车气味溯源上的应用。https://www.woyaoce.cn/webinar/video_113790.html中汽研汽车检验中心(天津)有限公司的王焰孟项目经理作了主题为车内气味改善提升解决方案的报告。车内空气污染问题已成为第三大室内环境污染问题,“令人不愉快的气味“连续两年成为中国新车质量最严重的问题。王焰孟老师提到了国内外消费者对车内气味持有不同的态度。并根据车内气味产生的三个来源进行了气味管控方式的分析和气味提升的流程。王焰孟老师提到了关于气味测试人员的专业培训,依据中国汽车摩托车检测认证联盟团体标准《汽车气味评价员培训规范》,培训共有五个部分。https://www.woyaoce.cn/webinar/video_113791.html广州电计量检测股份有限公司的董佳业务总监作了主题为多种分析技术在高分子材料VOC与气味性质研究中的应用举例的报告。董佳老师主要通过例举广电的研究成果,为大家讲解了目前车内VOC和气味物质的分析技术,和广电针对目前技术的局限性,做出的解决方案。例如气味物质的采集和分析中,针对整车采集时,会产生在GCMS上看不到峰的情况,广电针对这一问题,提出了三个解决方案。并且交流了许多成功案例,如胶粘剂的VOC及气味品质的研究。干活满满,不容错过欢迎从事汽车材料VOC检测和气味改善工作的工程师和分析人员,以及从事高分子材料、日用品、玩具、室内家具装饰、包材等行业的朋友们观看。
  • 国家标准化管理委员会关于对《蜂蜜中高果糖淀粉糖浆测定方法 薄层色谱法》等322项国家标准复审结论进行公示的通知
    各有关单位:按照《国家标准化管理委员会关于开展推荐性国家标准复审工作的通知》(国标委发【2022】10号)要求,标准委已完成相关国家标准复审工作。现将《蜂蜜中高果糖淀粉糖浆测定方法 薄层色谱法》等322项复审结论为废止的项目进行公示。如对复审结论有不同意见,请于2023年5月9日前,登录征求意见公示网页 https://std.samr.gov.cn/gb/withdrawnReview,通过意见反馈功能,将意见反馈至标准委。国家标准化管理委员会2023年3月10日 322项国家标准复审结论清单.xls相关标准如下:序号标准号标准名称归口单位复审结论备注1GB/T 18932.2-2002蜂蜜中高果糖淀粉糖浆测定方法 薄层色谱法中华全国供销合作总社废止废止过渡期: 公告后6个月废止2GB/T 20574-2006蜂胶中总黄酮含量的测定方法 分光光度比色法中华全国供销合作总社废止废止过渡期: 公告后6个月废止3GB/T 21533-2008蜂蜜中淀粉糖浆的测定 离子色谱法中华全国供销合作总社废止废止过渡期: 公告后6个月废止4GB/T 23869-2009花粉中总汞的测定方法中华全国供销合作总社废止废止过渡期: 公告后6个月废止5GB/T 5099-1994钢质无缝气瓶全国气瓶标准化技术委员会废止废止过渡期: 公告后3个月废止6GB/T 17391-1998聚乙烯管材与管件热稳定性试验方法全国塑料制品标准化技术委员会废止废止过渡期: 公告后3个月废止7GB/T 13041-2005包装容器 菱镁砼箱全国包装标准化技术委员会废止废止过渡期: 公告后3个月废止8GB/T 16928-1997包装材料试验方法 透湿率全国包装标准化技术委员会废止废止过渡期: 公告后3个月废止9GB/T 21104-2007动物源性饲料中反刍动物源性成分(牛、羊、鹿)定性检测方法 PCR方法全国饲料工业标准化技术委员会废止废止过渡期: 公告即废止10GB/T 8381.4-2005配合饲料中 T-2 毒素的测定 薄层色谱法全国饲料工业标准化技术委员会废止废止过渡期: 公告后6个月废止11GB/T 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇的测定 薄层色谱法全国饲料工业标准化技术委员会废止废止过渡期: 公告后6个月废止12GB/T 36609-2018电子发票基础信息规范全国电子业务标准化技术委员会废止废止过渡期: 公告后12个月废止13GB/T 14624.5-1993油墨粘性检验方法全国油墨标准化技术委员会废止废止过渡期: 公告后1个月废止14GB/T 14624.6-1993油墨粘性增值检验方法全国油墨标准化技术委员会废止废止过渡期: 公告后1个月废止15GB/T 20437-2006硫丹乳油全国农药标准化技术委员会废止废止过渡期: 公告即废止16GB/T 20676-2006特丁硫磷颗粒剂全国农药标准化技术委员会废止废止过渡期: 公告即废止17GB/T 20677-2006特丁硫磷原药全国农药标准化技术委员会废止废止过渡期: 公告即废止18GB/T 9559-2003林丹全国农药标准化技术委员会废止废止过渡期: 公告即废止19GB/Z 30154-2013医学实验室 GB/T 22576-2008 实验室实施指南全国医用临床检验实验室和体外诊断系统标准化技术委员会废止废止过渡期: 公告后6个月废止20GB/T 15369-2004农林拖拉机和机械 安全技术要求 第3部分:拖拉机全国拖拉机标准化技术委员会废止废止过渡期: 公告即废止21GB/T 20949-2007农林轮式拖拉机 照明和灯光信号装置的安装规定全国拖拉机标准化技术委员会废止废止过渡期: 公告即废止22GB/T 3147-2006信息处理未穿孔纸带全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止23GB/T 5032-2002纸、纸板和纸浆表示性能的单位全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止24GB/T 8943.1-2008纸、纸板和纸浆 铜含量的测定全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止25GB/T 8943.2-2008纸、纸板和纸浆 铁含量的测定全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止26GB/T 8943.3-2008纸、纸板和纸浆 锰含量的测定全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止27GB/T 8943.4-2008纸、纸板和纸浆 钙、镁含量的测定全国造纸工业标准化技术委员会废止废止过渡期: 公告后6个月废止28GB/T 18654.15-2008养殖鱼类种质检验 第15部分:RAPD分析全国水产标准化技术委员会废止废止过渡期: 公告后6个月废止29GB/T 5009.45-2003水产品卫生标准的分析方法全国水产标准化技术委员会废止废止过渡期: 公告后6个月废止30GB/T 15805.7-2008鱼类检疫方法 第7部分:脑粘体虫全国水产标准化技术委员会废止废止过渡期: 公告后6个月废止31GB/T 27623.1-2011渔用抗菌药物药效试验技术规范 第1部分:常量肉汤稀释法药物敏感性试验全国水产标准化技术委员会废止废止过渡期: 公告后1个月废止32GB/T 27623.2-2011渔用抗菌药物药效试验技术规范 第2部分:人工感染防治试验全国水产标准化技术委员会废止废止过渡期: 公告后1个月废止33GB/T 21170-2007玻璃容器 铅、镉溶出量的测定方法全国玻璃仪器标准化技术委员会废止废止过渡期: 公告后6个月废止34GB/T 22333-2008日本乙型脑炎病毒反转录聚合酶链反应试验方法全国动物卫生标准化技术委员会废止废止过渡期: 公告即废止35GB/T 32945-2016牛结核病诊断 体外检测γ干扰素法全国动物卫生标准化技术委员会废止废止过渡期: 公告即废止36GB/Z 28598-2012电梯用于紧急疏散的研究全国电梯标准化技术委员会废止废止过渡期: 公告即废止37GB/T 18677-2002植物保护机械 风送喷雾机 喷头旋接螺母的尺寸全国农业机械标准化技术委员会废止废止过渡期: 公告即废止38GB/T 18679.1-2002农业液力喷雾机 数据表 第1部分:典型格式全国农业机械标准化技术委员会废止废止过渡期: 公告即废止39GB/T 18679.2-2002农业液力喷雾机 数据表 第2部分:零部件技术规范全国农业机械标准化技术委员会废止废止过渡期: 公告即废止40GB/T 19795.1-2005农业灌溉设备 旋转式喷头 第1部分:结构和运行要求全国农业机械标准化技术委员会废止废止过渡期: 公告即废止41GB/T 17121-1997防伪印油 第1部分:紫外激发荧光防伪渗透印油技术条件全国防伪标准化技术委员会废止废止过渡期: 公告后3个月废止42GB/T 21603-2008化学品急性经口毒性试验方法全国危险化学品管理标准化技术委员会废止废止过渡期: 公告即废止43GB/T 21768-2008化学品 体外哺乳动物细胞DNA损伤与修复/非程序性DNA合成试验方法全国危险化学品管理标准化技术委员会废止废止过渡期: 公告即废止44GB/T 21799-2008化学品 小鼠斑点试验方法全国危险化学品管理标准化技术委员会废止废止过渡期: 公告即废止45GB/T 21808-2008化学品 鱼类延长毒性14天试验全国危险化学品管理标准化技术委员会废止废止过渡期: 公告即废止46GB/T 21755-2008工业用途的化学产品 固体物质氧化性质的测定全国危险化学品管理标准化技术委员会废止废止过渡期: 公告后12个月废止47GB/T 21774-2008粉末涂料 烘烤条件的测定全国危险化学品管理标准化技术委员会废止废止过渡期: 公告即废止48GB/T 19940-2005粉状铬鞣剂 六价铬离子测定方法全国皮革工业标准化技术委员会废止废止过渡期: 公告后6个月废止49GB/T 18105-2000米类加工精度异色相差分染色检验法(IDS法)全国粮油标准化技术委员会废止废止过渡期: 公告后6个月废止50GB/T 21495-2008动植物油脂 具有顺,顺1,4-二烯结构的多不饱和脂肪酸的测定全国粮油标准化技术委员会废止废止过渡期: 公告即废止51GB/T 5515-2008粮油检验 粮食中粗纤维素含量测定 介质过滤法全国粮油标准化技术委员会废止废止过渡期: 公告后6个月废止52GB/T 8613-1999淀粉发酵工业用玉米全国粮油标准化技术委员会废止废止过渡期: 公告后6个月废止53GB/T 19562-2004大豆食心虫测报调查规范全国植物检疫标准化技术委员会废止废止过渡期: 公告即废止54GB/T 33126-2016胼胝拟毛刺线虫检疫鉴定方法全国植物检疫标准化技术委员会废止废止过渡期: 公告后6个月废止55GB/T 18006.2-1999一次性可降解餐饮具降解性能试验方法全国食品直接接触材料及制品标准化技术委员会废止废止过渡期: 公告后6个月废止56GB/T 31575-2015马铃薯商品薯质量追溯体系的建立与实施规程全国蔬菜标准化技术委员会废止废止过渡期: 公告即废止57GB/T 20401-2006畜禽肉食品绿色生产线资质条件商务部废止废止过渡期: 公告后3个月废止58GB/T 10547-1989柑桔储藏农业农村部废止废止过渡期: 公告后3个月废止59GB/T 12313-1990感官分析方法 风味剖面检验农业农村部废止废止过渡期: 公告后3个月废止60GB/T 12943-2007苹果无病毒母本树和苗木检疫规程农业农村部废止废止过渡期: 公告即废止61GB/T 14628-1993猪原鬃农业农村部废止废止过渡期: 公告后3个月废止62GB/T 15665-1995豆类 配糖氢氰酸含量的测定农业农村部废止废止过渡期: 公告后3个月废止63GB/T 15666-1995豆类试验方法农业农村部废止废止过渡期: 公告后3个月废止64GB/T 18526.5-2001熟畜禽肉类辐照杀菌工艺农业农村部废止废止过渡期: 公告即废止65GB/T 18526.6-2001糟制肉食品辐照杀菌工艺农业农村部废止废止过渡期: 公告即废止66GB/T 18526.7-2001冷却包装分割猪肉辐照杀菌工艺农业农村部废止废止过渡期: 公告即废止67GB/T 18527.1-2001苹果辐照保鲜工艺农业农村部废止废止过渡期: 公告后12个月废止68GB/T 22339-2008农、畜、水产品产地环境监测的登记、统计、评价与检索规范农业农村部废止废止过渡期: 公告后3个月废止69GB/T 28659-2012保护地沙窝萝卜栽培技术规范农业农村部废止废止过渡期: 公告即废止70GB/T 30355-2013龙舌兰剑麻综合利用导则农业农村部废止废止过渡期: 公告后3个月废止71GB/T 32778-2016胡椒废弃物综合利用导则农业农村部废止废止过渡期: 公告后3个月废止72GB/T 6195-1986水果、蔬菜维生素C含量测定法 (2,6-二氯靛酚滴定法)农业农村部废止废止过渡期: 公告后3个月废止73GB/T 7636-1987农村家用沼气管路设计规范农业农村部废止废止过渡期: 公告后3个月废止74GB/T 7637-1987农村家用沼气管路施工安装操作规程农业农村部废止废止过渡期: 公告即废止75GB/T 7740-2006天然肠衣农业农村部废止废止过渡期: 公告后6个月废止76GB/T 12331-1990有毒作业分级国家卫生健康委员会废止废止过渡期: 公告后6个月废止77GB/T 16138-1995放射性碘污染事故时碘化钾的使用导则国家卫生健康委员会废止废止过渡期: 公告后6个月废止78GB/T 16139-1995用于中子辐射防护的剂量转换系数国家卫生健康委员会废止废止过渡期: 公告后6个月废止79GB/T 16147-1995空气中氡浓度的闪烁瓶测量方法国家卫生健康委员会废止废止过渡期: 公告后6个月废止80GB/T 16286-1996食品中蔗糖的测定方法 酶-比色法国家卫生健康委员会废止废止过渡期: 公告后6个月废止81GB/T 16287-1996食品中淀粉的测定方法 酶-比色法国家卫生健康委员会废止废止过渡期: 公告后6个月废止82GB/T 18203-2000室内空气中溶血性链球菌卫生标准国家卫生健康委员会废止废止过渡期: 公告后6个月废止83GB/T 18468-2001室内空气中对二氯苯卫生标准国家卫生健康委员会废止废止过渡期: 公告后6个月废止84GB/T 20469-2006临床实验室设计总则国家卫生健康委员会废止废止过渡期: 公告后6个月废止85GB/T 23382-2009食品中丙酸钠、丙酸钙的测定 高效液相色谱法中国标准化研究院废止废止过渡期: 公告后6个月废止86GB/Z 32711-2016都市农业园区通用要求中国标准化研究院废止废止过渡期: 公告即废止
  • 【飞诺美色谱】母亲节 | 有一种爱,以“分离”为目的的无声告白
    左右滑动查看更多 ✦ &bull ✦ 同样以“分离”为目的,还有Biozen系列反相色谱柱,助力新型HER2靶向ADC药物质控,为乳腺癌带来希望✦ &bull ✦ 2023年2月24日,中国国家药品监督管理局官网最新公示,注射用德曲妥珠单抗已正式在中国获批上市。这款药物由阿斯利康和第一三共联合开发,科研代号DS-8201。截至目前,德曲妥珠单抗已在全球至少获批5项肿瘤适应证,包括两种乳腺癌。DS-8201由抗HER2人源化单克隆抗体与载药拓扑异构酶Ⅰ抑制剂DXd(payload)通过可裂解连接子(linker)组成,其DAR值达理论最大值8,具有避免耐药、特异性强、高细胞毒性和安全性良好的特点。对于ADC这类药物来说,DAR的测定是非常重要的关键质量属性。今天我们将为大家展示Biozen这种生物惰性的反相柱在这个重要检项上的应用案例。小分子毒素抗体比DAR(drug-to-antibody ratio)是ADC药物独特的重要质量属性,它代表抗体偶联小分子毒性药物的平均数量。DAR值分析常见的模式为HIC,该模式下根据分子疏水性逐渐增加的顺序洗脱。荷载小分子药物最多的分子由于疏水性最强最后洗脱,分离过程类似于反相色谱。但是随着ADC药物的payload不断发展,近期科研工作者发现对于偶联较强亲水性payload的ADC药物而言,不同荷载分子之间的疏水性差异不是特别明显,HIC模式下无法很好的分离不同载药数量的ADC分子。此时反相色谱就成为一种适合的替代方案,该方法特别适合基于半胱氨酸偶联的ADC。通过对ADC药物进行还原,使抗体还原为轻链和重链,含不同数量小分子载药数的轻链和重链依据载药数量从少到多依次洗脱。再通过计算各轻、重链的峰面积百分比,并结合每个峰偶联小分子药物的个数,计算加权平均DAR值。本案例使用Biozen的400&angst 孔径的WidePore C4色谱柱对DTT还原后的Trastuzumab-deruxtecan供试品进行分析,并计算其平均DAR值。01样品Trastuzumab-deruxtecan对照品购自第一三共,DAR值为8。用纯水稀释为浓度为1.0mg/mL;Trastuzumab-deruxtecan供试品,由客户慷慨赠送,先用纯水稀释为浓度为1.0mg/mL;再用1M DTT还原后上样。Trastuzumab购自MCE;先用纯水稀释为浓度为1.0mg/mL;再用1M DTT还原后上样。02色谱条件色谱柱:Biozen WidePore C4(2.6μm,400&angst ,150*4.6mm);P/N:00F-4786-E0流动相A:0.1%TFA水流动相B:0.1%TFA乙腈流速:0.5mL/min柱温:60℃波长:280nm进样量:10μL03结果与讨论通过对Trastuzumab-deruxtecan供试品,Trastuzumab单抗和Trastuzumab-deruxtecan对照品进行还原(100μg蛋白中加入5μL 1M DTT,37℃分别孵育半小时和一小时),我们可以在反相色谱上通过梯度优化,清晰的分离轻链和重链以及荷载不同小分子数量的轻重链。通过对峰面积进行加权计算,我们可以计算得供试品的平均DAR值为3.98。裸抗(蓝)、供试品(黑)和DS-8201(红)轻重链保留时间对比Tips:反相测DAR的方案,是正交于HIC方法的很好的补充。同时,这种方法可以直接上质谱进行表征,对于含偏亲水性payload的ADC来说,也能够得到比HIC更好的分离结果。本应用使用的Biozen WidePore C4采用核壳技术结合丁基的键合相,核壳的设计不仅可以大幅提高柱效,也可以减少蛋白与固定相的次级作用,改善蛋白回收率,峰形和残留的问题;三键键合工艺能够耐受90度的高温;Bio Ti生物惰性的钛合金柱硬件也最大程度的减少了对生物样品的干扰,保证分析结果的稳健可靠。Biozen WidePore C4pH范围:1.5-9.0**USP分类:L26孔径:400&angst &bull 完整蛋白与片段分析&bull 完整质量数测试&bull ADC药物抗体比(DAR值)Biozen Intact XB-C8pH范围:1.5-9.0**USP分类:L7孔径:200&angst &bull BioTi硬件与核壳硅胶颗粒帮助降低吸附,提升回收率&bull 较低背压下实现高柱效分离&bull 温度可达90℃当然,除了Biozen WidePore C4,稍长碳链的Biozen Intact XB-C8也是键合相互补的优选。特别是对于MMAE这类疏水性payload来说,可以优先尝试空间位阻填料工艺的Biozen Intact XB-C8。
  • 淀粉中凯氏氮标准测定方法的改善
    1.国际标准相关测定方法《ISO 3188-1978 淀粉及其衍生物氮含量测定滴定法》详细测定实验过程如下: 1.1原理在催化剂存在下,用硫酸裂解淀粉及其衍生物,然后碱化反应产物,并进行蒸馏使氨释放。同时用硼酸溶液收集,再用已标定的硫酸溶液滴定,得到硫酸体积耗用数即能转化成氮含量。1.2试剂和材料在测定过程中,只可使用分析纯的试剂和蒸馏水,或至少纯度相当的水。1.2.1 浓硫酸:96%(m/m)、ρ20为1.84g/mL。1.2.2氢氧化钠溶液:40%(m/m)、ρ20为1.43g/mL。1.2.3 硼酸溶液:20g/L。1.2.4催化剂:由97g硫酸钾和3g无水硫酸铜组成。1.2.5 硫酸:约0.02mol/L或0.1mol/L的标准溶液。1.2.6指示剂:由二份在50%(V/V)乙醇溶液中的中性甲基红、冷饱和溶液与一份在50%(V/V)乙醇溶液中浓度为0.25g/L亚甲蓝溶液混合而成。配制之后贮入棕色玻璃瓶内。1.3仪器和设备1.3.1 天平:感量为 1mg。1.3.2 定氮蒸馏装置。1.3.3 自动凯氏定氮仪。1.4分析步骤1.4.1试样处理:所测样品应充分混合,放在密封干燥的容器内。对葡萄糖浆,在混合前应先除去表层约5mm。对块状样品必须研磨,使之全部过筛,不留下剩余样品。1.4.2取样:样品量称取至多为10g样品,精确至0.0001g,然后倒入干燥凯氏烧瓶内,注意不要将样品沾在瓶颈内壁上。对粘状或糊状样品,则可用一个小玻璃盛器或不产生氮的铝片纸或塑料上称重,或氮含量已知的盛器,盛品留在瓶内,如盛器产生氮的话,应做空白测定后折算。1.4.3消煮:加入催化剂10g,并用量筒加入体积为4倍样品重量计算的毫升浓硫酸。轻轻摆动烧瓶,混合瓶内样品,直至团块消失,样品完全湿透,加入防沸物(如玻璃珠)。烧瓶放到消化架上,装上排气装置,开始加热裂解。小心加热液体,使之逐渐沸腾,待液体澄清后继续加热1小时。2.化验室试验方法(国标检测方法改善后测定方法)2.1仪器设备2.1.1分析天平2.1.2 JKZ10-恒温加热消煮炉(济南精密)2.1.3JK9870全自动凯氏定氮仪(济南精密)2.2试样处理:①、使用滴管称取约2g左右的淀粉样品,15ml浓硫酸,2g左右的催化剂(硫酸铜硫酸钾),静置半小时。②、放置于消煮炉上,正常升温至100℃(开始变黑)。③、100℃持续10分钟,升至150℃(完全变黑,并开始出现泡沫)。④、升温至200℃过程中,同时加入10滴30%的过氧化氢溶液。⑤、200℃稳定5分钟,加入10滴30%的过氧化氢溶液。⑥、升至250℃,同时加入10滴30%的过氧化氢溶液。⑦、稳定10分钟,升至300℃,同时加入5滴30%的过氧化氢溶液。⑧、稳定10分钟,升至400℃,同时加入5滴30%的过氧化氢溶液。⑨、间隔10分钟加入5滴30%的过氧化氢溶液,直至溶液中固体(黑色泡沫)完全溶解。 ⑩、等待溶液变为透明的蓝绿色时继续加热1小时。2.3测定:消解完之后将样品冷却至室温,即可使用凯氏定氮仪(济南精密 JK9870)测定凯氏氮含量,得到的氮含量乘以相对应的系数可得到蛋白质的含量。3.本化验室实验方法与国标方法的改善之处①. 消解过程使用消煮炉缓慢升温,控制消解过程炭化的黑色泡沫附着在管壁,以减小对测定结果的影响②. 消解过程加入双氧水来减弱炭化产生的泡沫,以加快消煮的效率 4.改善方法的解释与方法的论证数据4.1.消化过程控制升温速率以及加入双氧水加快消化速率样品当中含有大量的含碳化合物,故在消化时候加入浓硫酸以后加热时产生碳化,会有黑色泡沫出现,由于消煮炉配套使用的消化管管径相比于标准方法中定氮烧瓶较细,极易出现黑色泡沫附着在消化管管壁,导致样品的消化不完全。降低升温速率会减弱浓硫酸碳化样品的程度,减少黑色泡沫的出现,进而降低消化时的误差出现。而双氧水时氧化性极强的强氧化剂,能加速样品中有机物的氧化,从而进一步减弱碳化过程黑色泡沫的产生,致使样品的消化速率进一步提升,加速样品的消解,缩短样品的消化时间。以下表格是针对加入双氧水消化和未加双氧水消化的样品消化时间、氮含量测定结果的比对:序号重量g双氧水加入碳化黑色泡沫情况消化耗时氮含量%11.8882否严重4h0.036322.0153否严重4h0.035831.9067否严重4h0.035841.8384是明显减弱3.5h0.036351.7305是明显减弱3.5h0.037361.8376是明显减弱3.5h0.0372备注:滴定稀硫酸浓度0.0678mol/L 消解催化剂:15ml浓硫酸硫酸铜硫酸钾(1:10)混合指示剂2g上述数据说明消化过程加入双氧水对测定结果没有影响,能明显加快消解的速率,减弱碳化过程黑色泡沫的产生,从而避免了黑色泡沫附着在消化管管壁,进而减少了消化过程的误差,增加了实验结果的稳定性。5.改善方法实验数据的准确性论证为了验证改善优化后方法的准确性,选取了不同凯氏氮含量的淀粉分别使用优化后的方法(使用济南精密JK9870)和国标方法进行对比,对比数据如下表所示: 样品名称凯氏氮检测结果/%平均值偏差/%国标方法改善优化后方法样品10.0360.035两种方法的平均值偏差为0.42%样品20.0290.028样品30.0410.042样品40.0500.051样品50.0270.029样品60.0240.024样品70.0320.031由以上表格数据可以整理归纳出,改善优化(使用JK9870凯氏定氮仪)后的实验方法与国标方法检测结果偏差在0.5%以内,检测结果没有明显差异。6.使用凯氏定氮仪(济南精密 JK9870)与传统手工滴定法的对比论证使用凯氏定氮仪测定样品中蛋白质(凯氏氮)含量,更能与消煮炉的消化高效的结合起来,相比传统的手工滴定法结果更稳定,误差更小,尤其是待测样品数量较多时,凯氏定氮仪来测定更适合改善优化后实验方法。为了验证凯氏定氮仪的检测结果准确性,采用了同一样品相同的消解方法,消解完成后定容取等量体积的样品稀释液分别使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行样品蛋白质含量的检测。检测数据如下表所示:样品序号蛋白质检测结果/%JK9870法测试手工滴定法测试10.17810.179420.18190.181330.17750.176940.18630.183850.17630.176960.17860.1816上表数据可以看出使用凯氏定氮仪(济南精密 JK9870)和传统手工滴定法(国标方法)进行淀粉样品蛋白质含量的检测时检测结果的偏差微乎其微,检测结果没有明显差异,并且使用凯氏定氮仪(济南精密 JK9870)检测起来效率更高滴定更快,能够加快实验进程。采用改善优化后的化验室实验方法进行氮含量、蛋白质含量的检测时,双氧水催化剂的使用更能加快消煮的速度,更能减弱碳化现象,有效的促进了消煮淀粉样品,消化后的样品不需要定容即可直接使用凯氏定氮仪(济南精密 JK9870)测定,并且检测结果和国标方法对比无差异,准确度高,改善优化后的实验方法可作为淀粉凯氏氮含量、蛋白质含量检测的通用方法。7.改善优化后实验方法的要点淀粉类样品的凯氏氮、蛋白质含量检测,最重要的环节是淀粉样品消化过程,消煮过程控制好升温速率,适量加入双氧水来加快消煮能更好更快速的完成消煮实验。选择采用凯氏定氮仪(济南精密 JK9870)测定相比传统的标准方法测定更方便,加快实验的效率。
  • 液相色谱仪的使用方法介绍
    液相色谱仪的品牌、种类很多,各家的使用方法也不尽一样,主要看你是那一款的液相色谱仪,当初购买设备时,厂家的工程师会培训使用方法。高效液相色谱仪与结构仪器的联用是一个重要的发展方向。液相色谱-质谱连用技术受到普遍重视,如分析氨基甲酸酯农药和多核芳烃等;液相色谱-红外光谱连用也发展很快如在环境污染分析测定水中的烃类,海水中的不挥发烃类,使环境污染分析得到新的发展。液相色谱仪的使用方法:内容:1 开机1.1 打开电脑。1.2 打开液相色谱各个模块的电源。1.3 双击桌面“仪器—联机",进入联机界面。1.4 排气:1.4.1 手动旋开泵处冲洗阀(逆时针旋转约1圈)。1.4.2 右键单击“泵"图标区域,选择“方法̷"选项,进入泵编辑画面,设流速:5ml/min(一般为3-5ml/min),点击“确定"。1.4.3 右键单击“泵" 图标,点击“控制̷"选项,选中“ON",点击“确定",则系统开始冲洗,直到管线内(由溶剂瓶到泵入口)无气泡为止,(一般为5分钟),切换通道继续冲洗,直到所有要用通道无气泡为止。1.4.4 右键单击“泵" 图标,点击“方法̷"选项,设流速:0ml/min,手动旋紧冲洗阀。1.4.5 右键单击“泵"图标,点击“方法̷"选项,按照方法要求选择合适比例的流动相,设流速:1.0ml/min。1.4.6 同理右键单击“柱温箱",“检测器"图标,点击“方法̷"选项,按照方法的要求设置温度,波长,点击“控制" 选项,“ON"打开柱温箱和检测器。2 编辑方法2.1 点击“方法"-“编辑完整方法"开始编辑完整方法。2.2 选中除“数据分析 "外的三项,进入下一选项卡。2.3 方法信息:在“方法注释"中加入方法的信息(如:This is for test!)。进入下一选项卡。2.4 泵参数设定:在“流速"处输入流量, 如1.0ml/min,停止时间:如10 min(该停止时间仅为做一个样品需要的时间),按照要求选择合适比例的流动相配比,如乙腈:水=75:25,A为水,B为乙腈,则设置B:75%即可。进入下一选项卡。2.5 自动进样器参数设定: 选择“洗针进样"----可以输入进样体积和洗瓶位置,进入下一选项卡。2.6 柱温箱参数设定: 在“温度"下面的空白方框内输入所需温度,如:40度。进入下一选项卡。2.7 UV检测器参数设定: 在“波长"下方的空白处输入所需的检测波长,如254nm。点击确定。2.8 在“ 运行时选项表 "中,选中“ 数据采集",点击“确定"。2.9 从“方法"菜单,选中“方法另存为̷",输入一方法名,如“测试",点击“确定。3 单次采集3.1 从“运行控制"菜单中,选择“样品信息"选项,选择合适的路径,在“数据文件"中选择 “前缀/计数器",输入样品瓶的位置,点击“确定"。3.2 基线平稳后约10分钟,从“运行控制"菜单中选择“运行方法"。4 多次数据采集4.1 按照步骤2 编辑完整方法。4.2 点击“序列"-“序列表",输入“样品瓶"“样品名称",“进样次数",选择合适的“做样方法"4.3 点击“序列"-“序列参数",选择序列数据的保存路径(序列会自动生成以“序列名称-时间" 为名称的文件夹保存数据),数据建议以选择 “前缀/计数器"保存。4.4 从“序列"菜单,选中“序列另存为̷",输入一序列名,如“测试",点击“确定。4.5 从“运行控制"菜单中选择“运行序列"。5 数据分析(脱机状态使用)5.1 双击“仪器 —脱机"图标 进入的脱机画面。5.2 从“视图"菜单中,点击“数据分析"进入数据分析画面。5.3 从“文件"菜单选择“调用信号",选中您的数据文件名。点击“ 确定",则数据被调出。(如预建立标准曲线,应先打开浓度较低的标样图谱。)5.4 做谱图优化:从“图形"菜单中选择“信号选项"。从“范围" 中选择“满量程" 或“自动量程" 及合适的时间范围或选择“自定义量程" 调整。反复进行,直到图的比例合适为止。点击“ 确定"。6 积分:6.1 从“积分"菜单中选择“积分事件"选项,选择合适的“斜率灵敏度",“峰宽",“最小峰面积",“最小峰高"。点击 ,自动加载积分参数。6.2 点击左边“&radic "图标,将积分参数存入方法并退出“积分事件"。6.3 如积分结果不理想,则修改相应的积分参数,直到满意为止。7 标准曲线7.1 点击“校正"-“校正设置",输入“含量单位"。7.2 点击“校正"-“新建校正表",点击确定。输入“化合物名称"和“含量",点击“确定",按照提示删除其他组分。7.3 至此完成单级校正,如要增加校正级别,应从“文件"菜单选择“调用信号",选中您的数据文件名(第二个标样),点击“校正"-“添加级别",点击确定,输入“含量",依次增加校正级别。8 打印报告8.1 从“报告"菜单中选择“设定报告"选项,点击“定量结果"框中“定量"右侧的黑三角,选中“外标法",其它选项不变,点击“ 确定"。8.2 从“报告"菜单中选择“打印报告",则报告结果将打印到屏幕上,如想输出到打印机上,则点击“报告" 底部的“打印"钮。8.3 点击“文件"-“另存为"-“方法",把数据分析方法保存,下次分析可直接在“文件"-“调用"-“方法"下,将该方法调出使用。(调用的方法中含有积分方法,标准曲线方法和打印报告方法)9 关机9.1 关机前,先关紫外灯,用相应的溶剂(甲醇或乙腈)充分冲洗系统大约30分钟。(色谱柱最终应保存在甲醇或乙腈中)9.2 退出化学工作站,依提示关泵,及其它窗口,关闭计算机。9.3 关闭Agilent 1260各模块电源开关。10 其它注意事项10.1 当样品运行时,切勿打开自动进样器前遮盖,否则进样过程停止。10.2 系统发生漏液时,机器会检测到并停止进样,状态指示灯为红色。检查擦干并安置好漏液处,擦干漏液传感器,单击ON按钮,系统重新初始化。10.3 注意紫外灯使用寿命,切勿来回开关紫外灯。高效液相色谱法只要求样品能制成溶液,不受样品挥发性的限制,流动相可选择的范围宽,固定相的种类繁多,因而可以分离热不稳定和非挥发性的、离解的和非离解的以及各种分子量范围的物质。与试样预处理技术相配合,HPLC所达到的高分辨率和高灵敏度,使分离和同时测定性质上十分相近的物质成为可能,能够分离复杂相体中的微量成分。随着固定相的发展,有可能在充分保持生化物质活性的条件下完成其分离HPLC成为解决生化分析问题最有前途的方法。由于HPLC具有高分辨率、高灵敏度、速度快、色谱柱可反复利用,流出组分易收集等优点,因而被广泛应用到生物化学、食品分析、医药研究、环境分析、无机分析等各种领域。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • iCAP TQ:“上得厅堂,下得厨房”——访赛默飞中国区色谱和质谱业务高级商务运营总监李剑峰
    p   2017年8月19日,成都,赛默飞在“2017年中国质谱学会无机及同位素学术研讨会”召开期间举行了三重四极杆ICP-MS新品发布会。其实今年2月,赛默飞即发布了三重四极杆ICP-MS新品 iCAP TQ,而此次是iCAP TQ在国内的首次亮相。 /p p   ICP-MS中普及率最高、应用最广泛的仪器是单四极杆ICP-MS。不过,2012年推出了串联四极杆技术的ICP-MS仪器。串联四极杆技术具有强大的的干扰消除能力以及灵活分析能力,可以使用MRM功能精确控制进入碰撞/反应池内的离子,并在碰撞/反应池中进行精确的反应过程控制,从而能够有效地解决了传统ICPMS在使用反应性气体时因共存基体或元素易形成新的干扰离子或共存离子的问题,尤其适用于对复杂基质中易受多原子离子、双电荷离子、同质异位素干扰以及受相邻基体元素同位素拖尾影响的超痕量元素进行分析。 /p p   此次,赛默飞也推出了自己的三重四极杆ICP-MS新品 iCAP TQ。仪器信息网编辑就新品iCAP TQ的技术特点、目标应用领域,以及ICP-MS分析技术的应用热点、市场前景,以及技术发展趋势等问题采访了赛默飞中国区色谱和质谱业务高级商务运营总监李剑峰先生。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/c307c9e2-c06e-4538-b12a-44efd8e1bdb2.jpg" title=" 李剑锋.jpg" / /p p style=" text-align: center " 赛默飞中国区色谱和质谱业务高级商务运营总监李剑峰先生 /p p    strong span style=" color: rgb(32, 88, 103) " 仪器信息网:与市场上同类产品相比,iCAP TQ在硬件和软件上的技术特点? /span /strong /p p strong span style=" color: rgb(32, 88, 103) "   李剑峰: /span /strong 新品iCAP TQ保留了单四极杆ICP-MS产品iCAP RQ的一些优良设计理念,如具有90° 偏转和空间三维聚焦功能的离子偏转透镜(RAPID Lens),能够更好的消除混杂在样品离子束中的中性粒子及光子,同时对空间电荷效应带来的离子束展宽进行高效率的修复(压缩);具有专利技术的平面四极杆结构碰撞反应池(Flatapole Qcell),池体本身为四极杆设计,具有一定的质量数筛选功能,且平面四极杆结构可以有效提高池内离子束的通过效率,从而保证整机分析的灵敏度水平。这些都是比传统Ω透镜和八极杆池体更优的结构设计。 /p p   新品iCAP TQ是“三重四极杆”的ICP-MS,其在平面四极杆结构碰撞反应池前面新增加了第一重四极杆质量分析器(Q1);Q1的不同之处在于其还具有iMS功能,即可以根据被测元素及其所受到干扰情况的不同,智能设置Q1的分辨率水平,比如1amu或更宽一点的分辨水平,有效滤除样品基体、“净化”池内反应,有效消除干扰,提高了灵敏度。 /p p   在软件方面,iCAP TQ采用了最新的Qtegra2.8版本,增加了Reaction Finder功能,可以指导初次使用三重四极杆ICP-MS或者质谱理论基础较为薄弱的用户快速了解并选择最佳的样品分析模式,如:特定元素应该选择哪种气体进行干扰物的消除,以及分析过程如何选择内标物等。提高使用者方法开发的效率,简化样品分析的编辑流程,令iCAP TQ更加易学易用。 /p p    span style=" color: rgb(32, 88, 103) " strong 仪器信息网:赛默飞推出iCAP TQ的初衷、目标应用领域? /strong /span /p p span style=" color: rgb(32, 88, 103) " strong   李剑峰:三重四极杆ICP-MS技术的推出是为了能够更好的改善传统单四极杆ICP-MS所不能解决的复杂干扰消除的问题,诸如在合金、材料、半导体等应用领域。其实,我们的iCAP TQ ICP-MS产品依然能够在常规样品分析领域,如食品安全、环境检测等领域提供稳定可靠的检测保障。我们希望提供给客户的是一款兼具常规检测和复杂问题解决的产品。 /strong /span /p p    span style=" color: rgb(32, 88, 103) " strong 仪器信息网:对于三重四极杆ICP-MS,很多人认为其属于“价高面窄”的仪器产品,您如何看待这种说法?您认为其市场前景如何? /strong /span /p p span style=" color: rgb(32, 88, 103) " strong   李剑峰: /strong /span 就目前市场看来,相比传统单四极杆ICP-MS,三重四极杆ICP-MS确实售价会比较高,这源于新技术新产品的研发成本及其更优异的产品性能。 /p p   但对于“面窄”的看法我不太认同,就拿iCAP TQ举例,它具有两种分析模式:TQ模式(三重四极杆模式),在此模式下ICP-MS可很好的实现特殊样品基体中特定元素干扰的消除,以解决传统单四极杆ICP-MS所不能解决的问题;SQ模式(单四极杆模式),这种分析模式与传统单四极杆ICP-MS的检测完全相同,足以应对高通量实验室所进行的常规样品分析。应该说三重四极杆是“上得厅堂,下得厨房”,因此我认为三重四极杆ICP-MS的应用领域不是“面窄”而是“面宽”的,毕竟这样的ICP-MS更加“物有所值”。 /p p   三重四极杆ICP-MS的市场前景应该是很乐观的,毕竟目前ICP-MS技术已经大量用于元素的检测工作并且越来越多的国家标准支持此种分析手段,对于以往传统单四极杆ICP-MS所不擅长的复杂基质特殊元素分析而言,三重四极杆ICP-MS可以提供更好的解决方案。 /p p style=" line-height: 1.5em " strong    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 关于新品iCAP TQ以及三重四极杆ICP-MS的问题之后,接下来,编辑就ICP-MS分析技术的应用热点与市场前景,以及技术发展趋势等问题继续采访了李剑峰先生。 /span /strong /p p style=" line-height: 1.5em "    strong span style=" color: rgb(32, 88, 103) " 仪器信息网:您认为,未来中国市场对ICP-MS的需求主要来自哪些领域?其中赛默飞具有竞争优势的有哪些领域? /span /strong /p p strong span style=" color: rgb(32, 88, 103) "   李剑峰: /span /strong 目前越来越多的国家标准开始支持ICP-MS作为检测手段,如食品和药品领域。当然,传统的环境、地矿、生命科学、科研,甚至半导体领域对于ICP-MS的需求量仍然是很高的。 /p p   赛默飞的ICP-MS产品以基体耐受、干扰消除和突出的产品性能著称,在地矿行业有着大量的用户群,并在食品安全的领域同样有着优异的表现。 /p p    strong span style=" color: rgb(32, 88, 103) " 仪器信息网:ICP-MS的热点应用研究主要有哪些?其中赛默飞做了哪些工作? /span /strong /p p strong span style=" color: rgb(32, 88, 103) "   李剑峰 /span /strong :近些年借助ICP-MS进行的联用技术和纳米技术成为较为热门的应用研究方向。赛默飞依靠分析仪器行业最全产品线为依托,开发了大量的联用技术解决方案,帮助我们的用户更好的完成食品国标和新版药典的分析工作;并积极参与到欧洲Nanodefine EU项目中,开发可用于准确描述纳米材料特征的检测方法。 /p p    span style=" color: rgb(32, 88, 103) " strong 仪器信息网:您认为ICP-MS技术的发展趋势有哪些?针对这些发展趋势,赛默飞将会有哪些应对措施? /strong /span /p p span style=" color: rgb(32, 88, 103) " strong   李剑峰: /strong /span ICP-MS的后续发展方向可以从两个方面来看,1、与更多新技术的联用分析,如与激光器联用、场流纳米颗粒分析等;2、单机ICP-MS方面,则继续朝着提高基体耐受和干扰消除能力的方向发展。 /p p   赛默飞的应用团队正在努力与供应商及客户合作以争取开发出更多联用技术,而ICP-MS工厂则致力于进一步提升产品性能。 /p p    strong span style=" color: rgb(32, 88, 103) " 仪器信息网:您认为,与发展快速、应用广泛的有机质谱等分析技术相比,痕量元素分析技术AAS、ICP-AES、ICP-MS的未来市场前景如何? /span /strong /p p strong span style=" color: rgb(32, 88, 103) "   李剑峰: /span /strong 对于痕量元素分析技术未来的市场,应该从两个方面来考虑,首先是传统市场,随着社会的飞速发展,我们会发现现在的传统检测市场已经发生了很大的变化,越来越趋于常规检测,大量的第三方检测实验室的出现就是一个很好的证明。 /p p   现在人们越来越重视环境、食品、药品等与生活息息相关的行业检测,确保自己处于健康、安全、以及清洁的环境中。国家也相应出台了越来越严苛的法规,这些法规的出现使检测在全国范围铺开。过去只有大城市进行的检测,现在开始扩展到中小城市,像环境领域水、大气、土壤等的检测,土十条、气十条、水十条等法规出台后,以往只有大城市的环境监测站才配备的精密分析仪器,现在基本上在各个中小城市的环境监测站都需要配备,这对于分析仪器当然也包括痕量元素分析都会是很大的机遇。另外一方面,针对新兴的行业,随着检测要求的提高,需要我们用痕量元素分析来开发更多的方法。 /p p   赛默飞也积极与客户合作进行前沿的应用研究,如赛默飞作为唯一一家企业,积极参与到欧洲Nanodefine EU项目中,开发可用于准确描述纳米材料特征的检测方法及相关软件,在材料、半导体、石化、临床和生命科学等领域,我们也开发了大量的应用,这些都会使无机质谱及光谱有更多的应用前景。 /p p    span style=" color: rgb(32, 88, 103) " strong 仪器信息网:赛默飞有着最长的痕量元素分析产品线,如AAS、ICP-AES、ICP-MS、MC- ICP-MS、HR-ICP-MS,那么赛默飞是如何规划该系列产品线的发展的? /strong /span /p p span style=" color: rgb(32, 88, 103) " strong   李剑峰: /strong /span 前面提到传统行业的发展,其实对于仪器也提出了相应的要求,像第三方检测公司需要仪器更加稳定耐用;而随着检测行业的发展,操作人员对仪器的软件和硬件功能提出了更高的需求,往往是希望提供更加简化的方法开发流程以保证数据质量。赛默飞每年都会有大量的投入进行仪器研发来顺应市场的需求,如我们ICP-MS所用的QTEGRA软件,使用向导化的操作模式,分析参数自动优化,智能干扰消除模式让客户有更好的体验。 /p p   除了对于产品自身的改进以外,赛默飞也非常重视“应用”对于痕量元素分析仪器市场的扩展作用。赛默飞全面的产品线让我们能够为各行各业的客户提供综合解决方案。这在第三方检测领域就得到了很好的体现,最全的产品、最完整的应用让第三方检测公司对赛默飞青睐有加,我们才会在第三方检测市场快速增长。除了第三方检测市场,在其他的行业也突出了我们这一明显的优势,如针对现在的国家标准及法规要求,痕量元素分析产品线能够提供完美的联用技术,像前面提到的环境、食品、药品样品中涉及到的元素形态分析,我们提供的离子色谱、液相色谱与ICP-MS联用的技术,可以很好的解决砷、汞、铬等多种形态需求。 /p p style=" text-align: right "   采访编辑:刘丰秋 /p p br/ /p
  • 2020版药典专辑 液相色谱方法转换工具重磅上线
    0512高效液相色谱法“方法转换” 2015版与2020版药典中“色谱参数调整”比较2015年版《中国药典》0512通则规定:品种正文项下规定的色谱条件(参数),除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱内径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等可适当调整。 2020版药典全面增订“色谱参数允许调整的范围”,品种项下条件不再是固定的,本次增订内容提供了“使用不同粒径、内径色谱柱的液相色谱方法转换的操作准则”,用户可依据通则进行HPLC法向UHPLC法转换,可有效较少单针分析时间,提高分析通量,减少仪器用电耗能、人工成本、废液处理成本、试剂成本。注:表格来自《中国药典》2020年版四部 0512通则 可通过相关软件计算表中流速、进样体积和梯度洗脱程序的调整范围,并根据色谱峰分离情况进行微调。 岛津方法转换应对方案 面对标准变化和用户需求,岛津提供“方法转换工具”、超高效液相色谱仪、色谱柱整体解决方案助力用户应对方法转换。 岛津方法转换工具 岛津方法转换工具特点• 全中文界面,操作简便,既支持独立运行,亦可嵌入LabSolutions工作站运行,可兼容不同的岛津机型,产品系列、型号和产品图可视化。• 内置ChP(中国药典2020年版)计算公式,自动计算流速、进样体积、梯度洗脱程序;内置流速自定义输入框,如调整,软件自动同步计算调整后的梯度程序。• 内置梯度模式、混合器体积、最大进样体积、死体积及检测池体积选择项目,方便用户进行系统匹配。• 可实现梯度开始时间或梯度程序的调节,梯度表折线图及转换前后梯度叠加图显示可视化;速度提升倍数、节约溶剂量显示可视化,助力成本核算。• L/dP值自动计算,自动计算参考范围(0512通则色谱参数允许调整的范围),自动检查是否超范围与超出参考范围提示(红色标记,评价区文字提示)。• 仪器系统压力预测,自动提示是否超出型号耐压限值并给出提示,指导选择合适型号仪器与色谱柱可为仪器选型和色谱柱规格选择提供参考。 使用方法1点击初始方法和目标方法下对应系列按键,进入设置界面,选择转换前后的仪器型号,梯度模式和混合器体积。2先后输入当前HPLC使用色谱柱和计划转换后UHPLC使用色谱柱规格,需注意L/dp 值应在原有数值的-25%~+50%范围内。3左侧输入转换前HPLC色谱方法条件,软件自动计算转换后条件数值。4左侧梯度表输入当前HPLC梯度程序,右侧即会自动转换为UHPLC梯度。5评价区智能提示超限项目。 使用注意事项为获得良好方法转换效果及高匹配色谱图表现,建议使用同一品牌同一系列(如Shim-pack系列)或者性能相近的色谱柱。 对于梯度分析, 系统延迟体积对于分析影响较大,需要注意HPLC和UHPLC使用仪器混合器体积差异,并在软件设置模块输入相应参数。 不同LC平台选择和对应色谱柱选择岛津多系列HPLC可以满足用户不同分析需求,选择和 LC 液相系统更为匹配的色谱柱可以获得更高的分离效率,如下表格总结了针对不同的液相系统配置如何选择色谱柱。 应用案例 赤芍配方颗粒HPLC转化为UHPLC法 转换成UHPLC法后,分析效率提升至原来的3倍以上。转换成UHPLC法后,特征峰顺序、数量、RRT、相对峰面积均符合标准规定。 银杏叶提取物UHPLC法转化为HPLC法 转换前后,各色谱峰出峰顺序和个数保持一致,指纹图谱相似度均达到0.90以上。
  • 正相色谱,出峰漂移,月旭带你一探究竟!
    正相色谱是我们色谱分离中一种常用的分离模式。其分离原理是基于固定相的极性大于流动相,通过吸附作用,实现不同极性物质之间的分离。正相色谱的优势是可用于分离反相色谱不保留或极性较强的化合物,且适用于绝不溶于水的物质分离。但是正相色谱也有困扰我们的难题。经常会有老师在使用正相色谱柱时出现出峰保留时间漂移的情况,有些是使用的正相柱子,样品出峰不断地有前移的趋势,有些是新买的正相柱子分离样品保留时间和原有的旧柱子不一致等。这到底是怎么回事呢,出现这类保留时间漂移的问题又该如何解决呢?今天小旭就带大家一探究竟。首先我们简单介绍下正相色谱+➱ 定义:固定相的极性大于流动相,基于固液吸附的原理,分离不同极性的样品。➱ 洗脱顺序:极性低的物质先被洗脱出来。流动相的极性越强,洗脱能力也越强。➱ 常见的正相色谱柱有:硅胶柱,二醇基柱,氨基柱,氰基柱。➱ 常用的流动相:主要试剂:烷烃(戊烷,己烷,庚烷,辛烷),芳香烃(苯,甲苯,二甲苯),二氯甲烷,四氯化碳。辅助试剂:甲基-t-丁基醚(MTBE),乙醚,四氢呋喃(THF),乙酸乙酯,乙腈,丙酮等。正相色谱的优势是可用于分离反相色谱中不保留或极性较强的化合物,且适用于绝不溶于水的物质分离,还可用于拆分异构体。但正相色谱中,却易出现保留时间漂移的情况。这究竟是什么原因呢?原来正相色谱柱的固定相,特别是硅胶柱中未改性的裸硅胶,其中的硅醇基的极性特别强,其对流动相中甚至是实验环境中的水分含量非常敏感。而由于正相色谱中固定相的水分含量常常是个影响选择性的关键参数,流动相中的水分含量通常影响保留时间和分离度。我们知道大部分溶剂都含有小部分的溶解水,比如正己烷在20℃下,其水分含量是0.0111%w/w。因此正相色谱中出现保留时间波动较大的问题,大多可归因于固定相或流动相中水分含量的变化,而填料可能还是完好的。那么正相色谱中,出现这种固定相或者流动相中的水分含量影响物质保留时间的问题,该如何解决呢?小旭给大家分享两个解决方法:1、去除固定相上的水分用含2.5%二甲氧基丙烷(dimethoxypropane)和2.5%冰醋酸的正己烷冲洗色谱柱30个柱体积;2、使用水分含量可控的流动相(比如:用水半饱和)半饱和流动相配置方式:将无水的非极性流动相分成两半;其中一半中加入一定量水,并混匀搅拌约一小时,静置分层后,将多余的水相全部除去;将两部分非极性流动相重新混合在一起就配成了“半饱和”流动相。快来看一个案例吧~ ● ● ● ● ● ● ● ➱ 售后案例背景客户新买的Topsil® (拓谱)Silica硅胶柱,在做一个老项目时,目标化合物的保留时间出现了漂移。同时对比旧柱子上目标化合物的保留时间是在10min左右,而新柱子的目标化合物的保留时间却出现在了20min左右。色谱条件:色谱柱:月旭Topsil® Silica(4.6×250mm,5μm)。流动相:乙酸乙酯/正己烷/甲醇/正丙醇=60/40/2/1;检测波长:256nm;柱温:30℃;流速:1.0mL/min;进样量:100μL。➱ 售后排查月旭实验室对该项目进行了验证,发现的确在新柱子上目标化合物的保留时间与客户实验室的做样结果一致,在20min左右。继而月旭实验室对该方法流动相中的主要试剂乙酸乙酯和正己烷进行了水半饱和的操作,使用水半饱和的流动相重复了实验,样品中目标物的保留时间稳定在了14min左右,与客户实验室用旧柱子做样的保留时间基本一致。如下图。通过月旭实验室的排查验证,流动相用水半饱和的方法,完美解决了客户在应用正相色谱柱时出现目标峰保留时间漂移的问题。我们回访客户后,还有彩蛋哦~产品详情
  • 使用超高效合相色谱系统测定甲糖宁色谱含量
    使用超高效合相色谱(ACQUITY UPC2&trade )系统测定甲糖宁(tolbutmide)色谱含量 目的 利用沃特世(Waters® )ACQUITY UPC2&trade 系统,成功地将测定甲苯磺丁脲药物含量的美国药典正相HPLC方法转换为超临界流体色谱方法。 背景 超临界液体色谱(SFC)是一种正相色谱分离技术,其使用CO2作为主要流动相,通常使用极性溶剂(如MeOH)作为改性剂。由于SFC的原理与HPLC的原理相似,因此,目前的方法应该能够转换成SFC方法,从而减少溶剂的用量和处理,降低每次分析的成本,同时增强环境方面的保护。转换成SFC的色谱方法必须保持数据质量,而且必须得到与目前正相色谱方法一致的实验结果。目前,美国药典(USP)规定了含有甲糖宁(苯磺酰胺,CAS # 64-77-7)药物的正相HPLC方法。利用4.0 x 300 mm的硅胶柱(L3)进行等度分离,流速1.5mL/min,流动相为475:475:20:15:9的正己烷:水饱和的正己烷溶液:四氢呋喃:冰醋酸的混合溶液,运行时间约为20分钟。如大多数药典中的方法一样,本方法经过验证且可靠。但是,分析过程使用了含有正己烷和四氢呋喃的复杂流动相混合溶剂。出于环保和成本的原因,许多实验室都希望杜绝这些溶剂的使用。 这种新型的超高效合相色谱(UPC2&trade )方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法10倍,且消耗的溶剂更少。 解决方案 将甲糖宁与内标物甲糖宁混合,利用目前USP方法制备和分析样品。分析结果与使用ACQUITY UPC2方法得到的结果进行对比。UPC2方法的条件如下: 色谱柱: ACQUITY UPC2 BEH,3.0 x 100 mm,1.7微米 温 度: 50 ° C 流动相: 95% CO2:5%甲醇/异丙醇 (1:1),含 0.2% TFA 流 速: 2.5 mL/min 背 压: 120 Bar/1740 psi 检测器: UV /PDA ,254 nm 目前的正相HPLC方法,获得仍可接受的色谱分离(见图1),虽然内标物色谱峰拖尾严重(拖尾因子1.65)。由于已经通过了所列出的适应性标准(重复进样的相对标准偏差不超过2.0%;妥拉磺脲和甲糖宁的分离度R不小于2.0),因此也没有再作进一步的改进。 由新开发的UPC2方法得到的结果,同样符合美国药典适应性的要求(甲糖宁和妥拉磺脲的保留时间RSD值分别为1.2%和0.9%,两个化合物的面积RSD值小于0.90%,n=6),保持两个目标化合物间分离度(R = ~15)的同时,运行时间大大缩短。内标物妥拉磺脲拖尾现象得到大大改善(拖尾因子1.2)。需要注意的是,利用UPC2从混合物中分离并检测出许多小峰,说明了本方法具有很高的分离效率。本例中,每次正相HPLC分析大约使用29mL正己烷和各少于1mL的四氢呋喃和乙醇。相比之下,UPC2方法中每次进样大约使用0.25mL的甲醇和异丙醇。这说明,通过将正相HPLC方法转换为UPC2方法,可以大大地减少有机溶液的使用。根据目前的溶剂价格,每次正相HPLC分析的成本大约是1.40美元,而每次UPC2分析的成本大约是0.01美元,说明通过将正相HPLC方法转换为UPC2方法可以大大地降低成本。 总结 使用ACQUITY UPC2,可以成功地将美国药典的HPLC方法转换为UPC2方法。这种新的UPC2方法得到的数据与目前的HPLC方法相当,甚至更好,速度是目前的HPLC方法的10倍,并且消耗的溶剂更少。我们以更快的速度得到高品质的分析数据,使实验室生产率提高,每个样本的分析成本降低。对于希望将目前的正相HPLC方法转化为更高效、更省钱方法的实验室而言,ACQUITY UPC2系统是一种理想的解决方案,同时也增强了健康、安全和环境方面的保护。 关于沃特世公司 (www.waters.com) 50多年来,沃特世公司(NYSE:WAT)通过提供实用和可持续的创新,使医疗服务、环境管理、食品安全和全球水质监测领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2011年沃特世公司拥有18.5亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。 # # # 联系方式: 叶晓晨 沃特世科技(上海)有限公司 市场服务部 xiao_chen_ye@waters.com 周瑞琳(GraceChow) 泰信策略(PMC) 020-83569288 13602845427 grace.chow@pmc.com.cn
  • 国标委发布《液相色谱-串联四极质谱仪性能的测定方法》
    p   近日,中国国家标准化管理委员会(以下简称“国标委”)发布了《液相色谱-串联四极质谱仪性能的测定方法》(GB/T 35410-2017)。该国家标准收录在2017年第32号中国国家标准公告中,将于2018年4月1日开始实施。该标准由国家科技部提出,由全国仪器分析测试标准化技术委员会归口,起草单位是中国计量科学研究院。该国家标准规定了液相色谱-串联四极质谱仪性能的测试方法,适用于液相色谱-串联四极质谱仪性能的测定。 /p p   液相色谱-串联四极质谱仪作为最有代表性的液质联用类型,广泛应用于食品、药品、环境、化工、临床、科研等领域,几乎覆盖了国计民生的方方面面。2017年,我国采购的液相色谱-串联四极质谱仪总量超过1000台,总金额约在15亿元到20亿元之间。目前,我国尚不具备成熟的液质联用仪生产能力,主要靠进口。目前市场上液相色谱-串联四极质谱仪的主流品牌多达6-7家,型号更是繁多,普通购买者没有办法快速、直观地了解每台仪器的性能。该国家标准的出台,树立了统一的仪器性能评价标准,有助于对不同品牌、型号的仪器参比和行业秩序的改善。也有助于产品研发时做技术评价。 /p p   以下为详细内容: /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/af6ed2c7-e8f2-470b-9180-eb99b0524345.jpg" / /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/58d4dc6c-ab53-4103-8f85-fd48c087b70f.jpg" / /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/24221c45-5fc7-4bed-b312-0a69a09faa2c.jpg" / /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/f964ef2a-20dd-4d78-beac-f731bc80c31b.jpg" / /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/08c8b517-2f26-4fd1-a9eb-054d25726dce.jpg" / /p p style=" text-align: center " img title=" 6.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/ae24f678-f960-4857-ac1c-7dd48d9120d2.jpg" / /p p style=" text-align: center " img title=" 7.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/6a3ab0ba-b277-4223-ae59-ee52e3a805db.jpg" / /p p style=" text-align: center " img title=" 8.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/be3d71db-c9d1-470f-9149-4c3e59d88903.jpg" / /p p style=" text-align: center " img title=" 9.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/c43bdbe4-c1ec-4cac-ae10-417de969f087.jpg" / /p p style=" text-align: center " img title=" 10.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/5e313558-c4e7-4a0e-bd83-e55ad4ad9c32.jpg" / /p p style=" text-align: center " img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/e31d5ee4-5c7f-4ff7-8ae8-48c37d367d18.jpg" / /p p style=" text-align: center " img title=" 12.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/123a16aa-0fe7-4cea-8786-978f27a1bed9.jpg" / /p p style=" text-align: center " img title=" 13.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a9ced1d6-daf3-4ee0-8785-7f2d429b8854.jpg" / /p p style=" text-align: center " img title=" 14.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/7c7fa875-c1ad-4fbb-8475-c5906e716abd.jpg" / /p p style=" text-align: center " img title=" 15.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/a3d3db76-be08-4ee8-9f39-610365556be5.jpg" / /p p style=" text-align: center " img title=" 16.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/5b540a6e-10ae-445d-9fca-0454db325b47.jpg" / /p p style=" text-align: center " img title=" 17.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/6c069050-b89f-41b3-bdd0-cdaeef4dabb0.jpg" / /p p style=" text-align: center " img title=" 18.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/7beda184-1662-4813-89e8-ce21754b6ae8.jpg" / /p p style=" text-align: center " img title=" 19.jpg" src=" http://img1.17img.cn/17img/images/201801/insimg/281cbaaa-e0b4-49ec-bee4-dd80f133f1eb.jpg" / /p
  • 【飞诺美色谱】食用油中 16 种多环芳烃的分析方法
    摘要:本实验建立了食用油中 16 种多环芳烃的前处理方法,采用 Cleanert® PAHs-MIP 小柱结合气相色谱串联质谱的检测方法,对食用油中的多环芳烃进行了测定。样品经环己烷溶解,Cleanert® PAHs-MIP 小柱净化,二氯甲烷洗脱, DA-5MS 气相色谱柱进行检测,外标法定量。结果表明,当多环芳烃加标量为 0.1 mg/kg 时,回收率在 80% ~ 150%之间,能够满足检测要求。关键词:食用油;多环芳烃;Cleanert® PAHs-MIP;DA-5MS样品信息表 1. 16 种多环芳烃样品信息实验部分仪器、试剂与材料主要仪器设备气相色谱串联质谱仪(GC-MS);卓睿全自动固相萃取仪。试剂材料二氯甲烷为农残级;环己烷、正己烷均为色谱纯;16 种多环芳烃混合标准溶液;Cleanert® PAHs-MIP 固相萃取小柱(玻璃柱):1000 mg/6 mL。样品制备样品提取称取植物油样品 0.5 g,加入 3 mL 环己烷溶解,作为待净化液。样品净化将 Cleanert® PAHs-MIP 小柱依次用 5 mL 二氯甲烷,5 mL 环己烷活化平衡,将上述待净化液全部上样于小柱上,弃去流出液,用 4 mL 环己烷洗涤小柱,弃去流出液,将小柱抽干,再用 10mL 二氯甲烷洗脱小柱,收集流出液,于35℃下氮吹至近干,用正己烷定容至 1 mL,待检测。以上净化步骤可用卓睿全自动固相萃取仪完成。实验条件色谱条件色谱柱:DA-5MS 色谱柱,30 m × 0.25 mm × 0.25 µ m;进样口温度:280℃;柱温:初温 45℃,保持 1 min,然后以 10℃/min 升至 180℃,保持 1min,再以 10℃/min 升至 250℃,保持 2 min,再以 5℃/min 升至 285℃,保持2 min,再以 10℃/min 升至 320℃,保持 1 min,最后以 10℃/min 升至 345℃。载气:氦气,纯度≥99.999%流速:1 mL/min;电离方式:EI源。进样方式:不分流进样;样量:1 µ L;质谱参数表 2. 16 种多环芳烃 SIM 参数实验结果由表 3 可知,采用固相萃取结合 GC-MS 的方法检测食用油中 16 种多环芳烃,加标回收率在 80% ~ 150%之间,能够满足检测要求。由图 1 ~ 图 3 可知,用 DA-5MS 检测 16 种多环芳烃,分离度和峰形良好,且保留时间稳定。表 3. 食用中多环芳烃加标回收实验结果(添加水平 0.04 mg/kg)实验谱图图 1. 0.05 µ g/mL 16 种多环芳烃气质谱图图 2. 植物油样品基质空白谱图图 3. 0.1 mg/kg 植物油加标气质谱图结论本实验建立了植物油中 16 种多环芳烃的前处理方法,用 Cleanert® PAHs-MIP 小柱结合高效液相色谱对加标量为 0.1 mg/kg 的样品进行了测定,加标回收率均在 80% ~ 150%之间,可以满足检测要求,且净化效果良好。说明 Cleanert® PAHs-MIP 可以用于检测植物油中多环芳烃。附:相关产品
  • 张承青电镜实验室环境约稿[5]:几种改善电磁环境方法比较
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之五,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之五 几种改善电磁环境方法比较被动式低频电磁屏蔽根据屏蔽材料不同主要分为两种:一种是使用高导磁材料(如钢、硅钢、玻莫合金等),另一种是使用高导电材料(如铜、铝等材料),虽然两种方法的工作机理截然不同,但是均可达到较好的减弱环境磁场干扰效果。A.使用高导磁材料(以下简称磁路分流法)的理论依据是:使用高导磁材料将一个有限空间A全维度包裹起来,在环境磁场强度为Ho时,由于高导磁材料的磁阻远远小于空气(普通Q195钢板磁导为4000,硅钢为8000~12000,玻莫合金为24000,空气为近似1),借用欧姆定律可以知道,当Rs远小于Ro时,Hi将远小于Ho。磁力线被低磁阻材料分流,有限空间A内的磁场强度下降到Hi,达到消磁效果(参见图一和图二。其中Ri为A空间的空气磁阻,Rs为屏蔽体的磁阻)。屏材内部的磁畴在磁场作用下产生振动,将部分磁能以热量的形式耗散。由于硅钢和玻莫合金都存在导磁率各向异性、施工时不能敲击和折弯及焊接等特点(虽然说起来可以通过热处理改善,但实际上面对这样大型的固定式产品,实际上无法操作,办不到啊),所以它们实际效能要大大打一个折扣!不过在某些特殊部位,不需要敲击折弯和焊接的情况下,做补充或加强还是可以的。),且价格昂贵,所以在电镜磁屏蔽中一般不会用于屏蔽体大量应用,仅少量用于特殊部位(如门缝、波导口等)补充加强。磁路分流法的屏效与屏材厚度大致成线性相关,理论上可以做到无限小。B.使用高导电材料(以下简称感生磁场法)的理论依据是:使用高导电材料将一个有限空间全维度包裹起来,环境磁场以其电场分量作用于屏蔽体,产生感生电动势,进而产生感生电流以及感生磁场。从电磁学基本原理可知,这个感生磁场与原有磁场大小相同(由于存在电阻,所以会略小一点)、方向相反(由于存在相位差,所以相位略有滞后),这样有限空间内的磁场被抵消,强度下降,达到消磁效果。感生磁场法的屏效与屏材厚度在一定范围区间内无关。C.两种方法的共同之处:拼接焊缝需要全满焊、焊缝高度不得低于屏蔽体母材厚度;必须注意各种尺度的开口及波导口设计。设计/制作是否成功,将严重影响屏效(适用木桶短板理论)。另外还需注意,屏蔽室內电镜位置的震动不得大于周边环境(曾经多次检测到磁场合格了,震动却反而比原来更大造成超标)。从它们的基本工作原理可以看出(磁畴在DC磁场下不会振动以产生热能的形式消耗磁场能量;DC磁场也不能产生感生反向电动势),磁路分流法和感生磁场法对DC完全无效。对near DC也基本无效(必要时还是要配备一套主动式消磁器改善near DC电磁干扰)。D.简单列个表格比较一下吧(相同部分就不说了):优 点缺 点磁路分流法成本低,屏效可调(理论上无限)重量较大施工制作方便施工制作难度略大感生磁场法重量较轻(铝)使用有色金属材料基本机理决定屏效有限总体来说,还是磁路分流法略微占优。据本人非准确统计,国内现有磁屏蔽约400~600个,其中大多数是磁路分流法,感生磁场法估计约十分之一二。主动式低频消磁器在本系列之四《主动式低频消磁系统》中介绍过了,这里就不重复了,直接比较一下吧。与制作重量大、工期长、额外占用空间和成本高的低频电磁屏蔽相比。主动式低频消磁器体积小重量轻价格低、对环境无影响、可以后期购买安装等优点是很突出的。不过还有一点必须说一下:磁屏蔽往往是个“交钥匙”项目,就是说做磁屏蔽时往往连带把电、水、空调、照明、网络还有监控什么的统统包括进去了,如果反正要装修改造的话,性价比倒也挺高的呢。总体说来,被动式磁屏蔽的效果优于主动式消磁器,但是由于前述原因,某些环境下也只能选配消磁器。扫描电镜一般几种方法都区别不大,透射电镜建议还是尽量选用磁屏蔽(差点忘了说,场发射透射电镜对磁场要求一般比扫描电镜要高一大截呢,呵呵)。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 岛津应用:基于nSMOL技术和Skyline软件的曲妥珠单抗LC-MS/MS定量分析方法开发
    曲妥珠单抗是一种抗 Her2 的重组 DNA 衍生的人源化单克隆抗体,它通过将自己附着在 Her2 上来阻止人体表皮生长因子在 Her2 上的附着,从而阻断癌细胞的生长,曲妥珠单抗还可以刺激身体自身的免疫细胞去摧毁癌细胞。随着曲妥珠单抗在临床的广泛应用,对该药物在人体血浆中定量检测的精密度和准确度要求也日益提高。 随着液相色谱和质谱技术以及生物样品分离技术的发展,LC-MS/MS 定量技术在蛋白质定量研究中的应用日益广泛。相对于传统的免疫分析方法(例如 ELISA),LC-MS/MS定量技术提高了蛋白分析的精密度和准确度。基于质谱法的蛋白定量在抗体药物临床前及临床研究中受到越来越多的关注,为了使蛋白质定量技术与药物研究和临床检验更加紧密结合,岛津公司将其超快速液相色谱-质谱联用平台和强大的定量蛋白质组学软件 Skyline集成一体。根据蛋白质序列和用户自定义,Skyline 软件可以用来设计、改善以及优化选择反应监测(SRM)/多反应监测(MRM)、全扫描质谱和串联质谱定量法。Skyline 软件不仅将结果和方法优化结合起来,也为蛋白质定量的研究工作提供了标准化的工作流程。同时岛津研发工程师们为简化复杂生物基质中抗体药物的定量分析工作,对抗体药物前处理过程进行了独特的设计,发明了 nSMOL 前处理试剂包,该方法能够有效富集血浆/血清中的抗体药物,实现 Fab 区域的选择性酶解,提高酶解效率,极大降低了酶解产物的复杂性,对于复杂生物基质中抗体药物的准确定量提供了非常有利的工具。 本文建立了一种使用岛津超高效液相色谱仪 LC-30A 和三重四极杆质谱仪 LCMS-8060与Skyline软件联用建立血浆中曲妥珠单抗定量分析的工作流程。结合nSMOL前处理技术,实现抗体药物 Fab 区域选择性酶解,从而显著降低了方法开发的复杂程度。在本实验筛选阶段,共有 10 个肽段具有明显的色谱峰,其中 8 条肽段与曲妥珠单抗的 Fab 区域相关,而曲妥珠单抗具有代表性的特异性肽段集中于 Fab 区域,充分体现了 nSMOL 技术的高选择性,从而极大地降低了酶解产物的复杂性,提高方法开发的速度。实验通过 Skyline 软件完成MRM 通道的设计和方法的输出,LabSolutions 基于 Skyline 导出的 MRM 分析方法,进行肽段筛选、碰撞能量优化,最终确认曲妥珠单抗的特征肽段及其对应的 MRM 离子对。基于以上所建立的方法,本文完成血浆中曲妥珠单抗药物的定量分析方法开发,定量特征肽段为IYPTNGYTR(542.80404.70),线性范围为 0.122 μg/mL~125 μg/mL。 了解详情,敬请点击《基于nSMOL 技术和Skyline 软件的曲妥珠单抗LC-MS/MS定量分析方法开发》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。更多信息请关注岛津公司网站www.shimadzu.com.cn/an/。岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制